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Abstract

Model-free deep reinforcement learning has shown remarkable promise in solving highly
complex sequential decision-making problems. However, the widespread adoption of re-
inforcement learning algorithms has not materialized in real-world applications such as
robotics. A primary challenge is the general assumption that environments remain station-
ary at deployment. This problem is exacerbated when agents rely on pixel-based observa-
tions, dramatically increasing task complexity. As a result, these algorithms often fail when
environments change over time. The perspective that agents should learn a disentangled
representation has already been shown to be effective in improving generalization to do-
main shifts. We extend previous work by introducing Generalized Disentanglement (GED),
an auxiliary contrastive learning task that encourages pixel-based deep reinforcement learn-
ing algorithms to isolate factors of variation in the data by leveraging temporal structure.
We show that our methodology can improve generalization to unseen domains in several
environments.
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Chapter 1

Introduction

Humans, in general, are incredibly capable of dealing with the ever-changing, uncertain world
around us. For example, a person driving a vehicle can adapt to all types of circumstances,
such as erratic driving behavior, oncoming traffic, or fluctuating weather conditions. We readily
adjust to all types of situations during which we abstract away all kinds of irrelevant details,
such as the color and the model of the surrounding vehicles. Autonomous systems, too, should
understand which elements of the environment can be ignored and which require attention to
ensure safe decision-making. This is especially critical in robotics and full self-driving, where
spurious correlations can lead to incorrect decisions, with potentially catastrophic consequences.

Hence, much research has taken the perspective that a human-like structural understanding of
the world would also improve deep learning systems (Bengio et al., 2014; Lake et al., 2017;
Schölkopf et al., 2021). One of the promising mechanisms to encourage deep neural networks
to learn such a structure of the environment is by disentangling the independent factors of vari-
ation, also referred to as factors or variables, in the data. In the example above, the factors of
variation include the color, shape, and size of the vehicles, but also driving behavior. Learning
to represent these factors separately allows the model to adapt to changes in one factor while
maintaining its knowledge about others. This improves generalization and transferability to un-
seen domains (Higgins et al., 2018; Schölkopf et al., 2021).

Previous work by Dunion et al. (2023b) proposed Temporal Disentanglement (TED), an aux-
iliary learning task to disentangle latent representations in pixel-based model-free deep rein-
forcement learning (RL). TED encourages the isolation of independent factors of variation by
adapting Permutation-Contrastive Learning (PCL) (Hyvärinen and Morioka, 2017) to the RL
setting. PCL discriminates between temporal and non-temporal pairs of latent representations
using a regression function that models temporally dependent stationary sources. Their work
showed that disentangled representations effectively increased robustness and improved gener-
alization to unseen variations of environments.

Related to PCL is the work on time-contrastive learning (TCL) (Hyvärinen and Morioka, 2016)
that showed that non-stationary factors of variation can be recovered by learning a classifier to
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1.1. Scope

discriminate between time windows. Subsequent research unifies PCL and TCL into a single
general framework called Nonlinear Independent Component Analysis (Nonlinear ICA) with
Auxiliary Variables (Hyvärinen et al., 2019). This framework assumes that factors of variation
are modulated by auxiliary variables that can be leveraged to identify the original signals, hold-
ing the potential to disentangle a wider range of sources.

This thesis investigates how temporal structure can be exploited to disentangle pixel-based rep-
resentations in non-stationary deep reinforcement learning. We introduce Generalized Disentan-
glement, an auxiliary contrastive task that encourages the agent to separate factors of variation in
its learned representation. We evaluate our approach in a wider range of settings to gain more in-
sight into the strengths and limitations of disentangled representation learning in non-stationary
RL. We consider using various choices of negative contrastive pairs. Not only can this simplify
implementation, our experiments also show that this can greatly minimize the generalization gap
for some tasks. Additionally, our methodology demonstrates stable training, improving perfor-
mance and generalization in non-stationary RL.

1.1 Scope

Non-stationary RL is a broad area of study. Non-stationarity can be demarcated into passive non-
stationarity and active non-stationarity (Khetarpal et al., 2022). Passive non-stationarity refers to
changes that happen regardless of the agent, whereas active non-stationary changes happen as a
consequence of the behavior of the agent. Although reinforcement learning algorithms naturally
induce active non-stationary changes in the environment, our experimental settings focus on
additional passive non-stationarity. First, we consider the general problem of domain shift.
Specifically, the agent encounters a shift in the observations, but the fundamental relationship
between the state and the optimal policy is preserved. We refer to this setting as generalization
to task-irrelevant factors. Secondly, we investigate the problem of adapting to intra-episodic
shifts in the state dynamics. We characterize this as generalization to task-relevant factors. In
the two aforementioned settings, we additionally focus on how modulating the factors using
non-stationary functions affects performance and generalization. We focus on two types of
non-stationarity that are commonly studied in non-stationary RL (Dulac-Arnold et al., 2021;
Khetarpal et al., 2022): (i) abrupt change: the factor of variation is modulated according to
a step function during an episode with uniformly distributed initial values at the start of each
episode and (ii) gradual change: the factor varies according to a cyclic function during an episode
with uniformly distributed starting values between episodes. Lastly, we study generalization to
unseen variations of an environment. We refer to this as generalization to task-irrelevant and
task-relevant factors.

1.2 Research Objective

This work concerns itself with recovering latent variables from the agent’s observations by learn-
ing a disentangled representation. We specifically focus on applying the Nonlinear ICA with
Auxiliary Variables (Hyvärinen et al., 2019) framework to this problem setting. We hypothesize
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1.3. Research Questions

that disentangling the latent representation allows the agent to learn a policy that can adapt to
changes in the environment faster. This should improve performance in non-stationary environ-
ments as well as generalization to novel domains.

1.3 Research Questions

To achieve our research objective, we ask the following main research question:

How can disentangled representations improve generalization in non-stationary
reinforcement learning?

To address our central research question we present Generalized Disentanglement, an auxil-
iary contrastive learning task to disentangle latent representations in pixel-based reinforcement
learning. Since the agent is encouraged to learn a disentangled representation, the agent is more
robust to domain shifts, increasing performance and generalization. We explore the main ques-
tion through the following subquestions:

(RQ1): How do disentangled representations improve robustness to task-irrelevant factors?

To investigate this research question, we evaluate how well the policy generalizes when the agent
suddenly observes inputs from a different domain, characterized by the task-irrelevant color of
the environment. We also refer to the color factor as the distractor in the environment. We
explore generalization in three different settings. We evaluate the setting where the color (i)
is constant throughout an episode, (ii) changes gradually during an episode, and (iii) changes
abruptly within an episode.

(RQ2): How do disentangled representations improve adaptation to task-relevant factors?

To explore this research question, we evaluate our methodology in an environment that contains
a task-relevant factor that influences the dynamics of the environment throughout an episode.
Here, too, we investigate whether the policy is able to adapt to gradual and abrupt changes in the
dynamics.

(RQ3): How do disentangled representations enhance generalization to unseen variations of
environments?

To answer this research question, we investigate our methodology in environments that contain
visual task-relevant and task-irrelevant variables. After training in the train domain, we switch
to the test domain and evaluate the performance of the agent allowing for continued gradient
updates to test how quickly the agent recovers.
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1.4. Contributions

1.4 Contributions

The contributions of this work are as follows:

• We extend Temporal Disentanglement to Generalized Disentanglement to learn a disen-
tangled representation of the environment. Our methodology is more flexible and robust,
concomitantly improving performance and generalization in non-stationary RL.

• We empirically validate our approach in a wide variety of settings, investigating general-
ization to changes in task-relevant and task-irrelevant variables of the environment. We
provide a detailed overview and discussion of the results.

1.5 Thesis Outline

The remainder of this thesis is structured as follows:

• Chapter 2 provides a summary of the preliminary knowledge that is foundational to the
main methodology. First, we discuss the basics of reinforcement learning. Secondly,
we cover aspects of representation learning in RL. Lastly, we describe the theoretical
framework of Nonlinear Independent Component Analysis.

• Chapter 3 discusses the methodology of our approach. We provide a description of the
problem setting, the architecture, the learning algorithm, and the optimization objective.

• Chapter 4 describes the experimental setup of our research. We describe environments,
reinforcement learning algorithms, high-level experimental settings, evaluation criteria,
and hyperparameters.

• Chapter 5 presents the results of our experiments. First, we present the results and discuss
the experiments with task-irrelevant factors of variation. Next, we present and discuss the
experimental results with task-relevant factors. Finally, we present and discuss the results
of the experiments with both task-relevant and task-irrelevant variables.

• Chapter 6 provides a more in-depth discussion of the research. Specifically, we address
the interpretation of results and limitations.

• Chapter 7 examines related research in the field of non-stationary reinforcement learning.
We focus on specific techniques that address the problem of non-stationary reinforcement
learning. We briefly describe their high-level ideas, their significance to our work, and
their differences.

• Chapter 8 concludes this thesis with a summary of our findings and key contributions.

• Chapter 9 discusses several directions for future research.
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Chapter 2

Background

This chapter covers the relevant background necessary to understand the main contribution of
this thesis. We start this chapter with an introduction to reinforcement learning in Section 2.1.
Next, we discuss representation learning and its relevance to this thesis in Section 2.2. Lastly,
we describe the general Nonlinear Independent Component Analysis framework in Section 2.3.

2.1 Reinforcement Learning

Reinforcement learning is a learning paradigm that frames the system as an environment in
which an agent perceives an observation, takes an action based on this observation, and receives
a reward that corresponds to the transition to the new state of the agent. Through repeated
interaction, the agent learns which action to take in each state. Next, we cover the basic aspects
of reinforcement learning and describe state-of-the-art actor-critic algorithms.

2.1.1 Partially Observable Markov Decision Process

The Partially Observable Markov Decision Process (POMDP) is a common model for environ-
ments where the true state is not directly observed (Wiering and Van Otterlo, 2012). Formally,
the POMDP framework is a six-tuple (S,A,Ω,T,O,R). The symbol S represents the finite set of
states, A is the finite set of actions and Ω denotes the finite set of observations. The transition
function T : S×A×S→ [0,1] is the distribution P(s′ | s,a), where s′ is the next state after exe-
cuting action a in state s. At each step, the agent perceives an observation o ∈Ω, sampled from
the observation function O : S×A×Ω→ [0,1] with probability O(s′,a,o). The agent receives a
reward after a transition from state s to state s′. The reward is governed by the reward function
R : S×A×S→ R.

2.1.2 Value Functions

The general framework of reinforcement learning considers systems where an agent is in a cer-
tain state of the environment, can execute actions at discrete time steps t = 1,2,3, ... and receives
a reward when transitioning to a new state. The agent’s rule set of which actions to execute in
which state is called the policy. A policy π : S→ A maps states s ∈ S to action a ∈ A and can
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2.1. Reinforcement Learning

be deterministic or stochastic. To compute such a solution, the policy has to estimate the value
of each state after following the current policy π. This is formalized in the value function. The
value function V π(s) is the expected value over the sum of future discounted rewards achieved
by executing the policy π. The value function V π(s) is formally defined as:

V π(s) = Eπ

[
∞

∑
k=0

γ
krt+k | st = s

]
, (2.1)

where γ ∈ [0,1] is the discount factor for future rewards.

The Q-function Q : S×A→ R, also called state-action function, is closely related to the value
function as it gives the value of executing a specific action a in the state s and is denoted as:

Qπ(s,a) = Eπ

[
∞

∑
k=0

γ
krt+k | st = s,at = a

]
. (2.2)

Both the value function and the Q-value function have a recursive form and are called the Bell-
man equations:

V π(s) = Ea∼π
s′∼P

[r(s,a)+ γV (s′)] (2.3)

Qπ(s,a) = Es′∼P[r(s,a)+ γEa′∼π[Q(s′,a′)]] (2.4)

Another related function is the advantage function Aπ(s,a). The advantage function is simply
the difference between the Q-function and the value function:

Aπ(s,a) = Qπ(s,a)−V π(s). (2.5)

In general, we are interested in finding the optimal policy. The optimal policy is defined as
V π∗(s) ≥ V π(s), for all s ∈ S and for all policies π. This means that by following policy π∗ the
expectation over the sum of discounted future rewards in each state s is greater than or equal to
all other policies starting from state s. The optimal value function V ∗ of any MDP, expressed in
terms of the executed policy, is V π∗ and satisfies:

V ∗(s) = max
a∈A

∑
s′∈S

T (s,a,s′)(R(s,a,s′)+ γV ∗(s′)) (2.6)

This definition of V ∗(s) is better known as the Bellman optimality equation and expresses that
the value of a state under an optimal policy is the expected reward for the best action in that
state. Consequently, the optimal policy takes the argmax over actions for each next state s′ ∈ S:

π
∗(s) = argmax

a∈A
∑
s′∈S

T (s,a,s′)(R(s,a,s′)+ γV ∗(s′)). (2.7)

The methods that are capable of finding the optimal policy are broadly categorized into model-
based and model-free approaches. Model-based reinforcement learning has the objective of
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2.1. Reinforcement Learning

learning the transition function T of the environment. In contrast, model-free methods learn
the value function by interacting with the environment. Model-free approaches are generally
value-based or policy-based. Value-based approaches learn the Q-value function and derive a
deterministic policy:

π(s) = argmax
a∈A

Q(s,a). (2.8)

The disadvantage of value-based approaches is their need to estimate the value function for
all possible actions, which is often not feasible in high-dimensional or continuous action spaces.
Policy-based approaches, on the other hand, optimize the policy π(s) directly by learning the op-
timal parameters θ∗. This makes policy-based algorithms suitable for continuous action spaces
or environments that require exploration through randomness.

2.1.3 Policy-Based Reinforcement Learning

Policy gradient methods are a class of reinforcement learning algorithms that optimize a param-
eterized policy πθ(at | st), which maps states to action probabilities, by estimating the gradient
of the expected cumulative reward with respect to the policy parameters θ. The objective is to
maximize the expected return over trajectories τ = (s0,a0,s1, . . . ,sT ), where T is the horizon of
the trajectory. Formally, this can be expressed as:

J(θ) = Eτ∼πθ
[R(τ)]

= ∑
τ

P(τ | θ)R(τ), (2.9)

where R(τ) is the discounted cumulative reward for trajectory τ. The probability of a trajectory
τ is given by:

P(τ | θ) = ρ0(s0)
T−1

∏
t=0

πθ(at | st)P(st+1 | st ,at), (2.10)

where ρ0(s0) is the initial state distribution and P(st+1 | st ,at) is the probability of transitioning
to st+1 after executing action at in state st .

We can derive the gradient of J(θ) by taking the derivative:

∇θJ(θ) = ∇θ ∑
τ

P(τ | θ)R(τ)

= ∑
τ

∇θP(τ | θ)R(τ)

= ∑
τ

P(τ | θ)∇θP(τ | θ)
P(τ | θ)

R(τ)

= ∑
τ

P(τ | θ)∇θ logP(τ | θ)R(τ)

= Eτ∼P(τ|θ) [∇θ logP(τ | θ)R(τ)]

(2.11)
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2.1. Reinforcement Learning

Taking the logarithm over P(τ | θ), we get:

logP(τ | θ) = logρ0(s0)+
T−1

∑
t=0

[logπθ(at | st)+ logP(st+1 | st ,at)] . (2.12)

This gives us the gradient:

∇θ logP(τ | θ) =
T−1

∑
t=0

∇θ logπθ(at | st), (2.13)

since ρ0(s0) and P(st+1 | st ,at) are independent of θ. We can substitute this back into the gradient
expression of Equation 2.11:

∇θJ(θ) =Eτ∼P(τ|θ)

[
T−1

∑
t=0

∇θ logπθ(at | st)R(τ)

]
. (2.14)

This shows that we can maximize the expected reward by adjusting the policy parameters in
the direction of the log-probability of the actions, weighted by the trajectory’s discounted cu-
mulative return. In practice, the expectation is approximated over multiple trajectories using
Monte Carlo sampling, which can lead to high-variance gradients. This destabilizes training,
slowing down convergence. Actor-critic algorithms overcome the problems of value-based and
policy-based approaches by combining direct policy optimization (actor) with value function es-
timation (critic). Next, we describe two actor-critic algorithms called Soft Actor-Critic (Section
2.1.4) and Proximal Policy Optimization (Section 2.1.5).

2.1.4 Soft Actor-Critic

Soft Actor-Critic (SAC) is an off-policy entropy-maximization reinforcement learning algorithm
(Haarnoja et al., 2018). SAC regularizes the policy with an additional entropy term, which
promotes exploration and prevents convergence to suboptimal policies. The entropy-regularized
objective is:

π
∗ = argmax

π
Eτ∼π

[
∞

∑
t=0

γ
t (R(st ,at ,st+1)+αH (π(· | st)))

]
,

where α > 0 is the entropy regularization coefficient, γ ∈ [0,1) is the discount factor and H(π(· |
st)) is the entropy of the policy at state st , defined as:

H(P) = Ex∼P[− logP(x)].

In the entropy-regularized setting, the value functions are modified to include entropy bonuses.
The modified value function is defined as:

V π(s) = Eτ∼π

[
∞

∑
t=0

γ
t (R(st ,at ,st+1)+αH (π(· | st))) | s0 = s

]
, (2.15)

and the entropy-regularized Q-function is defined as:
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2.2. Representation Learning in RL

Qπ(s,a) = Eτ∼π

[
R(s0,a0,s1)+

∞

∑
t=1

γ
t (R(st ,at ,st+1)+αH (π(· | st))) | s0 = s,a0 = a

]
. (2.16)

The Bellman equation for Qπ is:

Qπ(s,a) = Es′∼P,a′∼π

[
R(s,a,s′)+ γ

(
Qπ(s′,a′)+αH

(
π(· | s′)

))]
.

2.1.5 Proximal Policy Optimization

Proximal Policy Optimization (PPO) is an on-policy reinforcement learning algorithm designed
to improve the policy based on current data while avoiding performance collapse due to large
updates (Schulman et al., 2017). PPO updates the policy by maximizing a clipped objective
function, which limits the new policy from significantly deviating from the old policy. The
update rule is as follows:

θk+1 = argmax
θ

Es,a∼πθk
[L(s,a,θk,θ)] , (2.17)

where multiple steps of mini-batch stochastic gradient descent (SGD) are typically used. The
clipped objective is:

L(s,a,θk,θ) = min
(

πθ(a | s)
πθk(a | s)

Aπθk (s,a),clip
(

πθ(a | s)
πθk(a | s)

,1− ε,1+ ε

)
Aπθk (s,a)

)
, (2.18)

with ε being a hyperparameter controlling the maximum allowed policy change and Aπθk (s,a)
as the advantage function.

2.2 Representation Learning in RL

As outlined above, reinforcement learning algorithms depend on the state s to learn a policy in
the environment. However, in many real-world situations, the true state of the environment is
not directly observed (see Section 2.1.1). Consider robotics applications, where control often de-
pends on computer vision (Hämäläinen et al., 2019; Chebotar et al., 2019; Vecerik et al., 2021).
Although initial end-to-end approaches demonstrated remarkable success learning directly from
raw pixel observations (Mnih et al., 2013), this approach fails when the environment is more
complex or changes over time. Pixel observations, especially, introduce significant complica-
tions as the visual input space is large, high-dimensional, sparse, and prone to noise. Naturally,
follow-up research leveraged insights from the work in representation learning to address these
issues. Representation learning is the process of extracting informational features from raw ob-
servations (Bengio et al., 2014). In our work, we adopt the definition by Echchahed and Castro
(2025):

Definition. State representation learning learns a representation function hk
θ

: O0×O1×·· ·×
Ok→Z, parameterized by θ, which maps k-step observation sequences to a representation space
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2.2. Representation Learning in RL

Z, thereby allowing us to define policies ΠZ over this reduced space. The encoder enables a
policy network πθ to compute actions at = πθ(zt), and a value network Vθ to compute values
vt = Vθ(zt), based on the representation zt = hθ(ot), instead of directly using high-dimensional
observations. The representation zt is a vector in Rd , where d is the dimensionality of Z.

Learning a representation function that extracts relevant information from the high-dimensional
input mitigates the state-space explosion problem and enhances policy optimization.

Actions
Distribution

Value
Network

Policy
Network

Encoder
Network

k

Representation
Values

Observations

Figure 2.1: High-level overview of state representation learning in Actor-Critic RL algorithms.
The k observations are encoded into a representation using encoder hθ. The representation is
passed to the policy network πθ and value network Vθ that output the actions distribution and
values, respectively.

2.2.1 Desirable Properties of State Representations

A key question in state representation learning is what constitutes an optimal state representation
(Böhmer et al., 2015; Lesort et al., 2018; Botteghi et al., 2025). Ideally, an optimal represen-
tation should support the policy to learn the control task(s) in the environment. This can only
be achieved when the representation sufficiently captures all the task-relevant information con-
tent while ignoring irrelevant information (e.g., noise, distractors). Furthermore, an optimal
representation not only contains sufficient information, but is also well-structured. According to
Le Lan et al. (2021), an effective latent structure guarantees a high degree of Lipschitz continuity
for the value function of neighboring representations. In essence, this means that neighboring
representations should be mapped to similar Q-value predictions.

2.2.2 Disentangled Representations

To address the need for an optimally structured representation, a key direction in representation
learning is the concept of disentanglement. In this framework, a dataset X is described as a
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2.2. Representation Learning in RL

generative process in which each observed value x ∈ X is the realization of a set of underlying
factors of variation (Bengio et al., 2014; Schölkopf et al., 2021). The factors of variation, de-
noted as y, are assumed to be independent and nonlinearly mixed into a high-dimensional space
according to a conditional distribution p(x | y). When a representation captures the independent
factors of variation in the dataset, the representation is said to disentangle the latent factors of
variation. As Bengio et al. (2014) intuitively describe it:

Definition. A disentangled representation separates the distinct, independent, and informative
generative factors of variation in the data. Single latent variables are sensitive to changes in
single underlying generative factors while being relatively invariant to changes in other factors.

Thus, disentangled representation learning is concerned with estimating the generative model of
the true factors of variation using z = f(x), with x ∼ p(x | y). From a theoretical perspective,
the successful identification of true latent sources is challenging, requiring at minimum weakly
labeled data or appropriate inductive biases (Locatello et al., 2019).

2.2.3 Self-Supervised Contrastive Learning

Self-supervised contrastive learning is a representation learning technique that learns a represen-
tation of data objects by juxtaposing similar data objects against dissimilar data objects without
having access to the ground-truth labels of each data object. Consider the problem of learning
a class representation of a binary image dataset without having access to the ground-truth label
of each image. As a first step, self-supervised contrastive learning artificially creates structure
in the dataset by splitting the dataset into positive pairs and negative pairs, often applying data
augmentations (e.g., cropping, patching, or rotating) to each element in the pair (Dosovitskiy
et al., 2015; Doersch et al., 2016; Gidaris et al., 2018). Positive pairs are instances that belong
to the same data object. Negative pairs are instances that do not belong to the same data ob-
ject. This allows us to train a generative model by reformulating the problem as a supervised
classification task. The next step is to train a classifier to learn to discriminate between positive
and negative pairs. The prediction loss is used to update the gradients of the classifier and the
generative model. Intuitively, if the generative model maps similar data points closely to each
other in latent space, while mapping negative data points farther away in latent space, the clas-
sifier will be better at discriminating between the classes. This encourages the representation
network to capture meaningful features and similarities of both classes. A commonly used ob-
jective function in the binary discrimination task is the probabilistic objective function called
binary cross-entropy loss. The binary cross-entropy loss is defined as

L(y, ŷ) =− 1
N

N

∑
n
[yi× log(ŷi)+(1−yi)× log(1− ŷi)]. (2.19)

Self-supervised learning is especially attractive for learning a state representation, as it is often
assumed that agents do not have access to the true state. Moreover, contrastive learning also
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has a relationship to disentangled representation learning through the Nonlinear Independent
Component Analysis framework, which will be discussed in the next section.

2.3 Nonlinear Independent Component Analysis

Independent Component Analysis (ICA) is one of the successful approaches to blind source sep-
aration (Jutten and Herault, 1991; Schmidhuber, 1992; Comon, 1994). Blind source separation
is the problem of recovering true signals from mixed signals without supervision. The general
model assumes that the sources are mixed by a linear mixing function, mathematically expressed
as:

x = Wy =
n

∑
i=1

yiwi. (2.20)

Here, wi ∈W are the weights of the mixing matrix W and yi ∈ y are the true values of each
component i ∈ {1, ...,n} of y. This simple model performs remarkably well, but is often insuffi-
cient to describe natural data. Hence, the work on ICA was shortly followed by considering the
extension to Nonlinear ICA (Burel, 1992; Deco and Brauer, 1995; Deco and Obradovic, 1996;
Pajunen, 1996; Pajunen and Karhunen, 1997; Lee et al., 1997; Hyvärinen and Pajunen, 1999).
The Nonlinear ICA model is defined as:

x = f(y), (2.21)

where f is the unknown, real-valued, nonlinear, mixing function.

Assume that x ∈ Rd ,y ∈ Rd , then the problem of Nonlinear ICA is to find the mapping f−1 :
Rd → Rd that gives us the original statistically independent components:

ŷ = f−1(x). (2.22)

Recent work established the connection between types of contrastive learning and Nonlinear
ICA (Hyvärinen and Morioka, 2016, 2017; Hyvärinen et al., 2019; Morioka et al., 2021). Specif-
ically, Hyvärinen and Morioka (2016) showed that TCL is able to reconstruct non-stationary
sources by leveraging temporal structure, recoverable through segment indices as auxiliary in-
formation. This work was closely followed by Hyvärinen and Morioka (2017) which proposed
PCL to identify temporally dependent stationary sources. These methods were combined into
a general framework in (Hyvärinen et al., 2019). This work proposed a generalized contrastive
method that utilizes auxiliary variables related to the source signal to recover the underlying
independent components. In this framework, it is assumed that we observe xt = f(yt), where yt
is the source signal at time step t and f : Rn → Rn is a smooth, invertible and nonlinear mix-
ing function. Additionally, each component yi is assumed to depend on an observed auxiliary
variable u, but is conditionally independent of other components given u:

p(y | u) = Πiqi(yi | u), (2.23)
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2.3. Nonlinear Independent Component Analysis

for some conditional log-probability density function (log-pdf) qi.

The method for learning this generative model uses an algorithm called Generalized Contrastive
Learning (GCL). GCL learns the demixing function using a self-supervised binary discrimina-
tion task. By discriminating between actual samples x̃=(x,u) and shuffled samples x̃∗=(x,u∗),
where u∗ is randomly drawn from the distribution of u, independently of x. The discriminator is
learned using a regression function of the form:

g(x,u) =
n

∑
i=1

ψi(hi(x),u), (2.24)

where hi is the ith component of the demixed signal x and ψi is a function approximator with uni-
versal approximation capacity (Hornik et al., 1989). The theoretical framework in (Hyvärinen
et al., 2019) guarantees that independent components can be recovered up to a component-
wise transformation, assuming that: (i) the observations follow the model in Equation 2.23, (ii)
each conditional log-pdf qi is sufficiently smooth in the source variable given the auxiliary in-
formation, (iii) the auxiliary variable u sufficiently influences the distribution of independent
components, (iv) a nonlinear logistic regression system accurately discriminates between true
and permuted samples x̃ and x̃∗, (v) the feature mapping is bijective, smooth and has a smooth
inverse and (vi) we have access to infinite data.
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Chapter 3

Methodology

This chapter presents our framework to disentangle latent representations in model-free deep
reinforcement learning. We begin by describing the problem setting that our method aims to
solve in Section 3.1. Secondly, we thoroughly describe our methodology in Section 3.2.

3.1 Problem Setting

We build on the standard POMDP formalism as defined in Section 2.1.1. Our setting retains
the tuple (S,A,Ω,T,O,R) but extends the transition function and observation function with ad-
ditional latent factors of variation. Formally, we introduce the task-relevant factor ζt ∈ Fζ,
which influences the state dynamics, and the task-irrelevant factor ξt ∈ Fξ, which affects the
observation process. Both factors can change over time following the conditional distribution
P(ζt | ζt−1) or P(ξt | ξt−1), respectively. We extend the transition function T : S×A×Fζ×S→
[0,1] to T (s,a,ζ,s′) = P(s′ | s,a;ζ). Correspondingly, the observation function is redefined as
O : S×A×Fξ×Ω→ [0,1], where O(o | s,a;ξ) denotes the probability of perceiving observa-
tion o after executing action a and transitioning to state s given that the latent factor is ξt . An
optimal agent identifies when a factor is task-irrelevant and minimizes the impact of the factor
on the policy accordingly. By contrast, an agent that perfectly isolates task-relevant factors of
variation (e.g., state information) improves the agent’s ability to adapt to specific changes in the
environment, similarly resulting in better generalization to domain shifts. Figure 3.1 depicts the
graphical model of the problem setting. The reward is omitted from the graph for visualization
purposes.

3.2 Generalized Disentanglement

The objective of Generalized Disentanglement (GED) is to disentangle latent factors of variation
through an additional auxiliary contrastive learning task in pixel-based reinforcement learning
training. Conceptually, GED follows the framework proposed for TED (Dunion et al., 2023b).
Our methodology improves on TED by allowing for greater choice in the non-temporal con-
trastive pairs. In applicable situations, this eliminates the need to maintain a record of episode
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Figure 3.1: The graphical model of our problem setting. We build on the standard POMDP
model. Rewards are omitted for visualization purposes. The task-irrelevant factor ξ affects
the observation directly. The task-relevant factor ζ affects the agent’s observations through the
influence on the true state of the environment.

indices, simplifying implementation. Moreover, our generalized optimization objective demon-
strates greater stability, extending applicability to a wider range of domains. A visualization of
the architecture is shown in Figure 3.2.

3.2.1 Architecture

The architecture of GED can be easily integrated with existing approaches that use an en-
coder module hθ : O→ Z to compress high-dimensional image observations o ∈ O into lower-
dimensional latent representations z ∈ Z. Our method guides the encoder hθ to learn a disen-
tangled representation of image observations through self-supervised contrastive learning. We
introduce a classifier gφ : Z×Z×U → R to discriminate between temporal samples and non-
temporal samples. The variable U represents an optional conditional variable, or auxiliary vari-
able, that could act as a stronger signal to disentangle the latent variables. Note that we consider
conditioning on the history as a necessity, redefining the meaning of u compared to (Hyvärinen
et al., 2019).

The temporal samples (zt ,zt+1,ut) contain two consecutive latent representations and, option-
ally, the auxiliary variable. In contrast, non-temporal samples (zt ,zt ′ ,ut ′) contain two non-
temporal latent representations, where the next representation and the auxiliary variable are
drawn from the buffer, with t ′ /∈ {t−1, t, t +1}.

During training, we sample a batch B = {(ot ,ot+1,ut)i}N
i=1 of size N that contains observation

pairs and optional auxiliary variables. The observations are encoded using the encoder hθ. Sim-
ilarly to TED, ot is passed through the encoder connected to the RL modules, and ot+1 is passed
through a target encoder hθ′ : O→ Z. To improve training stability, the target encoder uses soft
updates θ′ = ηθ+(1−η)θ′, where η is a hyperparameter that controls the update step.
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Replay
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Target encoder 
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Non-temporal sample

Reinforcement
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Encoder 

Classifier

Figure 3.2: Generalized Disentanglement Architecture: The latent representations of the en-
coder are encouraged to isolate independent factors of variation by the concurrent training of the
classifier which discriminates between temporal and non-temporal samples. The ‘//’ indicates
that the gradient flow is stopped. Time steps t̃ ∈ {t + 1, t ′} depend on the observation being
processed.

The batch B of N transitions is augmented to create two types of observation-pair batches: (i)
temporal samples X and (ii) non-temporal samples X ′. Concretely, this gives us two types of
samples:

i (zt ,zt+1,ut) for temporal pairs.

ii (zt ,zt ′ ,ut ′) for non-temporal pairs.

3.2.2 Non-Temporal Pairs

Dunion et al. (2023b) showed that TED requires a balanced ratio of same episode, non-temporal
samples and different episode, non-temporal samples for optimal performance. We consider
more flexible options in the choice of non-temporal contrastive pairs. The optimal sampling
scheme is task-dependent. We consider three possible sampling variants for non-temporal pairs:

i Balanced Ratio: A balanced ratio between same episode, non-temporal pairs and different
episode, non-temporal pairs. The optimization objective corrects for the imbalance between
positive and negative pairs.

ii Same Episode: All non-temporal pairs belong to the same episode.

iii Non-Temporal: Sampling negative pairs without regard for the episode.

The possible sampling schemes are evaluated in a variety of control tasks. The results are pre-
sented in Chapter 5.
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3.2. Generalized Disentanglement

3.2.3 Optimization Objective

The classifier optimizes the GED loss LGED using the regression function gcomb(.) from (Hyvärinen
et al., 2019):

gcomb(zt ,zt̃ ,ut̃) =
d

∑
i=1

ψi(zi
t ,z

i
t̃ ,ut̃), (3.1)

where zi is the ith component of the latent representation zt , ut̃ is the optional auxiliary variable
and ψi : R2+|u| → R are general function approximators, implemented as feedforward neural
networks.

At each update, the classifier receives a batch of samples {X ,X ′}. The output of the classifier is
compared with the synthetically generated ground-truth labels. The label l = 1 corresponds to
all temporal pairs of samples X and l = 0 corresponds to non-temporal samples X ′. The classifier
is optimized by minimizing the binary cross-entropy loss for all xt ∈ {X ,X ′}:

LGED(xt , l) =−α(l logσ(gcomb(xt))+(1− l) log(1−σ(gcomb(xt)))) , (3.2)

where σ is the sigmoid function. The parameter α is the same hyperparameter as in TED that
scales the magnitude of the term LGED to balance the policy optimization objective with the
disentanglement objective. Since the combined regression function gcomb(.) contains a neural
network ψi for each component of the latent representation, the encoder is encouraged to sepa-
rate distinct factors of variation into isolated latent components.

The modified pseudocode from (Dunion et al., 2023b) for an update step is provided in Algo-
rithm 1.

Algorithm 1 GED update step
Require: Batch of transitions B = {...,(ot ,ot+1,ut), ...} ∼ D

1: Create batch Zobs of representations for each observation in B: zt = hθ(ot)
2: Create batch Znext obs of representations for each next observation in B: zt+1 = hθ′(ot+1)
3: for each transition in B do
4: Create temporal sample xt ← (zt ,zt+1,ut), X ← X ∪xt

5: Sample ot ′ ∼ D such that t ′ /∈ {t−1, t, t +1} and get representation zt ′ = hθ′(ot ′)
6: Create non-temporal sample x′t ← (zt ,zt ′ ,ut ′), X ′← X ′∪x′t
7: for each sample x ∈ {X ,X ′} do
8: Classifier prediction y = gφ(x) (see Equation 3.1)
9: Calculate binary cross-entropy loss LGED(x, l) (see Equation 3.2)

10: Calculate average loss for the batch LGED←mean(LGED(x))
11: Backpropagate loss to update encoder parameters θ and classifier parameters φ

12: Update target encoder parameters θ′ = ηθ+(1−η)θ′

Ensure: Loss LGED and updated parameters φ, θ, and θ′
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Chapter 4

Experimental Setup

This chapter discusses the experimental setup to evaluate our approach. We start by describing
the environments in Section 4.1. Secondly, we discuss the baseline RL agents in Section 4.2.
Next, we define the non-stationary settings in Section 4.3. Lastly, we discuss the evaluation
criteria in Section 4.4 and the choice of hyperparameters in Section 4.5.

4.1 Environments

The experiments are conducted in a variety of control tasks. We first describe the DM Con-
trol Suite environments Cartpole Swingup and Finger Spin, followed by the Panda environment
Reach Dense. Next, we describe Gymnasium’s Car Racing environment. Finally, we describe
Procgen environments Coinrun and Leaper. See Appendix A for visualizations of each environ-
ment.

4.1.1 DM Control Suite

The DM Control (DMC) Suite (Tassa et al., 2018) is a collection of reinforcement learning
environments built on the MuJoCo Physics Engine.

Cartpole Swingup

The Cartpole Swingup (cartpole) task is a modification of the classic cartpole balancing task.
In this task, the agent starts out with the pole in a hanging position. The goal is to swing the pole
in an upright position by controlling the cart horizontally along the linear track. Once the pole
is in an upright position, the goal is to balance the pole. The one-dimensional continuous action
space represents the force on the cart. The agent receives a reward proportional to the pole’s
orientation, the cart’s velocity, and the cart’s proximity to the track’s center.

Finger Spin

In the Finger Spin (finger) task, the agent controls a ’finger’ to spin an object around its axis
as fast as possible. The finger is fixed in space but can rotate around its hinge and the object can
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4.1. Environments

be manipulated through contact. The two-dimensional continuous action space represents the
torque applied to the actuated joints of the finger. The reward is based on the angular velocity of
the object.

4.1.2 Panda Gym

The library Panda Gym (Gallouédec et al., 2021) contains a set of robotic environments based
on PyBullet (Coumans and Bai, 2016) physics engine and Gym (Brockman et al., 2016).

Reach Dense

The Reach Dense (reach) environment simulates the Franka Emika Panda1 robotic arm. The
arm has 7 degrees of freedom and a parallel finger gripper. In the Reach Dense task the agent
controls the end-effector using a three-dimensional continuous action space, representing the x,
y, and z coordinates. The objective is to move the end-effector to a randomly generated target
position in a 3D space. The ”Dense” refers to the agent receiving a continuous reward based on
the negative Euclidean distance between the end-effector and the target.

4.1.3 Gymnasium

Gymnasium (Towers et al., 2024) is a popular open-source Python library that provides a wide
range of reinforcement learning environments.

Car Racing

The Car Racing (carracing) environment is a continuous control task in which the agent has
to control a car in a 2D top-down racing simulation. The car navigates a randomly generated
track. The goal is to drive around the track as quickly and accurately as possible. To do so,
the agent has control over a three-dimensional continuous action space representing the angle
of the car’s wheels, acceleration and braking. The reward is based on the car’s progress along
the track. The track is divided into tiles, and the agent receives a reward of +1000/N for visiting
each new tile, where N is the total number of tiles on the track. Additionally, a small penalty
of -0.1 is applied for each step to encourage faster completion. An episode in the carracing
environment terminates if: (i) the car visits at least 95% of all track tiles, (ii) the car is off track
for too long, or (iii) the maximum number of steps is reached.

4.1.4 Procgen

Procgen (Cobbe et al., 2020) is a collection of 16 unique procedurally generated environments.
The wide variety of environments acts as a benchmark for generalization and sample efficiency
of reinforcement learning algorithms. Each environment offers a wide diversity of challenges
and tunable difficulty settings. The observation space of each environment consists of images.
These characteristics make these environments highly suitable to test our methodology.

1https://franka.de/
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Coinrun

The Coinrun (coinrun) environment is a platformer, where an agent starts out on the left and has
to navigate to the far right end of the environment to collect a coin. The agent is able to walk and
navigate the environment using a discrete action space of 15 actions, representing movement and
action inputs. Levels contain different obstacles such as pacing enemies, spinning saw blades,
and pits. Contact with any of these obstacles ends the episode. An episode also ends when the
coin is collected. The agent receives a sparse reward of +10 for collecting the coin and zero
reward otherwise.

Leaper

The Leaper (leaper) environment is a ’Frogger’-like environment where the objective of the
agent is to cross a river by jumping on moving surfaces. In leaper, the agent has to first cross
four roads with cars moving in both horizontal directions. The agent then has to cross a river by
jumping on moving logs. Similarly, it has a discrete action space of 15 actions. An episode ends
when the agent collides with a vehicle, falls in water, or has successfully crossed the finish line.
The agent receives a sparse reward of +10 for successfully traversing the environment and zero
reward otherwise.

4.2 Reinforcement Learning Algorithms

We evaluated our extension with two different state-of-the-art deep-RL algorithms to show that
GED can be applied to any pixel-based deep-RL algorithm. Specifically, we integrated GED
with Reinforcement Learning with Augmented Data (RAD) and Proximal Policy Optimization
(PPO) to enhance the learned representations. In this section, we describe the implementation
details of both agents.

4.2.1 Reinforcement Learning with Augmented Data

The implementation of RAD is based on the Soft Actor-Critic (SAC) algorithm. We augment
image observations using padding and random cropping. The actor models a diagonal Gaus-
sian policy implemented as a deep neural network. The actor outputs the mean and standard
deviation of the action distribution, with actions sampled using the reparameterization trick and
normalized to [−1,1] using tanh. The two critics are implemented using independent neural
networks. The critics estimate the expected return for state-action pairs, and target networks
are maintained for stable Bellman updates. The weights of the convolutional encoder are tied
between the actor and the critic. We apply entropy regularization via the temperature parameter,
which is learned via gradient descent to match the target entropy, encouraging exploration.

4.2.2 Proximal Policy Optimization

The implementation of PPO follows the standard actor-critic architecture with a shared encoder.
The encoder converts (stacked) image observations into a compact latent representation. The
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shared latent representation is passed to the policy head that outputs a distribution over actions
and a value head that estimates the state value. We implemented additional techniques discussed
by Andrychowicz et al. (2021) to improve learning, such as Generalized Advantage Estimation
(GAE), normalization of advantages, entropy bonus, global gradient clipping, and mini-batch
updates.

4.3 Non-Stationary Settings

In the real world, elements of the environment can vary over time, identifiable according to
a certain temporal structure. We limit our research to investigate two types of non-stationary
functions. These can be categorized as abrupt change and gradual change (Dulac-Arnold et al.,
2021; Khetarpal et al., 2022).

4.3.1 Abrupt Change

Abrupt change refers to the setting where a time series contains N segments of length L generated
independently using a uniform distribution. The value at any time step t can be described as:

Xt = µi + εt

with
µi ∼U(l,h),

where µi is fixed for each segment i ∈ {1, ...,N}, l,h are the respective minimum and maximum,
and εt is i.i.d. noise. We refer to this function as a piecewise uniform function.

4.3.2 Gradual Change

Gradual change refers to the setting where a time series is generated using a sinusoidal function
with amplitude β and frequency ν. The value at any time step t can be expressed as:

Xt = βsin(νt)+ εt ,

where εt is i.i.d. noise. We refer to this function as a cyclic function.

4.4 Evaluation Criteria

In this section, we describe the evaluation metrics that we use to assess the performance of the
proposed methodology.

4.4.1 Cumulative Episodic Reward

We use the standard evaluation framework for finite-horizon episodic problems to evaluate the
performance of the RL agent. In these problems, the agent’s goal is to maximize the total reward
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collected within an episode. The cumulative reward R is defined as the sum of rewards for each
time step t over the total number of steps T . In formal notation, that is:

R =
T

∑
t=1

rt . (4.1)

4.4.2 Uniform Manifold Approximation and Projection

To analyze the learned latent representations, we employ Uniform Manifold Approximation
and Projection (UMAP) (McInnes et al., 2020), a dimensionality reduction technique designed
for visualizing high-dimensional data. UMAP is a manifold learning method that projects high-
dimensional data into a lower-dimensional space while preserving both local and global topolog-
ical structures. UMAP assumes that high-dimensional data lies on a low-dimensional manifold
embedded in the ambient space. The algorithm constructs a high-dimensional graph represen-
tation of the data, where points are connected based on their local neighborhood structure, and
then optimizes a low-dimensional embedding to preserve this topological structure. Specifically,
UMAP models the data using a fuzzy simplicial complex, which captures the local connectiv-
ity of points via a weighted graph. The edge weights are determined by a similarity function
that measures the proximity of points in the high-dimensional space. Since UMAP retains local
connectivity, UMAP provides insight into how close identical state observations are in latent
space.

4.4.3 Mean Absolute Error

To validate whether the agent assigns lower value to task-irrelevant factors, we use the MAE
metric. The MAE quantifies the average magnitude of errors between predicted and target val-
ues, providing a straightforward measure of prediction accuracy in the same units as the data.
Formally, let Y ∈ Rn be a vector of n target values, and Ŷ ∈ Rn be the corresponding vector of
n predicted values. The MAE is defined as the average of the absolute differences between the
target and predicted values:

MAE =
1
n

∥∥Y− Ŷ
∥∥

1 . (4.2)

A lower MAE indicates that the predicted values are closer to the target values, reflecting better
model performance.

4.5 Hyperparameters

Since hyperparameter tuning is computationally expensive and time-consuming, we based most
of our hyperparameters on the existing literature. The hyperparameters for the environments
cartpole, finger and reach are the same as in the experiments with task-irrelevant variables
mentioned in Dunion et al. (2023b). The hyperparameters for the Procgen environments were
also taken from Dunion et al. (2023b), excluding the α hyperparameter. For carracing we took
the general hyperparameters mentioned in (Petrazzini and Antonelo, 2021). We optimized α
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using the two-stage approach described in Patterson et al. (2024). We selected the value of α that
corresponds to the highest cumulative episodic reward over 5 seeds obtained by the benchmark
algorithm to reduce hyperparameter selection bias. A detailed overview of the hyperparameters
is given in Appendix B.
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Chapter 5

Experimental Results

This chapter covers the experimental results that assess the impact of disentangled representation
learning on generalization. We begin by presenting the results of the experiments with task-
irrelevant color distractors in Section 5.1. Section 5.2 examines results from experiments with
task-relevant factors. Lastly, Section 5.3 details the experimental results with task-relevant and
task-irrelevant factors of variation.

5.1 Generalization to Task-Irrelevant Factors

Our first experiments evaluate generalization to unseen task-irrelevant factors of variation in
three different settings: (i) constant color distractors, (ii) abruptly changing color distractors,
and (iii) gradually changing color distractors.

5.1.1 Implementation Details

For the environments cartpole and finger we used the distracting-control library (Stone
et al., 2021) to modify the task-irrelevant color of the agent. We extended the library to modulate
the color according to the functions defined in Section 4.3. For reach we implemented a custom
wrapper that applies the same color distractors in a similar manner as in the distracting-control
library using the same disjoint train and test sets. Given a distractor function ∆, we update the
color value at any time step t using:

Xt = X0 +∆t ,

where X0 is the initial value at t = 0 sampled from a uniform distribution.
The experiments with constant color distractors follow the settings of Dunion et al. (2023b). The
experiments with abruptly and gradually changing distractors within an episode are designed to
be more challenging. In these experiments we sample the initial value from a uniform distri-
bution equal to the sampling distribution with constant color distractors. Differently, the initial
sampled value acts as the midpoint of the interval from which all subsequent color values can be
sampled. Thus, these settings cover a wider range of color values, increasing difficulty. For an
overview of the details see Appendix C.
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5.1.2 Baselines

The base RL algorithm in each environment is RAD. We additionally compare to the base RL
algorithm enhanced with TED. Differently from TED, we present the performance results of
GED trained with same-episode non-temporal pairs during representation learning.

5.1.3 Results

Figure 5.1 presents the results of each environment and setting, with the left, center, and right
columns showing cartpole, finger, and reach, respectively. The top row displays the set-
ting where the color is fixed throughout an episode. The middle and bottom rows display the
abruptly and gradually changing color distractor settings, respectively. Most notably, the base-
line algorithm is not robust to the three types of color distractors across environments. Although
the results show that RAD is able to adapt and recover in the setting with constant color distrac-
tors in cartpole and finger, RAD fails to learn a meaningful policy when color distractors
are more challenging. In reach, RAD is highly variable, significantly underperforming TED
and GED. In comparison, TED and GED show comparable performance in the train domain
in cartpole, with no significant deviations in terms of generalization to the unseen domain.
However, GED and TED, too, are much less robust to the test domain when the color distractor
exhibits greater variance during an episode. Nevertheless, the two agents are able to recover
to previous performance as in the train domain. The results are noticeably different in finger.
GED is consistent in terms of training performance and generalization to the unseen domain,
TED is also more robust to the test domain in this environment. However, the sudden large drop
in performance after switching to the test domain in the setting with gradually changing color
distractors suggests that TED suffers from catastrophic forgetting. In reach the performance of
both models is comparable across settings. The results in terms of training performance, gener-
alization and recovery are mixed, showing no significant difference between the two algorithms.
Overall, these results indicate that GED can improve robustness to task-irrelevant color distrac-
tors, even when the color distractors display temporal patterns. The mixed results, however,
suggest that generalization is highly dependent on the environment.

5.1.4 Analysis of Learned Latent Representations on Policy Generalization

To obtain a better understanding of how the inductive bias on the representation to disentan-
gle latent factors affects policy generalization, we analyze the structure of the learned latent
representation. In addition, we validate the results by analyzing generalization of the learned
Q-network.

Structure of Learned Latent Representations

We analyze the structure of the latent representations by projecting the high-dimensional rep-
resentations into a low-dimensional space using UMAP. We collected 10k observations from
both the train and test domains. We ensured identical initial true states by fixing the seed at the
start of the episode in both environments and executed the same action trajectories. The dataset
thus contains observation pairs that are identical in true state but differ in color. We encoded
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Figure 5.1: Generalization to unseen color distractors in cartpole (left column), finger (center
column) and reach (right column). The vertical lines indicate the switch to the test domain. The
top row plots the results with constant color distractors. The middle row visualizes the plots with
abruptly changing color distractors. The bottom row presents the plots with gradually changing
color distractors. Returns are the average of 10 evaluation episodes over 5 seeds. The shaded
region shows 95% confidence bounds.
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5.1. Generalization to Task-Irrelevant Factors

the observations into latent representations using the learned representation network in the train
domain. We compare the UMAPs of the RAD encoder hRAD

θ
against the GED encoder hGED

θ
to

contrast between the structure in latent space. Figure 5.2 shows RAD’s UMAP on the left and
GED’s UMAP on the right. Each point in the plot is colored according to the underlying color
value of the image observation. The UMAP of GED shows high overlap between observation
pairs from the train and test domain. The extracted samples indicate that the encoder hGED

θ
pre-

serves local structure based on the true underlying state. Conversely, the latent representation
generated by the baseline model fails to retain local similarity between closely related observa-
tions. This suggests that GED learned a representation that is relatively invariant to the color
distractor.

Figure 5.2: UMAP visualizations of the latent space generated by the RAD encoder (left) and
RAD-GED encoder (right) over a dataset of 10k observation pairs. The color-coded lines indi-
cate the position of the observation in the two-dimensional UMAP plot. The RAD-GED encoder
preserves local distances between observations with identical states. The RAD encoder does not
retain local similarity between identical state observations.

Q-Network Generalization

The results in Figure 5.1 indicate how well the policy generalizes to the unseen domain. To val-
idate these results we analyze generalization of the Q-network to identical state-pairs. Similarly
to above, we collected 10k observation-pairs from the train and test domain for each environ-
ment and color distractor setting pair. We computed the MAE between the learned Q-network
Qθ(ztrain,atrain) and Qθ(ztest ,atrain), where the actions atrain are the optimal actions according to
the learned policy of the train domain. The MAE should be close to zero when the Q-network
assigns similar values for identical true states regardless of color.

Table 5.1 shows the metrics for each environment and color distractor pair. The MAE for RAD
with non-stationary color distractors is not reported since the model did not learn a meaningful
policy. The average MAE over estimated Q-values in finger is consistently below 1.0 for
GED. This corresponds with the consistent generalization results shown in Figure 5.1. TED’s
Q-network generalizes slightly worse when color distractors are present. This aligns with worse
policy generalization to the unseen domain. Comparatively, the MAE in cartpole and reach
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5.2. Generalization to Task-Relevant Factors

Cartpole Swingup Finger Spin Reach Dense

Distractor Model MAE MAE MAE

Constant RAD 47.474 ± 41.05 11.387 ± 19.545 -
RAD-TED 10.556 ± 2.929 0.307 ± 0.140 4.303 ± 1.51
RAD-GED 15.924 ± 11.379 0.4814 ± 0.182 5.213 ± 5.220

Abrupt RAD - - -
RAD-TED 14.344 ± 2.584 1.115 ± 0.583 4.138 ± 3.306
RAD-GED 15.880 ± 1.514 0.701 ± 0.157 3.119 ± 1.801

Gradual RAD - - -
RAD-TED 16.717 ± 4.604 1.406 ± 1.782 5.109 ± 2.995
RAD-GED 19.224 ± 3.980 0.894 ± 0.419 2.822 ± 0.895

Table 5.1: MAE between Q-values estimates evaluated on train domain and test domain observa-
tions. MAE is not reported for RAD in abruptly and gradually changing color distractor settings
as the model consistently failed to learn a meaningful policy. The MAE is computed using 10k
observation pairs, averaged over 5 seeds.

is significantly higher for both models across settings. This aligns with the results presented
in Figure 5.1 that show that both agents do not generalize well to the unseen domain in these
environments.

5.2 Generalization to Task-Relevant Factors

The second experiment evaluates generalization when task-relevant factors influence the dynam-
ics of the environment.

5.2.1 Implementation Details

We modified the carracing environment using the open-source toolkit NS-Gym (Keplinger
et al., 2025). This toolkit contains an easy-to-use interface to setup schedulers and update func-
tions. Specifically, we extended the codebase to be able to modify the friction coefficient of the
track tiles at each time step in the carracing environment. We implemented piecewise uniform
and cyclic functions as defined in Chapter 4.3. We clipped the friction coefficient to never ex-
ceed the default value in positive direction. We use the Nature CNN (Mnih et al., 2015) with an
additional linear projection layer to encode the image observations into latent representations.
The encoder takes grayscaled, normalized frame-stacks as input. The actor is conditioned on
the encoded observations and outputs parameters (α,β) of a Beta-distribution (not to be con-
fused with the GED loss coefficient α) through separate linear layers with Softplus activations,
ensuring positive values (Petrazzini and Antonelo, 2021). Furthermore, we also use the trick of
combining throttle/brake for the policy network. We map the actions generated by the policy
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5.3. Generalization to Both Task-Relevant and Task-Irrelevant Factors

network of dimension 2 to a valid 3 dimensional action using:

a′ =

 2a0−1
2max(0,a1−0.5)
2max(0,0.5−a1)


We train the policy on 100 levels. We test generalization on a disjoint set of 100 unseen levels.

5.2.2 Baselines

The base RL algorithm in carracing is PPO. The base RL algorithm enhanced with TED is
called TED. Our version, GED, is trained with a balanced ratio of same episode and different
episode non-temporal pairs. We trained three GED variants. The first variant GED is the default
variant. The second variant, denoted as GED-T, defines the auxiliary variable ut = t, where t
is the normalized time step in the environment. The third variant defines ut = at , where at ∼
πθ(at |zt) and is denoted as GED-A.

5.2.3 Results

Figure 5.3 illustrates the results of GED variants, TED and PPO in the carracing environment
with abruptly changing friction (left) and gradually changing friction (right). Notably, we ob-
serve that the baseline algorithm PPO significantly outperforms GED and TED in both settings.
All models have similar performance in the early stages of training. However, in the second
half of training PPO starts to outperform GED and TED considerably, which continues in the
test domain. In contrast, GED and GED-A show no signs of improvement in the test domain
and fall to lower performance at the final stage of training in both settings. TED and GED-
T show mild performance improvements in the setting with abruptly changing friction, but no
signs of improvement when the friction changes gradually. This suggests that the disentangled
representation objective hurts policy learning in this environment.

5.3 Generalization to Both Task-Relevant and Task-Irrelevant
Factors

Finally, we evaluate how GED aids generalization to unseen variations of environments with
both task-relevant and task-irrelevant factors of variation.

5.3.1 Implementation Details

We show the results in Procgen environments coinrun and leaper. We train on 100 levels
on the easy difficulty and test generalization on 100 unseen easy levels. We trained GED with
non-temporal sample pairs.
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5.3. Generalization to Both Task-Relevant and Task-Irrelevant Factors
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(a) Abruptly changing friction
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(b) Gradually changing friction

PPO-GED PPO-GED-T PPO-GED-A PPO-TED PPO

Figure 5.3: Generalization to unseen tracks in carracing with intra-episodic (a) abruptly
changing friction and (b) gradually changing friction. PPO outperforms both PPO-GED and
PPO-TED, showing minimal difficulty adapting to changes in the friction coefficient. Returns
are the average of 10 evaluation episodes over 5 seeds. The shaded region shows 95% confi-
dence bounds.

5.3.2 Baselines

The base RL algorithm for both procgen environments is PPO. The second benchmark algo-
rithm is TED.

5.3.3 Results

The results are shown in Figure 5.4. In coinrun the base RL algorithm PPO is clearly the
quickest to learn. Moreover, we do not observe a noticeable drop in performance when switching
to unseen levels. GED takes longer to learn, but obtains similar returns at the end of training.
GED generalizes to the test levels, but also exhibits relatively larger variance in the test domain.
In comparison, TED underperforms both algorithms during training. At test time, TED does
not improve over the results obtained in the train domain. Its large variance indicates that this
is due to poor initialization. In leaper, PPO overfits on the training levels, after which returns
degenerate. Although its performance does not drop immediately after switching to the test
levels, PPO continues to slowly degrade in performance as training updates continue. GED
has slightly lower maximum returns and also experiences a decline in the train domain, but is
more robust. At test time, it continues to improve its performance. TED underperforms both
algorithms during training, but does obtain higher returns at the end of testing compared to PPO.
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5.4. Ablations
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(b) leaper

PPO-GED PPO-TED PPO

Figure 5.4: Results of generalization to task-relevant and task-irrelevant factors of variation.
The vertical dotted line indicates the switch to unseen levels. PPO-GED shows consistent per-
formance in both environments. PPO does not generalize well in leaper. PPO-TED is relatively
unstable, decreasing average performance. Returns are the average of 8 evaluation episodes over
5 seeds. The shaded region shows 95% confidence bounds. The graphs plot the 10-point rolling
average for readability.

5.4 Ablations

We present the results of the ablations to show how different parts of the methodology influence
the results. First, we compare different non-temporal sampling schemes in Subsection 5.4.1.
Next, we investigate the effect of the action as auxiliary variable in Subsection 5.4.2. Lastly, in
Subsection 5.4.3 we investigate the robustness of GED with different loss coefficients.

5.4.1 Choice of Non-Temporal Samples

In Section 3.2 we defined three non-temporal samples: (i) balanced ratio non-temporal samples,
(ii) same episode non-temporal samples, and (iii) non-temporal samples. Figure 5.5a shows
generalization to unseen variations of environments in coinrun with each non-temporal sam-
pling scheme. We denote the balanced ratio, same-episode non-temporal samples and generally
non-temporal sampling schemes as ’-BAL’, ’-SAME’ and ’-RND’, respectively. Note that the
balanced ratio sampling scheme can be viewed as TED with its optimization objective LT ED

replaced with our optimization objective LGED.
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(b) finger
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(c) cartpole

Figure 5.5: Figure 5.5a shows GED in coinrun with different settings for non-temporal samples.
Figure 5.5b presents results in finger with actions as the auxiliary variable. Figure 5.5c shows
GED with different values for the loss coefficient α.

All three variations are slower to reach performance levels obtained by PPO, with GED-BAL
and GED-SAME reaching lower mean returns at the end of training. In the test domain all the
variants obtain similar performance, but GED-BAL and GED-SAME show more variance. This
shows that GED is relatively robust to different non-temporal pairs during contrastive learning.

5.4.2 Action as Auxiliary Variable

We investigated how defining the auxiliary variable ut as the action between st and st+1 affects
generalization. We show the results with the three sampling schemes ’-SAME’, ’-BAL’, and ’-
RND’. The models without the auxiliary variable are presented with solid lines. The models with
auxiliary variables are denoted as ’-A’ and presented with dotted lines. The results are presented
in Figure 5.5b. The results indicate that the action as the auxiliary variable can significantly
hurt generalization. Although this is reasonable given that the color distractor does not depend
on the executed action, it highlights that the auxiliary variable can negatively affect the learned
representations.

5.4.3 Robustness to GED Loss Coefficient

Next, we evaluate GED with different values for the loss coefficient α to obtain insight into
how much it affects robustness. The results presented in Figure 5.5c depict the performance in
cartpole with constant color distractors. Interestingly, both lower and higher values of the co-
efficient α show improved zero-shot generalization. Lower α values show similar performance
in the train domain, but the coefficient α = 25 has worse training stability. In contrast, higher
α values of α = 200 and α = 300 take longer to train. Moreover, α = 300 is relatively unsta-
ble in the test domain, indicated by the large confidence interval. Overall, this shows that the
GED is relatively robust to different hyperparameters of α but that tuning is required for optimal
performance.
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Chapter 6

Discussion

This chapter begins by interpreting the results of Chapter 5 in Section 6.1. Next, in Section 6.2,
we discuss limitations of our research.

6.1 Interpretation of Results

This work concerned itself with leveraging temporal structure to disentangle latent representa-
tions in pixel-based deep reinforcement learning. We introduced Generalized Disentanglement
(GED), an auxiliary contrastive task that synthesizes Temporal Disentanglement with the Non-
linear Independent Component Analysis with Auxiliary Variables framework to isolate factors
of variation in the environment. We focused our experiments on settings where variables exhibit
temporal structure. Our main hypothesis was that disentangling the latent representations im-
proves generalization to domain shifts.

Our experiments demonstrate that agents can benefit from disentangled representation learning
with visual task-relevant and task-irrelevant variables. Mainly, the results show that GED can
achieve better generalization to unseen domains with task-irrelevant distractors, even when these
factors are modulated according to a non-stationary function. Our analysis suggests that in these
cases the value of the color is assigned less weight, increasing invariance to shifts in the task-
irrelevant factor. However, we stress that we did not observe consistent generalization across
environments. We hypothesize that this is due to differences in environmental settings. To il-
lustrate, the initial position in the cartpole environment is always in the middle of the frame,
with relatively small deviations. In contrast, finger has a broader range of initial positions,
which naturally helps to learn a more robust policy. This highlights that self-supervised repre-
sentation learning does not guarantee that the agent minimizes the influence of task-irrelevant
factors on the policy. Secondly, our methodology reduces the risk of overfitting to environmental
variations. However, with few such variations, it does not consistently outperform the baseline
algorithm. Although these results align with earlier research that finds that the optimal self-
supervised learning method depends on the RL task (Li et al., 2023), this limits the practical
applicability of our method.
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6.2. Limitations

We also aimed to study whether a disentangled representation can improve policy generalization
in settings where the dynamics of the environment changes gradually or abruptly due to an im-
plicit factor of variation. We did not find that our methodology improved the policy compared
to the baseline algorithm. Given that we evaluated our methodology in a single environment, the
findings from this experiment should be interpreted with caution. We can only suggest that in
this environment, a disentangled representation negatively affects policy learning. A more rig-
orous investigation in a diverse set of environments and settings would be necessary to evaluate
whether our auxiliary task can improve policy generalization under dynamics shifts.

Our methodology considers different types of optimal negative pairs to enhance generalization
to unseen domains. Our results show that exclusively defining same episode non-temporal pairs
as negative samples can remarkably improve generalization to changes in task-irrelevant factors,
even when the task-irrelevant factor changes throughout an episode. Ablation studies confirmed
that different types of non-temporal samples have different results in terms of stability and gen-
eralization to unseen domains. This implies that the type of non-temporal samples should be
carefully considered.

We compared GED against TED to investigate whether our methodology has practical bene-
fits to improve representation learning and generalization. We demonstrated that our extensions
improve upon the benchmark algorithm, showing improved policy learning and increased gener-
alization. We stress, however, that our results deviate from the results presented by Dunion et al.
(2023b) in the same environments. This is despite our best efforts to ensure a fair comparison by
selecting identical algorithms, environmental settings and hyperparameters in all experiments.
Specifically, in both Procgen environments, the underperformance of TED can be attributed to
poor initialization. We hypothesize that the relatively few classifier parameters may not capture
the environmental structure as well when environmental variations are sparse.

While our main results suggest that GED is relatively stable across experiments using loss-
coefficients α tuned for TED, the ablations show that other choices for the loss-coefficient α

improve generalization to the unseen domain. This suggests that our results could have been
different if the hyperparameters were optimized separately. We recommend future research to
conduct independent hyperparameter optimization of both methodologies.

To conclude, our empirical research highlights the importance of structured state representation
learning as a promising avenue to improve the robustness of RL algorithms, broadening the
applicability of RL algorithms for real-world deployment.

6.2 Limitations

This research has potential limitations. In the following section, we discuss key limitations
related to benchmark availability and measuring disentanglement.
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6.2. Limitations

6.2.1 Available Benchmarks

We restricted our research to compare GED against the baseline algorithms and to the bench-
mark methodology TED (Dunion et al., 2023b). We evaluated the models in different environ-
ments to show how GED compares to TED in a variety of settings. Our research leveraged
existing libraries such as distracting-control and ns-gym to assess both algorithms in more
challenging settings that exhibit temporal structure. Preferably, our research would have also
compared GED against other methods in non-stationary reinforcement learning. However, there
is no single benchmark that is widely adopted for evaluation. This complicates the process of
evaluating GED against existing approaches. Future research could validate our methodology
against a wider array of methodologies.

6.2.2 Measuring Disentanglement

Previous work (Dunion et al., 2023b) measured disentanglement in the environments with task-
irrelevant color distractors by computing the Z-diff score. The Z-diff score is a supervised
disentanglement metric that uses a simple linear classifier to identify which component is held
fixed in a batch of latent representations. Initially, we mirrored this approach to evaluate the
level of disentanglement of the learned representation. However, we found that the Z-diff score
is not a reliable metric for quantifying disentanglement in RL settings. Specifically, the score
is highly dependent on sample diversity, the number of factors and the label values. Moreover,
the description provided by previous work does not allow for reproduction of the results. This
brings us to the more important observation that interpretation of learned representations in deep
reinforcement learning is challenging. We underscore the necessity to develop interpretability
tools specifically designed for unsupervised datasets, natural in pixel-based deep RL.
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Chapter 7

Related Work

This chapter reviews existing approaches related to non-stationary RL. First, we discuss research
on the topic of experience replay in Section 7.1. Secondly, we examine knowledge distillation as
an approach to cope with non-stationarity in Section 7.2. Next, we discuss various approaches
using context detection in Section 7.3. In Section 7.4, we review several methods that leverage
domain randomization to improve generalization to domain shifts. Following, Section 7.5 dis-
cusses approaches that use meta-learning to learn robust policies in non-stationary RL. Finally,
Section 7.6 surveys existing approaches in state representation learning.

7.1 Experience Replay

One of the problems with distribution shift is that the agent forgets previously learned tasks
(Rolnick et al., 2019; Kaplanis et al., 2020). This phenomenon, also called catastrophic for-
getting, can be prevented by using an experience buffer (Isele and Cosgun, 2018; Liu et al.,
2021; Queeney et al., 2021; Venuto et al., 2021). The experience buffer stores a record of pre-
vious states, actions, and rewards at each time step. During training, these samples are drawn
from the buffer. Backpropagation over the past samples supports the agent to remember how to
handle previous experiences, mitigating the sudden failure of previously learned tasks. An obvi-
ous drawback of this approach is the additional storage requirements to maintain a large buffer.
Pseudo-rehearsal (Atkinson et al., 2021) addresses this by generating previously seen data using
a deep-generative model. This has the benefit that only the experiences of the current task need
to be retained while maintaining the ability to train on previously relevant samples. Experience
replay has been demonstrated to be an effective method for reducing the risk of catastrophic
forgetting, but its usage is deeply limited by the diversity of samples it stores. The experience
buffer is a vital component of our approach. Its use, in addition to preventing catastrophic for-
getting, is to keep track of which records belong to which time step, which is a crucial detail in
the sampling strategy of our methodology.
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7.2. Knowledge Distillation

7.2 Knowledge Distillation

A second popular approach is knowledge distillation (Buciluǎ et al., 2006; Hinton et al., 2015).
Knowledge distillation is the process of transferring information from one neural network, called
the target network, to another neural network. A benefit of knowledge distillation in RL is stabi-
lization of gradient updates, which reduces the risk of catastrophic forgetting Rusu et al. (2016);
Li and Hoiem (2018); Espeholt et al. (2018); Igl et al. (2021); Lan et al. (2023); Zhang et al.
(2023). Through knowledge distillation, a neural network gradually matches the target network.
Our methodology employs a target network to stabilize the training of the representation func-
tion.

7.3 Context Detection

Another commonly studied approach to non-stationary RL is context detection (Padakandla
et al., 2020; Alegre et al., 2021; Chen et al., 2022). These approaches take the perspective
that the environment can be described by a possibly infinite number of different MDPs. Each
MDP is characterized by its context, which refers to the specific settings of the MDP. Change-
point detection algorithms seek to find the point at which the MDP changes from one MDP
to another. Successful identification of the current MDP enables the policy to shift its actions
such that they are optimal for the current context. Lifelong Latent Actor Critic (LILAC) (Xie
et al., 2020) is an off-policy SAC-based algorithm proposed to effectively deal with lifelong
episodic non-stationarity by identifying the hidden parameters z, or context, at each episode us-
ing an LSTM network. The policy network is conditioned on s and inferred latents z to execute
actions a that are optimal for the current environment. ZeUS (Sodhani et al., 2021) learns a Lip-
schitz continuous context space that captures the environment’s change in dynamics or rewards.
The high-level idea of learning this context space is that similar tasks are close in latent space.
Consequently, small changes in the context space lead to small changes in the policy. Dur-
ing evaluation, the agent infers the contexts from a few interactions with the environment and
adapts accordingly. Reactive Exploration (Steinparz et al., 2022) utilizes context detection to
improve its exploration strategy. Reactive Exploration keeps track of the expected future reward
at every time step. When the predicted reward and the actual reward deviate too strongly, the
agent adapts by prioritizing exploration of the environment. This has the benefit that the policy
recovers faster. Our methodology does not consider active change point detection techniques.
That is, there is no active component in our system that notifies the agent that the environment
has (partially) shifted. Instead, we leverage temporal structure within the environment to iden-
tify original factors of variation. It is completely up to policy optimization whether changes in
disentangled latent factors are leveraged to improve the policy.

7.4 Domain Randomization

Domain randomization subjects the agent to small random changes in the simulated environ-
ment, such as randomization of textures, colors, lighting, and camera poses (Sadeghi and Levine,
2017; Tobin et al., 2017). This, in turn, encourages the agent to learn a more robust policy that
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7.5. Meta-Learning in RL

can cope with changes in the environment. A specific application of domain randomization is
Sim2Real: training a policy in a simulated environment and deploying it in the real world. This
influential work by Tobin et al. (2017) showcased that training in a low-cost simulated environ-
ment is a viable approach to training robots. One of the meaningful extensions to this work
addressed the problem of the simulated-to-reality gap by converting simulated images into pho-
torealistic images using a generative model (Rao et al., 2020). The drawback of this approach
is that it requires some real image data. SimGAN (Jiang et al., 2021) considers the problem of
tuning the simulation such that the parameter distributions better match the dynamics of the real
world. SimGAN uses adversarial reinforcement learning to train an agent to change the simu-
lated environment’s parameters such that they mimic the real world more accurately. Domain
randomization typically samples independently and identically distributed environment noise. In
contrast, our work focuses on disentangling the factors of variation by exploiting the temporal
structure in the data. We do note that the main theoretical framework underlying our methodol-
ogy does require noise/variation in the environment, which would naturally aid generalization.
Nevertheless, our experiments are set up such that the isolated noise component during training
does not explain the generalization performance in our test domain.

7.5 Meta-Learning in RL

Meta-learning takes the perspective that learning can also be learned (Schmidhuber, 1987; Duan
et al., 2016; Wang et al., 2017; Xu et al., 2018; Nagabandi et al., 2019). In this setting, an agent
first has to learn to generalize on many different tasks simultaneously, after which it is forced
to learn a new set of tasks. Meta-RL (Wang et al., 2017) approaches meta-learning by using
a recurrent neural network. In short, the Long-Short Term Memory (LSTM) enables the agent
to maintain a memory of past actions and rewards. This effectively supports the agent to infer
shifts in the environment, allowing the agent to adapt to different tasks. Alternatively, there
are also gradient-based approaches to meta-learning (Finn et al., 2017). Specifically, Model
Agnostic Meta-Learning (MAML) is one of the influential algorithms in meta-learning-based
reinforcement learning (Finn et al., 2017). MAML optimizes the parameters θ by updating the
gradients with respect to a batch of K examples of T sampled tasks. This high-level framework
makes MAML highly attractive for the application of domain adaptation in non-stationary RL
(Javed and White, 2019; Arndt et al., 2019; Caccia et al., 2021). Other works use model-based
approaches to meta-reinforcement learning (Nagabandi et al., 2019; Lin et al., 2021). Chan-
dak et al. (2020) propose to forecast future performance to specifically deal with smooth non-
stationary changes. Achieving the meta-learning objective of effectively and efficiently learning
how to learn new tasks should result in sample-efficient retraining for novel tasks. Our work
also evaluates the proposed methodology in terms of efficient retraining. However, we do not
consider the objective of learning novel tasks. Instead, we evaluate whether our methodology is
capable of doing the same task well when the environment transitions to an unseen domain.
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7.6 State Representation Learning

State representation learning has been the subject of much research in pixel-based deep RL. Var-
ious work (Laskin et al., 2020; Yarats et al., 2020; Hansen et al., 2021) focuses on image aug-
mentations to aid generalization. Reinforcement learning with Augmented Data (RAD) (Laskin
et al., 2020) addresses the problem of sample efficiency and generalization in image-based deep
reinforcement learning by applying data augmentations to images during training. This work
demonstrates that this technique effectively increases returns in fewer environmental steps and
improves generalization to novel domains. We use RAD as our baseline algorithm, as it has
the advantage of increased generalization and sample efficiency. However, data augmentation
techniques do not necessarily learn a structural representation. Moreover, this technique does
not reliably generalize to stronger types of variation (Kirk et al., 2023). GED can be used along-
side data augmentation techniques to improve generalization and improve robustness to domain
shifts.

Comparatively, invariance techniques have been shown to be able to effectively cope with visual
domain shifts. Zhang et al. (2020) deals with visual changes and distractors by learning invariant
causal representations that generalize across environments with different observation functions
but shared underlying dynamics. The method isolates task-relevant latent features while filtering
out spurious, environment-specific visual variations such as background color or camera angle
changes. This enables robust policy learning that maintains performance despite visual perturba-
tions. Deep Bisimulation for Control (DBC) by Zhang et al. (2021) learns a representation that
disregards task-irrelevant information by minimizing an auxiliary bisimulation metric. These
methods are effective in dealing with visual task-irrelevant factors of variation, but have several
limitations, including embedding explosion (Kemertas and Aumentado-Armstrong, 2021) and
latent instability. Moreover, these methods do not address the problem of dealing with task-
relevant visual distractors.

Other lines of work on state representation learning encourage the representation to capture rele-
vant structure in the environment by incorporating inductive biases. For example, some methods
encourage the learned representation to produce similar representations for related inputs: Srini-
vas et al. (2020) match representations of different augmentations of the same frame, Mazoure
et al. (2020) match representations from consecutive time steps, and Agarwal et al. (2021) align
representations based on policy similarity metrics. Van den Oord et al. (2019), instead, pre-
dicts future representations. Schwarzer et al. (2021) pretrain an encoder for later fine-tuning. In
contrast to GED, these approaches do not encourage the encoder to learn a disentangled repre-
sentation.

Closest to our methodology is research specifically focused on learning a disentangled represen-
tation to improve generalization in RL. DARLA (Higgins et al., 2018) addresses visual domain
shifts by learning a disentangled state representation in RL using a pretrained β-VAE. DARLA
achieves zero-shot domain transfer by effectively isolating the different factors of variation (ob-
ject shape, color) in the training domain. DARLA demonstrated that learning a disentangled,
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domain-invariant representation enables RL policies to generalize across visually changing en-
vironments. The downside of DARLA is that policy transfer is not guaranteed, since the policy
could still overfit to domain-specific features. Latent Unified State Representation (Xing et al.,
2021) solves this using a two-stage approach where the learned embedding is guided to disen-
tangle domain-specific and domain-general factors of variation. This perspective of learning a
representation that divides domain-specific and domain-general factors of variation is founda-
tional for AdaRL (Huang et al., 2022). AdaRL learns a Dynamic Bayesian Network (DBN)
over observations, latent states, rewards, actions, and domain-specific change factors that are
shared across domains. This graphical model is leveraged to identify minimal sufficient repre-
sentations of underlying domain-shared latent states and domain-specific change factors. After
transfer to the target domain, the DBN estimates the target domain’s change factors, allowing
reuse of the source policy conditioned on the minimal sufficient representation without further
training. FANS-RL (Feng et al., 2022) extends AdaRL by considering non-stationary change
factors. This enables the method to learn a representation that captures environmental shifts
both within and between episodes. Resultingly, both methods demonstrate improved adaptation
to domain shifts. AdaRL/FANS-RL use causal DBNs to explicitly model changes via factored
representations and minimal sufficient representations for efficient adaptation. Our method em-
ploys self-supervised contrastive learning between temporal and non-temporal pairs, focusing
on robust generalization to unseen domains without graphs or explicit change factors.
As introduced earlier, our work extends TED (Dunion et al., 2023b), an auxiliary learning task
that can be applied to existing pixel-based RL algorithms. TED implements a variation of PCL to
improve generalization to target domains by effectively disentangling relevant and/or irrelevant
factors of variation. The follow-up research in Nonlinear Independent Component Analysis
proposed a general framework to recover temporally dependent stationary sources and non-
stationary sources (Hyvärinen et al., 2019). The presented work applies these ideas to construct
a more flexible and general method. Our methodology obtains results that are on par with or
exceed TED in non-stationary reinforcement learning settings. Subsequently, Dunion et al. pro-
pose two additional disentangled representation learning methods. First, Conditional Mutual
Information for Disentanglement (Dunion et al., 2023a) disentangles representations by min-
imizing conditional mutual information between latent components to address generalization
when factors of variation are correlated. The presented results show high robustness to correla-
tion shift. Secondly, Multi-View Disentanglement (Dunion and Albrecht, 2024) (MVD) learns
a disentangled representation from multiple camera views, increasing robustness to failure of
cameras.
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Chapter 8

Conclusion

This thesis presented Generalized Disentanglement, an auxiliary contrastive learning task that
adopts the Nonlinear Independent Component Analysis with Auxiliary Variables framework to
disentangle latent representations in pixel-based reinforcement learning. In comparison to ear-
lier work, GED is more flexible in the choice of non-temporal pairs, considerably simplifying
the sampling scheme during representation learning. Moreover, our results show that our opti-
mization objective results in more stable learning, increasing the applicability of the auxiliary
task to a wider variety of settings.

We evaluated our methodology in a broad range of environments with both continuous and
discrete control algorithms. First, we considered generalization to task-irrelevant factors of vari-
ation that change over time, both between episodes and within episodes. Our results showed
that our methodology can significantly improve generalization to unseen domains, though this
is highly dependent on the environment. Secondly, in our experiment concerning task-relevant
factors, we did not observe an improvement over the baseline algorithm. This finding indicates
that a disentangled representation does not always benefit policy learning. Finally, we consid-
ered environments with task-relevant and task-irrelevant variables. GED reduced overfitting and
achieved higher average cumulative rewards with better generalization to unseen levels.

The primary objective of our proposed auxiliary task is to make RL algorithms more robust
to changes in the environment. GED accomplishes this by leveraging temporal structure to
disentangle latent representations, improving generalization to unseen domains. These findings
highlight the importance of state representation learning in pixel-based deep RL, motivating
continued research in this area.
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Chapter 9

Future Work

Our research demonstrates that the proposed auxiliary self-supervised representation learning
task enhances generalization to unseen environments. There are several promising research
directions related to self-supervised representation learning in pixel-based deep RL that could
extend our methodology and address limitations of our approach.

Extend Auxiliary Variables

Our approach allows for an optional auxiliary variable that could improve the learned representa-
tions. Although we briefly consider different choices of auxiliary variables, our empirical results
do not indicate that our chosen auxiliary variables meaningfully improve policy generalization
in our investigated settings. Future work could investigate how different types of auxiliary vari-
ables can improve the learned representation. As an example, there is an option to define the
auxiliary variable as the domain index when we have prior knowledge of the domains. Alter-
natively to discriminating between temporal and non-temporal pairs, this allows us to contrast
between actual pairs x̃ = (zt ,Di) and shuffled samples x̃∗ = (zt ,D∗i ), where Di is the index of the
ith domain and D∗i is randomly sampled, independently from zt . Through contrastive learning,
this could induce the latent representation to disentangle domain-specific features from domain-
shared features. This can potentially support policy generalization in settings where the optimal
policy shifts between domains.

Independent Innovation Analysis

The subsequent work on Nonlinear ICA (Hyvärinen and Morioka, 2016, 2017; Hyvärinen et al.,
2019) introduced Independent Innovation Analysis (IIA) (Morioka et al., 2021). IIA can be
viewed as an alternative formulation to the problem of recovering true variables from mixed
latent variables:

xt = f(xt−1,st),
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where f : R2n→ Rn represents a Nonlinear Vector Autoregressive (NVAR) mixing model, xt =
[x1, · · · ,xt ]

T are the observations and st = [s1, ...,st ]
T are the innovations for every time step t.

This formulation essentially states that the current observation is a nonlinear mixing between the
previous observation and a temporally independent innovation, or error. We can take the general
ideas proposed by Morioka et al. to create a novel method that is analogous to GED. Concretely,
this formulation lends itself well to pixel-based RL algorithms that implement a sequential net-
work as the encoder hθ, such as a Long Short-Term Memory (Hochreiter and Schmidhuber,
1997) or Transformer (Vaswani et al., 2017), to encode a sequence of image observations into a
latent representation. The main advantage of this extension would be a stronger inductive bias
to isolate the factors of variation in separate latent components of the representation. The ob-
vious downside is that this framework can only be applied to sequential encoders, limiting the
applicability of this extension in pixel-based RL.

Connectivity-Contrastive Learning

A limitation of Nonlinear ICA is its assumption that there are no causal relations between source
signals. Morioka and Hyvärinen (2023) propose Connectivity-Contrastive Learning (CCL) as a
framework to aid causal discovery during representation learning. Concretely, CCL encourages
spatial structure in learned representations. The model assumes that we have n two-dimensional
matrix observations X(n) ∈ Rp×d . The elements of each matrix x(n)ai are collected from multiple
nodes a∈V (|V |= p) and across multiple observational modalities i∈ {1, ...,d}. The observed
data is assumed to be a combination of latent variables, mixed using an unknown mixing function
for each node a, component j and sample n:

x(n)a = f(s(n)a ),

where f : Rd → Rd is the observational mixing function and s(n)a = (sa j)
(n)
j ∈ Rd is the a-th row

of the latent matrix S(n) = (sa j)
(n) ∈ Rp×d . The learning algorithm trains a feature extractor

h : Rd → Rd by optimizing a multinomial logistic regression to predict pair labels (a,b) from
paired observations (xa,xb) for every pair and sample. Similarly to GED, this algorithm can
be integrated in pixel-based deep RL as a self-supervised auxiliary task. A potential benefit
of CCL is that its focus on spatial structure can improve generalization to changes in task-
irrelevant factors. However, a potential downside of this algorithm is scalability as the pairwise
classification objective grows with the number of nodes. Future work could investigate how the
number of nodes scales with performance or combine CCL with Slot Attention (Locatello et al.,
2020).
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Open-source goal-conditioned environments for robotic learning, 2021. URL https://arxi
v.org/abs/2106.13687.

Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation learning by
predicting image rotations, 2018. URL https://arxiv.org/abs/1803.07728.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor, 2018. URL https:
//arxiv.org/abs/1801.01290.

46

https://arxiv.org/abs/1406.6909
https://arxiv.org/abs/1611.02779
https://arxiv.org/abs/1611.02779
https://arxiv.org/abs/2003.11881
https://arxiv.org/abs/2404.14064
https://arxiv.org/abs/2305.14133
https://arxiv.org/abs/2207.05480
https://arxiv.org/abs/1802.01561
https://arxiv.org/abs/2203.16582
https://arxiv.org/abs/1703.03400
https://arxiv.org/abs/2106.13687
https://arxiv.org/abs/2106.13687
https://arxiv.org/abs/1803.07728
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1801.01290


Bibliography

Nicklas Hansen, Hao Su, and Xiaolong Wang. Stabilizing deep q-learning with convnets and
vision transformers under data augmentation, 2021. URL https://arxiv.org/abs/2107.
00644.

Irina Higgins, Arka Pal, Andrei A. Rusu, Loic Matthey, Christopher P Burgess, Alexander
Pritzel, Matthew Botvinick, Charles Blundell, and Alexander Lerchner. Darla: Improving
zero-shot transfer in reinforcement learning, 2018. URL https://arxiv.org/abs/1707.
08475.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network,
2015. URL https://arxiv.org/abs/1503.02531.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural networks, 2(5):359–366, 1989.

Biwei Huang, Fan Feng, Chaochao Lu, Sara Magliacane, and Kun Zhang. Adarl: What, where,
and how to adapt in transfer reinforcement learning, 2022. URL https://arxiv.org/abs/
2107.02729.

Aapo Hyvärinen and Hiroshi Morioka. Unsupervised feature extraction by time-contrastive
learning and nonlinear ica, 2016. URL https://arxiv.org/abs/1605.06336.

Aapo Hyvärinen and Hiroshi Morioka. Nonlinear ica of temporally dependent stationary
sources. In Artificial intelligence and statistics, pages 460–469. PMLR, 2017.

Aapo Hyvärinen and Petteri Pajunen. Nonlinear independent component analysis: Existence
and uniqueness results. Neural Networks, 12(3):429–439, 1999. ISSN 0893-6080. doi:
https://doi.org/10.1016/S0893-6080(98)00140-3. URL https://www.sciencedirect.co
m/science/article/pii/S0893608098001403.

Aapo Hyvärinen, Hiroaki Sasaki, and Richard E. Turner. Nonlinear ica using auxiliary variables
and generalized contrastive learning, 2019. URL https://arxiv.org/abs/1805.08651.
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Appendix A

Environments

In this appendix, we visualize the environments used in our experiments.

Environments with Task-Irrelevant Factors

(a) Cartpole Swingup

(b) Finger Spin

(c) Panda Reach

Figure A.1: Example frames from each environment with color distractors used in our experi-
ments. The images on the left are from the train domain and the images on the right are from
the test domain. All frames are shown before any image preprocessing was applied.
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Environment with Task-Relevant Factors

(a) Car Racing

Figure A.2: Example frames of the Car Racing environment used in our experiments. The
images on the left are from the training levels and the images on the right are from the testing
levels. All frames are shown before any image preprocessing was applied.

Environments with Task-Relevant and Task-Irrelevant Factors

(a) Coinrun

(b) Leaper

Figure A.3: Example frames for each Procgen environment used in our experiments. The images
on the left are from the training levels and the images on the right are from the testing levels.
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Appendix B

Hyperparameters

In this appendix we give an overview of the hyperparameters.

Experiments with Task-Irrelevant Factors

Environment Base algorithm Value of α

Cartpole Swingup RAD 100
Finger Spin RAD 25
Panda Reach RAD 200

Table B.1: GED loss coefficient α across environments.

Hyperparameter name Value

Replay buffer capacity 1000000
Initial steps 1000
Stacked frames 3
Action repeat 2 for Finger Spin, 4 otherwise
Batch size 128
Discount factor 0.99
Optimizer Adam
Learning rate (actor, critic, encoder) 1e-3
Target soft-update rate η 0.01
Actor update frequency 2
Actor log stddev bounds [−10,2]
Latent representation dimension 50
Image size (84, 84)
Image pad 4
Initial temperature 0.1

Table B.2: Hyperparameter settings shared for RAD-GED.
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Experiments with Task-Relevant Factors

Hyperparameter name Value

Image size (96, 96)
Discount factor γ 0.99
GAE λ 0.95
# Timesteps per rollout 250
Epochs per rollout 10
# Minibatches per rollout 16
Entropy bonus 0.01
PPO clip range 0.2
Learning rate 3e-4
# Workers 1
# Environments per worker 1
LSTM? No
Frame stack 4
Loss coefficient α 0.01

Table B.3: Hyperparameter values for PPO-GED.
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Experiments with Task-Relevant and Task-Irrelevant Factors

Hyperparameter name Value

Image size (64, 64)
Discount factor γ 0.999
GAE λ 0.95
# Timesteps per rollout 250
Epochs per rollout 3
# Minibatches per rollout 8
Entropy bonus 0.01
PPO clip range 0.2
Learning rate 5e-4
# Workers 1
# Environments per worker 8
LSTM? No
Frame stack? No
Loss coefficient α 0.25 for coinrun, 0.25 for leaper

Table B.4: Hyperparameter values for PPO-GED.
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Appendix C

Environment Settings

In this appendix we provide a detailed overview of the parameters of our experiments.

Distractor Settings in Experiments with Task-Irrelevant Factors

Distractor Settings

Constant Color Distractor
δmin,δmax -0.1, 0.1
εt 0.00

Abruptly Changing Distractor
δmin,δmax -0.2, 0.2
l,h -0.1 , 0.1
εt 0.03
L 40

Gradually Changing Distractor
δmin,δmax -0.2, 0.2
β 0.1
ν 0.251
εt 0.03

Table C.1: Color distractor settings using distracting-control library. δmin,δmax refer to the
maximum change in color channel compared to the original color value.
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Non-Stationary Settings in Experiments with Task-Relevant Factors

Non-Stationary Settings

Abrupt Non-Stationarity
l,h -0.5, 0.0
εt 0.05
L 50

Gradual Non-Stationarity
β

0.05t
100

ν 0.02
εt 0.05

Table C.2: Non-stationary settings in Car Racing using the ns-gym library.
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