Circular Design of Composite Products A Preliminary Framework Based on Insights from Literature and Industry Joustra, J.J.; Flipsen, Bas; Balkenende, A.R. Publication date 2021 **Document Version**Final published version Published in PLATE - Product lifetimes and the environment Citation (APA) Joustra, J. J., Flipsen, B., & Balkenende, A. R. (2021). Circular Design of Composite Products: A Preliminary Framework Based on Insights from Literature and Industry. In N. F. Nissen, & M. Jaeger-Erben (Eds.), *PLATE – Product lifetimes and the environment: 3rd PLATE Conference, September 18–20, 2019 Berlin, Germany* (pp. 411-416) Important note To cite this publication, please use the final published version (if applicable). Please check the document version above. #### Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. #### Takedown policy Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim. ## 3rd PLATE 2019 Conference Berlin, Germany, 18-20 September 2019 ## **Circular Design of Composite Products: A Preliminary Framework Based on Insights from Literature and Industry** **Joustra, Jelle; Flipsen, Bas; Balkenende, Ruud** Delft University of Technology, Delft, the Netherlands **Keywords**: Design; Circular Economy; Composite Products. Abstract: Composite materials are an attractive material choice as they enable lightweight, low maintenance products with a long lifespan. But closing the loop for these materials in a Circular Economy (CE) is challenging, especially for thermoset composites. In a CE, products should be designed for minimal impact while preserving their environmental and economic value for as long as possible. However, design strategies for composite products in a CE are currently largely unexplored. Insights from literature on design for a CE as well as on composites recovery are combined to create a set of design principles for composites in a CE. In addition to well-known long life, lifetime extension and product recovery approaches, literature indicates the potential value of structural recycling. Structural recycling preserves most of the functional value of the product, which is largely lost in materials recycling. Experts from composites industry were interviewed in focus groups to further explore CE strategies and design principles for a set of reference products, such as car interior components. The resulting framework connects Circular strategies to design principles for composite products and supports design of new composite products for use, reuse and recycling in a CE. ### Introduction The current rate of consumption puts dangerous pressure on our global ecosystems, depleting resources and generating waste. The Circular Economy (CE) offers a promising alternative to lower the environmental burden. The CE aims to prevent waste by design and to preserve economic and environmental value (Balkenende al., 2017). Products. et components and technical materials are kept in repairing, refurbishing. system by remanufacturing and recycling. Potential value gains are largest when the product remains as close as possible to its original state. This retains most of the energy, material, labour and capital that are embedded in the product (Bakker et al., 2018). In a CE, products have to be designed for a low environmental impact, long lifetime, and recovery of products, parts or materials at the end of life. Composites (fibre reinforced polymers, (FRP)) are an attractive materials choice for designers, as they enable lightweight structures with a long lifespan (Yang et al., 2012). Yet, these materials present opportunities as well as challenges for use in a CE. Composite materials can reduce impact during the use phase (Mangino et al., 2007), enable long product lifetime (Jensen & Skelton, 2018; Job et al., 2016; Yang et al., 2012) and provide opportunities for lifetime extension (Beauson & Brøndsted, 2016; Nijssen, 2015). However, closing the loop remains challenging (Job et al., 2016; Yang et al., 2012). Composites reaching their End of Life (EoL) are a growing concern for industry and policy makers. Approximately 12 million tons of composites were produced in 2017. Annual production rates increased by 5% (glass fibre composites) up to 10% (carbon fibre composites) (Effing, 2018). No clear solution has yet been found for the increasing volume of composite waste; all recovery processes severely degrade materials, making recycling economically barely viable (Job et al., 2016). Thus, the majority of composite material is landfilled or incinerated, losing material properties and the potential for reuse (Mativenga et al., 2017). Opportunities for recovery and reuse of composites, key aspects of the CE, will increase when addressed in the initial design stage (Jensen & Skelton, 2018; Perry et al., 2012; Yang et al., 2012), and new policies are expected to stimulate this (Cherrington et al., 2012). Still, design of composite products for a CE remains largely unexplored. Although examples of composite product reuse can be Circular design of composite products: A preliminary framework based on insights from literature and industry found (Beauson & Brøndsted, 2016; Jensen & Skelton, 2018), this is generally not addressed in the initial design. It needs to be investigated to what extent CE strategies are applicable to composites, and how circular design principles can address the challenges found when developing composite products for a CE. ## **Approach** The focus of this research is on design strategies that enable long life, lifetime extension and closing the loop for composite products, specifically for FRP. As shown in figure 1, first the design framework for preserving product integrity (Den Hollander, 2018) is adapted to designing composites in a CE. Literature from the field of design for a CE as well as composites recovery is studied to identify strategies and design principles that prolong the product life or facilitate recovery of composite materials in a CE. Then, these strategies and principles are further explored by interviewing experts from companies using composites in a focus group setting. Finally, the paper concludes by proposing a design strategy framework which connects strategies to actionable design principles applicable to composite products. Figure 1. Research approach. ## Literature background Product integrity is a key concept in the circular economy. Maintaining product functionality has preference over materials recovery (Den Hollander, 2018). Product value can be preserved through long life, lifetime extension and product recovery approaches. Material value can be preserved through recycling. In the case of composites this scheme can largely be followed as far as product integrity is involved. However, recycling routes for composite materials show some distinct aspects (Yang et al., 2012). Composite materials can only be recycled to a limited extent by mechanical (shredding), thermal chemical processing. and Thermoplastic composites can also remoulded (Yang et al., 2012). Thermal processes range from oxygen-rich combustion, recovering energy and ash (e.g. by coprocessing in a cement kiln), to pyrolysis in an inert environment, recovering (damaged) fibres and generating fuel or organic feedstock. Chemical recycling, solvolysis, aims for full recovery of fibres and chemicals from the matrix, but still has not passed pilot scale (Job et al., 2016). In all cases the loss of material functionality and the deterioration of material properties is considerable. More interesting, and specific to composites, is structural recycling. This preserves material quality with relatively little effort (Asmatulu et al., 2014), for example by resizing and repurposing composite parts in such a way that their unique properties as determined by the combination of material composition and structural design is maintained (Jensen & Skelton, 2018). This is considered a promising approach to preserve value for relatively little investment of energy and resources, and has been demonstrated on a small scale (Beauson & Brøndsted, 2016; Jensen & Skelton, 2018). To generate a framework for actionable design guidelines, the CE strategies have to be connected to design principles and the business context wherein the product operates. Design principles address product realisation and for example include modularity and disassembly, which are directly related to choices with respect to materials and connections (Balkenende et al., 2017). A generic framework for CE strategies and design principles was derived by Den Hollander (2018). Circular design of composite products: A preliminary framework based on insights from literature and industry ## **Expert opinion** Experts were interviewed in focus groups to explore circular strategies and design principles for products containing composites. This study was done in the context of the H2020 project Ecobulk, a large scale demonstration project for composites in a CE. Ten groups of 6 to 8 participants were asked to explore opportunities for circular redesign of different products representing various industry sectors: a car interior part (automotive), a bookcase or bed (furniture), and outdoor panels or bars (building), respectively. The participants were stakeholders from the respective product value chains, including material suppliers, Original Equipment Manufacturers (OEMs) recyclers. The discussion was guided by a moderator. During the discussion, notes were taken and added to a shared worksheet. Afterwards, the notes were transcribed and categorised using the CE strategies and design principles from literature. #### Results Based on the literature and focus groups, a framework connecting CE strategies (columns) and design principles (rows) for composite products in a Circular Economy was derived. This framework is shown in Table 1. The table fields show where a specific combination of CE strategy and design principle was found: in the studied literature (LIT) or focus groups (FG). | | | Design for preserving product integrity | | Design for recycling | | | |----------------|--------------------------|---|---|--|----------------------|--| | | | Long life | Lifetime extension | Product recovery | Structural recycling | Material recycling | | | | Reuse
Long use
Physical
durability | Repair
Maintenance
Upgrade
Adapt | Refurbish
Remanufacture
Parts harvesting | Repurpose
Resize | Remould
Mechanical
Thermal
Chemical | | Concept design | Accessibility | | LIT | LIT | | | | | Adaptability | LIT, FG | LIT, FG | LIT, FG | FG | | | | Dis- and reassembly | FG | LIT, FG | LIT, FG | LIT, FG | LIT, FG | | | Fault isolation | | LIT | LIT | | | | | Interchangeability | | LIT, FG | LIT, FG | | | | | Keying | | LIT, FG | LIT, FG | | | | | Modularity | | LIT, FG | LIT, FG | LIT | LIT | | | Sacrificial elements | FG | LIT | LIT | | | | | Simplification | LIT | LIT | LIT | | FG | | | Standardisation | | LIT, FG | LIT | LIT | LIT, FG | | | Function integration | FG | FG | | | FG | | _ | Material selection | LIT, FG | LIT, FG | LIT, FG | LIT | LIT, FG | | nen | Surface treatment sel. | LIT, FG | LIT, FG | LIT, FG | | LIT, FG | | Embodiment | Connection selection | FG | FG | FG | LIT | LIT, FG | | | Manufacturing | | FG | FG | FG | LIT, FG | | | Structural design | LIT, FG | LIT, FG | | LIT, FG | LIT, FG | | Realisation | Identification | FG | LIT | LIT, FG | LIT | LIT, FG | | | Malfunction annunciation | FG | LIT | LIT | | | | | Documentation | FG | LIT, FG | LIT | LIT | LIT | | | Monitoring | LIT, FG | | | | | Table 1. Design strategy framework for composites in a Circular Economy. Showing circular strategies, design principles and where a combination was found: literature (LIT) or Focus group (FG). Circular design of composite products: A preliminary framework based on insights from literature and industry Most design principles were identified for long life, lifetime extension and product recovery. Less design principles were found for material recycling, while structural recycling was incidentally encountered. Findings from literature and expert consultation showed considerable overlap. #### Literature Based on insights from literature, the circular design framework proposed by Den Hollander (2018) is adapted to composite product design: - Structural recycling is added as intermediate strategy between product recovery and material recycling, preserving part of a product's functional value (Asmatulu et al., 2014). - Five design principles are added, notably 1) process manufacturing selection. structural design, selection of 3) connections 4) documentation of product specifications and 5) in-use monitoring. Manufacturing, structural design connections determine to a large extent the processability of the product at the end of use (Jensen & Skelton, 2018; Perry et al., 2012). Yang et al.. documentation and monitoring enable better estimation of residual quality (Jensen & Skelton, 2018). - Three design principles are omitted: 1) 2) redundancy and animacy, ergonomics. Composites are predominantly used in aerospace, automotive, furniture, construction and wind energy industry for their lightweight properties (Perry et al., 2012; Yang et al., 2012). This type of applications does not call for animacy making the product behave as if it were alive- or weight increasing features like redundancy. Ergonomics was omitted as this relates to generic product design criteria, but has no special significance in relation to designing for lifetime prolongation or recovery in a CE. - Two principles were merged: functional packaging and modularity, as both aim to create readily replaceable subassemblies by grouping e.g. parts, functions or materials (Den Hollander, 2018). ## Expert opinion In the focus group sessions materials selection, dis- and reassembly and adaptability were mentioned most, and a new design principle, function integration, was found. - Material selection was mostly regarded as a means to make the product better recyclable. For example, participants suggested to "Create materials with inherent aesthetic properties", to avoid coatings and thereby material contamination in the recycling process. - Dis- and reassembly as well as connection selection were discussed for all Circular strategies except long life. - Adaptability was predominantly recognised for long use and lifetime extension. For example by enabling the user to adapt furniture to changing needs. - Function integration was suggested as additional design principle, as integrating functions will increase a part's value and mass. The first may provide an incentive for product recovery, and the latter for material recycling. When applied to a car dashboard component, this could incentivise dismounting of the complete component for refurbishment or recycling the materials. #### Both literature and expert consultation EU regulations, product lifecycle planning, repair technology and information exchange in the product value chain were noted in both literature and by experts. However, these are not directly part of the product design process as such, but should be aligned to it to develop a circular product. They are therefore not added to the design strategy framework, but should anyhow be considered in the early stage of new product development. #### **Discussion** In the framework, design principles are grouped using the stages of the product innovation process (Roozenburg & Eekels, 1998): concept design, embodiment and realisation. Grouping the principles in this way shows how they relate to the design process at large. In the early stage, a product strategy is formulated, addressing EU regulations and the product lifecycle plan. Then, principles like modularity and standardisation are used to find conceptual design solutions. In the next stage, the concepts are embodied to a detailed product design by, for example, material selection and structural design. Finally, documentation and identification provide stakeholders along the value chain with the information needed to use and recover the product according to the product strategy. Circular design of composite products: A preliminary framework based on insights from literature and industry In the product innovation process, product design runs parallel to market development, i.e. the product's business and societal context. Thus, it becomes evident that, in addition to design principles, business model development as well as (development of) repair technology play a role in a Circular design process. Most of the design principles were encountered by both literature and experts. However, two design principles were only encountered in literature: accessibility and fault isolation. Although not mentioned by the experts, both should be considered as an important factor to facilitate lifetime extension and product recovery. One design principle, function integration, was only mentioned by the experts. Function integration is a new contribution to the field of design of composites for a CE. It serves to increase a part's recovery incentive by expanding its functionality (for parts harvesting and structural recycling) or mass (for material recycling). Function integration seems to conflict with the design principle of dis- and reassembly, which is relevant to all CE approaches. However, it may align with modularity, as function integration can be used to create a single-material module. For example, integrating multiple functions into one car dashboard component reduces the number of parts, connections and materials used. Which facilitates disassembly and avoids material contamination in the recycling process. #### Recommendations provides insight in available design strategies and tools, to support designers developing new composite products for a Circular Economy. However, the framework might need further expansion as the selection of focus group participants and design cases was limited. Also, attention should be given to addressing the trade-offs in product design. For example, materials selection for recycling may conflict with materials selection for long product life. Implementation of the framework in the product development process, as well as alignment with the product's market context has to be further detailed. As shown, the product design process should have a clear and strong connection to its business and societal context to realise a circular product. The relevance and application of design principles and CE strategies depends on this product context like recovery actions and business case. The framework is considered as a first step that Further research, building on design studies with composite products, will be carried out to validate and build upon the framework. #### Conclusion This study found that composites provide opportunities for the design of products in a CE. The material is often applied to minimise product weight, thus reducing materials used, and ensure long product lifespans. However, closing the loop remains a challenge and design of composite products for a CE is largely unexplored. This paper set out to explore design strategies for products containing composite materials in a Circular Economy. CE strategies and design principles found in literature and expert interviews were categorised into a framework. The circular approaches found in CE literature are extended by introducing structural recycling. The approach, positioned between product recovery and materials recycling, has the potential to preserve composite material value for relatively low cost. A new design principle, function integration, was added to the existing body of knowledge and included in the framework. This is expected to increase the recovery value of parts as well as materials. On the other hand, some design principles found in literature were not mentioned by the experts and further expansion of the framework might be needed. The framework is a first step in the development of strategies and tools, to support design of new composite products for a Circular Economy. #### Acknowledgements The research was carried out as part of the project Ecobulk, a large scale demonstration project aiming to close the loop for composite products in a Circular Economy. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 730456. Circular design of composite products: A preliminary framework based on insights from literature and industry #### References - Asmatulu, E., Twomey, J., & Overcash, M. (2014). Recycling of fiber-reinforced composites and direct structural composite recycling concept. Journal of Composite Materials, 48(5). https://doi.org/10.1177/0021998313476325 - Bakker, C., Balkenende, R., & Poppelaars, F. (2018). Design for Product Integrity in a Circular Economy. In Designing for the Circular Economy Routledge (pp. 1–7). - Balkenende, R., Bocken, N., & Bakker, C. (2017). Design for the Circular Economy. The Routledge Handbook of Sustainable Design, 1–19. - Beauson, J., & Brøndsted, P. (2016). Wind turbine blades: an End of Life Perspective. In W. Ostachowicz, M. McGugan, J. U. Schröder-Hinrichs, & M. Luczak (Eds.), MARE-WINT: New Materials and Reliability in Offshore Wind Turbine Technology (pp. 421–432). Springer. https://doi.org/10.1007/978-3-319-39095-6 - Cherrington, R., Goodship, V., Meredith, J., Wood, B. M., Coles, S. R., Vuillaume, A., ... Kirwan, K. (2012). Producer responsibility: Defining the incentive for recycling composite wind turbine blades in Europe. Energy Policy, 47, 13–21. https://doi.org/10.1016/j.enpol.2012.03.076 - Den Hollander, M. (2018). Design for managing obsolescence. Delft University of Technology. - Effing, M. (2018). Expert insights in Europe's booming composites market. Reinforced Plastics, 62(4), 219–223. https://doi.org/10.1016/J.REPL.2017.06.086 - Jensen, J. P., & Skelton, K. (2018). Wind turbine blade recycling: Experiences, challenges and possibilities in a circular economy. Renewable and Sustainable Energy Reviews, 97(August), 165–176. https://doi.org/10.1016/j.rser.2018.08.041 - Job, S., Leeke, G., Mativenga, P. T., Oliveux, G., Pickering, S., & Shuaib, N. A. (2016). Composites recycling: Where are we now?, 11. Retrieved from https://compositesuk.co.uk/system/files/documents/Recycling Report 2016_1.pdf - Mangino, E., Carruthers, J., & Pitarresi, G. (2007). The future use of structural composite materials in the automotive industry. International Journal of Vehicle Design, 44(3/4), 211. https://doi.org/10.1504/IJVD.2007.013640 - Mativenga, P. T., Sultan, A. A. M., Agwa-Ejon, J., & Mbohwa, C. (2017). Composites in a Circular Economy: A Study of United Kingdom and South Africa. Procedia CIRP, 61, 691–696. https://doi.org/10.1016/j.procir.2016.11.270 - Nijssen, R. P. L. (2015). Composite Material (Vol. 3). Retrieved from http://compositesnl.nl/wp-content/uploads/2016/11/Composites-an-introduction-1st-edition-EN.pdf - Perry, N., Bernard, A., Laroche, F., & Pompidou, S. (2012). Improving design for recycling Application to composites. CIRP Annals, 61(1), 151–154. https://doi.org/10.1016/J.CIRP.2012.03.081 - Roozenburg, N. F. M., & Eekels, J. (1998). Productontwerpen, structuur en methoden (2e dr., 3e). Utrecht: Lemma. Retrieved from https://tudelft.on.worldcat.org/oclc/840383376 - Yang, Y., Boom, R., Irion, B., van Heerden, D. J., Kuiper, P., & de Wit, H. (2012). Recycling of composite materials. Chemical Engineering and Processing: Process Intensification, 51, 53–68. https://doi.org/10.1016/j.cep.2011.09.007 Joustra J., Flipsen B., Balkenende R. Circular design of composite products: A preliminary framework based on insights from literature and industry ## **Appendix** Descriptions of design principles | Design principle | Description | Quote | | | |----------------------|--|---|--|--| | Accessibility | Ensuring (internal) parts can be reached for | related to the way in which parts are shaped, | | | | | e.g. maintenance or repair operations. | grouped and connected [1] | | | | Adaptability | Enabling changes and adjustments to be made | Changing the furniture to a user's changing | | | | | to the product during its life. | needs | | | | Dis- and | Facilitating (manual or mechanical) | Design for disassembly by using screws or | | | | reassembly | disassembly and reassembly of the product. | reversible snap fits | | | | Fault isolation | Facilitating fault finding for e.g. repair. | Assuring that a malfunction can be traced | | | | | | to the part requiring replacement [2] | | | | Identification | Using labels, tags etc. to facilitate recognition | Use markers for materials to facilitate | | | | | of the product and/or its specifications | separation | | | | Interchangeability | Making parts or subassemblies of the product readily replaceable | Replaceable panels for damaged sections | | | | Keying | Using product shape to facilitate alignment, | use "slotted assembly" where the product is | | | | -, 3 | e.g. holes and pins | fixed from the ends into a groove. | | | | Malfunction | Indicating (imminent) product failure | Inform user of bad use | | | | annunciation | | | | | | Material selection | Selecting matrix, reinforcement, connections | Create materials with inherent aesthetic | | | | | and other materials | properties | | | | Modularity | Grouping features within the product to create | modular upgrades to refresh design with | | | | · | separable sub-assemblies | minimal intervention. | | | | Sacrificial elements | Defining replaceable components to take up | Grading and categorising parts which are | | | | | wear and damage, thus protecting other parts | likely to have most wear tear | | | | Simplification | Minimising the complexity of the product, by | adopt essential lines and shapes neutral | | | | | e.g. appearance, assembly or materials | colours such as scales of white and grey | | | | Standardisation | Using standard components, processes, | Same assembly system along time and | | | | | dimensions etc. in the product design | models | | | | Surface treatments | Selecting coatings and other surface | glass or aluminium replaceable covers in | | | | | treatments appropriate for the use and | order to protect coatings during the whole life | | | | | recovery of the product. | cycle | | | | Connection | Selecting connections for the use and recovery | use "pane type of roofing" to avoid | | | | selection | actions during product life | unnecessary fasteners nor use of sealants | | | | Documentation | Providing information about the product to | Make it easy for customers to return at end- | | | | | stakeholders in the value chain | of-life> info attached to product, | | | | Manufacturing | Selecting and optimising the process to meet | techniques that can at least partially use | | | | | the material, shape and recovery criteria | the recycled fibres instead of only new | | | | Monitoring | Measuring (and storing) product properties | Lifetime monitoring necessary to ensure | | | | | while in use. | the safety of re-using the blade [3] | | | | Structural design | Optimising the shape to get the best structural | Structure made of linear components like | | | | | quality. | truss structures so [parts] could be re-used | | | | Function integration | Combining multiple functions and | Easier [Dis]assembly due to the reduction | | | | | (sub)components into one part. | of parts for a multi-functional component. | | | Table 2. Description and examples of design principles, quote from experts in this study and literature. From [1] (Balkenende et al., 2017); [2] (Den Hollander, 2018); [3] (Jensen & Skelton, 2018).