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Abstract

Both security and efficiency are important performance areas of air transport
systems. Several methods have been proposed to assess security risks and esti-
mate efficiency independently, but only few of these methods identify relationships
between security risks and efficiency performance indicators. To analyze security,
efficiency, and the relationships relations between them, an agent-based methodol-
ogy was proposed in this work. This methodology combines an agent-based security
risk assessment approach with agent-based efficiency estimation. The methodol-
ogy was applied to a case study that analyzes security regarding an Improvised
Explosive Device (IED) attack, different commonly used efficiency performance
indicators in the aviation domain, such as queuing time for passengers, and the
relationships between them. Results showed that reducing security risks and im-
proving efficiency were not always conflicting objectives. Reducing the number of
passengers before the security checkpoint was found to be an effective measure to
reduce security risks and improve efficiency aspects. Furthermore, results showed
that airports should attempt to spread passengers across the available space as
much as possible to reduce the impact of an IED attack.

Keywords: Security Risk Management; Efficiency; Agent-based Modelling; Air-
port Terminal; Improvised Explosive Device
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1 Introduction

Improving the security and efficiency of airports are two of the most important strategic
objectives of the International Civil Aviation Organization (ICAO) [1] and airports.
Apart from ICAO and airports themselves, the research community has shown interest
in methods to estimate and improve both security and efficiency.

Airport terminal efficiency has been studied using a wide range of different ap-
proaches. For instance, data driven approaches utilized airport data to estimate their
efficiency [2, 3], while Bayesian models were used to more efficiently process the vast
amount of airport data [4]. Moreover, traditional simulation studies were used to esti-
mate efficiency in current and hypothetical scenarios [5, 6]. Finally, agent-based simu-
lation methods were used to more accurately incorporate heterogeneous passenger be-
havior [7, 8].

Airport security is driven by a large set of rules and regulations defined by a variety
of institutes. For instance, ICAO has a security manual [9], the European Union has
regulations [10, 11], and the United States has the Aviation and Transportation Security
Act [12]. These rules and regulations form the basis for the implementation of security
measures at airport terminals, but airports still have some freedom to implement these
measures according to their preferences.

To assess (and/or improve) airport terminal security, many methods have been
proposed in literature. Most commonly, the so-called threat-vulnerability-consequence
(TVC) methodology is used in practice. Many variants of the TVC methodology ex-
ist: the Risk Analysis and Management for Critical Asset Protection (RAMCAP) ap-
proach [13], the ICAO security manual [9], the security risk assessment handbook [14],
and the RAND terrorism risk estimation handbook [15]. In the TVC methodology,
security risks are estimated based on three threat components: threat likelihood, vul-
nerability and consequence. These components are individually assessed by security
experts, and are used as a guide to implement security measures. The TVC method-
ology heavily depends on security experts, who cannot take into account all complex
processes and interactions at an airport terminal [16].

To overcome this dependency on security experts, researchers have developed com-
putational methods to assess security risks. One such computational method is that of
attack trees [17, 18]. In attack trees, security threats are represented in a tree struc-
ture. A successful executed security threat is represented as the root node of the tree.
Leaf nodes of the attack tree are events that can be happen independently, while events
represented by internal nodes depend their child nodes. Similar to attack trees, proba-
bilistic methods [19] represent security threats using probabilistic events. The interac-
tion of these events and their respective probabilities lead to risk estimations. Security
games [20, 21] use game theory to represent security threats. In these games, two players
are defined: the attacker and the defender. Using a game-theoretic analysis, the opti-
mal strategy for the defender can be determined. Finally, a method using agent-based
modelling was introduced recently [22]. In this work, agent-based models and Monte
Carlo simulations are used to assess security risks.

Some of the above-mentioned studies recognize that security and efficiency are re-
lated. However, many of the security-oriented studies only consider efficiency as a
constraint, while most efficiency-oriented studies model security measures only as an
efficiency bottleneck [5]. A notable exception to this is the work of Wilson et al. [23], in
which efficiency and security are estimated simultaneously using a simulation method.
However, this work lacks a formal methodology and uses a basic notion of security
by only incorporating vulnerability in their analysis. Moreover, the work of Kirschen-
baum [24] investigates tradeoffs between security and efficiency using informal quantita-
tive methods, but does not follow a formal computational methodology. Finally, Grant
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and Stewart performed a traditional security risk assessment on an Improvised Explo-
sive Device (IED) attack, while taking into account costs for the airport [25]. Their
work concerned a higher-level tradeoff between costs and security, while other efficiency
performance indicators may be of influence as well.

The goal of our work is to develop a formal methodology to analyze security, effi-
ciency, and identify and quantify relationships between them, using agent-based mod-
elling as a central paradigm. Agent-based modelling forms a promising paradigm, as it
allows for detailed analysis of security, efficiency and their corresponding relationships,
often hard in the above-mentioned modelling frameworks. Agent-based models are im-
portant tools to better understand complex systems, such as airports. Attackers and
defenders can naturally be represented by agents with diverse strategies and non-linear
interactions between them. Other security risk assessment methodologies often trans-
form airport operations to a group of linear relations. Complex interactions, such as the
detection of an ongoing attack by a behavior-detection employee cannot be modelled in
such paradigms. Moreover, most other security risk assessment approaches either do not
consider efficiency performance indicators at all, or consider efficiency as a constraint.
Agent-based modelling forms a promising paradigm in which both efficiency and security
can be estimated simultaneously.

The methodology proposed in this work consists of four steps: scope selection, agent-
based model definition, security and efficiency estimation, and analysis of simulation
results. In the methodology, an agent-based security risk assessment approach is com-
bined with a typical agent-based approach to analyze efficiency of operations. We apply
this methodology to a case study in which we analyze security regarding an IED attack,
commonly used efficiency performance indicators at an airport terminal, such as queuing
time for passengers and number of employees, and their corresponding relationships.

Section 2 introduces the proposed methodology, while the rest of the work applies
the methodology to a case study described in Section 3. In Section 4 the corresponding
agent-based model is introduced, and in Section 5 the estimation of security risks and
efficiency performance indicators relative to the case study is described. Finally, in
Section 6 the simulation results are analyzed and discussed.

2 Methodology

The methodology to analyze security risks, efficiency performance indicators and corre-
sponding relationships contains four main steps, outlined in Figure 1. The first step is
used to determine the scope of the analysis. It is further discussed in Section 2.1. The
second step, agent-based model definition, forms the basis of the analysis. In this step,
an agent-based model is defined that will be further used to estimate efficiency perfor-
mance indicators and assess security risks. This step is further discussed in Section 2.2.
Based on the defined models, security risks are assessed and efficiency performance in-
dicators are estimated by means of Monte Carlo simulations in the third step of the
methodology (Section 2.3). Finally, in the fourth step the simulation results are ana-
lyzed (Section 2.4). An overview of common definitions used in our work can be found
in Appendix A.

Steps 1(a,c,d) and 3(b) are used in most variants of the TVC methodology. These
steps are complemented by the additional steps 2(b) and 4(b), which were previously
discussed in the agent-based security risk assessment method defined by Janssen and
Sharpanskykh [22]. Furthermore, a typical agent-based approach for estimation of ef-
ficiency of operations follows steps 1(a-b), 2-4(a). This methodology integrates these
approaches, while adding step 4(c) to find relationships.
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1. Scope
Selection

2. Agent-based
Model Definition

3. Security &
Efficiency
Estimation

4. Analysis of
Simulation

Results

a) Operations & asset
characterization

b) Efficiency perform.
indicator selection

c) Threat
characterization

d) Threat scenario
construction

a) Operational model
definition

b) Security model
definition

a) Efficiency perform.
indicator estimation

b) Security risk
assessment

a) Efficiency perform.
indicator analysis

b) Security risk
analysis

c) Relationship
analysis

Figure 1: The methodology used in this work.

2.1 Scope Selection

In this first step the scope of the project is defined. The first step is the selection of
the specific operational processes and assets to focus on. For the airport domain, an
example process can be the check-in process at the airport terminal, while assets can
be passengers or the airport terminal building. Based on the selected domain, a set of
efficiency performance indicators has to be selected and a set of security threats have to
be characterized. Based on the characterized security threats, specific threat scenarios
for each of the threats are constructed. Efficiency performance indicators are used to
quantify a specific element of efficiency in the selected domain, related to efficiency goals
of the airport. In the airport domain, this can for example be the average queuing time
for passengers. An example threat scenario is the following: a single attacker brings an
IED to a regional airport and detonates it in a publicly accessible area of the airport.

2.2 Agent-based Model Definition

For the above selected scope of the project, the agent-based models M and M1, . . . ,Mn

are defined. The operational model M is defined to model the selected operations of the
domain and is used to estimate efficiency performance indicators selected in the previous
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step.
Model M defines an environment that represents the environment of the domain area.

Then, a set of agents that execute the standard operations in the domain is defined. In
an airport, this can for example be passengers or check-in employees. Finally, a set
of defender agents is defined. In the context of airports, these can for instance be
behavior-detection employees or X-ray officers. These defender agents can additionally
have operational task, such as helping passengers find directions.

The model forms the basis for security models M1, . . . ,Mn. These models are used
to represent the n threat scenarios in S, which are in turn used to estimate security
risks related to the corresponding threat scenario. Each model Mi defines a non-empty
set of attacker agents, on top of the components already present in M . The attacker
agents execute the attacker behavior in threat scenario si, while the defender agents try
to prevent the attackers from being successful.

Both a modelling language and an agent architecture need to be selected to specify
the models. A modelling language should at least include the following abilities: (1) rep-
resentation of time; (2) representation of stochastic processes; (3) specification of both
qualitative and quantitative aspects; and (4) representation of behavioral and cognitive
properties of agents and interaction between agents. The following elements should at
least be present in an agent architecture: (1) observation and action; (2) storage of in-
formation; (3) maintenance of goals; and (4) reasoning. The Temporal Trace Language
(TTL) [26] and LEADSTO [27] are example languages. The BDI architecture [28], and
the Desire architecture [29] are example architectures. A more extensive discussion on
language selection and architecture selection is provided by Janssen et al. [16].

2.3 Security & Efficiency Estimation

The third step of the methodology is the estimation of efficiency performance indicators
and assessment of security risks from simulation results. A set of efficiency performance
indicators and security risks are generated, that are used to identify and quantify rela-
tionships in the next step.

2.3.1 Efficiency Performance Indicator Estimation

Efficiency performance indicators are estimated by performing Monte Carlo simulations.
These Monte Carlo simulations are performed with model M . By extracting relevant
information from simulation results of M , each of the efficiency performance indicators
defined in 1(b) are estimated. For example, the average queuing time of passengers can
be obtained by averaging over the queuing time for each of the passengers present in
the simulation model.

2.3.2 Security Risk Assessment

For each threat scenario si ∈ S defined in step 1(d), a corresponding security risk ri is
calculated based on simulation results of model Mi defined in step 2.

An agent-based security risk management methodology is used following the work
of Janssen and Sharpanskykh [16]. A security risk ri is defined for some time period T
as a function of Threat Likelihood and Conditional Risk, as outlined below.

R(si, T ) = f(P (si, T ), Rc(si))

Risk R(si, T ) (or ri in short) is the risk value for threat scenario si in time period
T . Conditional risk Rc(si) is estimated as follows. For each threat scenario si and asset
al (as defined in the scope selection), a real-valued Consequence function C(M j

i , al) is
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defined. This function is used to determine the Consequence value for some simulation
run j in model Mi. This Consequence function incorporates estimates of direct losses
and indirect losses. Direct losses for instance include fatalities and physical damages of a
simulated threat scenario. Indirect losses, such as decreased number of future passengers
and business disruptions, are then based on the estimated direct losses and historical
data.

Monte Carlo simulations are performed to estimate conditional risk based on a set
of N simulation runs. This is done by calculating the following estimate of conditional
risk for some scenario:

R̂c(si) =

∑N
j=1

∑
al∈A C(M j

i , al)

N

where C(M j
i , al) is the consequence for asset l in simulation run j of model Mi. R̂c(si)

is the estimated conditional risk for scenario si. By calculating the ratio between the
number of nonzero consequence values and N (i.e., the total number of consequence
values), the vulnerability of the scenario can be obtained. The mean of the nonzero
consequence values corresponds to the consequence of the scenario.

Threat likelihood P (si, T ) for threat scenario si is estimated independently from
model Mi. Commonly, crime databases and intelligence data are used to estimate the
Threat Likelihood [25].

2.4 Analysis of Simulation Results

Simulation results are analyzed following a structured approach. First, the influence
of model parameters on efficiency performance indicators is established using statistical
analysis techniques. For instance correlation analysis, or more advanced methods such
as (global) sensitivity analysis [30, 31, 32] and uncertainty analysis [31] can be used.
Similarly, the influence of model parameters on security risks is established using the
same techniques.

Relations between model parameters, security risks, and efficiency performance indi-
cators are obtained in this step. This is done by determining which parameters influence
both security risks and efficiency performance indicators. By analyzing emergent effects
in the defined agent-based models, unexpected relationships can be identified as well.

3 Case Study

The remainder of this work applies this methodology to analyze security and efficiency,
and identify and quantify relationships between them in the domain of a small airport
terminal. The reference airport handles under 2 million passengers per year and has
a centralized security checkpoint. The operations that are included in the study are:
check-in, facility visits, security checkpoint operations, queuing, gate processes and the
movement of passengers between these processes. We focus on a single asset: humans
(i.e., all passengers and employees). A visualization of the airport terminal used in this
case study is shown in Figure 2.

We focus on a single threat: a bomb attack in the open areas of the airport terminal,
as for instance seen at the Atatürk Airport attack and the Zaventem Airport attack.
Based on this threat, two threat scenarios in which an attacker aims to detonate an IED
in the open areas of the airport are represented: an early attack and a late attack.

Five efficiency performance indicators are defined: number of employees n, mean time
in checkpoint queue over all passengers Tqueue, mean time to gate over all passengers
Tgate, number of missed flights miss, and monetary loss loss.

We focus this case study on three main research questions, as outlined below.
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Figure 2: The airport layout of the case study, with indicators for different areas. A,
B and C are facility areas. D is the check-in area and E are queuing areas. F is the
checkpoint area, G is the gate area and H is the entrance area.

• How does the number of passengers influence the identified efficiency performance
indicators and the security risk with respect to the security threat?

• How does the number of checkpoint lanes influence the identified efficiency perfor-
mance indicators and the security risk with respect to the security threat?

• How does the number of behavior-detection employees and their respective strate-
gies influence the identified efficiency performance indicators and the security risk
with respect to the security threat?

4 Agent-based Model

Three agent-based models for the above selected scope are defined. We refer to the
operational model as M , while the model that includes the threat scenario is referred to
as Mied. The modelling language is discussed in Section 4.1, and the agent architecture
is discussed in Section 4.2. The operational model and the security models are discussed
in Section 4.3 - Section 4.4. Section 4.5 finally describes the parameters used in the
models.

4.1 Modelling Language

To specify the dynamics of a multiagent system, the order-sorted predicate logic-based
language called LEADSTO is used [27]. This language allows both discrete and contin-
uous modelling of a system at different aggregation levels. Furthermore, one can express
both qualitative and quantitative aspects of a system using LEADSTO.

Dynamics in LEADSTO are represented as evolution of states over time. A state is
characterized by a set of properties that do or do not hold at a certain point in time.
To specify state properties for system components, ontologies are used that are defined
by a number of sorts, sorted constants, variables, functions and predicates (i.e., a sig-
nature). For every system component A, a number of ontologies can be distinguished:
the ontologies IntOnt(A), InOnt(A), OutOnt(A), and ExtOnt(A) are used to express
respectively internal, input, output and external state properties of the component A.
For a given ontology Ont, the propositional language signature consisting of all state
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ground atoms based on Ont is denoted by APROP (Ont). State properties are specified
based on such ontology by propositions. Propositions are formed, combining ground
atoms by logical operators such as conjunction, negation, disjunction, and implication.
Input ontologies contain elements for describing perceptions of an agent from the ex-
ternal world, such as the observed function obs: IntOnt(A) → APROP (IntOnt(A)).
Output ontologies describe actions and communications of agents. To this end, the
function performed: ACTION → APROP (OutOnt(A)) is introduced. Then, a state
S is an indication of which atomic state properties are true and which are false: S:
APROP (Ont)→ {true, false}.

time

α

β

t2t0 t1

g

e

f

h

Figure 3: Timing relationships for LEADSTO expressions.

LEADSTO enables modeling of direct temporal dependencies between two state
properties in successive states, also called dynamic properties. A specification of dy-
namic properties in LEADSTO is executable and can be depicted graphically. The
format is defined as follows. Let α1 and α2 be state properties of the form ‘conjunc-
tion of atoms or negations of atoms’, and e, f, g, h non-negative real numbers. In the
LEADSTO language the notation α1 �e,f,g,h α2 means: if state property α1 holds for
a certain time interval with duration g, then after some delay (between e and f) state
property α2 will hold for a certain time interval of length h (Fig. 3). To indicate the type
of a state property in a LEADSTO property we shall use prefixes internal(c), input(c),
output(c) and external(c), where c is the name of a component. Consider an example
dynamic property:

input(A)|obs(arrest fail) �0,0,1,1

output(A)|performed(detonate())

Informally, this example expresses that if agent A observes a failed arrest during
some time unit, then A will detonate an IED in the following time unit. Next, a trace
or trajectory γ over a state ontology Ont is a time-indexed sequence of states over
Ont (where the time frame is formalized by real numbers). A LEADSTO expression
α1 �e,f,g,h α2, holds for a trace γ if:

∀t1[∀t[t1− g ≤ t < t1⇒ α1 holds in γ at time t]

⇒ ∃d[e ≤ d ≤ f&∀t′[t1 + d ≤ t′ ≤ t1 + d+ h

⇒ α2 holds in γ at time t′]]

More details on the semantics of the LEADSTO language can be found in [27].

4.2 Agent Architecture

Agents are modelled following an adapted version of the AATOM architecture visual-
ized in Figure 4. The architecture is loosely based on a framework of Blumberg [33],
Hoogendoorn [34] and Reynolds [35]. It is described in detail in a technical report [36].

9



Strategic Layer

Tactical Layer

Operational Layer
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Module
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Module
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Navigation

Module
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Interpretation

Module

Belief Module

Reasoning Module

Planning
Decision

Making

Analysis

Goal Module

Goal 1
Goal 1

Goal 1

Belief Module

Figure 4: The AATOM architecture and its different modules.

In this architecture, three layers are distinguished, namely the operational layer,
the tactical layer and the strategic layer. Each of these layers has a set of modules
that execute specific tasks. The operational layer is responsible for doing observations
(perception module) and performing actions (action module). Communication with
other agents is also executed by the action module. Based on observations, actions and
internal states the belief module maintains a belief in the tactical layer. That layer
is also responsible for navigation (navigation module) and activity execution (activity
module). Finally, the strategic layer maintains a higher level belief (strategic belief
module) and generates a plan (planning module). A plan is defined as an ordered
sequence of activities that are executed by the agent. For each agent in the model,
relevant modules are described in more detail.

Activities form a central concept in this architecture. They have a starting condition,
a set of actions that have to be executed and an ending condition. Based on these
conditions, an activity is defined to be in either of the three different activity states:
not started, in progress, finished. All activities start in the not started state and switch
to the in progress state when the starting condition is met. Finally, they switch to the
finished state when the ending condition is met. The activity state is represented as
follows: activity state: ACTIV ITY ×ACTIV ITY STATE → APROP (IntOnt(A)).
In addition, an activity can be the next activity in the planning of an agent (determined
by the planning module). This is defined in the following function: next activity:
ACTIV ITY → APROP (OutOnt(A)) is introduced.

Employee agents and attacker agents only have a single activity they can perform,
while passenger agents can execute more activities. They therefore plan their activities
following a set of simple rules, explained in more detail in Section 4.4.1.

4.3 Environment

The airport terminal environment consists of several elements, categorized into four
different categories: physical objects, IEDs, areas and flights. A visualization of the
airport terminal environment is shown in Figure 2.
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Two types of physical objects, wall and desk, are defined. An IED is defined by
its location, the number of particles and mass. It is carried by an attacker, denoted
carried by(ied, attacker). Areas are used to specify functionality of regions in the airport
terminal, where check-in area, checkpoint area, facility area, queuing area, gate area
and entrance area are the types of areas present in the model. Some areas, such as the
gate area, are accessible to passengers only after execution of the checkpoint activity
(airside), while others, such as the entrance area, are publicly accessible (landside).
Finally, a flight is defined to be an abstract concept with the following properties:
departs at( flight, ftime), has gate(flight,gate area) and has desk(flight,desk). The value
ftime is the time at which the flight departs. The flight also has at least one desk that
passengers use for checking in and exactly one gate area.

4.4 Agents

The model M contains three types of agents, namely: passengers, operational employees
and behavior-detection employees (BDE). The last two agent types are also the defender
agents in the model. We assume that there are no other persons, such as visitors, as
they form a very small part of the population in the airport under consideration. All
agents are human agents and are designed using the framework discussed in Section 4.2.
These agents are discussed in more detail in subsequent sections.

4.4.1 Passenger Agent

Passengers are agents that depart with some flight f in the environment. They are
characterized by the following five properties: arrival time tarrival, level of disorientation
d, suitability of luggage s, checked-in c and facility visitor y.

The arrival time tarrival is the time at which the passenger is generated (in the
entrance area). The level of disorientation d refers to how disoriented or confused the
passenger appears in the airport, and the suitability of luggage s refers to how well
the luggage of the passenger fits the appearance of the owner. For example, a business
traveller with a large suitcase has a low suitability of luggage. Both these properties are
conceptualized with a real number. These properties are important indicators that are
used in the SPOT program of the TSA [37, 38]. In the SPOT program, officers assign
points to passengers to quantify their danger to the airport. If the points assigned to a
passenger exceed a threshold, a secondary screening is initiated.

Checked-in c is a Boolean value indicating whether the passenger is already checked-
in on arrival, and facility visit y indicates which facility the agent will visit (none,
bathroom, restaurant, shop). Passengers can observe physical objects and other agents
that are in line of sight within a radius robs. Furthermore, passengers can observe the
area that they are in, and the flight they are taking. Finally, a wait request communi-
cated by other agents can be observed.

Based on these observations, passengers find a collision free path between the differ-
ent activity locations using the Jump Point Search pathfinding algorithm [39], sometimes
used in pedestrian simulators [40]. This is executed by the navigation module, and done
when all activities are in the not started activity state or when an activity switched from
in progress to finished. Passengers follow their generated path (using the action mod-
ule) by changing their location point using the Social Force model defined by Helbing
and Molnar [41]. Passengers can also wait for a specified time twait.

Passengers can perform the following activities: check -in activity, checkpoint activity,
facility activity and gate activity. These activities are planned (in the order as they ap-
pear) by the planning module. The checkpoint and gate activity are always executed
by agents, while the check -in and facility activity are only executed if the property
checked-in c is false or the property facility visit f is not none, respectively. If the
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check -in activity or checkpoint activity, cannot be executed (when all activity areas
are occupied), passengers perform a wait action in the nearest queuing area until an
activity area becomes free. Passengers are removed from the model when t = Ftime.

The check-in activity is executed in a check-in area and consists of a wait action.
The activity starts when the passenger observes a wait communication of an employee.
The checkpoint activity is executed in a checkpoint area and consists of the same steps
as the check-in activity. The facility activity is executed at a facility and also consists
of a wait action. The time of the wait action is dependent on the type of facility visit f.
Finally, the gate activity is executed in the gate area of the flight of the passenger and
consists of a single wait action until the flight leaves. The LEADSTO properties below
formalize the gate activity.

input(A)|obs(flight) ∧ obs(gate area)

& external(A)|has gate(flight,gate area)

& internal(A)|next activity(gate activity) �Ftime−t,Ftime−t,1,1

output(A)|performed(wait(Ftime − t))

output(A)|performed(wait(Ftime − t)) �0,0,1,1

internal(A)|activity state(gate activity,finished)

4.4.2 Attacker Agent

The attacker agent is modelled in the models Mied−early and Mied−late. It is a human
agent, like passengers, characterized by its arrival time tarrival and the level of disorien-
tation d, suitability of luggage s. In Mied−early, the attacker has an early tarrival, while
this is late in Mied−late. The attacker agent has a single goal: achieve as many fatalities
at the airport as possible.

To achieve this goal, it can observe physical objects, passengers and attackers in
radius robs. The attacker can further determine the area it is currently in. The number
of passengers at the checkpoint area and the check-in area can also be observed. Finally,
the attacker can observe that it is being arrested (successfully or unsuccessfully) by a
BDE.

The attacker carries an IED that it uses to cause fatalities. To be able to be success-
ful (from an attacker’s perspective), the attacker executes the attacker activity. The
activity consists of three phases: target selection, movement to target and execution of
attack. The target selection is based on a single criterion, namely the observed num-
ber of people in the checkpoint area and the check-in area. In the second phase, the
attacker moves from the arrival location to the target area. The attacker can then be
observed by a BDE (if present), resulting in one of two outcomes. With a probability of
parrest the attacker is arrested and cannot finish the attack, while otherwise the attacker
detonates the IED on the spot. This was for instance seen in attacker behavior at the
Atatürk Airport attack of 2016 [42]. If the attacker was not observed by any BDE, it
continues moving to the target area, where phase three is initiated. In this phase, the
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attacker detonates the IED. The LEADSTO properties below formalize the activity.

tarrival = t�0,0,1,1 internal(A)|path(target)

internal(A)|path(target)) �1,tmove,1,1

prob(output(A)|performed(move(target)), p) & prob(input(A)|obs(arrest), 1− p)

input(A)|obs(target) ∨ obs(arrest fail) �0,0,1,1

output(A)|performed(detonate())

output(A)|performed(detonate()) || input(A)|obs(arrest) �0,0,1,1

internal(A)|activity state(attacker activity,finished)

4.4.3 Operational Employee Agent

The operational employee can observe a single passenger at a time in a small radius.
It can execute a single action, namely the communication of a wait request. This
observation and action is used in the single activity the standard employee executes:
the employee activity. This activity consists of the communication of a wait order (of
a specified time twait) to the passenger, when a passenger is observed. The standard
employee interacts with passengers that either perform the check-in activity or the
checkpoint activity.

4.4.4 Behavior-Detection Employee Agent

The behavior-detection employee (BDE) can observe physical objects, passengers and
attackers in radius robs and in direct line of sight. They cannot be observed to be a
BDE by attackers or passengers, as it operates undercover.

Three different strategies can be employed by the BDE: static observation, dynamic
observation and intelligent observation. When performing static observation, the BDE
positions itself at the queue in front of the security checkpoint and executes its job
there. For dynamic observation, the BDE constantly moves between two areas: the
checkpoint area and the check-in area. Finally, when performing intelligent observa-
tion, the BDE estimates every tintelligent seconds which area has most passengers. The
BDE will then move to the area with the highest number of passengers and performs
its job there.

The BDE randomly chooses one agent of these observed agents (that it did not
evaluate yet) to evaluate if it is an attacker or not. To do that, the BDE assigns points
to the observed agent based on the SPOT program [37, 38, 43]. First, a threshold
dthreshold is defined for level of disorientation d. If the observed agent has a level of
disorientation d > dthreshold, two points are assigned. Moreover, the suitability of
luggage s is compared against a threshold sthreshold. If the agent exceeds the threshold,
three points are assigned. Finally, if the difference between the arrival time tarrival and
the flight time of an agent exceeds the threshold fthreshold, one point is assigned. If the
number of points exceeds four, the BDE attempts to arrest the agent. If the agent is a
passenger, the passenger is arrested and the BDE will leave the airport terminal with
the passenger. If the agent is an attacker, the arrest action is executed with a success
rate of parrest, while the arrest fail action is executed otherwise. If the arrest action is
executed, the attacker is stopped and will not detonate the IED. If the arrest was not
successful, the attacker detonates the IED on the spot.
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Table 1: The model parameters that were varied in the experiments.

Parameter Values
Number of flights f 1, 2, 3 flights
Number of checkpoint lanes open l 2, 3, 4 lanes
Number of check-in desks open k 3, 5 desks
Number of BDEs d 0, 1, 2 empl.
BDE strategy static, dynamic, intell.
Attacker time early, late

It takes some time tevaluation to evaluate the agent. This time is calculated as follows:

tevaluation = tmax− (c1 · abs(dthreshold − d) +

c2 · abs(sthreshold − s))

where tmax is the maximum time that a BDE spends on evaluation of agents, and the
ci’s are constant. This relationship indicates that passengers with traits close to the
threshold take longer to evaluate than passengers that are not.

The BDE uses the above described observations and actions to execute the behavior detect activity.
In this activity, the BDE moves between a list of locations location list in the airport
terminal, while checking if it observed an attacker. When this is the case, the employee
tries to arrest the attacker.

It is noted that both the attacker and the BDEs can be modelled to be more complex
than the current form. For example, more strategic behavior (i.e., a small decoy attack)
in both the attacker and the BDEs can be included. Collaboration between teams and
camera observations could also be added. For now, this is beyond the scope of this work.

4.5 Model Parameters

Five model parameters were defined and shown in Table 1. Other internal parameters
of the models are discussed Section 6.1.

Passenger arrival at the airport follows a distribution based on the number of flights
f and data collected at the regional airport. This has a direct influence on the num-
ber of passengers present within the model over time. The number of checkpoint lanes
open refers to the number of passengers that can perform the checkpoint activity simul-
taneously. This influences the number of employees directly as follows: ncheckpoint =
4l+mod(l, 2). This relationship indicates that it is beneficial to open checkpoint lanes in
pairs, as also recommended by IATA [44]. The number of check-in desks open refers to
the number of check-in desks through which a passenger can check in. An open check-in
desk requires a single employee. The number of BDEs present influences the number of
employees present, and potentially the effectiveness of the defense. Furthermore, three
BDE strategies are defined: static, dynamic and intelligent. Some of these parameters
cannot be influenced by the airport directly. For example, the number of flights also
depends on airlines, and the number of BDEs has to be determined in collaboration with
regulators. Finally, the attacker time tattack defines the time that the attacker executes
its attack.

5 Estimation of Security and Efficiency

The third step of the proposed methodology estimates security risks and efficiency perfor-
mance indicators based on the agent-based models described above. They are discussed
in detail below.
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5.1 Efficiency Estimation

The efficiency performance indicators, as defined in Section 3 are calculated as follows.
The time in checkpoint queue for passengers Tqueue is measured by calculating the time
a passenger spends in the queuing area closest to the checkpoint area. A passenger is
considered to have missed its flight if it is not in the gate area at time ftime. We define
loss as follows:

loss = ((|Pmax| − |P |) · revp −miss · cmiss

where |Pmax| is the maximum number of passengers that the airport can process. P is
the set of passengers that arrived on the flight day and revp is the mean revenue per
passenger. Furthermore, cmissed is the costs that an airport has for each passenger that
misses a flight. The other efficiency performance indicators, number of employees and
time to gate, are trivially obtained from the simulation results. For each of the defined
efficiency performance indicators it holds that lower is better.

5.2 Security Risk Assessment

As defined in Section 2.3.2, the Consequence function needs to be defined. Furthermore,
Threat Likelihood has to be estimated independently from the models. Both of these
elements are described in more detail below.

5.2.1 IED Consequences

As an IED attack at an airport terminal is modelled, a Consequence model is defined
to estimate the number of lives lost after an attack. The model is based on the work of
Pope [45], who designed a prediction tool that is able to quickly assess the human injury
after a terrorist attack. The Consequence model described below forms the Consequence
function C(M j

ied).
It is argued that there are two main causes for fatalities after an IED attack: blast

wave propagation and fragmentation injuries. While other factors are of influence on
human injuries, only these two elements are considered in this model.

Blast Wave Prediction The explosion of an IED causes the release of a lot of energy,
resulting in the propagation of a blast wave. Rapid changes in pressure are associated
with this blast wave and can cause injury or death. Kingery and Bulmash [46] show
that there is a relation between the mass of the explosive, the distance to the explosive,
and the incident pressure P . This relation is outlined below:

z =
d

mass1/3

U = k0 + k1 log10 z

P = c0 + c1U + c2U
2 + . . .+ cnU

n

where d is the distance in meters between the IED and the target and mass is the IED
mass in kg. The ki’s and ci’s are constants, while P refers to the incident pressure
in kPa. The relationship above assumes an unobstructed path between the IED and
the target, while in practice walls and other physical objects can reflect the pressure
wave. This is modelled by generating imaginary IEDs on a commensurate location on
the other side of the wall. Walls are then ignored and the pressure contributions from
both sources are superimposed to find the total pressure at a specific location.

The incident pressure at the location of each human agent is recorded and translated
to a fatality probability, based on the work of Zipf and Cashdollar [47]. Finally, a random
number is drawn to determine if the agent survived or not. The number of fatalities
caused by the incident pressure is referred to as cblast.

15



Fragmentation Prediction Apart from fatalities due to pressure changes, injuries
and fatalities can arise due to the presence of fragments. Two types of fragments are
distinguished: primary fragments and secondary fragments. Primary fragments are the
fragments that are present within the IED, while secondary fragments are the fragments
that originate from the environment (i.e., ceiling or other objects in the environment).
Here, only a set of K primary fragments originating from the IED are considered. The
initial direction Θinit of a fragment is determined using a uniform distribution, while
the initial speed vinit is set to be a constant.

The fragment will then move around the environment following a Newtonian motion
model. If the path of the fragment intersects with a human, the distance that it covers
within the human body (called depth of penetration, DOP ) is recorded. A truncated
linear relation between fatality probability and DOP is assumed. Finally, a random
number is drawn to determine if the human survives or not, for each human that survived
the blast impact. The number of human fatalities caused by fragmentation is referred
to as cfrag.

Consequence Function The Consequence function is then defined to be the sum of
the fatalities caused by the blast wave and the fragmentation.

C(M j
ied, a1) = cblast + cfrag

In this function only the fatalities are taken into account. A more extended approach
could also take into account injuries, damages to physical structures and indirect con-
sequences, but this is currently beyond the scope of this work.

5.2.2 Threat Likelihood

Threat likelihood is based on the work of Grant and Stewart [25], which in turn is
based on historic data originating from a terrorist database [48]. From this database,
it was obtained that historically there were an average of 1.7 IED attacks on airport
terminals in Western countries each year [49]. Based on an estimate of 100 to 200
large hub airports, Grant and Stewart finally obtain an estimate of 0.5-2.0%. This
percentage means that there is between 0.5% and 2% chance per airport terminal per
year that someone attempts to attack it. As small airports seem less likely to be a
target for terrorists, we chose a conservative likelihood of 0.5% for such an attack. As
this estimate is based on historical data, it may very well be inaccurate. Data from
intelligence agencies can provide more accurate estimates of threat likelihood.

6 Experiments & Results

Experiments performed with the above discussed model are presented in this section.
The setup of the experiments is discussed in Section 6.1 and the results are discussed in
Section 6.2.

6.1 Model Calibration & Experimental Setup

We have calibrated the model based on airport data, literature data, and assumptions
if no data could be obtained. The calibrated parameters are found in Appendix B.
We simulate a flight morning, between 05:00-07:00, where 05:00 corresponds to t = 0
sec. All flights are defined with the same departure time, which is standard practice in
the airport under consideration. This is due to noise restrictions that are enforced on
the airport. We assume a load factor of 0.75 for all aircraft, leading to 135 passengers
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per flight. The layout of the airport was shown in Figure 2. Revenue per passenger
is based on an ACI economics report [50], while the costs per missed flights are based
on assumptions. The proportion of checked-in passengers was based on estimates of
airport managers. The actual proportion can be obtained from airline data, which was
unavailable for airport managers. No data was available for the facility visits at the
airport, so this was based on assumptions.

The desired speed was assumed to be 1 m/s, and only individual passengers were
considered. We assumed a single carry-on luggage for passengers that were checked-in,
and an additional checked luggage for passengers that were not checked-in. Based on
discussions with airport managers, we assumed that 20% of passengers arrive in the
first half hour, 60% of passengers arrive in the second half hour, and the remaining 20%
of passengers arrive in the third half hour. Passengers in these blocks are generated
using a Poisson distribution with an arrival rate that ensures that the right number
of passengers arrive. Check-in times were based on estimates by airport managers.
The checkpoint parameters were obtained by fitting a distribution over 102 manually
collected checkpoint processing times between 05:00 and 07:00 at the airport on March
22nd 2017.

The observation radius robs of agents was assumed to be equal to 10 meter. The
behavior-detection employee parameters were calibrated as follows. We assumed that
a BDE arrests 0.025 passenger per hour, which falls within the range provided by the
United States Government Accountability Office report [37]. Assuming that both pas-
senger disorientation d and passenger luggage suitability s follow a normal distribution
with mean 0 and variance 1, the BDE thresholds dthres and sthres become 2.395. We
assumed that following the SPOT program, 75% of the time an attacker is observed.
This leads the attacker disorientation d and attacker luggage suitability s to follow a
normal distribution with mean 3.5, and we assumed the same variance as for passengers.
Based on a CNN news report [51], we assumed that a BDE takes up to 20 seconds to
evaluate the characteristics of a passenger. The corresponding evaluation constants ci
were based on assumptions. The arrest probability parrest was set to 0.8, based on the
work of Price and Forrest [52].

The mass of the IED was based on a report by the Department of Homeland Se-
curity [53]. The number of particles and their initial speed were finally based on as-
sumptions. Some of the constants found in Table 2 will benefit from more extensive
sensitivity analysis in the future. The output variables are the number of employees
n, mean time in checkpoint queue Tqueue, the mean time to gate Tgate, the number of
missed flights miss, the monetary loss loss and the risks ried−early and ried−late of the
threat scenarios, as set out in Section 5.

For the implementation of the model, we developed the AATOM simulator [54], a
Java-based open-source agent-based airport terminal operations simulator. This simu-
lator contains a large library of airport terminal related components, and basic imple-
mentations of attacker agents. A visualization of an AATOM simulation was shown in
Figure 2. For each combination of model parameters, 500 simulation runs were executed.

6.2 Experimental Results

In this section, the results of the experiments are discussed. We first analyze the influence
of the model parameters on efficiency, followed by an analysis of the influence on security.
Finally, we discuss some of the relationships that were found between these performance
areas. This constitutes to the fourth and last step in the proposed methodology.
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6.2.1 Efficiency Performance Indicators

Figure 5 shows two typical buildups of passengers over time in the checkpoint queue,
where Figure 5a shows the buildup under low passenger conditions, while Figure 5b
shows a setup in saturated passenger conditions. From this figure the arrival pattern of
passengers can be observed. When the slope of the figures changes, a different arrival
rate of passengers is observed. This effect is more clearly visible in the three flight setup,
as a larger queue buildup is observed there. This is due to the number of passengers in
the queue being directly related to the mean queuing time Tqueue.
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(a) f = 2 flights.
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(b) f = 3 flights.

Figure 5: The number of passengers in the checkpoint queue over the flight morning.
Graphs show a configuration of l = 3 checkpoint lanes and k = 3 check-in desks. Note
that the scale of the y-axis is different for both configurations.

If we consider mean checkpoint queuing times Tqueue for different airport setups
(see Figure 6), it can be observed that three check-in desk setups mostly have shorter
queuing times than five check-in desk setups. In the three check-in desk setups, the
passengers arrive at the checkpoint queue more gradually due to longer waiting times
at the check-in, leading to shorter queuing times. While not shown in the figure, it
should be noted that five check-in desk setups generally lead to shorter times to gate
for passengers. Furthermore, opening more checkpoint lanes leads to a higher number
of employees present, but opening too few checkpoint lanes can lead to an increase
in missed flights. Determining the number of checkpoint lanes and check-in desks is
an important tradeoff that airports have to make on a regular basis with respect to
these efficiency performance indicators. However, these decisions do not only influence
efficiency of the airport but also security, as discussed in Section 6.2.2.

6.2.2 Casualties without Defenders

Figure 7 shows the mean number of casualties (in the case of a late attack) for different
airport configurations. This corresponds to the conditional risks of the different threat
scenarios. It further shows the choices of attacker (i.e., detonate IED at check-in or
checkpoint) between the different configurations. In the three check-in desk setups, the
attacker mostly chooses the check-in desks as a target, as most passengers are present in
that area. However, this does not hold for the setups with two or three flights and two
checkpoint lanes open and the setup with three checkpoint lanes open and three flights.
The attacker has a strong preference for the checkpoint as a target in the five check-in
desk setup. It nearly always chooses for this location as a target.
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Figure 6: The mean queuing time (in seconds) of passengers in the flight morning for
different airport configurations. The values between brackets are the 95% confidence
intervals.
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Figure 7: The number of casualties in a late attack for different airport configurations.
The values between brackets are the 95% confidence intervals, and the percentages
correspond to the proportion of times the attacker chooses for the checkpoint queue.
Percentages smaller than 50% are shown in bold.

More flights generally lead to more casualties per flight as well. This is mainly
caused by a nonlinear increase in queue lengths for increasing numbers of flights. When
comparing the number of casualties with the number of checkpoint lanes, it can be
observed that a higher number of checkpoint lanes results in a lower number of casualties
per flight. This does not hold for the single flight case, as the number of casualties
remains constant or even increases when more checkpoint lanes are opened. In this
case, any number of checkpoint lanes is sufficient to prevent a buildup of passengers
in the queue. The extra casualties (for the configuration with five check-in desks) are
caused by the higher number of employees that are present at the checkpoint. In this
situation, it is beneficial from both a security and efficiency perspective to reduce the
number of checkpoint lanes open as much as possible. In all the other situations, it is
beneficial from a security perspective to open more checkpoint lanes, but that clearly
increases the number of employees. At the same time, mean queuing time Tqueue is
reduced. This constitutes to an important tradeoff that has to be made by airport
managers.

If we compare the setups in which the check-in area was preferred by the attacker in
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Figure 8: The relationship between the ratio of queue lengths and the number of casu-
alties under different passenger loads.

the three check-in desk setups with the corresponding five check-in desk setups, it can
be observed that with five check-in desks the number of casualties is reduced. This is the
case, because the total number of passengers in the queue that is attacked is reduced.
In general it holds that the size of the longest queue (i.e., checkpoint queue or check-in
queue) is a good linear indicator for the expected number of casualties (R = 0.72).
This also somewhat holds for the total number of passengers present in the open areas
of the airport (R = 0.59), but not in situations in which at least ten passengers are
present in the shorter queue (R = 0.27). To minimize the expected casualties, the
airport should therefore minimize the size of the longest queue. Ideally, this is done
by reducing the size of both queues. However, airport managers might consider the
increased number of employees (i.e. efficiency decrease), not worth the reduced expected
number of casualties. Alternatively, the size of the queues could be balanced as much as
possible, by choosing the right number of check-in desks and checkpoint lanes. This is a
result similar to the results of Grant and Stewart, who argue that distributed security
queuing “will offer casualty reductions when used in preference to centralized security
queuing” [25]. Figure 7 shows how to minimize the expected casualties in our reference
airport.

To illustrate that the size of the queues should be balanced as much as possible,
we performed a controlled experiment in which the total number of passengers is set
to a constant, while distributing the passengers over the different queues according to
different ratios. Figure 8 shows the number of casualties for different proportions of
passengers in the checkpoint queue. In this figure, a minimum number of casualties
was observed at a ratio of around 0.5. In this case, the queues are equally balanced.
This is a result that can be generalized to similar situations in other airports as well.
The consequence of an IED attack can be lowered by distributing passengers over the
available space as well as possible.

The number of casualties was found to be a bit higher when all passengers are in
the check-in queues as compared to the checkpoint queue. This is the case, because
the attacker can better position himself between the passengers than in the checkpoint
queue (as can be seen from Figure 2). This trend is reversed (although not shown in the
figure) for very low passenger numbers, as also discussed above. It should be noted that
this strategy of balancing queues might lead to increased security risks of other threat
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scenarios, not considered in this work. This forms an interesting direction for future
research.

Different Passenger Types We analyzed the effect of different passenger types on
our simulation results. We consider two passenger types in isolation: senior passengers
and family passengers. The luggage drop time of senior passengers was calibrated to
follow a normal distribution with mean 63.7 and variance of 35.1. Their luggage collect
time follows a normal distribution with mean 59.4 and variance of 48.2. The luggage drop
time of family passengers then follows a normal distribution with mean 69.2 and variance
of 36.1, while their luggage collect time follows a normal distribution with mean 80.6
and variance of 53.0. These distributions were based on manually collected checkpoint
processing times on four days in March and April 2018. The classification of passenger
type was performed manually as well. It should be noted that these distributions already
include the effects on processing speed for different amounts of luggage. Furthermore, a
large part of the senior passengers considered fly several times per year from the airport
under consideration.

It was found that the number of casualties is reduced with 12.0% for senior passengers
on average. This is due to faster collection of luggage for this type of passengers,
as compared to the passengers considered in the rest in this work. Contrary, family
passengers move through the security checkpoint slower than the default passenger.
This leads to an increase of 3.4% of casualties on average. The mix of passenger types
has a large influence on security risk and efficiency performance indicators. Airports
therefore need to consider the passenger mix they serve when making decision related
to both security and efficiency.

6.2.3 Behavior-Detection Employee

In all airport setups and threat scenarios, the number of casualties is reduced when a
(set of) BDE(s) is hired. This holds regardless of the strategy of the BDE. In general,
the intelligent BDE is best capable of defending against attacks of different types. The
agent is most frequently found at the area in which the attack will take place, and
therefore performs more arrests than the other BDE types. A typical example of the
performance of BDEs with different strategies is shown in Figure 9.
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Figure 9: The number of casualties in a late attack with three check-in desks for different
types of defenders. The values between brackets are the 95% confidence intervals.

However, the intelligent defender is not always better capable of defending against
attacks. Figure 10 shows the mean number of casualties in a late attack for two different
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defender strategies: dynamic and intelligent. The static defender performs similar to
the intelligent defender and is therefore not shown. In this case, the dynamic defender
performs better than the intelligent defender.
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(b) One intelligent defender.

Figure 10: The number of casualties in a late attack with five check-in desks for different
types of defenders. The values between brackets are the 95% confidence intervals.

This can be explained as follows. Figure 11 shows a histogram of casualties for the
configuration with three flights, three checkpoint lanes, five check-in desks and a single
BDE with different strategies. Note that in this configuration the checkpoint queue is
much larger, and therefore the attacker always chooses this as a target. From Figure 11 it
can be observed that the dynamic BDE make a higher number of arrests (zero casualties),
and has a region in which a very low number of casualties is observed. This is the case,
as the dynamic BDE moves between the check-in area and checkpoint area, while the
other BDEs only perform their work in the checkpoint area. As the queue is long there,
these other defenders do not have the time to assess every passenger, and therefore the
attacker might be missed. The dynamic defender might observe the attacker (at the
entrance area), as few other passengers are present in the check-in area. Note that these
two areas are close together, and that the BDE can therefore observe passengers in both
areas while it is in the check-in area. The region of very low casualties is caused by
the failed arrests in this region. As only few passengers are around, fewer casualties
are observed. On the contrary, when the intelligent defender (and also the static BDE)
performs a failed arrest, the detonation of the IED occurs close to the checkpoint queue.
This then leads to a higher number of casualties in the case of a failed arrest.

While not modelled in this work, observant passengers may also help prevent an
ongoing attack to become successful. This was for instance seen in the 2018 Belgium
train attack [55]. This forms an interesting direction for future research.

6.2.4 Security and Efficiency

To be able to determine the sensitivity of the estimated efficiency and security outputs
to the model parameters, Spearman’s rank correlation test was performed. This test
assesses monotonic relationship between the parameters and outputs. Conditional risk
(Rc(Mied)) is used as an output parameter, as Threat Likelihood remains constant
for all parameter combinations. Figure 12 shows the results of this test and indicates
insignificant results (p ≤ 0.05) crossed out.
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Figure 11: Histogram of casualties for two different defender strategies: intelligent and
dynamic. Results are shown for a configuration with three flights, three checkpoint
lanes, five check-in desks and a single defender.

0.75

-0.53

0

0

0.1

0.58

-0.45

0

0

-0.3

0.4

-0.41

0

0

0.01

-0.84

-0.19

0

0

0.01

0

0.93

0

0.21

0.3

0.2

-0.03

0.12

-0.31

-0.09

T q
ue
ue

T g
at
e

m
iss lo

ss n

R c
(m

ie
d
)

f

l

tattack

d

k
−1

−0.5

0

0.5

1

Figure 12: Spearman’s rank correlation plot between model parameters and efficiency
performance indicators and conditional security risks. The rows of this figure show the
different model parameters, while the columns show the output parameters (efficiency
performance indicators and conditional security risk). Insignificant results (p ≤ 0.05)
are crossed out.

Results show that the number of flights f had a positive correlation with each of the
output parameters, with an exception of monetary loss. The number of checkpoint lanes
open l shows opposite relationships with the parameters. For instance, fewer checkpoint
lanes open results in longer time to gate Tgate and more casualties. This makes sense,
as fewer checkpoint lanes open result in longer queues and longer queuing times. This
in turn results in higher passenger densities in the queuing area, resulting in a higher
number of fatalities. Furthermore, it shows that both the number of check-in desks open
and the presence of a BDE have a low influence on most output parameters. However,
the number of BDEs does have a negative correlation with the number of casualties.
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We show this effect in more detail in Figure 13. Figure 13a-13b show the number of
casualties in an early attack in relationship to queuing time and number of employees,
while Figure 13c-13d show the same relationships for casualties in a late attack. Each
of these results are shown for a three flight setup. It can be seen that the number of
employees and queuing time do not have a strong relationship to the number of casualties
in an early attack. However, in a late attack, the relationship becomes stronger. There
is a strong negative relationship between the number of employees present and the
expected number of casualties. This is a clear tradeoff that has to be made by airport
managers, as also mentioned before. They have to choose how many more potential
casualties they are willing to accept for a reduced number of employees. In contrary,
the mean queuing time for passengers at the checkpoint has a positive relationship with
the expected number of casualties. If we only consider these two output parameters,
it is beneficial for airports to choose for configurations that lead to low casualties and
queuing times. There is only one such configuration that minimizes both objectives: the
configuration with four checkpoint lanes, two intelligent defenders, and three check-in
desks (see also the configuration indicated with an arrow Figure 13). However, this is
a configuration in which 21 employees are present; only two fewer than the maximum
number. Similar results are found when Tqueue is replaced with Tgate. Pareto analysis
can further be used to determine which configurations are optimal with respect to the
defined objectives.
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Figure 13: The number of casualties in a three flight setup in relationship to the number
of employees and queuing time. Note that the axes are reversed.

7 Conclusions & Future Work

Understanding security, efficiency and the relationships between them is essential, as
airport managers regularly have to make decisions that influence these performance
areas. Important decision regarding security and efficiency are often made based on
experience and assumptions. This paper introduced a novel methodology to analyze
security, efficiency, and relationships between these performance areas using agent-based
modelling. It combines an agent-based security risk assessment methodology and a
typical agent-based approach to analyze efficiency of operations. The methodology is
capable of analyzing security, efficiency and their relationships in detail, and therefore
forms a promising way to investigate different tradeoffs between security and efficiency.

The methodology was applied to a case study in a regional airport terminal. Rela-
tionships between risks regarding an IED attack and efficiency performance indicators,
such as the average queuing time for passengers and number of employees, were quan-
tified. Results showed that airports should attempt to spread passengers across the
available space as much as possible. Furthermore, it was found that reducing security
risks and improving efficiency were not always conflicting objectives. For example, de-
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creasing the number of passengers in the open areas of the airport was found to be an
effective measure to reduce security risks and improve different efficiency aspects.

Human behavior is far more complex than modelled in the discussed case study.
More research is needed to include this complexity in the agent behavior. Furthermore,
more extensive analysis, such as causal analysis [56] can be performed on results of the
study. Another interesting possibility for further research is to integrate the proposed
methodology with security games. This work could be used to determine payoff values
in a security game, while the framework of security games can be used to find optimal
defender policies. Furthermore, Pareto analysis can be performed to determine a set
of dominant airport configurations. Another future direction of this work is that of
applying the methodology to different domains, such as shopping malls and stadiums.
Different threat scenarios, such as a shooting, and efficiency performance indicators,
such as facility revenue, can also be investigated. Finally, the methodology could be
generalized to identify relationships that also include other performance areas such as
safety [57], resilience [58] and environmental impact [59].
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A Definitions

The definitions below are adapted from the following references: [13, 60, 61].

Definition 1 (Security risk). The potential for loss or harm due to the likelihood of an
unwanted event and its adverse consequences.

Definition 2 (Threat). Any indication, circumstance, or event with the potential to
cause the loss of, or damage to, an asset.

Definition 3 (Threat Scenario). A set of events, associated with a specific threat or
multiple threats, partially ordered in time.

Definition 4 (Vulnerability). Any weakness in an asset’s or infrastructure’s design,
implementation, or operation that can be exploited by an adversary.

Definition 5 (Threat Likelihood). The probability that an undesirable event will occur.

Definition 6 (Consequence). The outcome of an event occurrence, including immediate,
short- and long-term, direct and indirect losses and effects.

Definition 7 (Conditional Risk). A measure of risk that focuses on consequences,
vulnerability, and adversary capabilities, but excludes intent.

Definition 8 (Asset). Item, thing or entity that has potential or actual value to an
organization.

Definition 9 (Control). Measure that is modifying risk.
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B Calibration

Table 2: The calibrated model parameters.

Parameter Value Origin
Simulation parameters

Simulation runs N 500 per configuration -
Airport parameters

Departure time Ftime 7200 sec Airport Data
Passengers per flight 135 Assumptions
Airport Layout See Figure 2 Airport Data
Revenue per passenger revp $21.22 [50]
Missed flight costs cmiss $212.20 Assumption

Agent parameters
Prop. passengers checked-in c 0.5 Airport Data
Prop. facility visit f
(none/bathroom/rest./shop)

0.25/0.25/0.25/0.25 Assumption

Desired speed vdes 1 m/s Assumption
Arrival Distribution
(early/middle/late)

20%/60%/20% Airport Data

Check-in time Norm(60, 6) sec Airport Data
Luggage drop time Norm(54.60, 36.09) sec Airport Data
Physical check time Norm(43.00, 20.96) sec Airport Data
ETD check time Norm(34.80, 15.17) sec Airport Data
Luggage collect time Norm(71.50, 54.95) sec Airport Data
Observation radius robs 10 m Assumption
Pass. disorientation d Norm(0, 1) [37]
Pass. luggage suitability s Norm(0, 1) [37]
Att. disorientation d Norm(3.5, 1) [37]
Att. luggage suitability s Norm(3.5, 1) [37]
Att. arrival time tattack 1900 sec or 3900 sec -
BDE threshold dthreshold 2.395 [37]
BDE threshold sthreshold 2.395 [37]
BDE threshold fthreshold 3600 [37]
BDE arrest prob. parrest 0.8 [52]
BDE maximum evaluation time tmax 20 [51]
BDE evaluation constants ci 2.5 Assumption

IED parameters
IED mass m 5 kg [53]
Number of particles K 50 Assumption
Initial particle speed vinit 1000 m/s Assumption
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