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Discovering Clusters in Power Networks From
Orthogonal Structure of Spectral Embedding

Ilya Tyuryukanov , Student Member, IEEE, Marjan Popov , Senior Member, IEEE,
Mart A. M. M. van der Meijden, Member, IEEE, and Vladimir Terzija, Fellow, IEEE

Abstract—This paper presents an integrated approach to parti-
tion similarity graphs, the task that arises in various contexts in
power system studies. The approach is based on orthogonal trans-
formation of row-normalized eigenvectors obtained from spectral
clustering to closely fit the axes of the canonical coordinate system.
We select the number of clusters as the number of eigenvectors
that allows the best alignment with the canonical coordinate axes,
which is a more informative approach than the popular spectral
eigengap heuristic. We show a link between the two relevant meth-
ods from the literature and on their basis construct a robust and
time-efficient algorithm for eigenvector alignment. Furthermore,
a graph partitioning algorithm based on the use of aligned eigen-
vector columns is proposed, and its efficiency is evaluated by com-
parison with three other methods. Finally, the proposed integrated
approach is applied to the adaptive reconfiguration of secondary
voltage control helping to achieve demonstrable improvements in
control performance.

Index Terms—Power network partitioning, spectral clustering,
number of clusters, adaptive network zone division.

I. INTRODUCTION

W ITH massive deployment of renewable generation, the
increase of uncertainties and reduction of security mar-

gins are expected to become the major obstacles for the safe op-
eration of modern electric power systems. It is widely accepted
that coping with these challenges requires new approaches for
power system protection, operation, planning and control.

Partitioning (clustering, zoning) of electric power networks
is a concept that appears particularly frequently in many
advanced control and protection techniques. Cotilla-Sanchez
et al. [1] mention a large number of existing applications

Manuscript received September 12, 2017; revised February 5, 2018 and June
25, 2018; accepted June 30, 2018. Date of publication July 11, 2018; date of
current version October 18, 2018. This work was supported by the Dutch Sci-
entific Council NWO-STW under the project 408-13-025 within the program
of Uncertainty Reduction of Smart Energy Systems (URSES) in collabora-
tion with TenneT TSO and by the Dutch National Metrology Institute, van
Swinden Laboratory. Paper no. TPWRS-01401-2017. (Corresponding author:
Ilya Tyuryukanov.)

I. Tyuryukanov and M. Popov are with the Department of Electrical Engi-
neering and Computer Science, Delft University of Technology, Delft 2628CD,
The Netherlands (e-mail:,ilya.tyuryukanov@ieee.org; m.popov@ieee.org).

M. A. M. M. van der Meijden is with the TenneT TSO B.V., Utrechtseweg
310, Arnhem 6812AR, The Netherlands, and also with the Department of Elec-
trical Engineering and Computer Science, Delft University of Technology, Delft
2628CD, The Netherlands (e-mail:,mart.vander.meijden@tennet.eu).

V. Terzija is with the School of Electrical and Electronic Engineering, the Uni-
versity of Manchester, Manchester M13 9PL, U.K. (e-mail:,terzija@ieee.org).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TPWRS.2018.2854962

in planning and operations of power systems that require
zone definitions and propose a partitioning method that helps
to reduce transaction leakage between zones. Additionally,
the high computational burden of many methods used in
planning and control of large-scale power systems motivates
the identification of weakly-interacting areas for the purpose
of power network reduction [2]. Due to the local nature of
voltage deviations in AC power systems, zones and areas are
widely used in SVC [3], [4] and some other applications related
to voltage-var control [5]. In Ding et al. [6], [7], network
partitioning is used for intentional controlled islanding both
to determine the coherent generators and split the network.
In general, decoupled control of partitioned electric power
networks appears to be a promising strategy for dealing with
the anticipated complexity of future power grids [8].

Spectral clustering is an important approach that is exten-
sively used for partitioning of electric power networks. Due to
its strong theoretic foundations [9], spectral clustering can be
useful for a variety of power system studies [2], [8], [10], [11].
However, the high computational efficiency makes it especially
suitable for the applications requiring a time-constrained solu-
tion in response to the changes in the network. Among such
applications, adaptive SVC [4], [10] has attracted a growing at-
tention during the recent years due to the increasingly dynamic
and interconnected structure of modern power grids. The use of
adaptive SVC has been reported in [4] for the rapidly develop-
ing electric power grids of China. The approach in [4] uses the
concept of “Var control space” to select the number and location
of voltage-regulated pilot buses through the subdivision of the
whole network into voltage control zones. As pointed out in [10],
this type of approach is more viable for the real-time operation
as opposed to the direct search for pilot nodes [12], [13].

The main contribution of this paper is a spectral clustering
based approach for the selection of the number of clusters and
high quality partitioning of similarity graphs arising in vari-
ous contexts in power systems. Our methodology combines and
extends the ideas from [14], [15] that showed the benefits of
applying specially computed orthogonal transformations to the
eigenvectors of the normalized graph adjacency matrix. The pa-
per suggests to choose the number of clusters for power network
partitioning as the number of graph matrix eigenvectors that al-
lows the closest alignment with the canonical axes and proposes
a robust and time-efficient algorithm to recover the aligning or-
thogonal transformation. We also design an algorithm based on
transformed eigenvectors that partitions the underlying power
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network into a set of well-separated clusters. This algorithm
shows a high computational efficiency and partitioning quality,
while being able to ensure the connectedness of the resulting
clusters. In addition, clusters can be biased to contain more than
a certain amount of nodes. The fast running time of the proposed
clustering framework makes it potentially useful in assisting the
real-time decision making in power systems. We illustrate this
point on the example of adaptive zone division (AZD) for SVC,
an application that may greatly benefit from the ability of our
framework to determine the optimum number of zones.

The rest of the paper is organized as follows. Section II intro-
duces the essential preliminaries for this work. Section III out-
lines the use of orthogonal linear transformations with spectral
clustering. Section IV describes the proposed algorithm for ro-
bust eigenvector alignment. Section V introduces the used clus-
tering quality metrics. Section VI details the proposed k-way
partitioning algorithm. Section VII demonstrates its superior
partitioning quality. Section VIII illustrates how the proposed
clustering framework can be used in SVC for the task of AZD.
Finally, the conclusions are drawn in Section IX.

II. BASIC CONCEPTS

A. Mathematical Notation

Let a power network consisting of n nodes be modeled as an
edge-weighted undirected graph G with the associated weighted
adjacency matrix A = [aij ]. The edge weights aij should cor-
respond to a quantity that represents the closeness or similarity
between two nodes. The nodes of G are referred to by the in-
dices of the corresponding rows and columns in the adjacency
matrix. Sizes of matrices are denoted by subscripts (e.g., Mn×k

for a matrix with n rows and k columns) or introduced when
the matrix is defined (e.g., M ∈ Rn×k ). A submatrix is de-
fined by the indices of the participating rows and columns (e.g.,
M[1, . . . , n; 1, . . . , 3] is formed by the first n rows and three
columns of M).

Following Luxburg [9], we define 1C as the indicator vector
of the nodes belonging to the cluster or connected component
C. That is, 1C = [f1 , . . . , fn ]T and fi = 1 if node i belongs to
C and fi = 0 otherwise. To denote an all-ones matrix, 1 is used,
and an all-zeros matrix is denoted by 0. The identity matrix of
size k is denoted as Ik . A diagonal matrix formed from a vector
argument is denoted as diag(·).

Final solutions of optimization algorithms are marked with
an asterisk (e.g., R∗). Partition indicator matrices such as dis-
cretized eigenvector matrices are marked with a tilde (e.g., ˜M).
Lower and upper limits of a range of numbers are marked with
underbars and overbars respectively (e.g., k and k̄).

B. Basics of Spectral Clustering

Given the above definitions for the graph G, the normalized
adjacency matrix of G can be defined as

An = D−
1
2 AD−

1
2 (1)

where di =
∑n

j=1 aij is the weighted degree of node i, D =
diag(d1 , . . . , dn ) is the diagonal degree matrix of the graph G

and D−
1
2 = diag( 1√

d1
, . . . , 1√

dn
).

While the normalized adjacency matrix (1) is used in
[14]–[16], several authors [8], [9] mention an alternative ma-
trix Ln = I−An , commonly referred to as the normalized
Laplacian. Both matrices have the same eigenvectors, and the
smallest eigenvalues of Ln correspond to the largest eigenvalues
of An [16]. The choice of An is motivated by numerical consid-
erations: computing several largest eigenpairs of a sparse matrix
with iterative eigensolvers has better numerical properties than
computing several smallest eigenpairs. Additionally, the sym-
metry of An and Ln is beneficial, as eigenvector computations
for symmetric matrices are more robust numerically.

The normalized adjacency matrix has the following important
properties [9], [15], [16]:

1) The eigenvalues of An are real and satisfy the inequality
−1 ≤ λi ≤ 1, i = 1, . . . , n;

2) 1 is an eigenvalue of An , and its multiplicity is equal to
the number of connected components of G;

3) The eigenspace of 1 is spanned by the k column vectors
D

1
2 1Cl

, where C1 , . . . , Ck represent the k connected
components of G.

The k largest eigenvectors of An can be combined into the
matrix X ∈ Rn×k . The rows of X can be seen as the coordinates
of the nodes of the original power network in Rk . This represen-
tation of the nodes of the original network by the points in the
Euclidean space formed by the first k eigenvector coordinates
is often called spectral embedding [8], [9].

The third property motivates the use of the largest eigenvec-
tors of An for clustering purposes. If G has k connected com-
ponents, the rows of X will lie along the axes of the canonical
coordinate system in Rk , and the k connected components can
be easily retrieved from X. The multiple connected components
of G can also be considered as perfectly separated clusters. Ac-
cording to matrix perturbation theory [9], the addition of some
low-weight edges between the k perfectly separated clusters
only slightly perturbs the k largest eigenvectors from their ideal
values. Thus, an observation can be made [9], [15], [16] that the
more the first k eigenvectors resemble the ideal structure cor-
responding to fully separated clusters, the more closely those
eigenvectors represent the dominant clustering structure of G.

In practice, the rows of the eigenvector matrix X are normal-
ized to have length one [14], [16]. Therefore, it is convenient
to introduce the matrix Y ∈ Rn×k that is obtained from X by
normalizing the rows of X to have length one.

Yij = Xij/(
k

∑

j=1

X2
ij )

1/2 (2)

The most common final step of spectral clustering is to assign
each row of Y to a fixed cluster. This procedure is commonly
referred to as discretization, and its result can be thought of
as a conversion of real-valued Y into a discrete matrix ˜Y ∈
{0, 1}n×k with the property ˜Y1k×1 = 1n×1 .

III. ORTHOGONAL INVARIANCE OF SPECTRAL CLUSTERING

A. Alignment Cost Minimization

In their seminal work, Yu and Shi [14] have shown that the op-
timal solution of the continuous relaxation of the NP-complete
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normalized cut problem for k clusters can be represented by
the columns of the normalized eigenvector matrix Y ∈ Rn×k .
Moreover, it was shown in [14] that this solution is invariant
with respect to orthogonal linear transformations applied to the
initial matrix Y. That is, the continuous optima form a subspace
characterized as

{YR : RT R = Ik} (3)

where R ∈ Rk×k is an arbitrary orthogonal matrix.
Furthermore, the authors of [14] propose an algorithm to find

an orthogonal transformation R∗ that would facilitate the dis-
covery of a good discrete solution ˜Y from the initial optimal
solution of the continuous relaxation Y. The discretization al-
gorithm is stated as the optimization problem

minimize Q( ˜Y,R) = ‖ ˜Y −YR‖F
s.t. ˜Y ∈ {0, 1}n×k , ˜Y1k×1 = 1n×1 ,

RT R = Ik (4)

where ‖ · ‖F is the matrix Frobenius norm: ‖M‖F =
√

∑n
i=1

∑k
j=1 M 2

ij .

The problem (4) has two unknowns: the discrete solution ˜Y
and the orthogonal matrix R that brings Y closest to ˜Y. As
there is no direct method to solve (4) simultaneously for ˜Y and
R, an iterative procedure was proposed in [14]. If R is given
in (4), ˜Y is determined by non-maximum suppression of YR,
that is by setting the maximum entry of each row of YR to 1
and the remaining entries to zero. If ˜Y is given, R is determined
by singular value decomposition (SVD) of ˜YT Y

R = UVT

˜YT Y = UΣVT
(5)

where Σ = diag(σ1 , . . . , σk ) is the diagonal matrix of singular
values of ˜YT Y and U, V are the matrices of the left and right
singular vectors respectively.

The iterative approach in [14] consists of alternating the steps
of optimal alignment (5) and non-maximum suppression that
rapidly converge to the initialization-dependent local optimum
of (4). By analyzing the cost function (4), it is possible to notice
that it has the goal of maximizing one entry per matrix row
to be close to one, while minimizing the remaining entries,
by applying a single orthogonal transformation R on the input
matrix Y. Geometrically this corresponds to the alignment of
the initial spectral embedding with the axes of the canonical
coordinate system. A cost function that expresses the degree of
alignment of spectral embedding with the canonical coordinate
system is further called alignment cost.

B. Eigenvector based Selection of Number of Clusters

The concept of alignment cost was used by Zelnik-Manor [15]
to select the number of eigenvectors that most closely resembles
the ideal result of spectral clustering discussed in Section II-B.
To enable comparison with (4), the cost function of method [15]
is directly given in terms of row-normalized eigenvectors in-
stead of the original formulation [15] in terms of unnormalized

Fig. 1. Minimized alignment costs (4) and (6) for branch admittance graphs
of the two networks from MATPOWER [17], [18] with all transformer phase
shifts set to zero. (a) Case1354pegase test network. (b) Case2869pegase test
network. (c) Case1354pegase test network. (d) Case2869pegase test network.

eigenvectors X:

minimize J(R) =
1
n

n
∑

i=1

k
∑

j=1

[YR]2ij
M 2

i

s.t. RT R = Ik (6)

where Mi = maxj [YR]ij .
The cost function (6) was minimized in [15] by optimizing the

orthogonal matrix R with gradient descent. The lowest feasible
minimum for the cost J is equal to one, and it is achieved
when rotation R∗ recovers a discrete matrix from Y. According
Section II-B, this case corresponds to the best possible outcome
of spectral clustering, as every node is perfectly assigned to one
of the k clusters. This observation can be used to select the
number of eigenvectors k that, after applying the orthogonal
transformation R∗, leaves the lowest ambiguity in the cluster
assignment of the graph nodes.

IV. ALIGNMENT OF SPECTRAL EMBEDDING

WITH THE STANDARD BASIS

A. Selection of Alignment Cost

The idea to use a measure of eigenvector alignment with the
canonical axes for the estimation of the number of clusters was
initially introduced in [15] for the cost function (6). However,
the results in Fig. 1 demonstrate that the minimization of the
alignment costs (4) and (6) discovers a very similar pattern.

For the results in Fig. 1, the cost (4) was optimized with the
algorithm of Section IV-C. The minimization of (6) has been
implemented by using the ideas of Sections IV-B and IV-C
and some additional heuristics to multiply initialize the gradient
descent optimization. The gradient-based minimization of (6)
uses Givens angles as optimization variables. The number of
Givens angles for k eigenvectors is equal to k(k − 1)/2; i.e.,
the solution space grows quadratically with the increase of k.
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Fig. 2. Selection of starting points by the initialization algorithm for eigen-
vector alignment. The 3-spectral embedding is computed for the admittance
graph in Fig. 4. The circles represent start points, and the numbers represent
their selection order.

Therefore, the computation time of the gradient-based eigen-
vector alignment (6) showed to be noticeably higher, especially
as the number of eigenvectors increased. Another issue with
the gradient-based minimization is the necessity to choose the
learning rate. Thus, the minimization of objective (4) was cho-
sen in this paper to discover the orthogonal structure of spectral
k-embeddings.

B. Robust Orthogonal Initialization

Both (4) and (6) are formulated as non-linear non-convex op-
timization problems. Due to multiple local optima, the achieved
final solution generally improves with a good initialization. The
authors in [14] use the problem-specific initialization approach
from [16], which is a fast greedy algorithm to find a set of
k nearly orthogonal rows in the matrix Y. The clustering ini-
tialization algorithm [16] is extended here to handle the two
important issues:

1) Starting the initialization [16] only once may not lead to a
good result. Situations are possible, when a set of nearly
orthogonal initialization points lies close to a poor local
optimum. Therefore, it is desirable to develop a systematic
strategy for multiple initializations.

2) The rows found by the initialization [16] are generally not
perfectly orthogonal to each other, thus the transformation
matrix formed by those rows is not strictly orthogonal.

The above issues are resolved in Algorithm 1 which uses
at most r restarts to robustify the initialization. The restart
strategy selects the first vector of the next k-dimensional basis
formed from the rows of Y as the row of Y that has the
minimal cumulative cosine similarity to the first vectors of the
previously selected bases. As the rows of Y are normalized
by (2), cosine similarity is equivalent to dot product. Rows that

Algorithm 1: Robust Orthogonal Initialization.
Input: Yn×k , r, δ
Output: R∗, Q∗

1: S←{1, . . ., n}//Rows of Y eligible for basis initialization
2: s← 0n×1 //Cumulative cosine similarity
3: for i = 1, . . . , r do
4: if S = ∅ then break end if
5: r1 ← argminl∈S s[l] //Index of initiating basis row
6: P[1, . . . , k; 1]← Y[r1 ; 1 . . . , k]T

7: c← YP[1, . . . , k; 1]
8: S ← S \ {l | c[l] > δ}
9: s = s + c

10: c = abs(c) //Element-wise absolute value
11: for j = 2 to k do
12: rj← argmin c // Most orthogonal to prev. j−1 rows
13: P[1, . . . , k; j]← Y[rj ; 1 . . . , k]T

14: c = c + abs(YP[1, . . . , k; j])
15: end for
16: R← loewdin(P) //(7)
17: Q← Evaluate (4) as Q( ˜Y, I) with ˜Y obtained from

YR via non-maximum suppression.
18: Save Q and P obtained at each iteration.
19: end for
20: Set Q∗ as the lowest Q and R∗ as the corresponding R.
21: return R∗, Q∗

are more similar to any previously selected first basis row than
the threshold δ are constrained not to initiate a basis.

The retrieved k rows of Y (combined into matrix P in
Algorithm 1) may not form an orthonormal basis. For a set
of linearly independent vectors, the closest orthonormal basis is
given by the SVD-based Loewdin orthogonalization:

P = UΣVT

R = UVT
(7)

The Loewdin orthogonalization (7) is used to transform the
retrieved k rows of Y stored in the columns of P to a proper
orthogonal transformation. Finally, Algorithm 1 evaluates the
alignment cost associated with each obtained set of k rows of
Y and returns the best encountered aligning transformation. In
addition, all discovered sets of k rows are saved to subsequently
provide multiple initializations for the optimization method (4).

A sample run of the restart strategy is illustrated in Fig. 2.
The first starting point is selected at random far from the three
dense orthogonal clusters. However, the second starting point
is selected in the top dense cluster, and all the following start-
ing points are selected in the dense orthogonal clusters. In other
words, the proposed restart strategy selects points representative
for the orthogonal structure of spectral embedding. The similar-
ity threshold parameter serves as a “step size” that prevents the
subsequent starting points from being too close.

Although the proposed algorithm is based on the clustering
initialization method [16], the added extensions make it a robust
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Fig. 3. Aligned 3-spectral embedding for the partitioning study shown in
Fig. 4. The different colors and marker shapes represent the result of k-means
clustering; the dashed lines show the grouping obtained by our partitioning
method.

(i.e., not prone to poor local optima) method to minimize the
eigenvector alignment cost. The returned orthogonal transfor-
mation often needs only little improvement by the specialized
minimization methods (see Section III).

C. Combined Method to Minimize the Alignment Cost

Based on the information given in Sections III and IV-B,
we formulate the combined eigenvector alignment algorithm
consisting of the following three steps:

1) Initialization from previously aligned columns.
2) Robust orthogonal initialization.
3) Final alignment cost minimization.
The overall philosophy of the proposed three-step algorithm

is to apply several efficient methods to sequentially bound the
alignment cost and reach a near-global optimum. At first, the
alignment cost is reduced by applying the previous orthogo-
nal transformations (accumulated in a matrix) to the next set
of row-normalized eigenvectors. This step is mainly included
due to its very low computational cost and ability to produce
a quick initial bound of the optimization objective. The second
step was described in Section IV-B. The third step is the iter-
ative minimization of (4) from multiple initial positions. The
multiple restart strategy of Section IV-B supplies initializations
of varying quality to the third step, resulting in the overall high-
quality optimum. Here it is worth to recall that minimizing (4) is
faster than (6), which makes the multiple repeats feasible. Min-
imizing (6) several times would be significantly more costly,
especially for a large number of eigenvectors (above 7–12).

As a graphic illustration of the algorithm’s possible outcome,
Fig. 3 shows the aligned 3-spectral embedding from which
the partitioning result in Fig. 4 has been obtained. Another
illustration was already given above in Fig. 1.

Fig. 4. Branch admittances of the IEEE 39 bus test network, and spectral
clustering into three parts with k-means and our methodology. The areas found
by k-means are colored differently, and the boundaries of the areas found by our
partitioning method are shown with dashed lines.

V. PARTITIONING QUALITY METRICS

For the evaluation of the partitioning algorithm in the next sec-
tion, we largely adopt the clustering quality evaluation method-
ology from [8]. First, cut and volume are introduced for each
cluster. The cut of cluster Cl represents the total weight of the
edges that separate the cluster from the rest of the network,
which can be expressed as cut(Cl, Cl) =

∑

i∈Cl ,j∈Cl
aij . The

volume of cluster Cl is the sum of the weighted degrees of
its nodes: vol(Cl) =

∑

i∈Cl
di . Then the expansion ratio (or

expansion) of cluster Cl [8] is defined as

φ(Cl) =
cut(Cl, Cl)

vol(Cl)
(8)

The value of φ(Cl) can take values from zero to one, with
smaller values corresponding to better clusters. The partitioning
quality is accessed by the maximal expansion ratio over all
clusters [8]

φmax(C1 , . . . , Ck ) = max
1≤l≤k

φ(Cl) (9)

Minimizing the cluster expansion (8) promotes a high sum
of internal connections (high volume) combined with a low
sum of external connections (low cut), which are the desirable
properties of a good power network partitioning according to [1].
Asking for a small maximal expansion ratio is reasonable from
the power system point of view, because it is usually desirable in
practice to avoid any loose clusters. A low value of (9) implies
that all clusters are well separated from each other in terms of
the similarity relationships determined by the graph adjacency
matrix A. Thus (8) and (9) evaluate the solution in terms of
the defined power system model itself. At the same time, (9)
allows for an efficient optimization via the normalized spectral
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clustering [8], while some more complex objective functions can
often only be optimized via metaheuristic approaches (e.g., [1]).

The arithmetic mean of expansion ratios of all clusters is
known as normalized cut [9]. It is widely used to assess the
quality of graph partitioning [9], [14] and gives the information
about the average quality over all clusters

Ncut(C1 , . . . , Ck ) =
1
k

k
∑

l=1

φ(Cl) (10)

A good partitioning should also contain no disconnected or
too small clusters [1]. In order to account for the latter require-
ment, the minimal cluster size (as a percentage of the average
cluster size) is introduced as a quality indicator.

ε(C1 , . . . , Ck ) =
min1≤l≤k (|Cl |)

n/k
· 100 (11)

We aim to treat cluster sizes separately from the partitioning
quality measures (9) and (10). While (9) and (10) should be
ideally as low as possible, (11) is only meant to be higher than
a certain predefined minimal cluster size.

VI. EIGENVECTOR ALIGNMENT BASED PARTITIONING

Apart from providing good indicators to select the number
of clusters, the axes-aligned spectral embedding can also be a
valuable input to partition the network. By looking at Fig. 3, it
is possible to see that some buses reside in dense cluster cores,
while others (e.g. 1, 17, 18, 39) have their cluster membership
less certain. If the computed aligning orthogonal transformation
is denoted as R∗, and Y is the initial set of row-normalized
eigenvectors of the matrix An , the axes-aligned eigenvectors
YR∗ can be referred to as Y∗. With eigenvectors Y∗, a cluster
core becomes numerically recognizable as the corresponding
entries of some column of Y∗ will be close to one. And because
the Euclidean norm of each row equals to one, the entries of the
remaining columns in the same row will be close to zero.

The cluster core estimation process is formulated as
Algorithm 2. First, each eigenvector is sorted to reveal which of
its rows have a large magnitude. Then the cluster core is initiated
with the original row indices of the first nmin entries of the sorted
eigenvector, where nmin is obtained from the requirement (11).
The next nodes are added to the core in the decreasing order
of the corresponding eigenvector entries until the predefined
eigenvector threshold γ is reached. To consider each eigenvec-
tor independently, this threshold value should be above

√
2/2.

The value
√

2/2 ensures that no two (or more) row-normalized
eigenvectors can simultaneously assign the same row to their
clusters. We typically set the initial value of γ to be

√
3/2, which

guarantees the other eigenvector entries for the same node not
to exceed 0.5. The expansion of the cluster core is updated after
adding each next node, and the final cluster core is selected as the
set of nodes with the smallest achieved expansion. In the major-
ity of cases, the minimal expansion ratio corresponds to a cluster
core having a single connected component. If there are multiple

Algorithm 2: Cluster Cores from Axes-Aligned
Eigenvectors.

Input: Y∗n×k , A, γ, nmin
Output: CC //The k cluster cores

1: for j = 1 to k do
2: y ← Y∗[1, . . . , n; j]
3: ord← Descending order of entries in y
4: if max(y)−0.1<γ then
5: γ ← max(max(y)− 0.1,

√
2/2)

6: end if
7: core← ord[1, . . . , nmin ]
8: phi[1, . . . , nmin ]← φ(A, core) //(8)
9: i← nmin + 1

10: while y[ord[i]] ≥ γ do
11: core← ord[1, . . . , i]
12: phi[i]← φ(A, core) //(8)
13: i← i + 1
14: end while
15: i∗ ← argmin phi
16: CCj ← core[1, . . . , i∗]
17: end for
18: return CC

connected components, the next smallest expansion with the
index higher than nmin is accepted, and the connectivity is
checked for the corresponding group of nodes. In the worst
case, the largest connected component can be taken as the core.
However, such situations are not common in practice and mostly
occur when the eigenvector alignment cost is high. An example
of the cluster core estimation approach is shown in Fig. 5 for the
partitioning of the admittance graph of the IEEE 39 test network
(see Fig. 4).

After all cluster cores have been estimated, they are improved
one-by-one in the decreasing order of their expansions:

1) Rerun the cluster core estimation Algorithm 2 with the
eigenvector threshold γ only slightly above of

√
2/2.

2) Merge each cluster core to a single core node and find
the minimum isolating s-t cut from the current core node
to the remaining core nodes. A new fictitious sink node
should be created and connected to the remaining core
nodes with edges of an infinitely large weight. Then the
isolating cut is computed as the minimum s-t cut between
the current core node and the fictitious sink node [19].
Increase the current cluster core by the nodes that reside
on its side of the cut.

The final improvement is chosen as one that reduces the ex-
pansion ratio most. The goal of this procedure is to decrease
the objective (9) by greedily attempting to reduce the expan-
sion ratios of the least fit cluster cores. The use of minimum
s-t cuts (i.e., solutions to the max-flow/min-cut problem [20])
is motivated by their ability to rapidly find the globally opti-
mal cut between two nodes (or two sets of nodes) in the graph.
The classical drawback of minimum graph cuts to return highly
unequally-sized bisections [9] is circumvented here by looking
for the minimum cut that separates a whole cluster core (merged
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Fig. 5. Cluster core estimation from the axes-aligned spectral embedding in Fig. 3 using Algorithm 2. Each eigenvector was sorted in descending order, and the
starting size of cluster core was set at 2. (a) 1st eigenvector. (b) 2nd eigenvector. (c) 3rd eigenvector.

Fig. 6. Use of minimum s-t cuts for cluster core improvement and final recur-
sive bisection. (a) Improvement of cluster core C2. (b) Final bisection (step 1).
(c) Final bisection (step 2).

into a node) from the remaining core nodes. An example of use
of minimum s-t cuts for cluster core improvement is shown in
Fig. 6(a).

After the refinement stage, the updated cluster cores are once
again collapsed into single nodes. The reduced network should
consist of k core nodes and all the remaining nodes that were not
assigned to the cluster cores, and it is partitioned via recursive
bisection. At every step of recursive bisection, candidate mini-
mum s-t cuts [20] are computed between an arbitrary core node
and the remaining ones, and the lowest of these cuts is retained.
This process iterates until all core nodes become separated from
each other with all the remaining nodes being assigned to a clus-
ter. The resulting partitioning is guaranteed to be connected, as
cluster cores were constrained to be connected, and minimal s-t
cuts always separate the input graph into two connected parts.
For example, Fig. 6(b) shows the two candidate minimum s-t
cuts with cluster core C3 being the source and cluster cores
C1 and C2 being the two targets. As the value of cut C3-C2
is lower, it is retained, and the final partitioning is obtained by
computing the s-t cut C3-C1 in the residual network resulting
after the removal of node C2, as shown in Fig. 6(c).

VII. PARTITIONING OF BRANCH ADMITTANCE GRAPHS

To evaluate the proposed graph partitioning method, we have
tested it on the branch admittance graphs of the two networks
from the MATPOWER toolbox [17], [18] for which the align-
ment cost plots were presented in Section IV. No modifications
(e.g., reduction of leaf nodes [1], [10]) were performed on the
networks, except fixing the control angles of the few available
phase shifting transformers (PSTs) at zero degrees to preserve
the symmetry of the graph adjacency matrix. However, a PST
with a non-zero phase shift can be represented in DC power
flow by an equivalent (symmetric) admittance (see [21]), thus
potentially allowing a broader extension of our experiments to
power networks with PSTs.

The partitioning algorithm of Section VI was compared with
the k-means clustering of spectral embedding (SKM) [1], [9],
multilevel kernel k-means software Graclus [22] and hierar-
chical spectral clustering (HSC) [8]. The chosen hierarchical
clustering linkage criterion of the HSC method was average
linkage, as it was producing consistently better results. As Gra-
clus and SKM do not generally guarantee connected partitions,
the algorithm from [23] has been used to ensure the cluster
connectedness in these two cases.

The maximal expansion ratio (9) as well as normalized
cut (10) are normally increasing in magnitude with the growing
number of clusters. To compare the partitioning performance
for different numbers of clusters on the same scale, we choose
to show the ratios of the results by other methods to the result
of our method (denoted by the † superscript). In addition, the
logarithmic y-axis is often used to make the data on the plots
more separable.

For the purpose of comparison, the minimal cluster size was
first set to 	0.03n/k
 with k = 2, . . . , 38 being the requested
number of clusters. This small value was chosen as neither
of k-means, Graclus and HSC allows the specification of the
minimal cluster size, and the authors are not aware of a parti-
tioning method (except the proposed one) that can support this
requirement. The maximal number of clusters k̄ was set to a
relatively high value of 38 in order to demonstrate that the pro-
posed method generally shows good performance both for few
and many clusters.
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Fig. 7. Maximal expansion ratio and normalized cut for the branch admit-
tance graphs of the two test networks from the MATPOWER toolbox [17],
[18]. (a) Case1354pegase test network. (b) Case2869pegase test network. (c)
Case1354pegase test network. (d) Case2869pegase test network.

Fig. 8. Partitioning of the two test networks from the MATPOWER tool-
box [17], [18] with the minimal cluster size constraint of 20% of the average
cluster size. (a) Case1354pegase test network. (b) Case2869pegase test net-
work. (c) Case1354pegase test network. (d) Case2869pegase test network. (e)
Case1354pegase test network. (f) Case2869pegase test network.

For the case of unconstrained cluster sizes, Fig. 7 demon-
strates that our network partitioning based on the orthog-
onal structure of spectral embedding outperforms the HSC
method [8] in the majority of the cases, and often by a large
margin. At the same time, the HSC method with average

TABLE I
TOTAL PARTITIONING TIME FOR 38 CLUSTERS

linkage can be considered as an efficient partitioning algorithm,
as it usually performs noticeably better than Graclus and SKM.

Fig. 8 demonstrates the test results for the case when all
clusters are required to be not smaller than 20% of the aver-
age cluster size n/k. The information provided by the aligned
spectral embedding about the approximate locations and sizes
of both small and large clusters in the network allows to neglect
the eigenvectors describing presumably small clusters. As the
result, the cluster size constraint is satisfied in all cases (see
Figs. 8(e)–8(f)). Satisfying the cluster size constraint has the as-
sociated cost in terms of partitioning quality: the HSC method
now shows better φmax and Ncut more often, as it only aims to
find compact clusters without imposing additional constraints
on their size, as seen from Figs. 8(e)–8(f).

The computational time of the four algorithms for the largest
tested number of clusters is shown in Table I. These results were
obtained on MATLAB R2017a (64-bit) on a PC with an Intel
Xeon E5 3.70 GHz CPU (single core computation) using a Linux
virtual machine with 2 Gb of RAM. The computational time of
our partitioning method includes the eigenvector computation
time, eigenvector alignment time, time to estimate and refine
cluster cores and time of final recursive bisection. As it can be
seen, the run time of the proposed partitioning method is slower
than the HSC run time for the smaller 1354 bus test network,
but this relationship improves as the network size increases.
In addition, our MATLAB code has some space for efficiency
improvement.

VIII. ADAPTIVE ZONE DIVISION FOR SVC

This section aims to illustrate the pilot bus selection for SVC
with the proposed clustering methods using the IEEE 39 bus
test system [24] as an example. The adopted approach is first to
divide the power network into a number of control zones and
then to select the pilot nodes in each zone [3], [4].

A. SVC Algorithm and Objective Function

The general purpose of SVC is to maintain the voltage profile
of the transmission network by controlling the voltage of several
pilot buses to their reference values computed by a higher-level
optimization program. The regulation of pilot bus voltages is
achieved by updating the terminal voltage set points of genera-
tors participating in SVC.

To simulate the outcomes of regulating various sets of pilot
buses, the coordinated secondary voltage control (CSVC) for-
mulation [13] has been implemented. Its objective constitutes
a trade-off between the regulation of pilot buses’ voltages and
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balancing of control generators’ reactive loading levels, with a
higher priority given to the first objective.

The SVC performance is estimated as follows:

VRM SE =

√

1
|L|

∑

i∈L
(Vi − Vi,0)2 (12)

where L is the set of load buses, Vi is the voltage magnitude
at bus i after the CSVC algorithm [13] has converged, Vi,0 is
the pre-disturbance reference voltage magnitude at bus i, and
VRM SE is the voltage root mean squared error (RMSE).

B. Zoning Methodology

The proposed zoning method is based on the concept of “Var
Control Space” described in [4]. For a network consisting of g
reactive power sources participating in SVC and l load nodes,
let Sij = ∂VL , i

∂VG , j
be the sensitivity of the ith load node’s voltage

to the jth control generator’s terminal voltage. The terms Sij

can be derived from the linearized power flow relationships:
[

BGG BGL

BLG BLL

] [

ΔVG

ΔVL

]

=

[

ΔQG

ΔQL

]

(13)

whereΔVG andΔVL are vectors of voltage magnitude changes
at generator and load buses respectively, ΔQG and ΔQL are
vectors of changes in reactive power injections at generator
and load buses respectively, and BGG , BGL , BLG , BLL are
sensitivity matrices that can be obtained in several ways from
the power flow Jacobian (see the Appendix of [12]).

The second of the sensitivity equations (13) results in:

ΔVL = B−1
LLΔQL −B−1

LLBLGΔVG (14)

which demonstrates that the sensitivity matrix between genera-
tor and load voltages is given by −B−1

LLBLG .
Given the generator-load voltage sensitivities, the closeness

of loads to reactive power sources can be described by a bipartite
graph with the following adjacency matrix:

S =

[

0 [Sij ]

[Sij ]
T 0

]

(15)

The graph model (15) serves as input to the clustering tech-
niques described in the previous sections to estimate the most
suitable number of zones and to perform the actual network
partitioning. Unlike the original method [4], model (15) does
not use the logarithmic transformation to obtain distances from
sensitivities, but instead directly uses the sensitivities Sij as the
input for spectral clustering. In addition, the estimated number of
zones does not depend on the choice of distance function used by
hierarchical clustering as in [3], [4]. Finally, unlike the original
“Var Control Space” approach, model (15) uses sensitivities of
voltages at load buses to terminal voltages of control generators.
However, the original sensitivities from [4] can be used as well.

C. Pilot Bus Selection

In this paper a two-step pilot bus selection process is used.
First, the method used in [10] is applied to select the initial
set of pilot buses. At the next step, the pilot buses are changed

Fig. 9. Spectral clustering alignment costs for SVC zoning.

one at a time and the resulting SVC performance is observed.
Similarly to the global search method [13], this process is
executed a predefined number of times, but unlike [13] the
pilot bus changes are constrained to their control zones, which
significantly reduces the search space.

D. Results

Test Network: The IEEE 39 bus test system [24] consists of 29
load buses, nine generator buses and one equivalent generator
representing the interconnection to an external power system.
The generators at buses 30–38 are assumed to participate in
SVC, while the equivalent generator is assumed to only maintain
the voltage at its terminal bus 39.

Base Case: To better reflect the bi-objective nature of CSVC,
the nominal operating condition of the IEEE 39 bus test net-
work was obtained by running the MATPOWER [17] AC op-
timal power flow (OPF) with the generation costs favoring the
equal reactive loading levels of all control generators. This step
was also necessary to respect the reactive power limits of each
generator after applying load disturbances to the network.

Adaptive Pilot Bus Selection: The benefits of adaptive pi-
lot bus selection are illustrated by simulating the CSVC strat-
egy [13] with various sets of pilot buses for the two topological
states of the IEEE 39 bus test network:

1) All elements are in service.
2) Line 6–11 is switched off.
For each of the two operating conditions, the adjacency matrix

was constructed as (15), and the alignment costs were computed
with the method of Section IV for the number of zones ranging
from 2 to 10. The results of this process are shown in Fig. 9 with
the optimal number of zones being five for the first topological
state and six for the second one.

The two resulting zone divisions are shown in Fig. 10. As it
can be seen, the disconnection of line 6–11 suggests the splitting
of the initial Zone 5 into Zone 5A and Zone 5B. Although the
zone border remains the same, the decrease of internal con-
nectedness of Zone 5 effectively leads to its splitting into two
clusters, which is well reflected on the alignment cost plot of
Fig. 9. Using the pilot bus selection process of Section VIII-C,
the set of pilot buses for the first topological state is {3, 28, 16,
20, 5}, and for the second state it is {3, 28, 16, 20, 5, 12}.

Performance evaluation: Similarly to [4], [13], the single dis-
turbance to test the CSVC performance is the positive increase
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Fig. 10. Results of adaptive zone division.

TABLE II
VOLTAGE RMSE UNDER ADAPTIVE ZONE DIVISION

TABLE III
VOLTAGE RMSE WITH OTHER SETS OF PILOT BUSES

of the reactive power demand of all loads by 25%, resulting
in the total system reactive load increase from 1408.9 MVar to
1807.2 MVar. To ensure the convergence of all pilot bus volt-
ages close to their reference values, the balancing term between
the two CSVC objectives has been lowered by the factor of 10,
while the other control parameters are as in [13].

For the given test event, the voltage RMSE (12) is summarized
in Table II for the two topological states mentioned above and
their corresponding sets of pilots buses. The voltage control
performance in absence of SVC (i.e., with no pilot buses) is
also provided as a reference. As it can be seen, the CSVC
performance is similar with the two sets of pilot buses for the
nominal network topology, but once line 6–11 is switched off,
the additional pilot bus 12 starts to create a noticeable difference
in the system-wide performance indicator (12).

Other sets of pilot buses: As a reference for comparison,
the CSVC algorithm [13] was simulated with the sets of pilot
buses originally mentioned in [4] for the same situation of 25%
positive reactive load increase at each load bus. The results of
this case study are given in Table III. To comply with the study
in [4], we have added the equivalent generator at bus 39 to the
set of control generators. For our study we have empirically
found that fixing the voltage at bus 39 instead of choosing a
nearby pilot bus yields lower voltage deviations. The results in

Table III demonstrate that the pilot buses obtained with the help
our methods show a markedly lower voltage RMSE (12).

As it can be noticed, the results in Table III basically describe
the situation with no pilot bus in Zone 4. The addition of bus 20
to the sets of pilot buses from [4] and Table III has resulted in
the following performance improvements: the selection {1, 3,
6, 20, 24, 28} for the Topology 1 has dropped the objective (12)
to 0.00332 p.u., and the selection {1, 3, 5, 12, 20, 24, 28} has
resulted in the voltage RMS error of 0.00393 p.u. for the Topol-
ogy 2. These observations further confirm the meaningfulness
of AZD based on the approach presented in this paper.

IX. CONCLUSION

This paper has demonstrated the potential of orthogonal trans-
formation of eigenvectors obtained from spectral clustering to
the analysis of power system graphs. The first part of the paper
illustrated the use of spectral clustering combined with orthogo-
nal linear transformations to the practically important task of the
selection of the number of clusters. Based on the ideas from [14],
we have proposed a time-efficient combined algorithm to re-
cover the orthogonal transformation that closely fits spectral
embedding to the canonical coordinate system. To justify the
minimization of the cost function [14], it has been compared
with another cost function that was originally proposed in [15]
for the selection of the number of clusters. The comparison re-
sults confirmed the similar shape of the two objectives for the
varying number of clusters.

Further we proposed an efficient k-way spectral partitioning
algorithm that uses axes-aligned spectral embedding to estimate
the best set of k clusters in the network. This algorithm often
achieves good results even if the spectral embedding does not
show a distinct orthogonal structure, which may be explained
by the great value of the global information about the locations
of good clusters in the network that is contained in the axes-
aligned spectral embedding. The possibility to approximately
estimate cluster sizes allows to introduce a constraint on the
minimal number of nodes per cluster. This feature represents a
convenient way to avoid small clusters.

The test results on partitioning of branch admittance graphs
of two large-scale power networks have demonstrated that the
proposed k-way partitioning algorithm compares favorably with
the existing methods both in terms of partitioning quality and
solution time. To further illustrate how the proposed clustering
framework can be applied to various power system problems,
an example illustrating its use for the task of AZD for SVC has
been devised.

The results of this paper motivate further research on cluster
discovery from orthogonal structure of spectral embedding. In
particular, performance metrics other than expansion ratio could
be optimized for each cluster, and the overall methodology could
be adapted to a wider range of applications.
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