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SUMMARY

L AUNCH VEHICLES and payload adapters are mainly composed of thin-walled cylindri-
cal shells and conical shells, where conical shells are necessary when transitioning
from a larger to a small diameter. These thin-walled shell structures are constructed with
metallic or composite materials. Mass is a critical factor in the design and operation of
launch vehicles, so it is desirable to save as much mass as possible on primary (core stage,
interstage) and secondary structures (payload adapters). This objective can be achieved
by maximizing the radius-to-thickness ratio in conical and cylindrical shell structures.
However, structures with high radius-to-thickness ratios are usually more susceptible to
buckling failure. Traditionally, conical and cylindrical shells are designed and analyzed
as independent structures. State-of-the-art manufacturing and numerical methods also
allow designers to consider novel shapes and joints to save mass and increase volume,
for example, combining the conical and cylindrical shells in a single integrated structure.
By combining these two sections with a seamless toroidal transition, designers can re-
move the heavy, stiff interface ring that often connects the two independent structures,
which potentially saves mass. An example of this type of integrated structure is the NASA
Universal Stage Adapter.

Demonstrating the ability to successfully predict the buckling behavior of integrated
conical-cylindrical shells is a critical step in the development of buckling design guidelines
for this class of structures. Although there are numerous papers documenting the test
and analysis correlation of conical and cylindrical shells separately, there is a limited
number of research papers specifically related to the test and analysis of an integrated
conical-cylindrical shell under axial compression. Furthermore, a modeling methodology
has yet to be proven to predict the buckling behavior of these integrated shell structures.

To address this need, a buckling analysis methodology was developed which suc-
cessfully predicted the buckling behavior of a composite cylindrical shell with a non-
traditional composite layup. The methodology was further applied to an integrated
conical-cylindrical composite shell. The finite element model included as-built geomet-
ric imperfections and thickness variations, and a geometrically nonlinear analysis was
used to predict the buckling behavior for both the cylindrical and the conical-cylindrical
shells. A composite conical-cylindrical shell was designed, built, and tested until buckling.
The observed buckling behavior was in good agreement with the predicted behavior.
Since the test specimen buckled elastically, it could be reused for further testing. The
specimen was modified with additional composite plies that were added to the transition
region. The same finite element modeling approach was also used to successfully predict
the buckling of the composite conical-cylindrical shell with the modified design. This
additional test provided further validation of the modeling methodology.

After validation, the modeling methodology was used to investigate whether the
current buckling design methodology for conical and cylindrical shells can be applied to
integrated conical-cylindrical shells. This begins with comparing the buckling response
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of conical and cylindrical shells, and how they compare with the buckling response of
an integrated conical-cylindrical shell using an eigenvalue analysis (buckling equation)
and a geometrically nonlinear analysis (implicit quasi-static analysis). The buckling
behavior and imperfection sensitivity of the conical-cylindrical shell was used to assess
the traditional buckling design methodology. It was determined that the traditionally
recommended knockdown factors may not be conservative for conical-cylindrical shells
in some cases. It was also discovered that the effects of geometrical nonlinearity may be
more influential than imperfections for conical-cylindrical shells, which is contrary to the
case of the individual components.

To help quantify the relative importance of various design parameters, a Polyno-
mial Chaos Expansion was employed to express the critical buckling load of a conical-
cylindrical shell as a function of the shell thicknesses, cone angles, transition geometry
and axial stiffness. Polynomial Chaos Expansion was also used to highlight differences
in the predicted buckling loads obtained from a buckling eigenvalue analysis and a ge-
ometrically nonlinear implicit dynamics analysis. Isotropic and composite shells were
considered separately. Due to its capacity to successfully predict the buckling load of a
conical-cylindrical shell, the Polynomial Chaos Expansion of the buckling load may be
a useful design tool during launch vehicle sizing studies, as it may limit the number of
finite element analyses required, particularly in the early design stages.

This research aimed to present the fundamental buckling behavior of conical-cylindrical
shells through numerical and experimental means. This led to the conclusion that
the traditional buckling design approach for cone and cylinders is not appropriate for
conical-cylindrical shells. Additionally, it may be more mass efficient to design a conical-
cylindrical shell that has a lower buckling capability because it is less sensitive to imper-
fections. The recommendations provided are based on experimentally validated data and
observations, which provides credibility to the conclusions and recommendations.



SAMENVATTING

Lanceervoertuigen en ladingadapters bestaan voornamelijk uit cilindrische en conische
dunwandige constructies. Deze dunwandige constructies zijn gemaakt van metalen of
composietmaterialen, en conische constructies zijn nodig bij de overgang van een grotere
naar een kleinere diameter. Massa is een kritische factor in het ontwerp en de werking van
lanceervoertuigen, dus het is wenselijk om zoveel mogelijk massa te besparen op primaire
(kernfase, tussenfase) en secundaire constructies (ladingadapters). Dit doel kan worden
bereikt door de straal-tot-dikteverhouding in conische en cilindrische constructies te
maximaliseren. Constructies met een hoge straal-tot-dikteverhouding zijn echter meestal
gevoeliger voor knikfalen. Traditioneel worden conische en cilindrische dunwandige con-
structies ontworpen en geanalyseerd als onafhankelijke delen. State-of-the-art productie-
en numerieke methoden stellen ontwerpers ook in staat om nieuwe vormen en verbin-
dingen te overwegen om massa te besparen en volume te vergroten, bijvoorbeeld door
de conische en cilindrische constructies in één geintegreerde constructie te combineren.
Door deze twee secties te combineren met een naadloze toroidale overgang, kunnen
ontwerpers de zware, stijve interface-ring verwijderen die vaak de twee onafhankelijke
delen verbindt, wat mogelijk massa bespaart. Een voorbeeld van dit type geintegreerde
constructie is de NASA "Universal Stage Adapter".

Het aantonen van het vermogen om het knikgedrag van geintegreerde conisch-cilindrische
dunwandige constructies succesvol te voorspellen, is een cruciale stap in de ontwikkeling
van knikontwerprichtlijnen voor deze klasse constructies. Hoewel er talloze artikelen zijn
die de test- en analysecorrelatie van conische en cilindrische dunwandige constructies
afzonderlijk documenteren, is er een beperkt aantal onderzoeksartikelen die specifiek
betrekking hebben op de test en analyse van een geintegreerde conisch-cilindrische
dunwandige constructies onder axiale compressie. Bovendien moet er nog een mo-
delleringsmethodologie worden bewezen om het knikgedrag van deze geintegreerde
dunwandige constructies te voorspellen.

Om aan deze behoefte te voldoen, werd een knikanalysemethodologie ontwikkeld
die het knikgedrag van een samengestelde cilindrische dunwandige constructie met een
niet-traditionele composietlay-up succesvol voorspelde. De methodologie werd verder
toegepast op een geintegreerde conisch-cilindrische samengestelde dunwandige con-
structie. Het eindige-elementenmodel omvatte ds-built"geometrische imperfecties en
diktevariaties, en een geometrisch niet-lineaire analyse werd gebruikt om het knikgedrag
voor zowel de cilindrische als de conisch-cilindrische dunwandige constructies te voor-
spellen. De samengestelde conisch-cilindrische dunwandige constructie werd getest tot
knik, en het waargenomen knikgedrag kwam goed overeen met het voorspelde gedrag.
Omdat het testmonster elastisch knikte, kon het worden hergebruikt voor verdere tests.
Een aangepast monster werd gemaakt met extra composietlagen die werden toegevoegd
aan het overgangsgebied. Dezelfde eindige-elementenmodelleringsaanpak voorspelde
ook succesvol het knikken van de samengestelde conisch-cilindrische dunwandige con-
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structie met het aangepaste ontwerp. Deze aanvullende test zorgde voor verdere validatie
van de modelleringsmethodologie.

Na validatie werd de modelleringsmethodologie gebruikt om te onderzoeken of de
huidige knikontwerpmethodologie voor conische en cilindrische dunwandige construc-
ties kan worden toegepast op geintegreerde conisch-cilindrische dunwandige construc-
ties. Dit begint met het vergelijken van de knikrespons van een conische en een ci-
lindrische dunwandige constructie, en hoe deze zich verhoudt tot de knikrespons van
een geintegreerde conisch-cilindrische dunwandige constructie met behulp van een
eigenwaardeanalyse (knikvergelijking) en een geometrisch niet-lineaire analyse (impli-
ciete quasi-statische analyse). Het knikgedrag en de imperfectiegevoeligheid van de
conisch-cilindrische dunwandige constructie werden gebruikt om de traditionele knik-
ontwerpmethodologie te beoordelen. Er werd vastgesteld dat de traditioneel aanbevolen
knockdownfactoren in sommige gevallen mogelijk niet conservatief zijn voor conisch-
cilindrische dunwandige constructies. Er werd ook ontdekt dat de effecten van geometri-
sche niet-lineariteit invloedrijker kunnen zijn dan imperfecties voor conisch-cilindrische
dunwandige constructies, wat in strijd is met het geval van de individuele componenten.

Om het relatieve belang van verschillende ontwerpparameters te helpen kwantifice-
ren, werd een zogenaamde "Polynomial Chaos Expansion" (polynomiale chaos-expansie)
gebruikt om de kritische knikbelasting van een conisch-cilindrische dunwandige con-
structie uit te drukken als een functie van de schaaldiktes, kegelhoeken, overgangsgeome-
trie en wapeningsniveaus. Polynomiale chaos-expansie werd ook gebruikt om verschillen
in de voorspelde knikbelastingen te benadrukken die werden verkregen uit een knikeigen-
waardeanalyse en een geometrisch niet-lineaire impliciete dynamische analyse. Isotrope
en samengestelde dunwandige constructies werden afzonderlijk beschouwd. Vanwege
het vermogen om de knikbelasting van een conisch-cilindrische dunwandige constructie
succesvol te voorspellen, kan de polynomiale chaos-expansie van de knikbelasting een
nuttig ontwerpinstrument zijn tijdens de dimensioneringsstudies van lanceervoertuigen,
omdat het het aantal vereiste eindige-elementenanalyses kan beperken, met name in de
vroege ontwerpfasen.

Dit onderzoek had als doel het fundamentele knikgedrag van conisch-cilindrische
dunwandige constructies te presenteren door middel van numerieke en experimentele
methoden. Dit leidde tot de conclusie dat de traditionele knikontwerpbenadering voor
kegels en cilinders niet geschikt is voor conisch-cilindrische dunwandige constructies.
Bovendien kan het massa-efficiénter zijn om een conisch-cilindrische dunwandige con-
structie te ontwerpen die een lager knikvermogen heeft, omdat deze minder gevoelig is
voor onvolkomenheden. De verstrekte aanbevelingen zijn gebaseerd op experimenteel
gevalideerde gegevens en observaties, wat geloofwaardigheid verleent aan de conclusies
en aanbevelingen.



INTRODUCTION

AUNCH vehicles and payload adapters are mainly composed of thin-walled cylindrical
L shells and conical shells. Cylindrical shells are quite common for primary launch
vehicle structures, such as the core stage on NASA’s Space Launch System, and conical
shells can be used when transitioning from a larger diameter to a smaller diameter,
such as the Launch Vehicle Stage Adapter (Figure 1.1). Mass is a premium resource on
launch vehicles, so it is desirable to save as much mass on primary (core stage, interstage)
and secondary structures (payload adapters) by optimizing the radius-to-thickness ratio.
Therefore, these structures usually have high radius-to-thickness ratios, which make them
more susceptible to buckling.
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Figure 1.1: The NASA Space Launch System Block 1 Configuration.[1]

State-of-the-art manufacturing and numerical methods also allow designers to con-
sider more nontraditional shapes to save mass and increase volume, for example, com-
bining the conical and cylindrical shells in a single unitized structure. By combining
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these two sections with a seamless toroidal transition, designers can remove the heavy,
stiff interface ring that often connects the two independent structures, which potentially
saves mass. An example of this type of combined structure is the NASA Universal Stage
Adapter[2], Figure 1.2, and the Systéme de Lancement Double Ariane (Sylda) on the Ariane
5 and the Vega Secondary Payload Adapter [3].

Figure 1.2: The NASA Universal Stage Adapter in the test stand at Marshall Space Flight Center. [4]

1.1. MANUFACTURING COMPOSITE STRUCTURES USING AUTO-
MATED FIBER PLACEMENT

Composite material systems (unidirectional fibers and fabric) and manufacturing meth-
ods, such as automated fiber placement, have enabled the construction of launch vehicle
structures with doubly curved components such as a conical-cylindrical shell with a
toroidal transition and ogive payload fairings. Fabricating these structures generally in-
volves laying down composite plies on the surface of a mandrel that matches the contour
of the final piece of hardware. An example of automated fiber placement (AFP) is shown in
Figure 1.3. Figure 1.3a shows a detailed view of the robot head and identifies the spools of
preimpregnated carbon fiber unidirectional tape. The tape is preimpregnated with a resin
system which is then fed into the roller. The specified number of plies fed through the
roller is referred to as a course. The heater warms up the tape to increase the tackiness to
ensure better adhesion to the tool surface. Figure 1.3b shows the AFP robot laying the first
facesheet ply on a cylindrical 2.4-m-diameter mandrel. The robot can be programmed to
maintain a constant fiber angle along a doubly curved or conical section. The commercial
software used to program the robot also allows the operator to specify the amount of ply
overlap between adjacent courses.
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(b)

Figure 1.3: Automated Fiber Placement Robot at Marshall Space Flight Center: a) Detailed view of the robot
head; b) laying the first ply on a cylindrical mandrel.

1.2. TRADITIONAL BUCKLING DESIGN APPROACH FOR LAUNCH-
VEHICLE SHELL STRUCTURES

In the traditional design of launch-vehicle shell structures, the buckling capability is
determined by multiplying the critical buckling load, as obtained from a linear eigenvalue
analysis, by a knockdown factor. Buckling knockdown factor (KDF) recommendations
for cylindrical and conical shells are published in NASA SP-8007 and NASA SP-8019,
respectively, which were published in the late 1960s. At the time, the buckling load was
determined using closed-form solutions or a simplistic numerical model. The knockdown
factor is used to account for the differences between the experimental buckling load
and the calculated linear eigenvalue. For cylindrical and conical shells, the difference
between the linear eigenvalue and the tested value is largely attributable to geometric
imperfections.

State-of-the-art technology has enabled engineers to develop a methodology to pre-
dict the buckling behavior of conical and cylindrical shell structures using finite element
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analyses that agree well with experimental results. For example, the as-built state of the
shell structure can be measured using photogrammetric techniques. The details that
define the as-built state include reference-surface geometric imperfection and thick-
ness variations. The measured geometric imperfections and thickness variations can
be incorporated into a finite element model. Additionally, the numerical methods in
finite element commercial software enable high-fidelity analyses that include the large
displacements and rotations that occur during a buckling failure. Incorporating as-built
measurements in a geometrically nonlinear finite element analysis has also been used to
demonstrate the over-conservativeness of the traditional buckling guidelines. However,
there is little research on the buckling of conical-cylindrical shells, and, therefore, there
are no buckling design recommendations for combined conical-cylindrical shells with a
toroidal transition even though they are currently being utilized by the aerospace industry.

1.3. RESEARCH OBJECTIVE

The aim of this research is to provide buckling design recommendations for conical-
cylindrical shells for launch-vehicle applications. At least two main criteria must be met
before design guidance can be recommended. The first is to demonstrate the ability to
successfully predict the buckling behavior of conical-cylindrical shells. The validated
modeling methodology to predict the buckling behavior of a composite cylindrical shell
with a nontraditional layup will be presented and leveraged to predict the buckling
of a composite conical-cylindrical shell with and without reinforcement plies in the
transition region. The second criterion is to determine whether the current buckling
design methodology for conical and cylindrical shells can be applied to conical-cylindrical
shells. The validity of using the buckling load (obtained as a linear eigenvalue) multiplied
by a recommended knockdown factor from NASA-SP-8007 or NASA-SP-8019 needs to be
assessed. To achieve these objectives the primary factors including geometric, design,
and analysis methods that affect the buckling behavior and imperfection sensitivity must
be understood.

1.4. THESIS OUTLINE

Each chapter presents information pertinent to the main research objective of providing
buckling design guidance for conical-cylindrical shells for launch vehicle applications.
Each chapter is derived from a published journal publication or is planned to be submitted
to ajournal, and can be read as a stand-alone document. A literature review is presented
in each chapter and references are listed at the end of the thesis in bibliography. Since
each chapter is self-standing, important information may be repeated between chapters.
A description of the chapters and how they relate to the overall research objective is listed
below.

* Chapter 2 discusses the validated modeling methodology used to predict the buck-
ling behavior of a composite cylindrical shell with a nontraditional layup. The
cylindrical shell has been studied in depth, and the modeling methodology has
been well documented to accurately predict the buckling response. The details of
the finite element model included as-built geometric imperfections and thickness
variations, and a geometrically nonlinear analysis was used to predict the buckling
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behavior. The test setup is described, followed by a comparison between the test
data and finite element analysis. A similar modeling approach is to be leveraged to
predict the buckling behavior of conical-cylindrical shells.

* Chapter 3begins with a numerical investigation comparing the buckling behavior of
a conical shell and cylindrical shell, and how it compares with the buckling response
of a conical-cylindrical shell. The buckling response and imperfection sensitivity
of the conical-cylindrical shell is investigated and the relevance of the traditional
buckling design methodology using NASA SP-8007 and 8019 is assessed [5, 6]. The
numerical analyses led to the design of a composite conical-cylindrical shell test
article to fail in buckling, called 3CHELL (Composite Conical Cylindrical Shell).
Using a similar modeling methodology as described for the composite cylinder
in Chapter 2, a finite element model that included geometric imperfections and
thickness variations was created. The test setup and results are presented, along
with a presentation of the test data versus the analysis data.

* Chapter 4 introduces the effects of adding reinforcement plies to the transition
region of a composite conical-cylindrical shell and how it can change the buckling
behavior as well as imperfection sensitivity with numerical analyses. The numerical
analyses presented interesting results which led to a design modification of 3SCHELL.
Reinforcement plies were added to the transition region of 3CHELL and was referred
to as Re3CHELL ( Reinforced Composite Conical Cylindrical Shell). The composite
test article Re3CHELL was tested to help validate the modeling methodology for
conical-cylindrical shells, but also to confirm the findings from the numerical
analyses. A direct comparison was made on buckling behavior between 3CHELL
and Re3CHELL.

* Chapter 5 demonstrates the use of the Polynomial Chaos Expansion to help quan-
tify which variables are the most influential on the buckling response of a conical-
cylindrical shell. Polynomial Chaos Expansion was also used to highlight differences
in the linear eigenvalue and geometrically nonlinear analyses to predict the buck-
ling behavior for conical-cylindrical shell. Isotropic and composite shells were
considered. This polynomial chaos expansion helps validate some of the obser-
vations witnessed in the numerical studies presented in Chapter 3 and Chapter
4,

* Chapter 6 serves as a synthesis of the key findings presented throughout the thesis,
contextualizing them within the broader framework of launch-vehicle structural
design. Future research topics are presented based on these conclusions.






ANALYSIS AND VALIDATION OF A
SCALED, LAUNCH-VEHICLE-LIKE
COMPOSITE CYLINDER UNDER
AXIAL COMPRESSION

AUNCH-VEHICLE structures, such as payload adapters and interstages, are increasingly

designed and constructed using composite materials due to their high stiffness- and
strength-to-weight ratios. Therefore, it is important to develop a validated finite element
modeling methodology for designing and analyzing composite launch-vehicle shell struc-
tures. This can be achieved, in part, by correlating high-fidelity numerical models with test
data. Buckling is often an important failure mode for cylindrical shells, and the buckling
response of such structures is also often quite sensitive to imperfections in geometry and
loading. Hence, it is crucial to understand the model parameters and details required
to accurately predict the buckling load and behavior of composite cylindrical shells, es-
pecially if the shell is buckling critical. The inclusion of as-built features, such as radial
imperfections, thickness variations, and loading imperfections can help improve the corre-
lation between test and analysis. To demonstrate such an approach, a validated modeling
methodology that was used to predict the buckling behavior of a scaled component for a
launch-vehicle-like structure is presented, and results from the model are compared with
experimental results. The modeling approach presented herein was used to successfully
predict the buckling behavior.

This chapter has been adapted from Rudd M.T., Eberlein D.J., Waters W.A., Gardner N.W, Schultz M.R, Bisagni
C., “Analysis and Validation of a Scaled, Launch-Vehicle-Like Composite Cylinder under Axial Compression,”
Composite Structures, Vol. 304, Part 1, 2023, 116393. https://doi.org/10.1016/j.compstruct.2022.116393.
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2.1. INTRODUCTION

Launch-vehicle designs regularly incorporate thin-walled cylindrical shell structures.
The use of composite materials to construct these structures, such as payload adapters
and interstages, has become more common in recent years. When axially compressed,
thin-walled shells are highly susceptible to global buckling, which results in a sudden
loss in load-carrying capacity under axial compression. It is well-known that the buckling
behavior is highly dependent on sources of variations from theoretically ideal shells.
These variations may include, but are not limited to, radial geometric imperfections,
thickness variations, and loading nonuniformity. Thus, these variations can make it
difficult to predict the buckling load, even with state-of-the-art analysis tools. Therefore,
it is important to have an experimentally validated modeling methodology to provide
confidence in the predicted buckling behavior of a composite cylinder. A validated finite
element methodology can be used to assess the sensitivity of the shell to imperfections
and may also be used to assess new design approaches for buckling-critical launch vehicle
structures.

Before advances in computer simulations, researchers relied on analytical methods
to predict buckling loads of composite cylinders. Koiter [7] noted that the inclusion of
radial imperfections was important when predicting the buckling load of a composite
cylinder. To predict the buckling load before the test, researchers such as Bert, et al. [8],
Card [9], Tennyson and Muggeridge [10], and Herakovich [11] measured the amplitude of
the radial geometric imperfections of test articles. An assumed shape of this amplitude
was then incorporated into the analytical solution as a prebuckling deformation in order
to best predict the buckling load.

Unlike analytical methods, a greater level of detail can easily be included in finite
element models (FEMs) to more closely represent as-manufactured physical composite
structures. Hilburger and Starnes [12] used the general-purpose finite element code
STAGS (Structural Analysis of General Shells) to predict the buckling performance of four
composite cylinders. Validation tests, or tests conducted to validate the FEM, enabled
the authors to investigate significant details, such as radial geometric imperfections, ply
gaps, thickness imperfections, shell-end geometric imperfections, nonuniform loading,
and elastic boundary conditions. Khakimova, et al. [13] included fiber volume fraction, in
addition to radial imperfections and thickness variations, in finite element models. They
also showed that the predicted buckling load converged to the tested buckling load by
increasing the level of as-built details in their models.

Incorporating the as-built details of a composite cylinder into the FEM is important,
but it is also necessary to understand how analysis parameters such as element type,
mesh size, and the analysis solver influence the predicted buckling behavior. To ad-
dress this uncertainty, Bisagni [14] conducted an extensive numerical study using the
general-purpose finite element code, Abaqus. This study was completed before testing
a carbon fiber reinforced polymer (CFRP) cylinder with a layup of [0/45/-45/0]. In this
investigation, Bisagni performed linear eigenvalue, nonlinear Riks, and implicit dynamics
(under quasi-static conditions) buckling analyses. The author noted that there were negli-
gible differences between the Riks and dynamic solutions with respect to the quasi-static
nonlinear response. In addition, a mesh convergence study was performed using the
four-node shell element with reduced integration (S4R). The outcomes of this assessment
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led the author to use the S4R element with a mesh size of 0.6 elements/degree around
the circumference and to use the dynamic solver. Priyadarsini, et al. [15] completed
a similar study and determined that that same element type, mesh density, and solver
were adequate to assess the buckling behavior of four identical CFRP laminate specimens
with a layup of [0/45/-45/0]S . Ghalghachi, et al. [16] completed five buckling tests with
five glass fabric reinforced polymer cylindrical shells. Ghalghachi, et al. used the same
program and S4R element as Bisagni and Priyadarsini, et al., but used the Riks method to
investigate the buckling behavior. The aforementioned authors studied constant-stiffness
cylinders, while other researchers have developed FEMs with similar model parameters to
investigate the buckling behavior of variable stiffness composite cylinders and composite
cylinders with cutouts [17, 18, 19, 20, 21].

Finite element models validated by testing have provided researchers with enhanced
confidence in their numerical tools to develop probabilistic-based design approaches
for buckling-critical composite cylinders. Degenhardt, et al. [22] used a validated high-
fidelity model to perform a Monte Carlo simulation that addressed the sensitivities to
imperfections. From that simulation, they determined the buckling knockdown factor —
used in design to account for differences between test and analysis — for a composite
cylinder with a radius/thickness ratio of 500 could be increased from the recommended
knockdown factor calculated using NASA-SP-8007 [5]. Schillo, et al. [23] tested eleven
nominally identical layups and developed a validated model to identify the influence of
uncertainties for a reliability-based design approach.

In addition to probabilistic approaches, other researchers have identified the benefits
of using validated models to develop new buckling knockdown factors. After validating
a finite element model with testing, Hiihne, et al. [24] proposed a less conservative
lower bound buckling knockdown factor methodology using the single perturbation load
approach (SPLA). These factors have the potential to be less conservative than those
recommended for the empirical design approach in NASA-SP-8007, which may lead to
mass savings of thin-walled shell structures made from composites. Similar to the SPLA,
Wagner, et al. [6] determined the single boundary perturbation approach (SBPA) can also
potentially provide less conservative buckling knockdown factors using a validated FEM.

The NASA Shell Buckling Knockdown Factor Project (SBKF) had the objective of
aiding in the development of design-specific knockdown factors for launch vehicles
by developing a validated modeling methodology using scaled sandwich composite
cylindrical shells. Schultz, et al. [25] suggested that new knockdown factors could save 4%
to 19% areal mass for sandwich composite launch vehicle structures. Four 2.4 m diameter
sandwich composite cylinders were tested by NASA researchers as part of an effort to
validate a finite element analysis approach to predict the buckling behavior. The buckling
loads were predicted within 7% of the experiments [26, 27, 28].

In the present chapter, the authors demonstrate a modeling methodology that success-
fully predicted the buckling behavior of a scaled launch vehicle-like composite cylindrical
shell. It is herein referred to as NASA-Delft Laminate 1 (NDL-1) with a layup based on
anovel scaling methodology [29]. The goal of the scaling methodology is to produce a
smaller-scale, solid laminate design which can mimic the buckling behavior of a large-
scale launch vehicle sandwich-composite buckling-critical composite shell. While this
methodology has been demonstrated analytically and numerically, it is of interest to
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validate experimentally that the designs produced by the scaling methodology are buck-
ling critical since the stacking sequences produced are nontraditional. Before the test,
a detailed study was performed to determine the most appropriate model parameters.
The high-fidelity model included details such as radial imperfections and thickness varia-
tions measured using a structured light scanning optical measurement system [30]. The
material properties of the laminate were characterized by coupon testing. A detailed
assessment is presented that compares the predicted prebuckling, buckling, and post-
buckling radial displacements with low-speed and high-speed digital image correlation.
Specifically, the chapter describes in detail the buckling propagation over the 16.3 mil-
liseconds captured by the high-speed cameras as compared to the finite element analysis.
The level of detail and modeling approach presented in this paper can be applied to
large-scale buckling-critical composite launch vehicle structures.

The NDL-1 test article design and manufacturing is presented in Section 2.2. A sum-
mary of the as-built geometric imperfections and details of the finite element model used
for pretest predictions are described in Section 2.3 and Section 2.4, respectively. The
experimental setup is covered in Section 2.5. The results and discussion of Section 2.6
includes a comparison of the pretest predictions and post-test analysis correlation.

2.2. TEST ARTICLE DESIGN AND MANUFACTURING

The test article, NDL-1, was manufactured from a carbon fiber-epoxy material system
and had a nominal diameter of 800 mm, a nominal height of 1200 mm, and a layup in
the acreage region of [23/0/ — 23]45. The acreage layup was determined by a novel scaling
methodology and was designed to fail in buckling. The analytical scaling methodology
was used to determine a reduced-scale composite cylinder design that has a buckling
behavior similar to a full-scale sandwich composite cylinder. This was achieved by
matching the nondimensional parameters of the scaled design to the full-scale design
[29]. The NDL-1 solid laminate design is a scaled-down version of the 2.4 m diameter
sandwich composite cylinder, CTA8.1, which was designed and tested as a part of the
SBKEF [26]. The resulting designs from the scaling process are not constrained to common
layup orientations, such as 0, 45, and 90 degrees, hence an unconventional design with
angles of +/- 23 degrees could also be considered.

The laminated composite cylindrical shell, NDL-1, was fabricated with 12.5-mm-wide
unidirectional (UD) tows of Hexcel IM7/8552-1 (190 gsm), each 0.175 mm thick [31]. The
in-plane elastic moduli E;; and E», (with 1 and 2 representing, respectively, the 0 and 90
degree UD fiber angles), the in-plane shear modulus (Gj»), and the in-plane Poisson’s
ratio (vi2) for IM7/8552-1 lamina are listed in Table 2.1 [32]. Reference [31] provided
failure stresses; therefore, failure strains were calculated assuming linear elastic behavior
using the documented moduli and failure stresses. These failure stresses and calculated
failure strains are reported in Table 2.2. The calculated strains were then used to confirm
the buckling failure of NDL-1.

The test article was fabricated using the advanced fiber placement robot at the NASA
Marshall Space Flight Center (MSFC) Composites Technology Lab. To manufacture the
[(23/0/ —23)]45 acreage layup, the unidirectional plies were laid on the outer surface of an
aluminum cylindrical mandrel in the desired fiber orientation. The 0-degree direction is
parallel to the longitudinal axis and the 90-degree direction is oriented circumferentially,
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Table 2.1: Nominal lamina properties of Hexcel IM7/8552-1 composite.

0-degree modulus 90-degree modulus Shear modulus Poisson’s ratio
E1 (GPa) Ep, (GPa) G2 (GPa) viz (5)
140.9 9.72 4.69 0.356

Table 2.2: Documented B-basis laminate failure stresses and calculated failure strains.

Direction Failure stress  Calculated failure strain
(MPa) (ue)
0-degree Compressive 1731 -12,280
90-degree Tensile 64 6584

or in the hoop direction. Additional plies, referred to as padups, were added at the ends
of the test article to assist with load introduction. The test article weighed 20.68 kg. Its
acreage and padup details are presented in Figure 2.1 and Table 2.3. The padups consist
of up to three plies — 90 degree, 45 degree, and -45 degree — that terminate sequentially
near the ends. The 90-degree ply was the last ply to be dropped, closest to the midheight,
followed by the 45- and -45-degree plies, respectively.

4 gt +Padups

524.51 0°

508.00 '45"\1/:45”

1200.00 | — = =T == —Tmmm <+— Composite shell

<«—Aluminum ring

: @ 800 mm i

Figure 2.1: NDL-1 geometry. All dimensions in millimeters.

The unconventional layup led to some significant manufacturing challenges. To
start with, the laminate had a in-plane Poisson’s ratio greater than 1.00. Also, the highly
axially stiff layup and its associated coefficient of thermal expansion made it difficult to
remove the composite cylinder from the aluminum mandrel; there was minimal clearance
between the acreage section and the mandrel. A larger gap was present between the
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Table 2.3: Nominal NDL-1 acreage and padup layup details.

Region Layup Axial location from midheight (0 mm)
of padup termination

Acreage [(23/0/ —23)]45 -
Padup 1 [(23/0/ —23)35/(23/0/ —23/90)s] +/-508.00

Padup 2 [(23/0/ —23)35/—45/(23/0/ —23/90);] +/-524.51
Padup3  [(23/0/—23)25/(23/0/ —23/45)/-45/(23/0/ —23/90)5] +/-539.75

mandrel and the test article in the padup regions, potentially due to the presence of
0-degree and 90-degree plies.

After manufacturing, the ends of the composite cylinder were encased in an epoxy
grout material to prevent brooming at the ends. In numerical simulations, the effect of the
encasing is approximated using clamped boundary conditions. The grout was 25.4-mm
thick on each end and extended approximately 22.9-mm away from the inner mold line
(IML) and outer mold line (OML) surfaces of the composite cylinder. The innermost and
outermost grout surfaces were encased with 6.35-mm thick aluminum rings. The ends of
the test article were machined flat and parallel, with the shell exposed on either end to
ensure uniform compressive load introduction directly into the test article, Figure 2.2.

+— Test article

Grout
j«—Aluminum ring

Figure 2.2: 3-dimensional view of NDL-1 Assembly.

2.3. MEASURED GEOMETRIC IMPERFECTIONS

After fabrication, the shape of NDL-1 was measured via structured light scanning to
capture the radial position of the IML and OML surfaces. This data represents the as-
built geometry of NDL-1. Structured light scanning is a photogrammetric technique
that is used to capture the surface of the test article in a three-dimensional space. The
IML and OML of the shell were scanned and combined in a single coordinate system to
determine the radial location of the shell and the shell -end surfaces, along with thickness
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variations. The NDL-1 OML and IML radial locations are shown in Figure 2.3a and Figure
2.3b in an unrolled view. The blue colors correspond to a relatively inward position,
while the red colors correspond to a relatively outward position. The radial position on
the OML ranged from 406.60 mm to 403.58 mm. The radial position of the IML ranged
from 401.10 mm to 399.35 mm. The average IML radial position was 400.23 mm and the
nominal IML radius was 400 mm. A distinct feature can be observed in the OML and
IML data, but it is more prominent in the IML: a band approximately 50 mm wide that
extends around the entire circumference of the test article, centered approximately 150
mm above the midheight (0 mm). The aluminum mandrel on which NDL-1 was built
was also analyzed with a structured light scanning, and this feature was present in the
mandrel data. It was determined that this feature was an artifact of the surface machining
process, and it was concluded that it was transferred from the mandrel to the NDL-1
during fabrication. The thickness variations of NDL-1 are presented in Figure 2.3c where
the warmer (red) colors correspond to thicker regions and the cooler (blue) colors denote
relatively thinner regions. The diagonal pattern in Figure 2.3c matches the 23-degree
ply angle and corresponds to ply gaps and overlaps. Note that because structured light
scanning output point cloud data, and the OML and IML spatial data points were not
spaced at the same radial/circumferential positions precisely, the thickness plot shown
in Figure 2.3c was derived by interpolating the OML and IML radial data to a regularly
spaced axial and circumferential set. The interpolated IML data was subtracted from the
interpolated OML data to give the shell’s thickness profile. (The interpolated OML and
IML were used in the FEM.)

In addition to the IML and OML surfaces, the top and bottom shell end surfaces of
NDL-1, which interface with the load frame, were also scanned. The data from the top
shell end surface is plotted in Figure 2.4a, and data from the bottom end surface is plotted
in Figure 2.4b. The total variation in the top ring was 0.46 mm. The highest location
was approximately 180 degrees from the lowest location. This was similar to the bottom
surface, but the bottom surface had a maximum imperfection amplitude of 0.44 mm.
Capturing this data is important in assessing the effects of nonuniform loading in the
finite element model.
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Figure 2.4: NDL-1 axial position of a) top and b) bottom shell end surfaces.
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2.4. FINITE ELEMENT MODEL AND ANALYSIS

The finite element program used for the pre-test predictions and post-test analysis cor-
relation was Abaqus 2017 [33]. The modeling and analyses were performed at the Delft
University of Technology. Prior to developing the finite element model to predict the
buckling load and behavior of NDL-1, an investigation was conducted and documented to
understand the effect that the element type and mesh size have on the buckling response.
Also, this section presents a discussion of the laminate material property characteriza-
tion that was used in the finite element model for the pre-test predictions and post-test
analysis correlation. Finally, parameters of the implicit dynamic analysis used for the
predictions are presented.

2.4.1. ELEMENT TYPE AND MESH SIZE SELECTION

A finite element model of the composite test article NDL-1 (with nominal geometry) was
used to investigate the predictions obtained from two distinct shell element types, namely
(i) the S4R four-node conventional shell element and (ii) the SC8R eight-node continuum
shell element. The former uses the midsurface displacements and the transverse section
rotations as degrees of freedom, while the latter uses all through-the-thickness displace-
ments as degrees of freedom. Both elements allow transverse shear deformations, and
both are suitable for geometric nonlinear problems [32]. In the simulations involving the
continuum shell element SC8R element, only one element through the thickness was
used.

A mesh convergence study was conducted with both the S4R and SC8R elements
by comparing the eigenvalue buckling loads. The results are presented in Figure 2.5 for
mesh sizes of 50 mm, 25 mm, 20 mm, 10 mm, 7.5 mm, and 5 mm. This corresponds to
approximately 1100, 4500, 7000, 28,000, 50,000, and 112,000 elements, respectively. In
the figure, the predicted buckling loads for the S4R and SC8R elements, dashed and solid
lines, respectively, begin to converge and plateau at a mesh size of 10 mm (approximately
28,000 elements). Ultimately, a mesh size of 5 mm (approximately 112,000 elements) was
selected to better capture the imperfection signatures of the OML and IML. The 5 mm
mesh size is approximately 0.7 elements per degree around the circumference.

Both eigenvalue and nonlinear dynamic analyses were performed to assess S4R and
SC8R elements with the 5mm mesh size. There is less than a 1% difference between the
eigenvalue buckling loads of the S4R and SC8R models, 2284 kN and 2295 kN, respectively.
Additionally, the eigenvalue buckling load for both element types are within 1% or less
of the analytical buckling load of 2271 kN calculated using Equation 2.1, where N, is the
buckling load per unit length, [ is the length of the cylindrical shell, m is the number of
axial half-waves, and the matrix A;; corresponds to the laminate stiffness. Matrix A;; is a
function of m and n (number of circumferential waves) [5]. The critical number of m and
nis 9 and 0, respectively. This was determined by minimizing equation 2.1 with respect
to m and n. The buckling mode shapes for the two element types are also very similar for
the first mode as seen in Figure 2.6. The predicted buckling loads for each element type
for the eigenvalue and nonlinear dynamic analyses are listed in Table 2.4.
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In addition, the buckling loads predicted from nonlinear dynamic analyses using both
element types were nearly identical (1 kN difference, or well within 1%). Given that both
element types predicted similar behaviors, the SC8R was selected for compatibility with
in-house imperfection-processing software. Nodal coordinates of the SC8R elements
were manipulated to match the surface positions of the OML and IML data. Moving
the OML and IML nodes accounts for the thickness variations by default. In contrast,
S4R elements would have required mid-surfacing the IML and OML data, along with
individual element-by-element thickness assignments.

Table 2.4: Buckling loads determined by eigenvalue analysis and nonlinear dynamic analysis for S4R and SC8R
elements.

Element Eigenvalue Analysis Nonlinear Dynamic Analysis

(kN] (kN]
S4R 2284 2193
SC8R 2295 2194

Difference -0.4% ~ 0%
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Figure 2.6: First buckling mode shapes: a) S4R elements; b) SC8R elements.

While the composite cylinder was modeled using SC8R elements, the potting material
and aluminum rings were modeled with C3D8 three-dimensional brick elements. A
detailed view of the FEM is shown in Figure 2.7. The yellow-orange color corresponds to
the continuum shell elements with properties for padup 3. The blue color represents the
continuum shell elements with properties for padup 2, the red corresponds to padup 1,
and the cyan represents the acreage. The potting is represented by the purple color, and
the aluminum rings are gray.

Figure 2.7: FEM details.

2.4.2, MATERIAL PROPERTIES

Laminate coupon testing was completed before the test of NDL-1 to characterize the
laminate stiffness of its unconventional layup, [23/0/-23]45s. Seven tensile coupon spec-
imens, nominally 24.5 mm wide and 4.32 mm thick, were built with the same layup as
NDL-1. A summary of the longitudinal laminate modulus (Ej;), Poisson’s ratio, width, and
thickness from the seven tested specimens is shown in 2.5. The coupon specimens were
4.3% thicker than the average acreage thickness of the test article. The average cured ply
thickness was 0.180 mm for the coupon specimen, and 0.173 mm for the test article. Due
to the thickness discrepancy, two different assumptions were made when extrapolating
resultant ply properties from the coupon test to the test article and its FEM. The first was
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that the coupon specimen and test article had the same constant fiber volume fraction.
The second assumption was that the number of fibers per unit area was the same in the
coupon specimen and the test article. In this case, it was assumed the number of fibers
remained constant per unit area, but excess resin bled off during the cure cycle of the
test article, thereby causing the thickness discrepancy. The intent of creating two sets of
material properties was to bound the response of NDL-1 since there are more potential
sources of variation when manufacturing with unidirectional tows.

Table 2.5: Summary of NDL-1 laminate tensile test data.

Specimen Number 1 2 3 4 5 6 7 Mean
Longitudinal modulus [GPa] 107.3 108.7 115.0 109.4 106.1 108.8 105.3 108.7
Poisson’s ratio [-] 1.24 1.29 1.29 1.28 1.27 1.31 1.35 1.29
Width [mm] 25.3 25.4 25.4 25.4 25.4 25.4 25.4 25.4
Thickness [mm)] 4.32 4.32 4.32 4.34 4.32 4.39 4.32 4.32

Using the data from the tensile tests, the associated local fiber-direction (E;;) and
transverse (E»») lamina stiffnesses to be used in the FEM of NDL-1 were determined
through a virtual coupon test. The nominal tensile specimen was modeled using SC8R
elements and the nominal lamina Ej; and E»» properties of Table 2.5 as an initial guess.
They are reported in the first row of Table 2.6 for comparison and are called the “nominal
properties”. The lamina moduli E;; and E»; were modified in the finite element program
until the predicted laminate’s overall longitudinal stiffness and Poisson’s ratio from the
virtual tensile test matched the corresponding mean values from the coupon tests (108.7
GPa and 1.29, respectively) within 1%. Those E;; and E,, properties, the second row of
Table 2.6, satisfy the assumption that the test article and coupon specimens had the same
fiber volume fraction.

Table 2.6: Nominal lamina properties of Hexcel IM7/8552-1 composite.

Property Set Eq1 (GPa)  Epp (GPa) Gi2 (GPa) vy (9)
Nominal 140.9 9.72 4.69 0.356

Constant fiber volume fraction 152.2 8.75 4.69 0.356
Constant quantity of fibers 158.7 9.12 4.69 0.356

Two different finite element models were developed, one with the constant-fiber-
volume-fraction moduli and one with the constant-quantity-of-fibers moduli. These
models will be referred to as the pretest prediction models. The potting was modeled
assuming isotropic material properties with an elastic modulus of 7.58 GPa and a Poisson’s
ratio of 0.3. The aluminum ring was modeled with an elastic modulus of 69.00 GPa and a
Poisson’s ratio of 0.33.
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2.4.3. ANALYSIS

Nonlinear implicit dynamic analyses were performed to predict the pre-buckling, buck-
ling, and post-buckling response of NDL-1 using the constant-fiber-volume-fraction
assumption and the constant-quantity-of-fibers assumption. To apply the displacement,
a single reference node in the center of the test article at the top was connected to the top
edge nodes of the test article, potting, and aluminum ring through tie constraints. The top
reference node had all degrees of freedom constrained except for the axial direction. The
bottom of the test article was similarly tied to a reference node centered at the bottom
edge of the cylinder using the same technique. All degrees of freedom associated with the
bottom reference point were fixed.

A total displacement of 2.5 mm was applied to the top reference node at a rate of 2
mm per minute in the axially compressive direction. The total displacement was divided
into two steps. The first step, or pre-buckling step, was a dynamic analysis that specified
0.12 seconds for the initial and maximum increment. The second step of the analysis
began after a time period of 60 seconds. The load rate remained constant, but the initial
and maximum increments were decreased to 0.009 seconds. This defined the buckling
phase of the analysis. The larger time step in the prebuckling phase was to increase
computational efficiency. The smaller time step was employed during the buckling step
to ensure the peak load was captured accurately and to have a detailed understanding of
the predicted buckling progression. This combination of steps allowed the analysis to be
reasonably computationally efficient, while still obtaining the desired buckling data.

2.5. EXPERIMENTAL SETUP

Test article NDL-1 was tested in axial compression at NASA Langley Research Center using
a load frame which is capable of applying up to 3000 kN. In the compression loading set
up, the top platen was fixed and the test article was compressed by the bottom platen,
actuated by a hydraulic system. The experimental setup is shown Figure 2.8. Three
subcritical load sequences — in which failure was not expected — were planned before
the final test to failure. The subcritical load sequences consisted of loading NDL-1 in pure
axial compression at levels that were 20%, 40%, and 60% of the test article’s predicted
linear bifurcation load, 2295 kN. A displacement-controlled compression rate of 0.08
mm/min was applied for all load sequences.

Test data was obtained from several instrumentation sources. The load was measured
via a load cell. Displacement was measured by six direct current differential transducers
(DCDTs) positioned around the load frame, Figure 2.9. Strain was measured with 32 elec-
trical resistance strain gages as shown in Figure 2.10. The OML gauges were odd numbers,
and the IML gauges were even numbers. On both the IML and OML surfaces, 12 axially
oriented gauges were spaced at 0, 90, 180, and 270 degrees around the circumference
with axial positions of -562 mm, 0 mm (midheight), and 562 mm. These gauges were
designated with an “A” which references the axial direction. Additionally, four inner and
four outer midheight gauges measured hoop strain at 0, 90, 180, and 270 degrees. These
gauges were designated with an “H” which references the hoop direction.

Eight digital image correlation (DIC) systems were used to observe the experiment:
four low-speed systems and four high-speed systems, with each system comprised two
cameras in a stereo configuration. The low-speed data was captured at a rate of 1 frame per
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Figure 2.8: NDL-1 experimental setup at NASA Langley Research Center.

second. The lenses and standoff distances were selected such that the system’s resolution
was optimized for the desired field-of-view, i.e., maximum spatial resolution. The high-
speed data was captured at a rate of 20,000 frames per second. The outer surface of the
test article, which included the composite cylinder and the aluminum ring containing
the potting, had a high-contrasting speckle pattern applied for DIC as seen in Figure
2.8. The ideal speckle diameter for the low-speed system was generally between 4 and 6
pixels. However, the speckle pattern diameter was doubled to 8 to 12 pixels/speckle for
the low-speed systems to accommodate the lower resolution of the high-speed cameras,
because the latter’s chosen resolution was lower than the former’s. This translated to a
speckle size ranging from 4.5 mm to 6 mm.

Low-speed and high-speed camera pairs were positioned facing the circumferential
positions of the shell at 45, 135, 225, and 315 degrees as indicated in Figure 2.11. The
fields of view for the DIC systems were centered on the NDL-1 midheight. Low-speed
DIC recorded throughout the entire test. Prebuckling radial and axial displacements
were generated from this data. High-speed DIC was used to capture the buckling event
(initiation and propagation). Real-time monitoring stations were used to observe full-field
displacements and strains from low-speed DIC along with load and axial displacements
during the test.

The top load platen was balanced to help ensure even load introduction before the
first load sequence. The top load platen system consisted of the two black plates located
above NDL-1 in Figure 2.8. Between the two plates was a hemispherical joint that was
centered in the middle of the plates. To balance the top load platen, the readings for
the eight back-to-back strain gauges placed every 90-degrees on the top end of the test
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article must be within 10% of each other. Virtual extensometers within the DIC software
were also utilized to examine the load introduction in areas where strain gages were not
present. Based on the virtual extensometer data, the top shell end surface was shimmed
between the 210-degree and 315-degree circumferential locations to allow for a more
uniform load introduction.
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Figure 2.9: Mid-section top-view drawing of the load frame indicating angular locations and DCDT mounting
points. All dimensions are in millimeters.
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2.6. RESULTS AND DISCUSSION

A comparison of the data derived from pretest prediction models as described in Section
2.5 and the experimental data is presented. First, a comparison of the load versus axial
displacement data is described. Next, the axial and circumferential membrane strains
are compared. Then, the radial contour plots generated from the low-speed DIC data
are compared against the FEM predictions for the prebuckling response and incipient
buckling behavior. Finally, the postbuckling response as measured by the high-speed DIC
data is presented.

2.6.1. PRETEST PREDICTION MODELS AND TEST DATA COMPARISON

During the test-to-failure load sequence, NDL-1 failed at a peak load of 2077 kN and a
total axial displacement of 2.19 mm. The overall behavior of the test article matched the
pretest predictions well for both models, — constant-fiber-volume-fraction and constant-
quantity-of-fibers— as seen in the load versus displacement plot of Figure 2.12. The black
line corresponds to the test data in which the average axial displacement was derived from
the low-speed DIC data. Both pretest prediction models contained the measured radial
and thickness imperfections (Figure 2.3), and top and bottom shell surface imperfections
(Figure 2.4). The blue line represents the pretest predictions for the material properties
assuming a constant fiber volume fraction as described in Section 2.4.2. The orange line
represents the pretest predictions using the same measured imperfections but assumes
a constant quantity of fibers per unit area. Both models show good correlation, but
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Figure 2.11: Locations of DIC systems. Approximate fields of view are indicated by blue lines.
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the constant-fiber-volume-fraction model matches the test data better by predicting a
buckling load of 2075 kN, a 0.04% difference from the test. The constant-quantity-of-fiber
model predicted a buckling load of 2154 kN, a 3.7% difference. There is a 0.2% difference
in stiffness between the constant-fiber-volume-fraction model and the test data, and a
3.7% difference between the stiffness of the constant-quantity-of-fibers model and the
test data. Since the constant-fiber-volume-fraction model correlated better, those results
are presented herein.
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Figure 2.12: Load versus average displacements plot.

The intent of the shims was to improve load uniformity. The influence of the end
conditions was assessed by also running a model without the shell end imperfections.
There was the difference in end conditions. The responses predicted for models with
and without the shell end imperfections were nearly identical. Therefore, a single model,
the model with shell-end imperfections, is presented herein. The back-to-back axial (A)
membrane strains, or the average strain of the IML and OML gauge, at the top, midheight,
and bottom of NDL-1 for the test and FEM, are shown in Figure 2.13a. The measured axial
membrane strains remain essentially linear up to the buckling load of 2074 kN. This is
also apparent in the FEM data as well. There is more divergence in the membrane strains
at the top than there is at the midheight and bottom. The top, +562 mm axial location,
axial membrane strains calculated from the test data at buckling at 0-degrees (5A/6A)
and 180-degrees (17A/18A) were -1673 ue and -1704 ue, respectively. The calculated
axial membrane strains from the FEM at those locations were -1546 pe and -1558 e,
respectively, which are 8% less than the predicted values. The axial strains calculated from
the test data just prior to buckling for the 90- degree strains (11A/12A) and 270 degrees
(23A/24A) circumferential locations were overpredicted by more than 4%. The calculated
membrane strain from the test data and from the FEM for gauges 11A/12A were -1504 ue
and -1568 ue, respectively. The calculated axial membrane strains from the test data and
predicted strains for 23A/24A were -1473 ue and -1568 pe, respectively. The higher-than-
predicted strains at the 90- and 270-degree circumferential locations indicates potential
high spots on the loading surface in those regions. This may be associated with the shims
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placed between 210- and 315- degrees while balancing the top load platen. It should be
noted that these strains are well below the calculated longitudinal compressive failure
strain of -12,280 ue listed in Table 2.2.

It is apparent that the effects of nonuniform loading began to attenuate as the load
was distributed down the height of the test article. The percentage difference between
the membrane strains calculated from the FEM and from the test data at buckling at
the midheight, 0-mm axial position, (Figure 2.13b) are less than at the top. For example,
the calculated FEM axial membrane strain at buckling at midheight at the 0-degree
circumferential location (3A/4A) and 180-degree (15A/16A) circumferential locations
were -1933 ue and 1941 e, respectively. These values are approximately 3% less than the
calculated axial membrane strains from the test data at buckling, which were -1990 ue
for gauges 3A/4A and -2010 ue for gauges 15A/16A. As with the top membrane strains,
the 0-degree and 180-degree membrane strains were overestimated, and the 90-degree
and 270-degree circumferential locations were underestimated. The FEM-calculated
membrane strains for gauges 9A/10A were -1932 pe and 21A/22A was -1908 ue. The
membrane strains calculated from test data for those respective locations were -1853
ue and -1823 e, which are 5% less than the FEM-calculated axial membrane strains.
Also, the strains calculated from the test data at buckling are lower than the calculated
compressive longitudinal failure strains listed in Table 2.2.

Similar trends to the top and middle calculated membrane strains are noted when
comparing the axial membrane strains from FEM data and test data at the bottom, -562
mm axial position, of NDL-1 (Figure 2.13c) at the buckling load. The calculated predicted
strains at buckling for the gauges at 0 degrees (1A/2A) and 180 degrees (13A/14A) were
-1588 e and -1580 pe. The calculated axial membrane strains from the test data at those
respective locations were -1608 pe and -1617 pe. There was less than a 3% difference
between these values. There is also a 3% difference between the calculated strains from
FEM and test data for the gauges at 90- and 270-degree circumferential locations (7A/8A
and 19A/20A). The membrane strains calculated at the buckling load from FEM data were
-1565 pe and -1562 ue, and the calculated membrane strains from test data at buckling
were -1610 pe and -1606 pe, respectively. These values are also less than the failure strains
reported in Table 2.4.

The hoop membrane strains at midheight calculated from the FEM and test data
show signs of nonlinearity approaching the peak load, Figure 2.14. This is attributed
to the large out-of-plane deformations that occur just prior to and during a buckling
event. While a similar curve shape is presented for the measured data and the predicted
data, the predicted and measured circumferential strains diverge from the beginning
with the predicted circumferential strains typically being less than the observed. The
FEM indicates that all calculated membrane hoop strains at 0, 90, 180, and 270 degrees
generally have the same slope. This remains true for all membrane hoop strain gauges
except for the those determined from gauges 21H/22H at the 270-degree locations. This
is consistent with the observation made in the axial membrane data. The maximum
predicted membrane hoop strain was 3053 pe for gauges 3H/4H at the 0-degree circum-
ferential location. The maximum observed membrane hoop strain was 3060 pe for gauges
15H/16H at the 180-degree circumferential location. These values are also well below the
calculated transverse tensile failure strain of 6584 p¢, as reported in Table 2.2.
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Figure 2.14: Hoop membrane strain for the pretest predictions (FEM) and test.

The radial displacement contours for the test and from the pretest prediction model
are presented for the prebuckling, incipient buckling, and postbuckling response. The
DIC cameras were not able to measure data over the entire OML because of interference
from the load-frame posts; therefore, no full-field strain and displacement data was
captured around the 90-degree and 270-degree circumferential locations. The low-speed
DIC cameras captured the prebuckling response, while the high-speed DIC cameras
captured the bucking and postbuckling response.

The low-speed DIC systems primarily captured the state of the test article prior to
and at incipient buckling. Figure 2.15 shows the experimental load versus displacement
plot with markers corresponding to 21%, 43%, 64%, 86% and 100% of the experimental
buckling load, intervals of 445 kN. These markers relate to Figure 2.16 through Figure
2.20 where the associated radial deformation contours are presented at the specified load
levels.
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Figure 2.15: Load versus axial displacement from DIC, with markers indicated by symbols corresponding to
Figure 2.16 through Figure 2.20.

Starting at a load level of 21% of the experimental buckling load, it can be seen that
the test article had a greater radial displacement than what was predicted by the FEM,
Figure 2.16. The maximum measured outward radial displacement was 0.45 mm while the
predicted was 0.23 mm. The shape of the outward radial deformation in the finite element
model was relatively uniform, where the radial deformation predicted in the acreage
region ranged from 0.23 mm to 0.21 mm. On the contrary, the test article exhibited an
oval-shaped pattern. The maximum outward radial deformation occurred around 22.5-
degrees with a magnitude of approximately 0.45 mm. The relative inward deformation
exhibited by the test article was -0.22mm. There was no inward radial deformation
predicted by FEA. Also, it should be noted that a band appeared between +100 mm and
+200 mm in the predicted response, Figure 2.16b. This coincides with the feature on the
mandrel in the radial displacements plot in Figure 2.3a and Figure 2.3b , but it does not
appear in the test data at this load level, shown in Figure 2.16a.

Trends similar to those observed at 21% of the experimental buckling load were also
observed at 43% of the experimental buckling load, Figure 2.17. The outward displace-
ments were underestimated by the model with a predicted maximum displacement of
0.46 mm, but the maximum outward displacement observed was 0.69 mm. The mini-
mum inward deformation is also underestimated because no inward displacement was
reported in the FEM data, but the test article maintained its relative inward deformation
of -0.22 mm. More distinct circumferential wave features began to develop in the experi-
mental data, which correlates better with the predicted response, but the ovalization was
still apparent. The mandrel feature that was observed in the predicted radial deformation
plots at 21% of the experimental buckling load, began to appear in the experimental data
at 43% of the experimental buckling load.

At 64% and 86% of the experimental buckling load, more defined dimples began to
form in both the FEM and experimental data. Most notable was that a band of circum-
ferential waves was witnessed between +100mm and +200 mm, as indicated in Figure
2.18 and Figure 2.19. As the applied load increased, the outward radial deformation
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increased from 0.70 mm to 0.97 mm in the FEM data. However, no additional inward
radial deformation or growth was predicted. With the experimental data, the test article
exhibited an increase in outward deformation from 0.99 mm to 1.30 mm. The observed
minimum inward deformation remained relatively consistent from 64% to 86%. An in-
ward displacement of -0.27 mm at 64% of the experimental buckling load was noted in
Figure 2.18a. The observed inward deformation at 86% of the experimental buckling load
was -0.25 mm, Figure 2.19a. No inward deformation was witnessed in the FEM pretest
predictions for either load level.

Just prior to buckling, more elements of agreement began to appear between test
and analysis with regards to the general shape. Inward dimples started to form and
concentrated on the mandrel imperfection feature between axial positions +100 mm and
+200 mm, Figure 2.20. The predicted response from the FEM had four dimples spaced 45-
degrees apart beginning at 0-degrees between the +100 mm and +200 mm axial positions,
which were considered potential failure locations. The test data shows that a single dimple
began to dominate the radial deformation plot at the same axial position predicted, +100
mm and +200 mm, at the 200-degree circumferential location. The maximum inward
displacement observed in the test was -0.35 mm, while a maximum inward deformation
of only -0.04 mm was predicted.

Notably, the growth of the maximum outward radial deformation and minimum
inward displacements was relatively consistent between load levels for the experimental
data and FEM data. For example, the change in the maximum outward deformation
observed in the experimental data between 21% and 43% of the experimental buckling
load was 0.23 mm. The test article did not exhibit any change in the inward deformation.
Similarly, the difference between the maximum outward deformation in the FEM data
from 21% to 43% of the experimental buckling load was 0.24 mm. There was also no
predicted change in the minimum inward deformation. From 43% to 64% of the buckling
load, the experimental data showed a change in maximum outward deformation and
minimum inward deformation as 0.30 mm and -0.05 mm, respectively. For the FEM radial
deformations, these same quantities correspond to 0.24 mm and 0.00 mm. The growth in
maximum outward displacement from 64% to 84% of the experimental buckling load was
0.31 mm as exhibited by the test article and FEM data showed 0.27 mm. The change in
inward radial deformation at the same load level from the experimental data was +0.02
mm and no change in the FEM data. Finally, the growth in maximum displacement from
the experimental data from 86% of the experimental buckling load to just before buckling
was 0.45 mm as, and 0.36 mm as output by the FEM. The growth of inward deformations
as seen in the experimental data was -0.10 mm, and the FEM was -0.04 mm. These
subtle changes between load levels are averaged out if one compares the outward radial
displacement at 21% of the experimental buckling load and just prior to buckling for the
experimental data and the FEM data which is 1.21 mm for both. The overall magnitudes
of the radial displacements were not consistent between the experimental data and FEM
data, but the overall growth of radial deformations between load steps is similar.

The buckling initiation and post buckling response were recorded with 4-pairs of
high-speed cameras with a capture rate of 20,000 frames per second. The buckling prop-
agation can be observed in a series of images from the first high-speed image through
16.3 milliseconds after the first image was taken (Figure 2.21a - Figure 2.21d). Buckling
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initiated at a dimple centered at about the 200-degree circumferential location with an
inward radial deformation of -3.10 mm, as seen Figure 2.21a. According to the images,
it took approximately 7.3 milliseconds for the buckling to fully propagate around the
circumference of the test article, as shown in Figure 2.21a - Figure 2.21c. In the 7.3 mil-
liseconds from Figure 2.21a - Figure 2.21c, the buckling initiation dimple went from -3.10
mm to -33.25 mm of radial deformation. The pattern observed in Figure 2.21b consists of
two axial half waves and seven circumferential full waves. Then the postbuckling pattern
transitioned from seven to six circumferential half-waves, Figure 2.21d. As the pattern
evolved, the radial displacements grew significantly. The postbuckled equilibrium radial
deformation determined from analysis (Figure 2.22) was seven circumferential waves and
two axial half-waves, one circumferential wave more than in the final high-speed image
(Figure 2.21d).

Posttest inspection of the test article revealed a shallow delamination that was ob-
served approximately at midheight and a circumferential location of 170 degrees. The
delamination was approximately 152 mm in length and 51 mm in width as indicated
by the red outline in Figure 2.23. The delamination is believed to have occurred during
the dynamic buckling event at an inflection point between the inward dimple where
buckling initiated and the adjacent outward dimple as seen in Figure 2.21a. The angle of
the delamination is +23-degrees, which is the angle of the outer most ply. The difference
between the predicted and observed postbuckling behavior may be attributed to the
delamination. The delamination caused a localized stiffness differential that was not
accounted for in the FEM. Though NDL-1 was designed to fail in buckling, this should be
confirmed especially with the damage observed after failure. The axial strain and hoop
strain at the failure location derived from DIC is plotted in Figure 2.24a and Figure 2.24b.
The axial strain in the center of the dimple, where buckling initiated, was -2617 ue at the
buckling load. The hoop strain in the center of dimple, where buckling initiated, was 860
pe at buckling. These values are significantly less than the calculated compressive failure
strain of -12,280 pe and tensile strain of 6584 ue (2.2). Based on maximum strain criterion,
itis concluded that the test article failed in buckling rather than due to strength failure.
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Figure 2.16: Radial displacement at 21% of the experimental buckling load: a) Experimental data ; b) FEM data

600 069 _
_ 061 E
£ 400 053 E
= 044 E
c 200 036 g
2 028 &
2 019 &
2 200 011 2
=} 003 —
2 -400 -0.06

014 ¢

-600 : , ‘ : : . ) 0.22

90 135 180 225 270 315 360
Circumferential Position [degrees]
(@)
600 0.46
042 =
£ 400 038 g
3 033 =
= 200 — - — 029 £
2 025 §
a 021 o
& 200 017 3
] 013 T
2 -400 008 g
004 ¥
-600 1 . . . : ; ; . . -0.00

0 45 90 135 180 225 270 315 360
Circumferential Position [degrees]

(b)

Figure 2.17: Radial displacement at 43% of the experimental buckling load: a) Experimental data ; b) FEM data
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Figure 2.18: Radial displacement at 64% of the experimental buckling load: a) Experimental data ; b) FEM data
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Figure 2.21: Buckling propagation measured by high-speed camera: a) First high-speed image ; b) 5.1
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Figure 2.23: NDL-1 damage.
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2.6.2. POSTTEST MODEL CORRELATION

While the correlation between the pretest prediction model and the test data was very
good, specifically the stiffness and predicted buckling load being within 1%, an additional
posttest investigation was completed to determine other variables that may have affected
the predicted buckling initiation site. A significant amount of data has been collected on
the as-built configuration of NDL-1, such as radial imperfections, thickness variations
and shell-end imperfections. There are other possible sources of variation that could not
be quantified prior to test. For example, this may include nonuniform loading due to the
test frame.

The axial displacements measured just prior to buckling derived from the DIC data at
45, 135, 225, and 315 degrees yielded that the axial displacement at these locations varied
from 2.17 mm to 2.21 mm. From these values, a best-fit plane showed a slight tilt toward
the 151-degree circumferential position with an associated maximum axial displacement
of 0.021 mm at the shell edge. This corresponds to a rotation of 0.003 degrees of the
best-fit plane towards the 151-degree circumferential location. To account for this in the
FEM, the top reference node was rotated to 0.003 degree from 0 degree linearly over the
course of the aforementioned initial prebuckling step, along with the original imposed
axial displacement. The rotation was then held constant at 0.003 degree through and after
buckling.

The inclusion of the load imperfection changed the buckling load and predicted
buckling initiation site. As a result of the tilt, the predicted buckling load was reduced
from 2075 kN to 2061 kN. Recall that the experimental load was 2074 kN, which means
the adjustment did not improve the prediction of the buckling load with respect to the
experimental load. The radial deformations between the models with and without the tilt
show a similar global pattern, but the predicted dimple location changed. In the pretest
predictions, Figure 2.20b, four distinct dimples were centered about the +150 mm axial
position starting from 0-degree circumferential position and repeating every 45-degrees
with the last dimple at 135-degrees. The prebuckling pattern from the model with the
plane-tilt model is similar, but a single, more prominent dimple formed in the same axial
position at 135 degrees, Figure 2.25. The predicted buckling initiation site was at the
same axial position as the two analyses, but the model still was not able to predict the
experimental buckling initiation site centered at 200 degrees.
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Figure 2.25: Radial displacement just prior to buckling with loading imperfection.
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The load imperfection included in the posttest analysis did not resolve the discrep-
ancy in the radial deformations. One possible explanation for the difference in radial
deformation may possibly be attributed to the change in the radial geometric imperfec-
tions of the test article from when it was measured after manufacturing, as-manufactured
imperfections, to when it was installed in the load frame, as-installed imperfections. It has
been shown (References [23] and [24]) that significant changes in the predicted buckling
behavior may be found when the as-installed imperfections were included in the FEMs
and compared with the predicted behavior when the as-manufactured (before installation
in the test facility) imperfections were included in the FEMs. The full shape of NDL-1
could not be measured in the test frame because the test-frame posts prevented access to
sections of the test article.

2.7. CONCLUSION

Validated finite element models are important for designing buckling-critical launch-
vehicle structures, and have been used in the past to perform sensitivity studies and
develop new buckling knockdown factor approaches to reduce the mass of launch vehicle
components. The objective of this work was to demonstrate that the scaling methodology
was successful in determining a design that would ensure buckling prior to material fail-
ure, and to present a modeling methodology to successfully predict the buckling behavior
of a scaled, launch-vehicle-like composite cylinder called NDL-1. The finite element
modeling approach presented was validated experimentally. The model parameters, the
inclusion of as-built details, test and analysis correlation, and a posttest investigation
were discussed.

The model parameter study conducted prior to testing was used to determine that
the SC8R element performed similarly to the S4R element in analyzing the buckling
behavior of a composite cylindrical shell. It was also determined, that while the 10-mm
element size was acceptable, a smaller mesh size of 5 mm would better capture NDL1’s
imperfection signature measured by structured light scanning, including a prominent
feature on the mandrel that transferred to the cylinder during fabrication. The model
included features such as measured radial imperfections, thickness imperfections, and
shell-end imperfections. In addition, laminate coupon testing was used to develop finite
element model lamina properties to best characterize the laminate stiffness.

The results of the finite element model (FEM) correlated well with the experimental
results. The FEM-predicted buckling load was within 0.04% of the experimental buckling
load and the predicted stiffness was within 1% of the experimentally measured stiffness.
It is speculated that details such as the as-installed imperfection shape could have influ-
enced the shape and magnitudes of the radial deformations. While the magnitudes were
quite different, the rate of change of the inward and outward deformation was similar
between the finite element model and test. Buckling did initiate in the test at the same
axial location as predicted with the FEM, which corresponded to the localized mandrel
feature. However, the circumferential location of the buckling initiation site was different
between the prediction and test. It was shown with posttest test-analysis correlation
that the circumferential buckling initiation site was sensitive to sources of nonuniform
loading. The experimental postbuckling behavior was similar to that of the FEM, but
damage that occurred during the buckling event may have influenced the experimental
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postbuckling behavior. Damage was not considered in the FEA, and this discrepancy was
deemed a potential source of deviation in postbuckling observations between test and
FEM.

The finite element model presented was shown to produce accurate predictions for
the buckling load and stiffness of the scaled, launch-vehicle-like composite shell. The
predicted prebuckling, incipient buckling, and postbuckling radial deformations had
elements of agreement when compared to the measured radial deformations. Therefore,
it is suggested that a similar modeling approach can be employed for other large-scale
composite cylindrical shell structures.



ANALYSIS AND TESTING OF A
LAUNCH-VEHICLE-LIKE COMPOSITE
CONICAL-CYLINDRICAL SHELL

AUNCH-VEHICLE shell structures, which can be composed of both cylindrical and con-
Lical sections, are known to be susceptible to buckling due to their large radius-to-
thickness ratios. Advancements in composite manufacturing and numerical methods have
enabled designers to consider more nontraditional shapes, such as connecting the conical
and cylindrical sections with a toroidal transition to create a single-piece conical-cylindrical
shell. This single-piece construction eliminates the need for a stiff, heavy interface ring
between sections and has the potential to reduce mass. To better understand the buckling
behavior of a composite conical-cylindrical shell, a lab-scale article was designed, fab-
ricated, and tested. A finite element model of the test article, which included the actual
thickness variations and radial imperfections, was created prior to test. The test article
buckled elastically at 251.8 kN, approximately 8.8% higher than the predicted buckling
load of 231.4 kN. Because the test article buckled elastically, the buckling test was repeated.
The measured buckling load from the second test was within 1% of the first. Continued
research in conical-cylindrical structures has the potential to expand the design space for
launch-vehicle structures and lead to improved designs and reduce mass.

This chapter has been adapted from Rudd MT, Schultz MR, Bisagni C, Buckling behavior of Conical- Cylindrical
Shells and "Design Considerations for Launch-Vehicle Structures,” AIAA Scitech Forum 2024, AIAA Paper
2024-0034 and Rudd MT, Schultz MR, Bisagni C, “Analysis and testing of a launch-vehicle-like composite
conical-cylindrical shell”, AIAA Journal, vol. 62, no. 9, pp. 3526-3543, 2024.
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3.1. INTRODUCTION

Launch-vehicle designs based on traditional manufacturing methods typically use heavy
circumferential rings to join conical and cylindrical structures. Advances in composite
manufacturing, such as automated fiber placement (AFP), and numerical tools, such as
high-performance finite element codes, enable aerospace engineers to consider alter-
native designs. These designs may include the combination of conical and cylindrical
components to create a unitized conical-cylindrical shell with a toroidal transition for
launch-vehicle structures and payload adapters. This unitized configuration would elim-
inate the need for interface rings, and can potentially lead to significant mass savings.
Examples of this type of unitized construction are the SLS Universal Stage Adapter (USA),
which is currently under development, the Systeme de Lancement Double Ariane (Sylda)
on the Ariane 5, and Vega Secondary Payload Adapter.

Empirically-based design factors, or knockdown factors, are often used to ensure
adequate margin to prevent global buckling. Such empirically-based buckling knockdown
factors for cylinders are published in NASA SP-8007 [6] along with recommendations for
developing analysis-based knockdown factors. NASA SP-8007 was originally published in
1965 and much of the experimental data presented was based on experimental results
from as early as the 1920s with little or no data from composite shells. Researchers widely
agree that current design parameters are often excessively conservative, motivating efforts
to investigate the buckling behavior of composite cylindrical shells in launch-vehicle
applications to reduce mass. For example, Hilburger and Starnes [34] used high-fidelity
models to predict the buckling response of composite shells to better understand the
sensitivities of these structures to geometric imperfection because the current guidelines
were known to be overly conservative. More recently, Takano, et al. [35], tested composite
cylindrical shells with a large radius-to-thickness ratio. The published experimental
results for composite cylinders had only extended to a radius-to-thickness ratio of 500,
while Takano, et al. [35] tested shells with a ratio equal to 848. Rudd, et al. also tested
a composite cylindrical shell and developed a high-fidelity finite element model (FEM)
including geometric imperfections to predict the buckling and post-buckling behavior
to validate a numerical methodology with application to the design of launch vehicles
as reported in [36] and Chapter 2. Also, Hartwich, et al. [37] published experimental
data about how different manufacturing methods and boundary conditions can affect
the buckling results of composite shells. Wagner, et al. [38] have also contributed to
the body of knowledge pertaining to the buckling of composite cylinders to improve the
designs of launch vehicle structures by suggesting approaches to determine lower-bound
knockdown factors [38].

The European Union and NASA have launched major initiatives to reduce exces-
sive conservatism in buckling design guidelines [39]. In 2012 the New Robust DESIgn
Guideline for Imperfection Sensitive COmposite Launcher Structures (DESICOS) project
was established. A goal of the DESICOS project was to determine analysis methods to
confidently provide less conservative, lower-bound knockdown factors for the design of
composite cylindrical launch-vehicle structures. The DESICOS researchers used analyt-
ical, numerical, experimental, and probabilistic techniques. The NASA Shell Buckling
Knockdown Factor project has published a series of papers documenting the test and
analysis of 2.4-m-diameter composite sandwich cylindrical shells with the intent to
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help define a modeling methodology to develop design-specific knockdown factors for
composite sandwich cylindrical shells [26, 27, 28]. In summary, researchers have cited
the need to further investigate the buckling behavior of composite cylindrical shells to
improve the design of these structures for aerospace applications.

A reasoning similar to the one indicated above drives the investigation of composite
cones. A monograph with design recommendations for the buckling of thin-walled
conical shells, NASA SP-8019 [5], was published shortly after NASA SP-8007. NASA SP-8019
recommends using a buckling knockdown factor of 0.33 for thin-walled conical shells, and
has similar shortcomings as NASA SP-8007. The guidance given in SP-8019 was based on
much less data than the guidance in SP-8007 for cylindrical shells. Therefore, researchers
have started building a knowledge base for the buckling of conical shells that is similar to
cylindrical shells. For example, Tong [40] published experimental results on the buckling
of nine carbon-fiber-reinforced-plastic and nine glass-fiber-reinforced-plastic conical
shells with the aim of adding to the limited amount of research available at that time.
Goldfeld and Arbocz [41] studied the imperfection sensitivity of laminated conical shells.
Khakimova, et al.’s [42], developed high-fidelity FEMs to predict the buckling behavior
of three carbon-fiber-reinforced-polymer conical shells; these FEMs included features
such as midsurface radial imperfections and thickness data. The goal of Khakimova,
et al. [43] research was to address the fact that composite materials were not included
when developing NASA SP-8019. In support of the DESICOS project, Ambrovich, et al.
[44], tested two cylindrical and two conical shells. More recently, Sleight, et al. [45]
documented the results from an imperfection sensitivity study for conical sandwich-
composite structures for launch vehicle . One of the main objectives for each of the cited
papers is to address the need for more research for buckling critical composite conical
shells to improve future launch vehicle and payload adapter designs.

The buckling behavior of conical-cylindrical shells has been studied by researchers us-
ing numerical and semi-analytical methods, but the research was primarily aimed at civil
engineering and piping applications. Wunderluich, et al. [46], developed a semi-analytical
approach to perform a nonlinear static and dynamic analysis of isotropic pressure vessels.
In their research, Wunderluich, et al. [46] investigated toriconical shells, meaning either
a conical or spherical end, connected to a cylindrical base with a toroidal segment be-
tween. Anwen [47] published a paper on the buckling of a conical-cylindrical structure
with a toroidal transition segment, but assumed isotropic material properties and only
considered external pressure loading. To date, Patel, et al. [48], and Singh and Patel [49]
have published research on the buckling and post-buckling characteristics of composite
conical-cylindrical shells subjected to torsion, external pressure, axial compression, and
thermal loading. Interrogated in their research were the effects of layup, cone angle,
and axisymmetric imperfections, but they did not consider a toroidal transition, and the
boundary conditions assumed were more in line with the civil engineering and piping
applications. Zarei and Rahimi [50] published a study regarding the buckling resistance
of joined composite conical-cylindrical shells, but again toroidal transitions were not
considered, and they focused on lateral pressure loading.

Minimal experimental data has been published for conical-cylindrical structures, and
the majority of the data is related to metallic structures. Hu and Raney [51] tested a metal-
lic conical-cylindrical shell to validate their analytical models for vibration response, but
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not global buckling. Bushnell and Galletly [52] and Zhao [53] tested to failure structures
similar to those of Hu and Raney [51] under internal pressure to validate finite element
methodologies. Chronopoulos, et al. [54], developed a numerical model to predict the
vibroacoustic response of a composite conical-cylindrical-conical shell, which was a
scaled-down Sylda on the Ariane 5.

More generally, the conical-cylindrical shell shape can be classified as a shell of
revolution or shell with variable curvatures. There have been a numerous publications
dedicated to numerical and analytical methods to determine the buckling load of shells
of revolutions and shells of variable curvature. For example, Marguerre [55] published a
NASA technical memorandum on the stability of variable curvature shells. Also, a series
of NASA contractor reports with analysis methods for stress and stability for shells of
revolution were published where the imperfection sensitivity under external pressure was
studied (see [56, 57, 58]), and though the structural application is different, the geometry
is similar. Also, Tornabene and Viola [59] and Tornabene, et al. [60], researched the
response of functionally graded doubly-curved shells, specifically, the static response
and free vibration. More recently, Zingoni and Enoma [61] studied the strength and
stability of spherical-conical shells, which would be pressurized and used in underwater
applications.

The common goal for research published to date on the buckling behavior of com-
posite cylindrical and conical shells is addressing the lack of data available for these
structures by publishing numerical and experimental test results. It has been realized
that this data is vital to improve launch-vehicle and payload adapter designs. The appli-
cation of unitized composite conical-cylindrical shells has potential to improve the mass
efficiency of launch-vehicle primary and secondary structures by eliminating the need
for the heavy interface rings that traditionally join the cylindrical and conical portions. To
make this unitized conical-cylindrical shape a common design solution, it is necessary to
have experimental data on the buckling of composite conical-cylindrical shells. Therefore,
a composite conical-cylindrical shell was designed, built, and tested in axial compression
until buckling failure with the objective of influencing and improving the designs of future
aerospace structures.

A numerical study investigating the buckling behavior and imperfection sensitivity
of a conical, cylindrical, and combined conical-cylindrical shell is presented in Section
3.2.The results of the numerical studies informed the layup and geometry of a composite
conical-cylindrical shell test article, which was designed to fail in buckling. The corelation
of the test data and analysis is discussed in detail in Section 3.3.The results are summarized
in Section 3.4.

3.2. NUMERICAL STUDY ON THE BUCKLING BEHAVIOR OF A

CONICAL, CYLINDRICAL, AND CONICAL-CYLINDRICAL SHELL

The linear and nonlinear analyses were completed using the general-purpose finite
element software, Abaqus [62]. A mesh convergence study was used to determine that
a mesh element size of approximately 5 mm with the four-node reduced-integration
shell element (S4R) was sufficient to capture the buckling behavior for all geometries
presented. The Lanczos solver was utilized for the eigenvalue analyses and an implicit
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dynamic nonlinear solver was used to capture the prebuckling and buckling behavior in
the nonlinear analyses. The top and bottom edges of the shells had all degrees of freedom
fixed, except for the translational degree of freedom at the top edge, which allowed for
axial displacement.

An aluminum alloy cone with a semi-vertex angle of 15 degrees, a centerline radius of
400 mm, a height of 600 mm, and a wall thickness of 1.43 mm was considered, as shown in
Figure 3.1a. The critical buckling load, obtained as the lowest eigenvalue of the buckling
equation for the geometry with an elastic modulus of 71.0 GPa and a Poisson’s ratio of
0.33, was 542.4 kN. The eigenmode shape associated to the lowest eigenvalue is presented
in Figure 3.1b. Eigenvalue analyses are relatively inexpensive from a computational point
of view, but a computationally intensive geometrically nonlinear analysis can provide
a better understanding of the buckling behavior of thin-walled shell structures. The
predicted nonlinear buckling load of the isotropic cone geometry was 497.8 kN. That is,
the influence of the geometrically nonlinear response reduced the buckling load by 8%
as compared to the eigenvalue analysis (buckling equation). The predicted deformation
shortly after buckling from the nonlinear analysis is shown in Figure 3.1c. The dark blue
dimples at the small diameter end of the cone indicate where buckling initiated.

]

600 mm 150 :
400 mm
(@) (b) (c)

Figure 3.1: Conical shell: a) geometry; b) first eigenmode; c) radial deformation immediately after buckling.

The analysis procedure described above was repeated for a cylindrical shell with the
same height of 600 mm, the same radius of 400 mm and the same material as shown
in Figure 3.2a. The first (lowest) eigenvalue was predicted to be 581.5 kN, and the cor-
responding first eigenmode is presented in Figure 3.2b. The geometrically nonlinear
buckling load was predicted to be 536.8 kN. The inclusion of large rotations and displace-
ments reduced the buckling load by approximately 8%, which is similar to the conical
shell. Figure3.2c presents the radial deformations just after buckling from the nonlinear
analysis and shows that buckling may occur at ends of the cylinder.
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Figure 3.2: Cylindrical shell: a) geometry; b) first eigenmode;
c¢) radial deformation immediately after buckling.

To create the conical-cylindrical shell for this study, the cone and cylinder geometries
presented above were stacked on top of one another and combined, Figure 3.3a. The
eigenvalue for this conical-cylindrical shell corresponds to a linear buckling load of 516.8
kN and the associated eigenmode is presented in Figure 3.3b. The geometrically nonlinear
buckling load was 261.5 kN, which is approximately 50% of the buckling load computed
from the eigenvalue. This reduction is much greater than the reduction observed for the
individual cone and cylinder components. The radial deformations immediately after
buckling for the conical-cylindrical shell in Figure 3.3c shows that buckling initiated near
the junction between the cone and cylinder.

15°
Qe[ L ofe Lo
1200 mm
.
400 mm
(@) (b) (c)

Figure 3.3: Conical-cylindrical shell: a) geometry; b) first eigenmode;
c¢) radial deformation immediately after buckling.

Since it is well known that the difference between test and analysis for conical and
cylindrical shells can be largely attributed to the presence of radial imperfections, anal-
yses were performed to understand whether conical-cylindrical shells share a similar
sensitivity to radial imperfections. Using the geometry presented in Figure 3.3a, imperfec-
tion shapes of the first eigenmodes for the conical, cylindrical, and conical-cylindrical
shell were used as the radial imperfection. The first eigenmode shapes were selected
as the imperfection shape because the first eigenmode or weighted combinations of
eigenmodes are commonly used in practice to assess the imperfection sensitivity of an
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aerospace shell structure. The eigenmode shapes are presented in Figure 3.1b, Figure 3.2b,
and Figure 3.3b for the conical, cylindrical, and conical-cylindrical shells, respectively.
The amplitude of the imperfection was chosen to be to 10% of the 1.43 mm thickness.

The KDFs given in NASA SP-8007 and NASA SP-8019 are scaling factors ranging be-
tween values as low as 0.2 up to a maximum of 1. These scaling factors relate the idealized
eigenvalue buckling loads to the recommended buckling design loads. The KDFs recom-
mended are the lower-bound recommendation based on a series of experimental tests
that were normalized by the eigenvalue buckling load of a structure without imperfec-
tions.

In order to relate the results of the present study with the KDFs in NASA SP-8007 and
NASA SP-8019, a quantity similar to the KDE and referred to as the normalized buckling
load, is defined here as the ratio between a buckling load that accounts for nonlinear
effects prior to buckling as well as structural imperfections, divided by the eigenvalue
buckling load of an ideal structure. The numerically-predicted geometrically-nonlinear
buckling load with imperfections plays a role similar to the experimentally-obtained
buckling loads in the NASA KDE From this point of view, the normalized buckling load
can be directly compared with the KDF even though they were obtained in different ways.

The load versus displacement curves for the conical, cylindrical, and conical-cylindrical
shells obtained from a geometrically-nonlinear implicit quasi-static analysis are presented
in Figure 3.4 for shells without imperfections (solid lines) and with imperfections (dashed
lines). The values of the corresponding buckling load obtained as an eigenvalue of the
buckling equation are shown as dotted lines. The dotted lines are extended over the hori-
zontal axis to facilitate visual comparison with the peak value of the load-displacement
curves. As can be observed in the figure, the buckling load obtained as an eigenvalue of the
buckling equation without imperfections lies above the peak value of the geometrically-
nonlinear response of a shell without imperfections. This difference can be ascribed
to the fact that the prebuckled state used in the buckling equation is obtained from a
geometrically linear analysis.

The normalized buckling load for the imperfect cone, computed as the buckling load
from the nonlinear analysis with imperfections, 288.0 kN, divided by the eigenvalue
buckling load, 542.4 kN, is equal to 0.53. The normalized buckling load for the cylinder
with imperfections is 310.0 kN divided by the eigenvalue buckling load 581.5 kN, is equal
to 0.53. The conical shell and cylindrical shell have the same normalized buckling loads
up to the second decimal. However, the nonlinear buckling load with imperfections for
the conical-cylindrical shell was 221.6 kN, which results in a normalized buckling load of
0.43.
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Figure 3.4: Axial compressive load as a function of the axial compressive displacement of isotropic conical,
cylindrical, and conical-cylindrical shells obtained from an implicit geometrically-nonlinear analysis (NL) for
shells with and without imperfections (dashed and solid lines, respectively). For comparison purposes, the
eigenvalue buckling load (LB) is shown as a dotted line extended over the loading range.

The results of these nonlinear analyses of imperfect shells confirm that the presence
of radial imperfections can significantly reduce the buckling capability for the conical and
cylindrical shells. The inclusion of the eigenmode imperfection decreased the predicted
buckling load by 42% for the cone and cylinder, which is significant compared the 8%
reduction in load due to the effects associated to geometric nonlinearities for the cone
and cylinder. These results contrast with the findings from the conical-cylindrical shell
where the presence of radial imperfections reduced the buckling by only 15%, which
was less than the reduction the geometrically nonlinear effects of 49%. These results
indicate that conical-cylindrical shells may not be as sensitive to geometric imperfections
as conical and cylindrical shell components.

From the perspective of launch-vehicle design, the KDFs recommended by NASA
SP-8007 and NASA SP-8019 for the conical and cylindrical shells being analyzed are 0.33
and 0.42, respectively. The normalized buckling loads for the conical and cylindrical shells
were both 0.53. Comparing the normalized buckling loads of 0.53 to the recommended
KDFs, NASA SP-8007 and 8019 could be considered conservative. On the other hand, the
normalized buckling load for the conical-cylindrical shell of 0.43, may not be considered
conservative when compared to the KDF recommended for the cylindrical shell. The
conical shell KDF is still conservative.

To assess if the large difference between the eigenvalue and nonlinear analyses is spe-
cific to the combined conical-cylindrical shell geometry, similar analyses were repeated
with a shell of the same dimensions with Hexcel’s IM7/8552-1 carbon-epoxy material
system [32]. A composite quasi-isotropic layup of [45/-45/90/0] s with the unidirectional
carbon fiber tape material system was assumed in the analyses. In order to maintain the
same radius-to-thickness ratio as the isotropic structure, the total laminate thickness was
1.43 mm, so each ply had a 0.173-mm thickness. A modulus of elasticity of 140.9 MPa in
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the fiber direction, a modulus of elasticity transverse to the fiber direction 0f 9.72 MPa, a
shear modulus equal to 4.69 MPa, and an in-plane Poisson’s ratio of 0.356 were used in
the analyses.

An eigenvalue buckling analysis and a geometrically nonlinear analysis were com-
pleted, followed by a geometrically nonlinear analysis with imperfections. The eigenvalue
buckling load for this structure was 330.8 kN and the associated eigenmode is shown
in Figure 3.5a. The nonlinear buckling load for this configuration was 186.0 kN and the
radial deformation shape at this load is in Figure 3.5b. As with the isotropic case, the first
eigenmode was used as an imperfection and applied to the geometry with an amplitude
10% of the total laminate thickness. The predicted nonlinear buckling load with the
imperfect geometry was also 186.0 kN, which results in a normalized buckling load of
0.56. The radial displacement shape at buckling is presented in Figure 3.5c. The addition
of radial imperfections essentially had no effect on the buckling load for the composite
conical-cylindrical shell, and it did not significantly influence the location of buckling
initiation. The dark blue dimples, which represent inward dimples and buckling locations,
are still around the conical-cylindrical junction in both Figure 3.5b and Figure 3.5c. In
a manner similar to the isotropic analyses, the inclusion of nonlinear geometric effects
had a greater influence on the buckling load than the inclusion of imperfections for this
geometry. From comparison of the buckling predictions for the isotropic and composite
conical-cylindrical shells, it would appear that the buckling behavior of conical-cylindrical
shells is influenced more by the chosen geometry than the material system. Additionally,
using the first eigenmode shape as the imperfection shape to determine the imperfection
sensitivity may not be considered the most conservative approach since it did not affect
the buckling load for the composite conical-cylindrical shell.

Radial Displacement
Most Outward

Most Inward

(@]

Figure 3.5: Composite conical-cylindrical shell radial displacement shapes: a) first eigenmode;
b) at buckling without imperfections; c) at buckling with imperfections.

Since buckling initiates near the transition region for the configurations with and
without imperfections for both isotropic and composite material systems, it would ap-
pear this region is important to the buckling response of conical-cylindrical shells. To
investigate the importance of this region further, the radius of curvature between the
conical and cylindrical shells was increased to create a more gradual transition between
the components by creating a toroidal transition region as shown in Figure 6. The radius
of curvature, p, for the geometry previously investigated was equal to 0 mm, Figure 3.6a.
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Radii of curvatures of 200 mm, 400 mm, and 800 mm were also investigated, Figure 3.6b -
Figure 3.6d. The radius of the cylinder was 400 mm, and the height was 1200 mm to be
consistent with the previously considered geometry. Composite material properties were
considered for the subsequent buckling analyses.

P i

(@) (b) (©) (d)

Figure 3.6: Geometry with different radii of curvatures: a) p = 0 mm; b) p = 200 mm;
¢) p =400 mm; d) p =800 mm.

The results for the eigenvalue and geometrically nonlinear quasi-static buckling
analyses for the composite conical-cylindrical shells for each radius of curvature are
presented in Table 3.1 and Figure 3.7. It can be observed in the table that as the transition
between the cone and cylinder becomes more rounded, i.e., the radius of curvature
increases, the eigenvalue buckling loads were essentially unchanged while the nonlinear
buckling loads increased. It is postulated that, as the radius of curvature increases, there is
areduction in the large rotations and displacements that occur near the transition region,
which makes the nonlinear buckling load in better agreement with the linear eigenvalue.
A result of the large rotations near the transition region is a decreasing in stiffness with
decreasing transition-region radius, which can be seen in Figure 3.7 as a decreasing slope
of the nonlinear load-displacement curves with decreasing transition-region radius. In
the following discussion, the configuration with the radius of curvature equal to 400 mm
will be the baseline for comparison.

Table 3.1: The eigenvalue buckling loads and nonlinear buckling loads of a composite conical-cylindrical shell
with different radii of curvatures.

Radius of curvature of
transition region, p (mm) Eigenvalue (kN) Nonlinear (kN)

0 330.8 186.0
200 330.9 229.9
400 331.0 271.7
800 331.0 300.8
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Figure 3.7: Eigenvalue buckling loads (LB, dotted lines) and nonlinear compressive axial load (NL, solid lines) as
a function of the axial compression for composite conical-cylindrical shells with different radius of curvatures.
The eigenvalue buckling loads are extended as (overlapping) dotted lines over the horizontal axis for visual
comparison with the peak load of the non-linear response curves.

After the effect of the transition region on the buckling behavior was studied, an
investigation of the imperfection sensitivity was completed. The composite conical-
cylindrical shell with a radius of curvature of 400 mm was investigated and will be referred
to as the baseline. The imperfection shape used was the first eigenmode, shown as Figure
3.8, since it is generally assumed that it will accelerate buckling by triggering the lowest
buckling mode and, consequently, assess sensitivity to radial imperfections. Imperfection
amplitudes equal to 10% and 20% of the wall thickness were considered. The values for
the nonlinear buckling loads and normalized buckling loads are presented in Table 3.2.
The compressive axial load versus compressive axial displacement curves are presented
in Figure 3.9.

Figure 3.8: First eigenmode of a composite conical-cylindrical shell with p =400 mm.

From Table 3.2 and Figure 3.9 it can be observed that the composite conical-cylindrical
shell with a radius of curvature of 400 mm, baseline configuration, was more imperfection
sensitive than with a radius of curvature of 0 mm. The nonlinear buckling load for the
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Table 3.2: The eigenvalue and nonlinear buckling loads and normalized buckling load of a composite
conical-cylindrical shell with different imperfection amplitudes.

Imperfection Linear eigenvalue (kN) Nonlinear (kN) Normalized

Baseline 331.0 271.7 0.82
Eigenmode 10% 331.0 213.4 0.65
Eigenrnode 20% 331.0 160.5 0.48
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% ! A | Baseline, LB
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0
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Figure 3.9: Eigenvalue buckling load (LB, dotted line) and nonlinear compressive axial load (NL, solid lines) as a
function of the axial compression for composite conical-cylindrical shells with p = 400 mm without
imperfections (baseline) and with imperfections (10% and 20% of the first eigenmode). The eigenvalue buckling
load is extended as a dotted line over the horizontal axis for visual comparison with the peak load of the
non-linear response curves.

baseline configuration without imperfections was 271.7 kN. The nonlinear buckling load
with an imperfection amplitude of 10% was 213.4 kN. It was previously shown that, for no
radius of curvature between the cone and cylinder components (p = 0 mm), the buckling
load with imperfections was 186.0 kN and there was no reduction in load carrying capa-
bility when a same imperfection amplitude was included in the analysis. This suggests
that, as the transition-region radius of curvature increases, the perfect-geometry buckling
load increases, and so does the imperfection sensitivity. In addition, it should be noted
that the normalized buckling load for the analyses with a 20% imperfection amplitude
was 0.48. The orthotropic-cylinder KDF calculated using NASA-SP-8007 is 0.43, which
may not be considered conservative.
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3.3. EXPERIMENTAL VALIDATION OF THE BUCKLING BEHAVIOR

OF A COMPOSITE CONICAL CYLINDRICAL SHELL
The numerical results provided interesting observations regarding the trade-offs between
effects from geometric nonlinearities and imperfection sensitivity as a function of the
radius of curvature, which needed to be validated experimentally. To achieve this, a
composite conical-cylindrical shells similar to the Baseline design will be manufactured
and tested.

3.3.1. TEST ARTICLE DESIGN AND MANUFACTURING

A composite conical-cylindrical shell test article, referred to herein as 3CHELL (Figure
3.10), was fabricated with Hexcel IM7/8552-1 (190 gsm) carbon fiber/epoxy system. The
test-article geometry is an approximate scaled-down version of the SLS USA. The overall
height (axial length) of 3CHELL is 762 mm. The cylindrical inner mold line (IML) diameter
is 639 mm, and the IML diameter of the top of the conical shell is 418 mm. The conical
shell has a 15-degree semi-vertex angle, @. The conical shell and cylindrical shell are
combined with a seamless toroidal transition with a 380-mm radius of curvature.

418 mm

a=15°
363 mm

380 mriiey 99 mm

300 mm

639 mm

Figure 3.10: Test article geometry.

The test article was fabricated at the NASA Marshall Space Flight Center (MSFC)
Composite Technology Center using the AFP robot. Unidirectional tows, 6.35-mm wide
and nominally 0.183-mm thick, were laid on an aluminum mandrel that matched the
inner mold line (IML) of the test article. The selected layup is quasi-isotropic with a
nominal stacking sequence of [45/-45/90/0]s and a nominal laminate thickness of 1.46
mm, where 0 degrees is parallel to the axis of rotation and 90 degrees is perpendicular
to the axis of rotation and tangential to the circular cross section of the shell at that axial
position along the length of the shell. The positive ply angle is specified as clockwise from
the 0-degree location when viewed from the outside. Figure 3.11 shows 3CHELL being
manufactured at MSFC.
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Figure 3.11: Test article being manufactured with the MSFC AFP robot.

The material properties for Hexcel IM7/8552-1 (190 gsm) were taken from data pub-
lished by the National Institute for Aviation Research [32]. The lamina properties, such
as elastic moduli and Poisson’s ratio, are presented in Table 3.3. The B-basis laminate
failure strength properties and laminate modulus for a layup with 25/50/25 proportion
of 0-degree, 45-degree, and 90-degree plies are presented in the first two columns of
Table 3.4. Failure strains were calculated from the laminate strength and modulus values
assuming a linear elastic behavior and were used to design 3CHELL to have buckling
occur prior to any strength failures under axial compression loading.

Table 3.3: Nominal lamina properties of Hexcel IM7/8552-1 composite.

0-degree modulus 90-degree modulus Shear modulus Poisson’s ratio
En (GPa) Ej; (GPa) G12 (GPa) vi2 ()
140.9 9.72 4.69 0.356

Table 3.4: Documented B-basis laminate failure stresses and calculated failure strains.

Test Failure stress Modulus Calculated failure strain
(MPa) (GPa) (pe)
Unnotched tension 633.8 57.85 10,956
Unnotched compression 491.3 54.19 -9,065

After the test article was fabricated, the upper and lower edges were trimmed flat
and parallel to an overall final height of 813 mm with a final trimmed weight of 3.40 kg.
Following trimming, each end of the test article was potted in aluminum end rings with
25.4 mm-deep channels, leaving a free length of 762 mm. The test article was centered
in the end rings and held in place with a ring of epoxy potting compound 8.0 mm wide
on the outer mold line (OML) and 10.9 mm wide on the inner mold line (IML). The end
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rings were machined from an aluminum plate with an assumed modulus of elasticity of
71.01 GPa and Poisson’s ratio of 0.33 [63]. The epoxy potting compound had an assumed
modulus of elasticity of 7.58 GPa with an assumed Poisson’s ratio of 0.33 [64]. The potted
test article in the end rings is shown in Figure 3.12.

3CHELL

End rings

Potting

Figure 3.12: Test article potted in the end rings.

3.3.2. NONDESTRUCTIVE EVALUATION

Thermography and structured light scanning were two nondestructive evaluation tech-
niques used to assess the construction quality of 3CHELL prior to testing. Thermography
was used to interrogate the integrity of the test article. The purpose of structured light
scanning was to collect data on the as-built test article to better understand how radial
imperfections and thickness variations affect the buckling response.

THERMOGRAPHY

Flash thermography was used to inspect the composite shell for flaws. A pulse of light
is aimed at an area of interest and thermal diffusivity can be determined. A flaw, or
indication thereof, can be identified if there is a discontinuity in the thermal diffusivity
in the area of interest. From this inspection, four areas of interest were noted in the
cylindrical shell. The locations and sizes of the indications are given in Table 3.5. These
areas were marked on 3CHELL to monitor during testing. Three of the four areas are
located near the midheight of the cylinder, and the fourth is located near the cylinder end.

No concerning areas were noted in the transition region or the conical section.
Table 3.5: Areas of interest identified with thermography.

Indication Axial location Circumferential location =~ Approximate size
Number from potted cylinder end (mm) (degrees) (mm)
1 193 50° 8.0x5.0

2 188 93° 43x4.3
3 Encased in potting 210° 2.0x5.8
4 203 356° 13.5x6.4
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STRUCTURED LIGHT SCANNING

Once 3CHELL was potted in the aluminum end rings, the geometries of the OML and IML
were measured using structured light scanning, a photogrammetric technique [30]. The
radial imperfections of the OML and IML are shown in Figure 3.13a, and the thickness
calculated from the OML and IML data is shown in Figure 3.13b. The radial imperfections
of the OML and IML ranged from a minimum inward radial deviation of 0.81 mm of
the nominal surface to a maximum outward radial deviation of 1.01 mm of the nominal
surface. The average thickness in the cylindrical and transition region of the shell was
1.37 mm. This would result in an average ply thickness of 0.171 mm, which is 6.5% less
than the nominal ply thickness. In the conical section, a pattern of +45-degree thickness
variations that was due to tow overlaps is apparent. The overlapped region has a maximum
thickness of 1.91 mm, and is the result of the AFP process to maintain a constant angle and
the choice to eliminate gaps between each course. A tow drop occurred approximately
140 mm from the conical top end, which accounts for the thickness discontinuity in
the conical shell section. The overlap patterns and the thickness discontinuity are also
apparent in Figure 3.12.

(mm)
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Figure 3.13: Structured light scan data of 3CHELL: a) Radial imperfections from OML (left) and IML (right); b)
Measured thickness.
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3.3.3. EXPERIMENTAL SETUP

The experimental setup was designed to capture the structural response, specifically the
buckling behavior, of a composite conical-cylindrical shell under axial compression. The
test article, 3CHELL, was highly instrumented and was subjected to several subcritical
load sequences prior to the final load sequence to failure. These subcritical loads were 20%
and 40% of the predicted 276.0-kN buckling load obtained from a geometrically nonlinear
analysis (GNA) of the nominal test article with no radial or thickness imperfections. The
final load case was to apply a compressive force on the 3CHELL test article up to buckling.
Testing was performed at MSFC using a load frame that is capable of applying loads up
to 1112 kN. A displacement-controlled compression rate of 0.076 mm/min was used
for all load sequences. Numerous data-collection sensors such as strain gages, linear
variable differential transformers (LVDTs), and low-speed and high-speed digital image
correlation (DIC) systems were used to monitor the test article prebuckling, buckling, and
postbuckling response throughout all load sequences. An overview of the test setup and a
closeup-view of 3CHELL in the load frame can be seen in Figure 3.14.

Strain gage data were used to monitor the behavior of the test article in real time and
for postprocessing. A series of 16 IML and 16 OML uniaxial strain gages, measuring axial
strain, were placed back-to-back and spaced every 45 degrees. Half of those strain gages
were located 25.4 mm from the top end ring, and the remaining half were positioned 25.4
mm from the bottom end ring. In addition, 24 back-to-back biaxial gages, measuring
axial and hoop strains, were placed every 90 degrees at three different axial positions. The
first set of biaxial gages were placed at the midheight of the cylindrical section, the second
were placed near the center of the transition region, and the third were placed just above
the tow drop in the conical section. A schematic of the strain gage layout is presented in
Figure 3.15. The gages at the conical end, 25.4 mm from the end ring, are referred to as the
cone-end gages. The gages 101 mm from the ring are referred to as the cone midheight
gages. The gages at the transition region are referred to as transition gages. A similar
naming convention is applied to the cylinder gages 137 mm from the cylinder end ring
and 25.4 mm from the cylinder ring, which are referred to as the cylinder midheight and
cylinder end gages, respectively.

Six pairs of low-speed DIC cameras (six low-speed 3D DIC systems) and two pairs of
high-speed DIC cameras (two high-speed 3D DIC systems) were used to capture full-field
displacements and strains. A top-down view of the DIC camera layout with approximate
fields-of-view is shown in Figure 3.16. Of the low-speed DIC systems, the two systems
centered about 0 and 180 degrees were used to measure the global behavior. Global
refers to a field-of-view, approximately 711 mm x 864 mm, that includes the entire test
article and end rings. The low-speed cameras had a capture rate of 1 Hz. Based on results
obtained by the finite element analysis with perfect geometry, high strain gradients were
expected at the transition region. Therefore, four low-speed local DIC systems were set
up at 0, 90, 180, and 270 degrees, with a field of view to focus on the transition region
between the conical and cylindrical sections. The fields of view of these local systems
were approximately 297 mm x 365 mm. The local systems provided a higher resolution to
measure the deformations and strains more accurately in this area of interest.
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Figure 3.14: Test setup of 3CHELL: a) Overview of test setup; b) Close-up-view of 3CHELL in load frame.

The high-speed systems were also placed at 0 and 180 degrees with a similar global
field-of-view and a frame rate of 10,000 Hz. The high-speed cameras were intended to
capture the entire buckling event from just prior to buckling initiation (incipient) through
buckling propagation and postbuckling. The image-capturing system was triggered by an
operator shortly after buckling was detected, either audibly or visually, allowing to save
all images approximately 2.5 seconds before the trigger was activated. This time interval

covers the relevant transient states from initiation to postbuckling.
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Figure 3.15: Strain gage layout.
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Figure 3.16: Top-down view of the DIC camera layout with approximate fields-of view.

The high-contrast speckle pattern for DIC accommodated both the low-speed (global
and local) and the high-speed (global) photogrammetry requirements, which are based on
camera resolution, acquisition rate, and field of view. A speckle size of 6.4 mm was utilized
for the global systems, while a speckle size 1/10 of the global size was considered more
appropriate for the local systems. To accommodate both speckle sizes in a single pattern,
the entire test article was covered with a pattern similar to that shown in Figure 3.17,
where it is seen that there is a two-tiered speckle pattern. The larger squares represent the
speckle pattern that was utilized by the global systems, and the smaller squares within the
larger squares represent the speckle pattern that was utilized by the local systems. The
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pattern was printed on transfer paper and then applied to the test article. This technique
was first demonstrated by Bomarito, et al. [65, 66] on small specimens, and has also been
applied to a large-scale buckling test [67].

Figure 3.17: Example of the DIC speckle pattern for 3SCHELL.

Four LVDTs were placed at the four corners of the load frame to measure relative
axial displacements of the loading platens. To measure movement perpendicular to the
loading direction, four targets were placed on the top and bottom corners of the load
platens. These targets were monitored by a ninth DIC system to measure the movement
of these points and can be seen in Figure 3.14.

3.3.4. RESULTS AND DISCUSSION

In this section, a description of the FEM used to predict the buckling response of 3CHELL
is presented. A comparison of the test data to the predicted response is then provided. A
discussion of the off-nominal loading observed during the test, and how this anomaly
affected the predicted response, is presented next. Finally, the results of the repeated
experimental buckling load sequence are presented. Results of the test article behavior at
incipient buckling and postbuckling are discussed in detail.

FINITE ELEMENT MODEL AND ANALYSIS

A FEM of 3CHELL was created using Abaqus 2021[62]. The four-node, reduced-integration
shell element, S4R, was selected to characterize the solid laminate, potting compound,
and end rings. The tow drop was not a specifically desired design feature, but instead was
an artifact of the AFP manufacturing process where the changes in the shell geometry
result in tow gaps and/or tow overlaps. During the shell design process, it was decided not
to allow tow gaps, so changes in shell geometry resulted in tow overlaps. According to the
measured thickness variation in Figure 3.13b, the laminate had areas where the thickness
was almost 40% thicker than the acreage laminate thickness of 1.37 mm. Therefore, it
was important to incorporate the tow-overlap and tow-drop features into the FEM. To
discretely model the thickness variations of the ply overlaps, the equation of the fiber
path for a constant angle on a conical surface, i.e.,

l
®(l) =tan(¢) In [—
lo

+ @y (3.1)
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was used [68]. In equation (3.1), @ is the circumferential coordinate on an unrolled,
flattened cone, ¢ is the nominal fiber angle, [ is the distance from the conical apex
to the top edge of the cone which is derived from the small end radius,ry, and [ is the
longitudinal surface coordinate on a flattened cone that can be calculated by the radius r.
The flattened cone configuration and variables associated with equation (3.1) is presented
in Figure 3.18.

Figure 3.18: Flattened cone configuration.

The FEM with a detailed view of the thickness variations is presented in Figure 3.19.
The cyan color represents the acreage or nominal layup, the light gray areas represent
the end regions that are surrounded by the potting compound and end rings, the red
color represents where two +45-degree plies overlap, the yellow color represents where
two -45-degree plies overlap, and the dark blue region represents where the overlapped
positive and negative 45-degree tows intersect. The positive X-axis of the FEM aligns
with the 0-degree circumferential location, the positive Y -axis aligns with the 90-degree
circumferential location, and Z-direction is defined along the axis of rotation.

During manufacturing, the amount of overlap in the +45 and -45 plies grew linearly
as the diameter decreased until the point where one entire tow-width was overlapped,
and a tow drop was instituted. The decision to section the overlapped area in the FEM
into thirds (expanded section of Figure 3.19) was based on calculations comparing the
density of various axial sections. The stacking sequences for the composite shell are given
in Table 3.6, where the emboldened font indicates an overlapped ply.

Explicitly modeling the ply overlaps in the geometry made meshing complex. A mesh
convergence study was used to determine that an approximate mesh size of 5 mm was
appropriate to capture the buckling behavior of the composite conical-cylindrical test
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Figure 3.19: Finite element model with thickness-variation details.

Table 3.6: FEM Section Properties.

Section FEM Color Layup
Acreage Cyan [45/-45/90/0/0/90/-45/45]
+45 overlap Red [45/45/-45/90/0/0/90/-45/45/45]
-45 overlap Yellow [45/-45/-45/90/0/0/90/-45/-45/45]
+45 and -45 overlap  Dark blue [45/45/-45/-45/90/0/0/90/-45/-45/45/45]
Potted ends Gray [Al ring/Potting/Acreage/Potting/Al ring]

article with a uniform mesh. An approximate mesh size of 3.8 mm was utilized herein
because this finer mesh was necessary to incorporate the thickness variations.

After the model was meshed, the radial imperfections were incorporated. The IML
structured light scan data was used as the source for the radial imperfections since
the OML data had influences of the thickness variations. The process in which the
radial imperfections were incorporated is explained by Kosztowny [69]. In addition, the
measurement-derived average ply thickness of 0.171 mm was used in the FEM. The
end-ring configuration in the test article was used to approximate a clamped boundary
condition. To apply clamped boundary conditions, reference points were placed on the
axis of rotation at the top and bottom and tie constraints were used to connect all degrees
of freedom to the respective reference points. The bottom reference point had all degrees
of freedom fixed, and the top reference point had all degrees of freedom fixed except for
axial displacement.

Linear bifurcation analysis (LBA), vibration analysis, and implicit nonlinear transient
analysis, referred to as GNA, were used to predict the structural response of 3CHELL. The
Lanczos solver was used to determine the eigenvalues and corresponding eigenmodes.
The critical (lowest) eigenvalue was 307.8 kN from the LBA. For vibrational analysis,
proportional Rayleigh damping was assumed, with damping parameters A and B scaling
the mass and stiffness matrices, respectively. To determine the damping parameters A
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and B, the first natural frequency f from modal analysis was required. Assuming a modal
damping ratio of £ = 0.05, the corresponding damping coefficients were estimated as

A=2nf¢ (3.2)
and ;
= ﬁ . (3.3)

For the GNA, the time integrator parameter of -0.05 was used for slight numerical
damping as suggested by [62]. The half increment solution parameter was set equal to
the approximate buckling load of 3CHELL. The transient dynamic analysis used a time
duration of 2000 seconds, with an initial time increment and a maximum increment of 1
second each. An applied displacement was ramped linearly from 0.00 mm to -2.54 mm at
the top reference node to obtain the load rate of 0.076 mm/min that was used in the test.
This was completed in a single analysis step. The GNA was performed for the structure
with and without geometric imperfections. The GNA without imperfections resulted in a
buckling load of 246.7 kN, which is approximately 20% less than the eigenvalue buckling
load of 307.8 kN. The GNA with imperfections resulted in a buckling load of 235.1 kN,
which is approximately 24% less than the linear eigenvalue buckling load. The inclusion
of imperfections reduced the GNA buckling load by 5%. Table 3.7 includes a summary
of the analyses and results. It should also be mentioned that the incorporation of the
thickness variations increased the LBA load by 12%.

Table 3.7: Buckling load obtained from distinct types of analyses and incorporating distinct actual
imperfections.

Analysis type Radial imperfections Thickness variations Buckling load (kN)

(Y/N) (Y/N)
LBA N Y 307.8
GNA N Y 246.7
GNA Y Y 235.1

The FEM included much of the variances from the nominal design such as the tow
overlaps and radial imperfections. The goal was to create a high-fidelity FEM to predict
the buckling response of a composite conical-cylindrical. From this, a validated modeling
approach could be used in future analyses for developing buckling design guidelines for
composite conical-cylindrical shell.

TEST-ANALYSIS CORRELATION

The test article 3CHELL buckled at a load of 251.8 kN, 7.1% greater than the predicted
nonlinear buckling load with radial imperfections of 235.1 kN. The load versus displace-
ment curves for the predicted and measured behavior are shown in Figure 3.20. The
end-shortening data was determined using DIC by measuring the change in length be-
tween points on the top and bottom end rings. It is observed that the test article was
approximately 14% stiffer than the FEM-predicted stiffness. There is also a notable change
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in slope that occurs around 50 kN. Additionally, the postbuckling equilibrium load pre-
dicted using the model was approximately 96.1 kN. The postbuckling equilibrium load
during test was 96.6 kN.

300
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—GNA with imperfections
150
—Test

100

Axial Load (kN)
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0 0.5 1 1.5 2

End Shortening (mm)

Figure 3.20: Finite element model with thickness-variation details.

The predicted radial displacements at incipient buckling are presented in Figure 3.21a.
Multiple potential buckling-initiation sites can be observed as blue and black dimples just
above the transition region with a minimum inward displacement of -0.42 mm. Another
band of blue dimples is seen just below the transition in the cylindrical portion as well, but
the minimum inward displacement in this region is only -0.08 mm. A third row of dimples,
not as pronounced as the first two, is observed just above the tow-drop region. Ultimately,
it was predicted that buckling would initiate with the dimple located at the 120-degree
circumferential location in the cone just above the transition region. The outward radial
displacement was predicted to be relatively uniform with the most-pronounced outward
deformations shown in Figure 3.21a as the two red bands in the transition region. The
maximum predicted outward radial displacement is 0.87 mm. Despite the presence
of the radial imperfections, the radial displacements are relatively uniform at a given
longitudinal location.

There are similarities between the predicted radial displacements, Figure 3.21a, and
the observed radial displacements during test, Figure 3.21b. For example, the three
sets of relatively inward radial displacements can be seen just above and below the
transition region, and just above the tow drop. In addition, the region of the most outward
deformation occurred in the transition region with a magnitude of 0.87 mm, the same
as was predicted. On the other hand, the measured maximum inward displacement of
-0.20 mm at incipient of buckling is approximately half of the predicted value of -0.42
mm. There were also similarities in the axial location of the radial-displacement patterns,
but the dimples in the cylindrical region were more prominent than those in the conical
region in the test data while the dimples were predicted to be more prominent in the
conical region. The measured radial displacements in the cone seem skewed in the X-Y
plane at a given axial location, while in the displacement predictions are uniform. This
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skew can be identified globally in Figure 3.21b by the presence of the shades of green
and light blue in the conical region in the figure centered about 0 degrees, and the dark
blue and purple colors in the conical region in the figure centered about 180 degrees.
More specifically, just above the tow-drop region at the 0-degree circumferential location
the measured radial displacement is 0.44 mm. The measured radial displacement at 180
degrees at the same axial location is 0.13 mm.

Tow drop —,

U1
0.87 mm
0 degrees
Predicted buckling
initiation
-0.20 mm
-0.42 mm
90 degrees 270 degrees
(@)
U1
0.87 mm
-0.20 mm

0 degrees 180 degrees

(b)

Figure 3.21: Radial displacement, U7, at incipient buckling: a) FEM; b) test.
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It is suspected that buckling initiated in the cylinder just outside the field of view of
the 180-degree-centered high-speed DIC system, which encompasses the circumferential
coordinates of approximately 125 degrees to 235 degrees. Figure 3.22 shows the radial
displacements measured with the high-speed DIC system at the time of buckling initiation,
1.6 milliseconds (ms) and 3.2 ms into the buckling event, and in the final high-speed
DIC frame at approximately 15 ms. In the first high-speed image (buckling initiation,
Figure 3.22a), there is a purple inward dimple that forms on the edge of the field of
view, circled, with an inward displacement of -2.11 mm. Between the initial image and
1.6 ms later, the dimple grows slightly and begins to propagate, Figure 3.22b. After 3.2
ms, the displacement at the buckling initiation location has grown much larger with an
inward deformation approximately 6 times larger than it was at 1.6 ms, Figure 3.22c. Also,
adjacent to the buckling initiation dimple, a pattern of four inward dimples has formed.
Eventually, the four dimples coalesce into four circumferential axial waves around the
entire cylindrical section of the specimen in the final post-buckling configuration as
shown in Figure 3.22d. The inward deformation of the post-buckling configuration is
-17.7 mm. The three dimples observed in the 180-degree high-speed camera view can
also be viewed by 3CHELL in post-buckling as shown in Figure 3.23.

U1 U1
| 1.49 mm I 1.47 mm
-2.11 mm -2.72 mm
(b)
U1 U1
2.54 mm 6.73 mm
-16.3 mm -17.7. mm
(© (d)

Figure 3.22: Buckling propagation from a) buckling initiation; b) 1.6 ms after initiation;
¢) 3.2 ms after initiation; and d) post-buckled configuration
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Figure 3.23: Postbuckling configuration of 3CHELL from the first test.

The high-speed images indicated that buckling initiated in the cylindrical portion
of 3CHELL. However, buckling was predicted to initiate and propagate in the conical
region, Figure 3.24. The post-buckling displacements from the FEM were taken from the
point when the end-shortening in the analysis matched the measured test article end-
shortening in a best attempt to quantitatively compare the data. Although the location
of the predicted post-buckling deformation pattern is different than what was observed
in test, the pattern and magnitude of the inward and outward radial deformations is
similar. The minimum predicted inward deformation was -16.8 mm, approximately 1.0
mm less than what was measured. The maximum outward predicted deformation in
the postbuckling configuration was 7.52 mm, less than 1.0 mm greater than what was
measured.
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Figure 3.24: Postbuckling predicted by the FEM.
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The differences between test and analysis in the postbuckling responses is due, in
part, to the assumptions made when including the thickness variations. Buckling was
predicted to occur in the conical region and buckling propagation would remain in the
conical region because conical region in FEM was not as stiff as the conical region in
3CHELL. Also, the differences between the number of dimples present could also be
related to the thickness variations between 3CHELL and what was assumed in the FEM.
With regard to stiffness, the predicted curve in Figure 3.20, shows a total loss of stiffness
after buckling initiation, which is different from what was indicated in the figure for the
test. The jump in axial displacement after the buckling event is related to the stiffness of
the load frame.

POSTTEST ANALYSIS

During testing, a small shearing motion in the load platen was identified using the real-
time DIC displays. After the test, the relative movement between the top and bottom
end rings was measured using the coordinate system with respect to the load frame and
the orientation of 3CHELL shown in Figure 3.25. The measurements dX and dY are the
changes in lateral displacement of the top load platen relative to the bottom load platen in,
respectively, the X direction (toward 0 degrees) and Y direction (toward 90 degrees). The
DIC-measured relative displacement between the top and bottom end rings in the X and
Y directions are shown Figure 3.26. It can be observed from this figure, that the relative
displacements between the top and bottom end rings at buckling were 0.16 mm in the
X-direction and 0.31 mm in the Y -direction. This displacement results in a magnitude of
0.35 mm towards the 62-degree circumferential location. The total axial displacement of
the test article at buckling was 1.65 mm, so the in-plane displacement was approximately
20% of the total axial shortening.

‘ : y i

Bottom
load —
platen

Figure 3.25: Top-down view of 3CHELL in load frame with coordinates for load platen movement.
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Figure 3.26: Measured load platen movement.

To represent the measured off-nominal shear displacement in the finite element
analysis, an additional step was created in the analysis. The first step was used to simulate
the relative shear displacements of 0.16 mm in the X-direction and 0.31 mm in the
Y-direction at the initiation of buckling. The second step was used to simulate the
application of the axial displacement at a rate of 0.076 mm/min, the same as used in the
initial analysis.

The predicted buckling load with the shear displacement included was 231.4 kN,
which is almost 2% lower than the initial FEM prediction and 8.8% lower than the experi-
mental buckling load. In the load-displacement curves in Figure 3.27, it can be observed
that the stiffnesses of the FEM with and without the shear displacement are indistinguish-
able, but that the predicted buckling load with the included shear displacement is slightly
lower. While there was minimal change in the overall response, a skewed pattern in the
predicted radial displacements at incipient buckling is observed in the conical region due
to the shear displacement, as can be seen in Figure 3.28. The predicted outward radial
displacements with the shear displacement included were to 1.0 mm, higher than without
the shear displacement, but the maximum inward radial displacement remained un-
changed. The inclusion of shear displacement did not significantly influence the results,
despite the fact that the magnitude of the shear displacement was 20% of the total end
shortening. It should be noted that the postbuckling equilibrium load with shear is 96.7
kN, almost the same as the model without shear and the test postbuckling equilibrium
load.

The full-field strain distribution from DIC can be compared to the predicted strain
from the outermost ply in the FEM with the shear displacement. The predicted and
measured maximum principal strains are presented in Figure 3.29 and Figure 3.30, re-
spectively. The patterns and strain magnitudes are quite similar for the views centered
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about 0 degrees (Figure 3.29a and Figure 3.30a) and 180 degrees (Figure 3.29b and Figure
3.30b). The maximum principal direction is primarily in the hoop direction. The areas
with the highest maximum principal strain are in the transition region and coincide with
the areas of maximum radial displacement. The highest predicted maximum principal
strain at incipient buckling was 2785 pe. This value is within 3% of the measured highest
maximum principal strain of 2853 ue.
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Figure 3.27: Compressive axial load versus end shortening curve from the GNA with shear and without shear,
and test.
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Figure 3.28: FEM with shear radial displacements at incipient buckling.
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Figure 3.29: Predicted maximum principal strain at incipient buckling:
a) centered at 0 degrees; b) centered at 180 degrees.
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Figure 3.30: Measured maximum principal strain at incipient buckling:
a) centered at 0 degrees; b) centered at 180 degrees.

There are also elements of agreement when comparing the predicted and measured
minimum principal strains as shown in Figures 3.31 and 3.32. The minimum principal
direction coincides mainly with the axial direction. First, it is important to note the band
of highly negative strains near the end of the conical region in the FEM. This predicted
negative strain is due to the way in which the radial imperfections were incorporated
into the model. The structured light scanning data near this region is noisy, which can
lead to abrupt radial changes in the mesh. The lowest predicted minimum principal
strain recorded in this region is -7131 pe. If this end region is discounted, then the lowest
minimum principal strain is -4222 pe, which occurs just above the transition region at
the base of the cone in Figure 3.31b. This spot corresponds to the inward dimple in
Figure 3.28 for the view centered about 180 degrees. The lowest minimum principal strain
measured at incipient buckling was -3971 e, which approximately occurs in the same
circumferential region as was predicted, but just below the transition in the cylinder. As
with the maximum principal strain plots, the ply overlaps are observed in the predicted
data, but not in the DIC data.




70 CHAPTER 3

Min. Principal

!Oue

-4500 pe
-7131 pe

(]

(@) (b)

Figure 3.31: Predicted minimum principal strain incipient of buckling:
a) centered at 0 degrees; b) centered at 180 degrees.
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Figure 3.32: Measured minimum principal strain at incipient buckling:
a) centered at 0 degrees; b) centered at 180 degree.

The predicted (FEM) and measured (Test) cylindrical-end axial membrane strains,
shown in Figure 3.33, and bending strains, shown in Figure 3.34, were plotted for the
corresponding axial loads to investigate the previously mentioned experimental slope
change observed in the load versus displacement plot (see Figures 3.20 and 3.27). A change
in slope in the load-strain curve can also be observed in the cylinder-end axial membrane
strain at the 0-degree circumferential location, black solid line (Figure 3.33a). Also, a
change in slope can be seen in the 45-degree circumferential location at approximately
25 kN, where the slope is increasing until just under 50 kN, at which point the slope
decreases slightly (Figure 3.33b). In the bending-strain data at the cylindrical end, there
is no calculated bending strain until just below 50 kN for the 0-degree and 45-degree
circumferential degree locations (Figure 3.33a and 3.33b). Therefore, the change in slope
around 50 kN may be related to the bending strain.
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Figure 3.33: Cylinder-end axial membrane strains: a) 0-, 90-, 180-, and 270-degree locations;
b) 45-, 135-, 225-, and 335-degree locations.

To better understand why the cylinder-end bending strain at 0 degrees remains near
zero until a load of approximately 50 kN, DIC was used to compare the change in axial
displacement before and after 50 kN. Shown in Figure 3.35 is the change in axial displace-
ment, dZ, between a) 10 kN and 20 kN, b) 20kN and 40 kN, c) 40 kN and 50 kN, and d) 50
kN and 70 kN for the DIC cameras centered about 0 degrees. Shown in Figure 3.36 is the
change in axial displacement at the same load levels, but for the DIC cameras centered
about 180 degrees.

The change in axial displacement pattern between 10 kN and 20 kN was dominated
by the shear displacement imparted by the load frame, and not due to the axial load,
Figure 3.35a and Figure 3.36a. As the load increased, the top of the test article exhibited
a more-uniform loading pattern as shown by the horizontal purple band with similar
magnitudes in Figure 3.35b and Figure 3.36b. At the bottom of the test article at 0 degrees,
there is more axial displacement than at the edges of the frame (towards 335 and 45
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Figure 3.34: Cylinder-end bending strains: a) 0-, 90-, 180-, and 270-degree locations;
b) 45-, 135-, 225-, and 335-degree locations.

degrees) in Figure 3.35b. This variation in the bottom axial displacement is observed
by the warmer colors near the edge of the frame that correspond to a smaller change in
axial displacement compared to the cooler colors that represent a larger change in axial
displacement near the center of the frame, Figure 3.35b. A more uniform distribution
is observed in the bottom of Figure 3.35b, where the relatively horizontal bands extend
from the top to the bottom. This same trend of more bottom displacement-variation
near the 0-degree position than the 180-degree position is seen in Figure 3.35c and Figure
3.36¢, which show the change in axial displacement between 40 kN and 50 kN. This trend
indicates a potential gap between the ring and the end of the test article near 0 degrees,
which would allow the test article to displace more in this region than at 335 and 45
degrees, where the end of 3CHELL could be in contact with the end ring. The behavior
was more uniform in the DIC system centered around the 180-degree circumferential
location at the same load level, as indicated by the horizontal contour bands, signifying a
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more uniform axial displacement. Instead, the more uniform horizontal bands indicate
more uniform axial displacement.

Between 40 kN and 50 kN, the bottom edge of 3CHELL separated from the end ring
by 0.01 mm, as shown by the green-yellow coloration at the bottom end ring-test article
interface in Figure 3.35c. After the change in slope, the change in axial displacement
between 50 and 70 kN becomes more uniform for the region centered about 0 degrees.
The horizontal bands in Figures 3.35d and 3.36d are relatively uniform, which may signify
that a gap has closed, and the test article is in complete contact with the ring. The change
in axial displacement between 50 and 70 kN at 180 degrees remained uniform. The fact
that the measured responses are more uniform in Figure 3.36 than in Figure 3.35 correlates
well with the strain data because the slope change anomaly was most apparent in the
cylinder gages at 0 degrees.

dz
! -0.10 mm I -0.05 mm
-0.13 mm -0.16 mm
(b)
dz V4
I -0.02 mm ! -0.18 mm
-0.08 mm -0.13 mm
(© (d)

Figure 3.35: Change in axial displacement at 0-degrees between load intervals: a) 10 kN-20 kN; b) 20 kN-40 kN;
¢) 40 kN-50 kN; d) 50 kN-70 kN

The maximum and minimum principal strains in the postbuckling pattern also have
elements of agreement when comparing the test results to the FEM as shown in Figures
3.37 — 3.38 despite the fact that the experimental buckling occurred in the cylindrical
region rather than the conical region as predicted. The postbuckling strains from the FEM
were taken from the point when the end-shortening in the analysis matched the measured
test article end-shortening in order to quantitatively compare the data. The maximum
and minimum principal strain values predicted are quite similar to the measured values.
The highest maximum principal strain predicted was 9020 pe and the strain measured
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Figure 3.36: Change in axial displacement at 180-degrees between load intervals: a) 10 kN-20 kN; b) 20 kN-40
kN; c) 40 kN-50 kN; d) 50 kN-70 kN.

was 9055 pe. This is only a 35 ue difference, which is within the error limits of the DIC
capability. The region of maximum principal strain occurred between the dimples in
the postbuckling configuration shown in Figure 3.37 and Figure 3.38. The most negative
minimum principal strain predicted was -9396 e, while the most negative minimum
principal strain measured was -9613 p¢, less than 3% different from what was predicted,
which occurs at the edges of the dimples in the postbuckling configuration (see Figure
3.39 and Figure 3.40). The magnitudes of the strains are similar, even though postbuckling
behavior was contained in the cylindrical region instead of the conical region as predicted.
The difference in the postbuckling location is most likely due to the assumptions made
when incorporating the thickness variations in FEM. A cone that is stiffer, in this case
more ply overlaps, would buckle at a higher load than the cylindrical region that does not
have ply overlaps. This will be interrogated in detail in Chapter 4.

It should be noted that the highest measured maximum principal strain of 9055 pe is
less than the threshold used in design as reported in Table 3.4 of (10,956 u¢). However,
the lowest measured minimum principal strain value of -9613 ue is greater than the
design value of -9065 pe. The calculated failure strains are conservative since they were
calculated assuming linear elastic properties. After loading, the test article returned to its
original shape, and no material failure was apparent upon visual inspection. Based on
these observations, it was concluded that the test article was likely undamaged.
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Figure 3.37: Predicted maximum principal strain at postbuckling:
a) centered at 0 degrees; b) centered at 180 degrees.
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Figure 3.38: Measured maximum principal strain at postbuckling:
a) centered at 0 degrees; b) centered at 180 degrees.
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Figure 3.39: Predicted minimum principal strain at postbuckling:
a) centered at 0 degrees; b) centered at 180 degrees.
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Figure 3.40: Measured minimum principal strain at postbuckling:
a) centered at 0 degrees; b) centered at 180 degrees.

Overall, there was good correlation between the FEM and the experimental results,
which is valuable since there is limited experimental data on the buckling of composite
conical-cylindrical shells. The differences between test and analysis may not necessarily
be related to the modeling methodology (eg.completing a nonlinear analysis and ac-
counting for measured geometric imperfections), but rather external factors that were
not quantified such as the test setup and model resolution related to the tow overlaps.
For example, the shear from the load platen affected the radial displacements. Also, the
apparent gap in the end ring seemed to influence the test article’s initial stiffness. Another
possible source of variance was related to the manufacturing process, specifically the
overlaps. It is thought that the influence of the the tow overlaps was larger in 3CHELL
than it would be in a larger launch-vehicle structure because the influence of each tow
overlap is related to the shell thickness, which would be larger for most flight structures.
In general, the model was able to predict the global behavior with good accuracy. This
would suggest the modeling approach present is appropriate for predicting the buckling
response of a conical-cylindrical shell, and could potentially be used in finite element
analyses to develop buckling design guidance.

Some of the differences between test and analysis may also be attributable to the
assumptions made when incorporating the thickness variations into the FEM. The cal-
culated specimen weight in the FEM was 3.31 kg and the measured weight of 3CHELL
was 3.40 kg. The larger mass in the physical test article indicates that there was additional
material not accounted for in the FEM. It is presumed that this additional material was
related to the tow overlaps that form the grid-like pattern seen in the thickness variations
in Figure 3.13, and may be the reason for the measured stiffness being higher than pre-
dicted, and subsequently the overall buckling load as well. In addition, if the cone was
stiffer than what was modeled and the cone was stiffer than the cylindrical region then
this would explain the discrepancy in buckling location between the test and FEM. The
differences between the test and analysis highlights the amount of detail that may be
required to accurately capture the buckling behavior of a conical-cylindrical shell. The
buckling behavior of conical-cylindrical shells may be sensitive to stiffness variations
(e.g., tow overlaps), intentional or otherwise.
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In the future, importing the thickness data from the structured light scan data into
the FEM could help improve the results, as might a smaller mesh size. An attempt
was made to include the structured light scanning data into the finite element model
using the continuum shell reduced integration elements (SC8R) and a smaller mesh
edge side of 2.54 mm. The OML and IML nodes could be manipulated based on the
structured light scanning data from the OML and IML surfaces and could account for
the radial imperfections and thickness variations. Afterwards, the section properties for
elements with an increase thickness corresponding to an additional ply would need to be
modified. Unfortunately, this approach made the model computationally cumbersome.
This approach was not implemented due to constraints on the computational resources.
A similar approach of modifying the SC8R nodes to account for thickness and radial
imperfections to predict the buckling of a composite cylinder is presented in reference
[36] with good results.

SECOND BUCKLING TEST

Since the first test was successful and the test article appeared to have buckled elastically,
it was decided to repeat the final buckling load sequence. The test article response was
very similar to that of the first buckling test and the test article buckled within 1% of the
first buckling test, Figure 3.41. The measured buckling load from the first test was 251.8
kN with a measured end shortening of 1.65 mm, and during the second test 3CHELL
buckled at 250.99 kN with a measured end shortening of 1.63 mm. As seen in Figure
3.41, the stiffnesses were essentially the same; the blue line, representing the load versus
displacement curve from the second test, seems to trace over the load versus displacement
curve (red line) from the first test. The postbuckling equilibrium load for the second test
was 96.6 kN, as compared to 96.7 kN for the first test.
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Figure 3.41: Axial load versus end shortening curve for both buckling load sequences.
The buckling propagation sequences from the first test, Figure 3.22, and the second

test, Figure 3.42, were essentially the same. Buckling initiated in approximately the same
region just outside the field of view of the high-speed camera, circled in Figure 3.22a and
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Figure 3.42a. A second dimple formed adjacent to the buckling initiation dimple 1.6 ms
after buckling initiation, Figure 3.22b and Figure 3.42b. In addition, two rows of dimples
are present next to the buckling initiation after 3.2 ms after buckling initiation, Figure
3.22c and Figure 3.42c. Finally, the postbuckling configuration of six circumferential
waves is present in both the first and second test, Figure 3.22d and Figure 3.42d. The
outward and inward radial displacements for both postbuckling configurations are similar,
where during the first test the maximum outward deformation was 6.73 mm and 7.24 mm
during the second test. The maximum inward deformation was -17.7 mm and -17.8 mm
after the first and second test, respectively. Similarly, three distinct dimples can be seen
in the postbuckling configuration from the second test, Figure 3.43, as was observed in
the first, Figure 3.23.

U1 U1
0.97 mm 1.04 mm
-1.13 mm -1.50 mm
(b)
U1 U1
3.81 mm 7.24 mm
-15.9 mm -17.8 mm
© (d)

Figure 3.42: Buckling propagation from a) buckling initiation; b) 1.6 ms after initiation:
¢) 3.2 ms after initiation;and d) Post-buckled configuration.
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Figure 3.43: Postbuckling configuration of 3CHELL from the second test.

The maximum and minimum principal strain distributions at incipient buckling for
the second buckling test are shown in Figures 3.44 and 3.45, respectively, and are similar
to that of the first buckling load sequence (Figures 3.30 and 3.32). The contour plots
for the measured maximum and minimum principal strains at incipient buckling from
the second test are analogous to the first test. The areas of the most positive and most
negative strain values occur in the transition region. The highest value for the maximum
principal strain at incipient buckling for the second test was 2924 pe, which is within
100 pe of the first test, and the error limits of the DIC capability. The lowest value for the
minimum principal strain incipient of buckling for the second test was -3546 pe, which is
approximately 10% lower than the first test (4222 pue).

Max. Principal
2500 pe

0 pe

(@) (b)

Figure 3.44: Measured maximum principal strain at incipient buckling:
a) centered at 0 degrees; b) centered at 180 degrees.

The maximum and minimum principal strains for the postbuckling configuration are
very similar between the first, Figures 3.38 and 3.40, and second tests, Figures 3.46 and
3.47. The measured maximum principal strain from the second test is 9064 pe, which
is only 10 ue different from the measured maximum principal strain from the first test
(9055 pe). The measured minimum principal strain from the second test is -9032 e and
is approximately 600 pe less than what was measured in the first test (-9613 pe).
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Figure 3.45: Measured minimum principal strain at incipient buckling:
a) centered at 0 degrees; b) centered at 180 degrees.
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Figure 3.46: Measured maximum principal strain at incipient buckling:
a) centered at 0 degrees; b) centered at 180 degrees.
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Figure 3.47: Measured minimum principal strain at incipient buckling:
a) centered at 0 degrees; b) centered at 180 degrees.
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3.4. CONCLUSION

Utilizing a single-piece composite conical-cylindrical shell with a toroidal transition for
aerospace applications has the potential to reduce structural mass and expand the design
space for launch vehicles and payload adapters. This geometry combines cylindrical and
conical shells common in launch-vehicle architecture, thereby eliminating the need for
the heavy, stiff interface ring that often separates two independent shell structures. How-
ever, such conical-cylindrical shells can be susceptible to stability failures. A composite
conical-cylindrical shell with a toroidal transition, 3CHELL, was fabricated, and tested.
The specimen was designed to fail in buckling in an effort develop a better understanding
of the buckling response of this type of shell structure. The numerical and experimental
data presented provides insight into the ability to predict the buckling response of a
composite-conical cylindrical shell using nonlinear FEM to aid in future design guidelines
and recommendations for structures of this geometry.

The purpose of the presented work is to demonstrate the ability to predict the buckling
behavior of this special shape in order to influence the future designs of launch vehicles
and payload adapters. A FEM that included radial imperfections and thickness variations
was developed, and GNA analyses were conducted to predict the structural response.
The test article buckled at 251.8 kN, and the predicted buckling load from an analysis
that included measured off-nominal shear movement of the load platens was 231.4 kN,
an 8.8% difference. The lateral displacement was 20% of the total axial end shortening
at buckling but simulation of this lateral movement did not significantly influence the
results. The predicted and measured buckling responses had several similarities when
radial displacements and patterns at incipient buckling and postbuckling were compared.
The measured and predicted buckling-initiation location were different, but similar
patterns in the radial deformations and magnitudes could be identified. In addition, the
buckling test was repeated since 3CHELL buckled without perceptible damage, and in
the second test 3CHELL buckled within 1% of the first buckling test.

Some of the discrepancies, such as buckling load, buckling location, and test-article
stiffness, between test and analysis may be attributable to the size of the test article and
its design. For example, one possible explanation for the differences in stiffness, buckling
load, and buckling location is the assumptions made when incorporating thickness
variations due to ply overlaps in the conical region. The overlaps were a manufacturing
limitation of the AFP robot to maintain a constant fiber angle along the length of the cone,
while eliminating gaps. For a larger structure, these manufacturing limitations observed
in 3CHELL may not be an issue, but sources of stiffness variation should be included in
the FEM since the buckling behavior of conical-cylindrical has been demonstrated to be
sensitive to stiffness variations. The sensitivities to thickness variations are investigated
in Chapter 4.






ANALYSIS AND TESTING OF A
LAUNCH-VEHICLE-LIKE COMPOSITE
CONICAL-CYLINDRICAL SHELL WITH

REINFORCEMENT

ONICAL-CYLINDRICAL shells are common geometries in launch-vehicle structures as
Cstage adapters and payload adapters, and they are susceptible to buckling due to their
large radius-to-thickness ratios. Buckling design guidance is available, but it is limited for
conical and cylindrical shells. There is no available buckling design guidance for conical-
cylindrical shells. This paper presents the validation of two finite element models used
to successfully predict the buckling behavior of a conical-cylindrical composite shell with
and without reinforcement tested in two separate campaigns. The laminate design for
the first test campaign consisted of a quasi-isotropic layup. For the second test campaign,
additional composite plies were applied to reinforce the transition region of the original
laminate. The work presented demonstrates the ability to predict the buckling behavior of
a composite conical-cylindrical shells with two different designs, which may aid in creating
buckling design guidance for conical-cylindrical shells. Additionally, in this chapter, it is
shown that there is no appreciable benefit of adding reinforcement to the transition region
if the intent is to increase the buckling load, due to the fact that the reinforcement brings
increased buckling imperfection sensitivity to the shell.

This chapter has been adapted from Rudd MT., Schultz MR., Bisagni C., "Buckling behavior of Conical-
Cylindrical Shells and Design Considerations for Launch-Vehicle Structures", AIAA Scitech Forum 2024, AIAA Pa-
per 2024-0034 and Rudd MT., Schultz MR., Gardner NW,, Kosztowny CJR., Bisagni C., "Experimental validation of
the buckling behavior of unreinforced and reinforced composite conical-cylindrical shells for launch-vehicles",
Composite Structures, Volumes 349-350, 2024
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4.1. INTRODUCTION

Empirically-based KDFs are used to account for differences between test and analysis,
which are largely attributable to radial imperfections and can be specific to the structural
design. The buckling capability of a shell is related of the imperfection sensitivity, meaning
the greater the imperfection sensitivity, the lower the buckling design load. Researchers
have investigated how to design imperfection insensitive shell structures with the goal of
increasing the design buckling load. One way to design imperfection-insensitive shell
structures was by stabilizing the postbuckling response to prevent a large loss in load after
an initial buckling event. Bisagni and Cordisco [70] manufactured and tested stiffened
composite cylinders to assess the performance in the postbuckling range. Ning and
Pellegrino [71, 72] took a nontraditional approach by investigating cylinders with wavy
cross sections to demonstrate imperfection insensitive designs. Lincoln, et al. [73] took
an alternative approach by designing imperfection-insensitive composite cylinders with
variable tow angles. Using variable tow angles breaks up the symmetry in the prebuckling
strain field, which may reduce the cylinder’s sensitivity to imperfections. Wagner, et
al. [74] used machine learning to optimize buckling load and imperfection insensitivity.
Additionally, it was demonstrated in Chapter 3 and [75] that conical-cylindrical shells can
be designed to be insensitive to radial imperfections, which may save mass.

In addition to radial imperfections, tow overlaps and gaps due to the automated
fiber placement (AFP) manufacturing constraints have been demonstrated to affect the
buckling behavior of small-scale composite test articles. Tow overlaps and gaps were
carefully considered in the modeling of NDL-1 in Chapter 2, for this reason. Additionally,
Chapter 3 determined that the probable reason for the discrepancy between the test data
and numerical predictions of the buckling of a composite conical-cylindrical shell was
due to assumptions made when incorporating the unavoidable tow overlaps into the
finite element model. The concept of design for manufacturing can be used to account
for potential tow gaps, overlaps, and other manufacturing constraints during the AFP
process. To account for these new manufacturing-based details in the design, the build of
the part can be simulated, and the overlaps and gaps can be estimated. Then a process to
modify the design to minimize the gaps and overlaps can be completed [76, 77].

Specifically regarding the buckling behavior of composite conical-cylindrical shells,
the minimal research publicly available to this shape is primarily specific to the piping
and civil industry [48, 49]. With regard to aerospace applications, Chronopoulos, et al.
[54] focused on the dynamic response of a composite conical-cylindrical-conical shell
in which the geometry was based on the Sylda. Chapter 3 and [75] also investigated
the buckling of composite conical-cylindrical shells and showed that the currently used
empirically-based KDF approach may not be appropriate for conical-cylindrical shells.
Additionally, the ability to predict the buckling behavior of a conical-cylindrical shell was
shown in Chapter 3 and [78] by providing test and analysis correlation data which can be
used towards the development of buckling design guidelines.

In order to develop buckling design guidance, it is recommended to have at least more
than one test of a conical-cylindrical shell to validate the buckling response predictions of
an associated finite element model (FEM). Correspondingly, the test and analysis results
of a second buckling test of a composite conical-cylindrical shell was completed. The
first buckling test article, 3CHELL, buckled elastically after the first test campaign. The
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test article was undamaged, and additional composite reinforcement was added to the
transition region. The modified test article with reinforcement will be referred to herein
as Re3CHELL.

The use of FEM to predict the buckling behavior of a composite conical-cylindrical
shell without and with reinforcement, 3CHELL and Re3CHELL, respectively, will be
demonstrated in Section 4.2. The design and manufacturing details of 3CHELL and
Re3CHELL are discussed in Section 4.3.1. Next, the finite element model of 3CHELL
and Re3CHELL is discussed in Section 4.3.2. This includes information pertaining to an
updated 3CHELL FEM based on manufacturing data, and how the manufacturing data
influenced the FEM of Re3CHELL. The experimental setup for Re3CHELL is included in
Section 4.3.3. The updated 3CHELL FEM is compared to the 3CHELL experimental data
in Section 4.3.4, and the Re3CHELL FEM is compared to the Re3CHELL experimental data
alsoin Section 4.3.4. The effect of adding reinforcement to a composite conical-cylindrical
shell by comparing the buckling response of 3CHELL and Re3CHELL is discussed in
Section 4.3.5. Concluding remarks are presented in Section 4.4.

4.2. NUMERICAL STUDY ON THE EFFECTS REINFORCEMENT HAS
ON THE BUCKLING BEHAVIOR OF A CONICAL-CYLINDRICAL

SHELL

With composite material systems, it is possible to reinforce localized areas of a structure
with additional plies. For example, it may be advantageous to increase the stiffness of
the transition region, and this could affect the buckling behavior and imperfection sensi-
tivity of the composite conical-cylindrical shell. To investigate the influence of localized
reinforcement of the transition region further, four reinforcement cases were considered,
ranging in relative stiffness of less stiff to more stiff, as shown in Table 4.1. The area
where reinforcement was applied is highlighted in red in Figure 4.1. The reinforcement
material is the same as the original layup, [32] The baseline configuration has a radius
of curvature equal to 400 mm and no additional plies. The increase in mass from the
baseline composite-conical cylindrical shell due to the additional plies is also shown.

Table 4.1: Transition reinforcement layups and associated percent increase in mass.

Reinforcement Layup % Increase in mass
Baseline [45/-45/90/0]s -
Reinforcement1 [90/45/-45/90/0/0/90/-45/45] 1.1%
Reinforcement 2 [90/45/-45/90/0]s 2.2%
Reinforcement 3 [90/0/45/-45/90/0]g 4.7%

Reinforcement 4 [90/0/90/0/-45/90/0]s 9.4%
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Figure 4.1: Region where reinforcement was applied highlighted in red.

The results from the eigenvalue buckling analyses and quasi-static nonlinear buckling
analyses for the composite conical cylindrical shells with and without reinforcement
are presented in Table 4.2 and Figure 4.2. The eigenvalue buckling loads for all levels of
reinforcement were the same, similar to what was observed when the radius of curvature
was increased (Table 3.1). The nonlinear buckling load, on the other hand, increases
as additional plies are added, but only up to the eigenvalue buckling load. In this case,
after Reinforcement 3, the nonlinear buckling load seems to converge to the eigenvalue
buckling load as seen in Figure 4.2. The overall shell stiffness was increased with Re-
inforcement 4, but the buckling load was not significantly increased. Therefore, there
seems to be a point of diminishing returns when comparing the mass of the additional
reinforcement to the increase in buckling load as predicted by the quasi-static nonlinear
analysis.

Table 4.2: Buckling loads predicted as an eigenvalue of the buckling equation and as the peak load of a
quasi-static nonlinear buckling analysis for composite conical-cylindrical shell with different transition-region
reinforcement layups.

Reinforcement case Eigenvalue buckling Nonlinear quasi-static

load (kN) buckling load (kN)
Baseline 331.0 271.7
Reinforcement 1 331.0 296.9
Reinforcement 2 331.0 319.8
Reinforcement 3 331.0 331.9

Reinforcement 4 331.0 332.2
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Figure 4.2: Eigenvalue buckling load (LB) and nonlinear response (NL) for the composite conical-cylindrical
shell with different transition-region reinforcement layups. The eigenvalue buckling load is extended as a
dashed line over the horizontal axis for comparison purposes with the peak load of the non-linear response.

The buckling load from the nonlinear analysis of the shell with Reinforcement 3
was 331.9 kN, which is essentially equal to the eigenvalue buckling load. The buckling
load of the shell with Reinforcement 3 and a radial imperfection amplitude equal to
10% of the wall thickness was 214.0 kN (Figure 4.3). It should be noted that in Figure
4.3 the dashed line representing the linear buckling load for the Baseline design is on
top of the dashed line showing the Reinforcement 3 linear buckling load. This results
in a normalized buckling load of 0.65, and the reduction in load is solely due to the
presence of imperfections. This result is opposite from what was observed for the radius
of curvature of 0 mm, which also had a normalized buckling load of 0.65, but where the
reduction in load was due to the influence of nonlinear effects (Figure 4.3). It should
be noted that, while the buckling load of the perfect shell may increase by reinforcing
the transition region, the reinforced conical-cylindrical shell may be more imperfection
sensitive. Therefore, the inclusion of additional plies in the transition did not improve
the buckling behavior of the imperfect composite-conical cylindrical shell because it was
more sensitive to imperfections, which negated the benefits of adding the reinforcement.

In the end, a KDF is required to account for the difference between the tested buckling
load and the buckling load from an eigenvalue analysis of the geometry without imper-
fections. For a conical and cylindrical shell, a significant percentage of the difference
between test and analysis is attributable to imperfections, which are generally unknown
during the design phase. For conical-cylindrical shells it is possible to design the structure
so that buckling design load is less sensitive to imperfections, and more sensitive to large
displacements and rotations. The large rotations and displacements can be accounted for
in the design phase with a geometrically nonlinear analysis. Therefore, it may be possible
to use a KDF closer to unity if the buckling load of the shell is more susceptible to the
effects of nonlinear geometry, which may result in a more mass efficient design. A second
test campaign was completed in order to validate the numerical observations.
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Figure 4.3: Eigenvalue buckling load (LB) and nonlinear response (NL) for the composite conical-cylindrical

shell with different transition-region reinforcement layups including imperfections. The eigenvalue buckling

load is extended as a dashed line over the horizontal axis for comparison purposes with the peak load of the
non-linear response.

4.3. EXPERIMENTAL VALIDATION ON THE BUCKLING BEHAVIOR

OF A CONICAL-CYLINDRICAL SHELL WITH REINFORCEMENT

4.3.1. DESCRIPTION OF TEST ARTICLE

Two layers of Toray plain-weave fabric T1100G 3960 PW [79] were adhered to the IML
surface of 3CHELL in the region indicated by the box in Figure 4.4a using an autoclave
cure process. The fabric plies were placed so that the 0-degree orientation aligned with the
axis of rotation of the test article. The reinforcing fabric was placed on the IML because
the test article OML surface had been painted for digital image correlation (DIC), which
was used to collect displacement and strain data during the test of 3CHELL. The design
details for the reinforcement are shown in Figure 4.4b, where the acreage region is the
original 3CHELL layup, and ply 1 and ply 2 consisted of the plain-weave fabric. The fabric
was approximately 0.20 mm thick. Ply 2 covered ply 1 with a 6.35 mm overlap on the top
and bottom. Not pictured is a layer of film adhesive FM 209-1 [80] which was 0.25 mm in
thickness and was placed between the acreage and the added fabric plies. The transition
region had a compound curvature so each ply and film adhesive was cut into 8 sections
to reduce the amount of wrinkling. The seams for fabric ply 1, fabric ply 2, and the film
adhesive were staggered. A picture of the cured reinforcement plies as viewed axially
upwards is shown in Figure 4.5. The assumed moduli for the fabric is presented in Table
4.3. The Poisson’s ratio was estimated to be 0.05 based on references [81, 82, 83].
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Figure 4.4: Re3CHELL a) dimensions and location of reinforcement, and b) reinforcement detail.

Figure 4.5: Close up image of the reinforcement after cure.

Table 4.3: Nominal lamina properties of T1100G 3960 PW composite.

0-degree modulus 90-degree modulus Shear modulus Poisson’s ratio
En (GPa) Ej; (GPa) G2 (GPa) viz2 (-)
77.9 86.9 5.1 0.05

The shape of test article Re3CHELL was measured in the same manner as 3CHELL,
using the structured light scanning photogrammetry method after the cure of the ad-
ditional reinforcement plies to determine the IML and OML radial imperfections and
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thickness variations. The IML and OML radial imperfections are presented in Figure 4.6a
where the cooler colors represent relatively inward imperfection, and the warmer colors
represent a relatively outward imperfection. The overall peak-to-peak amplitude of the
radial imperfection was approximately 1.50 mm, which was slightly larger than the overall
thickness of the laminate at 1.37 mm.

The measured thickness is shown in Figure 4.6b, and the red band at the transition
region corresponds to the added thickness from the reinforcing fabric plies. Red hatched
lines, corresponding to an increased thickness region, were observed in the conical region
of the shell. These lines relate to the overlapped areas of the +45-degree plies. Each course
of composite unidirectional tape was laid from the cylindrical end to the conical end. In
the cylindrical region of the shell, one course contained four tows of unidirectional tape.
To ensure no gaping occurred between tows while transitioning from the cylinder to the
tapered conical end, adjacent courses overlapped by a full tow width of 6.35 mm. The
overlapped area increased from the bottom towards the conical end until the red lines
abruptly end near the top of the cone. At this location, the tow of the currently laid course
has overlapped an entire tow width of the adjacent course that was previously laid, and
the overlapping composite tow was dropped. The course continues up the length of the
conical region with three tows remaining.
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Figure 4.6: Structured light scan data of Re3CHELL: a) radial imperfections of IML; b) measured thickness.

4,3.2. NUMERICAL ANALYSIS USING UPDATED 3CHELL FEM AND RE3CHELL
FEM
A FEM of Re3CHELL was created in Abaqus 2021 [62] by modifying the original 3CHELL
FEM to account for the additional fabric plies. Both FEMs consisted of the four-node,
reduced-integration shell element, S4R, with the same element size. Additionally, ge-
ometric nonlinear analyses were completed to determine the buckling load for both
models. The geometric nonlinear analysis was completed using the dynamic implicit
solver approximating a quasi-static response, in which the axial displacement rate was
0.076mm/min. The measured IML radial imperfections were also included. From the
original test and analysis correlation of 3CHELL, it was determined that the discrep-
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ancy between the test data and the FEM was largely due to assumptions made when
incorporating the +45-degree plies tow overlaps.

It was not until after the test of Re3CHELL that it was learned that the program used to
control the AFP robot, Vericut Composite Programming (VCP) [84] provided by CGTech!,
can be used to estimate parameters such as the tow overlaps per ply. Comparing the VCP
output to the original FEM, the VCP estimate of overlapped areas from the +45-degree
tows was approximately 28% greater than what was assumed in the original 3CHELL FEM.
Additionally, the original model assumed that there were no regions with overlapping
0-degree tows, however the VCP estimated an area associated with 0-degree-tow overlaps.

Once VCP was used to estimate the overlaps, the original 3CHELL FEM was updated
to reflect the larger predicted overlapped area. This new FEM will be referred to as
the updated 3CHELL model. To account for the additional +45-degree overlaps, more
elements in the FEM were assigned the section properties inclusive of the +45 and -45
overlaps. The pattern of the overlapped tows was similar to the original 3CHELL FEM, but
the yellow and red areas corresponding to the overlapped +45-degree and —45-degree plies,
respectively, extend all the way to the top of the transition region. The updated 3CHELL
FEM with newly defined section properties is shown in Figure 4.7a and listed in Table 4.4.
Additionally, a new section was defined to account for the overlapped 0-degree is shown
in magenta. Since the 0-degree overlapped areas are concentrated towards the conical
end due to the shrinking diameter, the region above the tow drop was modified. The
0-degree overlapped area specified by VCP was 16% of the magenta region. To account for
the increase in overlapped area, the thickness of the 0-degree plies was increased by 16%
from the as-measured thickness of 0.171 mm to 0.185 mm. These modifications increased
the 3CHELL FEM weight from 3.31 kg to 3.34 kg, which was closer to the measured weight
of 3.40 kg. The area of the overlapped regions, as determined by the VCP program, are
compared in Table 4.5 with what was assumed in developing the original 3CHELL model
and the updated 3CHELL model.

«— Tow drop

(@) (b)

Figure 4.7: Finite element models: a) updated 3CHELL; b) Re3CHELL.
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Table 4.4: Added section properties of the updated 3CHELL and Re3CHELL FEMs.

Section FEM Color Layup
Acreage w/modified 0-ply =~ Magenta [45/-45/90/0/0/90/-45/45]
Padup- 2 plies White [45/-45/90/0/0/90/-45/45/Film adhesive/T1100/ T1100]
Padup- 1 ply Black [45/-45/90/0/0/90/-45/45/Film adhesive/T1100]
Potted ends Gray [Al ring/Potting/Acreage/Potting/Al ring]

Table 4.5: Section properties of the original 3CHELL.

Ply VCP Original Updated
3CHELLFEM 3CHELL FEM

+45-degree overlaps  0.39 m? 0.28 m? 0.40 m?

0-degree overlaps  0.03 m? 0.00 m? 0.03 m?

The main difference between the updated 3CHELL FEM and the Re3CHELL FEM
was the inclusion of the reinforced regions shown in black and white in Figure 4.7b. The
white region has film adhesive and two plain weave fabric plies on the IML. The black
region has the film adhesive and only one fabric ply. For all FEMs, the positive global
X-axis of the FEM aligns with the 0-degree circumferential location of the test article, the
positive global Y -axis aligns with the 90-degree circumferential location of the test article,
and global Z axis is defined along the axis of rotation. In all models, the measured IML
radial imperfections were incorporated into the FEM because the OML data was highly
influenced by the thickness variations that were primarily due to the tow overlaps.

The updated 3CHELL FEM and the Re3CHELL FEM contained two reference points on
the top and bottom of the test article centered along the axis of rotation. Tie constraints
were used to connect all degrees of freedom to the respective reference points. The top
reference point had all rotational degrees of freedom fixed. The primary source of loading
was due to an applied axial displacement (Z-axis), but it was observed that the load platen
applied a shearing displacement in the X-Y plane during the test of 3CHELL. Therefore,
the X and Y translational degrees of freedom were not fixed to account for the measured
shearing displacement. The bottom reference point had all degrees of freedom fixed.
A geometrically nonlinear implicit dynamic analysis was used to predict the buckling
response of 3CHELL and Re3CHELL.

4.3.3. EXPERIMENTAL SETUP

The experimental setup and instrumentation for 3CHELL and Re3CHELL were identical.
The test article was instrumented and was subjected to several subcritical load sequences
prior to the final load sequence to failure. Instrumentation included strain gages, and
low-speed and high-speed DIC systems were used to monitor the test article prebuckling,
buckling, and postbuckling response throughout all load sequences.

The test article was covered with a high-contrast speckle pattern for DIC to accommo-
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date two different fields of view (global and local). The global field of view was used for the
low-speed and high-speed cameras centered at the 0-degree and 180-degree circumferen-
tial locations and encompassed the entire length of the test article including the end rings,
approximately 711 mm x 864 mm. The cameras used to capture the entire test article and
interface rings will be referred to as the global systems. A smaller, more localized field
of view was defined with additional low-speed cameras positioned at the 0-, 90-, 180-,
and 270-degree circumferential locations. The local field of view encompassed a smaller
area, approximately 297 mm x 365 mm, and focused on the transition region. Due to the
fact that the local camera systems had smaller fields of view, higher spatial resolutions
(pixel/mm) could be obtained without interfering with the data being collected by the
global camera systems. The local field of view was chosen because it was anticipated
there would be high strain gradients in this region due to the curvature and ply drops
from the added reinforcement. A more detailed description of the test setup can be found
in Chapter 3.

4.3.4. RESULTS AND DISCUSSION

The test and analyses correlation for the test article 3CHELL using the updated 3CHELL
finite element model based on manufacturing data output from the VCP program is
discussed in this section. Next, the results for Re3CHELL are presented in this section
followed by a comparision of the buckling behavior of 3CHELL and Re3CHELL.

UPDATED 3CHELL RESULTS

A comparison of the load versus displacement data up to and including the buckling
limit point of the updated 3CHELL FEM, and the test data is presented in Figure 4.8.
The test article 3CHELL buckled at a load of 251.8 kN. The updated 3CHELL model with
included measured radial imperfections and the X-Y plane shearing displacement from
the load frame had a predicted buckling load of 247.2 kN, which was within 2% of the
measured buckling load. The inclusion of radial imperfections reduced the predicted
buckling load by 5%. While, the predicted and measured buckling loads were similar,
the predicted and measured stiffness are not well aligned. However, it was suggested
in [78] that the difference between the FEM stiffness and the measured stiffness was
potentially attributable to a gap between 3CHELL and the bottom surface of the end
ring. The presence of such a gap could not be verified because the end rings were never
removed, so no additional effort was made to determine the source of change in stiffness.
The updated 3CHELL model predicted the initiation of buckling in the cylinder just below
the transition region at the 0-degree circumferential region, as shown in the predicted
radial displacement plots, Figure 4.9. The cooler colors (e.g., blues and blacks) represent
relatively inward displacement, and the warmer colors (e.g., reds and orange) represent
relatively outward deformation. During the testing of 3CHELL, buckling also initiated
in the cylinder just below the transition region, but at approximately the 125-degree
circumferential location (circled) instead, as shown in the radial displacement plots in
Figure 4.10.
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Figure 4.8: Axial load versus axial displacement curves from test and updated 3CHELL FEM.
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Figure 4.9: Predicted radial displacements (U7) from updated 3CHELL FEM:
a) centered at 0 degrees; b) centered at 180 degrees.
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Figure 4.10: Measured radial displacements (U7) of 3CHELL:
a) centered at 0 degrees; b) centered at 180 degrees.
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RE3CHELL RESULTS

The test article Re3CHELL buckled at aload of 268.7 kN and its post-buckled configuration
is shown in Figure 4.11. The load versus displacement curves up to and including the
buckling limit point from the test data and the Re3CHELL FEM are presented in Figure
4.12. Re3CHELL was predicted to buckle at 304.5 kN without measured radial imperfec-
tions (dashed red curve), and 275.5 kN with IML measured radial imperfections (green
curve). The inclusion of measured radial imperfections led to a reduction in the buckling
load of 9.5%. This reduction was greater than the predicted decrease in load-carrying
capability due to imperfections for 3CHELL, which was only 5%. As in 3CHELL, the load
frame caused the top load platen to move perpendicular to the test article axis of rotation
in the X-Y plane. This resulted in a shearing displacement measured at the top of the test
article. This shearing displacement had a magnitude of 0.28 mm towards the 34-degree
circumferential location. This shearing displacement and the radial imperfections re-
sulted in a predicted buckling load of 275.2 kN (black curve), which was within 2.5% of
the tested load (blue curve).

Figure 4.11: Postbuckling configuration of Re3CHELL.
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Figure 4.12: Axial load versus axial displacement curves from test and Re3CHELL FEM.

Using high-speed DIC, it was confirmed that buckling occurred approximately at the
125-degree circumferential location at an axial position just above the tow drop in the
conical region. The progression of the experimental buckling event is shown in Figures
4.13ato 4.13f using a sequence of data from the high-speed DIC system centered at the
0-degree circumferential location. In Figure 4.13, the warmer colors represent relative
outward displacements, and the cooler colors represent relatively inward displacements.
In Figure 4.13a, initiation of buckling is observed in the upper left-hand corner of the
image, near the conical end, where the edge of a purple dimple can be observed (circled).
Approximately 0.5 ms after that, as shown in Figure 12a, a secondary dimple forms
adjacent to the first (Figure 4.13b). Then, 2.0 ms after the first image, buckling has
propagated with a series of buckling waves around the entire top circumference of the
conical section (Figure 4.13c). Figure 4.13 was taken 5.5 ms after the first image and
shows a second row of dimples forming just below the first. In Figure 4.13e, the newly
formed row of dimples has become larger, while the first row become smaller. Eventually,
postbuckling equilibrium was reached in the final image (Figure 4.13f), which is consistent
with Figure 4.11.
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(d) (e) ®

Figure 4.13: Radial displacement after buckling initiation from high-speed cameras at 180 degrees beginning at
a) first image; b) 0.5 ms after first image; ) 2.0 ms after first image; d) 5.5 ms after first image; €) 6.5 ms after first
image; f) last image captured.

The predicted and measured radial displacements (U1) at incipient buckling for
Re3CHELL are shown in Figure 4.14 and Figure 4.15, respectively, with the buckling
location circled. Buckling was predicted to occur in the conical region above the tow
drop just outside of the DIC field of view at approximately the 90-degree location, which
is shown in Figure 4.14c for clarity. This was similar to the location that buckling was
observed to initiate in Re3CHELL as determined using the high-speed DIC data. Buckling
initiated just out of the field of view of the high-speed cameras, and it was therefore
difficult to confirm the exact location. Similar patterns can be observed in the predicted
and measured radial displacements, most notably the inward deformations in the blue
just above the tow drop in the conical section and the maximum outward displacement
at the transition region. The measured maximum outward displacement was 0.63 mm, as
measured by the DIC system centered about 0-degree circumferential location (Figure
4.15a). For the same field of view centered about 0-degrees in the FEM (Figure 4.14a),
the predicted maximum outward displacement was 0.60 mm. The minimum inward
displacement occurs just above the tow-drop region. The measured inward deformation
was 0.38 mm, as observed in the DIC system centered about 180 degrees (Figure 4.15b).
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In the same field of view for the FEM (Figure 4.14b), the predicted inward displacement
was 0.19 mm. The predicted inward displacement was half of the measured inward
displacement; however, both occur in a dimple in the tow drop region. One difference
that can be observed occurs where the reinforcement ply 1 was terminated just above
and below the transition region. In the FEM, there was a sharp gradient of outward radial
displacement (red bands) where the reinforcement ply ends. This is not observed in the
measured radial displacements.
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Figure 4.14: Predicted radial displacements (U;) from Re3CHELL FEM:
a) centered at 0 degrees; b) centered at 180 degrees; ¢) centered at 90 degrees.
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Figure 4.15: Measured radial displacements (U7) of Re3CHELL:
a) centered at 0 degrees; b) centered at 180 degrees.

The predicted and measured minimum principal strains at the onset of buckling,
with the corresponding in-plane principal strain direction primarily aligned in the axial
direction for the current work, are presented in Figures 4.16 to 4.18. There was a red band
of low minimum principal strain at the transition region in both predicted and measured
results. Also, at the conical end there was a band of green which corresponds to a higher
axial strain. The greatest predicted minimum principal strain was -5749 pe, which was
about 60% higher than the greatest measured minimum principal strain of -3560 ue. The
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stiffness discontinuities due to the tow drops in the FEM led to an artificially high strain in
the predicted results, which may be a contributing factor as to why the difference between
the measured and predicted minimum principal strains was observed.

The spatial resolution of the local DIC systems was 3.5-times higher than the global
system, meaning there were more pixels per millimeter in the field of view. This means
that the local systems could accurately capture areas with high strain gradients, such as
the tow drop region and the transition region. The field of view of the local systems did
not include the tow drop region, but it did include the transition region. The area boxed in
Figures 4.16b and 4.17b corresponds to the field of view of the local DIC system centered
at 180 degrees. The high strain gradients predicted are presented as thin circumferential
bands that extend outward from the transition region red to green to gray (Figure 4.16)
and are not visible in the data from the global DIC systems (Figure 4.17). Although, the
high strain gradients can also be observed in the results from the local DIC systems in
Figure 4.18. The image on the left in Figure 4.18 is the area in the black box in Figure 4.16,
and the image on the right is the local view of the test article. Two strain gages, SG1 and
SG2, can be observed in the local view of the test article. Two areas are highlighted in
Figure 4.18 that correspond to high stress gradients in the FEM that were measured by
the local DIC systems, but not the global systems.
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Figure 4.16: Predicted minimum principal strains from Re3CHELL FEM:
a) centered at 0 degrees; b) centered at 180 degrees.
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Figure 4.17: Measured minimum principal strains from Re3CHELL FEM:
a) centered at 0 degrees; b) centered at 180 degrees.
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Figure 4.18: Minimum principal strains from a) Re3CHELL FEM,
and b) measured from local low-speed DIC system at 180 degrees.

As mentioned previously when reporting the values of minimal principal strain, the
discrepancy between the measured and predicted values was most likely due to the
stiffness discontinuities in the FEM. It was demonstrated that using the local DIC systems
with the higher spatial resolution could more accurately measure high strain gradients,
which can improve correlation when directly comparing the measured DIC data to the
predicted FEM.

Evaluating the strain gage data can also provide valuable information on the correla-
tion between test and analysis. The strain data presented is for the gages SG1 and SG2
and appear in the local system field of view in Figure 4.18. The calculated axial membrane
strain data from the OML and IML strain gages in the transition region (SG1) and cylinder
at 180 degrees (SG2) is presented in Figure 4.19. There was only a 3% difference between
measured and predicted axial membrane strains at incipient buckling (-1380 ue and
-1426 ue, respectively) at the cylinder mid-height gages. There was 6% difference between
the measured and predicted axial membrane strains at incipient buckling of -1739 ue
and -1847 ue, respectively, at the transition strain gage. The slopes of the predicted and
measured data are in good agreement.
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Figure 4.19: Calculated axial membrane strain from the test and FEM for the midheight cylindrical strain gages
(SG1) and the transition strain gages (SG2) at 180 degrees.

The predicted and measured maximum principal strain contour plots at incipient
buckling are shown in Figures 4.20 and 4.21, respectively, and the highest principal strain
occurs near the transition region where the hoop strain was the greatest, as shown by the
green-yellow band. The maximum measured principal strain was 2215 e in the center
of the transition region in the global DIC system, centered about 180 degrees (Figure
4.21b). The predicted strain in the same corresponding region was 2652 pe, which was
20% greater (Figure 4.20b). The predicted maximum principal strain was located in the
area of the +45-degree tow overlap termination at the base of the cone and where the
reinforcement ply 2 was dropped. The abrupt changes in the thickness results in a stiffness
discontinuity similar to what was observed in the predicted minimum principal strain
(Figure 4.16). This may have contributed to the large difference between the predicted
maximum principal strains and the maximum principal strains measured by DIC.

Better correlation can be observed in Figure 4.22 when looking at the measured
and predicted hoop-direction membrane strains at discrete locations corresponding
to the same set of strain gages in Figure 4.18. There was a 10% difference in the hoop
membrane strain from the analysis and test at incipient buckling for both sets of gages in
the transition region (SG1), and the cylinder midheight (SG2). There was good agreement
in the slopes of the measured and predicted minimum principal strain for the cylinder
midheight gages (SG2). On the contrary, the calculated hoop membrane strains in the
transition region (SG1) for the measured and predicted curves began to diverge around
75 kN.

Overall, the correlation between test and analysis for 3CHELL using the updated
3CHELL FEM and Re3CHELL creates confidence in the ability to predict the buckling
behavior of composite conical-cylindrical shells. The experimentally correlated finite
element model provides an additional data point for further developing a buckling design
methodology for conical-cylindrical shells by demonstrating the ability to predict the
buckling behavior for two different designs.
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Figure 4.20: Predicted maximum principal strains from Re3CHELL FEM:
a) centered at 0 degrees; b) centered at 180 degrees.
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Figure 4.21: Measured maximum principal strains from Re3CHELL:
a) centered at 0-degrees; b) centered at 180-degrees.
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Figure 4.22: Calculated hoop membrane strain from the test and FEM for the midheight cylindrical (SG1) gages
and the transition gages (SG2) at 180 degrees.
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4.3.5.3CHELL vErsus RE3CHELL

The testing of 3CHELL and Re3CHELL provided valuable information on the buckling
behavior for composite conical-cylindrical shells to help establish design guidelines, but
it also validates observations on the buckling behavior of conical-cylindrical shells made
from the numerical study. Specifically, conical-cylindrical shells without reinforcement in
the transition region are more inclined to have a reduction in buckling load by including
the effects of large displacements and rotations, i.e., geometric nonlinearity, but they are
less sensitive to radial imperfections. The opposite is true for conical-cylindrical shells
with reinforcement in the transition region, where the increased stiffness of the transition
region prevents large displacements and rotations from occurring and the geometrically
nonlinear buckling load is close to the eigenvalue buckling load. As a result, the shells
with transition-region reinforcement are more sensitive to geometric imperfections than
those without reinforcement. To that end, the anticipated gains in the buckling load
by adding reinforcement with the intent to increase buckling performance may not be
achievable due to the increase in imperfection sensitivity.

The effect of adding reinforcement to the transition region can also be observed when
comparing the average axial membrane strain along the length of 3CHELL and Re3CHELL
(Figure 4.23). The axial membrane strains were calculated by averaging the OML and IML
gages. The axial membrane strains at each strain gage axial location were averaged and
plotted for 3CHELL (black) and Re3CHELL (red). For this plot, positive axial membrane
strains correspond to compressive strains. As can be seen in 4.21, the axial membrane
strains in the cylindrical regions for 3SCHELL and Re3CHELL were similar. The variation
in the axial membrane strain in the cylindrical region was within 100 pe. It is interesting
to note that 3CHELL buckled in the cylinder region, and the axial membrane strains in
the cylinder were lower than the conical region strains. For comparison, in 3CHELL the
average axial membrane strain in the conical region at the 650 mm was 50% higher than
the axial membrane strains in the cylindrical region at the axial height of 137 mm. Adding
reinforcement resulted in lower axial membrane strains in the conical region of Re3CHELL
and buckling occurred in the middle-conical region. The average axial membrane strain
in the conical region at the axial position of 650 mm, is within 300 ue (or 15%) of the
cylindrical axial membrane strain at 137 mm.

The observation that adding reinforcement to the transition region may not increase
the buckling load a significant amount can be verified when comparing the mass to
the experimental load for Re3CHELL and 3CHELL. The tested Re3CHELL buckling load
was 6.2% higher than 3CHELL tested buckling load, 268.7 kN and 251.8 kN, respectively.
The reinforcement added to create Re3CHELL increased the total mass by 5% of the
test article as compared to 3CHELL. A structural efficiency of the test articles can be
calculated by dividing the tested buckling load by the mass. Based on the experimental
buckling load, the structural efficiency was 74.1 kN/kg for 3CHELL and 75.3 kN/kg for
Re3CHELL. Therefore, adding the reinforcement resulted in only a minor increase in
efficiency of 1.4%. According to the buckling loads from the geometrically nonlinear
analyses without radial imperfections, it was predicted that by adding reinforcement to
3CHELL to make Re3CHELL the buckling load with increase from 261.3 kN to 304.5 kN,
respectively. Based on these values, it would seem that an 11% increase in load per unit
mass could be achieved when radial imperfections were not included. According to the
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Figure 4.23: Average axial membrane strains for 3SCHELL and Re3CHELL and 240 kN.

test data, the added reinforcements only provided an increase of 1.4% because of the
increase in imperfection sensitivity. The experimental results demonstrate that it may not
be beneficial to add reinforcement to conical-cylindrical shells to increase the buckling
load.

4.4. CONCLUDING REMARKS

Conical-cylindrical shells have been used in the aerospace industry as launch vehicle
stage adapters and payload adapters and can be susceptible to buckling. Though conical-
cylindrical shells are being used in practice, there is little buckling design guidance
publicly available. To develop buckling design guidance for conical-cylindrical shells,
the ability to accurately predict the buckling behavior of composite conical-cylindrical
shells must be demonstrated. The successful test and analysis correlation of a composite
conical cylindrical shell with and without reinforcement was presented in this chapter.
Additionally, previous analysis-based observations that adding reinforcement to the
cylinder-to-cone transition region may not significantly increase buckling load-to-mass
ratio was validated with experimental testing, and therefore care should be taken when
adding reinforcement with the intent of increasing the buckling load.



DESIGN SENSITIVITY ANALYSIS OF
BUCKLING IN
CONICAL-CYLINDRICAL SHELLS
USING POLYNOMIAL CHAOS
EXPANSION

ONICAL-CYLINDRICAL shells with a seamless toroidal transition are being utilized as

launch-vehicle and payload adapters in aerospace structures due to their intrinsic
structural advantages compared to sections joined with traditional methods. However,
the buckling behavior under compressive axial loads of this type of monolithic shell has
been less extensively studied compared to purely cylindrical or conical structures. To
better understand the buckling behavior of conical-cylindrical shells, the polynomial chaos
expansion (PCE) method was implemented to quantify the influence of primary design
geometric parameters, namely the shell thickness, the radius of curvature of the transition
zone, and the angle of the conical section. The PCE method was applied to shells made
of isotropic material and anisotropic composites. In the latter case, the influence of the
0-degree-laminae ply fraction on the buckling load was also quantified. The buckling load
was determined using two separate methods, namely from a (linear) eigenvalue analysis
and a (nonlinear) implicit dynamic analysis. The polynomial expansion obtained from
the PCE method provides useful insight into the relative influence of the basic geometric
and material parameters on the buckling load and may find use in preliminary design of
conical cylindrical shells for launch vehicles.
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5.1. INTRODUCTION

Cylindrical shells and conical-cylindrical shells have been utilized as a primary structure
in launch vehicles to support the resultant loads from various phases of flight. The primary
structure is responsible for carrying the predominately compressive loads, which makes
buckling an important failure mode to be considered when designing launch-vehicle
structures. For a given design mode, the buckling load of a structure depends on the
geometric and material parameters that control the structural response. Researchers have
used various stochastic methods to quantify the effect a given variable has on the buckling
response, but mainly for cylindrical shells. If the buckling sensitivities of a cylindrical
or conical-cylindrical shell can be quantified with respect to different variables, then
the buckling design methodology for launch-vehicle shells structures can potentially be
improved.

Researchers have attempted to quantify the effects of material variations and geomet-
ric imperfections on the buckling response of cylindrical isotropic shells. For example,
Elishakoff and Arbocz [85, 86] investigated the stochastic imperfection sensitivity of a
metallic cylinder assuming axisymmetric and nonsymmetric geometric shapes. Stefanou
[87] demonstrated that assuming Gaussian distributions for the random input variables
may not be conservative based on their research regarding sensitivities of Young’s modu-
lus and Poisson’s ratio for an isotropic cylinder.

Composite manufacturing introduces a set of variables unique to composite struc-
tures. Knowing that the buckling capability of a composite shell could be sensitive to
variability in the manufacturing process, Broggi and Schuller [88] used a moving-average
technique to account for thickness and material variations based on measured data to
demonstrate the scatter in the buckling load. The results showed that the thickness vari-
ations can have a significant effect on the buckling load of a composite shell, which is
why Kepple, et al. [89] expanded on Broggi and Schuller’s research by looking at various
stochastic methods for thickness variations. Sadovsky, et. al [90] took a novel approach by
linking imperfections to strain energy, and proposed that strain energy be considered as
the random variable instead of imperfection shape.

Researchers have used similar stochastic methods specifically for design of aerospace
structures. For example, Arbocz and Hilburger [91] presented the application of the
Monte Carlo method and the first order second-moment approach to quantify buckling
sensitivities. Alfano and Bisagni [92] used the Monte Carlo method to assess effects that
material-property and ply-angle uncertainties, loading imperfections, and geometric im-
perfections have on the buckling load of a composite cylinder. The individual influence of
each variable was quantified as well as combined effects from all the variables. Alfano and
Bisagni [93] also expanded their work to include composite shells with cutouts. Schillo, et
al. [94] performed a similar study, but instead of assuming probabilistic distributions for
the variables, they used the actual distributions measured from 11 different test articles;
again, the Monte Carlo method was employed.

Polynomial chaos expansion (PCE) is a method that has been used to perform sensi-
tivity analyses and uncertainty quantification [95] on a wide range of applications[96, 97,
98]. Polynomial expansions are used in the PCE method to estimate an output based on
random input variables in a way that is computationally less expensive than the Monte
Carlo and first-order methods, which require a relatively large number of functional eval-
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uations [99]. Specifically related to the buckling of thin-walled structures, PCE was used
to estimate the nonlinear buckling load with geometric imperfections [100]. The PCE
method was chosen because only a small number of computationally expensive nonlinear
functional evaluations were required. Additionally, Kumar, et al. [101]. demonstrated the
use of the PCE method to assist in the material selection and design process of an aircraft
fuselage. They considered a multiscale modeling approach, where they propagated the
uncertainties from the microscale, into mesoscale and macroscale finite element (FE)
models. Additionally, Kumar, et al. demonstrated the ability of the PCE to handle a large
number of input variables. Paudel, et al. [102] demonstrated the use of the PCE to perform
uncertainty quantification and a global sensitivity analysis of a composite cylinder with
geometric imperfections.

In addition to quantifying uncertainty, the PCE method can also be used as a tool
for design sensitivity analysis by choosing input design variables with a continuous
uniform probability distribution. A uniform distribution, with a chosen design range
specified by upper and lower bounds, reflects the arbitrary nature of design choices.
This approach is useful for supporting preliminary design choices and, in the present
work, it is applied for conical-cylindrical shells. In particular, the PCE approach is used
to investigate the influence of basic geometric and material design variables on the
buckling load, which is a major driver for design choices. For the purposes of the present
study, which is the design sensitivity analysis of the primary design variables, geometric
imperfections were not included. Nonetheless, it is relevant to point out that in Chapter 3
and [75] observed that the difference between the linear and nonlinear analyses to predict
the nominal buckling load can be significant for conical-cylindrical shells even when
geometric imperfections are not included. Correspondingly, separate PCE expressions
are developed for the buckling load predicted from a (linear) eigenvalue problem and the
buckling load predicted from a (nonlinear) implicit dynamic simulation.

The present work is organized as follows: A brief overview of the PCE method is
presented in 5.2. The method is then applied to obtain a PCE representation of the
buckling load fitted to values obtained from the linear buckling equation (eigenvalue
problem) of an isotropic conical-cylindrical shell. The importance of the order of the PCE
expression and oversampling ratio, both of which need to be chosen at the beginning
of the process, is studied in 5.3. Subsequently, in 5.4, the same approach is used for
the nonlinear buckling load of an isotropic shell. In 5.5, the PCE method is applied for
composite (anisotropic) conical-cylindrical shells. Concluding remarks are given in 5.6.

5.2. METHODOLOGY AND APPLICATION

Polynomial chaos expansion, specifically using the nonintrusive point-collocation tech-
nique, is a stochastic method where a desired random output variable, y, which depends
on p random input variables X; (j = 1, ..., p) is expressed in a series expansion using
polynomial basis functions ®; (i = 1, ...), [95, 103]. The series expansion, denoted as
¥YpcE, is typically truncated using a finite number of terms, N, that capture the most
relevant contributions to the actual output variable y. The input variables X ; have specific
probabilistic distributions (e.g., uniform, normal, etc.) that best represent their nature.
Correspondingly, the output ypcg is expressed as a finite summation, i.e.,
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N
yece =), Bi®(X) 5.1)
i=0
where the random input variables X ; have been collected in a multivariate vector X and
the scalars §; (i=1, ..., N) are unknown coefficients that need to be determined.
The basis functions ®; are obtained by carrying out a tensor product of univariate
orthogonal polynomials P; of each input variable X}, i.e.,

p
®;(X) =[] P{" (x;) (5.2)
j=1
where the integers a'/ correspond to the order of the univariate orthogonal polynomial
P; for the orthogonal multivariate polynomial ®;. The functions P; are orthogonal
polynomials that are connected to the probability distribution of the input variable X ;.
For example, if an input variable X; has a uniform distribution, the Legendre family
of orthogonal polynomials P; is used, and for normally distributed variables, Hermite
polynomials are used.

The coefficients §; with i=1, ..., N, need to be adjusted such that the expansion ypcg
in 5.1 can approximate the output y. To this end, the first step is to obtain a collection of S
sampling input points X’ and known corresponding output values yX®), with s=1, ..., S.
These sample points can be obtained experimentally or, in the present case, numerically
through finite element (FE) simulations. This entails running S simulations, each with
a deterministic output. Subsequently, a best-fit analysis is carried out to minimize the
difference between the PCE prediction ypcg (X)) and the actual values y(X(S)). Commonly
used strategies are least-square formulations and point collocation methods that generate
a system of (linear) equations representing the necessary conditions for an optimum
match. Correspondingly, the number of sampling points S must be at least equal to
the number of approximating terms N in the truncated series, i.e., S = n, = 1 is the
oversampling ratio.

The number of terms N in the truncated series is dependent upon the number of
input variables, p, and the greatest order of the polynomials, 1, as N = (n + p)!/ (n!p!) (see,
e.g., [104] for details). The input variables used in the method, and hence the value p,
are chosen a priori based on expert knowledge, a preliminary analysis, or a combination
thereof. The oversampling ratio n,, is normally dependent on the availability of existing
data and/or the effort required to generate new data. Similarly, the leading order of the
polynomial 7 is chosen based on the available data and resources, where normally higher
values may be required to capture complex dependencies between input and output (e.g.,
rapid changes in rates and nonmonotonic trends). A compromise between available data,
resources and accuracy can be reached by first computing the number of sample points,
ie.,

(n+ p)!

5=y n!p!

(5.3)

then estimating the cost to generate that number of samples (e.g., number of experiments
or number of simulations), and finally choosing appropriate values for n, p, n, for a
desired accuracy of ypcg.
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A nonintrusive approach is used in the present work to generate data points y(X'¥)
(s=1, ..., S), where X¥ is the buckling load obtained from finite element simulations
of a conical-cylindrical shell characterized by design variables X treated as uniformly
distributed random variables within a design range. A Latin hypercube sampling scheme
is used to select a discrete number of input variables based on their distributions. Those
inputs are then used to create finite element models (FEMs) to get the desired output
for that specific combination of input variables. This is repeated S times. The point
collocation method is then implemented where linear systems of equations are used
to solve for the resulting coefficients, thus determining the polynomial expansion. The
open-source Python package Chaospy [105] was employed to assist in process of solving
for the coefficients to determine the resulting polynomial.

5.3. LINEAR BUCKLING OF AN ISOTROPIC CONICAL-CYLINDRICAL

SHELL

The process outlined in the previous section is applied to obtain a polynomial expression
that can estimate the buckling load of an isotropic, linearly elastic conical-cylindrical
shell as determined from an eigenvalue analysis (and hereafter referred to as the linear
buckling load). Three design parameters, as shown in Figure 5.1, were chosen as input
variables for the linear buckling load, namely:

(i) The wall thickness, t, of the shell (same thickness in both the cylindrical and conical
sections),

(i) The radius of curvature, p, of the transition region between the cylindrical and
conical sections, and

(iii) The cone angle, a.

For simplicity, the aspect ratio (radius-to-height ratio) of the shell was kept fixed. The
accuracy of the polynomial expression (i.e., its capacity to reproduce the actual linear
buckling load) was assessed using different goodness-of-fit metrics, such as the deter-
mination coefficient, R2, and plotting the residuals. Once the accuracy was established,
a sensitivity analysis was carried out to determine the influence of each variable on the
linear buckling load.

5.3.1. INPUT VARIABLES

The conical-cylindrical shells considered in the study had an overall height of 1200 mm
that remained constant. Also, the radius of the cylindrical end was 400 mm and was kept
constant (Figure 5.1). For design purposes, the radius of curvature of the cylindrical-to-
conical transition region was allowed to range from 0 mm, an abrupt transition, to 800
mm, a smooth transition. Additionally, the design range for the conical angle was from
10 degrees to 25 degrees and the wall thickness ranged from 1.27 mm to 2.54 mm. The
ranges of interest for the design input variables are summarized in Table 5.1. After the
number of evaluations S was chosen, then the Latin hypercube sampling technique was
implemented to create the corresponding set of S combinations of ¢, p, and a. In all
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simulations, the elastic material properties were taken as constant and corresponded to
an aluminum alloy with a Young’s modulus of 71.0 GPa and a Poisson’s ratio of 0.33.

[

p
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h =1200 mm

L[Q—D

r=400 mm

Figure 5.1: Conical-cylindrical shell geometry.

Table 5.1: Design space as described by the input variables and probabilistic distribution.

Variable Distribution Range
Min=1.27 mm
Thickness (£) Uniform
Max= 2.54 mm
Min= 0 mm
Radius of curvature (p) Uniform
Max= 800 mm

Min= 10 degrees
Cone angle (a) Uniform
Max= 25 degrees

The total number of finite element analyses S required for the PCE expansion, as
indicated in 5.3, depends on the number of input variables, p, the largest order of the
polynomial, n, and the oversampling ratio, 7, which may influence the accuracy of the
resultant equation. In the current case study, there are three input variables (z, p, and
a), thus p = 3. The oversampling ratio and the order of the polynomial were modified
to assess the sensitivity of these two factors on the accuracy of the final polynomial
expansion. In general, an oversampling ratio of 7, = 2 has been deemed appropriate for
many applications. To gain insight on the influence of this parameter, in addition to the
commonly used value, an oversampling ratio of n, = 3 was also considered. Similarly,
the accuracy of quadratic (n = 2) and cubic (n = 3) polynomials was also assessed. Three



5.3. LINEAR BUCKLING OF AN ISOTROPIC CONICAL-CYLINDRICAL SHELL 111

cases, corresponding to different combinations of values of p, n, and n, are shown in
Table 5.2 together with the number of finite element analyses required to generate the
sampling points. Increasing the order of the polynomial and/or the oversampling ratio
may improve the accuracy of the resulting polynomial, but it comes at an increased
computational cost due to the larger number to finite element analyses required. The
resulting polynomials from cases 1, 2, and 3 were determined and assessed.

Table 5.2: Parameters for distinct polynomial expansions of the linear buckling load and number of required
data points (training data set) for an isotropic conical-cylindrical shell.

Case Number of Order of Oversampling Number of
variables (p) equation (n) ratio (np) evaluations (V)
1 3 2 2 20
2 3 2 3 30
3 3 3 2 40

5.3.2. FINITE ELEMENT MODEL

A FEM was created in Abaqus 2021 [62] to determine the linear buckling load for an
isotropic conical cylindrical shell. For each training data set of the three cases indicated in
Table 5.2, a finite element model was created. Each FEM was meshed using the four-node
reduced integration shell element (S4R element type in Abaqus), with an approximate
mesh density of one element every 0.5 degrees around the circumference of the cylinder.
All degrees of freedom were constrained at a bottom reference node. At the top, all
degrees of freedom were constrained, except for translation along the axis of rotation.
The Lanczos solver was used to determine the associated eigenvalues. An example of
the first eigenmode associated with the first eigenvalue is presented in Figure 5.2. The
resultant polynomials can be determined for Cases 1, 2, and 3, once the eigenvalues (i.e.,
linear buckling loads) are known.

19088 28 &
Ji100 60 34

Figure 5.2: Example of a first linear eigenmode.
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5.3.3. DETERMINING THE POLYNOMIAL

The PCE representation of the linear buckling load for Case 1 (i.e., assuming an oversam-
pling ratio of n, = 2 and polynomial order n = 2), denoted L;fco’b}, requires the determi-
nation of N = 10 coefficients as indicated in equation 5.3. From the FEM analyses for
selected sample points, and after solving the corresponding system of equations for the

coefficients, the resulting polynomial expansion is given by

Lo} =204.40¢% +0.063p¢t - 9.21at —1.17-10*p® + 1.42-10ap - 0.440° 5.0

+258.971 +3.59 - 10_3p +22.22a —337.58

The accuracy of the polynomial expansion shown in equation 5.4, or the goodness of
fit, can be visualized in Figure 5.3a, which shows the linear buckling load Lpcg plotted
against the buckling loads obtained from solving FEM eigenvalue buckling problems.
The dots in the graphic represent the linear buckling loads corresponding to the input
design variables used to determine the coefficients of the polynomial expansion (i.e.,
the training data set). The points in the graph denoted with an x-symbol correspond to
independent data that were not used to calibrate the polynomial expansion. This data set
is used to validate the accuracy of the polynomial expansion. The gray dotted line has a
slope of unity. If a point lies on the line, the linear buckling load Lpcg estimated using
the polynomial chaos expansion is equal to the buckling load obtained from the FEM
simulation. Therefore, the closer the point is to the line, the greater the accuracy.

The resulting coefficient of determination, R?, for the polynomial obtained in Case 1
is 0.9995. This means there is little variability between the FEM results and the estimates
from the polynomial representation 5.4. It can be observed that many training and
independent (validation) points are clustered around the gray dotted line in Figure 5.3a.
The average error for all Case 1 validation models was 3%. The maximum individual
percentual error between the FEM linear buckling load and the validation points was
less than 9%. The model with the largest individual percentual error had a radius of
curvature of 800 mm, a cone angle of 10 degrees, and a wall thickness of 1.27 mm, which
is at the bounds of the considered design space in all three variables (see Table 1). This
relative inaccuracy of the design-space boundary highlights some potential sensitivity
to results with input variables near the outskirts of the design space. The plot of the
residuals (Figure 5.3b) shows no obvious trend. This is also an indication the polynomial
representation equation 5.4 is a good fit to estimate the linear buckling load.

For Case 2, the order of the polynomial representation remained the same as for Case
1, while the oversampling ratio was increased to n, = 3, requiring S = 30 FEM analyses to
determine the N = 10 coefficients of the expansion. After training, the corresponding PCE
representation for the linear buckling load for Case 2 is given as

Li3o2 =247.83¢% +0.09p¢ — 10.49a¢ — 1.26-10*p* +2.00- 10 ap - 0.12a° 55

+132.88¢—0.08p +13.36a — 141.09.
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Figure 5.3: Goodness of fit metrics for Case 1: a) the estimated linear buckling load versus the linear buckling
load from FEM,; b) plot of the residuals.

The expansion given in equation 5.5 has an R? value of 0.9994. The coefficient of
determination, R%, was very similar to the R, value of 0.9995 for Case 1. Visualizing the
data for Case 2, as shown in Figure 5.4a, reveals similar trends compared to Case 1. For
example, the training points and the independent (verification) models follow the line
with a slope of unity showing that the estimated linear buckling load is in very good
agreement with the FEM output. The average error between verification and predicted
values was less than 2%. The largest individual error for the verification models was
approximately 5%. The model with the largest error had input variables at the bounds of
the design space. Additionally, the residuals are well scattered, and there is no discernible
trend (Figure 5.42a).
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Figure 5.4: Goodness of fit metrics for Case 2: a) the estimated linear buckling load versus the linear buckling
load from FEM,; b) plot of the residuals.
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For Case 3, the order of the resultant polynomial expansion is cubic, n=3, and the
oversampling ratio is n,, = 2. Increasing the order of the PCE representation from quadratic
to cubic doubled the number of FEM analyses required to S = 40. The corresponding
cubic polynomial expansion for the linear buckling load requires N = 20 terms and is
given by

L503 = 40.561° - 0.0981%a +0.018a° +1.16- 10 *a?p — 1.09- 10 °a p?
—0.016p12+2.98-107"p> - 7.44-10*apt+1.95-10"*p? - 4.70a
—0.024p1+11.95at —6.23-10"p? +80.981% + 7.26 - 10 3ap

~1.05p” +282.38¢ +0.20p +9.07a — 252.03

(5.6)

The PCE representation for the buckling load has an R? value 0.9998, which is slightly
better than for Cases 1 and 2 (i.e., higher R? value for Case 3). The maximum percent
error is less than 5% and the average error is less than 2%, which is the same as Case 2
with the oversampling ratio of n,=3. As for the previous cases, the combination of input
variables that resulted in the maximum error corresponded with values close to the limits
of the design space. The goodness of fit for Case 3 can be visualized in Figure 5.5a. As
with the previous cases, the residual plots are well-scattered (see Figure 5.5b).
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Figure 5.5: Goodness of fit metrics for Case 3: a) the estimated linear buckling load versus the linear buckling
load from FEM,; b) plot of the residuals.

Comparing the average and maximum errors between predicted and validation points
for the three cases considered, it can be observed that there is a slight improvement from
Case 1 to Case 2 (average from 3% to 2% and maximum from 9% to 5%), but marginal
improvement from Case 2 to Case 3. Furthermore, in all cases it was observed that the
largest errors were from models where the input variables were close to the edges of the
design space. For all cases, the R? values were close to 1 and the residual plots were
well-scattered. For practical purposes, the expansions shown in equations 5.4, 5.5, and
5.6, which were obtained with different combinations of oversampling ratios or order of
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polynomials, provide sufficiently accurate PCE representations for the linear buckling
load.

5.3.4. SENSITIVITY ANALYSIS

The PCE approach can provide good results for estimating the linear buckling loads of
an isotropic conical-cylindrical shell, but one of the most insightful attributes of this
polynomial representation is the ability to assess the relative influence that the design
variables (t, a, and p) have on the buckling load. The total sensitivity index shows the
influence of each variable on the buckling load and also accounts for the interaction
between variables and it is shown in Figure 5.6, which clearly indicates that the thickness
of the shell has the largest influence on the linear buckling load, as expected. The cone
angle does have a slight influence, but it is small compared to the wall thickness. The
radius of curvature has almost no influence on the linear buckling load compared to
the thickness. It is relevant to mention that the relative sensitivities shown in Figure 5.6
depend not only on the choice of the design variables, but also on their design range,
which itself depends on design or manufacturing constraints. For example, the range
of interest in the present study for the cone angle is from 10° to 25°. It is likely that
the relative influence of the cone angle would increase if angles greater than 25° are
considered. However, considering a different design range requires generating a new
training set, hence the design range must be chosen carefully beforehand to represent the
range of interest.

0.8

0.6

0.4

0.2

0.0 . .
Wall thickness, Radius of curvature, Cone angle,
t p a

Figure 5.6: Total sensitivity index of the input variables on the linear buckling load of an isotropic
conical-cylindrical shell, Case 2.

To further illustrate how the input design variables influence the estimated linear
buckling load, it is insightful to plot the PCE representation of the load as a function of
each design variable separately for fixed values of the others. In particular, a reference
design is chosen with nominal design values in the middle of the individual design ranges,
namely a thickness of £ = 1.91 mm, a radius of curvature in the transition region of p = 400
mm and a cone angle of @ = 17.5°. The predicted linear buckling load Lpcg, as determined
from Case 1 and given in equation 5.4, is plotted in Figure 5.7 about the reference design
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by varying the wall thickness from 1.27 — 2.54 mm (Figure 5.7a), varying the radius of
curvature over the 0-800 mm range (Figure 5.7b) and varying the cone angle from 10° to
25° (Figure 5.7¢).
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Figure 5.7: Predicted linear buckling load as a function of each design variable around the reference design (¢ =
1.9 mm, p =400 mm, « = 17.5°) for (a) variable wall thickness, (b) variable radius of curvature and (c) variable
cone angle, Case 2.

From Figure 5.7a, it can be observed that, as the wall thickness is varied from 1.27
mm to 2.54 mm, the linear buckling load increases more than three-fold (an increase
from about 400 kN to about 1540 kN). This significant increase is consistent with the
high sensitivity index of this variable. From Figure 5.7b, the predicted linear buckling
load remains relatively constant as the radius of curvature increases, indicating that the
buckling load is relatively insensitive to this parameter. The total variation in bucking
load is only about 40 kN over the 0-800 mm range considered for the radius of curvature
(from about 840 kN to 880 kN). For the cone angle, as can be observed in Figure 5.7c,
there is a slight decrease in the buckling load over the selected design range. The linear
buckling load decreased 150 kN as the angle increased from 10° to 25° (from about 930 kN
to about 780 kN). This change in buckling load is greater than the change due to varying
the radius of curvature as indicated above, but is still small compared to the changes due
to variable thicknesses. The next step is to use PCE methodology to assess the influence
of the input variables on the buckling load from a geometrically nonlinear analysis.

5.4. NONLINEAR BUCKLING OF AN ISOTROPIC CONICAL-CYLINDRICAL

SHELL

The sensitivity analysis carried out in the previous section was based on solving the eigen-
value problem for bifurcation buckling (buckling equation) assuming a geometrically
linear deformation up to buckling (linear buckling load). This approach is computation-
ally inexpensive compared to a geometrically nonlinear analysis used to determine a limit
point. Nonetheless, there can be a large discrepancy between the buckling load predicted
from an eigenvalue problem and from a geometric nonlinear analysis even without im-
perfections [106]. In general, the linear buckling load may be viewed as an approximation
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of the geometrically nonlinear buckling load. Consequently, it is of interest to understand
the influence of the design parameters p, @, and ¢ on the nonlinear buckling load.

As previously noted, the computational cost of solving a nonlinear buckling analysis
is significantly higher than the cost of solving an eigenvalue problem, hence a parametric
analysis to study the effect of varying the order of the PCE polynomial and the oversam-
pling ratio was not pursued in the nonlinear case. Only Case 1 from Section 5.3, with an
oversampling ratio n, = 2, a PCE of order n = 2 and using the same three input random
variables (p = 3) is considered in this section for the nonlinear case. From Table 5.1, this
case requires only 20 nonlinear analyses to find the coefficients of the PCE, which is
significantly less than Cases 2 and 3. The representation obtained from Case 1 in Section
5.3 was found to be sufficiently accurate for the linear buckling load. Furthermore, it is
expected that the trends for the linear and nonlinear cases would be similar since the
quality of the fit only depends on the training data itself and not on the method used to
generate the data.

The buckling loads for training the PCE were obtained from geometrically nonlinear
implicit dynamic analyses implemented in the general-purpose finite element software
Abaqus 2021 [62]. A total displacement of 5 mm was applied linearly over a period of
2000 seconds. The boundary conditions and mesh were the same as the linear buckling
analyses. The design ranges for the random input variables are the same as the ones
indicated in Table 5.1.

The buckling load in a nonlinear analysis may correspond to a limit point (unstable
buckling) or may require a criterion to identify a nominal buckling load if the buckling
occurs in a stable fashion (continuous transition from slightly buckled to significantly
buckled). Not using a consistent method to determine the limit point may produce
an inaccurate polynomial. In the present case the buckling load corresponds to the
maximum load from the nonlinear analysis. An example of the radial displacements
just prior to buckling is presented in Figure 5.8. The gradation from light to dark blue
represent areas of relative inward deformation where buckling may initiate. Buckling was
predicted to initiate in the conical region for all conical-cylindrical shell configurations.

Figure 5.8: Example of radial displacements incipit buckling from a geometrically nonlinear analysis.
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After postprocessing the nonlinear simulations chosen from a Latin hypercube sam-
pling, the resultant quadric polynomial N, representing the nonlinear buckling load is
given by

50 =129.441* +0.37pt — 0.94af—5.20-10*p* +3.20- 10 3ap + 0.43a*

(5.7)
+25.53t+0.057p —21.14a + 138.60

The R? value is in this case is 0.9992 and the visualization of the goodness of fit is
presented in Figure 5.9a. The black dots are associated with the training data and the
x-symbol associated with validation data. The average error for the validation data is
approximately 4%, and the maximum error is 12%. The maximum error corresponded to
the sampling input values of t = 1.45 mm, p =793.4 mm, and a = 12.34°, which are near the
bounds of the design space. The residual plot is well-scattered with no obvious pattern
(see Figure 5.9b). Overall, the polynomial chaos expansion N ;',SCOE given in equation 5.6
can be used to estimate the nonlinear buckling load of a conical cylindrical shells with
relatively good accuracy in the specified design space.
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Figure 5.9: Goodness of fit metrics for the nonlinear buckling load of an isotropic conical-cylindrical shell: a)
the estimated buckling load versus the nonlinear buckling load from FEM; b) plot of the residuals.

The total sensitivities of the design variables based on the expansion NV ;,SC"E are shown
in Figure 5.10. Similar to the results obtained for the linear buckling load, it can be
observed from Figure 5.10 in that the wall thickness has the largest influence when
determining the nonlinear buckling load as compared to the radius of curvature and the
cone angle. Nonetheless, the radius of curvature of the transition region from conical to
cylindrical has a more significant influence on the nonlinear buckling load than it did for
the linear buckling load (See Figure 5.6 and Figure 5.10 for sensitivities of radius p). The
cone angle plays a marginal role on the buckling load.

The influence of the design variables on the nonlinear buckling load is illustrated in
Figure 5.11 by plotting the buckling load as a separate function of each design variable
for fixed values of the other variables around the reference design (f = 1.91 mm, p = 400
mm and « = 17.5°). As can be observed in Figure 5.11a, the nonlinear buckling load varies
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Figure 5.10: Total sensitivity index of the input variables on the nonlinear buckling load of an isotropic
conical-cylindrical shell.

from 270 kN for t = 1.27 mm to 1100 kN for t = 2.54 mm, confirming that the thickness
plays the most significant role. The radius of curvature, which had minimal effect on the
linear buckling load (see Figure 5.7b), is more influential on the buckling load from the
geometrically nonlinear analysis (see Figure 5.11b), as it increases from about 390 kN
to about 720 kN. The nonlinear buckling load slightly decreases with an increase in the
cone angle (decrease of -~100 kN, see Figure 5.11c), but the effect is small compared to
the radius of curvature and wall thickness.
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Figure 5.11: Predicted nonlinear buckling load as a function of each design variable around the reference design
(£=1.91 mm, p =400 mm, a = 17.5°) for (a) variable wall thickness, (b) variable radius of curvature and (c)
variable cone angle.

It is interesting to compare the predictions from the expansions L;fg’El and N ;,%"E as

given in equation 5.3 and equation 5.6 and fitted to, respectively, the linear and nonlinear
buckling loads. Both expansions use the same number of data points for calibration. Upon
numerical integration over the design space indicated in Table 5.1, the average nonlinear
buckling load is approximately 30% less than the linear buckling load (about 900 kN for
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the linear buckling and about 650 kN for the nonlinear buckling averaged over the design
space). However, the largest discrepancy between the linear and nonlinear buckling
loads occurs for small values of the radius of curvature in the conical-to-cylindrical
transition region. This indicates that in general the nonlinear analysis is important for
the determination of the buckling load and is particularly critical when the conical-to-
cylindrical transition is abrupt (i.e., close to p = 0 mm).

5.5. LINEAR AND NONLINEAR BUCKLING OF A COMPOSITE CONICAL-

CYLINDRICAL SHELL

The geometry considered for the composite conical-cylindrical shells is similar to what
was used in the isotropic analyses, Figure 5.1. The cylindrical radius is 400 mm and
the overall height of the shell is 1200 mm. In the case of an isotropic shell, as shown
in Sections 5.3 and 5.4, the cone angle had minimal influence for both the linear and
nonlinear buckling loads; therefore, the cone angle for the study of composite conical
cylindrical shells was fixed at 15°. This choice reduces the number of analyses required
and, therefore, the overall computational cost. The thickness of the shell and the radius of
curvature for the conical-to-cylindrical transition region are taken from the same design
range as indicated in Table 5.1.

In this section, various composite layups are considered to study the influence of
the composite material properties on the buckling load. For simplicity, only one ply-
orientation family is considered (namely the [-60,60,0] stacking sequence), but with
variable volume fraction v, of the 0° ply. In a manner similar to the other design variables
(i.e., thickness and radius of curvature), the volume fraction is treated as a uniformly
distributed random input variable. The design interval for the volume fraction v, ranges
from a minimum of 0.1 to a maximum of 0.9 of the total volume (i.e., 10% to 90% of
the thickness). The remaining fraction (1-v,) is evenly distributed among the -60° and
+60° plies. Using this approach, the layups are parametrized with only one variable. The
material properties assumed in the study are based on IM7/8551-1 with modulus of
elasticity of 140.9 MPa in the fiber direction, a modulus of elasticity transverse to the fiber
direction of 9.72 MPa, a shear modulus equal to 4.69 MPa, and an in-plane Poisson’s ratio
0f 0.356.

The same process as used for the isotropic shells was repeated for the composite
conical shells, but with input variables of ¢, p, and v,. Since there are only three variables
and a second order equation is considered, only 20 analyses are required to develop the

resulting polynomial chaos expansion L;OCmEp for the linear buckling load, i.e.,

Lo =49.531% —116.759v, ¢ +0.20p t — 543.855v5 +0.122pv,,

(5.8)
+1.93- 10_4102 +243.4141t +840.703v, — 0.594p — 309.099
as well as the expansion N ;‘ggp for the nonlinear buckling load, i.e.,
Npo” =104.881* —217.657v, £ +0.248p 1 — 328.430v% +0.171pv, 59)

-1.50- 10_4p2 —18.648¢ +677.627v, —0.241p — 108.344
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Visualizations for the goodness of fit for L;"C";p and N;‘é?p for composite conical shells

are presented in Figure 5.12a. The coefficients of determination R? are 0.993 and 0.991 for
the linear and nonlinear buckling load representations, respectively. While still close to
unity, the R? value are less than the R? values for the corresponding representations for the
isotropic shells (0.9995 and 0.9992, respectively). The average error for the validation data
for the composite shells was 12% for both the linear and nonlinear buckling loads. The
maximum error was around 36% for the linear buckling load and 31% for the nonlinear
buckling load. These values are larger than what was observed for the isotropic shells.
The point with the largest error had input variables of 125 mm, 1.451 mm, with v, being
at the edge of the design space at 0.9 (90% volume fraction of 0° plies). This is consistent
with what was observed for the isotropic shells in that the models with the largest errors
have input variables near the limits of the design space. The residual plots show a random
pattern, which indicates that the PCE fits the data well. Nonetheless, the residuals are
generally higher than the ones observed for the isotropic case (see Figure 5.3b for the
linear buckling load and Figure 5.9b for the nonlinear buckling load).
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Figure 5.12: Goodness of fit metrics for composite conical-cylindrical shells: a) the estimated loads versus the
FEM loads for the linear (L) and nonlinear buckling loads (N); b) plot of the residuals.

The difference between the quality of the fit for the isotropic and composite cases can
be ascribed to the nature of the design variables used (i.e., ¢, p, and « for the isotropic
case and ¢, p, and v, for the composite case). The cone angle a used in the isotropic case
has no significant influence on the buckling load. In contrast, the 0° ply-volume fraction,
vy, used in the composite case has a measurable influence on the buckling load, albeit
small compared to the wall thickness, ¢. Consequently, the calibration data generated for
the composite case has more variability than the data generated for the isotropic case.
Correspondingly, since both PCE representations use the same number of data points for
calibration and the same number of terms in the expansion, it is expected that the quality
of the fit will be lower for the data set with higher variability.

Despite not being as accurate as for the isotropic case, the PCE representation of the
buckling load for the composite case is reasonably accurate for variables not near the
defined bounds and, more importantly, provides valuable information in terms of its
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sensitivity. The sensitivity indices are presented in Figure 5.13, where it can be observed
that the shell thickness is the most relevant parameter to determine both the linear
and the nonlinear buckling loads. As a secondary factor, v, shows some influence on
the linear buckling load, whereas the radius of curvature plays an even smaller role.
However, this order is reversed for the nonlinear buckling load, for which the radius
of curvature becomes more influential than v,. Nonetheless, for both the linear and
nonlinear buckling loads, the fact that the layup has a relatively small contribution to the
buckling performance of a conical-cylindrical shell indicates that the buckling load is
primarily driven by geometrical features (primarily the shell thickness).

[ Linear
Nonlinear

7/ —

Wall thickness, Radius of curvature, 0-degree ply fraction,
t P Vo

Figure 5.13: Total sensitivity index of the input variables on the linear eigenvalue and nonlinear buckling load
for a composite conical-cylindrical shell.

To visualize the effect of the design variables on the linear and nonlinear buckling
loads, the plots of their respective PCE representations (i.e., L?C"Elp and N;Z’Zp respec-
tively) are shown in Figure 5.14 as functions of the individual design variables around a
reference design, namely a wall thickness of ¢ = 1.91 mm, radius of curvature in the transi-
tion region of p =400 mm and a 0°-ply volume fraction v, = 0.5. As previously mentioned,
the cone angle was fixed at @ = 15°. In Figure 5.14a, which shows the buckling load as a
function of the wall thickness, it can be observed that, as in the isotropic case, the wall
thickness is the most relevant parameter for determining the buckling load. Nonetheless,
as shown in Figure 5.14b, the radius of curvature of the conical-to-cylindrical transition
region also plays a relevant role, particularly for the nonlinear buckling load. Similar
to the isotropic case, in the composite case, the largest difference between the linear
and nonlinear buckling loads occurs for sharper transitions (i.e., lower values of p), in
which the buckling load is also the smallest. It is also observed that the curve for the
linear buckling load is relatively flat as a function of the radius of curvature, which is
reflected on its low sensitivity index. The curves of the buckling loads as a function of the
volume fraction of 0° plies, as shown in Figure 5.14c, are non-monotonic, but generally
this reflects a tendency to remain constant, as confirmed with the low sensitivity indices
for both the linear and nonlinear buckling loads shown in Figure 5.13. Furthermore, this
result also confirms that geometrical features are generally more important in controlling
the buckling load compared to material properties.
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As with the isotropic shells, the nonlinear buckling load was generally less than the
linear buckling load. On average, the nonlinear buckling load was approximately 20%
less than the linear buckling load (approximately 380 kN for the nonlinear buckling load
and 470 kN for the linear buckling load, as averaged over the entire design space). This
is less than the 30% difference in averages calculated for the isotropic shells, but it still
highlights the relevance of performing a nonlinear analysis for the determination of the
buckling load. The total sensitivity index for the isotropic shells for thickness from the
linear and nonlinear buckling load are 0.98 (Figure 5.6) and 0.86 (Figure 5.10), respectively.
The total sensitivity index values for the composite shell are 0.95 and 0.89 for the linear
and nonlinear buckling loads (Figure 5.13).
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Figure 5.14: Predicted buckling loads as a function of each design variable around the reference design ( £ = 1.91
mm, p =400 mm, v, =0.5) for (a) variable wall thickness, (b) variable radius of curvature and (c) variable 0° ply
fraction.

5.6. CONCLUSION

Polynomial chaos expansion representations were developed to estimate the linear and
nonlinear buckling loads of conical-cylindrical shells with isotropic and composite mate-
rials. The sensitivities with respect to those buckling loads due to wall thickness, radius
of curvature, cone, and 0° ply fraction were investigated. Overall, the PCE representa-
tions were able to accurately predict the linear and nonlinear buckling loads. The largest
percentage errors between the FEM results and the values from the PCE representation
occurred near the bounds of the design space. Additionally, it was observed that the differ-
ence between the linear and nonlinear buckling loads is most critical due to geometrical
factors, specifically for sharp transitions between the conical and cylindrical regions. The
cone angle was found to have no significant effect on the buckling load. The buckling
load also remained relatively insensitive to changes in composite layups.

Developing a simple functional expression to predict a given output is one bene-
fit of using PCE. The polynomial expressions obtained in this study could be used to
accurately estimate the linear and nonlinear buckling loads of isotropic and compos-
ite conical-cylindrical shells within the chosen design range, which is very beneficial
during preliminary design studies. For example, if there is a change in the one of the
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variables within the predetermined design space, then the linear eigenvalue could be
estimated without having to create a new finite element model. Depending on which
variable changed, it may be concluded that a new assessment is not necessary based on a
sensitivity analysis.

The framework used in the present work can be used as a template for further studies
that can also quantify the effect of imperfections, and thus provide greater insights on
knock-down factors for conical-cylindrical shells.



CONCLUSIONS

6.1. CONCLUSIONS

Traditionally, launch vehicles are constructed with a series of buckling-prone thin-walled
cylindrical and conical shells, in which the buckling behavior of these shells has been
well studied and buckling design guidance exists. Conical-cylindrical shell geometry
is now being utilized for launch-vehicle stage adapters and payload adapters due to
advances in manufacturing and numerical techniques, but there is no available buckling
design guidance for this nontraditional combined geometry. In order to provide design
recommendations, a validated modeling methodology is required, and the buckling
behavior and imperfection sensitivity of conical-cylindrical shells and how it differs from
the conical and cylindrical components needs to be better understood. To this end, a
validated modeling methodology for a composite cylindrical shell was presented and
its applicability to composite conical-cylindrical shells was shown. Additionally, the
numerical investigations on the buckling behavior of conical-cylindrical shells highlight
variables that influence the buckling response. Subsequently, the numerical methodology
was confirmed through tests. From this, buckling design considerations can be put
forward.

* In Chapter 2, a modeling methodology is developed, which successfully predicts
the buckling behavior of a scaled launch-vehicle-like composite cylindrical shell,
referred to as NDL-1. The design of NDL-1 was based on a scaling methodology
that resulted in the non-traditional layup [(23/0/-23)]4s with a nominal diameter
of 800 mm and height of 1200 mm. Prior to testing, the test article was scanned to
measure the radial geometric imperfections and thickness variations, which could
then be incorporated into the finite element model.

A finite element study was completed prior to the test to assess any potential
differences between the four-node reduced-integration shell element (S4R) and
the eight-node reduced-integration continuum shell element (SC8R). The S4R
element is commonly used to model the buckling behavior of shell structures, but
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the SC8R element was preferred because it facilitated the incorporation of thickness
variations into the model using an in-house script. A mesh convergence study was
also completed, and determined that while an element size of approximately 10
mm would be sufficient, a 5 mm mesh size was selected to model the thickness
variations more accurately. A geometrically-nonlinear analysis was then performed
to predict the buckling response.

The measured buckling load and stiffness were within 1% of the predicted buckling
load. Additionally, the observed prebuckling, incipient buckling, and postbuck-
ling behavior of NDL-1 correlated well with the pretest predictions. The predicted
buckling load was within 0.04% of the measured load, and the predicted radial
displacement shapes matched well with the measured data. The test data was ana-
lyzed after the test and findings, such as loading nonuniformity, were discovered.
The loading imperfection was incorporated as input into a numerical analysis to
highlight the sensitivity of the buckling location. Overall, the modeling methodol-
ogy presented was successful in predicting the buckling behavior of a composite
cylindrical shell with a nontraditional layup, and is therefore recommended for use
with other large-scale composite shell structures, including those with complex
geometries.

Chapter 3 highlighted the differences in buckling behavior between conical shell,
cylindrical shell, and conical-cylindrical shell with a numerical study that was val-
idated through experimental testing. It showed that the transition region has a
significant influence on the resulting buckling behavior. It also highlighted the fact
that the differences between an eigenvalue analysis (i.e., obtaining the buckling
load as the lowest eigenvalue of the buckling equation) and obtaining a buckling
load as a peak response load in a geometrically nonlinear analysis, could be signifi-
cant. The geometrically nonlinear analysis could be as low as 50% of the buckling
load predicted from an eigenvalue analysis, even for an ideal geometry without
imperfections. It was also demonstrated that, depending on the design of the tran-
sition region, a conical-cylindrical shell may be less imperfection-sensitive than
the individual components. The assumption that the knockdown factor is primarily
attributed to radial imperfections, which is the case for conical and cylindrical
shells, may not be true for conical-cylindrical shells. The knockdown factors pre-
sented in NASA-SP 8007 and NASA-SP-8109 may also not be conservative, which
is what is largely assumed for conical and cylindrical shells. It was necessary to
confirm the observations made by the numerical analyses experimentally, which
led to the design, fabrication and testing of a composite conical-cylindrical shell
with a toroidal transition, referred to as 3SCHELL.

Test article 3CHELL was also fabricated and tested to verify that the modeling
methodology used to predict the buckling behavior of a composite cylindrical
shell with a nontraditional layup can be also used to predict the buckling behavior
of a composite conical-cylindrical shell. Test article 3CHELL nominally had a
quasi-isotropic layup of [45/-45/90/0]s. The overall height was 762 mm with a
nominal cylindrical-end diameter of 639 mm. The cylindrical end transitioned to
the conical section, which had a cone angle of 15 degrees, with a radius of curvature
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of 380 mm. A FEM that included radial imperfections and thickness variations was
developed, and geometrically nonlinear analyses were conducted to predict the
structural response. The four-node-reduced- integration shell element (S4R) was
used instead of the SC8R element due to computational constraints. The other
analysis parameters used to analyze 3CHELL were similar to those used in the
NDL-1 analysis.

The test article buckled at a load 8.8% greater than what was predicted. The model
also included a measured lateral displacement that was 20% of the total axial end
shortening at buckling, but this did not significantly influence the results. The test
article was predicted to buckle in the conical region, but it was confirmed with
high-speed cameras that buckling initiated in the cylindrical region. Even with
the discrepancy in the location of buckling initiation, the predicted and measured
buckling responses had several similarities when radial displacements and patterns
at incipient buckling and postbuckling were compared. Similar patterns were
identified in the measured and predicted radial deformations and magnitudes. The
differences between the observed and predicted behaviors of 3CHELL were most
likely due to the assumptions made when incorporating the thickness variations
into the model. In addition, the buckling test was repeated since 3CHELL buckled
without perceptible inelastic failure, and in the second test 3CHELL buckled within

1% of the first buckling test.

* Chapter 4 focused on how the transition region can change the buckling response m
and imperfection sensitivity of a composite conical-cylindrical shell. It was shown
numerically that adding reinforcement to the transition region of a conical-cylindrical
shell can increase the geometrically nonlinear buckling load since the reinforce-
ment is stiffening the region. The chapter also presented results that showed there
is a point of diminishing returns for adding reinforcement. Eventually, the buckling
load predicted by the geometrically nonlinear analysis converges to the buckling
load obtained from an eigenvalue analysis. More importantly, adding reinforce-
ment may seemingly increase the nonlinear buckling load of the shell, but adding
reinforcement also makes the structure more sensitive to imperfections. Mass is a
critical design constraint for launch vehicles. It may be more beneficial to design a
buckling-critical conical-cylindrical shell without reinforcement since the response
will be more predictable as it will be less sensitive to geometrical imperfections,
which are typically not known prior to manufacturing. This interesting conclusion
from the numerical study was confirmed experimentally.

By analyzing the test data and performing nondestructive evaluation of 3CHELL,
it was confirmed that it had buckled elastically, meaning there was no damage or
permanent deformation. It was decided to modify the design of 3CHELL by adding
reinforcement to the transition region to confirm the observations made in the
numerical studies. The reinforced 3CHELL test article was referred to as Re3CHELL.
Prior to building the finite element model for Re3CHELL, new data was obtained to
better correlate the 3CHELL model. The new data contained information related to
the overlapped area of each ply that contributed to the thickness variations. Notably,
the additional plies added to the updated 3CHELL model near the transition region
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to account for the additional thickness variations only increased the mass of the
finite element model by less than 0.1%. The small increase in mass changed the
predicted buckling behavior, and more closely matched the observed 3CHELL
behavior with the predicted buckling load within 2% of the measured buckling load
and predicting the buckling location. This highlights the sensitivity of the buckling
behavior of a conical-cylindrical shell, and confirms the hypothesis related to the
discrepancy between the test data and the original 3CHELL FEM presented in
Chapter 3.

The updated 3CHELL model was then modified to account for the two fabric rein-
forcement plies added for Re3CHELL. The finite element modeling methodology
was the same as the one used for 3CHELL, and experimental results correlated very
well with the analysis. The experimentally-measured buckling load of Re3CHELL
was within 2.5% of the predicted buckling load. Additionally, the predicted buckling
location matched the observed buckling location of Re3CHELL. Buckling occurred
in the conical section just above thickness discontinuity that was an artifact of the
manufacturing process. This again highlights how the location where buckling
initiates depends on manufacturing imperfections in conical-cylindrical shells.

A direct comparison could be made between 3CHELL and Re3CHELL since Re3CHELL
was a modified version of 3CHELL, and because both of the finite element models
for 3CHELL and Re3CHELL correlated well with the corresponding test data. The
comparison confirmed that adding reinforcement does in fact increase the imper-
fection sensitivity to the point where it may not be beneficial to add reinforcement
if the goal is to increase the buckling load. Adding reinforcement to Re3CHELL
increased the load/unit weight by only 1.5%.

The numerical studies and experimental results showcased some sensitivities re-
lated to the buckling behavior of a conical-cylindrical shell. Chapter 5 demonstrates
the applicability of using Polynomial Chaos Expansion (PCE) to help quantify the
geometric and design features that influence the eigenvalue buckling load as well
as the geometrically nonlinear buckling load of an isotropic and composite conical-
cylindrical shell. PCE could also be a valuable tool to use for preliminary launch
vehicle design of a conical-cylindrical shell. Important parameters in PCE, such as
the order equation and oversampling ratio, were assessed to conclude a quadratic
equation with an oversampling ratio of 2 was sufficient to develop an accurate
polynomial expression that predicted the buckling load for the given set of input
variables. The variables considered included thickness, cone angle, radius of cur-
vature, and the ratio of the number of 0-degree plies to the total number of plies
in a composite laminate. The thickness dominates the eigenvalue buckling load
as well as the nonlinear buckling load. The cone angle had more influence to the
eigenvalue buckling load than the nonlinear buckling load, but it was minimal
compared to the thickness for the range of cone angles analyzed, namely between
10 and 25 degrees. For composite shells, the cone angle was not considered as
an input variable in the corresponding PCE approximation since it was found to
have a minimal influence in the isotropic case. In summary, the results generated
from PCE assessment using the composite material cases suggests that the buckling
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behavior is more related to the geometric features such as the radius of curvature
of the transition region than the ratio of 0-degree plies. The ratio of 0-degree plies
compared to the total number of plies only had a small effect on the resultant buck-
ling loads as compared to the radius of curvature and thickness. PCE is a versatile
tool that can aid in the design of launch vehicle structures.

6.2. DESIGN RECOMMENDATIONS

The methodologies and findings of this thesis form the foundation of a framework for
designing a conical-cylindrical shells to be used as a payload adapter or a launch vehicle
stage adapter that is susceptible to buckling. The traditional approach of multiplying
the eigenvalue buckling load by a recommend knockdown factor is not appropriate
for conical-cylindrical shells, but fortunately it is possible to leverage the modeling ap-
proaches used to predict the buckling behavior for the individual components. These
recommendations can be separated into two different: design and analysis.

Design

» Even though it may be computationally intensive, a geometrically nonlinear analy-
sis is recommended to characterize the buckling behavior of a conical-cylindrical
shell even in the early design phase.

It is recommended to not reinforce the transition region if buckling is the only
consideration. It may be possible to capitalize on the fact that the geometrical
nonlinearity can be accurately modeled, and radial imperfections that are unknown
may not significantly influence the buckling response.

 Ifreinforcement needs to be added, the trade-off between imperfection sensitivity
and geometric nonlinearity should be well understood by completing an imperfec-
tion sensitivity study. It is recommended to use a variety of imperfection shapes
that affect the conical and cylindrical regions.

Analysis

* The current finite element tools have the ability to predict the buckling response of
a composite conical cylindrical shell using shell elements and including geometric
and thickness variations.

 The thickness variations can influence the buckling response, specifically the buck-
ling location, so it is recommended to incorporate as-built details for a numerical
re-assessment of the buckling behavior.

* Validated finite elements may be used to develop design specific knockdown factors
for conical-cylindrical shells.
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6.3. FUTURE WORK

While comprehensive research related to the buckling of conical-cylindrical shells has
been completed, there are aspects of the work that should be expanded upon for future
work. First, it is of interest to study the buckling behavior of conical cylindrical shells with
cone angles greater than 25 degrees. The current research demonstrated that cone angles
less than 25 degrees do not significantly influence the buckling behavior, but there may
be a limit in which the angle begins to dictate the buckling response, plus this angle range
would encompass more payload adapter geometries. Additionally, the transition region
was identified as a critical design feature in the buckling of conical-cylindrical shells. It
would be interesting to determine how to optimize the design of the transition region,
specifically using composite materials. Next, the successful demonstration of the PCE
methodology to identify the important design variables that significantly contribute to
the buckling of conical-cylindrical helped highlight the potential to use PCE for future
studies related to buckling. For example, it would be interesting to use PCE to investigate
imperfection sensitivity of conical-cylindrical shells. Finally, more test data is required
to enhance the level of confidence of the conclusions reached in the present thesis.
Expanding the design space to test different cone angles and radius of curvatures would
be extremely valuable. There are many avenues to expand upon the research presented.
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