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Abstract

Despite evidence that collaborating in the supply chain can reduce inefficiency and result in mu-
tual gain, parties do not wish to collaborate if they have to share their private proprietary infor-
mation. The main reason for their privacy concern is that the party does not want to lose their
competitive advantage by giving away company secrets. Collaborative optimization algorithms
can be applied to problems in the supply chain, and secure multiparty computation is incorpo-
rated as part of the algorithm to preserve the privacy of the parties. This paper aims to create
an overview of privacy-preserving applications in the collaborative supply chain by conducting a
literary study that focuses on secure collaborative optimization research and its limitations.

Research findings showed that secure multiparty computation can be applied to the following sup-
ply chain collaboration problems: capacity sharing, price-masking, distributed scheduling, col-
laborative production and transport, vehicle routing, and resource allocation. These algorithms
use multiparty computation that is secure under the semi-honest adversarial model, because a
malicious model is generally too inefficient for practical use. This choice comes with a cost in
privacy, as the semi-honest model assumes parties collaborating will not break the protocol. This
is a weak assumption that results in an impractical protocol, as real life applications of semi-
honest multiparty computation would not be protected against a party that benefits from cheating.
Furthermore, secure multiparty computation has a limitation that it cannot prevent a party from
lying in its private input.

This paper recommends for future secure collaborative optimization research to combine mul-
tiparty computation with game theory. Achieving incentive compatibility in a protocol proves
that it is in the best interest for a party to not cheat, as it either leads to a loss in benefits or
they are caught. This allows for the MPC protocol to keep its efficiency by being secure under
just a semi-honest adversarial model, as well as offer greater protection for honest parties from a
rational malicious party.
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1 Introduction
Collaboration in the supply chain is an increasingly important research topic that enables superior
performance for the parties involved through increased outcomes and improved benefits [1]. One of
the greatest issues that is in the way of successful collaboration is trust. As participating parties are
not interested in collaborating if they feel that they cannot keep their secret proprietary data safe.
Competitors learning this data can lead to a competitive advantage, which is why methods that are
able to protect the data of the parties are very valuable [2].

For supply chain collaboration the use of a trusted third party has been tried practically. For ex-
ample in 2003, Nistevo (a logistics service) gathered logistics information from 24 companies and
optimized routing for trucks such that they could stop and be filled by a different company when
they were empty [3]. However, a trusted third party is not always ideal and brings multiple prob-
lems. Firstly, it requires a high degree of trust from the collaborating parties, which can be difficult
to acquire [4]. For example, it would be very difficult for any of the parties to know whether the
trusted third party is biased towards a particular party or selling the data it is given. Secondly, if one
of the parties decides that they do not trust the third party, the collaboration can get stuck, which
results in a loss of efficiency. Lastly, a trusted third party usually charges a steep price for their
service. For example Nistevo the company referred to previously, charged one of their participating
parties 250,000 dollars per year [3]. Previous and ongoing research aims to address the limitations of
trusted third parties by replacing them with secure multiparty computation (MPC), a cryptographic
method that allows a function, whose inputs are held by different parties, to be solved in a distributed
manner without revealing any of the inputs to each other [4].

This paper will conduct a literary study and summarize the currently existing work on MPC’s the-
oretical applications to the collaborative supply chain. It will show a limitation in the way MPC is
being implemented for practical solutions, and finally, show how combining MPC with game theory
can result in a better preservation of privacy.

The remainder of this paper is organized as follows. Section 2 will go into more detail on supply
chain collaboration, MPC and the importance of privacy. Section 3 will introduce the methodology
of the paper and related works. Section 4 will summarize the research on collaborative optimiza-
tion problems that were solved using MPC and how they could be applied to collaborative supply
chain. Section 5 will introduce game theory and show how MPC can be improved with incentive
compatibility. Section 6 will be a discussion on ethical implications and reproducibility. Section 7
will discuss results from Section 4 and 5. Finally Section 8 will conclude the paper and recommend
ideas for future work.

2 Preliminaries

2.1 Supply Chain Collaboration
To demonstrate the possible benefits of supply chain collaboration, consider this real life scenario.
General Mills and Land O’ Lakes are two food producing companies who are collaborating through
Nistevo’s collaborative logistics service. General Mills is delivering goods from New York to Ohio
and passing through several stops on the way. Normally, the truck is empty on its way back to
New York from Ohio. However with Nistevo, General Mills is directed to stop at a Land O’ Lakes
warehouse to deliver their goods to New Jersey, which is in the direction the truck is heading. This
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form of collaboration reduced Land O’ Lakes’ annual freight costs by 15 percent [3]. This is a sig-
nificant reduction which is also beneficial for carbon emissions. Figure 1 shows a detailed diagram
illustrating the reduction in distance travelled with collaboration versus without collaboration.

Figure 1: Diagram showing how collaboration was used to benefit General Mills and Land O’ Lakes
[2].

Two typical categories exist for supply chain collaboration: horizontal and vertical collaboration. In
horizontal collaboration, the parties have identical roles in the supply chain, which means that they
are, for example, all suppliers/manufacturers. In vertical collaboration, parties may have different
roles, one party being the supplier/manufacturer and the other being a distributor [4]. The above
example of collaboration between General Mills and Land O’ Lakes, is horizontal collaboration. A
similar example can be made for vertical collaboration. If instead of General Mills delivering their
own goods, they hired a distributor to perform the task.

Logistics is not the only area where collaboration in the supply chain may occur. For example, two
factories producing mugs and bowls both needs to utilize the same limited resource: clay. Both
factories also have a limited number of laboring hours and their own unit revenues. The resources
required to make a bowl or a mug are given in Table 1. The first factory has 10 hours of labor
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Table 1: Example of collaborative production showing unit demands and revenues of two factories
producing bowls and mugs.

Labor (Hours/Unit) Clay (Pounds/Unit) Revenue ($/Unit)
Bowl (Factory 1) 1 4 40
Mug (Factory 2) 2 3 50

and 60 pounds of clay to use every day, while the second factory has 30 hours of labor and 60
pounds of clay to use. The revenue maximizing solution for both factories are $400 and $750 dollars
respectively. However, if the two factories were to collaborate and optimize their shared resources
then their maximum revenue is now $1,360 dollars, which is greater than the sum of the factories’
local optimum revenue [4]. This is another example of how collaboration can result in mutual gain
for the participating parties.

2.2 Secure multiparty computation
In MPC, two or more parties aim to calculate the output of a function based on their own private
inputs without disclosing them. MPC computes the solution to a distributed problem such that in
the end only the output is revealed to the parties [5]. In the context of collaborative supply chain,
we aim to replace a trusted third party with an MPC protocol to increase privacy protection for the
collaborating parties.

The origin of MPC was for the solution to a two-party comparison problem called ’Yao’s Mil-
lionaire Problem’. Here, two millionaires would like to know which one of them is richer, but not
reveal their actual wealth [6]. Goldreich et al. expanded the solution to work for a multi-party sce-
nario and proved that a secure solution exists for any multi-party computation problem that is in
polynomial-time [7]. This was achieved by representing the function that is solved, as a Boolean
circuit consisting of a series of gates. Each gate is then evaluated securely. Unfortunately, the size of
the circuit grows very quickly with the complexity of the function and the number of inputs, which
makes it too inefficient for collaborative supply chain problems [4]. Since a secure solution exists,
large amount of work goes into creating efficient algorithms instead.

One of MPC’s greatest advantages is that a protocol that uses it can be shown to be provably se-
cure [4]. ’Provably secure’ systems have the benefit that their security is backed by mathematical
proofs as opposed to heuristics [8]. This level of security is dependant on assumptions about the ad-
versary, a malicious party, and which computational resources they have [9]. In MPC, the exchange
of messages can be protected under perfect security or computational security. In computational
security MPC, the security of the messages exchanged relies on the existence of one-way trapdoor
functions [10]. These are functions whose inverse is very difficult to compute without the secret key
[9]. In theory, it is possible to discover the key through brute force, but computational security is
based on the assumption that the adversary is bounded computationally and cannot discover it in a
reasonable amount of time. In perfect security MPC, an adversary is bounded by information. For
example, the method of secret sharing is where a number x is broken down such that x cannot be
reconstructed unless a certain number of shares is obtained by a party [9]. This is commonly half of
the number of available shares. One major limitation of this security model is that it cannot be used
for MPC protocols consisting of two parties, as the malicious party will begin with at least half of
the shares.
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So far we have addressed the security assumptions on the messages being exchanged in MPC, how-
ever it is almost important to define what it means for a computation to be secure. The definition
that is most commonly used nowadays, relates to the ideal/real simulation paradigm [11]. The ideal
model is one where parties give their inputs to a trusted third party, who then computes the function
and sends the output to everyone. The real model aims to have equivalent outcomes as the ideal one,
but without the use of a trusted third party. Some of the most important characteristics of an MPC
protocol is that it ensures correctness and privacy [2]. Correctness is ensured when every party re-
ceives the correct output or none at all. Privacy is said to be achieved when no party learns anything
more than the output they receive. Finally these characteristics must apply and the protocol must
remain secure, even if a few parties ’cheat’.

In MPC there are two main adversarial models, ’semi-honest’ and ’malicious’. A semi-honest ad-
versary will follow the protocol correctly, but will attempt to extract any information they can from
other parties from the messages exchanged. A malicious adversary may deviate from the protocol,
trying to create an incorrect final output or extracting private information [2]. Protocols secure under
the malicious model are often quite inefficient for practical use [4].

The first large scale application of MPC occurred in Denmark in 2008, for an online double auc-
tion of sugar beet licenses [12]. Farmers were competing for contracts that gave them production
rights for a certain amount of beets per year and to deliver them to Danisco. The farmers did not
trust Danisco to act as an auctioneer, as that would reveal their economic position and productivity.
Danisco also did not trust the farmer’s union DKS to be auctioneer either and a trusted third party
was found to be an expensive solution. For this reason, it was decided to replace the auctioneer with
a MPC protocol. 1200 bidders successfully participated in the auction and the computation lasted 30
minutes, resulting in 25,000 tons of production rights being exchanged. In a survey after the auction,
80% of respondents stated that it was important to them that their bids were kept confidential, and
were pleased with the confidentiality that the system offered [12].

2.3 Collaborative Optimization
The computation problems in supply chain collaboration have a common theme, that is they are op-
timizing a variable, such as maximizing revenue or minimizing costs. For this reason, collaborative
optimization research has great applications in supply chain collaboration [4].

Collaborative optimization research is used for distributed problems that have a variable, that need
to be optimized and aims to achieve a global objective using only local information [4]. Generally
work was mostly focused on increasing efficiency and reducing the cost of communication, rather
than privacy, however recently there has been a lot more interest in the area of secure collaborative
optimization. To achieve secure protocols, MPC has been one of the methods used to replace the
third party that is commonly present in these protocols.

2.4 Importance of privacy for supply chain collaboration
While privacy usually refers to protecting the data of consumers and anonymity, in collaborative
supply chain, it means to keep others from learning company secrets. For example, to find the
optimal vehicle routing for multiple parties, requires knowing:

• The location of factories and distribution centers

• The amount of product that is delivered to a location
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• The total supply of a party that is being distributed

A lot of information can be inferred from this data. For example, the demand for a party’s good in
a city [4]. This data can be tracked over time, and could be used by a competitor to learn a lot of
information about the party. This is more than enough of a reason for many companies to not want
to collaborate, as the risk of competitors exploiting their company information is too high [2]. This
is why the importance for a privacy-preserving method for supply chain collaboration is substantial.

3 Methodology and Related Work

3.1 Methodology
The research question that this paper will aim to answer is: "How can secure multiparty computation
be used to preserve privacy in supply chain collaboration?". The method that will be used is to
perform a literary study. Google Scholar will be the literary work search engine that is used. Works
from collaboration optimization research where MPC was used will be looked at. There is already
lots of existing work on collaboration problems solved using MPC, so it is not necessary to recreate
anything. The analysis done by the authors on the privacy of their algorithms will be looked at,
as well as other works that cited it that aimed to improve it or show issues. Furthermore, papers
illustrating the limitations of practical uses of MPC will also be looked at. The goal is to create an
overview of the applications of MPC that could theoretically be used in the supply chain, and to
gather what issues there are that could potentially hinder it from being used in the real world.

3.2 Related Work
The number of literary studies on the applications of MPC in collaborative supply chain is limited.
The biggest and most recent is from 2013, where Hong et al. performed a survey on privacy-
preserving methods in collaborative supply chain. As well as MPC, they also looked at secure
transformation, which is a different method for secure computation. One of the disadvantages with
the method is that it is not provably secure and its security is based on heuristic reasoning [4]. The
literary study was performed by gathering methods from collaborative optimization research, and
identifying whether privacy protection was integrated. This is a similar approach as to this paper,
however a lot of these privacy-preserving methods are very old or do not have any privacy. It is the
aim of this paper to find the newer developments in this area of research, and to focus on what is
possible with methods that do protect privacy and determine their limitations.

4 Applications of Secure Collaborative Optimization in Supply
Chain Collaboration

Previously, it was stated how secure collaborative optimization can be used to solve distributed prob-
lems in the collaborative supply chain. This section will introduce their different types and show how
they can be applied to various collaborative supply chain problems. At the end a table will presented,
summarizing this research.

Travelling Salesman Problem (TSP) is a fundamental optimization problem that can be applied
to logistics, planning and production. Hong et al. have created an efficient secure communication
protocol for this problem under the semi-honest adversarial model [13]. To give an example of how
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it can be applied, they give a scenario where a client would like to choose between Alice or Bob
to ship his goods between certain cities. The problem is that the client would not like to share his
list of cities to Alice or Bob before signing the contract, meanwhile, Alice or Bob would not like
to share their delivery costs either. The collaborative TSP solution can be applied to this scenario
by calculating which distributor is a more optimal choice for the client, without having any of the
parties reveal their proprietary data.

Graph Coloring is an NP-complete decision problem that finds a way to color the vertices of a
graph under the constraint that adjacent vertices cannot have the same color [14]. Hong et al. have
created a solution to the distributed graph coloring problem with the use of privacy-preserving tabu
search that is secure under the semi-honest model [14]. Exhaustive search is not practical for graph
coloring, due to it being NP-hard, which is why tabu search is used. Tabu search will achieve near
optimal solutions with significantly higher performance, allowing it to be used in more practical ap-
plications. Distributed graph coloring can be used in distributed scheduling and network allocation.
As an example of an application of distributed scheduling: Alice, Bob and Carol have a set of jobs at
a location that contain conflicts (some jobs cannot be performed at the same time). To optimize this
problem, rather than every party doing their job after each other, the parties can perform some jobs
at the same time, as long as the jobs the parties are doing are not conflicting. By gathering the set
of all jobs that parties would like to do, an optimal order could be calculated, however collaborating
parties would not like to share their sets of jobs. The distributed graph coloring problem can solve
this by formulating job collisions as edges and then finding the optimum coloring solution which
gives the order in which a party should perform their job. This solution had some privacy leakage, as
a party can learn which one of its jobs is conflicting with a party. However this is due to the nature of
the problem and not the protocol, as this is something that can be derived from the output. Figure 2
illustrates the problem being formulated as a graph and Figure 3 illustrates the output given to each
party following the algorithm.

Figure 2: A distributed scheduling problem formulated as a graph coloring problem, including the
matrix representation of the graph [14].

Linear programming is an optimization problem that consists of 3 elements: an objective function
that is optimized, a set of variables and a set of constraints, with the important characteristic that all
of these elements are linear [15]. In a collaboration scenario, there are a variety of ways that the data
can be partitioned between parties. These can be categorized into: horizontal, vertical or arbitrary
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Figure 3: Output of the distributed scheduling problem after graph coloring, including the output
that every party receives. [14]

partitioning.

• Horizontal Partitioning: Every party holds their own set of constraints with no requirements
on the objective function, which may be held by one party or all of them. This can be applied
to distributed scheduling, which graph coloring was also able to solve.

• Vertical Partitioning: The constraints are shared between a subset of all of the parties with the
same objective function rules as horizontal partitioning.

• Arbitrary Partitioning: This describes partitioning that is a combination of horizontal and
vertical. This is a more general case and if solved, it can be used to solve both vertical
and horizontal partitioned problems. There could also be requirements for the way that an
objective function is partitioned, for example, if only one party has the objective function.

There have been many solutions for collaborative linear programming, targeting different kinds of
partitioning. Hong et al. gave a privacy preserving solution to the arbitrary case where one party
owns the objective function and the other party owns the constraints [15]. A real application of
this can be a manufacturer trying to find the best transportation option between their factories and
suppliers. In this scenario, the constraints and objective function are separate from the collaborating
parties. In the next scenario, they have also used a partitioning where two or more parties are parti-
tioned arbitrarily, and that both the objective function and constraints are the sum of the partitioned
data. This has a more substantial application in collaborative supply chain, for example a winemak-
ing producer grows grapes in different locations and sends them to different wineries. The growing
locations may contain different types and amounts of grapes, of which a winery may demand one
or multiple in varying quantities. Ideal scenario would be to supply a winery with grapes that they
want from the closest vineyard, however they may not have all of the grapes they need. This reveals
the complexity of the scenario and it can be formed into a linear optimization problem where the
objective function is cost of transport and the constraints are the supply of the vineyards and the
demand of the wineries. [15] The multiparty collaboration extension to this problem would be to
solve the same problem, but with several wine-making companies. Hong et al’s solution to the col-
laborative linear programming problem used MPC, secure under the semi-honest adversarial model.
In the analysis of the solution, they were not sure on whether it was secure from inference attacks,
and a party could potentially learn some information such as the hardness of the problem or the type
of constraints.

Another linear programming solution by Hong et al. addressed the collaborative linear programming
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problem where constraints are arbitrarily partitioned and each party has their own set of variables
[16]. This can be applied to the collaborative supply chain in two ways. Firstly, in collaborative
transportation where k companies share delivery trucks and seek to optimize on the minimum cost.
The constraints would be the transportation demands for each location per company. Secondly, it
can apply to a different kind of collaborative production, where k companies share raw materials
for production and are optimizing more profit. The constraints in this case, are the amount of raw
materials needed per company. In both of these cases, the solution of the problem should only reveal
a company’s own transportation routes or the amount of raw materials allocated to it. The solution
to this partition of the collaborative linear problem is secure under both semi-honest and malicious
model.

Distributed Constraint Satisfaction Problem (DCSP) is solved by finding a combination of vari-
ables controlled by multiple agents, such that all of the constraints are satisfied [17]. This problem
can be applied to resource allocation, where a set of resources has to be allocated among different
agents. To form this into DCSP, the resources that every agents can supply and demand is formed as a
constraint. Leaute et al. developed a solution to DCSP using MPC under the semi-honest adversarial
model, and in addition, added privacy on top of it to keep the decisions of agents private as well [17].

Finally, there are some privacy-preserving applications of MPC to be used in supply chain col-
laboration that are solved using methods not mentioned so far. Clifton et al. developed a solution for
collaborative swapping, which can be applied to independent distributors to reduce inefficiency by
swapping tasks (for example empty trucks with a full truck from a different party) [18]. Deshpande
et al. developed a solution for an electronics manufacturing service and an original equipment man-
ufacturer to negotiate on component parts without revealing information [19]. This shows that there
is a substantial number of supply chain collaboration problems that can be solved with collaborative
optimization combined with MPC.

To summarize the research on collaborative optimization, Table 2 is presented to show the possi-
ble applications in the supply chain along with the method used and notes on the privacy issues from
the paper.

5 Combining MPC with Game Theory.

5.1 The limitations of semi-honest MPC protocols
A large number of privacy preserving methods using MPC to solve SCC problems have been de-
veloped over the last 15 years. Some of the methods that were discussed in this paper have been:
capacity sharing, price-masking, collaborative production, distributed scheduling, network alloca-
tion, vehicle routing and resource allocation. Each method discussed was proven secure under a
semi-honest adversarial model, and only one was also secure under a malicious model.

The malicious model has a stronger privacy guarantee than the semi-honest model, as it provides
security from parties that stray away from the protocol. Its main disadvantage is that it requires
significantly more computational power [4]. This results in far fewer practical uses for the model
in supply chain collaboration, where it would take too long to compute for the large number of in-
puts and variables. Furthermore, many of the creators of the methods discussed in the paper have
reasoned that security under the malicious model is not required for practical applications, as a de-
viation from the protocol could lead to producing a less efficient solution, which goes against the
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Table 2: Summary of secure collaborative optimization research using MPC
Supply chain problem Optimization problem used Privacy level
Capacity Sharing (2008) [18] Other No listed issues
Price-masking (2011) [19] Other Uses a semi-trusted third

party in its protocol
Distributed Scheduling and
Network Allocation (2018)
[14]

Graph coloring Limited privacy leakage

Collaborative Production
(2018) [15]

Linear Programming Secure, but might be vulner-
able to certain inference at-
tacks

Collaborative Transport and
Production (2012) [16]

Linear Programming No listed issues

Vehicle Routing (2014) [13] Traveling Salesman Problem Could be susceptible to infer-
ence attacks

Resource Allocation (2009)
[17]

Constraint Satisfaction Modified MPC that preserves
both constraints and decisions

Table 3: Table showing the possible combination of prison sentences. First number is the number of
years sentence for the first prisoner, and the second number for the second prisoner.

P2 stays silent P2 betrays
P1 stays silent 1,1 4,0
P2 betrays 0,4 2,2

purpose of the collaboration [19]. This reasoning is quite heuristic, but a stronger alternative would
be to prove that a protocol is incentive compatible.

5.2 Using game theory to achieve incentive compatibility in MPC protocols
Game theory comes from mathematics and it is the study of multiparty decision problems [20]. The
model studies the interactions and possible outcomes of parties, with the assumption that they are
rational decision makers. It was initially developed for economics, to study the behaviors of firms
cooperating. However it has since developed to also study non-cooperative games, where individual
parties compete in self-interest [21]. A popular example of such game is the "Prisoner’s Dilemma".
Here, two prisoners are facing light prison sentences, and are given an offer. If they betray the other
prisoner, they will receive no prison sentence, but only if the other prisoner also doesn’t betray them.
For clearer understanding of possible combinations, Table 3 shows all of the possible combinations
of prison sentences. The solution to this game is that a prisoner should always betray no matter what
the other prisoner does, as that will always give himself a lower sentence. However, the outcome
of both betraying is worse than both staying silent. This is an example of how it can be difficult
to make rational parties acting in self interest to pursue the common good [22]. In the context of
supply chain collaboration, game theory can be used to show that the benefits of collaborations can
be quickly lost with parties that benefit from breaking protocol.

Shoham and Tennenholtz added on to non-cooperatives games by introducing non-cooperative com-
putation (NCC) [23]. It is a "joint computation of a function by self-motivated agents, where each of
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the agents possesses one of the inputs to the function" [23]. While somewhat similar to MPC, NCC
is still a game theoretic concept that analyzes what is in the best interest of each party, rather than
assuming cases with a ’good’ or ’bad’ party. A function is in the class of NCC, if the parties can be
incented to give their correct private input to the function.

Incentive compatibility is used for mechanism design, that proves that if every party has truthfulness
as a dominant strategy, then a mechanism is ’cheat-proof’ [24]. A malicious party wouldn’t try to
cheat if it was not his best strategy. There are two basic methods for having incentive compatibility,
either truth telling is the dominant strategy, or a party will not cheat because they will be caught.
Bhargava and Clifton state that a privacy preserving secure protocol cannot exist, unless there is
incentive compatibility [24]. Cryptographic protocols assume a party either follows the protocol or
deviates from it, while game theory assumes a party acts to their best interest. The combination of
both can best model a real life scenario.

A simple example of why incentive compatibility is necessary for secure protocols occurs in this
case of revenue sharing contracts [24]. Imagine if a retailer pays a supplier a price for each unit
purchased, as well as a percentage of the revenue that they generate. The contract would consist of
two parts, in the first part the quantity and the price at which good is sold is decided through profit
maximizing, then in the second part, the retailer shares profits. A privacy preserving method to this
problem would allow the negotiation of this contract without revealing the retailer’s costs, sales and
revenue, which would prove to be quite useful. However, if this information were to be hidden from
the supplier, then the retailer’s best strategy would be to lie about their revenue. A lower revenue
that is declared results in less money needed to be paid to the supplier. Input modification is not
protected by MPC, even by the malicious model. However as it turns out, in a multiparty scenario
(more than 1 retailer), the privacy preserving protocol is incentive compatible. This is because now
there is competition, so a retailer that lies risks their supplier switching to an honest retailer, that
now offers the best outcome for the supplier. This shows how some privacy preserving protocols
may be incentive compatible and some not, and that a simple assumption of semi-honest parties is
not sufficient.

From the collaborative optimization problems that were analyzed, only Clifton et al.’s collaborative
swapping and Hong et al.’s collaborative transportation and production solution proved or consid-
ered incentive compatibility. Clifton et al. considered cases where a lying party may hide some of
their points, however that results in a final suboptimal solution and longer travel time for the party.
Alternatively, if a party inputs false points to swap, then the lying party will be quickly discovered
as soon as an honest party tries to pick up the nonexistent load [18]. Meanwhile, Hong et al consid-
ered potential benefits of a dishonest party, as well as collusion of parties and improved their linear
programming solution so that it was incentive compatible [16]. In both cases, Clifton et al. and
Hong et al. showed that cheating either increases the cost for a malicious party or they are caught
by an honest party. The remaining privacy preserving MPC methods assumed that the parties are
semi-honest, so do not have protection from malicious parties breaking protocol or lying about their
private input, even if it might be in that party’s best interest.

6 Responsible Research
The literary study conducted in this research paper used academic studies indiscriminately, locating
them from Google Scholar. To reproduce the results, the same papers can be found which will give
the same results.

11



Ethically, if the use of the privacy methods being investigated in this paper were to become more
popular, there would be a great ethical benefit. For example, protecting the privacy of a company’s
supply chain, would prevent other companies from using that information to their competitive ad-
vantage. In healthcare, where people’s private data may be part of a collaboration, privacy preserving
methods can stop their data from leaking through the collaboration. Applications of supply chain
collaboration in logistics, can result in reduced transportation, which reduces greenhouse gas emis-
sions that contribute to the climate change crisis.

7 Discussion
From the literary study it was found that there are many collaborative optimization problems that
can be used to solve collaborative supply chain problems. The collaborative optimization problems
were secure using MPC under the semi-honest adversarial model. The study also demonstrated how
a semi-honest assumption may not be sufficient for real life applications, where malicious parties
may exist. However MPC under a malicious model is too inefficient. To address the issue, the lit-
erary study found that incentive compatibility combined with a semi-honest assumption can achieve
better practical security without becoming inefficient.

These results build on the existing evidence that a high degree of trust is integral for parties to col-
laborate in the supply chain. The addition of incentive compatibility to MPC under the semi-honest
assumption improves the practicality of performing collaborative optimization in supply chain col-
laboration. These findings match the developments from other areas of research of combining cryp-
tography with game theory. Balanjaneyudu et al. and Kantarcioglu et al. created incentive compat-
ible privacy-preserving methods for data analysis, addressing the issue that MPC could not verify
the validity of a party’s private input data [25] [26]. Xu et al. combined MPC with game theoretical
approach to modify the interactions of users in distributed data mining [27].

A protocol that is incentive compatible assumes that the participating parties are rational. Therefore
an obvious limitation of the model is that in some instances, an irrational party could still hinder the
collaboration process even if they would get caught or suffer economic loss. Another limitation to
the research is that some of the methods researched may have serious underlying privacy issues that
were not discovered by their authors or by others. Since this paper consisted of just a literary study,
there was no security analysis of the methods.

8 Conclusion and Future Work
Before parties can begin to realize the benefits from supply chain collaboration, it is of great impor-
tance that their private inputs are kept private. This paper conducted a literary study that showed that
MPC can be used to preserve privacy in solutions to various supply chain collaboration problems.
MPC under the malicious adversarial model is rarely used in the solutions due to its inefficiency
that make it impractical. The semi-honest model is used more frequently, however its security lacks
protection against parties that attempt to break the protocol. Furthermore, a limitation of MPC that
affects both models is that neither can verify that a party has not lied in the private input that they
gave.

As a solution to this problem, this paper recommends combining MPC with game theory to achieve
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incentive compatible secure protocols for supply chain collaboration. In an incentive compatible
semi-honest adversarial model, a party will not break protocol or lie if it is not in its best interest.
This emulates a real world scenario better, as collaborating parties in the supply chain aim to increase
efficiency for monetary gain, and if a protocol is incentive compatible, then not lying will result in
the greatest monetary gain for the party. Furthermore, incentive compatible protocols are also able
to maintain efficiency, as they can remain secure under just a semi-honest model.
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