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Estimation of reservoir porosity based on seismic inversion results using 
deep learning methods 

Runhai Feng 
Department of Geoscience and Engineering, Delft University of Technology, Delft, 2628CN, the Netherlands   
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A B S T R A C T   

Location limitation of logged wells restricts the porosity estimation across the whole reservoir target, whereas 
seismic data are always collected to cover larger areas. In this paper, inversion results of seismic data are pro
posed as inputs for the prediction of reservoir porosity, even though the resolution is decreased, compared with 
well-log readings. The non-linear inversion scheme used is able to explore the complex relationship between rock 
properties and seismic data, which could potentially provide a higher quality of inversion results. As a regression 
process, Convolutional Neural Networks is then applied to estimate the reservoir porosity, based on the outputs 
of seismic inversion scheme. Incorporating 2D kernel filters which are convolved with input rock properties, the 
local information inside filters window is considered, and a better prediction performance is to be guaranteed. 
This is due to the fact that reservoir porosity is formed under depositional and digenetic rules, and it is intrin
sically correlated with rock properties along the vertical direction in a short range. The designed workflow is 
applied to a real dataset from the Vienna Basin where compressibility and shear compliance are inverted and 
then used as inputs for the porosity estimation by Convolutional Neural Networks. For a comparison, the 
traditional Artificial Neural Networks is also trained and applied to the same dataset. It is concluded that the 
Convolutional Neural Networks can achieve a higher accuracy, and a 3D cube of reservoir porosity is obtained 
without location restriction of well logs.   

1. Introduction 

Reservoir characterization is an essential step in the development of 
hydrocarbon reservoirs, and different reservoir parameters are to be 
determined during this process, such as porosity, permeability and fluid 
saturation, which are involved in almost all calculations related to the 
reservoir production (Na’imi et al., 2014). Laboratory measurements of 
cored wells or logging data could provide high-resolution values of these 
parameters. However, only isolated locations could be assessed because 
of the limited budget and consumed time. On the other hand, 2D or 3D 
information is available in seismic data over an area typically covering 
the extent of the target reservoir. Through an inversion of seismic data, 
rock properties and subsurface structures are able to be inferred and 
imaged. Here, an effort is presented to estimate one of the reservoir 
parameters — porosity, which is a quantification factor for the storage of 
hydrocarbon reservoirs (Yu et al., 2018), from a reservoir-oriented 
elastic wave-equation based inversion of seismic data. 

In order to explore the relationship between reservoir porosity and 
rock properties (compressibility and shear compliance), different 

methodologies could be employed, of which deep learning has attracted 
particular interests among geoscientists, for its ability to automate 
interpretation and inversion of well-log data. As a subclass of machine 
learning, the algorithms of deep learning use a number (‘depth’) of 
hidden layers to progressively extract high-level features from raw in
puts (Deng and Yu, 2014). Convolutional Neural Networks (CNN), a 
special form of deep learning methods, includes a convolution operator 
as part of its framework (Das et al., 2019), and is capable to bring the 
field of image classification and computer vision to a new level (Lima 
et al., 2019). Wu and McMechan (2018) modified full-waveform 
inversion by incorporating a CNN in order to capture the geometrical 
targets. Wu et al. (2018) proposed a fast prediction of permeability from 
images, which is enabled by image recognition neural networks. Based 
on a supervised CNN, Yang and Ma (2019) built velocity models directly 
from raw seismograms. 

Rather than for typical classification problems, CNN is to be used 
here for the porosity estimation in a regression process. In addition, to 
make a comparison, Artificial Neural Networks (ANN) is also applied, 
which is inspired by the biological system consisting of structures of 
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interconnected neurons (Bishop, 1995), and has been widely used in 
geophysical problems as well. For example, with the help of ANN, syn
thetic well logs have been generated by Rolon et al. (2009) to analyze 
the reservoir properties in areas where the set of logs is absent or 
incomplete. Jozanikohan et al. (2015) predicted the clay volume by 
multilayer perceptron neural network (a special case of ANN), for its 
important impact on the production potential in shaly sand reservoirs. 

Instead of using seismic attributes or AVO (amplitude vs. offset) 
inverted impedance as inputs, it is suggested in this paper to determine 
reservoir porosity based on the results from full-waveform inversion 
(FWI), which could provide a higher resolution of rock properties in the 
subsurface. FWI tries to incorporate different types of waves such as 
refractions and multiples into the optimization process, in order to 
extract quantitative information from seismograms based on a full- 
wavefield modelling (Tarantola, 1984; Virieux and Operto, 2009). 
Treister and Haber (2017) used a joint FWI and travel-time inversion to 
obtain a smooth model for a good approximation for the true model. 
With an increasing availability of longer-offset seismic data, successful 
examples of FWI include Yang et al. (2016) who applied 
ocean-bottom-cable data to quantify changes in reservoir properties at 

the Valhall field of North Sea. 
Different with the FWI scheme mentioned above, the technique of 

non-linear inversion method presented here is based on an integral 
representation of the full-elastic wave equations. All internal trans
mission effects and internal multiple scatterings/mode conversions are 
considered. The order of multiples used in the inversion process is 
determined by the number of iterations. Since the non-linear relation
ship between rock properties and seismic data is exploited, this inver
sion scheme could guarantee a good recovery of the subsurface 
properties, as well as the layer geometries (Gisolf and van den Berg, 
2010a, 2010b). Therefore, results from the non-linear inversion scheme 
are better candidate inputs for the prediction of reservoir porosity. 

The context of this paper will be organized as follows: Firstly, a short 
overview of the geological settings and dataset of the Vienna Basin is 
being presented; then the mentioned inversion scheme is described 
briefly and applied to the pre-processed seismic data; subsequently with 
the incorporation of well logging data, the relationship between inver
sion results and reservoir porosity is investigated by CNN and ANN, for a 
comparison. Finally, discussions and conclusions are made. 

The main objective in this paper is to propose a workflow that is from 
seismic inversion results to reservoir parameters, in order to circumvent 
the location limitation of well logs. Meanwhile, possibilities for appli
cation of state-of-the-art deep leaning methods to the dataset at hand 

Fig. 1. Simplified geological map of the Vienna Basin (modified after Kov�a�c 
et al., 2008). 

Fig. 2. Schematic flow chart of the non-linear inversion scheme (Gisolf et al., 2014; Feng et al., 2017).  

Fig. 3. Migrated and de-migrated seismic gathers, of which the later one will be 
the input for the non-linear inversion scheme. Red color in wiggle traces means 
a positive amplitude associated with increased rock impedances (peak); blue 
color is related with a negative amplitude of decreased rock imped
ances (trough). 
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will be investigated. 

2. Geological setting and dataset 

In order to demonstrate the proposed workflow, a dataset from the 
Vienna Basin in Austria is selected, in which clastic reservoirs are 
explored. As an extensional basin, the Vienna Basin is between the 
Eastern Alps and Western Carpathians (Fig. 1) (Strauss et al., 2006). The 
basin fill consists of shallow marine and terrestrial sediments of Early to 
Middle Miocene age up to 5500 m thick in the central parts (Strauss 
et al., 2006). Main reservoirs in this basin are from the Sarmatian (SH) 
and Badenian (TH) time during which the transport directions of sedi
ments were from the Northwest along the Zaya Channel, and also from 
the Northeast along the ancient “Ur-March” river (Kov�a�c et al., 2008). 

A single dataset VBSM (Vienna Basin Super Merge) has been built 
based on vintages of 3D seismic surveys acquired in different years. The 
potential reservoir units in this area are oil and gas sands, in which the 
porosity is generally above 20%. Wells have been drilled reaching the 

hydrocarbon zone around 2 km in depth, with different loggings such as 
density, compressional and shear velocities etc. They are the basis for a 
standard petrophysical evaluation and calibration. However, only sparse 
locations could be accessed, and therefore, inversions from seismic data 
are used here for the porosity prediction, in which neural networks will 
be employed to fully honor the complex relationship within the data, 
instead of typical rock physical models being assumed (Avseth et al., 
2010). 

3. Inversion scheme and data pre-processing 

The inversion scheme applied here was developed by Gisolf & van 
den Berg (2010a, 2010b), and the acoustic mode was implemented by 
Tetyukhina et al. (2014) on a synthetic geological and petrophysical 
model of Book Cliffs, USA. After the wave-mode conversions have been 
taken into account, the new inversion scheme is based on the full-elastic 
wave equations and has been applied by Feng et al. (2015b, 2017) on a 
more detailed model of Book Cliffs. Since all internal multiples and 
wave-mode conversions have been included in the inversion process, it 
allows a recovery of broadband properties and a high resolution of 
inversion results is provided (Gisolf et al., 2014; Feng et al., 2016a, 
2016b). A short summary of the inversion scheme as well as data 
pre-processing is given below. 

3.1. Non-linear inversion scheme 

Based on an integral representation of the full-elastic wave equa
tions, the so-called scattering integral (Fokkema and van den Berg, 
1993), the non-linear relationship is being exploited between acquired 
seismic data and elastic properties to be estimated. An iterative pro
cedure is used to solve this problem. The total wavefield in the object 
from our best knowledge of the properties and the updated properties 
from the data is determined alternatively (Gisolf et al., 2014; Feng et al., 
2017). Rather than in a constant background medium, the total wave
field is obtained in the full inhomogeneous medium. Its first estimate is 
the incident field that propagates in the background models, which is a 
well-known linearization of the problem called the Born approximation 
(Fokkema and van den Berg, 1993). The backgrounds are smooth media 
in which the incident field and Green’s functions are calculated (Haf
finger, 2013). They are the prior knowledge before the inversion, which 
can be obtained from migration velocities, well logs or even empirical 
rock physical considerations (Feng et al., 2017). 

Properties in the object are estimated linearly with the first estimated 
total wavefield and seismic data in the inner loop. Then the total 
wavefield will be updated in the outer loop based on wave equations, 
which will contain the first-order scattering. The linear inversion of 
properties and forward modelling to incorporate an increased order of 
scattering are alternated subsequently (Fig. 2). The order of multiples 
accounted for in the data is determined by the number of iterations, 
which will stop when neither the properties nor the total wavefield 
change significantly (Gisolf and Verschuur, 2010; Tetyukhina et al., 
2014). 

In the non-linear inversion scheme, outputs are the contrasts in terms 
of compressibility (κ ¼ 1=K, with K being the bulk modulus), shear 
compliance (M ¼ 1=μ, with μ being the shear modulus) and density (ρ) 
based on the backgrounds (κ0, M0, ρ0): 

χκ ¼
κ � κ0

κ0
(1)  

χM ¼
M � M0

M0
(2)  

χρ¼
ρ � ρ0

ρ0
(3) 

The P and S velocities can be expressed in elastic moduli (κ and M): 

Fig. 4. Rock property data at Well_01, in terms of P- and S-wave velocities (VP, 
VS), and density (ρ). 

Fig. 5. (a) Extracted wavelet with ten slownesses; (b) Input and synthetic PP 
seismic gathers, of which input gathers for the seismic inversion are the outputs 
of de-migration, and the synthetic gathers are obtained based on the well logs 
(Well_01, Fig. 4) and extracted wavelet (Fig. 5a) using the Kennett invariant 
embedding method (Kennett, 1983; Feng et al., 2015a). 
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(4)  

VS ¼

ffiffiffiffiffiffiffi
1

Mρ

s

(5) 

The elastic moduli (κ and M) are in the wave equations intrinsically 
and are deemed to relate more directly to rock types when reservoir 
lithologies are the desired targets (Feng et al., 2018a, 2018b). 

3.2. Data pre-processing 

The proposed inversion scheme is reservoir-oriented, and effects of 
the overburden have to be removed. In the studies presented by 
Tetyukhina et al. (2014) and Feng et al. (2017), virtual seismic receivers 
have been placed on top of the reservoir target interval. Therefore, the 
overburden effects have been assumed to be compensated for. In this 
real case study, extensive pre-processing needs to be performed in order 
to select the desired seismic data subset. 

Inputs to the pre-processing are the pre-stack migrated seismic 
gathers and an interpreted horizon. As a stratigraphical layer’s bound
ary, horizon is the top of the interested reservoir interval and can be 
identified on a migrated image. A smaller seismic cube is then extracted 
based on the marked horizon and desired time window. In order to 
remove dipping noises in the selected seismic sub-cube, a dip filter is 
applied, since large structural dips in the reservoir target are not ex
pected (Haffinger et al., 2015). The filtered seismic data are then 
transformed from the offset to the Radon domain (τ= p), and de-migrated 
over the reservoir interval, according to the following steps: (1) calcu
late the shifting time for seismic events with a help of the smooth ve
locity model; (2) interpolate the gathers per slowness (p ¼ sinðθÞ= Vp, in 
which θ is the incidence angle, Vp is the average P-wave velocity across 
the whole section). This is possible when dealing with a plane wave (τ=
p) domain, assuming a layered medium immediately below the target 
surface (Haffinger et al., 2015). It is also the same assumption made in 
the inversion scheme which is 1D or 1.5D, if the 2D wavefield (de-mi
grated PP in Fig. 3) is considered (Gisolf et al., 2014). Working in a 
trace-by-trace mode ensures that the geological 3D dip is honored by the 
data (Feng et al., 2017). Overburden transmission effects could be 
accounted for through seismic-to-well matches (Gisolf et al., 2014). 

In the migrated PP (pressure-to-pressure) reflected seismic data 
(Fig. 3), all seismic events should be horizontal (gather flattening) after 
migration, which would allow a subsequent amplitude vs. offset or angle 
(AVO or AVA) analysis. While the de-migration would map these events 

to their “original recording times” across the slowness domain, which 
are tilted up. The de-migrated data will be compared with the full- 
waveform simulated results from the non-linear inversion scheme to 
update model parameters accordingly. 

4. Seismic inversion results 

Before an implementation of the proposed inversion scheme, the 
algorithm needs to know the source wavelet in order to calculate the 
incident wavefield in the first iteration. A broadband synthetic seismic 
data based on the well data (Well_01) (Fig. 4) have been generated using 
the Kennett method (Kennett, 1983), which is an exact solution of wave 
equations and able to take care of all the internal multiples, as well as the 
wave-mode conversions and transmission effects (Haffinger, 2013; Feng 
et al., 2017). The wavelet extraction is performed by a least-square 
matching between the broadband synthetics and real data at the well 
location (Fig. 5a) (White, 2003; Haffinger, 2013). 

However, the seismic-to-well match is rather poor especially in the 
lower part, while it is quite good in the upper part (Fig. 5b), which might 
be caused by the fact that the location of real seismic data does not 
ideally coincide with the selected well location (Well_01). And also, 
there are deviations in the trajectory path of the well. It is the similar 
case in other geophysical explorations, since there is always some dis
tance between seismic survey lines and deviated wells over the field. 

After applying the proposed inversion scheme, the inversion results 
at Well_01 are shown in Fig. 6a. The inverted properties have been 
transformed into their absolute values (Eqn. (1), (2) and (3)). The 
smooth background media have been obtained with a high-cut filter on 
the true logs and have been kept constant for all locations. When more 
wells are available, a simple interpolation could create this low- 
wavenumber background model. 

As expected, the inversion quality is suboptimal since the seismic-to- 
well match is poor, even though the inverted κ matches the truth quite 
well in the upper part. It can also be realized that the inversion quality of 
κ is better than that of M generally, since only PP data are available here. 
In the synthetic case study presented by Feng et al. (2017), the inversion 
qualities of κ and M are almost equally good, since PP (pressur
e-to-pressure) and PS (pressure-to-shear) data are used together. Density 
is skipped here due to the poor data quality (Fig. 5b), which means that 
all three elastic parameters (κ, M, ρ) cannot be estimated reliably 
(Haffinger, 2013). 

In the next step, the inversion at another well location (Well_02) is 
performed as a blind test (Fig. 6b). The results are mediocre because of 
the mentioned problem in the seismic-to-well match (Fig. 5b). Their 

Fig. 6. (a) True (red curve) and inverted (blue curve) rock properties at Well_01. (b) A blind test at Well_02 with true (red curve) and inverted (blue curve) rock 
properties. The black curve represents the smooth background media. 
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original well logs have been upscaled to the seismic resolution, in order 
to obtain the truth in Fig. 6. 

With 3D seismic data used, inversion results in cubes are shown in 
Fig. 7b and c, together with two slices along the inline and crossline 

directions, for an inspect of internal structures. The top boundary of the 
property cubes is the marked horizon, and a time-to-depth conversion is 
made. The relative location of Well_01 and Well_02 is shown in Fig. 7a. 

Fig. 7. (a) Schematic view of the two well locations (Well_01, Well_02). Inverted κ (b) and M (c) in 3D cubes and two slices.  
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5. Porosity prediction 

Featured by convolutional layers, Convolutional Neural Networks 
(CNN) has gained increasing popularity to solve problems including 
image classification and object detection (Biswas et al., 2019). With 
different activation functions applied, classification or regression can be 
performed by CNN individually, which might outperform other con
ventional networks, such as Artificial Neural Networks (ANN) (Bishop, 
1995), since local information has been considered. In this paper, a 2D 
CNN is designed for the estimation of continuous porosity in a regression 
process (Fig. 8). The layer input is the inverted κ and M from seismic data 
(Fig. 7b and c). The architecture of designed CNN includes two con
volutional layers with 12 and 24 filters respectively. The width of kernel 
filters is selected as comparable to the wavelength corresponding to the 
central frequency of the extracted wavelet, which is a natural fit to the 
seismic inversion problem, as the recorded seismic data are usually 
modelled as a wavelet convolved with the reflectivity series (Das et al., 
2019). Stride of the convolutional filters shifting over the input volume 
is set as 1 and no padding (valid) is used. Two full connections are then 
made, in which there are 48 neurons in the first connected layer, and one 
neuron is allocated in the second layer, which is related to the target 
porosity. 

Besides, ANN, the brain-inspired system (Bishop, 1995), is also 
applied, for a comparison with CNN (Fig. 9). Two hidden layers have 
been allotted with 100 neurons each, and the collection of connected 
units is able to loosely model biological neurons. Signal is transmitted 
through the connections (“edges”) to other synaptic neurons, and the 
associated neural parameters are adjusted as learning proceeds. 

In the above designed networks (CNN and ANN), the nonlinear 
rectified linear unit (ReLU) function is adopted for the implementation 
of layers activation and to introduce the nonlinearity, as defined by 
fðxÞ ¼ maxð0; xÞ (Nair and Hinton, 2010). Operating on the output 
layer, the sigmoid function (Gibbs and MacKay, 2000) will map all the 
values into the porosity range between 0 and 1. The mean-squared error 
is selected as the loss function to measure the difference between pre
diction from the network and truth from the labeled porosity. A dropout 
ratio of 25% has been assigned in order to regularize these networks and 
prevent overfitting. Initial weights in these hidden layers are randomly 
assigned using the Xavier initialization (Glorot and Bengio, 2010), and 
initial biases are set to 0 before training of the systems. To update neural 
weights and biases, Adam algorithm is used (Kingma and Ba, 2014). 

True data at the two wells (Well_01 and Well_02) have been 
randomly split into training (80%), validation (10%) and test (10%) 
subsets, to determine and tune neural parameters, as well as to examine 
the generalization capability of trained systems. In total, there are 6834 
data samples, which are believed to be representative enough for the 
porosity distribution in the selected reservoir target, and the complex 
relationship between rock properties and reservoir porosity is expected 
be well explained by the neural systems. Furthermore, data syntheti
zation and augmentation would also be helpful for the training 

Fig. 8. Structure of 2D CNN for the porosity prediction based on two input features of κ and M.  

Fig. 9. Architecture of ANN for the prediction of porosity.  

Fig. 10. Predicted porosity at Well_01 (a) and Well_02 (b). Blue curves show 
results by ANN and green curves represent results by CNN. The truth is in red, 
which is derived after upscaling of the original logs to the seismic resolution. 
Correlation coefficient is 0.5847 for ANN, 0.6624 for CNN at Well_01 (a); 
0.3248 for ANN, 0.5574 for CNN at Well_02 (b). 
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procedure to explore various distributions of reservoir porosity, and 
geologically realistic training datasets could be generated through pet
rophysical models, in which the physical rules imposed by depositional 
processes should be captured (Das et al., 2019). 

After training, predicted porosities by CNN and ANN based on the 
inversion results of the two wells (Fig. 6) are shown in Fig. 10. It can be 
seen that the prediction by CNN is better than that of ANN, as well as 
reflected by an increase of correlation coefficient, which is calculated 
between predicted and true values. Results at Well_01 are better than 
those at Well_02, which is attributed to the fact that inversion quality of 
Well_01 is higher than that at Well_02. It should be pointed out that 
logging data of Well_01 and Well_02 have to be combined together in 
order to include the data variability as much as possible, for the training 
purpose of neural parameters. The aim in this study is to use seismic 
inversion results as inputs for the prediction of reservoir porosity, which 
have been kept untouched during the training process. Hence, the pre
dictions with inputs of inverted rock properties at wells could be 
regarded as a pseudo blind test, in which the performance of trained 
networks can be further analyzed. 

Then, with the cube inversion results as inputs (Fig. 7b and c), 
porosity estimation can be performed without the limitation of well 
locations and the whole target of reservoir porosity is obtained (Fig. 11). 
Both of results share similar patterns, even though differences can be 
observed, especially for the ones at the top. Note that application of 
trained systems on the inversion results is instant, and computational 
time of the networks is mainly attributed to the training process. 

6. Discussion 

In this paper, in order to exclude the location limitation of wells, 
results from a full-waveform inversion scheme are proposed as inputs for 
the estimation of reservoir porosity. Instead of using pre- or post-stack 
seismic attributes, the non-linear relationship between seismic data 
and rock properties is explored, since multiples and wave-mode con
versions are considered (Fig. 2). 

However, due to some problems such as mismatch in the seismic-to- 
well tie (Fig. 5b), the inversion results are mediocre, even though in the 
upper part, the match is quite good (Fig. 6). The quality of inverted M is 
worse than that of κ which is attributed to the fact that only PP data are 
available here and PS data are rarely collected in real cases (Feng et al., 
2017). To further improve the inversion quality, three-component 
seismic data could be acquired in the field. More importantly, the 
quality of seismic-to-well match should be increased such that the 
seismic data can be chosen according to the well trajectory path, or a 
perturbation mechanism is adopted to stretch or squeeze the logs based 
on anchoring points (Bakrac et al., 2015). 

The internal relationship between reservoir parameters such as 
porosity (∅) and rock properties (κ, M) is being investigated with 
different neural networks (CNN and ANN), which could help to take the 
data manipulation to an intelligent level. Compared with other rock 
physical models (Avseth et al., 2010) where certain assumptions have to 
be made such as a constant cement of minerals for all depths, these 
methods do not need any prior knowledge or initial model and are 
totally data-driven. Another advantage of the proposed deep learning 

Fig. 11. Estimated porosity by ANN (a) and CNN (b) with the cube inversion results as inputs (Fig. 7b and c).  
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approach is that once the neural weights and biases are fixed after the 
training process, the trained system can be instantaneously applied to 
other seismic inversion results, as long as the data distributions, in terms 
of rock properties and reservoir parameters, are similar. 

With 2D filters convolved in the noise-resistant CNN, adjacent in
formation inside the interval window of filters is captured and utilized 
for the prediction of porosity. As a natural process of deposit and 
diagenesis, reservoir porosities have intrinsic connections with rock 
properties in a short depth range. After a consideration of this local 
knowledge, CNN is performed better than ANN, since the latter one does 
not use any adjacent information, and it is more sensitive to noises/er
rors in those inverted rock properties. 

Moreover, the inverted κ and M are used together for the porosity 
prediction in this paper, even though the second one has a lower 
inversion quality. These two rock properties could be applied respec
tively, for the training of neural networks. However, large uncertainty 
may be introduced, since the data relationship will be highly non-linear, 
or non-unique. 

Design of neural architectures and fine-tuning of hyper-parameters 
are important for a successful retrieval of reservoir porosity, in which 
a trial-and-error procedure can be applied (Hall, 2016). An early stop
ping could also be done to reduce the training time and prevent the 
overfitting problem, when the training error is not becoming smaller 
during the iterations. 

By minimizing a predefined cost function, the training step in deep 
learning methods only estimate a set of neural parameters through a 
non-linear regression, which means that only a single value can be 
predicted for given each input observational data. However, quantita
tive interpretations require the uncertainty analysis associated with the 
prediction, in which the posterior distributions need to be sampled for 
response variables. The technique of approximate Bayesian computation 
could be utilized, especially in cases where the likelihood distribution is 
statistically intractable (Das et al., 2019), and will be performed in a 
future research. 

Similar porosity patterns have been produced by these two networks 
in which the connectivity can be clearly observed in slices (Fig. 11), as 
demonstrated by high values of porosities (> 20%) in smaller intervals, 
usually with sand presences. Barriers with < 5% porosities are acting as 
traps between potential reservoir units. These observations are 
conformable with the depositional environments of shallow marine and 
limnic origins with sand sheets and impermeable shales in-between in 
the Vienna Basin. 

The inversion scheme and neural networks presented here are per
formed in a trace-by-trace manner, which means that the whole dataset 
can be divided into sub-volumes in order to speed up on the computation 
time. 

7. Conclusion 

To conclude, the location limitation of logged wells has been 
removed by using inversion results from seismic data for the prediction 
of reservoir porosity. Thus, 2D sections or 3D cubes of the whole target 
reservoir can be obtained. The prediction quality of porosity is highly 
dependent on the input inversions. The non-linear full-waveform 
inversion scheme applied here could provide a high resolution of rock 
properties, which are better parameters for the inference of porosity. 

Different regression neural networks are used to investigate the 
complex relationship between rock properties and reservoir parameters, 
which can be considered as one type of statistical methods, even though 
they are much more intelligent than others. Convolutional Neural Net
works considers the special coupling between reservoir porosity and 
rock properties with kernel filters, and a higher prediction quality is 
achieved, compared to that by Artificial Neural Networks. 
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