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Abstract

Empirical-statistical rainfall landslide initiation thresholds are popularly used for early warning systems to

discriminate between the occurrence and non-occurrence of rainfall-induced landslides. However, the few

studies that have derived landslide initiation thresholds for landslide-prone and data-scarce Rwanda rely

solely on the limited in situ data. Therefore, our objective is to explore the feasibility of using satellite data

and hydrological model derived data to derive both trigger and trigger-cause thresholds for landslides in

Rwanda. We firstly evaluated seven precipitation products (TRMM 3B42v7, CHIRPS, PERSIANN-CDR, GLDAS

2.1, CFSv2, IMERG, and ERA5) using the rain gauge data as a reference and found that IMERG was the most

suitable product for obtaining rainfall triggering conditions. We then studied the added value of incorporat-

ing the antecedent soil moisture from both a high spatial satellite data and from a distributed hydrological

model following the trigger-cause framework. The results showed that the event precipitation volume E, the

event duration D and the bilinear threshold E-D are the landslide initiation thresholds that accurately pre-

dict the highest number of landslide events while keeping the false and the failed alarms low. Including the

antecedent soil moisture products as the causal variables -expected to account for the hillslope hydrologic

processes predisposing the slopes to near failure- did not lead to any improvement with respect to the trigger

only thresholds for predicting landslides in Rwanda.
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1
Introduction

Landslides are natural hazards that occur worldwide. They do not only cause deaths every year but also

economic damages. Landslides are often unnoticed and compared to other hazards, their consequences

are understated (Guzzetti, 2021). Furthermore, the continuous development in mountainous areas incre-

ments the exposure of people and properties to landslide hazards (Bogaard and Greco, 2018). To address the

devastating effects of landslides on human lives and the economy, landslide early warning systems (LEWSs)

have been developed. An early warning system (EWS) is a device, system or set of capabilities that generates

and disseminates timely and meaningful information to enable individuals, communities, and organizations

threatened by a hazard to act timely and appropriately to avoid or to reduce the impact of the threat (Guzzetti

et al., 2020). As such, operational LEWSs contribute to mitigating landslide risks by minimizing the fatalities

and the economic losses (Guzzetti et al., 2020) yet they are in place only in limited areas.

Although landslides can be triggered by a number of factors such as earthquakes and mining, the most

frequent trigger remains rainfall (Bogaard and Greco, 2016; Zhao et al., 2019). More precisely, the most

widespread are shallow rainfall-induced landslides. Predicting these landslides is generally based on physically-

based deterministic models or empirical-statistical rainfall thresholds. The former rely mainly on distributed

models for slope stability, hydrology and infiltration. At a slope or catchment scale, the physically-based

models have been successful though they can be sensitive to small errors in the subsurface data. However,

at larger scales, the soil heterogeneity and variability result in a poor knowledge of the hydrological and

geotechnical parameters’ spatial distribution. Thus, the high data requirements, (and the need for a well-

calibrated model) limit its application in LEWSs (Bogaard and Greco, 2018). On the other hand, empirical

rainfall thresholds have been commonly used in both local and regional landslide hazard assessment, in par-

ticular, the intensity-duration (ID) threshold. These require precipitation time series alongside a landslide

inventory with a high spatial and temporal resolution (Bogaard and Greco, 2018). Meteorological thresholds

are usually based on the recent, current, or imminent storm conditions, and sometimes jointly used with

previous rainfall accounting for antecedent wetness (Mirus et al., 2018a).

Nevertheless, landslides are not directly triggered by rainfall (Mirus et al., 2018a) rather by subsurface hydrol-

ogy (Sidle et al., 2019). Indeed, the accumulation of water in the subsurface leads to an increased buoyancy

force (pore water pressure buildup) exerted on the soil: this results in the reduction of shear strength in the

1



2 1. Introduction

saturated soil, and in the reduction of soil suction in the unsaturated soil until failure occurs (Bogaard and

Greco, 2016). Accordingly, processes such as precipitation, infiltration or bedrock exfiltration contribute to

the failure of slopes whereas drainage, evaporation, and transpiration contribute to the stabilization of hill-

slopes.

Hence, to include the relevant hydrologic processes that play a key role in landslide initiation, some empirical

rainfall threshold studies have also included antecedent precipitation, e.g. Chleborad et al. (2008). The an-

tecedent precipitation (or the accumulated rainfall over a certain period of time) indirectly considers the soil

moisture conditions of the ground before the materialization of landslides (Bogaard and Greco, 2018). How-

ever it still does not add much information as it is solely based on precipitation. In fact, representing only

with rain the hydrological processes that play a role in predisposing the slopes to failure such as infiltration,

evaporation, transpiration and soil drainage may be troublesome (Mirus et al., 2018a). Failing to account for

such hydrological processes could partially explain why meteorological thresholds that are designed to pre-

dict the occurrence of rainfall induced landslides also forecast landslides when there are none (false alarms)

and miss predicting landslides that do take place (missed alarms) (Mirus et al., 2018a; Marino et al., 2020). In

this research, we test this hypothesis, i.e. whether incorporating antecedent soil moisture increases the ex-

planatory power of the empirical-statistical thresholds. For landslide thresholds to be effective, there should

be a high true positive rate (correctly predicted landslide occurrence), and a low false positive rate (incorrectly

predicted landslide occurrence) and missed alarms.

Consequently, explicitly accounting for hydrological processes in these empirical-statistical thresholds such

as a direct measure or proxy for antecedent soil water content adds physically relevant information (Bogaard

and Greco, 2018). Specifically, Bogaard and Greco (2018) propose the trigger-cause concept for regional land-

slide hazard assessment. The cause is the antecedent hydrological conditions predisposing the slopes to

near-failure while the trigger is the rainfall intensity responsible for the last push initiating the landslide. An

example of cause is the antecedent soil moisture which is a determining factor to include in shallow landslide

forecasting (Marino et al., 2020).

Rain gauge data is the most common source to derive rainfall thresholds (Nikolopoulos et al., 2015) though

the spatial variability of rainfall is an issue. The same is true for in situ soil moisture observations despite their

accuracy, they remain only point measures (Owe et al., 2008). However, employing real-time gauge networks

is more troublesome in poorer, landslide-prone regions because maintaining these networks is not only ex-

pensive but also complicated in complex terrains (Brunetti et al., 2018). Moreover, Nikolopoulos et al. (2015)

find that the resulting meteorological landslide initiation threshold is conditioned to the rain gauge density:

the lower the density, the larger the underestimation and estimation variance. Therefore, the applications are

limited to denser rain gauge networks (Wang et al., 2021).

Alternatively, remotely sensed data can provide a comprehensive view of landslide hazard and promote land-

slide monitoring and prediction (Stanley et al., 2021). The advantages of using satellite data include human-

independent information, wide and consistent coverage and operational delivery of information (Skakun

et al., 2016). Nonetheless, the number of studies developing forecasts for landslide events based on satellite

data is limited even though remote sensing precipitation products provide estimates at regional and global

scales. This is especially relevant for monitoring areas with scarce rain gauge networks (Marra et al., 2017). Be-

sides, employing satellite precipitation products allows a direct and consistent comparison between thresh-

olds developed for distinct regions (Marra et al., 2017). The same applies to soil moisture remote sensing
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estimates. Additionally, another option for soil moisture estimation is to use conceptual hydrologic models

(Zhao et al., 2019). As opposed to the previously mentioned spatially distributed physical models, these do

not require large data input nor calibration. Thus, hydrological simulations providing relevant subsurface

data have already been employed to study landslide initiation thresholds (e.g. Zhao et al., 2019 and Bezak

et al., 2019).

This study focuses on Rwanda, a tropical landslide-prone country located in Central-East Africa. This region

is characterized by a lack of detailed data on landslide occurrences in time and space (Monsieurs et al., 2018)

and a lack of adequate rainfall records from ground monitoring networks. Consequently, there has been lim-

ited research on landslides over the tropics in Africa and specifically Rwanda. As a first step towards robust

LEWS in Rwanda, Uwihirwe et al. (2020) used an empirical-statistical approach based on rain gauges to derive

landslide initiation thresholds. Along the same line, Uwihirwe et al. (2021) incorporated regional groundwa-

ter level measurements extended with a model to the empirical-statistical landslide initiation thresholds for

the Kivu, the upper Nyabarongo, and the Mukungwa catchments in Rwanda.

Notwithstanding, these studies rely exclusively on in situ data. Therefore, the objective of this research is

to instead use data from satellites and from a distributed hydrological model to derive landslide initiation

thresholds for Rwanda. Specifically, the following research questions are answered:

(i) From the freely available satellite precipitation products on the Google Earth Engine (GEE) platform, which

one is most suitable to derive the rainfall triggering conditions for landslide initiation in Rwanda?

(ii) Which satellite derived variables or combination thereof increase the predictability of landslides in Rwanda?

(iii) Which distributed hydrological model derived variables or combination thereof increase the predictabil-

ity of landslide in Rwanda?

The structure of this report is as follows: chapter two describes the study area along with the satellite data,

and the distributed hydrological model data. In chapter three, the seven satellite precipitation products are

analyzed to find the product that best matches the rain gauges’ observations. Chapter four provides a quality

assessment of both the satellite and the distributed hydrological model soil moisture products. In chapter

five, the landslide initiation thresholds are derived based on (i) the satellite data, and (ii) the distributed hy-

drological model to find the variable(s) or combinations that have the highest explanatory power to predict

landslides in Rwanda following the trigger and trigger-cause framework. Lastly, chapter 6 presents the con-

clusions of this research.





2
Study Area and Data

2.1. Study Area

The Republic of Rwanda, south of the Equator, is a landlocked-country located in the western branch of the

East African Rift and is part of the African Great Lakes region. It is bordered by Uganda to the north, Tanzania

to the east, Burundi to the south and the Democratic Republic of the Congo to the west. Its total area is

equal to 26338 km2. The north and western regions are dominated by the Virunga volcano chain reaching a

maximum elevation of 4519 m.a.s.l.. The lowest point (950 m.a.s.l.) is situated in the south-west, in the Rusizi

river. The lake Kivu is located on the west edge of the country. Towards the east and south of the country, the

mountains decrease in height.

2.1.1. Climate

Rwanda’s climate is classified as tropical Savannah (Peel et al., 2007). The average annual temperature ranges

between 15 °C to 17 °C in the mountains, and up to 30 °C in the lowlands (Figure 2.2) (The World Bank Group,

2021). In the high altitude areas, the mean annual rainfall varies from 1200 to 1500 mm while in the plateaus

it ranges from 900 to 1200 mm (Demarée and Van deVyver, 2013) and, in the Savannah it reduces to less

than 1000 mm (Uwihirwe et al., 2020). The complex topography (mountains, low lands, inland water bodies)

greatly influences the climate of the region on a local scale playing a role in the low-level circulation and mois-

ture transport (Cattani et al., 2016). Rwanda experiences two rainy seasons per year: the "long rains" from

March to May (MAM) which are heaviest and the "short rains" from October to November (ON) (Nicholson,

2017) or traditionally from October to December (OND). During the MAM, both convective and orographic

rainfall regimes coexist whereas during the OND, (warm) orographic rainfall is dominant (Kimani et al., 2017).

The short rains are influenced by El Niño Southern Oscillation (ENSO), the Indian Ocean Zonal Mode (IOZM)

and the zonal winds. Conversely, the variability of the long rains are due to the Madden-Julian Oscillation

(MJO) and to the Pacific and Indian Ocean anomalies. Recent trends indicate that the interannual variability

has increased (Nicholson, 2017). Rwanda is characterized by frequent extreme rainfall events and flooding

which are both precursors to landslide hazards (Uwihirwe et al., 2020).

5



6 2. Study Area and Data

Figure 2.1: Digital Elevation Model (DEM) of Rwanda with Shuttle Radar Topography Mission (SRTM) 90 m
digital elevation model (Jarvis et al., 2008) available at: ht tp s: // sr tm .c si .c gi ar .o rg /s rt md at a/

along with the recorded landslides from 2007-2019 (red dots).

2.1.2. Lithology and Land Cover

In the areas that have recorded landslide events, the prevailing lithological units are mica schists and peg-

matite rocks which are weak due to rapid weathering, easy splitting and loss of strength (Uwihirwe et al.

2020). Figure 2.3 shows that most of the land use in Rwanda corresponds to cultivated and managed vegeta-

tion or agriculture.

2.2. Data

2.2.1. Landslide Inventory

The landslide inventory is based on the NASA global landslide catalogue (https://data.nasa.gov/Eart
h-Science/Global-Landslide-Catalog/h9d8-neg4) primarily uploaded by the landslide inventory for

the central section of the western branch of the East African Rift (LIWEAR) project which has been further

extended by Uwihirwe et al., (2020). We used the landslide events ranging from 2007 to 2019, excluding the

events that did not have a specific date or were not caused by rainfall leading to a total of 55 recorded land-

slides. The inventory provides the exact location of each recorded landslide event but with a varying accuracy

from 5 km to 25 km. It should be noted that this catalog is likely to miss the non-hazardous landslides which

are less reported than hazardous landslides that lead to fatalities/injuries and damages.

https://srtm.csi.cgiar.org/srtmdata/
https://data.nasa.gov/Earth-Science/Global-Landslide-Catalog/h9d8-neg4
https://data.nasa.gov/Earth-Science/Global-Landslide-Catalog/h9d8-neg4
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Figure 2.2: Monthly mean temperature (in orange) and precipitation (in blue) 1991-2020 (The World Bank
Group, 2021).

2.2.2. Precipitation

We used precipitation data from the rain gauges installed in Rwanda provided by the Rwanda Meteorology

Agency (Figure 2.4) to select the most adequate satellite precipitation product. The rain gauge data are pro-

vided at an (almost) daily frequency covering a varying period between 2006-2018. The table in the appendix

(Table A.1) provides more details about the selected rain gauges.

Satellite products’ estimates primarily come from infrared (IR) sensors on board geostationary satellites and/or

passive and active microwave (MW) sensors on board low-Earth orbiting satellites (Kimani et al., 2017). The

combination of both allows to take advantage of the high temporal resolution of IR and the better accuracy

of rainfall estimation from MW sensors. Furthermore, many satellite rainfall products use rain gauge data for

bias correction (le Coz, 2021).

As many satellite rainfall products exist, we carried out an assessment of several distinct ones. We made the

pre-selection on the basis that the dataset (i) provides coverage spanning the entire landslide inventory (2007-

2019), (ii) is at least daily, and (iii) can be obtained via Google Earth Engine (GEE). It should be noted that the

global datasets available on GEE are only a subset of all the available ones. Table 2.1 shows the datasets that

are compliant with these conditions. A brief overview of each of the data set downloaded can be found in

Appendix A.

After determining the most suitable satellite precipitation product, we used a 10-km diameter buffer at every

landslide location to download the precipitation time series in GEE (Figure 2.4).

2.2.3. Soil Moisture

We employed the automatic weather stations (AWSs) (Figure 2.5) provided by the Rwanda Meteorology Agency

to assess the quality of the soil moisture products. The selected AWSs measure the soil moisture at a depth

of 20 cm with a varying temporal resolution, the highest being every 5 minutes though the measurements

contain large data gaps.
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Figure 2.3: Land Cover 2019 (Buchhorn et al., 2020) along with the recorded landslide events from 2007-2019
(red dots).

VanderSat provided the L-band volumetric soil moisture product which estimates the top 5 cm soil moisture

θtop . It is retrieved from satellite microwave measurements and down-scaled from typical spatial resolution

of 25 km x 25 km to 100 m x 100 m using a patented algorithm. The volumetric soil moisture is derived using

the Land Parameter Retrieval Model (LPRM) (Owe et al., 2001; Owe et al., 2008; de Jeu et al., 2014) that has

been further developed (van der Schalie et al., 2017). The L-band product is retrieved from the Soil Moisture

Active and Passive (SMAP) satellite for the period of April 2015 until present. In this period, an observation is

provided every varying number of days, hence the values are extrapolated using a 20-day backward moving

average window. The SMAP dataset is extended back until 2002 using the modeled ERA-5 data providing an

almost daily soil moisture value.

Since a 5-km location accuracy is the most commonly reported in the landslide catalog, we used a 5-km ra-

dius buffer as a region of interest (ROI) around each landslide location. As the ROIs cannot overlap each other,

we modified some of the buffers (Table A.2) leading to the final ROIs shown in Figure 2.5. The ROIs that had

unrealistic soil moisture time series were not included in the remainder of the analysis and instead we used

the closest available buffer to the landslide event.

Wflow_sbm is a distributed hydrological model using the conceptual bucket approach (Schellekens et al.,

2021; Figure 2.6). This model is based on model parameters that are estimated a priori using pedotransfer

functions (reducing the number of parameters) and global or local datasets. For this particular case, we in-

cluded the presence of natural lakes and reservoirs. The spatial resolution of the output data is about 1 km.
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Table 2.1: Pre-selected satellite datasets.

Dataset Resolution Frequency Period Data source Reference
TRMM
3B42 v7

0.25° Daily
1998 end
of 2019

Gauge, MW, IR
(Huffman et al., 2007;
Huffman and Bolvin, 2018)

CHIRPS 0.05° Daily
1981 near
present

Gauge, MW, IR (Funk et al., 2015)

PERSIANN
-CDR

0.25° Daily
1983 near
present

Gauge, IR (Ashouri et al., 2015)

GLDAS 2.1 0.25° 3 hourly
2000 near
present

MW, IR (Rodell et al., 2004)

CFSv2 0.2° 6 hourly
1979 near
present

Gauge, MW, IR
(Saha et al., 2010;
Saha et al., 2014)

IMERG 0.1° 30 min
2000 near
present

Gauge, MW, IR
(Hou et al., 2014;
Huffman et al., 2018)

ERA5 0.25° Daily
1979 near
present

NWP (Hersbach et al., 2020)

Wflow_sbm uses the kinematic wave routing approach for channel, overland, and lateral subsurface flow.

The soil is divided into a saturated and an unsaturated storage where the depth of the saturated zone con-

stantly varies. For Rwanda, the total soil profile is subdivided into four layers of 100, 300, 800, and 800 mm.

Water experiences evapotranspiration and interception following the Gash model (Gash, 1979). Moreover,

it has a spatially distributed gridded cell network based on the D8-network flow routing. Additionally, the

vertical water transfer is controlled by the saturated hydraulic conductivity, the effective saturation degree of

the layer, and the Brooks-Corey power coefficient based on the pore size distribution.

We forced the hydrological model from 2001-01-02 to 2020-12-31 with ERA 5 (Hersbach et al., 2020) precipita-

tion, temperature, radiation and pressure and computed the potential evaporation following de Bruin (1983)

on the same three catchments (Kivu, upper Nyabarongo and Mukungwa) of Rwanda as in Uwihirwe et al.,

(2021) (Figure 2.5). The first two years are considered as spin-up period, hence, were excluded from the anal-

ysis. To increase the comparability with the satellite-based soil moisture, we employed the same buffers (Fig-

ure 2.5). The variables of interest derived from the model are the volumetric water content in the root zone,

θr oot [-], representative of the top 50 cm approximately, and the part of the soil water capacity occupied, θuz

[-] representative of the top two meters approximately. θuz is computed following Equation 2.1 where θsat is

the saturated store [mm], U is the total amount of available water in the unsaturated zone [mm], and θcap is

the soil water capacity in [mm].

θuz = θsat +U

θcap
(2.1)
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Figure 2.4: Buffers (in blue) used to download the selected satellite precipitation product via GEE. The rain
gauges are plotted as stars. In particular, the ones used to select the best satellite product are colored in yellow.

Figure 2.5: ROIs uploaded to the VanderSat API portal. The ROIs inside the Kivu, upper Nyabarongo and
Mukungwa catchments are also used to extract data from the wflow_sbm model simulations.
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Figure 2.6: Overview of the different processes and fluxes in the wflow_sbm model (Schellekens et al., 2021).





3
Satellite Precipitation Products

3.1. Introduction

Temporally and spatially accurate rainfall data are fundamental for robust LEWS development. Guzzetti et al.,

(2020) recommended employing multiple sources of rainfall information in LEWSs. In situ rain gauges have

already been explored to derive empirical-statistical landslide initiation thresholds for Rwanda (Uwihirwe

et al., 2020; Uwihirwe et al., 2021). Rain gauges directly measure the rain that reaches the ground surface

though they are land-based, sparse, and remain point measurements (Ashouri et al., 2015). Furthermore,

Wang et al. (2021) emphasized that any assessment relying on rain gauges is constrained to areas that are

well equipped. This is not generally observed in landslide-prone regions due to the mountainous terrains. Al-

ternatively, remote sensing rainfall products provide estimates particularly important for areas with a sparse

gauge network (Marra et al., 2017) although these are limited by (i) the coarse resolution, (ii) the uncertainty

intrinsically related to the retrieval algorithms, and (iii) the underestimation of rainfall (Brunetti et al. 2018;

Chikalamo et al., 2020). Brunetti et al. (2018) showed that even though the satellite rainfall products under-

estimate the observed rain gauge rainfall, it is not an issue to the development of landslide warning system,

as long as the product is not biased in terms of rainfall regimes and locations. Recently, Wang et al. (2021)

employed satellite rainfall data sets to detect the rainfall conditions for the initiation of hydro-morphological

processes. Yet, the use of satellite rainfall data for landslide forecasting is still limited as opposed to rain

gauges or weather radars (Abancó et al., 2021; Brunetti et al., 2018). Satellite precipitation products can play

a key role, in particular, in the East African region where the rain gauge density is low (Cattani et al., 2016).

Nonetheless, it is important to keep in mind that satellite precipitation estimates over this region are chal-

lenging because of the complex terrain, the clear seasonal and geographic-dependence of rainfall (chapter 2)

(Cattani et al., 2016).

The purpose of this chapter is to answer the following research question: from the freely available satellite

precipitation products on the GEE platform, which one is most suitable to derive the rainfall triggering con-

ditions for landslide initiation in Rwanda?

13
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3.2. Methods
We used rain gauge data as the reference data to assess each satellite product. From the 48 total available

rain gauge locations, we chose the closest 19 to past landslide events (Figure 2.4). Thus, we evaluated each

dataset using a point-to-pixel approach for the selected rain gauge locations. It should be noted that we did

not make the assessment at a scale finer than the daily one because the time of occurrence of landslide events

is available on a daily basis.

We assessed the consistency or correlation between the rain gauges observations and the satellite precipita-

tion products via commonly used indicators as shown in Table 3.1. Yi is the rain gauge observation at date i,

Xi is the satellite estimate at the same date i, and n is the total number of data pairs for each satellite precipi-

tation product considered.

Table 3.1: Correlation indicators.

Indicator Acronym Equation Unit

Pearson’s correlation CC CC =
∑n

i=1(Xi −X )(Yi −Y )√∑n
i=1(Xi −X )2

√∑n
i=1(Yi −Y )2

[-]

Root mean square error RMSE RMSE =
√∑n

i=1(Yi −Xi )2

n
[mm]

Long term relative bias RB RB = Yi −Xi

Yi +Xi
[-]

To measure aspects of frequency, we calculated the number of rainy days above various thresholds (Table 3.2)

for all products including the rain gauge observations following the guidelines established by WMO (Tank

et al., 2009) on analysing extremes. This type of standardized indices allow for consistency and comparison

between different sources of rainfall data.

Table 3.2: Rainfall frequency indicators.

Indicator Acronym Definition Unit
Number of rainy days RD Count of days when rainfall 0 mm [days]
Number of heavy rainfall days R10mm Count of days when rainfall 10 mm [days]
Number of very heavy rainfall days R20mm Count of days when rainfall 20 mm [days]
Number of even heavier rainfall days R30mm Count of days when rainfall 30 mm [days]
Number of extremely heavy rainfall days R50mm Count of days when rainfall 50 mm [days]

We plotted the accumulated moving average of 5-days, 15-days, and 30-days rainfall for all satellite precipi-

tation products versus the same accumulated period of the rain gauges’ observations along with an x=y line

to visualize how closely the satellite products match the in situ measurements.

3.3. Results
Table 3.3 shows that the microwave satellite products (IMERG, TRMM42 and CHIRPS) have the highest cor-

relation coefficient, specifically IMERG with a coefficient of 0.35. This value is quite low and can be attributed

to the overestimation of rainy days (Table 3.4). The infrared-based product PERSIANN-CDR has the lowest

RMSE. Conversely, CFSv2 and ERA5, both reanalysis, have the highest RMSE. For the rest of the products
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(TRMM, CHIRPS, GLDAS and IMERG), the RMSE have a value between 7 and 8. CHIRPS exhibits the lowest

RB followed by IMERG and GLDAS. It is important to mention that the only satellite product with missing

values during the studied period is PERSIANN-CDR which is a considerable drawback in selecting it to study

landslide initiation.

Table 3.3: Mean of correlation between satellite precipitation products and rain gauge observations at selected
locations.

TRMM42 CHIRPS PERSIANN-CDR GLDAS-2.1 CFSv2 IMERG ERA5
CC 0.31 0.27 0.25 0.24 0.17 0.35 0.22
RMSE [mm] 8.17 8.53 7.42 8.55 10.58 8.18 12.60
RB -0.08 -0.01 -0.15 0.03 0.11 0.02 0.29

CHIRPS has on average 1256 RD, the closest to the gauges’ average 1259 RD as opposed to all other products

which overestimate the number of rainy days (Table 3.4). This is in line with the results from Beck et al., (2017)

in which the reanalysis products consistently underestimated the number of dry days across the globe. These

values can be visualized spatially in Figure 3.1.

Regarding higher values of rainfall (Table 3.4), IMERG only slightly underestimate them with R10D = 383,

R20D = 126, R30D = 42, R50D = 6 days compared with the gauges’ 397, 132, 49 and 9 days respectively. CFSv2

and ERA5 consistently overestimate the number of days above the various thresholds whereas TRMM42,

PERSIANN-CDR and GLDAS persistently underestimate R10D, R20D, R30D and R50D. In particular, PERSIANN-

CDR experiences the heaviest underestimation out of all the products for all indicators except rainy days.

Indeed, PERSIANN-CDR misses the localized high intensity rain in high ground areas in East Africa (Kimani

et al., 2017). Lastly, CHIRPS overestimates R10D but underestimates R20D, R30D and R50D.

Table 3.4: Mean of frequency indicators at selected locations.

Gauge TRMM42 CHIRPS
PERSIANN
-CDR

GLDAS2.1 CFSv2 IMERG ERA5

RD 1259 1691 1256 2732 3086 2835 2842 3520
R10D 397 307 424 138 377 617 383 879
R20D 132 87 101 9 79 199 126 250
R30D 49 29 25 0 22 84 42 78
R50D 9 4 3 0 2 22 6 21

Additionally, the scatter plots of accumulated rainfall for 5-days, 15-days and 30-days for the satellite precip-

itation products versus the rain gauge observations shed light on how they relate to each other (Figure 3.2,

Figure 3.3, Figure 3.4 respectively). It is evident that the reanalysis products (GLDAS, CFSv2 and ERA5) tend

to systematically overestimate rainfall, especially for lower rainfall depths compared to the in situ measure-

ments, becoming clearer for longer periods of accumulated precipitation. Conversely, PERSIANN-CDR, and

to a lesser extent, TRMM42 underestimate rainfall compared to the rain gauge recorded values. Both CHIRPS

and IMERG scatter plots follow more closely the y = x line which means that their values are closer to the

ones recorded by the in situ observations. The correlations are higher for these multiple day events than for

the daily rainfall as calculated by the Pearson correlation in Table 3.3.
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Figure 3.1: Number of rainy days (RD) over the period covered by the rain gauges per selected location.

Figure 3.2: Scatter plots of 5-day accumulated rainfall for each precipitation product versus the rain gauge
observations.

3.4. Discussion and Selection of Precipitation Product
Regarding the correlation between the satellite products and the rain gauges, IMERG appears to be the prod-

uct performing the best as it has the highest CC (0.35), the second lowest RB (0.02) after CHIRPS, and the third

lowest RMSE after PERSIANN-CDR and TRMM42. On the other hand, the ones that look the least promising

are PERSIANN-CDR, CFSv2 and ERA5. Despite having the best RMSE (7.42), the infrared-based PERSIANN is

the single one with missing values which is not recommended for landslide initiation studies. The reanalysis

products CFSv2 and ERA5 show the lowest CC, the highest RMSE, and along with PERSIANN-CDR the highest

RB. In their global-scale evaluation of precipitation products, Beck et al., (2017) determined that the reanaly-

ses exhibit lower skill levels than the microwave- and infrared-based satellite datasets in the tropics.

As to the frequency indicators, although CHIRPS has the closest number of rainy days to the rain gauges’,

IMERG, which has the most similar R10D, R20D, R30D and R50D to the in situ measurements is preferred. It

is most important to accurately obtain the heavier rainfalls events because they are most likely to be respon-
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Figure 3.3: Scatter plots of 15-day accumulated rainfall for each precipitation product versus the rain gauge
observations.

Figure 3.4: Scatter plots of 30-day accumulated rainfall for each precipitation product versus the rain gauge
observations.

sible for triggering landslides. TRMM, CHIRPS, GLDAS and PERSIANN-CDR all heavily underestimate the

number of heavier rainfall events while CFSv2 and ERA5 considerably overestimate it. Furthermore, from the

scatter plots of accumulated rainfall of the satellite precipitation products versus the rain gauge observations,

both CHIRPS’ and IMERG’s values are the most concordant with the in situ measurements.

More generally, the strong underestimation of infrared-only products as is the case of PERSIANN-CDR oc-

curs during the warm orographic rainfall regime. Indeed, it associates these warm clouds mistakenly as non-

precipitating (Kimani et al., 2017) because the algorithm relies solely on the cloud-top temperatures (Cattani

et al., 2016). Conversely, microwave-derived products can retrieve both convective and orographic rainfall
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regimes (Kimani et al., 2017). Notwithstanding, they also suffer from the moderate to low signal from ice

scattering used in the algorithm, because of its scarcity at the top of the warm orographic clouds (Cattani

et al., 2016). Moreover, Kimani et al. (2017) found that the better performance by CHIRPS and TRMM-3B43

over East Africa can be attributed to the direct inclusion of rain gauge data and microwave images during cal-

ibration. By extension, the same applies to IMERG which is the improved successor of TRMM and was built

on its success (Hou et al., 2014).

In addition, Brunetti et al., (2018) concluded that a high temporal resolution is crucial for forecasting land-

slides as using the daily aggregated data may result in considerable overestimation depending if the landslide

occurred at the beginning of the day. Thus, for future applications, it would be beneficial to have a satellite

product with a sub-daily rainfall data such as the IMERG with a frequency of 30 min rather than CHIRPS with

its daily frequency. Due to the above statements, we have selected the IMERG precipitation product to study

landslide initiation in Rwanda.

When choosing the IMERG product or any other satellite precipitation product for landslide regional assess-

ment, certain considerations should be made:

• The uncertainty of the satellite product over East Africa is controlled by both the precipitation intensity

and the topographic complexity (Cattani et al., 2016). The higher the rainfall intensity, the higher the

uncertainty. Moreover, precipitation intensity increases with elevation.

• Not only does the rainfall intensity affect the performance of the satellite product but also the rainfall

regime. Indeed, Kimani et al., (2017) deduced that the increase in underestimation of satellite products

with respect to gauge data in high elevation areas over East Africa can be due to the enhanced strati-

fications during the deep convections taking place in the MAM season. Furthermore, they also found

that all satellite precipitation products have difficulties retrieving the orographic rainfall.

• In their landslide nowcasting at the global scale, Stanley et al., (2021) found that some important false

negatives were not predicted due to the absence of heavy rainfall shown by IMERG. This can be due to

the lack of a recent overpass by the orbiting passive microwave sensors failing to capture short intense

peaks in rainfall. In the case of Rwanda, the rain gauges have a significantly lower temporal frequency

(daily) compared to IMERG (30-min).

It should be noted that there are limited studies dealing with product validation and intercomparison of satel-

lite precipitation products over Central East Africa, crucial because of the complex topography, the rainfall

geographic variability and the low number of rain gauges. Besides, the studies carried out by Kimani et al.,

(2017) and Cattani et al., (2016) although important, are done at a monthly scale (and yearly) but not at the

higher daily temporal resolution which is especially relevant for the use case of landslides initiation thresh-

olds. Cattani et al., (2016) determined East Africa to be a region where satellite precipitation estimates are still

difficult. Addressing the dependence between the satellite products and the elevation to enhance the abil-

ity of the algorithms to better represent orographic rainfall regimes will improve the performance of these

products which is much needed in these data-scarce regions.
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Soil Moisture Products

4.1. Introduction
Unlike the satellite precipitation product for which we followed a selection procedure, we obtained the soil

moisture time series directly from VanderSat and from the wflow_sbm hydrological model. Hence, the pur-

pose of this chapter is to evaluate the quality of these soil moisture products.

4.2. Methods
We compared the trends rather than the absolute values of the satellite and of the hydrological model derived

soil moisture with the AWSs soil moisture time series. In the case of the VanderSat soil moisture data θtop , we

plotted the closest ROI to the AWSs in a single graph for five locations. As for the wflow_sbm, we extracted the

shallower soil moisture product θr oot at the same coordinate as the AWS stations and plotted them together

for six locations using a pixel-to-pixel comparison.

Although they are not representative of the same depth, we compared the L-band volumetric soil moisture

θtop time series with the wflow_sbm θr oot time series over the catchments’ ROIs. For each of these locations,

we computed the Pearson correlation and resumed the results in a box plot to quantitatively assess the simi-

larity.

We plotted the IMERG precipitation time series along with each soil moisture product (θtop , θr oot , and θuz )

averaged over all ROIs time series to investigate the response of the latter to the former. Additionally, we

marked the landslide events on the soil moisture time series to analyze whether they occurred for values

above or below the mean soil moisture.

4.3. Results
Figure 4.1 and Figure 4.2 show an example of how closely the VanderSat and the wflow_sbm soil moisture

match the AWS measured soil moisture time series. Due to its sub-daily frequency, the in situ soil moisture

θ20cm exhibits the most fluctuations. As previously mentioned, the AWS data have large gaps. Nevertheless,

both satellite and model derived soil moisture time series reproduce the drier periods (e.g. 2018-08 and 2018-

19
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07 respectively) and wetter periods as measured by the AWSs.

Figure 4.1: Comparison of L-band volumetric soil moisture θtop (brown) with the measured soil moisture
θ20cm (orange) time series at the Gacurabwenge AWS.

Figure 4.2: Comparison of the wflow modelled volumetric water content in the root zone θr oot (lime green)
with the measured θ20cm (orange) time series at the Kibisabo AWS.

The satellite soil moisture θtop and the wflow_sbm modeled θr oot time series exhibit very similar trends over

all ROIs as can be confirmed by the high Pearson correlation values (Figure 4.4) where the mean correlation

is above 0.79. An example of their similarity at one particular location is shown in Figure 4.3.

Figure 4.3: Comparison of the θtop (brown) with the θr oot (lime green) time series shows a Pearson correlation
of 0.80. The red line indicates the timing of the landslide for this location.

Periods of no rain correspond to drops in both satellite (Figure 4.5) and wflow_sbm (Figure 4.6) soil mois-

ture, while periods of consecutive heavy rain coincide with an increase in the soil moisture. The majority of
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Figure 4.4: Box plot of the Pearson correlation between the VanderSat soil moisture θtop and the wflow_sbm
θr oot for the ROIs over the catchments.

landslide events occur for above average soil moisture values (Figure 4.5; Figure 4.6). Since the wflow_sbm

modeled θr oot corresponds to an upper, shallower (approx. 50 cm) soil compartment, it exhibits more fluc-

tuations and responds a bit earlier in time compared to the deeper (approx. 2 m), slower storage wflow_sbm

modeled θuz .

Figure 4.5: IMERG precipitation (top) and VanderSat soil moisture θtop (bottom) averaged over all ROIs. In the
bottom graph, the dashed line indicates the all-time soil moisture mean and the red triangles are the landslide

events.

4.4. Discussion
Although only a few AWS measurements of the in situ soil moisture for a short period of time are available,

both θtop and the θr oot are able to reproduce the most important trends regardless of the different depths

they represent (approx. 5 cm and 50 cm respectively). Furthermore, comparing the two soil moisture prod-

ucts results in a high Pearson correlation despite originating from different sources meaning that they capture

the same hydrological processes. As we found that the IMERG product was the most suitable precipitation

product for landslide initiation studies (chapter 3), we analyzed the soil moisture products’ response to the

IMERG variations. Specifically, whether the soil moisture values become drier in periods of no rain or wet-
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Figure 4.6: IMERG precipitation (top), wflow_sbm modeled θr oot (middle) and wflow_sbm modeled θuz

(bottom) averaged over all ROIs inside the catchments. The dashed horizontal lines indicate the all-time mean
θr oot and θuz while the red triangles indicate the landslide events.

ter in periods of consecutive heavy rain, which all soil moisture products seem to satisfy. In addition, most

landslide events occur with above average soil moisture conditions in agreement with the effects of water

accumulation in the subsurface as mentioned in chapter 1. Hence, the satellite-based and the model derived

soil moisture are compliant with the plausibility checks and reproduce the most important trends. Therefore

the added value of incorporating these soil moisture products to the empirical-statistical rainfall thresholds

is studied in chapter 5.

It should be noted that soil moisture retrievals over complex topography or densely vegetated areas exhibit a

low quality and should be used cautiously (Brunetti et al., 2018). On the other hand, hydrological simulations

are affected by model parameter uncertainty and the selection of the model structure and its parameteriza-

tion (Bouaziz et al. 2021). In particular, Koch et al., (2016) carry out an inter-comparison of spatio-temporal

soil moisture variability of three distributed hydrological models and find that their ability to predict soil

moisture is diverging and conclude that the studied catchment poses major challenges to the models in terms

of soil moisture heterogeneity and seasonality.
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Landslide Initiation Thresholds

5.1. Introduction
Most landslide early warning criteria rely exclusively on empirical rainfall thresholds and other indirect prox-

ies for subsurface wetness. The most common rainfall threshold type is the mean rainfall intensity-duration

(ID) (Guzzetti et al., 2020; Segoni et al. 2018) in which the separation between landslide occurrence and

non-occurrence is based on a power law (I =αD−β). However, Bogaard and Greco (2018) highlighted several

problems associated with this model such as the limited physical meaning and the fact that the mean inten-

sity rather than the peak intensity (which is likely the actual trigger of landslide events) is employed. Hence,

in this research, we derived other common rainfall (trigger-based) landslide initiation thresholds. On the

other hand, Bogaard and Greco, (2018) proposed the trigger-cause concept for regional landslide initiation

thresholds which combines two predominant drivers with distinct timescales: the antecedent hydrological

cause and the precipitation trigger. We explored both the traditional precipitation based thresholds, and the

proposed trigger-cause thresholds in this chapter. Thus, the aim of this chapter is to answer the research

question: which variables or combination thereof have the highest explanatory power for predicting land-

slides in Rwanda for both the satellite-based variables and for the distributed hydrological model derived

variables. As a first step, we derived single-variable landslide initiation thresholds. Secondly, we combined

these variables following a bilinear trigger and trigger-cause framework. It should be noted that the choice for

the trigger and cause implicitly accounts for the timescale definition and should relate to the characteristics

of the landslide (Bogaard and Greco, 2018). The results constitute a preliminary step towards robust landslide

early warning systems in Rwanda.

5.2. Methods

5.2.1. Definition of Meteorological Variables
For each landslide location, we downloaded the daily IMERG rainfall time series from 2007 to 2019 via GEE as

this product proved to perform the best (chapter 3). For the landslide events that are spatially close to each

other such that more than one IMERG buffer cover these events, we selected only one IMERG time series

to account for these landslide events. We chose the precipitation time series having the highest weight W

(Equation 5.1) according to Melillo et al., (2018) where E is the cumulated rainfall event corresponding to the

landslide event, D is the cumulated event duration, and d is the distance between two neighboring IMERG

23
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(and thus landslide location) buffers.

W = E 2

d 2D
(5.1)

To facilitate the comparison between studies, we used the same rainfall definition that yielded the best results

in Uwihirwe et al. (2020) which is the maximum probable rainfall event (MPRE). It is defined as the individ-

ual periods of days with recorded rain ≥ 1 mmday−1 interrupted by dry periods of at least two dry days. The

rainfall event E (mm/E) is the accumulated rainfall during the MPRE, the duration D is the number of days

each MPRE lasts, and the event/duration (mm/day/E) is the ratio of E over D. We compiled a single dataset

of rainfall characteristics from all the rainfall time series analyzed to distinguish between landslide triggering

and non-triggering conditions. An advantage of using MPRE instead of daily rainfall is that it copes better

with the possible inexact dates of landslides (i.e. landslide could be spotted a few days after the actual trig-

gering day).

5.2.2. Definition of Hydrological Variables
We normalized all soil moisture products (θtop , θr oot , and θuz ) to obtain the effective soil moisture Se [-]

(Equation 5.2) where θ is the volume of water per unit volume of soil (soil moisture), θr es [-] and θsat [-] are

the residual and saturated moisture contents respectively, corresponding to the minimum and maximum

value ever recorded per ROI for the entire time series.

Se = θ−θr es

θsat −θr es
(5.2)

We used the effective soil moisture one day before the start of the MPRE, Set−1 as the antecedent hydrological

conditions for deriving the landslide initiation thresholds resulting in Setop,t−1, Ser oot ,t−1 and Seuz,t−1. We

also tested the Setop,t−1 limited to the ERA 5 period (results not shown) to see whether using the moving

average decreased the quality of the results. However, by excluding the SMAP period, the already limited

landslide inventory further decreases resulting in a reduced AUC of 0.606 compared to the one based on

2007-2019.

5.2.3. Quantification of Landslide Explanatory Variables
The Receiver Operating Characteristic (ROC) curve is a way to visualize the capability of a test variable to dis-

tinguish between landslide occurrence and non-occurrence at various threshold settings. Specifically, it is a

plot of the true positive rate (TPR) (Equation 5.3) versus the false positive rate (FPR) (Equation 5.4).

TPR = TP

TP+FN
(5.3)

FPR = FP

FP+TN
(5.4)
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The true positives (TP) are the number of landslides that took place when the threshold was breached. The

false negatives (FN) correspond to the number of landslides that occurred although the threshold was not

exceeded. The false positives (FP) amount to the number of incorrect predictions of landslides (threshold

was breached) by the model while no landslide had been reported. The true negatives (TN) are the number

of times the model correctly predicted the non-occurrence of landslides events (threshold was not exceeded).

Moreover, Brunetti et al. (2018) stressed that the FP can be overrated by the lack of information on landslide

occurrence, i.e. landslides may have occurred but not reported.

The area under the ROC curve (AUC) is a measure of the discriminatory power of the test variable, in other

words, of its capability to discern between a hit and a false alarm. An excellent (poor) model has an AUC

close to 1 (0) whereas an AUC of 0.5 indicates that the model has no discriminatory power and is referred to

as random guessing.

5.2.4. Threshold Definition

Selecting the optimal cutoff value of each test variable (E, D, E/D, Setop,t−1, Ser oot ,t−1 and Seuz,t−1) is a trade-

off between maximizing the TPR and minimizing the FPR. To increase the intercomparability of the results

from this research (satellite- and hydrological model-based data) with the ones from Uwihirwe et al. (2020)

(in situ based data), we used the same threshold formulations. Hence, we computed the optimum cutoff for

each test variable employing (i) the maximum true skill statistics (TSS) (Equation 5.5) and (ii) the minimum

radial distance (RD) (Equation 5.6). Ideally, the TSS threshold is equal to 1 whereas the RD threshold is equal

to 0, this means that for both, their location on the ROC curve is on the top left corner.

TSS = TPR−FPR (5.5)

RD =
√

FPR2 + (TPR−1)2 (5.6)

We obtained the resulting optimal cutoff values for the single variable thresholds. In the case of the bilinear

thresholds, represented by a 2D plane with one variable on the x- and the other one on the y-axis, we drew

the optimal thresholds of the two variables on both axis respectively. Thus, the correctly predicted landslide

events are located in the upper right quadrant.

Finally, we quantified the performance of each threshold by the TPR, the FPR and the false negative rate (FNR)

(Equation 5.7).

FNR = FN

TP+FN
(5.7)
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For the IMERG and VanderSat data (satellite-based thresholds), we derived single variable thresholds for the

trigger variables E, D, E/D and for the cause variable Setop,t−1. Additionally, we constructed two bilinear

thresholds: (i) the trigger E-D and (ii) the trigger-cause E/D-Setop,t−1. It should be noted that we explored the

3-D threshold E-D-Setop,t−1 as well (not shown) but as it does not include new information, the visualization

is difficult, and the performance is poor, this threshold was excluded from the research.

Similarly, for the IMERG and wflow_sbm data (hydrological model-based thresholds) we computed single

variable thresholds for the trigger variables E, D, E/D and for the cause variables Ser oot ,t−1 and Seuz,t−1. In

addition, we derived three bilinear thresholds: (i) the trigger E-D, (ii) the trigger-cause E/D-Ser oot ,t−1, and

(iii) the trigger-cause E/D-Seuz,t−1.

5.3. Results

5.3.1. Satellite-Based Landslide Initiation Thresholds
Classifying the precipitation into MPRE leads to a total of 13377 rainfall events from 2007 to 2019. From those

MPRE, 52 are responsible for the occurrence of one or more landslides.

The Receiver Operating Characteristic (ROC) curve and the Area Under the Curve (AUC) results are shown in

(Figure 5.1). The AUC is highest for the meteorological variables event E (AUC=0.870), followed by the dura-

tion D (AUC=0.860). This means that the ROC curve is closest to the ideal point located on the top left corner

with the highest hit alarm rate and lowest false positive rate. Notwithstanding, when normalizing the event

by the duration as E/D, the explanatory power reduces significantly (AUC=0.684). Lastly, the hydrological

variable Setop,t−1 has the least explanatory power (AUC=0.631).

Table 5.1: Optimal cut-off values for each tested variable according to the maximum TSS and the minimum
RD (refer to subsection 5.2.4) along with their corresponding TPR, FPR, and FNR. When the optimal threshold

established by the TSS and RD differ, the selected threshold for the construction of the bilinear thresholds is
written in italic.

TSS RD
Variables Value Threshold TPR FPR FNR Value Threshold TPR FPR FNR
E [mm/E] 0.65 102.25 0.83 0.18 0.17 0.25 102.25 0.83 0.18 0.17
D [d] 0.61 11.5 0.79 0.18 0.21 0.28 11.5 0.79 0.18 0.21
E/D
[mm/E/d]

0.38 7.00 0.87 0.47 0.13 0.45 7.94 0.77 0.39 0.23

Setop,t−1 [-] 0.25 0.55 0.58 0.32 0.42 0.53 0.55 0.58 0.32 0.42

As quantified by the AUC, the single variable event E has the highest explanatory power (Table 5.1): a high

number of correctly predicted landslides (TPR=83%) and a relatively low false alarm rate (FPR=18%) and

missed alarms (FNR=17%). Then, the duration D has the same FPR but with a diminished TPR (-4%) and con-

sequently with an increased FNR (+4%). The event/duration threshold (TSS=7 mm/E/day; RD=7.94 mm/E/day)

correctly predicts many landslides (TSS=87%; RD=77%) in spite of issuing many false alarms (TSS=47%;

RD=39%) making E/D not suitable as a landslide predictor variable. Finally, the optimal Setop,t−1 cutoff,

0.55 translates to a low TPR (58%) with a quite high FPR (32%) and FNR (42%) implying a low discrimination

capability between the occurrence and non-occurrence of landslides.

The meteorological bilinear threshold E-D has a slightly better performance (Table 5.2) (FPR=-4%) than the
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Figure 5.1: ROC curve for the event, duration, event/duration and effective soil saturation one day before the
start of the event Setop,t−1 variables. The optimal thresholds based on the TSS and the RD are marked on each

curve.

Table 5.2: Bilinear thresholds along with their corresponding TPR, FPR, and FNR.

Bilinear Thresholds TSS value RD value TPR FPR FNR
E-D 0.65 0.25 0.79 0.14 0.21
E/D-Setop,t−1 0.36 0.51 0.52 0.16 0.48

single variable D threshold. This improvement can be visualized in the bi-logarithmic threshold (Figure 5.2)

where the same number of landslides are correctly predicted but with a reduced number of false positives:

the lower right quadrant corresponds now to true negatives instead of false positives due to the inclusion of

the event threshold. On the other hand, comparing E-D to the single variable E threshold, the FPR is lower

(-4%) at the expense of a lower TPR (-4%) and higher FNR (+4%). Indeed, the addition of the duration thresh-

old modifies two correctly predicted landslide events to two missed alarms though it does reduce the false

positives that would be otherwise located in the upper left quadrant.

The trigger-cause threshold E/D-Setop,t−1 has a very poor overall performance (Table 5.2): a low landslide

prediction rate (TPR=52%) and a high missed alarm rate (FNR=48%) despite a low false alarm rate (FPR=16%).

From Figure 5.3, it is clear that most landslide events are recorded for an E/D value higher than 5 mm/E/days,

slightly lower than the 7 mm/E/days threshold used (horizontal line). However, the landslide events are

spread out for Setop,t−1 (values range from approx. 0.07 to 0.9), thus this variable is not a good discriminator

between the occurrence and non-occurrence of landslide events.
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Figure 5.2: Event-duration bilinear threshold. The lime green lines are the optimal cutoff values corresponding
to the event and the duration. The bigger dots denote landslide occurrences; the red ones are TP whereas the

orange ones are FN. No landslides were reported for the smaller dots: the black ones are FP while the blue ones
are TN.

Figure 5.3: Event/duration-Setop,t−1 bilinear threshold.

5.3.2. Hydrological Model-Based Landslide Initiation Thresholds

Figure 5.4 shows the Receiver Operating Characteristic (ROC) curve along with the Area Under the Curve

(AUC) of each test variable. The AUC is greatest for the duration D (AUC=0.890) and the event E (AUC=0.886)

meaning that they are good at discriminating between the occurrence and non-occurrence of landslide events.

Similarly to subsection 5.3.1, when normalizing the latter by the former, the predictive power of the E/D vari-
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able decreases considerably (AUC=0.662). As before, both hydrological variables have a lower explanatory

power (AUC=0.631, AUC=0.642) than the meteorological variables.

Figure 5.4: ROC curve for the event, duration, event/duration, Ser oot ,t−1 and Seuz,t−1. The optimal thresholds
based on the TSS and the RD are marked on each curve.

Table 5.3: Cut-off values for each tested variable according to the maximum TSS and the minimum RD along
with their corresponding TPR, FPR, and FNR. When the optimal threshold established by the TSS and RD

differ, the selected threshold for the construction of the bilinear thresholds is written in italic.

TSS RD
Variables Value Threshold TPR FPR FNR Value Threshold TPR FPR FNR
E [mm/E] 0.68 103.17 0.89 0.20 0.11 0.23 114.89 0.86 0.18 0.14
D [d] 0.68 11.50 0.89 0.20 0.11 0.23 12.50 0.86 0.18 0.14
E/D
[mm/E/d]

0.40 6.99 0.89 0.49 0.11 0.47 7.94 0.77 0.41 0.23

Ser oot ,t−1

[-]
0.26 0.64 0.71 0.46 0.29 0.53 0.68 0.63 0.38 0.37

Seuz,t−1

[-]
0.29 0.81 0.60 0.31 0.40 0.51 0.81 0.60 0.31 0.40

The test variables E, D and E/D optimal thresholds and predictive capabilities (Table 5.3) are very similar to

the previously found ones in subsection 5.3.1, as expected because they are based on the same IMERG prod-

uct and MPRE definition but over a reduced area. Both E and D show a slight increase (higher TSS value and

lower RD value) in explanatory power comparing with the previous results possibly attributed to the smaller

and more homogeneous area even if less landslides were used to construct these thresholds. E/D accurately
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predicts many landslides but at the expense of an elevated false alarm rate and missed alarm rate which is

not suitable for landslide forecasting. Both Ser oot ,t−1 and Seuz,t−1 have a somewhat low TPR (0.6-0.71) with

a rather high FPR (0.31-0.46) and FNR (0.29-0.4) suggesting a poor distinction capability between landslide

occurrence and non-occurrence.

Table 5.4: Bilinear thresholds along with their corresponding TPR, FPR, and FNR.

Bilinear Thresholds TSS value RD value TPR FPR FNR
E-D 0.73 0.19 0.89 0.16 0.11
E/D - Ser oot ,t−1 0.35 0.47 0.60 0.25 0.40
E/D - Seuz,t−1 0.34 0.52 0.51 0.17 0.49

The bilinear threshold E-D compared with E or D alone yields the same elevated correctly predicted landslide

rate (TPR=0.89) but with a slight reduction of the false alarm rate (FPR -4%) (Table 5.4). This improvement

can be visualized in Figure 5.5 where almost all landslide events are clustered in the top right corner except

for four missed alarms in the bottom left corner. Hence, the addition of the event E threshold to the duration

D or vice versa does not modify any correctly predicted landslides into missed alarms but only decreases the

number of false alarms while increasing the true negatives (top left and bottom right quadrant respectively).

On the contrary, the performance of the trigger-cause E/D-Ser oot ,t−1 threshold is rather poor (Table 5.4). In

Figure 5.6, most landslides are reported for an E/D higher than approx. 6 mm/E/d, slightly below the optimal

threshold (6.99 mm/E/d). Hence, including the Ser oot ,t−1 threshold modifies the upper left quadrant from

many false positives and 10 true positives to many true negatives and 10 missed alarms respectively. This

results in a reduction of the FPR by 0.24 at the expense of a decrease in TPR by 0.29 compared to E/D alone.

In the case of Ser oot ,t−1, the landslide events are spread out (0.1 - 0.9) meaning that the corresponding ideal

cutoff value generates many missed alarms implying that this variable is not a good landslide predictor. Then,

adding the E/D threshold to the Ser oot ,t−1 only transforms two correctly predicted landslides into two missed

alarms (bottom right corner) yet it drastically reduces the number of false positives that would otherwise be

located on the left side. Consequently, this bilinear threshold has a better performance than the single vari-

able Ser oot ,t−1 threshold because it reduces a bit the TPR and significantly the FPR.

We can make analogous observations regarding the trigger-cause E/D-Seuz,t−1 threshold (Figure 5.7): (i) com-

pared to E/D alone, the performance decreases, (ii) since the landslide events reported are spread out ranging

from approximately 0.2 to 1 for Seuz,t−1 values, the ideal cutoff value of this variable misses many landslide

occurrences; therefore, it is not a good landslide predictor, and (iii) compared to the single variable Seuz,t−1

threshold, the predictive capability remains close.

5.4. Discussion

5.4.1. Satellite-Based Landslide Initiation Thresholds
As previously mentioned, Uwihirwe et al. (2020) defined both trigger and trigger-cause landslide thresholds

for Rwanda in an empirical-statistical approach. They used almost the same landslide inventory whereas

they employed in situ rain gauge data rather than IMERG data. However, they defined rainfall events identi-

cally. Furthermore, they applied the same methodology for defining the optimum thresholds (maximum TSS,

minimum RAD) based on the ROC and AUC.
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Figure 5.5: Event duration bilinear threshold.

Figure 5.6: Event/duration Ser oot ,t−1 bilinear threshold.

The number of MPRE we computed is much higher than the 9353 found between 2006 to 2018 in Uwihirwe

et al. (2020). As opposed to using rain gauges, we analyzed an increased number of locations with the IMERG

product leading to more precipitation time series.

The optimal threshold established by the TSS and the RD lead to a duration cutoff value of 11.5 days which is

more than double than the one calculated using rain gauges (4 days) in the study by Uwihirwe et al., (2020).

This is probably due to the lower amount of dry days recorded by IMERG than by the rain gauges (chap-
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Figure 5.7: Event/duration Seuz,t−1 bilinear threshold.

ter 3). We calculated the optimal event E threshold to be 102.25 mm/E, much higher than the ones obtained

using rain gauges (TSS=29.9 mm/E, RD=45.90 mm/E). As the duration of the MPRE is longer for IMERG,

the total event volume E is much larger because it is the sum of more rainy days as opposed to the in situ

precipitation data. Conversely, Brunetti et al. (2018) and Chikalamo et al. (2020) found that the satellite prod-

ucts generally underestimate the cumulated rainfall responsible for the failures measured by the rain gauges.

Despite having very different thresholds, the optimal IMERG derived E/D (TSS=7.00 mm/E/day, RD=7.94

mm/E/day) is quite similar to the rain gauge derived intensity I optimal cutoff value (TSS=7.87 mm/day,

RD=10.05 mm/day).

The IMERG variables E and D have a high AUC (0.870 and 0.860 respectively), higher than the rain gauges’

E and D (0.836 and 0.762 respectively). Hence, when deriving the single variable thresholds, the remotely-

sensed E and D correctly predict a high number of landslide events (TPR=0.83; TPR=0.79) while the false

alarms remain at low levels (FPR=0.18), significantly lower than the rain gauges’. The performance of E/D is

similar, although slightly lower than the in situ derived intensity I. Uwihirwe et al. (2020) defined the landslide

causal conditions by the antecedent precipitation index (API) of varying timescales (30, 10 and 5 days) as a

proxy for soil moisture accumulation. The explanatory power of Setop,t−1 is comparable, although poorer, to

that of the APIs’.

5.4.2. Hydrological Model-Based Landslide Initiation Thresholds
Uwihirwe et al. (2021) explicitly accounted for hydrological processes to derive empirical-statistical landslide

initiation thresholds for the same three catchments (Kivu, upper Nyabarongo and Mukungwa) in Rwanda by

employing observed and modeled groundwater levels one day before ht−1 and on the day of the landslide

event ht . In particular, the single variable threshold ht with an AUC of 0.76-0.80, accurately predicted the

occurrence of many landslides (0.82 ≤ TPR ≤ 0.93) at the expense of yielding many false alarms (0.25 ≤ FPR ≤
0.38). Contrarily, Ser oot ,t−1 and Seuz,t−1 have a lower predictive capability (AUC=0.63; AUC=0.64) resulting
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in a decreased landslide prediction rate (0.63 ≤ TPR ≤ 0.71; TPR=0.60) with an elevated false alarm rate (0.38

≤ FPR ≤ 0.46; FPR=0.31). When ht is used in a bilinear trigger-cause threshold (I-ht ), the TPR was drasti-

cally reduced (0.64-0.85) along with the FPR (0.08-0.15). Similarly, when Ser oot ,t−1 and Seuz,t−1 are combined

with E/D in a bilinear trigger-cause framework, the correctly predicted landslide rate is reduced (TPR=0.60;

TPR=0.51) and the false alarm rate (FPR=0.25; FPR=0.17) as well.

Uwihirwe et al. (2021) indicated that the most frequently recorded landslides in north western Rwanda are

deep-seated which are presumably linked to the groundwater level and other hydrogeological factors. As

such, the groundwater level on the day of the landslide event appears to have a higher discriminatory power

than the antecedent soil moisture in distinguishing landslide from no-landslide conditions over these catch-

ments.

5.4.3. General Considerations
In both subsection 5.3.1 and subsection 5.3.2, we saw that the IMERG derived single variable thresholds E

and D are promising due to the high rate of correctly predicted landslides (83% ≤ TPR ≤ 89%), rather low false

alarm rate (18% ≤ FPR ≤ 20%), and low missed alarm rate (11% ≤ FNR ≤ 17%). Furthermore, when combined

into the bilinear E-D threshold, the correctly predicted landslide events remain high (79% ≤ TPR ≤ 89%) with

a decrease of the false alarms (14% ≤ FPR ≤ 16%), and slight increase of the missed alarms (11% ≤ FNR ≤
21%). Therefore, we advise using the IMERG estimated rainfall as an additional source of rainfall information

apart from the rain gauges for future development of LEWSs in Rwanda. In fact, Guzzetti et al. (2020) rec-

ommended employing multiple sources of rainfall information and found that the majority of the LEWSs in

operation rely on two sources of rainfall information.

The purpose of including the antecedent effective soil saturation variables (Setop,t−1, Ser oot ,t−1, and Seuz,t−1)

was to account for the underlying hydrological processes that are responsible for predisposing the slopes to

near-failure. Nevertheless, these variables have a poor landslide explanatory power as established by the low

AUC (Figure 5.1, Figure 5.4) and by the quantification of the single variable thresholds (Table 5.1, Table 5.3).

Notwithstanding, when combining these hydrological variables with the meteorological variable E/D follow-

ing the trigger-cause concept, we expected the additional causal information to improve the landslide pre-

dictability with respect to the trigger only threshold. However, as can be seen in all the bilinear thresholds

E/D-Set−1 (Figure 5.3, Figure 5.6, and Figure 5.7), the recorded landslide events are spread out rather than

clustered for all of the hydrological variables. Hence, the corresponding optimal cutoffs accurately predict

few landslide events (0.51 ≤ TPR ≤ 0.60) and miss many (0.40 ≤ FNR ≤ 0.49). Mirus et al. (2018b) pointed

out that if the landslide events do not plot in a cluster in the corner of the 2D selected threshold space, it is

possible that other threshold formats may be more suitable.

The combination of the test variables into a trigger-cause framework implies the definition of the timescale

separating the trigger from the cause (Bogaard and Greco, 2018). The antecedent soil moisture, taken as one

day before the start of the MPRE, is likely to be too far ahead in time with respect to the occurrence of land-

slides besides having varying timescales. Since the meteorological variables defined here are good landslide

predictors, it is possible that the trigger is more important than the cause for landslide initiation in Rwanda.

Alternatively, because of their long timescale, the trigger variables may already be accounting for the an-

tecedent soil moisture conditions and when combined into the trigger-cause framework, the Set−1 variables

become more noise than added value.
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One recommendation that arises is to explore other rainfall definitions that have a shorter and fixed timescale

such as the cumulated precipitation in the two or three days before the landslide activity. Hence, the asso-

ciated soil moisture causal variable may increase the predictability of landslide events in Rwanda as it was

observed in chapter 4 that most landslide events occurred for above average soil moisture conditions. Addi-

tionally, other hydrological variables such as the wflow_sbm modeled groundwater table could be tested.

As already stated, the landslide inventory is small and incomplete, possibly containing uncertainties. The

landslide initiation model uncertainty has multiple sources, including the number, distribution, and accu-

racy of the empirical data points, and the definition of the rainfall conditions that initiate the landslides.

Lastly, our aim was to derive the most informative landslide initiation thresholds for Rwanda using satellite

and model derived data. Nonetheless, we propose certain modifications that do not require expenditure

from the government of Rwanda for the future implementation of LEWSs. Operational LEWSs use a variety

of rainfall information including rainfall data from rain gauge networks, forecasts from numerical weather

models, nowcasts from weather radars, and satellite-based rainfall estimates (Guzzetti et al., 2020). Since the

IMERG product performed well for triggering conditions in Rwanda but has a latency of 2-3 days, the early

IMERG product with a latency of 4 hours can be instead used for landslide nowcasting (Stanley et al., 2021).

Additionally, weather forecasts can be employed for deriving the meteorological trigger variables and also

as input data rather than the historical ERA5 data for running the wflow_sbm model to model hydrological

variables.
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Conclusion

Rwanda is both a landslide-prone and data-scarce region. In this research, we explored other sources of data

not limited to the in situ data for predicting landslides. As rainfall is the main triggering mechanism behind

landslides, we firstly made an assessment of freely available satellite precipitation products accessed through

GEE over Rwanda using rain gauges as a reference. Other than finding which precipitation product is the

most suitable, chapter 3 constitutes a contribution to the few studies dealing with product validation and in-

tercomparison of satellite products over Rwanda. In the evaluation, IMERG proved to be a reliable source of

precipitation data for the determination of rainfall thresholds in Rwanda. Secondly, we assessed two sources

of soil moisture data: the satellite soil moisture data from VanderSat and the wflow_sbm hydrological model

derived soil moisture. Unlike other remote sensing products that give good results in spite of their coarse spa-

tial resolution (and thus, limiting their application), the L-band volumetric soil moisture from VanderSat has

an almost daily resolution with a very high spatial resolution. On the other hand, the wflow_sbm model can

be applied to data-scarce areas such as Rwanda, only requiring ERA5 precipitation, temperature, radiation

and pressure and computing the potential evaporation as forcings to obtain daily and high spatial resolution

data. As the VanderSat and wflow_sbm data complied with the plausibility checks and exhibited reasonable

trends (chapter 4), we used them both for deriving landslide initiation thresholds for Rwanda.

Following an empirical-statistical approach, we studied the added value of incorporating antecedent soil

moisture to the landslide initiation thresholds in Rwanda (chapter 5). We defined both trigger and trigger-

cause based thresholds and we quantified objectively their performance employing the same metrics as in

Uwihirwe et al. (2020, 2021). The results indicate that the meteorological variables event E, duration D and

the corresponding E-D bilinear threshold hold the highest predictive power to discriminate between land-

slide occurrence and non-occurrence. Even if the IMERG derived meteorological thresholds have a higher

predictive capability than their in situ counterpart (Uwihirwe et al., 2020), rain gauge precipitation should

not be overlooked. Instead, following the recommendation of Guzzetti et al., (2020), both the IMERG satellite

data and the rain gauge data should be used for predicting landslides in Rwanda despite yielding different

thresholds. As also found in Uwihirwe et al. (2020, 2021), single variable thresholds tend to have a higher TPR

in spite of an elevated FPR. Conversely, the bilinear thresholds lead to a decrease of the FPR at the expense of

a reduction of TPR. We did not witness any improvement by including the antecedent soil moisture variables

(Setop,t−1, Ser oot ,t−1, Seuz,t−1) following the trigger-cause concept with respect to the trigger only thresholds.
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Defining the hydrological variables closer or on the day of the landslide event could lead to an increased pre-

diction as we observed that most landslides occurred during above average soil moisture conditions. Besides,

the trigger-cause threshold using the groundwater level on the day of the landslide event as a causal variable

in Uwihirwe et al., (2021) showed encouraging results. In our research, the timescale of the triggering events

is not constant and probably too long making the contribution of the antecedent soil moisture not significant.

Hence, a plausible solution could be the reduction of the triggering variables’ timescale to the cumulated two

or three days combined with the corresponding antecedent soil moisture Set−2, Set−3.
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Table A.1: Selected rain gauges.

Station Longitude Latitude
First date of
recorded rainfall

Last date of
recorded rainfall

Count of missing
values within first
and last dates

Gitega 30.06000 -1.950 2006-01-01 2018-12-31 0
Kigali Aero 30.13278 -1.965 2006-01-01 2017-12-30 0
Kinazi 29.91000 -2.200 2006-01-01 2017-12-30 0
Kibangu 29.68000 -1.830 2006-01-01 2018-12-31 32
Rugabano 29.48000 -2.060 2006-01-01 2017-12-30 0
Gisenyi Aero 29.25000 -1.660 2006-01-01 2018-12-31 1
Kanama 29.35000 -1.700 2006-01-01 2017-12-30 0
Pfunda 29.28000 -1.680 2006-01-01 2017-12-30 0
Rwankeri-Nyabihu 29.51000 -1.580 2006-01-01 2018-12-31 1
Kabaya 29.50000 -1.760 2006-01-01 2017-12-30 0
Cyato 29.20000 -2.410 2006-01-01 2017-12-30 0
Rwankuba 29.85000 -1.750 2006-01-01 2017-12-30 0
Ruhengeri Aero 29.61000 -1.480 2006-01-01 2018-12-31 1
Butaro 29.83000 -1.410 2006-01-01 2017-12-30 0
Kabeza-Nyam 30.05000 -1.430 2006-01-01 2017-12-30 0
Rugendabari 29.66000 -1.950 2018-01-02 2018-12-31 31
Muramba Paroisse 29.60000 -1.750 2018-01-02 2018-12-31 0
Shangi 29.00000 -2.380 2018-01-02 2018-12-31 0
Cyinzuzi 30.00000 -1.760 2018-01-02 2018-12-31 0
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Overview of pre-selected GEE precipitation products:

• The Tropical Rainfall Measuring Mission (TRMM) is a joint international program of the National Aero-

nautics and Space Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA). The al-

gorithm used is the TRMM Multisatellite Precipitation Analysis (TMPA) 3B42 version 7, TRMM 3B427.

The product analyzed here is the 3-hourly combined microwave-IR estimates with gauge adjustment

at a 0.25° x 0.25° spatial resolution covering 50°N-50°S. TMPA relies on data from the precipitation radar

(PR), passive microwave (PMW) from a variety of low Earth orbit satellites, infrared (IR) data provided

by the international constellation of geosynchronous-orbit meteorological satellites and the precipita-

tion gauge supplied by the Global Precipitation Climatology Centre (GPCC).

• The Climate Hazards group InfraRed Precipitation with Station data (CHIRPS) was developed to as-

sist the United States Agency for International Development Famine Early Warning Systems Network.

It provides estimates at a daily resolution of resolution 0.05° x 0.05° extending from 50°N-50°S. The in-

puts required by CHIRPS are: (1) the monthly precipitation climatology, CHPClim; (2) the geostationary

thermal infrared (IR) satellite observations; (3) the satellite estimates from TMPA 3B42; (4) the atmo-

spheric model rainfall fields from the NOAA Climate Forecast System, version 2 (CFSv2); and, (5) the

in-situ precipitation observations.

• The Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-

Climate Data Records (PERSIANN-CDR) is created for hydrological and climate studies. This product

covers 60°N-60°S, is daily and has a resolution of 0.25° x 0.25°. PERSIANN-CDR is generated from the

PERSIANN algorithm. The algorithm is applied to GridSat-B1 infrared data and then, it is bias-adjusted

using the Global Precipitation Climatology Project (GPCP) monthly product and accumulated to the

daily scale resulting into the final product.

• The Global Land Data Assimilation System (GLDAS) has been jointly developed by the NASA and

the National Oceanic and Atmospheric Administration (NOAA). GLDAS is an uncoupled land surface

modeling system. The precipitation data are obtained from the U.S. Naval Research Laboratory (NRL)

and from the NASA Goddard Space Flight Center (GSFC). The NRL is based on geostationary satellite

infrared (IR) cloud-top temperature measurements and microwave observation techniques. The mi-

crowave product merges data from the Special Sensor Microwave/Imager (SSM/I), the TRMM, and the

Advanced Microwave Sounding Unit (AMSU) instruments. Both NRL products have a spatial resolution

of 0.25° x 0.25° and a temporal resolution of 6h and cover the area from 60°N-60°S. The optimal merging

of the microwave and IR data is done at GSFC.

• The second version of Climate Forecast System (CFSv2) is developed by the NOAA National Centers

for Environmental Information (NCEP) and entered into operations in 2011. It is a high-resolution cou-

pled atmosphere-ocean-land surface-sea ice system. The model-generated precipitation which is gen-

erally too biased is replaced by observed precipitation resulting therefore in semi-coupled for the land

section. Two global precipitation analyses are used: (1) the pentad dataset of CMAP, and (2) the CPC

unified global daily gauge analysis. The former is defined as the 5-day mean precipitation on a 0.25° x

0.25° grid from gauge observations and satellite observations in the infrared and microwave channels.

The latter is based on a 0.5° x 0.5° grid over the global land via interpolation of quality-controlled rain

gauges. Specifically, the Optimal Interpolation (OI) algorithm is employed to partially account for the

orographic enhancements in precipitation. These two precipitation inputs are blended with the CFSR

background 6-hourly Global Data Assimilation System (GDAS) precipitation. The blending function is



39

latitude dependent favoring thus the CMAP product in the tropics, the CPC analysis in the mid-latitudes

and the model precipitation in the high latitudes.

• The Global Precipitation Measurement (GPM) launched in 2014 is the improved successor of the TRMM.

The new product is the Integrated Multi-satellitE Retrievals for GPM (IMERG) and will replace the

TMPA. IMERG provides half-hourly data at a 0.1° x 0.1° spatial resolution covering 60°N-60°S. Similarly

to the TMPA, IMERG is based on PMW from various low Earth orbit satellites, IR from geosynchronous

Earth orbit satellites, and precipitation gauge from two GPCC products. The major improvements are:

(1) the increase in orbital inclination, covering therefore additional climate zones; (2) the upgrade of the

radar increasing the sensitivity to light precipitation; and, (3) the inclusion of high frequency channels

to the PMW imager aimed at sensing light and solid precipitation.

• Within the Copernicus Climate Change Service (C3S), the European Centre for Medium-Range Weather

Forecasts (ECMWF) produced the ERA5 reanalysis, the fifth generation of atmospheric reanalysis re-

placing its predecessor ERA-Interim analysis. The precipitation is generated employing a convection

scheme representing convection at spatial scales smaller than the grid box. This scheme along with

the large-scale cloud scheme have been upgraded with an improved representation of mixed-phase

clouds, and prognostic variables for precipitating rain and snow. Additionally, there were improve-

ments to the parametrization of the microphysics, in particular, for warm-rain processes. The convec-

tion parametrizations has been changed resulting to an improvement in the distribution of the rain

rate and the representation of tropical variability. Upgrades have been achieved in the diurnal cycle of

convection.
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Table A.2: 5-km radius buffer for the landslide events.

Landslide
overlapping
events

Distance between
events [m]

Solution

39 and 11 3092 Dissolved the two buffers
10 and 35 0 Deleted buffer of 35
8 and 28 50 Deleted buffer of 28
12 and 38 370 Deleted buffer of 38 because 12 does not intersect with 21

14 and 18 69
Deleted buffer of 14 because 18 is a bit further away to 12
and 38

55 and 12 7391
Applied union to buffers, created line through intersection,
split with lines tool, merged and dissolved the separated
intersection to each of the vector layers

12 and 18 6973
Applied union to buffers, created line through intersection,
split with lines tool, merged and dissolved the separated
intersection to each of the vector layers

27 and 30 46 Deleted buffer of 27 because 30 is a bit further away to 32
30 and 32 3230 Created a single buffer of size 0.05ř halfway

47, 36, 34
7967, 8201 and
9048

Applied union to buffers, the intersections are merged
and dissolved to the vector layers evenly

34 and 24 8777
Applied union to buffers, the intersection is merged and
dissolved to 34

9 and 7 1592 Dissolved the two buffers
20 and 22 2035 Created single buffer halfway
1 and 50 2668 Created single buffer halfway

20/22 and 1/50 7328
Applied union to buffers, created line through intersection,
split with lines tool, merged and dissolved the separated
intersection to each of the vector layers

23 and 44 50 Deleted buffer of 23
10 and 35 0 Deleted buffer of 35

51, 10, 15 and 44
Distance to 15:
5564, 4783, 5741

Reduced buffers to 0.04ř, applied union to buffers, created
line through intersection, split with lines tool, merged and
dissolved the separated intersection to each of the vector
layers

49 and 10 8907
Applied union to buffers, the intersection is merged and
dissolved to 10

43 and 26 25 Deleted buffer of 43
53 Clipped buffer to Rwanda
42 Clipped buffer to Rwanda
41 and 4 1977 Dissolved the two buffers and clipped them to Rwanda

16, 29 and 33 3912 and 4056

Reduced buffers to 0.04ř, applied union to buffers, created
line through intersection, split with lines tool, merged and
dissolved the separated intersection to each of the vector
layers

52 and 54 787 Deleted buffer of 54 to avoid the intersection with 46

52 and 31 7647
Applied union to buffers, created line through intersection,
split with lines tool, merged and dissolved the separated
intersection to each of the vector layers

3 and 25 1382 Created single buffer of size 0.04ř halfway

13, 3/25, 6 5397 and 5909

Reduce buffers to 0.04ř, applied union to buffers, created
line through intersection, split with lines tool, merged and
dissolved the separated intersection to each of the vector
layers

6 and 45 7873
Applied union to buffers, the intersection is merged and
dissolved to 6
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Table A.3: Selected automatic weather stations.

Station Longitude Latitude
First date of recorded
soil humidity

Last date of recorded
soil humidity

Kibisabo 29.51 -1.7 2018-03-05 2021-05-18
Kinigi 29.59 -1.44 2018-11-14 2021-01-10
Muko 30.23 -1.7 2018-03-20 2021-05-02
Gacurabwenge 29.91 -1.99 2018-03-05 2021-05-12
Gisenyi 29.46 -1.82 2018-11-15 2020-10-19
Byimana 29.74 -2.14 2018-03-05 2019-11-01
Macuba 29.22 -2.31 2018-03-05 2021-05-18
Rubona 29.77 -2.49 2018-11-24 2021-05-18

Table A.4: Events that are represented by a single IMERG precipitation and VanderSat soil moisture time series.
The IMERG time series are available for all the events, hence the criteria used to select only one event is

explained (subsection 5.2.1). The VanderSat soil moisture corresponds to the only available one to represent
these events.

Events IMERG time series
VdS time
series

18, 14 18 has a higher weight. 14
20, 22 20 has a higher weight. 20
44, 23 44 has a higher weight. 23
41, 4 41 has a higher weight. 4
52, 54 52 has a higher weight. 52
3, 25 3 so that it doesn’t overlap with 13. 3
9, 7 9 has a higher weight. 7
50, 1 50 has a higher weight. 1
43, 26 43 has a higher weight. 26

27, 32, 30
27/30 because 32 is farther away. Between 27 and 30, 27 is kept
because it has a higher weight.

27

38, 12, 55
55 has no available soil moisture values so pair it to 12/38
closest pair. Between 12 and 38, 38 is kept because it has a higher
weight.

12

10, 35, 15
15 overlaps with 10/35 (IMERG), 10/35 farthest from other
landslide points. Between10 and 35, they are both in the same
location (=same time series), so 10 is chosen.

10

29, 16, 33
29 IMERG covers 16 and 33, otherwise 16 and 33 would both
cover 29.

29

28, 8, 19, 39, 11
39, 11 and 19 have no available soil moisture values, 8 has and
28 is in the same location as 8. Between 8 or 28, 28 is kept
because it has a higher weight.

8
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