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• A commercial flood damage model
based on Bayesian Networks is intro-
duced.

• This micro-scale model inherently pro-
vides uncertainty information.

• An associated commercial asset expo-
sure estimation method is based on
open data.

• The open-data concept makes the
model easily applicable to European
countries.

• Loss predictions in three test cases are
more accurate than those from other
models.
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Commercial assets comprise buildings,machinery and equipment, which are susceptible to floods. Existing dam-
age models and exposure estimation methods for this sector have limited transferability between flood events
and therefore limited potential for pan-European applications. In this study we introduce two methodologies
aiming at improving commercial flood damagemodelling: (1) disaggregation of economic statistics to obtain de-
tailed building-level estimates of replacement costs of commercial assets; (2) a Bayesian Network (BN) damage
model based primarily on post-disaster company surveys carried out in Germany. The BN model is probabilistic
and provides probability distributions of estimated losses, and as such quantitative uncertainty information. The
BN shows good accuracy of predictions of building losses, though overestimates machinery/equipment loss. To
test its suitability for pan-European flood modelling, the BN was applied to three case studies, comprising a
coastal flood in France (2010) and fluvial floods in Saxony (2013) and Italy (2014). Overall difference between
modelled and reported average loss per company was only 2–19% depending on the case study. Additionally,
the BN model achieved better results than six alternative damage models in those case studies (except for one
model in the Italian case study). Further, our exposure estimatesmostly resulted in better predictions of the dam-
age models compared to previously published pan-European exposure data, which tend to overestimate expo-
sure. All in all, the methods allow easy modelling of commercial flood losses in the whole of Europe, since they
are applicable even if only publicly-available datasets are obtainable. The methods achieve a higher accuracy
than alternative approaches, and inherently provide confidence intervals, which is particularly valuable for deci-
sion making under high uncertainty.
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1. Introduction

Commercial assets encompass assets primarily used for economic
activities by companies, government or non-profit institutions, as op-
posed to residential assets which pertain to activities of households
(Eurostat, 2013). For the purposes of this study, the term “commercial”
refers to buildings, machinery and equipment used for commercial and
public purposes, but exclude public and private infrastructure, vehicles,
and inventories. As such, commercial properties sustain substantial
losses due to floods every year. In France, 32% of the value of insurance
claims from the 2010 coastal flood was related to commercial proper-
ties, including agriculture (FFSA/GEMA, 2011). A similar percentage
(28%)was recorded after 2016 floods in the Loire and Seine river basins
(Fédération Française de l'Assurance, 2017). Commercial losses com-
prised 29% of total losses due to the 2007 summer floods in the United
Kingdom (29%), including indirect damages (Chatterton et al., 2010).
In the Netherlands, the share of non-residential losses was even higher:
40% in the aftermath of the 1993Meuse river flood and 52% in the same
area two years later (Wind et al., 1999). In the 2013 flood in Germany,
companies suffered 19% of the total 6.7 billion euro losses (Thieken
et al., 2016). Those case studies show that the bulk of commercial losses
was borne by companies in industry and services. Amuch smaller share
of losses is in the governmental sector, and often the smallest in agricul-
tural establishments, unless the affected area is predominantly rural,
like in the case of theMeuse river floods. Additionally, commercial enti-
ties sustain much higher average losses than households, by a factor of
two or three in the aforementioned cases.

Modelling exposure and vulnerability of commercial assets is diffi-
cult due to the large diversity of commercial units compared to house-
holds. They span a wide range of economic and institutional sectors,
each with their own specific characteristics of buildings, machinery
and equipment used. Many flood damage models are designed for use
at the level of land-use patches rather than individual buildings (Gerl
et al., 2016), hence the classification of commercial properties is based
on particular land use typology (Jongman et al., 2012). The valuation
of assets per land use area is then obtained from various sources, e.g.
disaggregation of national/regional asset stocks or construction surveys
(Seifert et al., 2010b). For estimating building-level exposure in
Germany, Sieg et al. (2019a) proposed computing fixed asset stock per
employee at the federal state level. Then, sampling the distribution of
company sizes provides an estimate of the number of employees in
commercial buildings identified in OpenStreetMap data. Still, consistent
estimates of commercial property values beyond single countries are
scarce, and the disaggregation methods are not easily transferable be-
tween countries due to different availability of economic, building and
land-use data. Huizinga et al. (2017) provided construction costs per
m2 for many European countries, separately for services and industry.
However, those cover only buildings without machinery or equipment,
and also are taken from two different construction cost surveys, which
disagree even by a factor of two in their estimates.

Similarly to exposure, various classifications of commercial buildings
have been used in damage modelling, often related to land-use classes
and created as synthetic models rather than based on empirical data
(De Moel and Aerts, 2011; Gerl et al., 2016; Keller et al., 2019). Many
damage models are univariate damage curves for particular economic
activity or building type (ICPR, 2001; Kok et al., 2005; Reese et al.,
2003), including one synthetic model intended for pan-European appli-
cations (Huizinga, 2007). Extensive look-up tables were developed for
the United Kingdom (Penning-Rowsell et al., 2013), based on a syn-
thetic approach, i.e. using information acquired by building experts via
what-if-questions, and provide absolute damage estimates, making
themdifficult to apply to other countries. So far, the largest source of de-
tailed empirical data on commercial losses at building level is the Ger-
man databank HOWAS21, containing in particular information from
post-disaster surveys covering flood events going back to 1978
(Kellermann et al., 2020). This unique dataset was first used to develop
FLEMOcs model, which is a multi-variable model in the form of look-up
tables (Kreibich et al., 2010; Seifert et al., 2010a). Subsequently, Sieg
et al. (2017, 2019a, 2019b) used a data-mining method known as Ran-
dom Forests to develop a newmulti-variablemodel fromextended Ger-
man survey data. It includes four economic activity sectors (industry
and three subdivisions of services) and three types of assets (buildings,
equipment, goods and stock).

Availability of open spatial data is increasing steadily, enabling new
means of quantifying exposure and application of damage models (Sieg
et al., 2019a; Jato-Espino et al., 2019). Presently, OpenStreetMap (2020)
provides crowd-sourced data on buildings, sometimes also integrated
frompublicly-available administrative sources. Even if availability of de-
tailed characteristics of those buildings (such as function and size)
varies between locations, this resource can lead to a standardized ap-
proach in estimating exposure to commercial assets in Europe, which
is currently lacking (Gerl et al., 2016; Brémond et al., 2013). Further,
models for universal, pan-European flood assessments would require
validation in various environments, both natural (such as different
flood types) and socio-economic (different type and values of assets),
as attempted previously by Jongman et al. (2012).

New methods of data analysis and modelling enable tackling some
of the limitations of existing flood damage models (Merz et al., 2013;
Schröter et al., 2014; Wagenaar et al., 2018). One problem with multi-
variablemodels using look-up tables and RandomForests is their inflex-
ibility to missing data. The models are based on survey data, and it is
often impossible to gather the required variables for actual implementa-
tion of the models to case studies (Apel et al., 2009; Gerl et al., 2014;
Schröter et al., 2018). Another problem is that the models are often de-
terministic, rather than probabilistic, hence they don't provide uncer-
tainty bounds of their estimates. This is addressed e.g. by the
aforementioned Random Forests method using an ensemble approach,
but still without the flexibility to work under missing local information.
Here, we address those limitations using BayesianNetworks, a graphical
and probabilisticmethod formodelling complex dependency structures
(Hanea et al., 2006, 2015), which could be used flexibly depending on
actual data availability in local applications.

This paper aims at advancing the currentmethodologies of commer-
cial damage estimation in flood risk assessments, and creating probabi-
listic models suitable for pan-European applications using only openly-
available data. It combines data and methods from the domain of both
hydrosphere (flood hazard modelling) and anthroposphere (economic
valuation of exposure and losses), both important components of
flood risk analyses (Kazakis et al., 2015; Bathrellos et al., 2017). We hy-
pothesize that using a Bayesian Network approach combined with
novel use of openly-available spatial and statistical data can improve
commercial flood loss estimation in Europe.

The manuscript is organized as follows (Fig. 1). A building-level
probabilistic damage model, created on the basis of a unique resource
in the form of German post-disaster surveys (Section 2.1.1), is intro-
duced in Section 2.1.2. A transferablemethod of building-level exposure
estimation for European countries is proposed in Section 2.2. The dam-
age estimates are validated (Section 2.3) for different flood events and
economic sectors (Section 3.1). The full procedure is carried out for
case studies of a coastal flood in France and fluvial floods in Germany
and Italy (Section 3.2) and compared with alternative, previously pub-
lished models. The paper finishes with a discussion of limitations and
uncertainties (Section 4) as well as conclusions (Section 5).

2. Materials and methods

2.1. Commercial damage modelling

2.1.1. German post-disaster company surveys
Empirical flood damage data of the commercial sector were

collected in five surveys made between 2003 and 2014 in Germany,
covering events from seven different years. In those surveys,



Fig. 1. Flowchart of the study. The numbers in the upper left corners of the boxes refer to sections of the paper.
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randomly-selected companies affected by floods were interviewed by a
professional surveying company. The exact composition of the ques-
tionnaire varied between surveys, but cover mainly flood intensity
(e.g. water depth and inundation duration), company characteristics
(e.g. economic activity type, turnover, size of premises, number of em-
ployees), monetary value of assets (buildings, contents, stocks) and
the value of damages sustained, the use of precautionary and emer-
gency measures, and previous flood experience. For detailedmethodol-
ogy of survey data collection and processing we refer to Kreibich et al.
(2007) and Thieken et al. (2017).

The dataset contains 1346 records.Most of those are losses sustained
by companies during two major summer fluvial floods, from August
2002 (Engel, 2004) and June 2013 (Schröter et al., 2015), with 479
and 557 records, respectively. A further 163 records (surveyed in
2006) pertain to the rainfall-induced flood on August 2005
(Bayerisches Landesamt für Umwelt, 2007) and spring thaw flood of
April 2006 (Bundesanstalt für Gewässerkunde, 2006). The final 147
data points (surveyed in 2013) refer to numerous smallerfloods that oc-
curred between January 2010 and May 2013, particularly to a rapid
rainfall-induced flood of August 2010 (Polnisch-deutsch-tschechische
Expertengruppe, 2010) and a snowmelt flood of January 2011 (Axer
et al., 2012). The location of all records inside Germany is presented in
Fig. 2.

The largest share of surveyed companies was active in NACE (Sta-
tistical Classification of Economic Activities in the European Commu-
nity) sectors G-I, which covers mainly trade, transportation,
accommodation and food services (see Supplementary Table S1 for
detailed explanation of NACE sectors). Industry (incl. Utilities and
construction) was the second-most represented sector (B\\F).
Slightly less companies were in sectors O\\U, covering mainly public
services such as administration, health and education, but also enter-
tainment and recreation. Further companies were in sectors J-N,
which includes e.g. professional services, finance, real estate and
communication. Only a small number of companies belonged to the
agricultural sector (A) (Table 1).
2.1.2. A Bayesian Network-based flood damage model
The German flood survey data were used to build a flood damage

model for commercial properties. It utilizes Bayesian Networks (BNs).
To the authors' knowledge, no study has ever used any type of BNs for
modelling commercial flood losses. The particular variant of BNs used
here are non-parametric BNs. The method uses empirical marginal dis-
tributions and, in this application, a Gaussian copula as the dependency
model for obtaining conditional probability distributions. Non-
parametric BNs were originally introduced by Kurowicka and Cooke
(2006) and further described by Hanea et al. (2006, 2015). This method
uses only continuous variables, hence discrete variables from the flood
survey data had to be excluded from the analysis. A hybrid discrete-
continuous is also possible, but due tomuch larger availability of contin-
uous variables, we chose not add this additional level of computational
complexity. The configuration of themodel structure is driven by expert
knowledge, supported by the (conditional) correlations between
variables.

The assumption of a Gaussian copula can be tested in twoways. First,
the fit of several copula types was analysed with a “Blanket Test” by
Genest et al. (2009). The statisticM for a sample of length n is computed
as follows (eq. 1):

Mn uð Þ ¼ n
X
uj j

C θ̂n
uð Þ−B uð Þ

n o2
;u∈ 0;1½ �2 ð1Þ

where B uð Þ ¼ 1
n∑

n
i¼11 Ui≤uð Þ is the empirical copula and Cbθn uð Þ is a

parametric copula with parameterbθn estimated from the sample. The
test shows that different (unconditional) variable pairs chosen for the
model are best represented by different copulas (Supplementary
Fig. S1), but the average score for the Gaussian copula is better than
for tail-dependent Gumbel or Clayton copulas. Further, Morales-
Nápoles et al. (2014) and Hanea et al. (2015) postulated that the joint
distribution of a given non-parametric BN structure is uniquely deter-
mined. Hence, they proposed a “d-calibration” test to the validity of a
normal copula for a particular BN structure, which is presented in Sup-
plementary Fig. S2. The determinant of the empirical rank correlation



Fig. 2. Location of surveyed flood losses. Borders from Eurostat (2020b), rivers from CCM2 dataset (Vogt et al., 2007).
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matrix of the selected variables falls within the 90% confidence interval
of the determinant of an empirical normal distribution (Supplementary
Fig. S2). This means that a normal copula is a valid assumption for the
joint distribution of the variables. However, the determinant of the rank
correlation matrix of the final BN model is outside the 90% confidence
Table 1
Data points available from German company post-disaster surveys by year and economic
sector. NACE – Statistical Classification of Economic Activities in the European Community
(Eurostat, 2013). For explanation of sectors see Supplementary Table S1.

Year of event Year of survey Data points by NACE (rev. 2) sector

Total A B–F G–I J–N O–U

2002 2003/2004/2006 479 8 163 187 67 54
2005 2006 102 4 22 37 13 26
2006 2006 61 – 8 20 10 23
2010 2013 60 2 9 23 6 20
2011 2013 58 3 7 27 1 20
2012 2013 21 1 2 12 1 5
2013 2013/2014 565 14 108 201 104 138
Total 1346 32 319 507 202 286
interval of the determinant of the random normal distribution sampled
for the same correlationmatrix. This indicates that the joint normal cop-
ula is not valid for the particular configuration of the BN, though this d-
calibration test is rather severe.

Ten variables were extracted from the surveys, comprising all con-
tinuous variables contained in the surveys that could be expected to
be available for implementation of themodel in case studies. Some var-
iables were excluded because they were not collected for all surveys
(e.g. flow velocity, business turnover before the flood, building/equip-
ment age). Certain discrete variables were shown relevant (at least for
some types of economic activity) for commercial loss estimation by
Sieg et al. (2017), mainly water contamination, the number of em-
ployees and the type of premises occupied, but in practice it was not
possible to collect such microdata for actual test cases (Sieg et al.,
2019a, 2019b).

Additional nine variables describing regional economic conditions
were obtained from Eurostat (2020a) database (Table 2). Two continu-
ous quantities related to hazard intensity were available: water depth
and inundation duration. Information on exposure was recorded in
the flood surveys as size of premises and the monetary value of build-
ings and machinery/equipment. The value of the inventories held by
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companies, and damages to those, was also available from the surveys,
but was not analysed here. This is due to the limited possibility of esti-
mating exposure to this category of assets using openly available data
for an actual application of the model, as will be discussed in
Section 2.2. The values of buildings andmachinery/equipment fromdif-
ferent years were converted to euros at 2015 price levels using national
deflators for non-residential buildings and machinery/equipment from
Statistisches Bundesamt (2019).

Economic situation of regions, defined using NUTS (Nomencla-
ture of Territorial Units for Statistics) classification, was computed
from data on gross value added (GVA), gross fixed capital formation
(GFCF), compensation of employees as well as total employment and
population. Four indicators were used in two versions: the total
value of the indicator in a given region, or the value corresponding
to a particular NACE sector, the same as the company's profile indi-
cated in the survey data. All economic indicators were computed
for the year of the flood event that affected each company, but in
euro in constant prices (reference year 2015). Indicator-specific de-
flators were utilized, except for compensation for employees,
which was deflated using the consumer price index.

In the domain of vulnerability, the use of precautionary measures is
converted into a synthetic indicator. This indicator is the percentage of
possible precautionary measures actually applied by companies before
the flood relative to the total number of possible measures. The latter
number is not fixed because some measures might be not applicable
to a particular company. As a result, the indicator is continuous rather
than discrete. Ten possible measures are included in the indicator:
(1) adapted use of the flood prone area; (2) relocation of susceptible
equipment; (3) relocation of dangerous substances; (4) flood-proof oil
tanks; (5) flood-proof silos; (6) flood-proof air conditioning; (7) stable
building foundation, waterproof-sealed cellar, etc.; (8) installation of
water barriers; (9) company emergency plan; (10) company emer-
gency exercises. Finally, total damages sustained by the companies
were derived, separately for buildings and machinery/equipment. Di-
vided by the total amount of assets held by the companies, relative
loss was obtained. On occasion, the respondents indicated more dam-
ages than the value of assets exposed. In such cases the relative damages
were set to “1” (complete loss).
Table 2
Candidate variables for the Bayesian Network-based flood damage model for commercial
properties.

Variable Unit Source

Hazard
Water depth relative to ground level cm Survey
Inundation duration h Survey

Exposure
Size of premises m2 Survey
Building value euro Survey
Machinery and equipment value euro Survey
Gross value added (GVA) per capita by NUTS3 region euro Eurostat
GVA per person employed by NUTS3 region* euro Eurostat
Gross fixed capital formation (GFCF) per person
employed by NUTS2 region*

euro Eurostat

GFCF as % of GVA by NUTS2 region* euro Eurostat
Compensation of employees per employee by NUTS2
region*

euro Eurostat

Vulnerability and consequences
Precautionary measures indicator - (fraction

[0,1])
Survey

Total damage to building structure euro Survey
Total damage to machinery and equipment euro Survey
Relative damage to building structure - (fraction

[0,1])
Survey

Relative damage to machinery and equipment - (fraction
[0,1])

Survey

Note: * in two variants: total for all sectors and per specific NACE sector corresponding to
the company's profile.
The flood damage model was created from the variables listed in
Table 2. The variables of interest are relative damages to buildings and
machinery/equipment, while 15 variables could potentially explain
their intensity. In thefirst step, an unconditional rank correlationmatrix
was computed (Supplementary Table S2). It shows that the correlation
betweenwater depth and relative loss is the strongest. The dependency
structure was then expanded by analysing the conditional rank correla-
tions between relative loss and explanatory variables, as well as the
(conditional) correlations between the explanatory variables. Further,
only those dependencies between variables that could be explained
on a theoretical level were included in order to avoid spurious links
(e.g. between economic situation in the region and hazard intensity).
In the process, a model to estimate relative loss to buildings (brloss)
and machinery/equipment (erloss) with five explanatory variables
was constructed (Fig. 3). The final BN rank correlation matrix is
shown in Supplementary Fig. S3. The choice of variables and depen-
dency structure is explained as follows:

• Water depth relative to ground level (wst) is correlated with relative
losses, because higher water levels affect a greater proportion of the
structure of a building and can reach a higher share of the machinery
and equipment inside, which is located at different floors (including
basement) and heights above floor. Water depth was found to be
the most important factor explaining commercial flood losses in
other multi-variable analyses (Kreibich et al., 2010; Sieg et al., 2017).

• Inundation duration (d) further increases losses to the building struc-
ture, though it was not relevant for machinery and equipment loss.
Long contact of the building with standing water leads to further de-
terioration of the structure, including through the process of capillary
rise (Kelman and Spence, 2004). Durationwas included in the damage
model MCM (Penning-Rowsell et al., 2013) and the Random Forest-
based model by Sieg et al. (2017). Duration is correlated with water
depths, as areas under relatively deep water would take more time
to dry compared to those under shallow water.

• Precautionary measures indicator (pre_ratio) is negatively correlated
with relative loss to machinery and equipment. Two effects can be
discerned here: (1) the more measures the company has imple-
mented before the flood, the less water was able to reach themachin-
ery and equipment; (2) the fewer measures were applicable to a
particular company (increasing the value of the indicator as long as
any measure was deployed), the lower was the exposure and/or vul-
nerability of the company (e.g. no oil tanks, air-conditioning systems,
or no susceptible equipment). As the list of possiblemeasures includes
mostly items that would protect themachinery and equipment rather
than the building, hence the indicator was found not relevant for
building loss prediction. The use of precautionary measures, in the
form of different synthetic indicators, was included in other commer-
cial loss models based on the German survey data (Kreibich et al.,
2010; Sieg et al., 2017). The indicator is correlated with regional
gross value added per capita, as companies in richer regions could
be expected to havemoremoney to invest in precautionarymeasures
than those in poorer regions.

• Gross value added (GVA) per capita byNUTS3 region (NUTS3_GVApc)
has relevance for relative losses to both buildings and machinery/
equipment. As the positive correlation with the use of precautionary
measures, companies in richer regions could be more able to afford
an improvement to their flood resilience than those in poorer regions.
GVA is correlated with gross fixed capital formation, as it is one of the
components of GVA.

• Gross fixed capital formation (GFCF) per person employed by NUTS2
region (NUTS2_GFCFpe) further reduces damages to buildings. A sig-
nificant part of GFCF is investment in buildings, therefore higher levels
of those should result in more modern and resilient constructions.

• Relative damage to building structure (brloss) is still highly correlated
with relative loss tomachinery and equipment (erloss) after including
all previous factors. This indicates that higher losses to the building



Fig. 3.A Bayesian Network for predicting commercial flood losses. Values on the arcs represent the (conditional) rank correlation; values under the histograms are themean and standard
deviation of the marginal distributions. Only complete records were used to compute the histograms and correlations here. Graph generated using Uninet software (Hanea et al., 2015).
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structure go in pair with higher contents loss, possibly due to factors
not considered in the dataset, e.g. flow velocity, water contamination
or flood warning lead time.

2.2. Commercial exposure estimation

The general concept of estimating exposure at the level of individual
commercial buildings applied here is disaggregating asset values based
on the size and occupation of OpenStreetMap (OSM) buildings. OSM
Table 3
Assignment of OSM buildings by GEM occupancy to economic activity sectors (NACE). For
explanation of sectors see Supplementary Table S1.

GEM
occupancy
codes

Description Economic
activity
(NACE)

AGRa Agricultural buildings A
ASSa Assemblies (arena, cinemas, concert halls,

churches, etc.)
R-U

COM1, COM2 Retail, wholesale, storage G-I
COM3 Offices, professional/technical services J-N
COM4 Hospital O-Q
COM5 Entertainment R-U
COM6 Public building O-Q
COM7-COM10 Garage, bus and railway station, airport G-I
COM11 Recreation and leisure R-U
COM99 Commercial and public, unknown type G-I, J-N, O-Q,

R-Ub

EDUa, GOVa Education, government O-Q
INDa Industry B-F
MIX1, MIX2 Mixed residential and commercial G-I, J-N, O-Q,

R-Ub

MIX3, MIX5,
MIX99

Mixed commercial and industrial, mixed
unknown type

B-F, G-I, J-N,
O-Q, R-Ub

MIX4, MIX6 Mixed residential and industrial B-F
OC99 Unknown occupation – the footprint area was

distributed proportionately to known footprints
areas by occupation.

–

a All codes in the category.
b Disaggregated proportionately to share of the sectors indicated in combined GVA.
provides building polygons, often together with explicit or implicit in-
formation on their function. Further information on the use of buildings
can be gathered from land use data also contained in OSM. To
uniformize the various descriptors of OSM, we use Building Taxonomy
2.0 developed for the Global Earthquake Model (GEM) (Brzev et al.,
2013). The reclassification of OSM buildings to GEM taxonomywas pre-
pared at GFZ Section 2.6 (Seismic Hazard and Risk Dynamics) based on
OSM data as of 8 March 2018.

GEM classified buildings were then assigned to NACE economic ac-
tivity sectors, which are used in economic statistics. Given the relative
coarseness of both economic data and the building taxonomy, six
NACE sectors were used. The sectors are the same as in the German sur-
vey data (Section 2.1), except for the sector O\\U, containing mostly
public services, whichwas split into two (O-Q andR-U). The assignment
of buildings to sectors is shown in Table 3.

Asset values defined as the gross stock (i.e., without depreciation) in
current replacement costs are available from Eurostat database for 22
European countries, split by basic asset types and economic activities
(Eurostat, 2020a). More countries publish asset data nationally, often
with greater level of detail (including regional asset stocks, more de-
tailed subdivisions of assets and activities). In context of the German
survey data, the relevant categories of assets according to the
European System of Accounts 2010 are as follows (Eurostat, 2013):

• Buildings other than dwellings (AN.1121) – for estimating commer-
cial building value;

• ICT equipment (AN.1132) and other machinery and equipment
(AN.1139) – for estimating commercial machinery and equipment.

For consistency with the survey data, transport equipment
(AN.1131) is excluded. Outside the scope are also cultivated biological
resources (AN.115), a category almost exclusive to the agricultural sec-
tor. Structures other than buildings (other structures – AN.1122 and
land improvements – AN.1129) should also be excluded, however
Eurostat only publishes data at higher level of aggregation (other build-
ings and structures – AN.112). Not all countries publish the more de-
tailed data nationally, so assumptions have to be made for those to
avoid overestimation especially in sectors G-I and O-Q, which contain



7D. Paprotny et al. / Science of the Total Environment 737 (2020) 140011
e.g. public roads, railways or military installations. Also, we omit the
“goods and stocks” category shown separately in the survey data. This
is because the nearest equivalent in national accounts are inventories
(AN.12), which contain not only materials, supplies, finished goods
and goods for resale, but also work-in-progress (e.g. unfinished build-
ings) and military inventories. Additionally, few countries publish data
on inventories, and even fewer provide them split by economic activity.

Asset stocks at national (or, for some countries – regional) level are
transformed into a ratio by dividing them with the gross value added
(GVA) per given economic activity. Then, this ratio is used to estimate
the asset values at the level of NUTS3 regions. These are the most de-
tailed country subdivisions at which national-accounting is carried
out. Currently, Eurostat provides NUTS3 economic data for 33 countries
(Eurostat, 2020a), with more data available from national statistical in-
stitutes. Once regional GVA is obtained from those sources, it is
Fig. 4.Observedflood extents and companies identified throughOpenStreetMap (with supplem
use from Corine Land Cover 2012 (Copernicus Land Monitoring Service, 2019b).
multiplied by the asset-to-GVA ratio from the national (or, upper
regional) tier.

Regional estimate of the asset stock is the basis for disaggregation to
OSM buildings. For each economic activity, the total footprint area of
corresponding OSM buildings is calculated. For commercial and public
buildings of unknown type and mixed use, the structure of the compa-
nies' footprint area was assumed to follow the distribution of GVA by
economic activity. In the case of buildings with unknown occupation,
the footprint area was distributed proportionately to those footprint
areas by occupation already identified in OSM. Then, the value of assets
is calculated per m2 building footprint area, and assigned back to OSM
buildings by occupancy. In this way, building-level commercial expo-
sure values can be achieved, separately for buildings and machinery/
equipment, for each region, using eight groups of occupancy types.
We apply this methodology to the case studies described in Section 2.3.
entary information) as potentially affected by the 2010 coastal flood in France. Land cover/
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2.3. Testing and validating the flood damage modelling approach

2.3.1. Validation case study: 2010 coastal flood in France
The performance of the exposure and damage modelling routines

was tested first in an area very different from the one contained in the
German survey data. This case study aims at modelling losses sustained
on 28th February 2010 in western France, when a major storm surge
generated by extra-tropical storm Xynthia caused extensive damages
and loss of life (Bertin et al., 2012; Vinet et al., 2012; Kolen et al.,
2013). The extent of damages is known from insurance claims filed
after the event (FFSA/GEMA, 2011). The total number of claims related
to the flood in the commercial sector was estimated at 5500, of which
1700 in the agricultural sector. The value of those claims was 235 mil-
lion euro, of which 26 million euro in agriculture. In the most severely
affected departments of Charente-Maritime and Vendée (Fig. 4) there
were approximately 2910 and 630 claims, respectively, worth 185 and
21 million euro (FFSA/GEMA, 2011). More detailed sectoral and spatial
split of the losses was not available.

Exposure during the 2010 event was estimated firstly by obtaining
OSMdata for thewhole departments of Charente-Maritime andVendée,
as they constitute NUTS3 regions with corresponding economic data.
Regional GVA was extracted from Eurostat's database (2020a) and the
national stock of assets from the national statistical institute INSEE
(2018). However, the occupation for 32% of buildings by footprint area
in Charente-Maritime and 38% in Vendée couldn't be identified by
OSM data alone. Therefore, the data was amended using land cover/
use data for the metropolitan regions of La Rochelle and Niort from
Urban Atlas 2012 (Copernicus Land Monitoring Service, 2019a) and
for the remaining area from Corine Land Cover 2012 (Copernicus Land
Monitoring Service, 2019b). Assignment of GEM occupancy codes to
land cover/use classes is shown in Supplementary Table S3. The addi-
tional data reduced the share of unknown occupation to 23% and 32%
for the two regions. The amended building dataset was used for disag-
gregation of economic assets as outlined in Section 2.2. The results are
presented in Supplementary Table S4.

OSM was likewise used to identify buildings affected by the event.
Commercial buildings located within the observed flood extent (Bertin
et al., 2014) were relatively few using OSM data directly (408). As
many residential buildings have services on their ground floors, OSM
data on amenitieswere used to reclassify residential buildings into com-
mercial, if the buildings contained any amenities (171 cases). Urban
Atlas land cover/use data for La Rochelle area added classification of
623 buildings (as per Supplementary Table S3). Finally, 180 agricultural
buildings were added using Corine Land Cover data. In contrast to the
asset disaggregation in the previous paragraph, population per grid
cell had to equal zero in order to assign agricultural use to OSM build-
ings with unknown occupation. This was done to minimize possible
error of misclassifying residential buildings as agricultural. The total
number of commercial buildings identified is 1382, or less than quarter
of the number of insurance claims.

As a final step, data for the damage model were collected. Water
depths were obtained by merging results of two hydrodynamic simula-
tions: a broader one for thewhole study area by Bertin et al. (2014) and
a more detailed one focused on La Faute-sur-Mer municipality by
Huguet et al. (2018), which was the most severely affected municipal-
ity. Both simulations involved a 2D model SELFE coupled with spectral
wave model WWMII (Roland et al., 2012) and an unstructured grid of
varying resolution. Unfortunately, information on inundation duration
or the use of precautionary measures was not available, hence those
nodes of the Bayesian Network model were left unconditionalized, i.e.
the prior distribution from the learning sample was assumed in all
cases. Finally, regional economic data was obtained from Eurostat
(2020a), though regional GFCF data going back to 2010 are no longer
obtainable. Consequently, 2014 regional GFCF per person employed
was extrapolated back to 2010 proportionately to the change of this in-
dicator at national level, which was nonetheless negligible (0.3% in
constant prices). GVA per capita in 2010 in 2015 constant prices was
21,459 euro in Charente-Maritime and 22,871 euro in Vendée, while
GFCF per person employed was 15,087 and 15,555 euro in correspond-
ing NUTS2 regions Poitou-Charentes and Pays de la Loire, respectively.
The water depth data didn't indicate flooding for all identified commer-
cial buildings, hence the final number of data points used in the analysis
was 1006.

2.3.2. Validation case study: 2013 fluvial flood in Saxony, Germany
The second case study narrowly overlaps with the German survey

data, as they include information from the 2013 fluvial flood. Here, we
reproduce losses for a part of the affected area, namely the federal
state of Saxony. The flood in late spring of 2013 was both intense and
widespread, with heavy rainfall (and snowmelt in some mountainous
areas) generating in many locations record-breaking discharge
(Schröter et al., 2015). Total losses exceeded 8 billion euro in
Germany, some 19% of which in industry and services (Thieken et al.,
2016). Saxon State Ministry of the Environment and Agriculture pro-
vided information on the number of claims and total losses in Saxony
down to the level of municipalities. Altogether, losses amounted to al-
most 307 million euro in 2451 companies, including agricultural estab-
lishments, but excluding some public services. Due to the availability of
detailed water depth simulations, the analysis was limited to four dis-
tricts (Kreise): Dresden, Meissen, Saxon Switzerland-East Ore Moun-
tains (Sächsische Schweiz-Osterzgebirge) and North Saxony
(Nordsachsen). In those districts, the total losses were 133 million euro
(954 claims).

The flood extent and water depths were derived through intersec-
tion of recorded floodwater elevations from aerial scanning, carried
out by the German Federal Institute of Hydrology during the event
(Bundesanstalt für Gewässerkunde, 2015), and a 10-m digital elevation
model from the Federal Agency for Cartography and Geodesy
(Bundesamt für Kartographie undGeodäsie, 2015). However, this prod-
uct is limited to the biggest rivers along which the flood occurred,
namely Mulde and Elbe (Fig. 5).

Exposure during the 2013 event was estimated firstly by obtaining
OSM data for selected districts in Saxony, each of which is an individual
NUTS3 region. In contrast to the French case study, no adjustments to
OSM data were made, as the share of unknown building occupations
wasmuch lower for this study area (9% altogether). The results of expo-
sure computation per m2 of building footprint area are presented in
Supplementary Table S5. OSM was used to identify buildings affected
by the flood, againwithout corrections. The total number of commercial
buildings with water depth estimates was 903, which corresponds to
95% of the known number of claims in the study area.

Finally, data for the damage model were collected. Information on
inundation duration or the use of precautionary measures was again
not available. Regional economic data from Eurostat (2020a) provided
GVA per capita, which was 18,298–31,135 euro depending on the dis-
trict (2013 value in 2015 constant price), and GFCF per person
employed, which was 11,999 and 12,908 euro in corresponding
NUTS2 regions Dresden and Leipzig, respectively.

2.3.3. Validation case study: 2014 fluvial flood in Italy
The final case study reconstructs commercial losses from a flood

caused by a dike breach along the river Secchia in theModena province,
northern Italy, on 19 January 2014. The failure offlood defences turned a
rather minor rainfall-induced flood into a major event, inundating
52 km2 for two days or more (Orlandini et al., 2015). In contrast to the
other case studies, we directly usemicrodata on commercialflood losses
collected after the event rather than aggregated numbers. This informa-
tionwas gathered by local authorities (Emilia-Romagna region,Modena
province, Bastiglia, Bomporto andModenamunicipalities) with the aim
of compensating damages to the business owners. The owners were in-
vited to fill in forms, specifying and demonstrating the amount of dam-
ages suffered in terms of building structures, furniture, instruments,



Fig. 5. Modelled flood extents and companies identified through OpenStreetMap as potentially affected by the 2013 flood in Saxony. Land cover/use from Corine Land Cover 2012
(Copernicus Land Monitoring Service, 2019b).

9D. Paprotny et al. / Science of the Total Environment 737 (2020) 140011
stocks, agricultural crops and products and business interruption ac-
cording to reimbursement criteria set by an ad hoc regional-
government ordinance. In addition, the addresses and characteristics
such as the number of employers before and after the event were re-
corded. Activities' locations were geocoded by means of an automatic
GIS procedure, followed by a careful manual control to avoid errors
and uncertainties. The original dataset contains 296 records indicating
15.6 million euro losses to buildings and machinery/equipment. Both
categories have shown almost the exact same value (49% versus 51%
share in combined losses). We note that a similar dataset from the
2014 flood, but for the residential sector, was analysed previously by
Carisi et al. (2018).

Information about flood hazard at each record, i.e. water depth, flow
velocity and flood duration, was extracted from the results of a
hydrodynamic simulation performed by Carisi et al. (2018) using
Telemac-2Dmodel with a one-meter resolution. The model considered
topographic discontinuities such as road embankments, artificial and
natural channels. The observed outflowing hydrograph of the levee
breach was used as boundary condition and the model was calibrated
by varying floodplain roughness coefficients. The flood extents were
validated using available pictures, videos and reports on the event as
well as in situ interviews. This approachwas earlier successfully applied
for the study area by Vacondio et al. (2016).

Exposure was derived by obtaining OSM buildings for the affected
area and then intersecting them with geolocated damage records.
Some records referred to the same buildings, hence they were aggre-
gated. Other records, for which no match to OSM buildings was found,
were discarded. This was partially caused by lack of precise addresses
for some affected companies. The final dataset has 190 records, of
which 137 have complete information on building loss and 138 on con-
tents loss. Occupancy of OSM buildings was adjusted according to the
type of economic activity indicated by the affected company owners, if
such information was provided. In total, there are 49 agricultural, 76 in-
dustrial and 65 services companies in the dataset (Fig. 6). The value of
buildings and machinery/equipment was estimated on the basis of
OSM buildings for the Modena province, which forms a NUTS3 region.
Data on buildings occupancywas amendedwith Urban Atlas 2012 to re-
duce the number of buildingswith unknown function. The results of ex-
posure computation per m2 of building footprint area are presented in
Supplementary Table S6.

Information on the use of precautionary measures was again not
available, but in contrast to the other two case studies inundation dura-
tion was obtained from the hydrodynamic simulation. Regional eco-
nomic data from Eurostat (2020a) provided GVA per capita, which
was 35,932 euro in the highly industrialized Modena province (2014
value in 2015 constant price). GFCF per person employed was 11,993
euro in the corresponding NUTS2 region Emilia-Romagna.

2.3.4. Commercial exposure validation
Direct validation of commercial exposure estimates is not possible

due to the lack of adequate building-level information, but some of
the assumptions used here could be tested against alternatives: (1) dis-
aggregating asset stock at the most detailed regional level possible,
rather than doing it at the country level; (2) regionalizing asset stock
proportionally to GDP rather than according to the number of em-
ployees (as was done in Sieg et al., 2017), (3) disaggregating



Fig. 6.Modelled flood extents and companies affected by the 2014 flood. Land cover/use from Urban Atlas 2012 (Copernicus Land Monitoring Service, 2019a).
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regionalized asset stock proportionally to building footprint area, rather
than uniformly per building. For this we use data on fixed assets of en-
terprises in Poland aggregated at the level of 380 districts (powiat) pro-
vided by Statistics Poland (2020). Those administrative units are more
detailed than NUTS 3 regions, which contain up to nine districts,
hence we can test whether our methodology can predict the total
value of commercial assets at district level. The dataset does not cover
all fixed assets, but only those held by enterprises with 10 employees
or more, including certain public health care facilities and cultural insti-
tutions. The composition of assets and the breakdown of the services
sector also differs somewhat from the one defined for the study, but
those uncertainties should not be significant when comparing various
approaches to disaggregating the assets to buildings. We use data for
2017, the latest year for which regional economic accounts data are
available (Statistics Poland, 2020). The footprint area of buildings by oc-
cupation for each district and NUTS region was computed from OSM.
The value of assets was first disaggregated proportionately with GVA
to three different levels of NUTS regions and then to particular building
types, as described in Section 2.2. Then, the regional exposure values per
m2were applied to all commercial buildings located in each district. The
results were also compared with a disaggregation of assets to buildings
at national level to identify the utility of a single country-specific expo-
sure estimate per building type. Further, it was tested whether it is bet-
ter to regionalize total asset values proportionally to the number of
employees instead of according to GVA (as proposed by Sieg et al.,
2019a). Last but not least, disaggregation of assets uniformly to build-
ings was compared with disaggregation according to building size.
2.3.5. Performance indices and comparative flood models
Predictions of relative losses to commercial assets are compared

with observations in the German survey data using the following error
metrics (Moriasi et al., 2007; Wagenaar et al., 2018):

• Pearson's coefficient of determination (R2) was used to measure the
degree of collinearity between predicted and observed values, with
higher R2 indicating stronger correlation.

• Mean absolute error (MAE)was used tomeasure the average absolute
difference between predicted and observed values, with higher MAE
indicating higher error.

• Mean bias error (MBE) was used to measure the average difference
between predicted and observed values, with positive MBE indicating
overprediction and negative MBE indicating underprediction.

• Symmetricmean absolute percentage error (SMAPE) normalizesMAE
by considering the absolute values of predictions and observations,
with value close to 0 indicating small error compared to the variability
of the phenomena in question.

Appropriate equations are shown in Supplementary Table S7; they
are applied to mean (expected) values of the uncertainty distribution
of theBN's predictions. Themetrics presented in the results are averages
of the outcomes of a five-fold cross-validation, i.e. five disjoint sets of
one-fifth of the dataset are used in each step to validate the model
trained on the remaining four-fifths of the data. Uncertainty ranges
are compared with the total amount of observed absolute losses in the
relevant categories (economic sector, year of event). As losses from
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the case studies could only be compared in certain aggregatefigures, the
mean predictions of the BNmodelwere used, while the uncertainty dis-
tribution of losses was used to generate 10,000 possible loss estimates
using a Monte Carlo approach. This provided us with uncertainty inter-
vals of the losses. Further, because the number of identified commercial
buildings with water depth information was smaller than the reported
figures, average losses per building were compared. Estimates of total
losses adjusted for undercounting of buildings was also reported, but
the difference with observations is the same if average losses are used.

Predictions of losses from the case study events are further com-
pared with alternative exposure and damage models. Comparative
asset values were taken from Huizinga et al. (2017), who derived
them from a construction costs survey. Replacement cost of buildings
were provided separately for the industrial and services sector.
Huizinga et al. (2017) didn't provide values for the agricultural sector,
hence the figure for industrial buildings was used. The value of machin-
ery and equipment, following the same study, was set as equal building
value in the services sector and 150% of building value in industry (with
agriculture). Those estimates will be referred to as “JRC exposure”, in
opposition to the calculations made according to Sections 2.2 and
2.3.2–2.3.4, which will be referred to as “GFZ exposure”. JRC exposure
estimates for the case studies are presented in Supplementary Table S8.

Six alternative damage models for the commercial sector were col-
lected (Supplementary Table S9). Four are simple univariate damage
curves. Two of those include only one curve for all commercial buildings
(Hydrotec, 2001; Kok et al., 2005), while another differentiates between
industrial/public buildings and other commercial buildings (ICPR,
2001), and the final one gives three different curves for agriculture, in-
dustry and services (Huizinga, 2007). Another model, MERK (Reese
et al., 2003) includes different types of buildings, but not in a particular
sector; the average of five curveswas used here. However, in contrast to
Fig. 7.Modelled flood losses in euros with 80 and 95% confidence intervals per event, using all n
machinery/equipment (b) by year of event, and building structure (c) and machinery/equipm
the other damage curves, MERK has separate functions for machinery
and equipment. Three curves, one for services and two for industry
are available. The two industrial damage curves (representing different
building types) were averaged for this application, as they represented
different building types. It should be highlighted thatMERKwas devised
specifically for coastal floods.

Onemulti-variable model was used, based on a selection of the Ger-
man survey data. FLEMOcs (Kreibich et al., 2010) is a look-up table that
distinguishes between losses to buildings and machinery/equipment in
four sectors (B\\F, G-I, J-N, O\\U). This model considers, in the basic
version, water depth and number of employees. As the latter variable
is not obtainable for the French and Saxon case studies, an average re-
sult using three company size assumptions (small, medium, large) is
presented. For Italy, the information available from the survey were
used where possible, and an average value otherwise. Also, as no func-
tion for agriculture is given in FLEMOcs, results were calculated for
this sector using damage functions for the industrial sector.
3. Results

3.1. Flood damage model performance for the survey data

The predictions of the flood damage model are compared with ob-
servations in Fig. 7. Uncertainty ranges of modelled flood loss are very
large, hence they are presented in the figure using a logarithmic scale.
The upper range of the uncertainty distribution (97.5th percentile) is
mostly 3–5 times higher than the lower range (2.5th percentile) for
events and sectors with a few hundred available data points. The uncer-
tainty is far higher for smaller subsets. The total flood losses are within
the 95% confidence interval in almost all cases. The only exceptions are:
odes of the flood damage model, compared with observations: building structure (a) and
ent (d) by economic sector.
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losses to buildings during 2002 and 2010 events, and losses to machin-
ery/equipment in the industrial (B\\F) sector.

The errors are much lower in case of building loss compared to ma-
chinery/equipment loss. This is largely because observed relative loss to
buildings has shown stronger correlations with various predictors. The
data on relative loss to machinery/equipment loss include many in-
stances of 0 (no loss) and 1 (complete loss) values, which are largely ab-
sent in the data on relative loss to buildings. Consequently, the
uncertainty of the results is higher (Supplementary Fig. S4). Predictions
of total absolute losses are mostly far worse for machinery/equipment
than for buildings. This is, however, largely due to a small number of in-
dustrial establishments of exceptionally high asset value dominating
the results.

Losses at the level of individual companies, obtained from the cross-
validation, show a low coefficient of determination (R2) below 0.2
(Table 4), though it is largely proportional to the variation in observed
relative losses, similarly to the magnitude of the mean average error
(MAE) and mean bias error (MBE). Hence, the error is relatively large
with negative bias for the two largest floods in the sample (August
2002 and June 2013), but the symmetric mean absolute percentage
error (SMAPE) is lower than for other events, which means that
the error is smaller compared to the variation of the relative losses.
The datasets for the August 2002 and June 2013 floods contain 77% of
the data points, hence they largely determine the performance of the
model. The floods in 2010 are recreated most accurately out of the re-
maining years. The floods in 2010 are recreated most accurately out of
the remaining years. The model's performance is similar across eco-
nomic activities, with the industrial sector (B\\F) narrowly ahead the
other sectors. Predictions for agricultural companies are worse, but
there are very few data points for this sector (less than 3% of the total).

3.2. Flood damage model performance for the case studies

The main results of the application of the commercial exposure and
damage modelling methods to three case studies (2010 coastal flood in
France, 2013 fluvial flood in Saxony, Germany, and 2014 fluvial flood in
Italy) are presented in Fig. 8, while full results are shown in Supplemen-
tary Tables S10–S12. The average losses were slightly overestimated for
all events, from 2% to 19%.

For the 2010 flood in France, the BN model combined with GFZ ex-
posure estimates shows the closest match between average modelled
and observed losses per company, with only a 2% overestimation (un-
certainty range from −24% to +35%). Good results are also achieved
Table 4
Validation results of themodel by year if the event and sector, using all nodes of the flood
damagemodel. For all companies, the results are an average from a five-fold cross-valida-
tion, while results for the subcategories are from an out-of-sample validation. brloss – rel-
ative loss to building structure, erloss – relative loss to machinery and equipment.

Item R2 MAE (%
points)

MBE (% points) SMAPE

brloss erloss brloss erloss brloss erloss brloss erloss

All companies 0.12 0.11 0.16 0.29 0.00 −0.04 0.52 0.52
Companies by damaging event
2002 floods 0.19 0.09 0.20 0.34 −0.02 −0.14 0.47 0.47
2005 floods 0.00 0.03 0.12 0.18 0.05 0.03 0.82 0.65
2006 floods 0.03 0.01 0.13 0.27 0.06 0.14 0.70 0.83
2010 floods 0.32 0.01 0.14 0.27 0.10 −0.02 0.55 0.62
2011 floods 0.02 0.00 0.14 0.17 0.14 0.08 0.91 0.75
2012 floods 0.00 0.01 0.13 0.24 0.08 0.07 0.75 0.78
2013 floods 0.07 0.05 0.15 0.28 −0.05 −0.07 0.53 0.56

Companies by economic sector
A 0.07 0.10 0.19 0.23 0.01 0.08 0.66 0.59
B–F 0.14 0.14 0.16 0.26 −0.03 0.03 0.50 0.49
G–I 0.07 0.11 0.17 0.32 −0.03 −0.14 0.53 0.54
J–N 0.10 0.05 0.16 0.32 0.01 −0.09 0.53 0.54
O–U 0.15 0.07 0.13 0.26 0.05 0.05 0.52 0.56
for both economic sectors distinguished, though the losses to agricul-
tural companies were less accurately predicted than those for industry
and services. Also, the losses for the two most affected departments
were rather less precisely modelled, particularly for Vendée (overesti-
mation by 46% and large uncertainty bounds). The two departments
also sustained higher average losses than thewhole areawhere impacts
have occurred, leading to underestimation of losses by the BN.

In contrast, theBNmodel overestimates average losses for Saxonyby
19%, more than for France or Italy. The 95% confidence interval is wider,
but still within the observed value (−20% to +69%). The average loss
for the districts for which modelled water depths of the event were
available shows a closer match (7% overestimation). However, there is
some large variation between districts. In Meissen and North Saxony
there is only a 3% difference between the model and observations, but
losses in Saxon Switzerland-East Ore Mountains were underestimated
by 40% and those in the city of Dresden overestimated by 143%. The re-
sults for those two districts are the worst in the whole study. This could
be partly explained by large differences in our exposure estimates at
district level.

Finally, the losses for the Italian companies were overestimated by
12% (95% confidence interval−38% to+94%).Wide uncertainty ranges
are largely caused by a relatively small number of companies analysed
in this case study. The predictions for the agricultural and industrial sec-
tor were more accurate, but also less confident than for services. Italy is
the only case study for which the split by the two main asset types –
buildings and machinery/equipment – is available. Losses to building
structure were more accurately predicted and with lower uncertainty
than those sustained by machinery and equipment.

The combination of exposure and damage modelling approaches
presented in this study achieved better overall results in estimating
flood losses during the floods than alternative approaches, as shown
by the main results in Fig. 9. The various approaches show similar pat-
tern of overestimation or underestimation: HWS-GIS, JRC, MERK and
FLEMOcs show too much damage, while ICPR and SM too little. JRC ex-
posure broadly increase damage estimates compared with GFZ expo-
sure, especially due to vastly higher assumptions on the value of
industrial assets and the ratio of machinery/equipment value to build-
ings in the services sector. The largest differences between different
test cases are for MERK and FLEMOcs, mainly due to very steep damage
function for machinery and equipment, which also renders them sensi-
tive to exposure estimates in this category of assets. The only instance
where the alternative models achieved better results is the combina-
tions of ICPR and SMmodels with JRC exposure, and only for the Saxony
case study.

Detailed results (Supplementary Tables S13–S15) reveal further in-
teresting comparisons. MERK achieved better estimates for the two de-
partments most affected by the 2010 coastal flood, which can be
attributed to the fact that this model was developed specifically for
coastal events. However, the results of the Secchia show that the
model strongly underestimates building damage while vastly
overestimating machinery/equipment loss. Also, the models (including
theBN) tend to give too high predictions of losses in the agricultural sec-
tor, compared with more accurate predictions for the other sectors in
the French case study. This is somewhat not surprising given the lack
of separate damage functions for agricultural buildings (in case of the
BNmodel– very small number of data points for this economic activity).
Detailed results also indicate one case where the GFZ and JRC exposure
estimates were very similar, namely for the city of Dresden. Still, losses
were strongly overestimated in both cases.

3.3. Commercial exposure case study

Certain assumptions of computing commercial exposure were
tested using data on company assets in districts of Poland in 2017. The
results are summarized in Table 5. Our exposure estimates are com-
paredwith observations for 374 districts, as six districts also form single



Fig. 8. Difference between modelled and observed average losses per company for the case study floods, in various sectoral splits. Bars indicate 80% and 95% confidence intervals.
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NUTS 3 regions. Disaggregation of assets from the national to regional
level according to GVA gives better results than using employment as
a predictor. Further disaggregation of asset to buildings gives far better
resultswhen doneproportionally to footprint area rather than assigning
a uniform value per building. Finally, more detailed regionalization of
assets according to GVA is beneficial for the results. Using national-
level assets data to generate exposure values per m2 of footprint area
gives the least accurate results.
Fig. 9. Difference between modelled and observed average losses per company for the case
exposure) and damage model.
4. Discussion

4.1. Uncertainties and limitations

Exposure quantification for the commercial sector contains several
uncertainties, which are difficult to estimate. The quality and availability
of national/regional economic data varies, and the assumption of con-
stant asset to GVA ratio throughout a country's NUTS 3 regions might
study floods, depending on the choice of exposure estimates (a – GFZ exposure, b – JRC
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not hold, e.g. due to different composition of each economic activity sec-
tor in a region compared to the national total. On the other hand, the
analysis in Section 2.3.1 has shown the benefit of this approach com-
pared to alternative methods. Some categories of assets were excluded
for the study due to unavailability of exposure data (inventories) or
the lack of loss data combined with the need for a different disaggrega-
tionmethod (commercial vehicles, structures other than buildings). The
disaggregation itself spreads asset values for a given category of build-
ings equally perm2 of their footprint area. This disregards the possibility
of assets being contained in multiple floors, in contrast to the approach
applied to residential buildings in Paprotny et al. (2020). However, com-
mercial buildings often do not follow the concept of floors present in
residential or office buildings, especially industrial, storage and agricul-
tural buildings. Those constructions are frequently rooms or bays, with
some of the mobile assets located on stacks or mezzanines.

The completeness, detail and accuracy of OpenStreetMap (OSM)
vary between locations, both in terms of building footprints and func-
tions. In some countries, government-run databases are integrated
into the OSM providing virtually complete information on buildings
and their occupation (e.g. in the Netherlands and Germany). In others,
even the availability of building footprints is limited (e.g. in Greece
and Spain). This could impact severely the accuracy of the disaggrega-
tion. In the French and Italian study areas, the building footprints are
rather complete, but there is a large share of buildings with unknown
or imprecisely-defined occupation. The data for Saxony provides both
high level of detail and completeness. Additionally, OSM is constantly
updated, with more than 100,000 buildings added daily (Schorlemmer
et al., 2017). Data on building occupancy can be further amended
using external sources, e.g. Urban Atlas and Corine Land Cover as
shown in the case studies.

Some uncertainty is related to the German survey data. The dataset
contains the respondents' recollections of the flood event, which had
occurred between 6 and 50 months prior to the survey (Thieken et al.,
2017). Therefore, there might be inaccuracies in the data related to
the hazard component (water depth, inundation duration), the eco-
nomic situation of the company or the use of precautionary measures.
In particular, occurrences of relative losses equal to 0 and 1 aremore fre-
quent than in the corresponding German survey data on residential
losses. Another possible concern is the transferability of German data
into other areas, but this is addressed by the French and Italian case
studies presented here.

The commercial damage model uses only continuous variables. This
could be addressed by applying a hybrid continuous-discretemodel, but
in practice the only discrete variable that would be easily available for
application of the model is the economic activity sector. Sieg et al.
(2017) made separate Random Forest models for four sectors (exclud-
ing agriculture due to a small number of data points), hence a similar
approach could be applied by making different models for industry or
services. However, the pool of survey data is small in each of the five
sectors distinguished, hence we opted to use a different approach and
try to capture the dependencies between variables relevant for all
companies.

On amore general level, BayesianNetworkswere primarily used due
to the explicit representation of the dependency structure and their
ability to operate with missing data. Two nodes of the damage model
were not used in the studies (inundation duration and the precaution-
arymeasures index), except for the Italian case study for which inunda-
tion durationwas available. This variable is not obtainable when a static
flood approach is used, but can be derived from dynamic models. Pre-
cautionarymeasures index in not directly obtainable locally unless sim-
ilar survey data are collected, but was nonetheless kept in the model as
it enables providingmodel results under different precaution scenarios.
Also, certain types of precautionary actionsmight be alsomandatory by
law in particular areas, thus providing some information for the model.

The damagemodel has shown promising results for the case studies,
though in same categories the performance was less good. For instance,
losses for two French departments that were most affected covered by
the flood hazard data were underestimated (by 25%, uncertainty range
from 0 to 44%). Consequently, the inaccuracy can be explained by limi-
tations of the hazard and exposure data. The reanalysis of the 2010flood
matches the observed flood extent well, but misses in particular many
populated places. Together with limitations of OSM data, many com-
mercial establishments were missed. Some difference between
modelled and observed losses could be caused by mismatch in captur-
ing the structure of companies by activity, as e.g. average loss sustained
by agricultural companies was almost three times lower than for com-
panies in industry and services. Here, OSM data is very complete and
the flood mask closely matching the actual flood extents, therefore the
affected buildings were identified with high accuracy. However, expo-
sure is rather strongly overestimated for the city of Dresden, and the
resulting losses are too high. For Italy, the main source of uncertainty
is the rather small number of companies in the compensation
claim data.

In this study, estimates of the damagemodel was compared only for
the three case studies, because a comparison with the German survey
data would give the BN model an advantage over the other methods
which were not trained with the same dataset. Only FLEMOcs used
the same dataset to some extent, as it was built on survey data for
flood events that had occurred between 2002 and 2006. Still, such a
comparison can provide some additional insights (Supplementary
Tables S16 and S17). Despite low correlation between observations
and the predictions of the BN model (R2 = 0.10–0.12), the other dam-
age functionswhich distinguish relative losses to buildings andmachin-
ery/equipment achieved even lower performance (R2 = 0.01–0.05).
Concentration of the results around the average has been a common
problem among multivariate models (Amadio et al., 2019; Carisi et al.,
2018; Dottori et al., 2016), stemming from relatively few observations
of very high relative losses. Considering all available absolute loss esti-
mates in the survey data, ICPR and SM models achieved a better
match between modelled and observed data than the BN model. How-
ever, the performance of all models varies substantially between eco-
nomic activities and flood events, with ICPR and SM having the best
estimates for industry and the 2002 floods, while MERK and the BN
models performing best for the 2013 event and certain types of compa-
nies. The BN model also had better quality regarding building losses
than the othermodels, though ICPRwasmore accurate regarding losses
to machinery and equipment. Interestingly, FLEMOcs overestimated
losses substantially in most categories, despite using German
survey data.

4.2. Future outlook

We can also remark on the aspect of land use in flood zones, changes
of which are an important driver of flood losses (Boudou et al., 2016;
Paprotny et al., 2018a, 2018b). The distribution of modelled flood losses
(like in Supplementary Figs. S5–S7) could inform on the potential dam-
ages that could be sustained for planned construction (Apollonio et al.,
2016; Bathrellos et al., 2012, 2016). Our exposure estimation method
combined with the BN model enables making comparative analyses of
different adaptation and mitigation approaches related to land-use
planning, such as asset relocation, building design adaptation (e.g. in-
creasing ground floor height) or restrictions on certain activities (partic-
ularly those with the highest exposure).

The flood lossmodellingmethods presented here inwill be analysed
further within an EIT Climate-KIC Demonstrator project “SaferPLACES”.
There are three case studies in the project, namely Cologne (Germany),
Pamplona (Spain) and Rimini (Italy). In each city, an interactive web
tool for flood risk assessment will be implemented, utilizing only open
data as inputs. Local validation will be carried out using primarily gov-
ernment or insurance data, either on individual building level or at
some level of aggregation. The precautionary measures index included
in the damage model can be used to incorporate flood mitigation



Table 5
Comparison between estimated and reported value of fixed assets in enterprises in 374 districts in Poland in 2017, depending on the disaggregation method.

Assets disaggregated to regions proportionally to… Regionalized assets disaggregated to OSM buildings proportionally to… R2 MAE (mln PLN) MBE (mln PLN) SMAPE

None Footprint area 0.60 2.07 0.72 0.25
GVA at NUTS 1 level Footprint area 0.60 1.95 0.59 0.24
GVA at NUTS 2 level Footprint area 0.62 1.89 0.51 0.23
GVA at NUTS 3 level Footprint area 0.73 1.62 0.33 0.20
Employment at NUTS 3 level Footprint area 0.64 1.88 0.50 0.23
GVA at NUTS 3 level Uniformly 0.49 2.23 0.33 0.28

Bold font indicates the method with the lowest error.
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scenarios in the work. Otherwise, mitigation would be implemented as
through appropriate adjustment of hazard and exposure data.
5. Conclusions

In this paper we used post-disaster flood survey data for German
companies to create a new multi-variable damage model for commer-
cial assets. The study covered commercial buildings as well as machin-
ery and equipment, but excluded infrastructure, vehicles, and
inventories. The resulting non-parametric Bayesian Network (BN)
with seven variables includes two variables of interest (relative loss to
building structure, and separately to machinery/equipment) and five
explanatory variables related to flood hazard (water depth, inundation
duration), exposure (regional gross value added and gross fixed capital
formation) and vulnerability (use of precautionary measures). The
model is accompanied by a method of estimating building-level expo-
sure using openly-available data. It is applicable wherever building
data from the global crowd-sourced OpenStreetMap dataset is available
together with some basic economic data at regional or national level.
Thoughmicroscale validation of themethodwas not possible, an analy-
sis using local data on company assets in Poland indicated reasonable
performance in predicting aggregated asset values.

The performance of the BN model in terms of estimating relative
losses compared to observations varies between economic activity sec-
tor and year of flood events. Themodel has shown rather good accuracy
of predictions of building losses, but overestimated machinery/equip-
ment loss for the surveyed German companies. However, many sec-
tors/events contained very few data points, and overall the large
uncertainty in the input data result in very scattered predictions; the
samewas the casewhen testing comparable damagemodels. Case stud-
ies of past coastal and fluvial floods in France (2010), Saxony (Germany,
2013) and Italy (2014)were used to test themodel in different environ-
ments, independently validating the model and providing a fair com-
parison with other damage models. The BN model combined with our
exposure estimates was the most accurate in estimating average ob-
served losses per affected company for the whole area inundated by
the coastal flood in France in 2010, but underestimated losses for the
two most affected regions. In case of the fluvial floods in Saxony and
Italy, the losses were overestimated, but less than in case of most
other models. Other models mostly overestimated losses from the
events. Alternative exposure valuation from JRC further reduced the ac-
curacy of the simulation. At least some uncertainties can be attributed to
the limitations of available data on observed losses, flood intensity and
buildings.

In summation, we have confirmed our hypothesis that using a
Bayesian Network approach combined with novel use of openly-
available spatial and statistical data did improve commercial flood loss
estimation in European case studies. The methods introduced here
will be further tested and evaluated in European case studies. Together
with residential exposure and damage modelling approaches it is the
most comprehensive tool for probabilistic flood loss assessments in
Europe achieved so far. Importantly, all can be applied using only
open or openly-available data.
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