

A Formal Structure for Nonequivalent
Solid Representations

R. Stouffs
Architecture and CAAD,
Swiss Federal Institute of Technology, Zurich, CH-8093, Switzerland
Tel:+41.1. 633 2997 Fax:+41.1.633 1050 stouffs@arch.ethz.ch

R. Krishnamurti
Department of Architecture
Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, U.S.A
Tel:(412) 268 2360 Fax:(412) 268 7819 ramesh@arc.cmu.edu

C. M. Eastman
College of Architecture
Georgia Institute of Technology, Atlanta, Georgia 30332, U.S.A
Tel:(404) 894 9110 Fax:(404) 894 1629 Chuck.Eastman@gatech.edu

Abstract

This work is based on the recognition that there will always be a need for different
representations of the same entity, albeit a building or building part, a shape or other complex
attribute. Different representations support different sets of operations with varying
efficiencies. Given our expectation that such multiple representations will always exist, there
is a need, formally, to define the relations between alternative representations, in order to
support translation and identify where exact translation is or is not possible, and to define the
coverage of different representations. A method for the analysis of representations is
developed, which is applied to four different solid modeling representations.

Keywords

Solid modeling, representation, data exchange.

2

1 INTRODUCTION

This work is based upon the assumption that the long term evolution of building product
information will be toward three dimensional shape representation that include various
properties, such as material and finish information during design, job and fabrication
information during construction, and maintenance information during operation. The
advantages for such a representation: for design, construction and operation, appear
overwhelming (Eastman, 1993).

With the expectation that there will always be a need for multiple representations, even
within the same, or, for related knowledge domains, we recognize that a need exists to
support translation between alternative representations within a single, but possibly locally or
temporally disconnected, environment. Rather than provide specific applications for the
translation between particular alternative representations that may serve a same or similar
purpose, we are particularly interested in providing a multirepresentational environment.
This will enable multidisciplinary collaborative partners to adopt alternative representations
that are particularly suited to each discipline or knowledge domain, while providing for the
exchange of data between partners. Such an environment must offer general translational
support that recognizes the coverage of and relations between different representations. The
supporting system must be able to identify when and where exact translation is or is not
possible such that the data flow can be assessed and controlled for data integrity.

From a practical consideration, multiple representations poses a problem when one
requires a form of communication between two programs that do not share a common
representation. There have been a few attempts to bridge this gap, but each comes with
specific restrictions and limitations that do not make them generally applicable. A popular
data exchange format in architectural applications is AutoCAD™’s DXF drawing
interchange file format (Autodesk, 1992). It is, however, limited to graphical and/or surface
models, and is incomplete with respect to solid modeling. The format was designed for
AutoCAD’s own use which, at the time, did not include general solids. AutoCAD’s latest
release updates the DXF format to include three dimensional models, but only in binary form,
readable only by AutoCAD or other licensees of the ACIS™ modeling kernel. A more
universal approach to the standardization of graphical data exchange is IGES (Smith, 1988).
Successive versions of it have seen the inclusion of different solid models: constructive solid
geometry in version 4, and a boundary representation is slated for inclusion in version 5. The
general strategy of all current translation approaches is to develop a neutral representation
that can represent the capabilities available in current modelers.

It is not our intention here to develop a new standard that would be “up to date” as to
current research and usage, but to consider an alternative approach that may take away the
need for standards altogether. Given the number of different, often equivalent solid
representations, any choice of a single standard is rather subjective and creates a value
assignment indifferent to the purposes of the different representations. Moreover, as the field
of solid modeling expands and new types of information are included, such as features,
surface finishes, etc., such a standard could become quickly outdated. Indeed, solid modelers
with new capabilities are being developed, such as the parametric solid modelers found in
Pro-Engineer™, SDRC’s IDEAS™ and Autodesk’s DESIGNER™ for which no adequate
translators exist. Instead, we consider a different approach that is not restricted to currently
known representations. We distinguish the data classes and subclasses that constitute a

3

representation and propose the development of a two way communication system using these
data classes as the vocabulary elements. This vocabulary is not a priori limited and may be
extended by new applications.

The purpose of our paper is threefold:

•

To identify the issues of translation among solids.

•

To identify those cases where exact translations are possible and those where not.

•

To consider the coverage of a solid model in terms of the range of possible shape
subclasses it can depict.

2 SOLID MODELS

Solid models fall into three main kinds: decomposition models (e.g., cell decomposition),
constructive models (e.g., constructive solid geometry) and boundary models. Hybrid
models are also possible. Of these, boundary models are among the most popular, mainly,
because many of the questions we seek answers to relate to the surface of the solid.
Boundary models represent a solid as a collection of two dimensional boundary surfaces or
faces. Even here, a large number of different representations exist, based on a variety of
approaches, and more appear as research continues.

Every application that employs a solid model can be expected to interpret information into
one or more representations. When applications communicate, received information is
interpreted into an application’s own representation; a similar interpretation can be expected
for the other application. The core of the communication system is limited to the facilitation
of such interpretation. Eastman (1994) gave a treatment of two dimensional polygonal
graphics information. In this paper we consider a similar decomposition of three dimensional
representational information into data types and with respect to scope. To demonstrate such
a decomposition, we offer a comparison of representations found in the literature.

We restrict our comparison to boundary representations of polyhedral solids (possibly part
of a hybrid model), in particular, and rectilinear segments (volume, plane, line or points) in a
three dimensional space, in general. Boundary representations (

breps

) are particularly suited
to graphics applications in that, in the main, these directly represent the boundary faces that
visually reflect upon the solids.

3 REPRESENTATIONS

Representations of solids are expressed in terms of data classes with subclasses, and defined
in a consistent manner across all representations considered. Classes are presented as
compositions of their part representations, e.g., faces, edges, vertices, and so on. Given a set
of representations, equivalencies across both specialization and composition lattices can be
established. Communication between representations can be identified as either a one-to-one
(isomorphism) or a one-to-many (homomorphism) equivalency. The following concepts are
basic.

4

3.1 Definitions

Representations

are class structures identified by attributes grouped by one or more
constructors.

Attributes

 are named entities identified by a type,

type

(

a

), that specifies its set of possible
values. Common types are real, integer, string and boolean.

Constructors

 are devices for relating attributes to one another; examples include records,
arrays, lists, rings, stacks and so forth. Definitions of those constructors we will be using are
given in Table 1. Others may be defined, as needed. Constructors specify relations between
attributes, where such relations are used and assigned an interpretation within the operations
on the representation.

Structures

are groupings of constructors;

entities

 are attributes or structures.
Representations are structures along with the operations supported by the structure.

Representations found in computer aided design or geometrical modeling are, typically,
complex structures of attributes and constructors. Moreover, a representation may be a
construction of another. Such complex representations may be considered as a whole.
Representations may also be considered in terms of nestings of other representations.

3.2 Notation

We introduce a simple notational device to abstract a representation. As an example,

R

=

C

record

(

C

list

(

a

1

),

a

2

,

a

3

,

C

list

(

C

record

(

a

4

,

a

5

,

a

6

)))

In this example, representation

R

 consists of a record structure with two nested list structures,
one over a simple attribute,

C

list

(

a

1

), the other over a record structure,

C

list

(

C

record

(

a

4

,

a

5

,

a

6

)). In addition, the structure

R

 has two simple attributes:

a

2

and

a

3

. Equivalently, we can
also consider

R

 to have two nested representations and describe it as follows:

R

=

C

record

(

R

a

,

a

2

,

a

3

,

R

b

)

R

a

 =

C

list

(

a

1

)

R

b

 =

C

list

(

R

c

)

Table 1

Definitions of example constructors.

Record

An enumerated set of entities, distinguished by membership.

Array

A fixed length sequence of entities, distinguished by position.

List

A variable length sequence of entities, distinguished by position.

Ring

A variable length sequence of entities, distinguished by (relative)
position, where the last and first entities are considered sequential.

5

R

c

=

C

record

(

a

4

,

a

5

,

a

6

)

Since we are dealing with only a few constructors, mainly sequences

−

 distinguished by
position; either of fixed or variable length; and sequentially cyclical or otherwise

−

 we can
adopt a simplified notation. We use angular brackets to denote a record (or enumerated set),
and parentheses to denote a sequence. Parentheses without any closing superscript denote a
list or variable length sequence; parentheses with a numeric closing superscript,

n

, denote an
array or fixed length sequence of size

n

; and, parentheses with a closing superscript ‘*’
denote a ring or cyclical sequence. The same notation also allows us to denote a fixed length

cyclical sequence, e.g., (

a

)*

n

. Then, the previous example becomes:

R

= <(

a

1

),

a

2

,

a

3

, (<

a

4

,

a

5

,

a

6

>)>

3.3 Derivations

A representation explicitly defines and stores one set of attributes and relations between
them. But other attributes and relations may be derived from the stored ones, in a
deterministic fashion. We call these values

derivations

 of the stored data. The representation
uniquely determines the derived values. Derivations may be simple attributes. A
representation of a polygon as a list of vertices (which are arrays of coordinates) has as
possible derivations the area of the polygon, its perimeter (attributes), and centroid (an array
of coordinates). Some derivations are parts of other representations, or together with parts of
the original representation, can define another whole representation. We denote such
derivations as extensions to the original representation, and specify the derived structure as
derived from the original structure using the ‘

→

’ symbol:

R

d

 = <(a1), a2, a3, (<a4, a5, a6>)> → <a7, a8, (a9)>

An example might be that of an arc represented as a center point and two equidistant
endpoints, swept counterclockwise, having as derivations the radius, beginning and ending
angles from the origin. Another representation may be defined using these derived values:

Rarc1 = <<x, y>center, <x, y>start, <x, y>end> → <ab_angle, ae_angle, aradius>

Rarc2 = <<x, y>center, ab_angle, ae_angle, aradius> → <<x, y>start, <x, y>end>

3.4 Equivalent entities

In the preceding examples, given the center point, the radius, beginning and ending angles
are derived from the endpoints; likewise, given the center point, the endpoints are derived
from the radius, beginning and ending angles. In terms of their information content with
respect to the arc representation, the structures <ab_angle, ae_angle, aradius> and <<x, y>start,
<x, y>end> are identical. We say that both entities are equivalent within the representation.
We use the symbol ‘↔’ to signify equivalent entities within a representation:

Rarc3 = <<x, y>center, <<x, y>start, <x, y>end> ↔ <ab_angle, ae_angle, aradius>>

6

3.5 Optional entities

Within the previous representation, one of the two structures: <ab_angle, ae_angle, aradius> or
<<x, y>start, <x, y>end> is optional, but not both. This is because these entities are equivalent
within the representation. Sometimes, representations may have entities that are explicitly
designated to be optional, that is the attributes or entities may or may not be specified a
value. Examples of optional attributes are the color and crosshatching of figures. We use
enclosing square brackets to signify entities that are explicitly specified as optional within the
representation.

Rarc4 = <<x, y>center, <x, y>start, <x, y>end, [acolor]>

Entities that are not specified as optional are considered mandatory, unless they are
equivalent within the representation. Note that it is important that a representation is well
formed, that is, that all equivalent or optional entities are explicitly specified as such.
Otherwise, these will be considered as mandatory, and the subsumption relationship specified
below may not properly apply.

3.6 Alternatives

Sometimes a representation can take different forms, depending on the particular instance,
and these forms may not be equivalent. For example, a representation may model arcs as
well as straight line segments. Even though each type of figure has its own representation in
terms of its attributes and grouping constructors, we may want to denote each figure as an
instance of the same overall representation. We use the symbol ‘|’ to divide such alternatives
within a representation:

Rfigure = <Rarc | Rline | Rpolyline>

A figure may represent an arc, a straight line or a concatenation of straight line segments.
Each figure belongs to exactly one of these three representations, but a list of figures might
include all three representations.

4 SUBSUMPTION

Equivalency between entities can be extended to representations. Informally, we may
consider two representations with identical information content as equivalent. It is obvious
that the representations Rarc1, Rarc2 and Rarc3 are equivalent, since these represent the same
class of figures. [Note that two representations that are equivalent do not require their
entities to be positioned identically in a record.] On the other hand, Rarc4 is not equivalent
with any of these arc representations, because it can represent ordinary arcs and optionally a
family of colored arcs as well. Therefore, we say that Rarc4 subsumes all three
representations Rarc1, Rarc2 and Rarc3. This subsumption only holds because the color
attribute is specified as optional. If we define an arc representation with a mandatory color
attribute:

7

Rarc5 = <<x, y>center, <x, y>start, <x, y>end, acolor>

then, this new representation no longer subsumes the other arc representations. However,
Rarc4 still subsumes Rarc5.

4.1 Subsumption relation

We can consider the subsumption relation, formally, in set theoretic terms. The domain of an
entity, dom(E), is the set of possible distinct individuals it can depict. The domain of an
attribute is the set of values it can take. The domain of each component of a representation
can be defined. A grouping of attributes has as its domain the Cartesian product of its
attribute domains. A record structure has as its domain the Cartesian product of its entity
domains. A sequence structure has as its domain all combinations of its entities’ domains, as
allowed by the constructor; if the structure is of unbounded length, then its domain is
indefinite. Using this same approach, the domain of more complex representations can be
defined, involving any combination of entities grouped by different constructors.

We can add to the domain of any representation certain derivations. The possible set of
derived attributes is open ended; there is no practical way to identify all possible derivations.
However, when comparing two representations, derivations of one representation that are
equivalent to entities of the other representation identify equivalent partial domains. When
determining the domain of a representation, these partial domains as defined by derivations
that are equivalent to entities in a subsumed representation, participate in the overall domain.
In the arc example above, the domains of the arcs are extended because the derivations are
equivalent to entities of the other (subsumed) representation.

We can define the subsumption relation in terms of the domains of the representations. A
representation subsumes another representation if the domain of the first representation can
be partitioned such that one of the parts corresponds to the domain of the second
representation. We use the symbol ‘≤’ to denote the subsumption relationship. That is, given
two representations Rx and Ry, if Rx is subsumed by Ry (or Ry subsumes Rx), we write Rx ≤
Ry. If, additionally, Rx subsumes Ry, then the two representations are equivalent, Rx ≡eq
Ry. Formally,

Rx ≡eq Ry if and only if Rx ≤ Ry and Ry ≤ Rx

The subsumption relationship is a partial order relation (reflexive, antisymmetric and
transitive) that specifies a partial ordering on a set of representations. Consider ℜ the set of
all possible representations. The least upper bound for any set of representations defines the
operation of sum (‘+’) on representations. Similarly, the greatest lower bound for any set of
representations defines the operation of product (‘⋅’) on representations. The set ℜ is closed
under sum and product. [Further consideration of the operations of sum or product on
representations is the focus of Stouffs and Krishnamurti’s forthcoming paper.] The set ℜ has
a zero or minimal element, nil, that is the greatest lower bound for the empty set of
representations. The nil representation is subsumed by every representation. The
subsumption relation defines a lattice on ℜ .

8

5 ORDERING RULES

The above conditions can be specified by a set of ordering rules. The first kind of ordering
rules applies to groupings of entities or representations:

nil ≤ R for every representation R (1.1)

<a> ≤ if and only if type(a) = type(b) and dom(a) ⊆ dom(b) (1.2)

We consider a merge operation ‘∧ ’ of two structures. If both are records, this results in a
record structure composed of all entities in both structures. Otherwise, if either is not a
record structure, the merge treats this structure as a single entity in the other structure, or, in a
new record. The merge operation, unlike sum, is not defined over ℜ : that is, nil ∧ R is
undefined. The merge operation is introduced as a convenience to simplify the ordering rules.

<a> ∧ R ≤ ∧ S if <a> ≤ and R ≤ S (1.3)

Note that this is only a sufficient condition for a record structure to subsume another, not a
necessary condition.

R ≤ R ∧ [S] (1.4)

R ∧ S ≤ R ∧ [S] (1.5)

That is, a structure R is subsumed by another structure that is composed of R and other
optional entities. A structure that includes entities R and S is subsumed by another structure
that is composed of entities R and [S].

Another method of combining structures is as alternatives within a same representation.
We use the symbol ‘∨ ’ to denote this operation: R ∨ S = <R | S>. Like the merge operation,
this operation is not defined over ℜ : that is, nil ∨ R is undefined.

R ≤ R ∨ S (1.6)

Each alternative in a representation is subsumed by the representation.
The second kind of ordering rules applies to the constructors that define relations. We

denote a constructor relation C over entity R as C(R). In general:

C(R) ≤ C(S) if and only if R ≤ S (2.1)

That is, one structure subsumes a second if both constructors are of the same type and
dimensionality, and the entities of the first structure subsume the entities of the second.

The dimensionality of a constructor is the length of the resulting grouping. This
dimensionality is definite for some constructors and indefinite for others. For example, a
quadrilateral may be defined by exactly four points, a triangle by exactly three points, while a
polygon may have a variable number of points.

(R)m ≤ (R)n if and only if m ≤ n (2.2)

Thus, one array structure subsumes a second if the dimensionality of the first array
constructor is greater than the dimensionality of the second, and they both apply to the same
entity.

In addition, some constructors may subsume others. For example, a list structure
subsumes an array structure if they both apply to the same entity:

9

Carray(R) ≤ Clist(R) (2.3)

That is, every relation derived from an array can also be derived from a list, because the array
length is fixed. The reverse is not true. [See, for example, the long line of research using
lists to deal with sparse arrays (Pooch, 1973). We are, of course, not taking into account
practical considerations of efficiency.]

Other rules, apart from those given, may be defined. Subsumption relations form lattices.
Lattices are transitive, reflexive and antisymmetric (Stone, 1973), and have a long history in
the theory of types (see, for example, Cardelli, 1985).

A simple example may be helpful in showing how these rules can be used to order
representations. Consider three types of figures: a two dimensional polygon defined by n
points, a triangle and a quadrilateral. Furthermore, consider these polygons with, say,
optional and mandatory crosshatching. The subsumption lattice would be as shown in
Figure 1. The vertices of the quadrilateral and triangle are assumed to be represented by
arrays of fixed length, whilst that of the polygon by a variable length list. The representation
at the top is the most general, in that it can represent every possible individual of the
representations below it. The representations at the bottom are the most limited, not being
able to depict conditions in the representations above it. If a general polygon involving three
dimensional coordinates was added, it would subsume polygon (p1, … pn), based on rules 2.1

Figure 1 An exemplar subsumption lattice for polygons. The applications of the ordering
relations are shown.

polygon (p1, …, pn) ∧ H polygon (p1, …, pn)

polygon (p1, …, pn) ∧ [H]

polygon (p1, …, p4) ∧ [H]

polygon (p1, …, p3) ∧ [H]polygon (p1, …, p4)∧ H polygon (p1, …, p4)

polygon (p1, …, p3) ∧ H polygon (p1, …, p3)

Rule 2.2
Rule 1.5 Rule 1.4

Rule 2.2

Rule 1.5 Rule 1.4

Rule 2.2 Rule 2.2

Rule 1.5 Rule 1.4

Rule 2.2

Rule 2.2

10

and 2.2. This assumes that the coordinate values are carried in an array. If coordinates are
carried as named attributes in a vertex record, the same relation would only hold if explicitly
specified as such, for instance, 2D coordinates can be mapped to 3D coordinates with the
third coordinate equal to 0, e.g., <x, y> ≡eq <x, y, z = 0>.

6 REGULARIZED REPRESENTATIONS OF SOLID MODELS

Solid modeling representations are complex structures. Some subsume others and some are
equivalent to others. Generally, under a brep, a solid is represented by its boundary, i.e., a
collection of (polygonal) faces. A face is represented by its boundary line segments or edges;
an edge is defined by its endpoints or vertices. Each particular brep distinguishes itself
depending on the characteristics of the representation. For example, representational
elements, i.e., faces, edges and vertices, may be explicitly or implicitly defined and may be
uniquely defined. It also depends on the degree of explicitness of the topological structure,
the degree of information redundancy, and the elements to which the geometry is attached.
Each particular representation influences the domain of representable figures, that is, whether
solids or faces may have holes, the degree of manifoldness of the solids, and whether and
how the representation allows for nonregular figures.

Each of the representations considered below is an example of one of the three types of
boundary models identified by Mäntylä (1988): edge based, vertex based, and face (or
polygon) based. The simplest of these is the winged edge representation (Baumgart, 1975)
which is an example of an edge based boundary model that is explicit in representing all face,
edge and vertex elements uniquely and is complete in the representation of the topological
structure. In its original formulation it is limited to manifold and regular solids. [Informally,
a solid is regular if it does not contain any “dangling” faces or edges, or isolated points. Such
a regular solid is manifold if it has no parts that touch at a line or point of contact, nor does it
touch itself at a line or point of contact.] Variations of the representation extend to
nonmanifold solids such as the half edge representation (Mäntylä, 1988). The winged
triangle representation (Paoluzzi, 1989) is an example of a vertex based boundary model for
nonmanifold, regular solids. This representation can be made canonical. The maximal
element representation (Krishnamurti, 1992; Stouffs, 1994) is a canonical representation that
supports a polygon or face based model. The topology is only implicitly represented in a
recursive declaration of solids in terms of faces, in turn, in terms of edges, in turn, in terms of
vertices. The representation allows for nonregular shapes, yet, the shape operations are
always regular within their dimensionality.

6.1 Baumgart’s winged edge representation

The winged edge polyhedron representation is an edge based boundary model that explicitly
represents each face, edge and vertex element uniquely and is complete in the representation
of the topological structure. The basic representational element is the edge. Each edge has a
direction and two bounding vertices assigned. Each edge forms a part of the boundary of
exactly two faces. From the direction of the edge and the notion of outside versus inside of a
solid with respect to a face (represented by the surface normal of a face), these two faces,
related to the specific edge, can be distinguished as clockwise and counterclockwise. The

11

Table 2 Winged edge representation.

Representation Edge based boundary representation.

Elements Body, face, edge and vertex. These are all explicit and unique. The
topology is attached to edges, and the geometry to vertices.

Topology Body: list of faces, edges and vertices.
Face: one of the edges on its perimeter.
Edge: an orientation, two bounding vertices, two adjacent faces,

and four immediate neighboring edges clockwise and counter-
clockwise about its face perimeters as seen from the exterior
side of the surface. These links are consistently oriented with
respect to the surface of the polyhedron such that the surface
always has two sides: inside and outside.

Vertex: one of the edges on its perimeter.

Geometry Face: an exterior pointing normal vector.
Vertex:3D coordinates.

Scope Regular: only regular 3D bodies.
Manifold: each edge is adjacent to exactly two faces.
Connected surfaces: bodies with only a single shell.
No faces with holes: each face has a single loop of edges.

Extensions Braid (1980) allows for faces with holes.
Yamaguchi (1985) specify a bridge edge representation that allows
for faces with holes.

nccw

v1

pcw

pccw

ncw

v2

fccw

fcw

e

Figure 2 Winged edge data structure.

12

edges that compose the boundary of a face are linked in cyclical order such that for each
edge, the next clockwise, next counterclockwise, previous clockwise and previous
counterclockwise edge can be determined. A face is defined by a single edge and its
orientation with respect to this face. The geometry is represented in the vertices. The
condition of each edge belonging to exactly two faces limits this representation to only
manifold solids. In its minimal form the winged edge representation does not allow for faces
with holes. Extensions to this representation that allow for faces with holes are present in the
literature (Braid, 1980; Yamaguchi, 1985).

The winged edge representation can be described as follows:

Rwinged_edge = <(Rwe_body)>

Rwe_body = <(Rwe_face), (Rwe_edge), (Rwe_vert)>

Rwe_face = <Vnormal, Rwe_edge>

Rwe_edge = <aorientation, (Rwe_vert)
2, (Rwe_face)

2, (Rwe_edge)
4>

Rwe_vert = <Rvert, Rwe_edge>

Rvert = <<x, y, z> ↔ <x, y, z, w>>

The winged edge representation edge carries pointers to adjacent faces, edges and
vertices. Vertices have back pointers to an incident edge. It also allows triangulation of edge
rings, as required for certain display operations.

6.2 Mäntylä’s half edge representation

Like the winged edge representation, the half edge representation is an edge based boundary
model. Each edge is represented by two distinct edge-halves. Thus, the representational
element is an edge-half. Each half is contained in only one face. Each face has its own
unique set of edge-halves. The clockwise ordering of the edge-halves around a face
determines the orientation of the face. Each edge-half has one and only one orientation.
Each edge-half is ordered in the opposite orientation of its other half. Both edge-halves are
bound by the same pair of vertices.

The half edge representation can be described as follows:

Rhalf_edge = Rhe_solid

Rhe_solid = <Rhe_face, Rhe_edge, Rhe_vert, (Rhe_solid)2>

Rhe_face = <Eplane, (Rhe_loop)2, (Rhe_face)
2, Rhe_solid>

Rhe_loop = <Rhe_edge_half, (Rhe_loop)2, Rhe_face>

Rhe_edge = <(Rhe_edge_half)
2, (Rhe_edge)

2>

Rhe_edge_half = <Rhe_vert, (Rhe_edge_half)
2, Rhe_loop, Rhe_edge>

Rhe_vert = <Rvert, (Rhe_vert)
2, Rhe_edge_half>

The structures in the half edge representation may not be apparent. Solids, faces, loops,
edges, edge-halves and vertices are each contained in a doubly linked list. A solid references
a face, edge and vertex from the appropriate lists. A face has a single outer loop and a

13

Table 3 Half edge representation.

Representation Edge based boundary representation.

Elements Solid, face, loop, edge, edge-half and vertex. These are all explicit
and unique. The topology is attached to edges, and the geometry to
vertices (and faces).

Topology Solid: the first element in the lists of faces, edges and vertices, and
the previous and next solid in the list of solids.

Face: one outer boundary loop, a list of inner boundary loops, the
previous and next face in the list of faces, and the parent solid

Loop: one of the edge-halves that form the boundary, the previous
and next loop in the list of loops, and the parent face.

Edge: two edge-halves, and the previous and next edge in the list
of edges.

Edge-half: the starting vertex of the line segment in the direction of
the loop, the previous and next edge-half in the list, and the
parent loop.

Vertex: the previous and next vertex in the list of vertices.

Geometry Face: equation of a plane
Vertex:3D coordinates

Scope Regular: only regular 3D solids.
Connected surfaces: bodies with only a single shell.
Pseudo manifold: manifold representation of nonmanifold solids.

Each edge has exactly two edge-halves and is part of two face
boundaries. However, an edge may coincide with another edge
or a face, and a vertex may coincide with another vertex, an
edge or a face.

cw eh

eh

ccw eh

other eh

vertex

Figure 3 Half edge data structure.

14

reference into a list of inner loops. Each face, loop, edge-half and vertex points back to its
parent solid, face, loop and edge-half, respectively.

The half edge representation includes faces bounded by multiple loops. It does not
include nested shells. It can have derivations that triangulate each of its faces, as
implemented in many graphical display algorithms (Foley, 1992). Thus, it can derive
Paoluzzi’s winged triangle representation, but does not subsume it (see below).

The half edge representation subsumes Baumgart’s winged edge representation as
described below. Winged edges are the aggregation into one record of two half edges. It can
also derive the vertex back pointers of the winged edge.

Rwe_edge = <aorientation, (Rwe_vert)
2, (Rwe_face)

2, (Rwe_edge)
4

≤ <(Rhe_vert)
2, (Rhe_face)

2, (Rhe_edge)
4>

≡eq <(Rhe_vert)
2, (Rhe_loop)2, (Rhe_edge)

4>

≡eq <(Rhe_edge_half)
2, (Rhe_edge)

2>

= Rhe_edge

Moreover, the half edge representation can define faces made up of multiple loops of
edges, which the winged edge structure cannot represent. Thus, the subsumption ordering
relation is one way and the two representations are not equivalent.

6.3 Paoluzzi’s winged triangle representation

The winged triangle representation is an example of a vertex based boundary model that
explicitly and uniquely represents triangular faces and vertex elements. Edges are
represented implicitly, as defined by adjacent vertices. The topological structure is only
partially represented. The basic representational element is the triangular face. Each face has
two 3-tuples representing the adjacent faces and bounding vertices. A shell is composed of a
(ordered) set of faces. A polyhedron is canonically composed of a maximal number of shells,
such that nonmanifold polyhedra are represented as manifolds with local nonmanifoldness.
The face polygons are triangulated after each (Boolean) operation. As such, the number of
triangles is minimized, and a canonical triangulation based on the ordered boundary vertices
is possible. The geometry is represented in the vertices. Faces contain exterior/interior
information. This allows for the representation of unbounded solids (infinite volume) with
bounded (finite) surface. The triangulation only allows for linear polyhedra or linearized
approximations of polyhedra with curved surfaces.

f

f1

f2

f3

v1
v2

v3

Figure 4 Winged triangle data structure.

15

The winged triangle representation can be represented abstractly as:

Rwinged_triangle= <(Rwt_polyhedron)>
Rwt_polyhedron= <(Rwt_shell)>
Rwt_shell = <(Rwt_face), (Rvert)>

Rwt_face = <Vnormal, (Rvert)
3, (Rwt_face)

3>

The winged triangle representation consists of multiple shells, each made up of a list of
faces. Each face is a sequence of three vertices. The Rwt_face may have derivations that
include defining the polygonal boundaries of coplanar adjacent triangular faces. These face
polygons may be matched to identify opposite matching edge pairs, which may be defined
with an additional record and point to the matching pair. The resulting boundaries may
define faces that have multiple loops bounding them. Loops adjacent to the same face may
be matched and put in the same face record. These allow the derivation of the half edge data
structure:

Table 4 Winged triangle representation.

Representation Vertex based boundary representation.

Elements Polyhedron, shell, face, edge and vertex. All, except edges, are
explicit and unique. Edges are implicitly defined. The topology is
attached to faces, and the geometry to vertices.

Topology Polyhedron: an (ordered) list of shells.
Shell: list of faces and vertices.
Face: three (ordered) bounding vertices.

three (ordered) adjacent faces.

Geometry Face: an exterior pointing normal vector.
Vertex: 3D coordinates.

Scope Regular: only regular 3D polyhedra.
Pseudo manifold: (multishell) manifold representation of non-

manifold polyhedra.
Unbounded: infinite volumes with finite surface.
Linear polyhedra or linearized representations of curved surfaces.

Remarks (Possibly) canonical:
Polyhedron has maximal number of shells.
Canonical triangulation of face polygons based on ordered
vertices.
Ordered lists of shells, faces and vertices.

16

Rwt_shell = <(Rwt_face), (Rvert)>

→ <((Rvert)
3)> → <(Rhe_face), (Rhe_edge), (Rvert)> → Rhe_solid

Therefore, Paoluzzi’s winged triangle representation subsumes Mäntylä’s half edge
representation. (The derivations are presented in three steps for illustrative simplicity only.)

6.4 Krishnamurti and Stouffs’ maximal element representation

The maximal element representation is an example of a polygon based boundary model. It is
a canonical representation in which the topology is mostly implicitly represented. The basic
representational element is the face in the representation of a solid or volume segment, an
edge in the representation of a face or plane segment and a vertex in the representation of an
edge or line segment. That is, solids, faces, edges and vertices are recursively defined by
their boundary of a lower dimensionality and all elements can be part of a shape without
necessarily being part of the boundary of a shape. That is, nonregular shapes can be
represented; yet, the operations on shapes are always regular within their dimensionality.
These operations of sum, difference, intersection and symmetric difference define a
generalized Boolean algebra (or Boolean ring) on shapes. A general solid consists of one or
more disjoint (maximal) volume segments that share no faces but may share edges and/or
vertices. Thus, solids may be nonmanifold. The boundary of a volume segment is composed
of one outer shell and zero, one or more inner shells, constituting holes in the solid. Each
shell is composed of a set of (maximal) plane segments, canonically ordered according to the
face equation. Similarly, each plane segment has a single outer boundary and zero, one or
more inner boundaries of (maximal line segments). A line segment is defined by its two
endpoints. The geometry is represented in the vertices and partially duplicated in the edge
and face equations.

The maximal element representation can be described as follows:

Rmaximal_element = <(Rme_segment)>

Rme_segment= <Rme_volume | Rme_plane | Rme_line | Rme_point>

Rme_volume= <(Rme_shell)>

Rme_shell = <(Rme_plane)>

Rme_plane = <Eplane, (Rme_bound)>

Rme_bound= <(Rme_line)>

Rme_line = <Eline, (Rme_point)
2>

Rme_point = <Rvert>

The algebraic approach can be extended to nongeometric and nongraphical information.
The maximal element representation is fundamental to shape grammars. Different grammar
formalisms exist that include nongeometric information such as color and line thicknesses.
nongraphical information such as labels or other types of weights can also be included. A
simple example is shown below:

Rme_point = <Rvert, [Rweight]>

17

7 SUBSUMPTION LATTICE

The four representations taken together can be diagrammed by their subsumption ordering
relations, as shown in Figure 5. The representations are classified abstractly, by the
conditions each is able to represent. It is instructive to note that the subsumption lattice
defined here differs from inheritance lattices used in object oriented languages and databases:
entities with more attributes are higher in the lattice than those without the attributes.

The four representations, namely the winged edge, half edge, winged triangle and
maximal element representations are respectively denoted by Rwe, Rhe, Rwt, and Rme. The
ordering is specified by the rules in Table 6.

Table 5 Maximal element representation.

Representation Polygon based boundary representation.

Elements Volume segment, shell, plane segment, boundary, line segment and
point. All are explicit, all are unique, except line segment and point.
The topology is explicit only top down; the geometry is attached to
points (and line and plane segments).

Topology Volume segment: ordered list of shells.
Shell: ordered list of plane segments.
Plane segment: ordered list of boundaries.
Boundary: ordered list of line segments.
Line segment: two bounding points.

Geometry Plane segment: equation of a plane.
Line segment: equation of a line.
Point: 3D coordinates.

Scope Nonregular: mixed dimensional shapes as arrangements of volume,
plane, line segments and points.

Intrinsically nonmanifold.
Holes: multiple shells (boundaries) for a single volume (plane)

segment, of which one outer and all other inner.

Remarks Canonical:
Maximal volume, plane and line segments.
Ordered lists of elements.

18

nonregular,
nonmanifold

nonmanifold with nested shells,
with faces bounded by multiple loops

2-manifold with a single shell,
with faces bounded by multiple loops

2-manifold with a single shell,
with faces bounded by a single loop

Figure 5 The subsumption lattice for the four solid modeling representations.

Rme

Rwt, Rme

Rhe, Rwt, Rme

Rwe, Rhe, Rwt, Rme

2-manifold with nested shells,
with faces bounded by multiple loops

Rwt, Rme

nonmanifold with a single shell,
with faces bounded by multiple loops

Rhe, Rwt, Rme

Table 6 Subsumption relations between the four representations.

Subsumption Rules Explanation

Rwt ≤ Rme rule 1.6 Rme includes nonregular geometries.

Rhe ≤ Rwt rules 2.2 and 2.3 Rwt allows for nested shells.

Rwe ≤ Rhe rules 2.2 and 2.3 Rhe includes nonmanifold solids and allows
multiple loops on faces.

19

As can be seen, the maximal element representation subsumes all the others, meaning that
it can represent all individuals of the other representations. The winged edge representation
is the most limited and cannot represent many conditions found in the other representations.
It is subsumed by all three representations. The winged triangle representation subsumes the
half edge representation: they both allow for nonmanifold solids and for faces with holes, but
the winged triangle representation also allows for nested shells, whereas a half edge solid is
composed of a single shell. The reason for this is that the half edge representation does not
have a shell element. However, the representation can easily be extended to include a shell
element. The resulting, extended, half edge representation is then equivalent to the winged
triangle representation.

8 DISCUSSION

Exact translations can always be made from one representation to another that subsumes it.
That is, a representation lower in the lattice can always translate its data into one above it,
either directly or based on the transitivity relation. Notice that under restricted conditions,
translations may be made from a more general representation to one that it subsumes. For
example, a maximal shape that carries only a regular solid may be translated, with no loss of
information, to the half edge; if it also is a 2-manifold and has only a single shell and faces
with single loops, to the winged edge. Predicate checking for these conditions can ascertain
for a set of objects to be translated, which ones can and cannot be translated without
information loss. Only exact translations can be treated in this way. Thus, the approximation
of a B-spline surface with a facetted (polygonal) surface cannot be directly dealt with using
the concepts presented.

The rules of derivation in a representation are domain specific. In the arc example, rules
of geometry define the derivations that can be applied. Those derivations are the core of a
translation process. The extension of a representation R is those derivations that are needed
to generate another equivalent representation R'. The process of translation then becomes the
process of generating the base representation for representation R' by regrouping the
attributes in both the base and the derived sets of attributes in R.

The ordering of representations allows their rigorous comparison at the semantic level and
provides a basis for rigorous translation. As different applications are developed for use
throughout the building life cycle, the application of such comparisons will be necessary, if
translations are to be made automatically and robustly.

Note
The work by Charles Eastman was supported by the National Science Foundation, grant
number IRI 9319982. This author benefitted from discussion with George Stiny.

20

9 REFERENCES

 Autodesk (1992) Drawing Interchange and File Formats, a chapter in AutoCAD Release 12
Customization Manual, Autodesk, Sausalito, California.

 Bloor, M.S. (1991) STEP-standard for the exchange of product model data in Standards and
Practices in Electronic Data Interchange, The Institution of Electrical Engineers (IEE),
IEE Colloquium, 2/1-3, London.

 Baumgart, B.G. (1975) A Polyhedron Representation for Computer Vision in National
Computer Conference 1975, AFIPS Press, Montvale, N.J, 589-596.

 Braid, I.C., R.C. Hillyard and Stroud, I. A. (1980) Stepwise Construction of Polyhedra in
Geometric Modeling in Mathematical Methods in Computer Graphics and Design (ed. K.
W. Brodlie) Academic Press, London.

 Cardelli, L. and Wegner, P. (1985) On Understanding Types, Data Abstraction and
Polymorphism. Computing Surveys, 17, 471-523.

 Eastman, C. (1993) Life Cycle Requirements for Building Product Models. International
Conference on Information Technology in Construction, Singapore, August 1993.

 Eastman, C. M. (1994) Talk on Product Modeling. Presented at Engineering Design
Research Center, Carnegie Mellon University.

 Foley, J.D., Van Dam, A., Feiner, S. and Hughes, J. (1992) Computer Graphics: Principles
and Practice. 2nd edition. Addison-Wesley, Reading, Massachusetts.

 Krishnamurti, R. (1992) The Maximal Representation of a Shape. Environment and
Planning B: Planning and Design, 19, 267-288.

 Mäntylä, M. (1988) An Introduction to Solid Modeling. Computer Science Press, Rockville,
Maryland.

 Paoluzzi, A., Ramella, M. and Santarelli, A. (1989) Boolean Algebra over Linear Polyhedra.
Computer Aided Design, 21, 474-484.

 Pooch, U. and Neider, A. (1973) A Survey of Indexing Techniques for Sparse Matrices.
Computing Surveys, 5, 109-133.

 Smith, B., Rinaudot, G. R., Reed, K. A. and Wright, T. (1988) Initial Graphics Exchange
Specification (IGES), Version 4.0. SAE/SP-88/767, Society of Automotive Engineers,
Warrendale, Pennsylvania.

 Stone, H.S. (1973) Discrete Mathematical Structures and Their Applications. Science
Research Associates, Chicago.

 Stouffs, R. (1994) The Algebra of Shapes. Ph.D. Dissertation. Department of Architecture,
Carnegie Mellon University, Pittsburgh, Pennsylvania.

 Stouffs, R. and Krishnamurti, R. (forthcoming) Sorts: an algebraic approach to
representations. manuscript. Architecture and CAAD, Swiss Federal Institute of
Technology, Zurich and Department of Architecture, Carnegie Mellon University,
Pittsburgh, Pennsylvania.

 Yamaguchi, F. and Tokieda, T. (1985) Bridge Edge and Triangular Approach in Solid
Modeling in Frontiers in Computer Graphics (ed. T. L. Kunii) Springer-Verlag, Tokyo,
44-65.

21

Rudi Stouffs is a Researcher at the Chair for Architecture and CAAD, Swiss Federal
Institute of Technology, where he focuses on issues of data loss in collaborative and
multidisciplinary design environments. Dr. Stouffs is currently developing an abstract
representational model that allows for comparing data representations and managing data
integrity in data exchange and communication. He received his Ph.D. in Architecture from
Carnegie Mellon University, in 1994. Subsequently, he was an Assistant Professor in the
Department of Architecture at CMU where he taught both graduate core courses in the area
of computational design as well as a freshman computer modeling course, and advised
graduate students.

Ramesh Krishnamurti is Professor in the Department of Architecture at Carnegie Mellon
University. Previously he was at Bolt, Beranek and Newman, University of Edinburgh and
the Open University. His research interest is in computational design with emphasis on the
formal and algorithmic aspects of generative construction. His activities [past and present]
has a multidisciplinary flavor and include spatial grammars, spatial algorithms, geometrical
modeling, architectural analysis, knowledge based design systems, integration of natural
language and graphics, user interfaces, computer simulation, graphical programming
environments, and war games. He presently teaches courses on computer and geometrical
modelling, shape grammars, and design support systems. He is Regional Editor (Americas)
of Building and Environment and serves on the editorial board of Languages of Design.

Charles Eastman is Professor in the Colleges of Architecture and Computer Science at
Georgia Institute of Technology, Atlanta. Professor Eastman’s research interests are in
engineering databases, geometric modeling and design theory. Over twenty years, he has
developed a number of CAD systems and engineering databases, both as research prototypes
and commercially. Previously, he was Director of the CAD-Graphics Lab at Carnegie
Mellon University and the Director of the Center for Design and Computation at UCLA. He
currently holds editorial positions on four journals: Research in Engineering Design,
Automation in Construction, Computer-Aided Design, and the electronic journal Information
Technology in Construction.

