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Abstract

Active inference is a theory of the human brain characterising behaviour that min-
imises surprise. The free energy principle accounts for the adaptive behaviours of organ-
isms through action, perception, and learning aimed at optimising reward or surprise.
This study systematically reviews relevant literature to address their methodologies,
relevance to mimicking social human behaviour, challenges, and limitations to guide
future research by succinctly reporting previous findings and research gaps. Active in-
ference models are extended with deep active inference, free-energy models, multimodal
deep belief networks, predictive coding, and probabilistic programming. These models
employ goal-directed, epistemic, reward-seeking, and decision-making behaviours and
simulate cumulative culture. However, some of these models do not translate well to
complex real-life applications due to their simplicity, computational demands, or the
assumptions upon which they are based. Challenges with real-life applications include
difficulty scaling to high-dimensional data and model simplicity. Furthermore, some
experiments did not have enough data to validate or train their models.

1 Introduction

Nowadays, many programs on pattern recognition are labelled as artificial intelligence (AI),
but they lack intelligence. This research paper systematically reviews the literature on the
active inference framework (AIF) and the free energy principle (FEP) to gather current
practices on embodied virtual agents for mimicking social human behaviour to identify the
research gaps. The aim is to propose future improvements in this relatively new field to
guide subsequent research.

AIF is the theory of human perception, planning, and action based on the probabilistic
inference that characterises Bayes-optimal behaviour by minimising surprise in an agent’s
sensory observations [1]. Surprise is the model evidence’s negative log representing the dis-
crepancy between an agent’s preferred sensory input and actual observations [2]. Perception
constructs beliefs on probabilistic inference, and control produces the decision to minimise
surprise [2]. FEP is a principle of AIF accounting for action, perception, and learning by op-
timising the expected reward or surprise [3] for self-organising biological agents withstanding
inclination to disorder [4]. Agents resist this tendency to disorder by occupying a limited
number of states and minimising their free energy through their actions. FEP provides a
mathematical background for maintaining an agent’s equilibrium [4] by constraining them
to a limited number of states [2].

Levchuk et al. highlight that the infeasibility of distinguishing all hidden states hinders
direct optimisation of surprise and model evidence [2]. Variational Free Energy (VFE)
introduces an upper bound on surprise, an information-theoretic function of outcomes, their
hidden cause, and the agent’s internal state. A generative model depicts the internal state
using a joint probability distribution over all hidden states and sensory observations that
minimises VFE to infer the most likely hidden states from sensory inputs [5]. Figure 1
depicts the active inference process of minimising VFE through sensory input accumulation
[6]. Predictions are created by evaluating each policy’s free energy, enabling action selection
for the predicted state.

ATF depicts a non-equilibrium steady-state (NESS) system that self-organises to return
to a steady state after disruption [5]. Some of the current models of AIF enable agents to
select policies that minimise expected free energy (EFE) [7], which functions based on prior
beliefs about future outcomes and supports epistemic and exploitative behaviour [6]. Un-
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Figure 1: Belief Updating[6]

derstanding AIF relies on unveiling the adaptive behaviours of living organisms to minimise
their free energy and the reason they adapt [1].

Currently, most intelligent agents can perform some but not all of the following tasks
well: planning, acting on, and searching across the environment. Agents should be modelled
to perform all of these tasks successfully by acquiring adaptive capabilities and fitting the
requirements of their changing environment. To bridge this research gap, generalised Al
systems (AI with AIF and learning) generate causes of their actions known as ’planning as
inference’ as opposed to generative Al systems that are restricted to content generation [8].
Intelligence can emerge when generalised Al experiences outcomes of its actions where it
obtains information on the world’s hidden states.

ATF agents are built with generative models to include the outcomes of their actions and
intelligence of planning abilities, that is, the probabilistic depiction of sentient behaviour
[1]. This model is significant for depicting human cognition since the fundamental function
of the brain is controlling exchanges with the world [8]. Agents use this model to make goal-
directed decisions and plan using predictive inference to learn about world states, optimise
Bayesian model evidence [9], and depict sensory observations to minimise long-term surprise
[10]. AIF can explain the decision and expected utility theory under embodied cognition to
understand Bayesian optimal behaviour and the derivation of a sense of agency (SoA) [11].

Previous research integrates AIF with machine learning (ML) methods to endow human
social intelligence and cognition. Some of these applications include deep active inference
models that infer valence states [12], collaboration in heterogeneous agent teams [13], collec-
tive intelligence [14], and trust in human-computer interactions [15]. Since AIF is a theory
of the human brain and behaviour, applying this framework allows agents to form adaptive
and social skills that mimic human cognitive processes.

By surveying the literature, this research paper answers the question: How have active
inference and the free-energy principle been applied to embodied agents and the mimick-
ing of social human behaviours? In the context of this paper, physical robots and simu-
lated /synthetic virtual intelligent agents are considered intelligent embodied virtual agents.
The research question is split into three sub-questions to answer all the aspects of the re-
search topic in a structured way:

¢ RQ 1. What methods and models have been used to apply the active inference and



the free-energy principle to embodied agents?

e RQ 2. How do the active inference and the free-energy principle relate to social human
behaviours?

e RQ 3. What are the challenges and limitations of active inference and the free-energy
principle applications on intelligent agents?

2 Methodology

A systematic literature review was conducted to categorically synthesise information regard-
ing the current practices and applications of AIF and FEP on embodied intelligent agents.
This review includes a search strategy for the papers considered for the study, eligibility
criteria, and synthesis of these papers to answer the sub-questions [16].

PRISMA, a 27-item checklist designed to report systematic reviews transparently, was
followed for the reproducibility of this research [17]. The PRISMA flow diagram depicts the
phases of the systematic review: identifying papers from databases with the designed search
query, the three-step screening of these papers, and the papers included in the review after
the filtering process. The book "Doing a Systematic Review: A Student’s Guide" was used
to structure the research paper and conduct the systematic review [18].

2.1 Search process

Cell Press, Scopus, IEEE Xplore, Web of Science, and ACM Digital Library databases were
selected for the search process. Cell Press includes over 50 scientific journals with papers
on life, physical, earth, and health sciences[19]. This database was used to find background
information on AIF and FEP to understand the emergence of these frameworks from a
biological perspective. Scopus is a comprehensive, multidisciplinary, and reliable database
queried for obtaining papers on different application areas of these frameworks [20]. IEEE
Xplore contains the world’s most cited publications in electrical engineering, computer sci-
ence, and other sciences [21]. It was chosen due to its high prestige and reliability in
researching the computational aspect of AIF and FEP. Web of Science provides multidisci-
plinary coverage with daily updates in the biomedical, life sciences, engineering, and physics
fields relevant to the background of AIF and FEP [22]. The ACM Digital Library includes
journal and conference papers in scientific fields such as AI, ML, natural language process-
ing, and human-computer interaction, which are highly relevant to this research topic [23].
Five databases were chosen to collect diverse research papers from different science fields.

The search string in Figure 2 was formulated with significant keywords and phrases ex-
tracted from the background and scoping search. This search was performed on 09/05,/2024
on the selected databases to identify papers to be assessed on the eligibility criteria.

("active inference" OR "free energy principle") AND (cogni* OR behav* OR
intelligence) AND (optim* OR "Bayesian filtering" OR "Bayesian learning"
OR "Bayesian brain" OR "Bayesian inference" OR "homeostatic state" OR
equilibrium OR "sensory observ*" OR "variational free energy" OR surprise)
AND (agent* OR multi-agent)

Figure 2: Search String for Cell Press, Scopus, IEEE Xplore, Web of Science, and ACM
Digital Library



2.2 Eligibility Criteria

The inclusion and exclusion criteria indicated below were used in screening papers collected
through identification.
Inclusion Criteria:
e Journal articles, conference papers, and books written in English.
e Research papers focused on the computational theory of AIF and FEP.
e Research papers discussing the applications of AIF and FEP on intelligent agents.
Exclusion Criteria:
e Research papers that are not journal articles, conference papers, or books written in
English.
e Research papers focused on the biological, mathematical, or physical background of
ATF and FEP.

2.3 Selection Process

The selection process involved three steps: identification, screening, and inclusion. During
the identification phase, the research papers were found using the search string in section
2.1. In the screening process, papers were filtered according to the criteria in section 2.2 by
reading excerpts from them.

The visualisation of this process is depicted by the PRISMA flow diagram in figure 3:
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Figure 3: PRISMA flow diagram

3 Results

This section analyses and synthesises the surveyed literature to answer the sub-questions
from section 1. Section 3.1 reviews the methodologies and experiments of the AIF and FEP
applications. Section 3.2 connects the experiments from section 3.1 to human cognition,



human social behaviour and social intelligence. Finally, section 3.3 evaluates the challenges
and limitations of these applications.

3.1 RQ 1 - Models and Applications

Table 1: Summary of AIF Applications

Experiments and Simulations References

Maze Simulations [24], [6]

Modelling goal-directed behaviour [25], [26], [27], [28], [29]

Modelling exploitative and exploratory behaviour [30], [31], [32], [33], [7], [34], [35], [12]
Applications of AIF in social interactions [36], [14], [37], [38], [39], [15], [40]
Modelling decision-making behaviour [2], [13], [41], [10], [42]

ATF applications on robots [9], [43], [6], [44], [45]

Maze Simulations: Chen et al. model synthetic agents in partially observable Markov
Decision Processes (MDP) to test environmental volatility’s effect on habit formation [24].
The embodied virtual agent seeks rewards by navigating a maze. Static environments lead
to a specialist strategy where agents learn the path to previously detected rewards. On
the contrary, strong habit formation is not observed in volatile environments with multiple
reward locations since a generalist strategy does not adopt strong preferences. Specialised
agents outperform generalists due to prioritising their decisions, while generalist agents per-
form slightly better than naive agents. Another maze simulation focuses on distinguishing
habitual and goal-directed behaviour on the metrics of belief-based and belief-free schemes
[6]. Agents avoid low entropy states lacking information and high entropy states that are
ambiguous to minimise EFE.

Modelling goal-directed behaviour: AIF models of goal-directed behaviour are au-
tomated with a Probabilistic Programming (PP) toolbox to build effective, flexible, and
scalable agents [25]. This dynamic approach improves on generalisable PP toolboxes with
high computational cost. Bayesian thermostat and mountain car problems depicted in fig-
ure 4 show how the model leads to goal-directed behaviour. In the former experiment, the
agent relocates to settle at a desired temperature in the gradient field. These experiments
illustrate the scalability of ATF with automated inference methods on complex applications.
Another study shows the scalability of a Deep Active Inference (DAI) approach combining
FEP and AIF with deep generative models and evolution strategies using the mountain
car problem [26]. The agent solves this problem while learning its environment’s generative
model and scales to complex real-world environments with the integration of large-scale ML.
A novel approach uses Bayesian Target Modelling for Active Inference (BATMAN) to elicit
goal-directed behaviour with a coupled generative model to learn future observations and
present AIF as a joint framework with classical methods [27]. A cart parking simulation
shows that the agent successfully positions the cart using performance feedback, validating
the BATMAN approach by predicting the goal state. This novel approach for goal-directed
behaviour can scale AIF agents to unpredictable environments.

Another study builds on their prior goal-directed planning model by enabling agents to
observe others to infer their goals and predict future actions [28|. This T-GLean model gen-
erates a goal-directed plan in real time using stochastic gradient descent to optimise EFE.



Goal !

08

06+

0.4

Car speed
02 E

02F

Mountain height
o

04}

l@revity 1

A9 -1 0.8 06 0.4 -0.2 0 02 0.4 06
Car position

06}

08}

Figure 4: Mountain car problem [46]

A simulated robot navigates obstacles, and a physical robot observes and manipulates ob-
jects. Due to the real-world constraints on the physical robot, the simulated agent performs
slightly better in goal-directed planning, task execution, and goal inference. A foraging
geocaching task illustrates goal-directed behaviour with a generative model of epistemic
(explorative) and reward-seeking (exploitative) behaviours [29]. This behaviour emerges in
agents that minimise uncertainty when conducting spatial exploration. Agents explore their
environment to forage for hidden objects by balancing exploration resulting from curiosity
and exploitation due to their predictions.

Modelling exploitative and exploratory behaviour: Nozari et al. model self-
information and exploratory behaviours with a hierarchical generative model that uses AIF
and imitation learning to employ an explainable decision-making process for autonomous
vehicles [30]. This hybrid approach allows agents to learn from experts and balance ex-
ploratory and exploitative behaviour according to their predictions. A lane-changing driving
scenario shows this model outperforms traditional Reinforcement Learning (RL) methods.
In a separate approach, a Generative Adversarial Network (GAN) builds a DAI agent to
encapsulate world dynamics effectively, act on the environment, and plan actions [31]. The
simulation shows that the agent adapts to volatile and non-trivial environments by balancing
exploration and exploitation with policy management.

Similarly, another DAI model with Monte-Carlo (MC) sampling offers applicability in
complex environments [32]. The goal is to support intelligence by scaling DAT agents for
high-level tasks. In the toy environment, agents showcase epistemic exploration followed
by reward-seeking when the agent is confident about its environment. In the Animal-AT
environment, agents construct complex plans by avoiding obstacles. The AIF agent performs
remarkably better than DQN and A2C, given the same number of training iterations, and its
performance is comparable to PPO2. This comparison highlights the possibility of applying
ATF to complex environments.

World and Predictive Coding (PC) models are employed for autonomous robots to ac-
tively explore their physical and social environment, obtain knowledge, and continually
improve their skills [33]. AIF and FEP are significant in formulating this model for self-
organising adaptive systems. This application may lead to collaboration with autonomous
robots that evolve in the real world and embody artificial general intelligence (AGI).



A sophisticated AIF model also endows agents with explorative behaviour by integrating
a recursive form of EFE for deep tree search on future actions and outcomes where the
agent has beliefs about its beliefs [7]. Simulations show that a sophisticated agent pursues
epistemic behaviour longer than the unsophisticated agent, seeking long-term goals while
considering short-term challenges. This epistemic behaviour is also depicted in a reading
task during foraging using a deep temporal AIF model [34]. The hierarchical generative
model allows the outcomes of a level to generate hidden states at a lower level and enables
agents to read and react to local and global violations.

Friston et al. model curiosity and insight with AIF through the emergence of epis-
temic behaviour in agents deducing their environment’s statistical structure [35]. Agents’
curiosity is driven by tasks involving exploring their environment to minimise uncertainty.
Exploitative and explorative behaviours are also connected to emotional valence inference
central to adaptive behaviour [12]. DAI allows agents to infer emotional valence through
the predicted precision of their actions. Optimising the valence representation updates the
Affective Charge (AC). Simulations of affective inference show the synthetic rat’s adaptive
behaviours in different contexts. An agent’s confidence in their actions portrays a positively
(exploitative behaviour) valenced state; contrarily, a lack of confidence in expected precision
depicts a negatively valenced state (exploratory behaviour).

Applications of AIF in social interactions: AIF and PC are applied to social
interactions to understand the role of an SoA on an agent’s intention in action and outcomes
[36]. In agent interactions, an agent’s undesired actions may influence another agent, leading
to an unsustained SoA. Effective collaboration requires minimising possible conflicts among
agents with arbitrated SoAs. Agents with strong SoA are less inclined to change their
intention and more likely to change the environmental state. With limited regulation, agents
act more egocentrically, whereas more regulation leads agents to adapt their internal state
to humans. The Predictive-coding-inspired Variational Recurrent Neural Network (PV-
RNN) is advantageous over traditional deterministic RNNs since it evaluates the prediction
predictability, which enriches agent interactions with others and the world.

The emergence of collective intelligence, a multi-agent system that outperforms the sum
of agents’ capabilities, is simulated by AIF in interactions [14]. Two agents are put in a sim-
ulated environment to sense and reach a chemical concentration (food source). The results
illustrate the influence of one agent’s behaviour and beliefs on the other. The collective sys-
tem’s ability to minimise VFE indicates social cognitive capabilities. The simplicity of the
ATF agent allows for computational feasibility. In another study, Horii and Nagai propose an
energy-based multimodal with active perception to enable a robot with limited resources to
estimate human emotional states during social interactions using the most informative meth-
ods [37]. This approach uses multimodal signals to map human expressions to emotional
states based on minimising EFE, outperforming other active perception methods.

A testable DAI multi-agent model employs agents to mimic social behaviour and simulate
cumulative culture portrayed in a bi-directional interaction [38]. Minimisation of uncertainty
and belief updates build cumulative culture. Agents infer each other’s belief states during
social interactions with generalised synchrony to converge to a state. Another research
conducts a comparative analysis of neuroscience predictive models to understand how AIF
connects to social cognition [39]. A new theoretical approach incorporates enactivism with
predictive engagement to understand the human brain predictions’ in social contexts.

Social interactions are also simulated to build a trust model that explains the sensory
exchange between agents and attributes components of trust such as competence and benev-



olence to agents [15]. The model employs user feedback and shared behaviour and emerges
trust from the need to minimise uncertainty in social interactions. Agents trust a system
if they can act on that environment and reach predictable results over time. AIF accounts
for affective valence, which is significant for trust mechanisms since positive feelings support
trust and suggest the predictability of other agents’ actions.

Hartwig and Peters model cooperative behaviours and social rules by examining social
decision-making to understand how agents decide to cooperate [40]. Surprise minimisation
extends classically expected utility maximisation and outperforms it due to its generality in
predicting observations in various areas and maintaining the agent’s exploratory behaviour.
Future research can analyse more complex environments for agent interactions.

Modelling decision-making behaviour: A collection of decision-making problems
assesses a team’s adaptability according to its convergence to an optimal solution [2]. Al-
teration of the reward function’s parameters simulates these problems to test the teams’
capability to change, adapt, and recover. Agents acquire capabilities to function effec-
tively in uncertain, dynamic, and complex environments. This free-energy model improves
marginally over the Distributed Discrete Decision Making (D3M) heuristics but, conversely
to D3M, converges much faster and maintains high convergence with the increasing objective
function complexity.

In another multi-agent study comparing their model to D3M, AIF employs efficient col-
laboration between heterogeneous agents (human and intelligent agents) to help the decision-
making process [13]. An adaptive self-organising team study explores human-machine sys-
tems’ adaptation to complex scenarios. A Boltzmann distribution defines a generative model
for decision-making and task-executing teams. Decision-making teams improve their organ-
isational structure by incrementally updating their decisions’ predicted probability distri-
bution. The task execution of these teams is evaluated based on decision-making and work
quality. This model converges much faster than D3M heuristics and preserves this conver-
gence with higher objective function complexity.

Another decision-making model uses chance-constraint to employ AIF to observe the
trade-off between chance-constrained violation and robustness [41]. In the experiment, drone
agents try to reach a certain height in the stochastic vertical wind and showcase chance-
constrained behaviour that is utilised under uncertainty. While the goal-driven agent contin-
ually interferes with corrections, the chance-driven agent avoids unnecessary interventions,
reducing the cost of control.

ATF endows an agent with decision-making behaviour and homeostasis to maintain the
system’s internal environment [10]. The AIF agent follows a continuous action-perception
cycle by updating their generative model to ensure Quality of Service (QoS) and model
precision. The distributed AIF agent’s high throughput in various environments showcases
its decision-making and adaptive behaviour.

Metacognitive capabilities are also integrated into robot decision-making and control
for brain-inspired robot controllers [42]. This application may enhance agents with self-
assessment capabilities for complex cognitive tasks. A spring damper system simulation
shows that the controller accomplishes the goals of given tasks and finds balance in perfor-
mance, control, and confidence.

AIF applications on robots: A Multimodal Variational Autoencoder Active Inference
(MVAE-ATIF) models a robot arm’s torque controller to scale for multimodal integration on
high-dimensional inputs [9]. This controller embodies AIF with its robustness and adapt-



ability to outperform state-of-the-art torque AIF baseline and has higher accuracy with
sensory noise. Another study applies AIF to navigate a PR2 robot’s 7-DoF (degrees of
freedom) arm to reach a target using visual and proprioceptive sensors [44]. The robot’s
action control performance is accurate with correct feedback and declines marginally in the
presence of sensory noise.

The iCub robot also uses visual and proprioceptive inputs with an AIF body perception
and control model [45]. The robot infers its body state by minimising discrepancies between
sensory predictions and observations. The reaching task simulation results indicate that the
model integrates multiple sensory sources without increasing the computational demand.
The robot outperforms inverse kinematics with its adaptive behaviour and accuracy.

Taniguchi et al. integrate a Multimodal Hierarchical Dirichlet Process (MHDP) to al-
low a robot to construct object categories by maximising information gain through action
outcomes and observing multimodal information (visual, auditory, haptic) [43]. Maximising
information gain is equated to minimising the expected Kullback-Leibler divergence, highly
relevant to Bayesian surprise [6]. An upper-torso humanoid robot and synthetic data exper-
iment indicate that the robot identifies object categories swiftly and accurately.

An Iterative policy selection and preference-formation approach is applied to
personality formation [47]. The autonomous adaptive behaviour of FEP-AI (AIF) agents
provides a way to attain Artificial Super-intelligence (ASI) with better predictive models on
world states than humans. Future work will focus on simulations for prosocial personalities
for homeostasis within and between individuals.

3.2 RQ 2 - Mimicking Social Human Behaviour

This section explains how AIF and FEP allow agents to adapt by controlling sensory inputs,
changing future sensory predictions, and changing their internal models depicting their en-
vironment and relationships [2]. AIF simulates complex behaviours such as planning and
navigation, reading, curiosity, visual foraging, the mountain car problem, and social confor-
mity [5]. Curiosity is directly relevant to the exploratory behaviour endowed by AIF, which
is shown in an experiment where agents mimic human cognitive development and learning
through curiosity-driven tasks [35].

Table 2: Application Areas and Their References

Application Area References

Deep active inference [21], [32], [27], [41], [28], [16], [47], [25], [23], [48]
Collaborative and group-level applica-  [39], [40], [19], [38], [25], [46], [47], [29], [23], [48]

tions

Applications on robotic agents [35], [17], [19], [44], [45], [25]
Indirect connections to social human [19], [24], [41], [43], [50], [30]
behaviour

DAI Applications: FEP uses a DAI model to emerge artificial general intelligence that
can capture social human behaviour [26]. Another DAI model infers valence states, which
can be extended to testing human or non-human animal behavioural patterns to improve
on prior models [12]. Understanding these patterns could help incorporate human social



behaviours into Al, leading to more advanced artificial social intelligence. DAI can be fur-
ther integrated with MC methods to apply to more complex environments, advancing the
understanding of human intelligence [32].

Collaborative and group-level applications: AIF and FEP enhance multi-agent
social behaviour by incorporating perception and control to intelligent agents for successful
collaboration and team-optimal behaviours in various situational contexts [2]. The current
work focuses on a free-energy function construction to add effects of team structure and
collaborative adaptation to project teams. AIF can also contribute to cooperation with the
emergence of social rules to understand the dynamics of cooperative behaviour [40].

History and evolution show that forming heterogeneous groups led to the dominance of
the human species by enabling adaptation, so collaboration may improve AI’s adaptability
[13]. These heterogeneous agents learn each agent’s abilities to embody adaptive behaviours
by updating their predictions on the task assignments to agents. This distributed but coop-
erative system with group-level adaptation allows for more flexible self-organising intelligent
agents. The cooperation and flexibility of these teams resemble social organisations where
agents may learn and develop social human behaviour through their exchanges with human
agents. Collective intelligence supports this collaborative view and allows for interactions
between agents and their physical and social environment [14]. The AIF agents perceive
shared goals and align with other agents for effective coordination and better collective
performance. This model builds agents with human social behaviour that can act within
different social contexts, exchange beliefs, and collaborate. Trust is essential to collabora-
tion, and AIF modelling of trust can support human-intelligent system interactions [15].
The authors also state that as Al systems evolve, they will reach a complexity where they
can model humans entirely.

Peer-to-peer collaboration in decentralised distributed decision-making showcases that
multi-intelligence systems can acquire purpose-driven behaviours to overcome disorder with-
out external control [2]. PC and world state models also apply collaboration and social
interactions to enhance a robot’s social intelligence [33].

Human interactions and belief exchanges lead to cultural accumulation through social
exchanges. The foundation of this cultural accumulation can explain the human collective
intelligence by task specialisation and endow agents with a multilevel social structure and
adaptive behaviour [38]. Furthermore, future work on the personality formation framework
will focus on prosocial personality that plays a significant role in social human behaviour,
interactions, and social coordination of personality and culture dynamics [47].

Sophisticated AIF agent behaviour may help manage social relations by considering the
long-term advantages of belief exchange [7]. The SoA of these agents may be significant in
these social exchanges, so the AIF and PC model provides insights into the robustness of
SoA in social interactions [36].

ATF restricts social organisations to a limited number of states to persist in their survival
[48]. Social organisations focus on environmental aspects that affect their process operations.
Boundaries for species may naturally evolve over a long time, but social organisation may
be required to define and change these boundaries hastily. Predictive errors in these bound-
aries pose a significant threat to the survival of social organisations, so minimising unwanted
surprises is crucial. This research extends to more advanced multi-intelligence organisations
that mimic human processes.

Applications on robotic agents: Horii et al. create an energy-based model for robots
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to recognise human emotions as depicted in figure 5 [37]. This application elevates agents’
social intelligence and communication skills, leading to a more advanced portrayal of com-
plex human social behaviours through emotional state inference. Another study incorporates
the role of the body in social interactions and human cognition [39]. The combination of
enactivist and cognitivist views also creates embodied self-models that operate as cyber-
netic controllers and predictive-memory systems [49]. Embodiment is a significant source of
empirical priors, foundational to cognitive development.

eXpression
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Figure 5: Multimodal human-robot inter- Figure 6: AIF body perception and action [45]
action [37]

The significance of embodiment is further highlighted by the PR2 robot’s interaction
between its embodiment and the environment, showcasing social human behaviour with
sensorimotor integration [44]. Oliver et al. also build a biologically plausible model of
robots depicted in figure 6 to translate theoretical mathematical models to real-world appli-
cations [45]. The robot’s behaviour is similar to that of a one-year-old during reaching and
object-tracking tasks. Improvement in this model could produce robots resembling humans.
Furthermore, AIF can be expanded to embody autonomous vehicles with imitation learning
to identify when agents should mimic social human learning to adopt the expert’s driving
policy to succeed in a novel environment [30].

ATF to social behaviour: Some of the applications reviewed in 3.1, such as generalist
and specialised agents [24], foraging geocaching task [29], drone simulations [41], maximising
information gain [43], human decision-making modelling [50], and a deep temporal model
for violation responses [34] may appear irrelevant to social human behaviour, but all of
these applications aid in capturing social intelligence. The generalist agent adopts a flexible
strategy, which can be improved to extend to social situations where the agent acts according
to social contexts and cues. The evolutionary aspect of foraging is highly relevant to human
decision-making skills, which can account for sentient and social behaviour. The drone
simulations conducted in an unpredictable environment can also be extended to adaptive
social behaviour to navigate different social contexts. Human exploratory behaviour is
mimicked by maximising information gain, which could be extended to multimodal sensory
input to embody human social intelligence. Lastly, violation responses indicate attentional
processing and cognitive capabilities, which endow agents with human cognition that can
be extended to social intelligence.
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3.3 RAQ 3 - Validity and Limitations

Translation to complex real-life applications: One of the main challenges in the re-
search studies was the applicability of the models and experiments to real life. Chen et
al. model agents that learn policies without cues, so agents are constructed with priors of
actions leading to rewards [24]. This model is portrayed as a good approximation to actual
behaviour, but the results need to be validated in a more complex environment. The ex-
changes in the experiments capturing cumulative culture are limited to a dyad, which does
not reflect the multi-level interactions in real life [38]. Future work can improve the defini-
tion of innovation in cultural transmission and establish practical restrictions significant in
real life (food, hygiene, temperature).

Furthermore, the deep learning model [26] and neural network model [28] have high
complexity and computational demands that might complicate real-time applications as op-
posed to the controlled or simulated experimental setups. This limitation is also evident
in the investigation of SoA, where the online error regression’s computational demand for
posterior inference is a significant bottleneck for real-time experiments, which is why the
experiments were limited to pseudo-imitative interactions [36]. The GAN-based approach
may also pose scaling issues since it was not tested on higher-dimensional action spaces [31].
Sophisticated AIF uses belief propagation to overcome scaling issues regarding computa-
tional efficiency, which is only tested on simple simulations [7]. Computational limitations
need to be addressed for the generalisation of FEP-AI models [47].

The research of Oliver et al. also excludes real-life dynamics since they do not vali-
date their method on real robots that may suffer from non-linear dynamics due to friction,
physical constraints, uncertainties, and backlash [45]. Different robot models, such as those
explored in experiments on tools constrained by linear dynamics [42] and utilising the VAE
model [9], have not been tested on physical robots, making them less applicable to real-life
dynamics. The increasing model complexity of valence inference and missing components of
valence signals also limits the realistic applications [12].

Limitations regarding data: Al systems need to function in uncertain, noisy, and
volatile environments to succeed in the future. Still, the availability of sufficient training
data in these environments is low, so the successful applications are limited to a collection of
tasks [13]. Due to size and type limitations, experiments are conducted on synthetic data,
so unpredictable and complex real-life scenarios may not be fully captured [43].

The energy-based model [37] for human estimation performs less accurately than in re-
cent studies due to the separate training process of the Multimodal Deep Belief Network
(MDBN) and Feedforward Neural Network (FFNN). Therefore, MDBN lacks effective rep-
resentation for emotion recognition in FFNN. Besides these limitations, several assumptions
are made about human-agent interactions that also do not apply to real-life scenarios.

Validity of models: Future work is necessary to test the generalisability of the PR2
robot’s model to more complex domains to analyse its advantages compared to other control
schemes [44]. The model of Schwartenbeck et al. also suffers from validity due to an
experiment conducted with a sample size of 20 people and a simple task to understand the
human decision-making process [50]. This model needs to be tested on more people with
more complex tasks. Spatial foraging simulations also have limitations regarding the model
on prioritisation of clarity over the complexity and the assumption that the desired location
is fed to the model as a prior preference [29]. Future work may improve on including the
missing elements of spatial foraging.

Implementation of deep active inference [26] hardcodes the agent’s expectations according

12



to prior distributions. Still, the agent’s flexibility allows it to converge swiftly to reach the set
goal and build a realistic model of its environment. The generative model could participate
in the optimisation process for more complex a priori beliefs for future work.

A key challenge for AIF is constructing the optimal generative model to depict all the
observable data to maximise evidence due to the high sensory consequences in the real
world [5]. An agent could solve this problem by creating a generative model by observing
its behaviour. Another issue for this is scaling AIF due to the size of policy trees with high
degrees of freedom. Fine-graining the process of preventing surprise is challenging since the
current pruning strategy cannot reduce the search space sufficiently to govern inference.

A limitation of AIF with ForneyLab is that high-dimensional models could result in
numerical instabilities [25]. The specific message update order may also impact the algorithm
convergence, but there is insufficient information on optimal scheduling strategies. Future
work can approach this scheduling with FEP using scheduling as an inference process.

4 Responsible Research and Limitations

This section explains the reproducibility and transparency of the research methodology and
the consideration of possible bias factors. TU Delft Vision on Integrity [51] and Netherlands
Code of Conduct for Research Integrity [52] were followed while conducting this research.
As described in section 2, PRISMA guidelines were followed, which provides a clear overview
of the research process. The book used as a guide in structuring the paper and reviewing is
also mentioned to clarify the research further. The databases used to extract the surveyed
literature were ensured to be reliable and have peer-reviewed articles to avoid misinforma-
tion.

The most significant element of bias for this research is in the literature selection. A re-
search query was created during the background research by extracting significant keywords
for AIF and FEP applications on human social behaviour. Despite using generic keywords
not to limit the research scope, the query may be further optimised through more scoping
research. The inclusion and exclusion criteria for filtering papers are reported 2. During
the selection process, all the papers matching these criteria were selected. No positive bias
was shown that could favour the results of the research question. In addition to identifying
literature with the search string, citation chaining was used, which may affect reproducibil-
ity since other researchers may not select the same research papers. Still, the availability of
these papers as a resource does not change.

Due to the short period of 9 weeks, ChatGPT was used as an additional resource to
assist in critically analysing some of the papers. Specification of this process is depicted in
the appendix A. ChatGPT was also used to improve the writing style in clarity and con-
ciseness as specified in appendix A. Another significant constraint was the page limitation,
which affected the report’s coverage regarding detailed explanations of methodologies used
in surveyed literature and the scarce use of visuals.

5 Discussion
This research study explored the applications of AIF and FEP on embodied virtual agents

from a social human behaviour perspective to provide insights into the human brain and cog-
nitive mechanisms. Current applications of these frameworks were reviewed and analysed to
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answer the sub-questions regarding the methodology used in AIF and FEP applications, en-
dowing social human behaviour in intelligent agents with these methods, and the challenges
that limit the research applications.

Various ML methods are combined with AIF to build agents that can adapt to volatile
environments, balance epistemic behaviour with reward-seeking behaviour, compare long-
term goals with short-term challenges, endow agents with an SoA to understand cooperative
behavioural dynamics, simulate cultural accumulation, model human decision-making pro-
cesses, and investigate the significance of embodiment in interacting with the environment.
By mimicking these human processes in agents, new insights can be gained into human
social intelligence and cognition. Besides endowing intelligent agents with human social
behaviours, this research can extend AIF to biological and neuropsychological research and
help uncover the unknowns of the human brain.

While not all simulations directly integrate social human behaviour, agents that minimise
surprise and model basic human behaviours can be adapted to social contexts. Although
adaptation may appear to only relate to physical survival, social behaviours significantly con-
tribute to human dominance. Collective intelligence surpasses individual intelligence and
is crucial for human survival [14]. By mimicking these adaptive processes, even in simple
tasks, intelligent agents are endowed with adaptive capabilities to adjust to their environ-
ments, including social contexts. An agent that navigates their physical environments can
also learn appropriate social behaviour according to social cues and settings. Understand-
ing these social interactions enables seamless communication with humans, enhancing the
agent’s functionality and persistence in survival. Other social behaviour-mimicking applica-
tions included emotional state inference, cooperative behaviours, and cultural accumulation,
all directly related to acquiring social intelligence.

Certain limitations arise as research expands, and AIF models become more complex to
apply to more intricate behaviours and unpredictable situations. One of the most critical
limitations is the translation of the theoretical models and simulations to real-life applica-
tions. Some models are encoded with assumptions or evaluated with simple task-related
environments [9], [24], [38], [42], [44], [45], which are too restrictive to be generalised to
broader applications and endow epistemic behaviour. More complex settings are required
to test if agents emulate sentient behaviour. As models become more complex when applied
to volatile situations, high computational demands arise, challenging real-time applications.
Additionally, some robot applications did not consider the real-life dynamic constraints on
robots, such as friction and physical constraints. Besides these, the lack of training data
restricted the accurate analysis of the results. In theory, if applications overcome these
technical limitations, AIF can depict agents with sentient behaviour, acquiring knowledge
through their desires and intentions [26], [28], [36].

Despite the successful results of the applications discussed in section 3, current research
needs to scale to high-dimensional inputs encountered in real life, be reproduced to ensure
the generalisability of the models, be extended to incorporate real-life constraints and test
with more data. However, current research provides promising results and explains the
future work that can endow agents with human intelligence.

6 Conclusion
This systematic literature review concisely reports previous AIF and FEP applications to

gain insights into human cognition and elevate social human behaviour and intelligence of
embodied virtual agents. This study aims to guide future research by explaining the limita-
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tions of current applications, specific improvements that can be applied to current models,
and a performance comparison between models. AIF proposes a promising framework for
integrating social intelligence and social human behaviours into Al systems as well as under-
standing the human brain and cognitive processes. However, the current AIF models should
be applied to real-life scenarios to ensure the accuracy and applicability of their results. This
can be done by testing these models across various datasets to enhance and validate AIF
applications, clarify and minimise assumptions made on the models, and evaluate agents
in real environments. Future improvements should focus on integrating physical dynamics,
real-life constraints, and computational aspects into simple AIF models. The complex the-
oretical models should be tested in real life to ensure that these applications depict sentient
behaviour. With these improvements, future research can expand on these models to create
highly adaptive intelligent agents that scale to complex environments 3.3.
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Appendix

A

LLM Usage

I used the ChatGPT version 4 with the prompt: "Please provide an overall summary as well
as the summary of sections relevant to the methodology, experiments performed, results of

the

study, research limitations, and social human behaviour in this paper".

I used the ChatGPT version 4 with the prompt: "Can you indicate where I can improve

on my writing style and make my writing more concise?".
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