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Preface

This report consists of two parts: (1) the final techincal paper, and (2) preliminary report which had

already been graded by my thesis supervisor. 

When you compare these two works, you will find that I have made quite a few changes along the

course  of  the  project.  However,  the  main  research  objective  and  approach  did  not  change

significantly.  For  background  information  on  visual  odometry/SLAM,  scale  estimation  and

stability-based methods, it may help to read the preliminary report before the technical paper. 



Stability-based Scale Estimation of Monocular SLAM for Autonomous
Quadrotor Navigation

Student: Seong Hun Lee
Supervisor: Guido de Croon

Abstract— We propose a novel method to deal with the scale
ambiguity in monocular SLAM based on control stability. We
analytically show that (1) using unscaled state feedback from
monocular SLAM for control can lead to system instability, and
(2) there is a unique linear relationship between the absolute
scale of the SLAM system and the control gain at which
instability arises. Using this property, our method estimates
the scale by adapting the gain and detecting self-induced
oscillations. Unlike conventional monocular approaches, no
additional metric sensors are used for scale estimation. We
demonstrate the ability of our system to estimate the scale
for performing autonomous indoor navigation with a low-cost
quadrotor MAV.

I. INTRODUCTION

For a micro air vehicle (MAV) to perform autonomous
flight tasks in GPS-denied environments, accurate self-
localization is an important requirement. In the absence of
external motion capture systems, the robot must rely solely
on the measurements from its onboard sensors to localize
and navigate itself with respect to the unknown surroundings.
This motivates the relevance of the so-called Simultaneous
Localization and Mapping (SLAM) problem.

To solve the SLAM problem on MAVs, monocular cam-
eras are widely used as the main exteroceptive sensor [1]–
[3]. This is primarily due to its small size, weight and
power consumption compared to other sensors, such as laser
scanners or RGB-D cameras. Also, as opposed to stereo
systems, monocular approaches have the advantage that they
can handle a large range of scene distances [4]. Moreover, the
recent development of monocular visual odometry (VO) and
SLAM methods such as [5]–[7] has provided the possibility
to estimate the six degrees-of-freedom (DOF) camera pose
in real time with high accuracy.

However, the main weakness of monocular SLAM is that
the absolute scale of the reconstructed scene and camera mo-
tion is inherently unobservable. Without any supplementary
information on the metric scale of the SLAM system, one
cannot naively use the “unscaled” pose estimates to control
and navigate the MAV. Traditional methods therefore employ
additional metric sensors, such as an inertial measurement
unit (IMU) [8] or altimeter [3] to estimate the absolute scale.

In this work, we propose a novel, stability-based, adaptive
control strategy to achieve autonomous flight of quadrotor

The authors are with Micro Air Vehicle Laboratory of Faculty
of Aerospace Engineering, Delft University of Technology, 2629HS
Delft, The Netherlands (e-mail: sunghoon315@gmail.com;
G.C.H.E.deCroon@tudelft.nl)
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Fig. 1: We propose to solve the scale ambiguity of monocular SLAM using
the control instability that arises when applying a certain gain to the unscaled
state feedback from the SLAM system. Top: Example illustration of the
linear relationship between the absolute scale λ and control gain K at which
the system becomes unstable. Bottom: We verify the proposed method in
simulation (left) and in real-world experiments (right).

MAVs using only monocular SLAM. Inspired by the pre-
vious work [9], our method estimates the absolute scale
of the SLAM system by inducing and detecting vertical
oscillations in hover. We implement this in an adaptive
control framework which allows us to effectively manipulate
the MAV’s vertical motion, while simultaneously stabilizing
its horizontal position. Once the adaptive scale estimation
is completed, we show that various autonomous flight tasks
such as hovering and waypoint following can be performed.

The main contributions of this work are two-fold: First,
we analytically show that when a quadrotor autopilot directly
controls the unscaled velocity (or position) estimates from a
monocular SLAM system, there is a unique linear relation-
ship between the absolute scale of the SLAM system and the
control gain at which instability arises. An example is illus-
trated at the top of Fig. 1. Second, we provide an adaptive
technique to estimate the scale of a monocular SLAM system
based on the hover stability of a quadrotor. Our method does
not rely on additional sensor modalities, such as IMU, depth
sensors, or altimeters. We demonstrate the proposed system
both in simulation and on a real quadrotor platform using



a Parrot AR.Drone1 (see the bottom of Fig. 1). A video
demonstration is available at:

https://youtu.be/SM17L8PD5Oc

II. RELATED WORK

When using monocular visual odometry (VO) or SLAM
for MAV navigation, conventional approaches estimate the
absolute scale by acquiring additional metric information
from either range or IMU measurements.

1) Using Range Measurements: In this case, the distance
between the robot and its surrounding environment is directly
measured by a range sensor, such as a laser scanner [10]
or RGB-D camera [11]. In [3], a closed-form solution is
proposed to estimate the absolute scale using an ultrasonic
altimeter of a Parrot AR.Drone. The two main drawbacks
of this method are: (1) its applicability is limited to those
MAVs equipped with onboard altimeters, and (2) it assumes
a flat ground surface. These drawbacks do not apply to our
method, as we do not rely on range sensor measurements for
scale estimation.

2) Using IMU measurements: This approach is called
visual-inertial fusion, as visual and inertial measurements
are fused together to estimate the camera motion and scene
structure in a metric scale. Accelerometer measurements pro-
vide the metric information about the robot’s motion. State-
of-the-art examples consist of filter-based [12], [13] and
optimization-based [14]–[16] approaches. Although these
methods have been shown to achieve very high accuracy
and consistency, it is often necessary to provide appropriate
initial states and accurate multi-sensor calibration to avoid
the convergence towards suboptimal local minima [17]. Our
method requires neither complex multi-sensor calibrations
nor carefully tailored initialization.

In contrast to these passive, sensor-based approaches, a
stability-based method retrieves metric information from the
active control response to a scale-ambiguous visual input,
such as optical flow divergence. Recently, one of the authors
proposed a stability-based approach to estimate the height of
a quadrotor MAV using a downward-looking onboard camera
[9]. This method exploits a linear relationship between the
height and control gain at which the adaptive divergence
control manifests self-induced oscillations. In this work, we
extend this idea to a scale estimation problem for monocular
SLAM. The main difference from [9] is that our method
does not use optical flow divergence for control, but instead
uses unscaled pose estimates from a monocular SLAM
system. We achieve this by (1) deriving similar stability
proofs as in [9] for monocular SLAM-based control systems,
(2) modifying the oscillation detection algorithm, and (3)
devising a full adaptive control system for scale estimation.

The remainder of the paper is organized as follows: In
Section III, we investigate the stability properties of quadro-
tor control using monocular SLAM. Subsequently, we detail
the proposed adaptive control strategy for scale estimation

1https://www.parrot.com/fr/drones/
parrot-ardrone-20-elite-edition
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Fig. 2: World (owxwywzw) and vision (ovxvyvzv) reference frames.

in Section IV. Section V discusses the results of the scale
estimation (Section V-A) and real-world flight experiments
(Section V-B). Finally, conclusions are drawn in Section VI.

III. INSTABILITY OF VERTICAL CONTROL
SYSTEM

A. Discretized Model for Velocity Control

To study the instability phenomenon, it is sufficient to
use a simple one-dimensional model describing the robot’s
vertical motion with double-integrator dynamics. Consider
the following state space model and an output of unscaled
vertical velocity from a monocular SLAM system:

ẋ(t) = Ax(t)+Bu(t)

=

[
0 1
0 0

]
x(t)+

[
0

1/m

]
uz(t),

(1)

y(t) =Cx(t)+Du(t)
=
[
0 1/λ

]
x(t),

(2)

where x(t) = [Zw(t), Vz
w(t)]>, y(t) = Vz

v(t) = Vz
w(t)/λ , m

is the mass of the robot, uz(t) is the total thrust command,
and λ is the unknown true scale of the monocular SLAM
system. We use Z and Vz to denote the height and vertical
velocity of the robot, and superscripts w and v to indicate
the reference frames pertaining to a fixed world and visual
SLAM system, respectively. This is illustrated in Fig. 2.

Discretizing (1) and (2) with zero-order hold (ZOH)
yields:

Ad =

[
1 Ts
0 1

]
, Bd =

[
T 2

s /(2m)
Ts/m

]
,

Cd =
[
0 1/λ

]
, Dd = [0],

(3)

where Ts is the sample time used for discretization. This
model is equivalent to the following transfer function:

G(σ) =Cd(σ I−Ad)
−1Bd

=
Ts

λm(σ −1)
,

(4)

where we use σ as the Z-transform variable instead of z to
avoid confusion with the height Z.

Now, consider a simple proportional gain controller:

uz = K (Vz
∗−Vz

v) , (5)
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Fig. 3: (a) Root locus plot of the ZOH-model in a vacuum environment
without noise and delay. (b) Root locus plot of the ZOH-model including
drag and delay (N = 5).

where Vz
∗ is the desired vertical velocity in the vision frame.

Then, the closed-loop transfer function for (4) is given as:

H(σ) =
KTs

λm(σ −1)+KTs
. (6)

Equation (6) indicates that H(σ) has a single pole located at
σ = 1 when K = 0 and a negative infinite zero. This is shown
in the root locus plot in Fig. 3a. As the gain increases, the
pole moves towards the negative infinite zero along the real
axis, and the system becomes unstable as soon as it crosses
the unit circle at σ =−1. The control gain that induces such
transition in the system’s stability characteristics is called a
critical gain. Setting σ =−1 and equating the denominator
of (6) to 0, the critical gain can be found as:

Kcr =
2m
Ts

λ . (7)

This implies that given a specific mass m and sample time
Ts, there always exists a unique positive linear relationship
between the critical gain and absolute scale of the monocular
SLAM system.

B. Including Drag and Delay

The ZOH-model in the previous section can be extended
to account for the aerodynamic drag and time delay (e.g.,
caused by visual processing and communication). Including
drag, the acceleration of the robot can be modeled as:

V̇ w
z =

uz + fD

m
, (8)

with the drag force fD:

fD = sgn(Vwind−Vz
w)

1
2

ρCDA(Vwind−Vz
w)2 , (9)

where ρ is the air density, CD is the drag coefficient, and A
is the reference area of the robot. Linearization of (8) gives:

∆V̇ w
z =

∆uz

m
− sgn(Vwind−Vz

w)
ρCDA

m
(Vwind−Vz

w)∆Vz
w,

(10)
where Vwind and Vz

w are given the values at the linearization
point. Hereafter, a constant p will be used to avoid cluttering
the formulas, which is defined as:

p := sgn(Vwind−Vz
w)

ρCDA
m

(Vwind−Vz
w) . (11)

As a result, the linearized equation of motion including the
drag gives the following continuous state space model:

A =

[
0 1
0 −p

]
, B =

[
0

1/m

]
,

C =
[
0 1/λ

]
, D = [0].

(12)

Discretization of this model using ZOH with a sample time
Ts leads to:

Ad =


1

(
1− e−pTs

)

p
0 e−pTs


 , Bd =




Ts

mp
−
(
1− e−pTs

)

mp2
(
1− e−pTs

)

mp


 ,

Cd =
[
0 1/λ

]
, Dd = [0],

(13)

which is equivalent to the following transfer function:

G(σ) =
1− e−pTs

λmp(σ − e−pTs)
. (14)

Now, introducing a delay of N sampling periods in (14)
gives:

G(σ) =
1− e−pTs

λmpσN(σ − e−pTs)
. (15)

The closed-loop transfer function with a proportional control
is thus given as:

H(σ) =
K
(
1− e−pTs

)

λmpσN(σ − e−pTs)+K (1− e−pTs)
. (16)

Equation (16) shows that, for K = 0, the system has N poles
at σ = 0 and one additional pole at σ = e−pTs . This later
pole is located on the positive part of the real axis inside
the unit circle, as p > 0 and Ts > 0. Also, there are N + 1
zeros at equiangular infinities, creating asymptotes 2π/(N+
1) radians apart from each neighbor. An example of a root
locus plot with N = 5 is shown in Fig. 3b.

Using the same procedure as in the previous section, the
critical gain Kcr can be found by solving the following two
equations:

σ = cosθ + j sinθ = e jθ (17)

and
λmpσN (σ − e−pTs

)
+Kcr

(
1− e−pTs

)
= 0, (18)

where θ is the phase of the pole that intersects the perimeter
of the unit circle. Given the parameters m, p and Ts, we can
solve these two equations for the two unknowns θ and Kcr.
Equation (17) and (18) can be rearranged to give:

e−pTs =
sin((N +1)θ)

sin(Nθ)
(19)

and
Kcr =

λmp sinθ
(1− e−pTs)sin(Nθ)

. (20)

The detailed derivations of (19) and (20) are provided in
Appendix A. The computational analysis solving θ and Kcr
from (19) and (20) gives rise to the following observations:



1) While there exist multiple possible solutions (θ ,Kcr)
that suffice (19) and (20) simultaneously, the poles
that cross the unit circle for the first time are those
with the smallest magnitude of θ . These poles uniquely
determine the critical gain Kcr.

2) Although (11) and (20) suggest that Kcr depends on
the parameter p which is a function of Vz

w at the
linearization point, the sensitivity of Kcr to different
values of Vz

w is almost negligible in hovering con-
dition. For example, the maximum change in Kcr is
less than 0.1% given N < 50 and |Vwind−Vz

w|< 2m/s
with m = 1kg, Ts = 0.01s, and 1

2CDA = 0.5. This effect
weakens as N is decreased.

3) Kcr decreases with an increase in time delay N.
The first two observations allow us to represent Kcr in (20)
as:

Kcr = λ f (m,Ts,N, p(Vz
w,ρ,CD,A,m),θ(p,Ts,N))

= λg(m,Ts,N,Vz
w,ρ,CD,A)

≈ λh(m,Ts,N,ρ,CD,A) (21)

where f (·), g(·) and h(·) are functions that take different set
of input to compute Kcr/λ . Since the parameters of h(·) are
assumed to be fixed, (21) can be written as:

Kcr ≈ αλ , (22)

where α is a positive constant. Similarly to the previous case,
this suggests that a unique linear relationship exists between
the critical gain and scale.

C. Height Control Using Velocity Commands

Some quadrotor systems allow users to manually control
the flight using velocity commands. In this case, we may
also design the vertical control system to incorporate velocity
commands instead of thrust input. Such control systems ex-
hibit similar type of self-induced oscillations when regulating
the height. We provide a rudimentary explanation for this
behavior using a simplified model in Appendix B.

IV. ADAPTIVE CONTROL STRATEGY FOR SCALE
ESTIMATION

Motivated by the unique linear relationship between the
critical gain and absolute scale of the SLAM system as
suggested in the previous section, we propose an adaptive
control framework that estimates the scale and enables au-
tonomous quadrotor navigation. Our framework builds on
two autopilot modes: adaptive control mode and Ready-to-
Fly (RTF) mode.

Fig. 4 illustrates the pipeline of the adaptive control mode.
Its main function is to estimate the scale of the SLAM system
by adapting the gain K iteratively towards the critical gain
and detecting the self-induced oscillations. To minimize the
horizontal drift during the process, we apply PID control
on the unscaled estimates of the horizontal position. The
resultant horizontal commands are then scaled by the latest
scale estimate λ ′ to compensate the unscaled input.

SLAM

Horizontal
Position

Controller

MAV

Images

Detect
Oscillations

Adapt
Gain

Estimate
Scale

Xv
, Y vVz
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ux ,uy

ux ,
uy
λ'
λ'

λ'

D

uz

K

K

(unscaled) (unscaled)
Zvor

Vertical
Velocity

Controller
(or Position)

( )

uz

Fig. 4: Adaptive control pipeline for scale estimation.

Once the critical gain is found, the final scale is estimated
using (22) and the autopilot switches to RTF mode. In this
mode, we directly scale the position and velocity estimates
from the SLAM system to perform autonomous flight tasks.
Note that the heading control is independent of the scale,
and it is thus identical in both adaptive and RTF modes.

In the following, the three main components of the adap-
tive control method are explained: detecting oscillations,
adapting the gain, and controlling the horizontal position
during the process.

A. Detection of Self-induced Oscillations

Traditional methods to detect self-induced oscillations
typically use a fast Fourier transform (FFT) to identify the
specific resonant frequency of the system [18] [19]. In this
section, we propose a more computationally efficient method
to detect self-induced oscillations. First, we define a heuristic
variable D to quantify and detect oscillations. Specifically,
we compute the windowed maximum of the average total
variation in vertical velocity. For continuous systems, let t0
be the beginning of the main time window, Tw the length
of the sub-window for averaging the total variation, and n
the maximum number of the sub-windows allowed before
restarting the main window and updating t0. At time t given
t0 ≤ t ≤ t0 +nTw, we define D as:

D(t, t0,Tw) := max
t ′∈[t0,t]

∫ t ′

t ′−Tw

∣∣a w
z (γ)

∣∣dγ

Tw
, (23)

where a w
z is the vertical acceleration in the world frame.

If the drag force is assumed to be relatively small, (23)
can be approximated as:

D(t, t0,Tw)≈
max

t ′∈[t0,t]

∫ t ′

t ′−Tw

∣∣uz(γ)
∣∣dγ

mTw
. (24)
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set its maximum value in the current window as the numerator of (25).

For discrete systems, this becomes:

D(i, i0,W ) =

max
i′∈{i0,··· ,i}

i′

∑
j=i′−W+1

∣∣uz[ j]
∣∣Ts

mWTs

=

max
i′∈{i0,··· ,i}

i′

∑
j=i′−W+1

∣∣uz[ j]
∣∣

mW
, (25)

given i0 ≤ i≤ i0 +nW where W is the discrete window size,
which is equal to Tw/Ts. This process is illustrated in Fig. 5.
The onset of oscillations is detected as soon as D exceeds a
preset threshold Dthr.

So far, we have assumed that the system controls vertical
velocity using thrust commands as input. For height control
systems using velocity commands (as in Section III-C), we
need to modify (23) by reducing its order by one:

D(t, t0,Tw) := max
t ′∈[t0,t]

∫ t ′

t ′−Tw

∣∣V w
z (γ)

∣∣dγ

Tw
, (26)

≈ max
t ′∈[t0,t]

∫ t ′

t ′−Tw

∣∣uz(γ)
∣∣dγ

Tw
, (27)

For discrete systems, this is equivalent to:

D(i, i0,W ) =

max
i′∈{i0,··· ,i}

i′

∑
j=i′−W+1

∣∣uz[ j]
∣∣

W
. (28)

Note that this is the same computation as (25) but without
mass.

B. Adaptive Gain Control

In the following, we propose a two-step process to adap-
tively control the gain towards the critical gain with a good
trade-off between accuracy and estimation speed. The idea
is first to increase the gain adaptively until the onset of
oscillations is detected (i.e., D > Dthr) and then to decrease
the gain slowly until the system is considered stable again
(i.e., D < Dthr). The critical gain is then estimated as the
average of the two gains at the end of each process.
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Fig. 6: Critical gain estimation with Dthr = 1.5.

During the first step, the gain is increased using the
following adaptive control:

Ki+1 = Ki +PKi
(Dthr−Di)

Di
, (29)

where P is a proportional gain. This is slightly different from
the method proposed in [9], as we divide the increment
term by Di. This modification was found to boost the
convergence speed while also reducing the overshoot. Once
the gain is adapted, the system waits for some time to induce
sufficient response, and the next adaptation takes place if the
oscillations are not detected until t ≥ t0 +nTw. Fig. 6 plots a
time evolution of the relevant variables in simulation.

C. Pseudo-scale for Horizontal Position Control

As the system adapts the gain to find the critical gain, we
can also recurrently compute the intermediate estimate of the
scale at each iteration i using Ki from (29). This is done by
introducing a new variable called a pseudo-scale λ ′:

λ ′i :=
Ki

α
, (30)

where α is the constant in (22) which is to be calibrated em-
pirically. Note that, ideally, the pseudo-scale λ ′ approaches
to true scale λ as the adapted gain K approaches to Kcr.

As shown in Fig. 4, each updated λ ′ is used to scale the
horizontal commands (ux, uy) computed by the horizontal
position controller. This is because the controller takes un-
scaled translational states (Xv,Y v) as input, and as a result,
the commands (ux, uy) are also unscaled. Although at first
the MAV may start drifting as the initial estimates of λ ′ are
much smaller than λ , it quickly stabilizes in the horizontal
position after a few iterations.

V. EXPERIMENTS AND RESULTS

We conducted a series of experiments in both simulation
and the real world to validate the proposed approach. We
discuss the results in two parts: In Section V-A, we verify
the proposed scale estimation method, and investigate the
influence of the scene distance. In Section V-B, we evaluate
the performance of our system’s autonomous flights.

We used tum simulator [20] for simulations, and
ardrone autonomy [21] to operate a real AR.Drone. Note



that ardrone autonomy is a ROS package based on official
AR.Drone SDK, so it uses velocity commands as control
input. On the other hand, tum simulator can use thrust com-
mands. Therefore, we implemented, respectively, velocity
control for simulations (see Section III-A and III-B) and
height control for the real drone (see Section III-C).

We used monocular ORB-SLAM [5] in both simulation
and real-world experiments. Note that our method can be
used with any other monocular SLAM system, as the visual
pose estimation is treated as a black box. In the experiments,
all computations were performed off-board on a mobile
workstation laptop, and control commands were transmitted
to the drone via WiFi connection. The ground-truth flight
trajectories were tracked by an OptiTrack2 motion capture
system for comparison purposes only.

A. Scale Estimation

1) Critical Gain vs Scale: Using the proposed scale
estimation method, we ran multiple tests to verify the linear
relationship between the critical gain and absolute scale of
the SLAM system as suggested in Section III. We used well-
textured planar walls (see Fig. 1), and kept a fixed distance of
2 m between the wall and MAV to ensure that ORB-SLAM
provides a consistent level of accuracy. We gathered 180 data
points from simulation and 60 from real-world experiments.
The results are shown in Fig. 7. Linear regression with
zero intercept gives R2 values of 0.96 (simulation) and 0.91
(experiments). This clearly indicates that there is a unique
linear relationship between the critical gain and absolute
scale of the SLAM system.

Fig. 7: Positive linear relationship between the critical gain K and scale λ
verified with simulation (left) and a real quadrotor (right).

2) Critical Gain vs Scene Distance: Our model in Section
III predicts that given a fixed scale, the critical gain should be
constant across different scene distances. In reality, however,
this is not necessarily the case. Fig. 8 plots the estimated
critical gains when the MAV is made to hover at different
distances from a planar scene. In the top plot, the simulation
using velocity control clearly exhibits the tendency that the
larger the scene distance, the lower the critical gain. This
leads to an increased scale estimation error when subjected to
a wide range of scene distances, as shown in the middle plot.

2https://optitrack.com/
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Fig. 10: Comparison of the estimated critical gains when subjected to planar
(orange and blue) or nonplanar (red) scene structures.

Interestingly, the real-world experiments using height control
displayed lower sensitivity to different scene distances at the
cost of generally higher scale estimation error. This is shown
in the bottom rows of Fig. 8. Within the scene distance



Y (m) X (m)

-0.3

0.3

-0.3

0.3

0

0.30 0
-0.3

Adaptive Control
RMSE = 4.1 cm

RTF Hovering

0s 10s 20s 30s 40s 50s 60s 70s 80s 90s

-0.2

0

0.2

P
o
si

ti
o
n
 (

m
) X Y Z

0s 10s 20s 30s 40s 50s 60s 70s 80s 90s

-0.2

0

0.2

V
el

o
ci

ty
 (

m
/s

) Vx Vy Vz

Y (m) X (m)

-0.3

0.3

0

0.3

0.3

0 0
-0.3 -0.3

Adaptive Control
RMSE = 3.6 cm

RTF Hovering

0s 10s 20s 30s 40s 50s 60s 70s

0

0.2

0.4

P
o
si

ti
o
n
 (

m
) X Y Z

0s 10s 20s 30s 40s 50s 60s 70s
-0.2

0

0.2

V
el

o
ci

ty
 (

m
/s

) Vx Vy Vz

-0.3

0.3

0

0.3

Y (m)

0.3

0

X (m)

0
-0.3 -0.3

Adaptive Control
RMSE = 4.4 cm

RTF Hovering

0s 10s 20s 30s 40s 50s 60s 70s 80s

-0.2

0

0.2

0.4

P
o
si

ti
o
n
 (

m
) X Y Z

0s 10s 20s 30s 40s 50s 60s 70s 80s

-0.1

0

0.1

0.2

V
el

o
ci

ty
 (

m
/s

) Vx Vy Vz

(a) Scene Distance = 2 m (b) Scene Distance = 4 m (c) Scene Distance = 6 m

Fig. 11: Top two rows: Time evolution of the MAV’s position and velocity during the adaptive control followed by 60 seconds of position hold in RTF
mode. The vertical dashed line marks the transition between the two modes. Bottom row: Ground-truth trajectories for the adaptive control (left) and RTF
hovering (right).

between 2 m and 6 m, the average scale estimation error is
estimated to be 13.4% and 16.0% in simulation and the real
world, respectively.

The correlation between the critical gain and scene dis-
tance can be explained by the fact that ORB-SLAM overes-
timates velocity as its pose estimation accuracy decreases
with larger scene distances. In Fig. 9, we compare the
estimated velocities V v

z from ORB-SLAM and the ground-
truth V w

z using two sample runs of simulation at 2 m and
10 m scene distance. We additionally scaled V v

z by the true
scale λ for comparison in metric scale. In contrast to the
relatively accurate estimation at 2 m, considerable amount
of noisy overestimation is observed at 10 m. This leads to
a premature detection of oscillations, thus a lower critical
gain. For quantitative comparison, the bottom plots of Fig.
9 present the probability density functions (PDF) of the
observed difference between the two absolute velocities:

error|Vz| = |λV v
z (t)|− |V w

z (t− td)|, (31)

where td is the time delay between the two signals. Note
that the PDF at 10 m has a significantly heavier right tail,
which indicates that the magnitude of velocity is mostly
overestimated. Bootstrap two-sample test further confirmed
that the two PDFs do not come from the same distribution.

Although such influence of the scene distance on the
critical gain may be seen as an obstacle to accurate scale
estimation, it can act as an advantage in terms of flight
stability and control. As shown in Fig. 9, using the correct
scale at a large scene distance would render the system
unstable because of the amplified noise in the observed
velocity. Since our adaptive control scheme takes this into

account by definition, it provides adequately lower estimates
of the critical gain and pseudo-scale at larger scene distances.

So far, we have considered only planar scenes. Yet typical
scenes are nonplanar and contain objects at varying distances.
To reveal the effect of nonplanar scenes, we conducted
another set of simulations where we placed a small object
between the camera and the wall, such that ORB-SLAM
could track a small number of feature points (less than 20) at
a closer distance (2 m) while the rest of the tracking points
are located at either 6 m or 10 m distance. As shown in
Fig. 10, the results suggest that the smallest scene distance
has the dominant effect on the estimation of critical gain.
This implies that having at least a few close tracking points
during the adaptive process can mitigate the effect of large
scene distances and reduce the scale estimation error.

B. Real-world Autonomous Flights

1) Hovering: Fig. 11 shows the ground-truth trajectories
of the quadrotor MAV as it undergoes the adaptive control
process followed by position hold. To explicitly show the
pose stabilization effect, we initially made the drone drift
before activating the adaptive control mode. The results show
that our system can quickly correct the initial drift within the
first 10–20 seconds and maintain a stable hover afterwards.
Similar levels of convergence speed and flight stability were
observed across the scene distances between 2 m and 6 m:
scale estimation time around 20–30 seconds and root mean
squared error (RMSE) between 3.6cm and 4.4cm during the
RTF hovering. In terms of flight stability, this is comparable
to the result reported in [3] (i.e., RMSE between 4.9 cm
and 7.8 cm for indoor flight). Note that in both [3] and this
work, Parrot AR.Drone is used as a platform. However, the



Fig. 12: Ground-truth states for single waypoint-following tasks in a vertical
(left column) or horizontal (right column) direction.

TABLE I: Average convergence time and peak speed in position control

Setpoint position (m)
(0, 0, 2) (0, 2, 0)

(x, y, z)

Convergence time (s) 5.4±0.9 2.7±0.2

Peak speed (m / s) 0.86±0.05 1.13±0.05

main difference is that our method does not use altimeter
measurements for scale estimation.

2) Waypoint Following: To evaluate the flight perfor-
mance, we made the MAV fly to a waypoint located at 2
m distance from the initial hover position. This was done
in either vertical or horizontal direction. Note that using
inaccurate values of the calibration parameter α in (30) can
either under- or overestimate the actual scale λ , degrading
the control performance. Fig. 12 shows the ground-truth
states for three example runs of each vertical and horizontal
flights with α manually set to 1, 4 and 7. We can observe
that setting α = 4 gave the best performance in both vertical
and horizontal flights. This is not surprising, since the correct
value for α is given as 3.4 in Fig. 7. With α = 1, the pseudo-
scale λ ′ overestimated the actual scale λ , which resulted in
overshoot and instability. On the other hand, setting α = 7
underestimated the scale, which led to a slower convergence
speed. We repeated the same task 15 times with α = 4 and
summarized the average convergence time and peak flight
speed in Tab. I. The convergence was considered to be
reached when the Euclidean distance between the MAV and
waypoint fell below 10 cm.

3) Figure Flying: We demonstrate that our system can
fly simple figures, similar to that demonstrated in [22]. Fig.
13 shows two example flights consisting of 11 successive
waypoint following tasks. We estimated the flight accuracy
by measuring the RMSE of the ground-truth trajectory with
respect to the desired path set by the nearest waypoints. The
results are given in the figure.

VI. CONCLUSIONS

In this work, we have presented a stability-based method
to estimate the absolute scale of a monocular SLAM sys-
tem on a hovering quadrotor MAV. Theoretical analysis of
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Fig. 13: Ground-truth trajectories for figure flying. Left: Small figure (1m×
1m×1m). Right: Large figure (2m×2m×2m).

discretized quadrotor models has revealed a unique linear
relationship between the scale of the SLAM system and
control gain at which instability arises. Our method exploits
this property and estimates the scale by adaptively induc-
ing and detecting vertical oscillations in hover. We have
demonstrated that our system is able to (1) estimate the
scale without relying on additional metric sensors, and (2)
perform various autonomous navigation tasks in unknown
indoor environments.

Although our scale estimation method is not as accurate as
the state-of-the-art approaches with additional metric sensors,
we believe that it is definitely competitive (if not better)
for achieving autonomous control using monocular SLAM.
Future work may compare the control performance of our
system to that of sensor-based approaches at varying scene
distances.

APPENDIX

A. Derivation of (19) and (20

Let us start by substituting (17) into (18):

λmp
(

e jθ
)N (

e jθ − e−pT
)
+Kw

(
1− e−pT )= 0,

λmp
(

e j(N+1)θ − e jNθ e−pT
)
+Kw

(
1− e−pT )= 0,

λmp [cos((N +1)θ)+ j sin((N +1)θ)
−e−pT (cos(Nθ)+ j sin(Nθ))

]
+Kw

(
1− e−pT )= 0.

(32)

The imaginary part of (32) gives:

λmp
[
sin((N +1)θ)− e−pT sin(Nθ)

]
= 0,

e−pT =
sin((N +1)θ)

sin(Nθ)
,

which confirms (19).
Likewise, the real part of (32) gives:

λmp
[
cos((N +1)θ)− e−pT cos(Nθ)

]
+Kw

(
1− e−pT )= 0,

which can be rearranged into:

Kw =− λmp
(1− e−pT )

(
cos((N +1)θ)− e−pT cos(Nθ)

)
.



Using the result from (19), the right-hand side of this
equation can be written as:

− λmp
(1− e−pT )

(
cos((N +1)θ)− cos(Nθ)sin((N +1)θ)

sin(Nθ)

)

=

− λmp(sin(Nθ)cos((N +1)θ)− cos(Nθ)sin((N +1)θ))
(1− e−pT )sin(Nθ)

=−λmp sin(Nθ − (N +1)θ)
(1− e−pT )sin(Nθ)

=− λmp sin(−θ)
(1− e−pT )sin(Nθ)

=
λmp sinθ

(1− e−pT )sin(Nθ)
.

which confirms (20).

B. Instability of Height Control Using Velocity Commands

First, assume a perfect system where the actual veloc-
ities instantaneously follow the velocity commands. Now,
consider the following state space model with an output
of unscaled vertical displacement from a monocular SLAM
system:

ẋ(t) = Ax(t)+Bu(t)
= u(t),

(33)

y(t) =Cx(t)+Du(t)

=
1
λ

x(t),
(34)

where x(t) = Zw(t), y(t) = Zv(t) = Zw(t)/λ , and u(t) =
uvz(t) is the vertical velocity command.

Discretizing the system with zero-order hold (ZOH)
yields:

Ad =
[
1
]
, Bd =

[
Ts
]
, Cd =

[
1/λ

]
, Dd = [0], (35)

which is equivalent to the following transfer function:

G(σ) =
Ts

λ (σ −1)
. (36)

Now, consider the following simple proportional feedback
controller:

uz = K (Z∗−Zv) , (37)

where Z∗ is the desired vertical displacement from the initial
hovering height in the vision frame. Note the difference from
(5), as we regulate the height instead of vertical velocity.
From (36) and (37), the closed-loop transfer function be-
comes:

H(σ) =
KTs

λ (σ −1)+KTs
. (38)

Following the same procedure as in Section III-A, the critical
gain is computed as:

Kcr =
2
Ts

λ , (39)

which indicates a unique, system-specific linear relationship
between the critical gain and scale.
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Chapter 1

Introduction

When a Micro Air Vehicle (MAV) performs autonomous flight tasks in GPS-denied environ-
ments without any external motion capture systems, the Guidance, Navigation and Control
(GNC) system relies solely on the measurements from its onboard sensors to compute the
most appropriate control input for reaching the desired state (e.g., pose and/or velocity).
Especially, for the maneuvers such as waypoint/trajectory-following and path-planning with
collision avoidance, it is extremely useful to know the accurate estimation of 6 Degree of Free-
dom (DOF) pose1 of the MAV, as well as the 3D structure of the surrounding environment.
A technique which solves this problem simultaneously in real-time is called Simultaneous Lo-
calization and Mapping (SLAM)2. One of the most popular approaches today for achieving
autonomous indoor flight of MAVs is to use vision to solve SLAM problems. By employing
vision-based SLAM on the image stream from a single or multiple onboard camera(s), the
system is capable of estimating both camera pose (thus MAV pose) and 3D reconstruction
of the environment in real-time. These results can be then processed as input for high-level
decision-making and outer-loop control, such as waypoint/trajectory generation and follow-
ing. However, it should be noted that visual SLAM is merely one of many existing methods
which can be adopted to achieve the autonomous navigation of MAVs in unknown GPS-denied
environments. Admittedly, there exist multiple other alternative solutions (e.g., using differ-
ent sensor modalities or different control strategies). In the next two paragraphs, it will be
explained why SLAM or Visual Odometry (VO)3 is chosen to be used for this work.

First, why use vision? The success and popularity of using vision in MAVs could be explained
by the following factors: (1) There are already many cheap, small and lightweight cameras
available with moderate quality. This is certainly a strong advantage over other heavier and
more expensive alternatives such as laser, because weight, size and budget are often critical
factors in the design and operation of MAVs. (2) Significant advancements of computer vision

1Six because there are three orthogonal components of translational movements in x, y, z direction and
three corresponding Euler angles along each axis

2Localization is also known as (camera pose) tracking. Mapping means 3D reconstruction of the scene
observed by the camera, and it usually takes the form of point cloud.

3Visual odometry and SLAM are similar, but not exactly identical. See Section 3-1-1 to understand the
difference between VO and SLAM.

Stability-based Scale Estimation for Monocular Visual Odometry of Quadrotor MAVs Seong Hun Lee



2 Introduction

algorithms (e.g., VO and SLAM) can allow us to process the visual input efficiently and
interpret it as meaningful data for various autonomous tasks. The technology is already mature
and proven to work in many different platforms. (3) Using only vision is generally better and
more strongly recommended than using only Inertial Measurement Unit (IMU) measurements.
This is mainly because of the intrinsic sensor noise and drift of IMU measurements. Thus,
for example, using visual landmarks for localization is much less prone to drift than relying
on pure IMU measurements (Woodman, 2007; Hu & Chen, 2014). Besides, IMU-only system
cannot map the environment, which makes it unusable for tasks where high-level autonomy
is required, such as collision avoidance in indoor environments. Furthermore, note that it
is also possible (often even more desirable) to combine both vision and IMU measurements
using sensor-fusion techniques, which can lead to a gain in accuracy, robustness and efficiency
- this is called visual-inertial fusion, and it will be briefly introduced in the literature study
(Section 3-2-2).

Second, why use VO/SLAM? In recent years, there have been major advancements of VO and
SLAM methods, pushing the limits in terms of accuracy and efficiency. As a result, it is now
possible to implement many of these state-of-the-art VO systems for control and navigation
of MAVs using only onboard camera and processor. Above all, the fact that both 6 DOF pose
and 3D map of the environment can be estimated accurately and simultaneously in real-time
is the most attractive advantage of SLAM-based autonomous systems. This is also the main
difference from the other existing real-time vision-based approaches which do not make use of
SLAM, such as velocity estimation using optical flow vectors.

So far, the relevance of VO/SLAM in autonomous flight of MAVs has been discussed. Like
any other approaches, the state-of-the-art VO/SLAM algorithms still have large room for
further improvements in terms of performance and functionality. Theoretically speaking,
however, there is one critical weakness that cannot be overcome by simply improving the
system performance as far as monocular approaches are concerned. That is, the intrinsic
unobservability of the absolute scale4. One intuitive way to understand this phenomenon
is by looking at what is called ‘miniature effect’. This is demonstrated in Figure 1-1. You can
clearly see that it is simply not possible to retrieve the absolute scale from just a monocular
sequence of images. Instead, only the relative scale5 can be perceived, although this sense
perception may still turn out to be very wrong in case of insufficient parallax motion. You
may then ask: “Why not avoid the trouble by using a stereo or multiple camera system?”. The
rationale behind choosing the monocular system over stereo system will be elaborated later
in the literature survey (Section 3-1-1).

In order to estimate the 3D translational pose of the camera and coordinates of the map points
in the correct metric scale, the scale factor must be applied to these states. For monocular
systems, the following methods are commonly used to estimate the absolute metric scale factor:

1. Using an additional range sensor (Section 3-2-1)

2. Incorporating the accelerometer measurements in sensor fusion (Section 3-2-2)

3. Initializing the initial map with a target of known size (Section 3-2-3)
4This means the knowledge of metric distance (or length) between the two distinct 3D points in the perceived

environment. The 3D points may also include the 3D position of the camera itself. For more explanation, see
Section 3-2.

5This means the knowledge of ratio of distance (or length) between the two distinct 3D points in the
perceived environment.

Seong Hun Lee Stability-based Scale Estimation for Monocular Visual Odometry of Quadrotor MAVs



3

(a) A miniature model of the RMS
Titanic (Disario, 1997)

(b) A photograph taken during the film-
making (Anonymous, 1997)

Figure 1-1: Demonstration of intentional miniature effect devised during the filmmaking of 1997
film “Titanic”. The audience could not notice that they were watching a miniature model of the
ship, because it is impossible to observe the absolute scale (i.e. dimension of an object in meters)
from a monocular sequence of images. Only the relative scale (i.e. ratio of length or size) could
be perceived.

Each of these methods has their own limitations - it either requires additional sensors or special
target to initialize. Especially, the sensor fusion approach, either filter-based or optimization-
based, is often subject to convergence towards an inaccurate scale factor given a poor initial-
ization (e.g., inappropriate initial movements or inaccurate calibration parameters).

In this work, a novel stability-based scale estimation method is proposed which exploits the
unique self-induced oscillation behavior of quadrotor MAVs when a constant divergence control
strategy is implemented - that is, the control gain which starts inducing the instability is
linearly proportional to the distance to the ground surface from which the flow divergence is
estimated. The distance estimation strategy that takes advantage of this property was first
proposed by (de Croon, 2016), which was verified with simulations and real-world experiments.
Based on the original work, the main contribution of this work will be as follows:

1. The stability-based distance estimation is used to initialize the absolute (metric) scale
of a monocular VO system. This can enable various autonomous flight modes, including
hovering, landing and waypoint-following.

2. Instead of estimating the divergence from optical flow vectors, the unscaled 3D position
and velocity output from the VO system is used to compute the divergence directly.
This will bring about multiple advantages, such as higher accuracy and robustness (see
Section 4-1-1 for more discussions).

3. (OPTIONAL) Improvements of the distance estimation strategy may be proposed (e.g.,
more accurate oscillation detection method, etc.)

This preliminary report is organized as follows: First, a research analysis is given in Chapter 2
where the relevant research objective, questions and tasks are defined. It is then followed by
a literature survey in Chapter 3. The literature survey is structured in two folds, discussing
the state-of-the-art VO/SLAM systems (Section 3-1) and metric scale estimation strategies
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4 Introduction

(Section 3-2). In Chapter 4, a novel stability-based scale estimation method is proposed
and elaborated in the context of a monocular VO pipeline. Also, the set-up for simulations
and real-world experiments is addressed. In Chapter 5, a preliminary analysis of the most
relevant open-source systems and datasets is provided. Finally, the planning and conclusions
are presented in Chapter 6 and Chapter 7, respectively.
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Chapter 2

Research Analysis

2-1 Main research objective

First of all, the main research objective is formulated as follows:

The main research objective is to achieve an autonomous indoor navigation of
a quadrotor MAV using the onboard processor and forward-looking camera by
implementing a monocular VO pipeline with the novel stability-based scale esti-
mation.

The primary reason that a forward-looking camera is chosen over a downward-looking camera
is due to the fact that indoor floor texture is generally weak, which worsens the performance
of any vision-based algorithms. In contrast, the indoor scene visible to the forward-looking
camera usually contains stronger texture, such as edges and corners with strong contrast,
so-called, feature-points. Also, note that the research objective strictly requires that only the
onboard processor be used for the VO system. Despite the disadvantage that it imposes a
strong constraint on the computational complexity of the overall system, onboard processing
can reduce the risk of MAV-to-ground-station link failure or intermittent disconnections, as
well as the time-delay introduced between the vision and control system. Such risks can be
fatal for stability-based strategies where large or inconsistent time delay would most certainly
degrade the accuracy of the system.

2-2 Sub-goals/Tasks

In order to achieve the main objective, the following tasks must be achieved in the following
months:

1. Implement a complete simulation program which links the following modules:

• Graphical interface
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• Quadrotor dynamics
• VO/SLAM system
• Scale estimation using the stability-based distance estimation method.

2. Verify the proposed scale estimation strategy with the simulation.
• If necessary, improve the scale estimation method and repeat.

3. Establish the link between the Single Board Computer (SBC), camera and MAV.

4. Validate the proposed scale estimation strategy with real-world experiments.
• If necessary, adjust the control parameters and repeat.

5. Evaluate the autonomous waypoint-following flights by comparing against the ground
truth
(a) Implement the autonomous waypoint-following flight plan on PaparazziUAV1

(b) Collect and compare the odometry result with the ground-truth trajectory captured
by the OptiTrack2 system.

6. Write a thesis report.

For more information on the set-up of simulation and real-world experiments, see Section 4-2.
The planning and logistics of the task execution is elaborated in Chapter 6.

2-3 Research questions

The following research questions will be answered in the following months to accomplish the
research objective successfully. The main research questions and their sub-questions are listed
in a bullet-point style.

1. Which monocular VO system is the most suitable for the proposed pipeline and platform?

2. How accurate is the stability-based distance estimation compared to the ground-truth?

(a) How accurate is it in simulation?
(b) How accurate is it in real-world experiments?

3. What is the difference between the simulation and real-world experiments, and why so?

4. What modifications (if any) did you make in the algorithm to improve the accuracy of
the stabilization-based scale estimation?

5. How accurate is the pose estimation given by the proposed system compared to the
ground-truth (e.g. RMSE3)?

6. What are the common failure modes of the proposed system?

7. What are the limitations of the proposed method, and what possible recommendations
do you have to overcome these limitations?

1https://wiki.paparazziuav.org/wiki/Main_Page
2https://optitrack.com/
3Root Mean Squared Error
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Chapter 3

Literature survey

In this chapter, the most relevant literature are reviewed. In Section 3-1, the state-of-the art
VO/SLAM systems are categorized and discussed. In Section 3-2, existing methods that are
frequently used for metric scale estimation are investigated.

3-1 Visual Odometry/SLAM Systems

This section consists of two parts. In Section 3-1-1, it is first shown that there exist multiple
ways to categorize VO/SLAM systems based on different characteristics. Also, it is argued
why certain approaches are more suitable for this work than the others. In Section 3-1-2, the
relevant open-source state-of-the-art VO/SLAM systems are reviewed.

3-1-1 Categorization and Justification for choice

The vision system can be categorized in the following ways:

• Visual Odometry vs Visual SLAM

• Monocular vs Stereo

• Sparse vs Dense vs Semi-dense

• Filter-based vs Keyframe-based

• Feature-based vs Direct vs Semi-direct

In the following discussion, the taxonomy of categories is explained. Also, the reason for
choosing a keyframe-based sparse monocular visual odometry approach will be ar-
gued.
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Visual Odometry vs Visual SLAM

Visual odometry and visual SLAM are fundamentally the same in the sense that both methods
attempt to estimate the camera pose and reconstruct the scene structure. In other words, these
two approaches come from the common principle called Structure From Motion (SFM). This
is why some researchers use the term VO and V-SLAM interchangeably. Technically speaking,
however, these two methods have different philosophies. VO aims at recovering the camera
pose incrementally, and potentially, it may build a local map and trajectory using windowed
optimization. SLAM, on the other hand, tries to produce a globally consistent map and
trajectory, such that the system can detect when the camera returns to a previously explored
position and correct the drift accordingly. This is known as ‘loop-closure’. In summary, one can
distinguish between VO and SLAM by looking whether it has a loop-closure functionality or
not. Therefore, a full SLAM system has generally higher computational complexity compared
to a pure VO system. It is for this reason why VO will be used for this work. For
more discussion on the difference between visual odometry and SLAM, see (Scaramuzza &
Fraundorfer, 2011).

Monocular vs Stereo

Stereo methods have several advantages over monocular methods - for example, it is possible
to directly compute the 3D map points in the the absolute scale. Besides, stereo schemes are
generally more robust to drift in case of small motions. However, the depth estimates from
stereo vision deteriorate when the scene is far away from the cameras. This is illustrated in
Figure 3-1. Since △POlOr is similar to △Pplpr, the following equations hold:

d

b
=

d− f

b− xl + xr
(3-1)

Hence:
d

b
=

f

xl − xr
(3-2)

Equation (3-2) means that if the depth-to-baseline becomes large, the disparity (xl − xr) will
be small, and vice versa. So when the matched feature is actually located far away from
the cameras (e.g., at infinity), the computation of this feature’s depth would rely on a very
small disparity value, which implies that the estimation is most likely to be sensitive to small
errors or even noise introduced in the stereo matching process. One way to mitigate this
problem is by increasing the stereo baseline. However, this is often undesirable or impractical
for lightweight MAVs. With this trade-off between monocular and stereo approaches in mind,
the focus is placed on the fact that (1) the target platform is a quadrotor MAV with a strong
constraint on the size, and (2) large-scale navigation should be possible using the same method
used for the small-scale navigation. Therefore, a monocular scheme is chosen, and this
is explicitly specified in the research objective (see Section 2-1).

Sparse vs Dense vs Semi-dense

Based on the sparsity of the tracking/mapping points, VO/SLAM systems can be classified
as either sparse, dense or semi-dense method (see Figure 3-2). Sparse methods track and map
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Figure 3-1: Stereo-vision disparity and depth relationship are explained. pl and pr are the 2D
projections of the 3D feature point P onto the left and right camera’s image planes respectively.

only a selected subset of sparse points (e.g. corners, feature-points), whereas dense methods
use the entire pixels in the 2D image. The difference in sparsity is clearly manifested in the
appearance of the 3D point cloud reconstruction result. The most representative dense SLAM
methods are (Newcombe, Lovegrove, & Davison, 2011) and (Pizzoli, Forster, & Scaramuzza,
2014). On the other hand, semidense approach uses only the high-gradient pixels in the image,
which usually correspond to edges and corners. In general, the number of 3D tracking (and
mapping) points in the semidense methods is larger than the sparse methods, but smaller than
the dense methods. Examples include (Engel, Sturm, & Cremers, 2013) and (Engel, Schöps, &
Cremers, 2014). The primary tracking and mapping threads of DPPTAM (Concha & Civera,
2015) also make use of semidense pixel points. For this work, only sparse methods will
be considered due to the limited processing resources of onboard processors.

Figure 3-2: Illustration of different sparsity levels (Scaramuzza, 2016). Only the colored pixels
are used for tracking and mapping, and the rest are simply discarded.

Filter-based vs Keyframe-based

Filter-based methods, such as (Davison, Reid, Molton, & Stasse, 2007), estimate the pose
and 3D feature positions by including them as in the state vector and updating their prob-
ability distributions sequentially using Extended Kalman Filter (EKF)-framework. On the
other hand, keyframe-based methods use optimization (e.g., bundle adjustment) on a selected
subset of past frames known as keyframes to compute the most likely pose parameters and
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feature positions. In (Strasdat, Montiel, & Davison, 2010), these two approaches are com-
pared. Their results showed that keyframe-based methods give higher accuracy, unless the
processing resources are significantly limited, which is not the case for most commercially
available embedded processors today. Thus, a keyframe-based approach is chosen for
this work.

Feature-based vs Direct vs Semi-direct

Visual motion estimation methods can be classified into three categories: Feature-based (or
indirect), direct, and semi-direct (or hybrid). Feature-based methods estimate 3D geometry of
a scene and camera pose by performing an optimization technique called “Bundle Adjustment
(BA)” which tries to minimize the reprojection error from a set of keypoint-matches (see
Figure 3-3). Motion-only BA is then expressed as Equation (3-3), where Cost(·) represents a
robust cost function (e.g. Huber or Tukey (Huber, Wiley, & InterScience, 1981)). Examples
of feature-based approach are PTAM (Klein & Murray, 2007) and ORB-SLAM (Mur-Artal,
Montiel, & Tardos, 2015).

Figure 3-3: Feature-based methods minimize the cost function of reprojection error (Scaramuzza,
2016). See Equation (3-3).

Tk,k−1 = argmin
T

∑

i

Cost
(
u′
i − π(pi)

)
(3-3)

In contrast, direct methods do not extract or match feature-points. Instead, they make use
of the photometric error (i.e., difference in the pixel intensity) in order to estimate the 3D
geometry of the scene and camera pose. This is shown in Figure 3-4 and Equation (3-4).
Examples of direct approach are DTAM (Newcombe et al., 2011), LSD-SLAM (Engel et
al., 2014) and DPPTAM (Concha & Civera, 2015). Compared to the sparse feature-based
methods, dense direct methods have been shown to be more robust in scenes with little texture
(Lovegrove, Davison, & Ibanez-Guzman, 2011), occlusion and camera blur caused by the rapid
motion or defocus (Newcombe et al., 2011) compared to feature-based methods. Semi-direct
methods, such as SVO (Forster, Pizzoli, & Scaramuzza, 2014), use the photometric error for
the initial pose estimation after each keyframe addition, and perform BA to refine the camera
pose and structure.
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Figure 3-4: Direct methods minimize the cost function of photometric error (Scaramuzza, 2016).
See Equation (3-4).

Tk,k−1 = argmin
T

∑

i

Cost
(
Ik(u

′
i)− Ik−1(ui)

)

where u′
i = π

(
T ·

(
π−1(ui) · di

)) (3-4)

For the moment, the question as to which method is the most appropriate for this work is
left unanswered because there are large spectrum of systems of each type and it is difficult to
generalize which approach is better than another. Instead, some of the most relevant state-
of-the-art VO systems of each type (i.e., feature-based, direct and semi-direct) are tested and
compared in Section 5-2.
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3-1-2 Open-source VO/SLAM Systems

In this section, the following stat-of-the-art open-source VO/SLAM systems (except for the
sparsified DPPTAM, which is closed-source) are reviewed. Note that all these methods take
a keyframe-based monocular approach.

1. PTAM (Klein & Murray, 2007) and Modified PTAM (Weiss, Siegwart, & Kumar,
2012)

2. SVO (Forster et al., 2014)

3. DPPTAM (Concha & Civera, 2015) and Sparsified DPPTAM

4. ORB-SLAM (Mur-Artal et al., 2015)

5. DSO (Engel, Koltun, & Cremers, 2016a)

PTAM

Figure 3-5: Visual output from PTAM demo. Left: Camera input and tracked feature points.
The different colors of the feature points represent the different pyramid levels at which the
tracking is taking place. Right: 3D visualization of the camera trajectory and mapped points.

Parallel Tracking and Mapping (PTAM) (Klein & Murray, 2007) is the first keyframe-based
algorithm which separates the tracking and mapping process in two parallel threads, resulting
in a significant increase of the computational efficiency and system performance compared to
the past SLAM algorithms, such as filter-based MonoSLAM (Davison et al., 2007). PTAM is
characterized by the following points:

• The original release of PTAM initialized a map using five-point stereo algorithm
(Stewénius, Engels, & Nistér, 2006) which estimates a fundamental matrix assuming
non-planar initial scene, but this was later changed to a homography-based algorithm
(Faugeras & Lustman, 1988) which assumes the initial scene to be piecewise planar.

• The Features from Accelerated Segment Test (FAST) algorithm (Rosten & Drummond,
2006) is used to extract corners, and they are represented as 8×8 locally planar patches.
Four-level image pyramid is built for each keyframe. Each map-point has a reference to
the source keyframe and pyramid level where the feature was first observed, as well as
its 2D pixel location.
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• The tracking thread updates the pose by optimizing the Tukey biweight objective func-
tion (Huber et al., 1981) of the reprojection error (see Equation (3-3)). To improve the
chance of convergence, a motion model is implemented to predict the pose and use it
as the initial guess. Also, coarse-to-fine scheme is employed search the patches more
robustly in the rapid camera motions.

• Once tracking is lost, relocalization is attempted by comparing the photometric differ-
ence of Small Blurry Image (SBI) of the current frame with respect to SBIs of all past
keyframes. Once the most similar keyframe is found, the position of the current frame is
assumed to be the same as the position of the matching keyframe. Afterwards, Efficient
Second Order Minimization (ESM) tracking (Benhimane & Malis, 2007) is carried out
to compute the rotational transformation that best aligns the two images.

• A new keyframe is added by the mapping thread if a certain minimum time has passed
and the current pose is farther than a certain minimum distance from the closest past
keyframe. Then, the reprojection error between the projection and triangulation of the
map-points from the closest keyframe is used in the bundle adjustment.

• The bundle adjustment consists of local bundle adjustment (where the recent keyframe
poses and associated map-points are optimized) and global bundle adjustment (where
the all keyframe poses and map-points are fully optimized after the map-points are
locally converged.).

The limitations of PTAM are: First, the stereo initialization algorithm can easily fail unless a
slow and smooth translational motion is given parallel to the image plane. Second, it cannot
handle large occlusion, as self-occlusion by the map is not understood by the system. This
makes PTAM inappropriate for applications, such as large-scale operations or tracking 360◦

movement around a target object.

Modified PTAM

Modified PTAM (Weiss, Achtelik, Lynen, Chli, & Siegwart, 2012) has the following adapta-
tions to the original algorithm which improve the tracking quality and system performance:

1. It retains an upper bound in the number of keyframes used in order to minimize the
computational complexity. The keyframe farthest away from the current keyframe gets
deleted first along with the associated features. Also, the number of maximum tracking
points for each keyframe is reduced from 1,000 to 300.

2. Features from the finest-scale pyramid level are not included in map-handling. This
improves the keyframe-generation speed and tracking robustness against high frequent
“self-similar” scenes, such as grass or asphalt.

3. Inverted index structure is implemented to filter out the map-points that are unlikely
to be in the field-of-view of the current keyframe.
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SVO

Figure 3-6: Visual output from SVO demo. ROS rviz package is used for online visualization.

Semi-direct Visual Odometry (SVO) (Forster et al., 2014) is a semi-direct monocular visual
odometry method characterized by the following novelties:

• Tracking thread is divided into three steps of hybrid motion estimation approach:
1. Sparse model-based image alignment: this direct step provides the initial estimate

of the relative camera motion by minimizing the photometric error of 4×4 patches
around FAST corners. Inverse Compositional Image Alignment (ICIA) technique
is applied to accelerate the process (Baker & Matthews, 2004).

2. Relaxation through feature alignment: this step refines the 2D feature correspon-
dence by aligning the corresponding affine-warped feature-patches. ICIA approach
is also used for this step.

3. Pose and structure refinement: in this step, bundle adjustment is applied using the
reprojection error from the previously obtained feature correspondence.

• Mapping thread uses a Bayesian depth filter from (Vogiatzis & Hernandez, 2011) to
recursively estimate the probabilistic distribution of the inverse depths corresponding to
the 2D features. Refer to (Civera, Davison, & Montiel, 2008) for more information on
inverse depth parametrization.

The processing speed of SVO is remarkably fast: approximately 300 fps on the laptop1 and 55
fps on the embedded platform2. Such high speed is the result of the semi-direct approach which
saves computational cost by obviating the need for explicit feature extraction and matching at
every frame, as well as the Bayesian depth filter which allows the system to use a small number
of features (< 200) by assuring reliable depth estimates of the tracked features. However, the
limitation of the current SVO implementation is that the tracking robustness deteriorates
considerably if either (i) rolling shutter camera is used instead of global shutter camera, (ii)
video frame-rate is low (≤ 30 Hz), or (iii) the dominant motion is the forward motion. If
only such shortcomings can be overcome by means of an efficient visual-inertial fusion, SVO is
an undoubtedly attractive choice due to its inherent speed advantage compared to other VO
systems. An example of visual output is shown in Figure 3-6.

1Intel i7, 8 cores, 2.8 GHz
2Odroid-U2, ARM Cortex A-9, 4 ores, 1.6 GHz
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DPPTAM

Figure 3-7: Visual output from DPPTAM demo in a small workspace environment. Left top
image: input RGB frame. Left bottom image: Projections of the tracked points and 3D
superpixels onto the image input . The green points have low photometric error, and the pink
points have high photometric error. Blue planes are the successfully mapped 3D superpixels.
Right image: 3D point cloud as a result of mapping. The 6-DOF camera pose is visualized by
the red pyramid

Dense Piecewise Planar Tracking and Mapping (DPPTAM) (Concha & Civera, 2015) is a
direct monocular VO algorithm consisting of three threads - semidense tracking, semidense
mapping and dense piecewise plane (i.e. 3D superpixels) mapping. The semidense tracking
thread estimates the camera pose by optimizing the weighted square sum of photometric
errors corresponding to high-gradient pixels. The optimization is done by using the inverse
compositional Iteratively Reweighted Least Squares (IRLS) algorithm (Baker & Matthews,
2004) with Gauss-Newton update and Geman-McClure weight function. In parallel with the
tracking thread, the semidense mapping thread estimates the 3D location of the map points.
The thread has two main functions: (a) inverse depth update through epipolar triangulation,
and (b) inverse depth regularization. The epipolar search uses Sum of Absolute Difference
(SAD) with 7 × 7 patch size, and afterward, the uncertainties of estimated inverse depths
are updated by assuming a disparity deviation of one pixel, like in (Forster et al., 2014;
Pizzoli et al., 2014). The inverse depth regularization performs “de-noising of the map” by
means of outlier removal based on three criteria - temporal consistency, spatial consistency
and accumulated uncertainty in geometric disparity error. Finally, the 3D superpixel mapping
thread constructs piecewise planar surfaces by fitting planes (with RANSAC) to the semidense
map points whose 2D projections belong to the superpixel contour obtained from the graph-
based image segmentation (Felzenszwalb & Huttenlocher, 2004) of each mapping image.

In order to bootstrap the system, a random depth with extremely large uncertainty is uniformly
assigned for the first frame parallel to the image plane. In most of the cases, it has been
shown that the depth map converges to the correct value after the first few keyframes. Such
bootstrapping method is similar to (Engel et al., 2014). Since this uniform depth at the
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beginning is obviously not the ground truth value, DPPTAM does not visualize the initial
local map results from the first few keyframes in the final 3D reconstruction. An example of
visual output is given in Figure 3-7.

Sparsified DPPTAM

Sparsified DPPTAM is a closed-source sparse variation of DPPTAM which uses and recon-
structs FAST corners in the images (see Figure 3-8). The main difference between the semi-
dense DPPTAM (i.e. original DPPTAM implementation without 3D superpixel dense map-
ping) is that it selects corners for the inverse depth initialization, instead of high-gradient
pixels. Additionally, the sparsified DPPTAM adapts FAST corner thresholds regionally to
control the map sparsity and distribution of points throughout the image, similarly to (Engel
et al., 2016a). The sparsified DPPTAM is not only faster than the original DPPTAM (i.e.,
increased tracking speed up to 60 fps for 320× 240 resolution input), but also more accurate
and robust to hostile changes in the appearance of the scene caused by large/rapid movements,
occlusion, and illumination changes.

Figure 3-8: Sample results from the sparsified DPPTAM. Top three images: Sparse (sometimes
semidense, depending on the corner threshold) projections of the tracked points onto the image
input. Bottom two images: Final reconstruction of the scene and camera pose trajectory.
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ORB-SLAM

Figure 3-9: Visual output from ORB-SLAM demo. The red points represent the local map, and
black points are the remaining feature points which are not visible in the local map. The past
keyframe positions are shown as blue cameras.

ORB-SLAM (Mur-Artal et al., 2015) is a full SLAM algorithm (i.e., with loop closure) which
takes a featured-based monocular sparse approach. The visual output is shown in Figure 3-9.
The main contributions of ORB-SLAM are:

• Oriented FAST and rotated BRIEF (ORB) features (Rublee, Rabaud, Konolige, & Brad-
ski, 2011) are used throughout all tasks, allowing real-time performance on CPUs and
strong invariance to viewpoint and illumination changes.

• Real-time performance is ensured for even large-scale operations by using a covisibility
graph (Strasdat, Davison, Montiel, & Konolige, 2011).

• Real-time loop-closure is achieved by optimizing a pose graph called the Essential Graph.
An essential graph is made of (i) a spanning tree of keyframes, (ii) a subset of strong
edges from the covisibility graph, and (iii) loop-closure links.

• Bags of words place recognition module based on DBoW2 (Galvez-Lopez & Tardos,
2012) are used for effective loop detection and relocalization.

• Automatic initialization procedure which can handle both planar or non-planar initial
scenes.

• A survival of the fittest approach (i.e. recent map points culling and local keyframe
culling) discards outlier map-points and redundant keyframes.

All optimizations are performed using the Levenberg-Marquardt algorithm implemented in
the g2o framework (Kuemmerle, Grisetti, Strasdat, Konolige, & Burgard, 2011).
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DSO

Figure 3-10: Visual output from DSO demo. The bottom left image shows the camera input
with 2D projections of the tracked points with color-coded inverse depth. The red line represents
the camera pose trajectory, and local constraints among the active keyframes are shown in blue
color.

Direct Sparse Odometry (DSO) (Engel et al., 2016a) is a direct sparse monocular visual
odometry method (as shown in Figure 3-10) characterized by the following novelties:

• It is a fully direct method that jointly optimizes the likelihood of all involved model
parameters - camera poses, camera intrinsics, inverse depth values (and affine brightness
transfer function parameters if the proposed photometric calibration (Engel, Koltun, &
Cremers, 2016b) is absent).

• Visual odometry front-end performs data-selection and manages the frames and points
with effective heuristics, providing accurate initialization for the back-end optimization.

• Windowed optimization, inspired by (Leutenegger, Lynen, Bosse, Siegwart, & Furgale,
2015), marginalizes the old variables (i.e. keyframes and all the points represented in
them) using Schur complement in order to drop residual terms that affect the sparsity
pattern of the Hessian in the Gauss-Newton optimization.

DSO is shown to outperform the odometry version of ORB-SLAM (Mur-Artal et al., 2015)
in a hard-enforced real-time setting. Especially, it is worth noting that the proposed reduced
setting (800 feature points, 6 active frames, 424 × 320 image resolution, ≤ 4 Gauss-Newton
iterations) can be used to achieve 5 times real-time speed3 on a high-end laptop4. However,
it was shown that the performance of DSO quickly deteriorates in the presence of strong
geometric noise originating from inaccurate camera calibration and/or rolling shutter camera
effect. This suggests that indirect model (e.g. ORB-SLAM) may be generally superior for
smartphones or off-the-shelf webcams.

3This is the speed when all images were loaded and rectified beforehand
4Intel i7-4910MQ CPU
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3-2 Metric Scale Estimation Methods

The metric scale of a monocular VO can be estimated if any one of the following types of
distance is known or measured in meters: (i) pose-to-pose distance, (ii) pose-to-point distance,
and (iii) point-to-point distance, as shown in Figure 3-11. The VO system provides measures of
these distances with its own arbitrary scale. Even though this scale is not metric, the distances
are internally consistent with each other as long as the VO results are valid. Therefore, knowing
at least one type of metric distance in the map and/or pose will allow us to directly compute
the metric scale factor. In this section, four different scale estimation strategies are reviewed:

1. Using a range sensor

2. Visual-inertial fusion

3. Initialization with a known target

4. Stability-based distance estimation

pose-to-pose

   distance

pose-to-point

   distance

point-to-point

   distance

Camera 

Pose 1
Camera 

 Pose 2 

Point Cloud Map

Figure 3-11: Basic principle of scale estimation illustrated: The metric scale of a monocular VO
can be estimated if any one of the above distances is known or measured in meters.
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3-2-1 Using a Range Sensor

Range sensors (e.g., laser, ultrasonic/pressure altimeter, RGB-D5 cameras) or stereo cameras
can directly provide the metric distance measurements. This corresponds to the pose-to-
point distance in Figure 3-11. For each type of sensors, there exist a number of advanced
odometry/SLAM methods which effectively incorporate the range measurements to estimate
the metric states. For interested readers, refer to (Cole & Newman, 2006), (Engel, Sturm,
& Cremers, 2012) and (Kerl, Stueckler, & Cremers, 2015) to learn more about the existing
methods that use a laser, ultrasonic/pressure altimeter, and RGB-D camera, respectively.
Although the direct availability of the distance measurements allows for higher accuracy and
efficiency, there are few obvious weaknesses: First of all, lasers and RGB-D cameras are often
too bulky or heavy to be mounted on MAVs. Second of all, ultrasonic/pressure altimeters are
not trivial to acquire. Besides, their height measurements are also known to be quite noisy,
and yield even lower reliability when the ground is more uneven.

3-2-2 Visual-Inertial fusion

Over the past decade, visual-inertial fusion methods have gained large popularity for variety
of applications in robotics and perception field. This is due to the complementary nature
of the two sensor modalities (i.e., a camera is an exteroceptive sensor, whereas an IMU is
a proprioceptive sensor), as well as the availability of small, lightweight and cheap cameras
and MEMS6 IMUs. IMUs consist of tri-axis gyroscopes and accelerometers. The gyro mea-
surements are especially useful when estimating rapid rotational motions which are generally
known to be difficult to track in VO. However, since the gyro measurements are purely ro-
tational, they do not provide any information on the metric distance. Therefore, in order to
estimate the absolute scale of a monocular VO, accelerometer measurements must be used.
For this reason, we only consider the visual-inertial fusion approaches that use both gyro and
accelerometer measurements, thus excluding ‘gyro-only’ approaches such as (Forster, Zhang,
Gassner, Werlberger, & Scaramuzza, 2016).

The simplest (but not the smartest) way to acquire metric distances would be by double-
integrating the pure accelerometer measurements. If this is accurate enough, one can easily
compute the pose-to-pose distance in Figure 3-11. However, such approach of pure IMU
integration usually yields unreliable results due to the accumulation of sensor bias and noise
(Woodman, 2007; Hu & Chen, 2014). Moreover, the accelerometer measurements are known
be very noisy, and this is even worse for small robots, as their bodies are relatively more
subject to vibration and most of them do not carry any dampening mechanisms due to their
limit in size. This suggests the importance of more elaborate visual-inertial fusion methods.

The state-of-the-art visual-inertial fusion methods can be divided into two main types:
loosely-coupled and tightly-coupled approaches. Loosely-coupled approaches (Weiss et
al., 2013) consider the VO module as a ‘black box’ which yields the 6 DOF pose as out-
put, and integrates this result with IMU measurements using EKF to estimate the states,
including IMU biases and absolute scale. In contrast, tightly-coupled approaches (Mourikis &
Roumeliotis, 2007; Leutenegger et al., 2015; Forster, Carlone, Dellaert, & Scaramuzza, 2015)

5A typical example is Kinect (http://www.xbox.com/en-US/xbox-one/accessories/kinect)
6an acronym for Microelectromechanical Systems
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jointly estimate the states by including the raw measurements from the camera and IMU di-
rectly into a common filter or optimization problem. Studies have shown that tightly-coupled
methods are usually more computationally expensive, but yield better estimation results than
loosely-coupled methods (Leutenegger et al., 2015; Shen, Michael, & Kumar, 2015).

Tightly-coupled fusion systems can be subdivided into two categories: filter-based and non-
linear optimization-based approaches. The most notable example of the filter-based ap-
proach is the Multi-State Constraint Kalman Filter (MSCKF) (Mourikis & Roumeliotis, 2007).
This approach is structureless (i.e., positional tracking is the only important function, and it
does not reconstruct the 3D structure of the environment) and is more efficient than EKF
in that its computational complexity grows linearly in the number of features, unlike EKF
where the complexity grows quadratically. On the other hand, nonlinear optimization-based
approaches have proven to outperform the filter-based methods in terms of accuracy, but
at the cost of increased computational complexity (Leutenegger et al., 2015; Forster et al.,
2015). Recently, a simultaneous state initialization and gyro bias calibration method using a
closed-form solution was proposed in (Kaiser, Martinelli, Fontana, & Scaramuzza, 2017).

Although the state-of-the-art visual-inertial fusion methods have demonstrated an impres-
sive level of performance in terms of accuracy and efficiency, both filter-based methods and
optimization-based methods have been shown to be subject to convergence towards an inaccu-
rate state-estimation (or even divergence) unless carefully supervised initial movements and/or
calibration parameters (e.g., IMU biases, camera-to-IMU calibration and time-synchronization
between the two sensors) are provided.

3-2-3 Initialization with a Known Target

One straightforward way to estimate the metric scale is by using a special target object
of known size (Davison et al., 2007; Eberli, Scaramuzza, Weiss, & Siegwart, 2011). If an
object with known dimension such as a 2D feature pattern is placed in front of the camera at
initialization, the object can be recognized using a simple detection algorithm. Subsequently,
a point-to-point distance (see Figure 3-11) can be computed from the designated features
on the target object, which is then used to initialize the scale. Furthermore, if the distance
between the camera and target object is known, the features can be directly added to the map
with absolute scale. This can greatly ease the bootstrapping of the VO system.

However, there are few limitations of this approach: First, it requires a special target object
which must be easily recognizable and that the object be placed in a certain way during
initialization of the system. Moreover, since the target object is used only at initialization, it
is prone to scale drift over time.
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3-2-4 Stability-based Monocular Distance Estimation

In order to understand the principle behind the stability-based method proposed by (de Croon,
2016), we first need to understand the meaning of the following two terms - (flow) divergence
D and visual observable θz.

Divergence and Visual Observable

Using the camera coordinate system shown in Figure 3-12, the equations for divergence D at
the optical center are given as follows7.

D ≡ 1

2
∇~q

(
or
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2
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)
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where ~q is an optical flow field at the optical center, (xim, yim) =
(
f Xc

Zc , f
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Zc

)
are 2D

projection of 3D feature’s position vector (Xc, Y c, Zc)T onto the camera’s image plane,
(u, v)T ≡ (ẋim, ẏim)T is an optical flow velocity, and V̂ c

X , V̂ c
Y , V̂ c

Z are ventral flow vectors
(i.e. depth-scaled velocities):
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X
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V c
Y

Zc
, V̂ c

Z =
V c
Z
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(3-8)

For the full derivation of Equation (3-7), refer to (Longuet-Higgins & Prazdny, 1980) and
(Subbarao, 1990). Assuming planar scene structure and zero translational velocity parallel to
the image plane (i.e. V c

X = V c
Y = 0 and Zw = Zc), Equation (3-7) becomes:

D =
V c
Z

Zc
=

V c
Z

Zw
(3-9)

Since the z-axes of the world reference frame and camera coordinate system are in the opposite
direction, Equation (3-9) can be written as:

D = −V w
Z

Zw
(3-10)

Then, visual observable θz is defined as:

θz ≡ −D =
V w
Z

Zw
(3-11)

Thus, D > 0 and θz < 0 when the MAV descends vertically.

With this background knowledge, there are two obvious ways to compute divergence:

1. Directly plug in the estimated value of V w
Z and Zw into Equation (3-10).

7According to Equation (3-5), this is in fact a half-divergence. It is defined this way to follow the same
convention as in the original work (de Croon, 2016)
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2. Estimate the partial derivatives of the optical flow velocities at the optical center, and
use Equation (3-6).

The problem with the first method is that the metric values of V w
Z and Zw cannot be obtained

with a monocular camera due to the intrinsic unobservability of the absolute scale. On the
other hand, the problem with the second method is that the direct estimation of ux and vy
is highly unpractical because it relies on the differentiation of a single measurement of optical
flow velocities, which means that it would be extremely sensitive to the noise. Besides, there
is no guarantee that a reliable feature will be detected precisely at the optical center and
tracked accurately in the next frames. In (de Croon, 2016) and (Ho, Croon, Kampen, Chu, &
Mulder, 2016), these problems are circumvented by using the ‘size divergence’ - they measure
the size of lines between features in consecutive frames, and take the median or average of the
estimates. Interested readers are referred to (Ho et al., 2016) for the mathematical explanation
of this method.
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Figure 3-12: Reference frames employed in (de Croon, 2016). Left: World reference frame and
MAV’s velocity with respect to this frame. Right: 3D Camera and 2D image coordinate system.
f is the focal length of the camera, which represents the distance between the camera center and
image plane. Note that the positive Zc direction is the same as the camera view direction, which
is downward in this case.

Stability-based Strategy for Monocular Distance Estimation

In (de Croon, 2016), a stability-based method of estimating distance is proposed for quadrotor
MAVs with only a downward-looking monocular camera. This strategy exploits the unique self-
induced oscillation behavior of quadrotors that typically occurs during a constant divergence
landing (i.e., thrust command is controlled such that D is kept constant). This strategy
is motivated by the analytical evidence that the control gain Kz which starts causing the
instability is linearly proportional to the distance to the ground surface z from which the flow
divergence is estimated:

Kz =
2

T
z (3-12)
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where T is the time step used for discretization of the system with Zero-order Hold (ZOH).
Such linear relationship was shown to hold even in the presence of wind, drag and time delay.
Equation (3-12) implies that, at the onset of the oscillation, the knowledge of Kz can directly
provide the information on z.

Three possible ways are proposed in the original work to estimate the oscillation-inducing gain
Kz:

1. Fixed-gain landing approach: During a constant divergence landing, a fixed control
gain Kz will start causing vertical oscillations when a certain height is reached. This
oscillation can be detected by evaluating the covariance between the thrust and observed
estimate of θz given at time t and window W :

covt(u′z, θ̂z) =
t∑

i=t−W+1

(
u′z(i)− u′z

) (
θ̂z(i)− θ̂z

)
(3-13)

where θ̂z is a delayed estimation of true θz, and u′z is the upward thrust command in
Newton which follows the control law u′z = Kz(θ

∗
z − θz) with the set-point θ∗z . If this

(negative) covariance falls below a certain threshold, one can regard it as the onset of
oscillations. In (Ho et al., 2016), a more robust oscillation detection method is pro-
posed, which examines the windowed covariance of divergence and half-period-shifted
divergence. However, this method requires the prerequisite knowledge of the resonance
frequency which can be obtained from the Discrete Fourier Transform (DFT).

2. Hovering approach: While hovering, Kz is varied through adaptive gain control to
induce oscillations at a given height. The detection of oscillations is identical to the
previous approach.

3. Landing-on-the-edge-of-oscillation approach: This approach is similar to the hov-
ering approach, except that the adaptive gain control keeps covt(u′z, θ̂z) and set-point θ∗z
at fixed negative values. This enables the MAV to descend “on the edge of oscillation”
and estimate the height continuously during the landing.

The hovering approach is particularly interesting because it allows for the distance estima-
tion without necessitating large movements like in the case of most monocular visual-inertial
approaches. Instead, small vertical oscillations would suffice. Another advantage over visual-
inertial methods is the simplicity of the algorithm, as you do not have to go through a tedious
sensor calibration and synchronization process which is often required by visual-inertial fusion
algorithms. On the other hand, the limitation of this stability-based strategy is that prior
knowledge of the linear relationship z = aKz + b is required to estimate z based on Kz. In
(de Croon, 2016), this knowledge was obtained by fitting a linear model to the data measured
by an Optitrack motion tracking system.
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Chapter 4

Methodology

In this chapter, a novel solution is proposed to estimate the absolute scale for monocular VO
of quadrotor MAVs - that is, stability-based scale estimation. The proposed method is
elaborated in the context of a complete VO pipeline in Section 4-1. In Section 4-2, the set-up
for simulations and real-world experiments is also explained.

4-1 Proposed solution

4-1-1 Motivation and Contribution

As mentioned in Section 3-2-4, in the original work (de Croon, 2016; Ho et al., 2016), the
divergence D is estimated from the 2D optical flow vectors in the image input provided by a
downward-looking camera. This approach has several limitations, such as:

• The camera must be downward-facing.

• The ground visible to the camera must be planar and highly textured.

• A few inaccurately tracked features can have large influence on the divergence estimation,
so some form of outlier rejection (e.g., Random Sample Consensus (RANSAC) (Fischler
& Bolles, 1981)) should be implemented.

• Horizontal movements (e.g. caused by wind, etc.) must be kept minimal to ensure
accurate estimation of divergence.

In this work, we propose a new method of computing the divergence by directly using the
unscaled 3D position and velocity output from a monocular VO system. This exploits the
following relations:

D = −V w
Z

Zw
= −(1/λ) · V w

Z

(1/λ) · Zw
= −V vo

Z

Zvo
(4-1)
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where λ is an unknown metric scale factor which converts the arbitrarily-scaled translational
velocity and position vectors (e.g., V vo

Z and Zvo) from the monocular VO into metric values
(e.g., V w

Z and Zw). The novelty of this idea lies in the fact that the knowledge of
the scale λ is never required for the estimation of divergence, even though we
are still using the unscaled results from VO - it simply cancels out itself as shown in
Equation (4-1).

At the cost of increased computational complexity, this method of divergence estimation over-
comes the limitations of optical-flow-based approach mentioned earlier:

• The camera does not necessarily have to be downward-looking. It can be either
downward-looking or forward-looking, depending on the environment and use-case. For
example, you might prefer using a downward-looking camera for outdoor applications,
and forward-looking camera for indoor navigation.

• Even if a downward-looking camera is used, the ground does not have to be planar. If a
forward-looking camera is used, this approach is affected by neither ground texture nor
its geometric structure.

• A few outliers in feature tracking will not significantly affect the accuracy of divergence
estimation unless the entire VO system fails and loses tracking completely.

• Horizontal movements (e.g. caused by wind, etc.) will not affect the divergence estima-
tion.

Using Equation (4-1) for the computation of divergence will hopefully improve the accuracy
of the stability-based distance estimation strategy, since we can now directly use the accurate
estimation of unscaled V vo

Z and Zvo given by the state-of-the-art VO/SLAM system. Then,
one can easily employ the stability-based distance estimation technique proposed to compute
the absolute scale of a monocular VO by following a simple procedure:

1. Initialize a monocular VO (by manually moving/flying the MAV with gentle movements).

2. Place the MAV on the ground, and set Zvo = 0.

3. Take off and hover at a random height A. This corresponds to H w
A in meters (unknown)

and Z vo
A in arbitrary VO scale (known).

4. Estimate Hw
A in meters while hovering, using the technique proposed in (de Croon,

2016).

5. Compute the scale factor λ using:

λ =
H w

A

Z vo
A

(4-2)

6. Scale the translational position and velocity results from the VO system using λ.

7. Use these scaled states for autonomous control and navigation of the MAV.

This method has several advantages over the other scale estimation methods mentioned in
Section 3-2. First of all, it does not require any range sensors. Therefore, it can also be used
for MAVs without any additional sensors other than a camera. Second of all, this method is
more robust to inaccurate calibration parameters compared to visual-inertial fusion methods,
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although the state-estimation results may not be as accurate when initialized with a very
good calibration parameters. As discussed previously in Section 3-2-2, it is a known issue
that visual-inertial fusion methods are often subject to convergence towards a wrong local
minimum (or even divergence) given a poor initialization. Finally, the stability-based method
does not require any special target with known dimension for initialization. This allows for
remote operations where the ground-station is located far away from the MAV’s flight area.
Moreover, it enables reinitialization at any position during the flight - basically, all you need
to do is hover and estimate the height again with respect to the initial ground level (i.e.,
where Zvo = 0). This would not be possible if you initialized the scale with a special object
with known dimension, unless you manually place the object in front of the camera again for
reinitialization. The fact that the stability-based scale estimation can be performed at any
time and location during the flight suggests that it is also possible to minimize the scale drift
by correcting the scale multiple times at different positions.

4-1-2 Proposed System Overview

The pipeline of the proposed system is illustrated in Figure 4-1. In the figure, the monocular
VO and stability-based height estimation modules are regarded as ‘black boxes’ for conve-
nience. Although it is not explicitly shown in the figure, one should keep in mind that the
stability-based height estimation module will be using the vertical controller implemented in
PaparazziUAV autopilot. In fact, it is more appropriate to consider it as a part of the autopilot
system. The figure is drawn like this in order to emphasize the use of the (scaled) estimation
of states provided by the monocular VO system for replacing GPS-signals.
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VZ Z,
Compute

D and θ 
z

Stability-based

      Height
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θz Compute λ
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λ = 
H
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λ
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Onboard 

Camera

Images

Scaled States

A

A

vo vo
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w
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Figure 4-1: Proposed System Pipeline: Colored modules are treated as ‘black box’ for simpli-
fication. H w

A is the height in meters the MAV hovered around and estimated. V vo
Z and Zvo

are unscaled vertical position and speed given by the VO system, respectively. Z vo
A denotes the

corresponding Zvo at H w
A .
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4-2 Experimental set-up

In this section, a planning for the set-up of simulation, hardware and real-world experiments
is presented.

4-2-1 Hardware

The following hardware will be used for simulation and real-world experiments:

• Laptop: Lenovo ThinkPad W541, i7-4810MQ at 2.80GHz, 15GB RAM

• SBC: Odroid XU41, Exynos5422 Octa core CPUs (A15 Quad 2.0GHz and A7 Quad
1.4GHz), 2GB RAM

• Camera: mvBlueFOX-MLC200w2 (global shutter camera)

• Drone: Mavtec

4-2-2 Simulation set-up

Figure 4-2: Visual output from tum_simulator. Main window: Simulated 3D world with AR-
Drone model. Bottom right window: Image stream from the forward-looking camera on the
drone.

The simulation of the complete system (which will be written in C++) will be carried out in
ROS3 environment. The simulation set-up consists of the following packages:

1. tum_simulator (Huang & Strum, 2013) is used as the main simulation platform
(shown in Figure 4-2). This package is based on:

1http://www.hardkernel.com
2https://www.matrix-vision.com/USB2.0-single-board-camera-mvbluefox-mlc.html
3Robot Operating System, http://www.ros.org/about-ros/
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(a) tu-darmstadt-ros-pkg (Meyer & Kohlbrecher, 2012) contains various simulation
packages (e.g., Gazebo4 plugins and models) necessary for robot simulation in ROS.

(b) ardrone_autonomy (Monajjemi, 2012): This is a ROS driver for Parrot AR-
Drone 1.0 and 2.0, based on official AR-Drone SDK.

2. Monocular visual odometry will be run as an independent module that processes the
image input provided by tum_simulator to generate the state output.

The stability-based control and estimation algorithm will take the state-estimation re-
sults from the monocular VO module as input and generate thrust commands. These
commands will be used in the quadrotor controller of tum_simulator. A prelimi-
nary simulation of the stability-based scale estimation is implemented with a fixed-
gain constant-divergence-landing using PTAM, and the playback can be accessed via
https://www.youtube.com/watch?v=jFx5mfMZ0aI.

4-2-3 Real-world experiments set-up

The state-estimation results from the VO module will be recorded using the logger in Pa-
parazziUAV. This will be compared with the ground-truth of the flight trajectory, which will
be measured using the OptiTrack5 motion capture system which is installed in CyberZoo flight
arena 6 of TU Delft Aerospace Engineering faculty.

4http://gazebosim.org/
5http://optitrack.com/
610m × 10m × 7m dimension

Stability-based Scale Estimation for Monocular Visual Odometry of Quadrotor MAVs Seong Hun Lee



30 Methodology

Seong Hun Lee Stability-based Scale Estimation for Monocular Visual Odometry of Quadrotor MAVs



Chapter 5

Preliminary Analysis

In this chapter, a preliminary analysis of the most relevant VO systems and datasets is pre-
sented. In Section 5-1, an overview of the five test datasets (i.e., SW, TUM RGBD, TUM
MonoVO, EuRoC MAV and KITTI) is provided. In Section 5-2, the five selected VO/S-
LAM systems (i.e., Modified PTAM, SVO, Sparsified DPPTAM, ORB-SLAM and
DSO) are evaluated qualitatively in terms of tracking ability. Note that MonoSLAM, LSD-
SLAM and DPPTAM are not considered here because they are either filter-based or not sparse
(see Section 3-1-1 for the justification of design choice).

5-1 Overview of Dataset

In total, five different datasets were used to test the VO/SLAM systems on a laptop and SBC
(for hardware specifications, see Section 4-2-1):

1. Small Workspace dataset1 (for convenience, an acronym “SW dataset” will be used
hereafter) which I created by myself using a commercially available webcam2 in a small
workspace environment. Sample images from this dataset are provided in Figure 5-1.

Figure 5-1: Sample images from one of the sequences of SW dataset. Note that there is no
significant viewpoint change, as the camera’s pointing direction is kept mostly unidirectional.

1Available in: https://drive.google.com/drive/folders/0B7ka7aXEpgXKdi1qYWU2aTdzY2c?usp=sharing.
One of the image sequences from this dataset is used in Figure 3-7.

2Logitech C615
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2. TUM RGBD dataset (Sturm, Engelhard, Endres, Burgard, & Cremers, 2012): This
dataset contains large number of RGB-D benchmark sequences and ground-truth tra-
jectory data. The following three sequences are used for testing:

• freiburg2_desk3

• freiburg3_structure_texture_far
• freiburg3_long_office_household4

Sample images from freiburg2_desk sequence are shown in Figure 5-2.

Figure 5-2: Sample images from freiburg2_desk sequence. The camera trajectory is room-scale.

3. TUM MonoVO dataset (Engel & Cremers, 2016): This dataset contains
photometrically-calibrated sequences (i.e. taking account of the exposure times, and
compensating the camera response function and lens attenuation factors) which were
recorded in various indoor and outdoor environments. The following sequence is used
for testing:

• sequence_42

Sample images from this sequence are shown in Figure 5-3.

Figure 5-3: Sample images from sequence_42 of TUM MonoVO dataset. The camera trajectory
is moderately large (i.e., approximately 3 minutes-long walk).

4. EuRoC MAV dataset (Burri et al., 2016): This dataset contains indoor image se-
quences collected on-board a MAV, as well as the accurate motion and structure ground-
truth. The following sequences are used for testing:

• MH_01_easy
• V1_01_easy5

• V2_02_medium

Sample images from MH_01_easy sequence are shown in Figure 5-4.

3This sequence was used in Figure 3-8.
4This sequence was used in Figure 3-9.
5This sequence was used in Figure 3-10.
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Figure 5-4: Sample images from MH_01_easy sequence. The camera trajectory is moderately
large (i.e., 3 minutes-long indoor flying with a hex-rotor helicopter).

5. KITTI odometry dataset (Geiger, Lenz, & Urtasun, 2012): This dataset contains
large-scale image sequences and ground-truth data collected on a driving car. The
following sequences are used for testing:

• sequence_06
• sequence_11

Sample images from sequence_11 are shown in Figure 5-5.

Figure 5-5: Sample images from sequence_11. The total camera trajectory and inter-frame
motions are very large (i.e., approximately 2 minutes-long drive and 10 Hz frame rate).

Note that only the first two dataset contain images captured by rolling shutter cameras, while
the other three dataset used global shutter cameras. The frame per second (fps) of the datasets
is 30, 30, 22, 20 and 10, respectively. The easiest image sequence to track is the SW dataset,
as the camera movement is generally slow, and the viewpoint is mostly unidirectional. It also
contains sufficient translational movements to ensure accurate triangulation. TUM RGBD
dataset is the second easiest dataset to track, containing mostly large parallax movements.
TUM MonoVO dataset and EuRoC MAV dataset are more difficult to track compared to the
first two dataset due to stronger rotations and faster movements. KITTI odometry dataset is
the hardest to track, as its inter-frame movement is much larger than the others. Moreover,
the most dominant motion is the forward motion, which makes triangulation more challenging
due to the low parallax angle.
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5-2 Qualitative Evaluation of VO systems

In this section, the qualitative evaluation of the five open-source VO/SLAM systems (PTAM,
SVO, Sparsified DPPTAM, ORB-SLAM and DSO) is provided. Using the datasets mentioned
previously, the tests were carried out on a workstation laptop and SBC respectively (see
Section 4-2-1 for hardware specifications). The reason for the evaluation being qualitative
is because the capabilities of the VO/SLAM systems to robustly track the camera pose are
simply dichotomous for each dataset - it either tracks or not. In other words, the performance
metric used in this case is the tracking robustness, rather than accuracy or efficiency. The
results are summarized as follows:

PTAM

The tracking was only successful on SW dataset. This was true for both times when it was
run on the laptop and SBC, as the system could still run fast enough to track 30 fps video
without a problem on Odroid XU4. However, PTAM is not suitable for when large occlusion
is introduced with large viewing angles (e.g., 360◦ movement around a target object). Also,
the initialization is brittle, and it can easily fail when the scene is highly non-planar (due
to homography-based initialization) or when inappropriate motion (i.e. fast, discontinuous,
rotational or strong non-parallel motions) is provided.

SVO

SVO could not track any of the provided image sequences. The only occasion that SVO
ran successfully was when it was given the rosbag file provided by the author. The rosbag
file contains images that were taken by a downward-facing large Field of View (FOV) global
shutter camera at 30 fps, moving in a slow circular motion parallel to the scene.

Sparsified DPPTAM

Sparsified DPPTAM could track and map the image sequences from SW dataset robustly and
accurately, producing a good quality 3D reconstruction of the scene. As for TUM RGBD
dataset, it could handle freiburg2_desk and freiburg3_structure_texture_far sequences fairly
well, but not freiburg3_long_office_household sequence due to the large occlusion and strong
rotational motions. Also, the sparsified DPPTAM failed to track the other three datasets. As
a sidenote, the original DPPTAM only worked with SW dataset.

ORB-SLAM

ORB-SLAM performed robustly on all datasets provided. However, it ran too slowly on
the SBC, achieving the tracking rate around 3 fps on Odroid XU4. One way to increase
the tracking speed would be by deactivating the loop-closure thread, turning it into a pure
VO system. The question as to whether this would be enough to make ORB-SLAM run in
real-time on the SBC still remains open.
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DSO

Like ORB-SLAM, DSO also performed robustly on all datasets provided. The initialization
was not perfectly smooth on KITTI_06 sequence, as it attempted the initialization multiple
times for the first few seconds. Once the initialization was complete, the system was boot-
strapped successfully and performed well for the rest of the time. It was not possible to compile
DSO on the SBC out-of-the-box, because some functions use SSE-optimized processing, which
is not supported on ARM processors.

Summary and Discussion

The results on the workstation laptop are summarized in Table 5-1. SVO clearly showed the
worst performance, and thus, will not be considered from here on. The sparsified DPPTAM
cannot be used for the final thesis either because it is closed-source, and it can only serve as
a reference for comparison with other VO systems. Therefore, the final decision on the VO
system must be made between PTAM, ORB-SLAM and DSO. Since only PTAM worked out-
of-the-box on Odroid, it seems only logical to choose PTAM as a basis at first, and consider
the other two systems if and only if the performance of PTAM is shown to be unsatisfactory
for our specific purpose - that is, stability-based scale initialization. If that turns out to be the
case, then the final decision will be made between ORB-SLAM and DSO based on practicality,
such as time-constraints.

Table 5-1: A summary of the qualitative evaluation of the five VO/SLAM systems on the
workstation laptop.

Datasets

SW TUM
RGBD

TUM
MonoVO

EuRoC
MAV KITTI

Modified
PTAM YES NO NO NO NO

SVO NO NO NO NO NO
Sparsified
DPPTAM YES Two YES and One NO NO NO NO

ORB-SLAM YES YES YES YES YES

VO/
SLAM

DSO YES YES YES YES YES

Stability-based Scale Estimation for Monocular Visual Odometry of Quadrotor MAVs Seong Hun Lee



36 Preliminary Analysis

Seong Hun Lee Stability-based Scale Estimation for Monocular Visual Odometry of Quadrotor MAVs



Chapter 6

Planning

Figure 6-1: Top-down project task tree

In this chapter, the planning for the remaining months is presented. First, the top-down
project task tree (also known as ‘work breakdown structure’) is given in Figure 6-1. Note that
the task numbering is slightly different from the one in Section 2-2, as some of the tasks are
broken down into smaller sub-tasks, or grouped together as one task unit. Also, due to the
page limit, the verification and validation tasks are not shown in the figure. Instead, these
steps are implied for all tasks expressed by the infinitive “Implement”. The order in which
the tasks are listed in Figure 6-1 are not necessarily the sequential order for execution. The
logistics of the task execution is elaborated and visualized in the Gantt Chart (Figure 6-2).
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Chapter 7

Conclusions

In this report, a preliminary literature study is given on the topic of state-of-the-art monocular
visual odometry and metric scale estimation methods that are applicable for vision-based GNC
of MAVs. In order for MAVs with a monocular camera to fly and navigate autonomously in
unknown GPS-denied environments, it is important to estimate the absolute (metric) scale
in one way or another. In that respect, a novel stability-based scale estimation method
is proposed which can be readily implemented in conjunction with any existing monocular
VO/SLAM system. The proposed solution neither requires any additional sensor modalities
other than a monocular camera, nor a special visual target for initialization. Furthermore,
the proposed method replaces the optical-flow-based estimation of divergence (as done in the
original work (de Croon, 2016)) with the direct computation using unscaled output from a
VO/SLAM system. This has several functional advantages, as well as potential performance
gains.

Besides the literature survey on the state-of-the-art methods, a preliminary analysis of the
open-source VO systems is provided. It suggests that the most suitable one at the moment is
the modified PTAM (Weiss, Achtelik, et al., 2012). However, it should be noted that this is
only a preliminary decision, and potential alternatives will be considered in case of unsatisfac-
tory real-world performance: for example, loop-closure-deactivated ORB-SLAM (Mur-Artal
et al., 2015) or DSO (Engel et al., 2016a).

In the following months, a complete simulation of the proposed scale estimation strategy
will be designed and tested. A preliminary simulation of the stability-based scale estimation
has already been implemented in a fixed-gain constant-divergence-landing scenario using the
modified PTAM, and the result seems to be promising. Once the full system is thoroughly
verified, the method will be implemented on a custom-built quadrotor MAV to demonstrate
autonomous indoor navigation and flight.
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