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Critical Airport Infrastructure Disaster Resilience:
A Framework and Simulation Model for Rapid Adaptation

Tina Comes, Ph.D.1; Martijn Warnier, Ph.D.2; Wouter Feil3; and Bartel Van de Walle, Ph.D.4

Abstract: Resilient critical airport infrastructures affected by a disaster need to sustain minimal functionality and quickly resume full oper-
ation, while at the same time coping with the increased operational demands imposed by the unfolding disaster response. In this paper,
we develop a resilience framework and model-driven approach that focuses on the ability of the infrastructure to rapidly adapt to a new
steady state under these conditions. This requires both the extension of capacity as well as the adaptation of key processes. Through discrete
event simulations, we study the implications of different policies to improve airport resilience under different disaster impact scenarios for a
stylized case. Our results show that although decision-makers may be tempted to focus on short-term measures that can be implemented
immediately, resilience is improved most by a combination of rapid process changes and longer-term measures that structurally increase
airport capacity. DOI: 10.1061/(ASCE)ME.1943-5479.0000798. © 2020 American Society of Civil Engineers.

Introduction

Critical infrastructures are essential for our society’s prosperity
and quality of living. Yet, with the increasing frequency and se-
verity of climate change–induced extreme weather events, critical
infrastructures, especially in low- and middle-income countries, are
increasingly prone to failure leaving millions without essential
supplies such as food, water, or health care (Hallegatte et al. 2019).
Not surprisingly, resilience is increasingly viewed as a key design
principle and policy imperative with the objective to ensure that a
critical infrastructure affected by a major disruption can sustain
minimal functionality and resume full operation quickly and safely
(Bruneau et al. 2003).

In the aftermath of a disaster, critical hub infrastructures are vital
for the recovery of the affected region (Hallegatte et al. 2019;
Comes and de Walle 2014). For example, seaports may receive
more incoming shipments for reconstructing damaged areas, or
hospitals may have to cater for more injured patients. As such,
the critical hub infrastructure not only needs to resume its predis-
aster level of performance, but may at the same time have to deal
with, and provide for, a significantly increased operational load.

In this paper, we elaborate on the case of airports as a critical
hub infrastructure. A disaster has typically two immediate effects
on an airport. First, the disaster at least partially disrupts the airport

function and reduces its capacity. Second, in response to the disaster,
the airport finds itself in a new role as a disaster relief logistics hub.
This new role comes with an increase of incoming aircrafts bringing
supplies or aid workers. For an airport already struggling to regain its
normal capacity, this additional load often creates congestion with
significant bottlenecks at the airport hampering the ensuing response
(Holguín-Veras et al. 2012; Veatch and Goentzel 2018).

Therefore, we propose an approach for measuring critical infra-
structure resilience that includes the rapid adaptation of critical in-
frastructure systems to new performance requirements brought
about by a disaster. We formalize this approach to resilience by
means of three key characteristics: absorption capacity, adaptive
capacity, and the rapidity of adaptation. This resilience concept
can be used where resilience entails adaptation of the infrastructure
system to meet new unplanned service levels within a relatively
short time. Because adaptation entails both an extension of capacity
and a change of processes, we use a discrete event simulation to
model and measure the infrastructure resilience. We then apply
our approach to a stylized disaster case, considering four impact
scenarios and six policies to improve resilience. The results of
our simulation-driven approach allow us: (1) to gain insights into
adaptation of processes at airports during the immediate response
phase, (2) to reveal the interaction of system components and proc-
esses, and (3) to design and evaluate policies that improve resilience.
Lastly, we discuss the validity of our results, and conclude with a
brief discussion and future outlook of our approach.

Resilience and Rapid Adaptation Framework

Although the origins of the concept of resilience lie within ecology
(Holling 1973), today resilience is used in a wide range of domains,
ranging from cities and urban resilience (Meerow et al. 2016;
Comes 2016b), communities and their connections (Aldrich and
Meyer 2015), to critical infrastructures. Increasingly, resilience also
receives attention in the transportation and logistics literature gen-
erally (Heckmann et al. 2015; Mattsson and Jenelius 2015).

Traditionally resilience of infrastructures is defined as the ability
to rapidly recover from performance losses owing to a disruption
(Bruneau et al. 2003). Herein, resilience is understood as a three-
fold concept: (1) the capacity to absorb a shock or disturbance;
(2) the capacity to adapt to change; and (3) the rapidity of the
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recovery process (Francis and Bekera 2014; Mattsson and Jenelius
2015). Over the last two decades many studies have focused pri-
marily on a rapid recovery to a predisaster state (Cimellaro et al.
2010; Comes and de Walle 2014; Janić 2015; Zobel 2011; Ilbeigi
and Dilkina 2018). A comprehensive recent review by (Hosseini
et al. 2016) provides an overview of applications and adaptations
on this initial model.

One of the most important recent shifts in resilience engineering
is the recognition that critical infrastructures are complex socio-
technical systems and as such need to combine core concepts of
engineering resilience [robustness, rapidity, resourcefulness, and
redundancy (Zobel 2011; Zio 2016)] with the concepts of adapta-
tion and transformation from social-ecological resilience (Elmqvist
et al. 2019). Zio (2016) argues that in particular the long infrastruc-
ture life cycles require flexibility and adaptiveness to be part of
system design. Reflecting the different timescales of rapid response
and longer-term transformation, Woods (2015) distinguishes short-
term graceful extensibility (as opposed to brittleness) and longer-
term adaptiveness.

The recently proposed stress-strain model (Choi et al. 2019) fo-
cuses on this concept of extensibility and presents a resilience frame-
work that captures the need to expand infrastructure capacity during
a shock. The authors focus on serviceability as the ability of “an
infrastructure system to provide a pre-disaster level of service in
a post-disaster situation” (Choi et al. 2019). While this approach
allows policy-makers to consider increased demand, it assumes that
processes during crises do not change. Therefore, increased demand
needs to be met via extra capacity or resources (Woods et al. 2014).
However, several studies in disaster research literature have shown
that system behavior in disasters is fundamentally different from day-
to-day operations (Turoff et al. 2004; Comes 2016a). Similarly, the
difference between inherent and adaptive resilience has been stressed
previously (Rose 2007), where the latter refers to behavioral change,
improvisation, and creativity. Thus far, however, this behavioral
change and the different systems’ behavior is not considered in the
literature on infrastructure resilience.

In air transportation more specifically, most papers focus on
resilience of the airline transportation network, mostly by analyzing
the underlying complex networks, (Dunn and Wilkinson 2016;
Cook et al. 2015; Lordan et al. 2014; Clark et al. 2018). Here, mit-
igation measures largely relate to rescheduling and rerouting flights
(Janić 2015; Cardillo et al. 2013). In addition, most of these papers
focus on network disruptions, not on the impact of a large-scale
event on airport resilience (Janić 2015), that fundamentally change
the flight patterns. Few papers focus on the airport system itself,
as a critical hub in the disaster response phase. Malandri et al.
(2017) present a model of ground level accessibility, measuring
the impact of disruptions in the passenger flow at the airport,
and defining resilience as the ability to rapidly recover system per-
formance to baseline levels with respect to passenger delays, incon-
venience, and overcrowding. Faturechi et al. (2014) present an
optimization model for the rapid recovery of the airport runway
and taxi system after disruptions. What is thus missing is a paper
that takes into account the need for adaptation and expansion in
response to a disaster that focuses on the airport system as a critical
hub infrastructure.

This paper addresses the gap by explicitly considering the
rapid change of process and systems behavior during the response
to a crisis by following a two-fold approach. First, we propose a
resilience framework that is designed to take into account rapid
adaptation of system behavior that is required to meet the signifi-
cantly higher performance levels as compared to predisaster oper-
ations. Second, we capture systems behavior by a process model
that allows decision-makers to understand the how the behavior

of critical hub infrastructures changes under shocks, and which
process-related measures contribute to resilience, complementing
capacity expansion.

The resilience framework is schematically shown as the triple
resilience triangle in Fig. 1, which shows systems performance over
time for a disaster that hits at T0. The three triangles highlight the
combining absorptive and adaptive capacity as well as the rapidity
of adaptation. We assume here that overall system performance
needs to be maximized, typical performance indicators for hub in-
frastructures could be output or throughput rates; for performance
indicators that require minimization (such as time required or extra
cost), the triangles are flipped upside down.

The first triangle (light grey) corresponds to the traditional resil-
ience triangle, which is based on the time to achieve predisaster
performance level P0 given that the disaster led to a drop in per-
formance to absorption level P1, defined as the minimum post-
disaster system performance. The absorptive capacity is at the
root of the definition of resilience by Holling (1973), who defined
resilience as the ability of a system to absorb disturbance or change.
Later, Bruneau et al. (2003) defined absorption as the abrupt reduc-
tion of performance, a definition we follow here. The closer P1 is to
the original performance level P0, the better the absorption capacity
of the system, and the easier it is to reach predisaster performance.

The second and third triangle complement the traditional view
to integrate the aspect of adaptation, which requires a performance
level P3 that goes beyond recovery to the initial state and exceeds
the initial performance level P0 to cope with the required expansion
of services. Here, we refer to Rose (2007), who provided an indi-
cation of an upwards behavior to denote improvements in systems
performance via adaptive behavior, and described the occurrence of
a temporary equilibrium. These observations are the basis for our
conceptualization. To clearly denote and analyze system behavior,
we define the adaptation level as this new steady state of perfor-
mance, or temporary equilibrium P3 at time T3 (dark triangle).
Yet, this equilibrium is typically lower than the peak performance
level P2, defined as maximum performance that is reached in re-
sponse to the disaster indicating an overshoot to compensate for the
backlog caused by the increased load needed.

For the rapidity dimension, we go beyond the traditional defi-
nition that focus on recovery to the initial state and follow D’Lima
and Medda (2015) who understand the rapidity dimension of resil-
ience as the time of return to an equilibrium after a disturbance.
Here, the new equilibrium is the adaptation level P3. Therefore,
the rapidity of adaptation is measured as the time after the disaster,

Fig. 1. (Color) Triple resilience triangle.

© ASCE 04020059-2 J. Manage. Eng.

 J. Manage. Eng., 2020, 36(5): 04020059 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

T
in

a 
C

om
es

 o
n 

06
/2

3/
20

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



or disturbance to achieve adaptation (T3 − T0). In most traditional
framework, such as Bruneau’s original work, the disruption or dis-
turbance is disturbed immediately (Bruneau et al. 2003), and in
these cases, T0 ¼ T1. Because we are here interested in the perfor-
mance of a hub infrastructure that is subject to feedback loops and
delays in other parts of the system, however, airport T0 < T1. The
use of T0 as a reference point also refers to the need to achieve
specific performance levels in terms of time post disturbance. In
humanitarian relief, for instance, it is instrumental to reach vulner-
able populations within a specific time after the disaster to ensure
they are supplied with vital relief items, such as water, food, or
medical supplies.

In addition, it is possible that predisaster levels are not achieved.
In this case, the adaptive level P3 will be below P0, and the
peak level or overshoot P2 is not achieved. Fig. 1 also highlights
that the resilience and recovery functions are nonlinear. This triple-
resilience-triangle approach allows policy-makers to gain insights
into the performance of critical hub infrastructures, because it
combines the analysis based on established resilience concepts
with an analysis of the required adaptation and rapidity.

Measuring Airport Resilience: Process Model and
Key Performance Indicators

To frame and scope the system, we first map out key actors and
their influence on the operations of a disaster-affected airport based

on a literature analysis including reports and guidelines from prac-
tice as shown in Fig. 2. We focus here on those key actors that make
decisions about or carry out physical movements in the system
(displayed in grey in Fig. 2).

In the case of airports, key processes such as scheduling, park-
ing, and loading/unloading are impacted by a disaster and hence
have an important effect on the airport operations (Veatch and
Goentzel 2018). As such, what is needed is a systematic con-
sideration of rapid adaptation at the process level reflecting the
changed system properties. Process models have been used fre-
quently to study airport systems (Manataki and Zografos 2010;
De Neufville 2016). Particularly, discrete event models have been
used successfully to study passenger streams (Verbraeck and
Valentin 2002; Joustra and Van Dijk 2001) or air cargo operations
(Nsakanda et al. 2004). Typically, such models are built for each
airport individually although the underlying questions for each
model and airport are similar. Therefore, we here follow Verbraeck
and Valentin (2002) and Manataki and Zografos (2009) and pro-
pose a generic mesoscopic model that captures key features and can
be easily adapted to a specific airport.

The effect of policies to improve resilience is measured via a set
of key performance indicators (KPIs). The KPIs are measured for
three key subsystems/components of the system, i.e, gate selection,
aircraft unloading, and warehouse operations. By quantifying these
indicators for every component, overall insights are gained into the
resilience of the airport system. To test their robustness, the policies
will be evaluated under different scenarios.

Fig. 2. Key actors at airports in disasters. Focus of this paper highlighted in grey.
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Process Model

We develop a conceptual model of an airport to investigate the op-
erations of the system and analyze generalized dynamics of the
adaptation processes. We assume that the main shock to the airport
consists in the rapid and massive influx of flights and goods, re-
sulting in strained airport processes. While we assume there is
no direct damage to the physical airport infrastructure such as run-
way or warehouse buildings, stresses stem from limited capacity in
terms of human resources and equipment. Within the overall airport
logistics system, Fig. 3 highlights that we focus on the following
three critical system components:
1. Gate selection: assignment of incoming aircraft to docks and

taxi time;
2. Aircraft unloading: loading of cargo from aircrafts and move-

ment to transit warehouse taking into account aircraft type,
cargo, available resources, and equipment;

3. Warehouse operations: handling, customs clearance, bulk break-
ing, and loading on trucks for transport to the affected region,
typically via a Humanitarian Staging Area. Processes depend on
cargo type, available resources, and equipment.

Key Performance Indicators

The resilience challenge for an airport impacted by a disaster is to
adapt their logistics and cargo performance beyond the normal level
of operations to cope with the increase of incoming flights and
freight as part of the unfolding disaster response operations. We
selected the following three throughput-related KPIs to measure
the ability of the airport to rapidly adapt to these new requirements:
(1) the total amount of cargo handled per hour; (2) the total amount
of idle cargo, i.e., cargo that is still in the system (in tons); and
(3) the average throughput time of one unit of cargo (in hours).
These KPIs are motivated and characterized in more detail below.
Importantly, we here focus on the resilience of the airport system as
such to ensure its rapid adaptation to the surge of incoming flights,
thereby focusing on the supply side. If a policy-maker rather fo-
cuses on the role of infrastructures for community resilience, met-
rics that take into account the demand-side such as suggested by
Didier et al. (2018) need to be used.

The KPIs are presented individually and not combined into a
single measure for three reasons: (1) different decision-makers
may have different priorities, and displaying the results separately
enables them to make choices and trade-offs based on their pref-
erences; and (2) the KPIs are correlated, e.g., idle cargo and
throughput, and therefore a (linear) aggregation to a single indicator
is flawed as the necessary condition of independence is violated;
and (3), showing how the KPIs evolve over time allows decision-
makers to gain important insights into the timing of their policies
and the resulting behavior of the airport system.

KPI 1: Cargo Processed (tons/hour): The cargo processed at the
airport measures the number of tons of cargo that leaves the airport
system (or system components) per hour, which is an indicator
for the processing capacity of the airport. The inflow of cargo is
beyond the control of the decision-makers at the airport (Veatch
and Goentzel 2018). As such, it presents one of the external factors
to which the airport system rapidly needs to adapt. Following Chen
and Miller-Hooks (2012) and their work on express logistics, the
total cargo processed or throughput is decisive for airport logis-
tics under time pressure. The prototypical behavior of KPI1 is
shown in Fig. 1. After an initial drop in the response to the dis-
aster to P1, the performance increases to peak level P2 and the
reaches a new steady state P3. The absorptive capacity of KPI1 is
measured by comparing the relative difference between P0 and P1.

Adaptive capacity is measured by comparing the relative difference
between P3 and P1.

KPI 2: Idle Cargo (tons): The amount of unused aid at airports is
a well-document significant problem that leads to congestion at the
airport (Holguín-Veras et al. 2012). The severity of the congestion
is measured by the amount of cargo (in tons) that is not handled or
idle. Idle cargo needs to be minimized because it affects the airport
system, and too much idle cargo will disrupt the entire airport. For
example, planes are unable to land if the runway is blocked by
parked aircrafts.

As the idle cargo needs to be minimized, the expected typical
behavior of this KPI is flipped upside down. In the initial state P0,
the airport is free of idle cargo. But with the surge of incoming
flights and goods, the maximum idle cargo at the airport P1 rep-
resenting the absorption level. The shape of the curve of idle cargo
is influenced by two main factors: (1) the inflow (cf. KPI 1), and
(2) the outflow of cargo. The inflow will reflect the amount of in-
coming flights, and the cargo processed, while the outflow can be
addressed by changed handling policies or creating additional stor-
age capacity. Through an implementation of policies, or change of
flight schedule, the idle cargo is reduced and reaches a new steady
state. According to the work on material convergence at airport
(Holguín-Veras et al. 2012; Veatch and Goentzel 2018), airport are
unlikely during the response phase to clear all idle cargo, and
P2 ¼ P3. This implies that the airport does not reach predisaster
performance levels P0, and the time difference T2 − T0 represents
the rapidity of adaptation.

KPI 3: Throughput Time (hours): The massive influx of aircraft
and goods combined with reduced capacity of the airport will typ-
ically increase throughput times in the initial phase of the response.
Here, we measure the average throughput time as an indication how
long cargo remains in the airport system. Because the KPI needs to
be minimized, the absorption level P1 for KPI3 is defined as the
maximum average throughput time owing to the shock. The higher
the absorptive capacity of the airport is, the smaller the difference
between P0 and P1. The adaptation level P2 ¼ P3 is defined as the
new stable state after implementation of all adaptive measures at
process level and the processing of any potential backlogs. The
adaptive capacity of the airport with respect to KPI3 is measured
by the relative difference between P2 and P1. The rapidity of adap-
tation capacity is given by the time difference between T2 and T0.

For each KPI the following three variables have to be defined:
a critical bottom level value for the absorptive capacity, a required
service level value for the adaptive capacity, and the rapidity of
adaptation. These levels define the values within which the airport
needs to operate, or the safe operating space. If those values are
exceeded, the airport system is said to collapse with detrimental
consequences to both the operations at the airport as well as the
humanitarian relief. Table 1 summarizes the critical threshold val-
ues for absorption, adaptation, and rapidity for the three KPIs and
the three system components, according to the above discussion.
For all KPIs the rapidity is measured by the time between T4

and T0. Here, we choose a threshold of 14 days as a typical recov-
ery time, corresponding to experiences from the earthquakes in
Nepal and Haiti (Stanhope 2010; Logistics Cluster 2015). After this
initial chaotic period, the response will transition into a more sta-
bilize and planned phase (Baharmand et al. 2019), in which ground
transportation and sea ports become increasingly important, intro-
ducing another yet another regime and equilibrium for the airport.

The critical levels for absorption and adaptation are defined per
KPI. For KPI1 (cargo processed), the critical absorption level is set
to 0, meaning that cargo must be processed. Based on past studies
about airports in disasters (Neudert 2010; Veatch and Goentzel
2018), the critical level for the adaptive capacity that must be

© ASCE 04020059-4 J. Manage. Eng.
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Fig. 3. Metamodel of the airport system simulation. Arrows from top to bottom represent control factors. Arrows from bottom to top represent
resources needed. Horizontal arrows represent flows for the three system components: (a) dock and gate selection; (b) aircraft unloading; and
(c) warehouse operations.
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reached is set to 400% of the level of normal operations P0. For
KPI2 (idle cargo), we assume that the initial holding capacity at
gate selection and warehouse operations is 375 t, while at unload-
ing, no idle cargo is tolerated. Adaptation levels are defined as
reaching a new temporary equilibrium. KPI3 throughput time the
critical absorption level P1 for is set to be the maximum time that
the cargo can be stored until it expires (e.g., because of cold chain
issues) or is not needed any further in the humanitarian assistance
(e.g., search and rescue equipment is only needed in the first 72 h).
As for KPI2, critical adaptation level is set to reaching a new tem-
porary equilibrium.

Case Study: Airport Resilience Policies and
Scenarios

We illustrate and test our framework via a stylized case study that
functions as a proof of concept. The model and underlying data are
based on a combination of empirical data from the Nepal earth-
quake of 2015 (Aydin et al. 2018; Baharmand et al. 2017) and
the Haiti earthquake of 2010 (Veatch and Goentzel 2018). The data
sets of these two disasters were gathered via expert interviews with
professionals in airports in disasters (from US Airforce, DHL, and
Dnata) and literature research. By applying the model and resil-
ience framework to the case, insights are gained about how and
why certain behavior appears.

Resilience Policies

While the resilience literature often focuses on how to define and
assess infrastructure resilience or predict recovery and adaptation
rates based on historical data (Barabadi and Ayele 2018), there are
fewer studies that evaluate resilience policies. For recovery plan-
ning, there are some authors that suggest the exploration of recov-
ery policies via probabilistic techniques (Bristow and Hay 2016),

or reinforcement learning (Memarzadeh and Pozzi 2019). Other
approaches define the recovery planning as a sequential decision
problem, which is optimized in a dynamic programming approach
(Nozhati et al. 2019; Faturechi et al. 2014). These approaches,
however, use a highly stylized and simplified representation of
the airport system that does not represent the underlying process
dynamics. More specifically for transportation and logistics, resil-
ience, and recovery planning models largely focus on complex
(infrastructure or relational) networks and analyze the impact of
a policy on its topology and composition (Aydin et al. 2018;
Miller-Hooks et al. 2012; Turnquist and Vugrin 2013). Other ap-
proaches include the option to reduce failure probabilities (Lou
and Zhang 2011; Sherali et al. 2011). All these approaches have in
common that they focus on network or systems design and capac-
ity. As such, they are instrumental in recognizing the criticality
of a (network) node, but they are less suitable to develop resil-
ience policies at process level, especially considering the required
adaptivity going beyond predisaster performance levels that we
address here.

Based on the literature and expert interviews, we propose six
policies that are designed to capture structural and process related
measures to rapidly adapt the airport system, ranging from extra
resources to scheduling and capacity building cf. Table 2.

These policies vary with respect to their lead time (i.e., the time
it takes from implementation to impact) and cost. While prioritiza-
tion and provision of extra holding capacity on grass are process-
related policies that can be implemented with immediate effect and
without cost, installing temporary warehouses or increasing the re-
sources available will take more time and cost. For Nepal, the cost
of running an extra warehouse has been estimated at $850 per day,
while increasing the workforce (including equipment) is estimated
at $700 per day (Baharmand et al. 2019). However, the prizing
will largely vary with the case study area, and the choices made
for storage capacity (e.g., tents, containers) (Şahin et al. 2014).

Table 2. Six policies to improve the resilience of airports

Policy Effect

1. Bring in extra resources Extra unloading equipment and specialized workers to increase the handling capacity of the airport (Logistics
Cluster 2010). This policy is divided into three subpolicies with varying arrival times (3, 4, or 5 days postdisaster).

2. Prioritize on size Prioritization mechanism on aircraft size. Wide-body aircrafts need less time on the ground per cargo unit compared
to smaller aircrafts (Veatch and Goentzel 2018).

3. Prioritize on cargo type Aircrafts packed with buildup pallets (BUP) are prioritized over aircraft packed with loose boxes, because they
require less unloading time (Veatch and Goentzel 2018).

4. Provide temporary warehouses Increasing the warehouse capacity creates extra buffer capacity (Logistics Cluster 2015), thereby raising the
maximum absorption level of idle cargo in the warehouse component to 1875 t.

5. Increase the holding area Increasing the holding area by parking small aircrafts on grass and using all available pavement on the airport
(Hanaika et al. 2013). This results in an increased absorption level of the idle cargo KPI in the gate selection
component to 750 t.

6. Combined policy Consisting of all previous policies (split into subpolicies according to arrival of resources). Maximum absorption
level of the idle cargo at gate selection is 750 t and at warehouse operation component 1875 t.

Table 1. Critical level of airport system per component and KPI for absorption (AB), adaptation (AD), and rapidity of adaptation (RA). If level are exceeded
as indicated in the table, the airport system collapses

Component

KPI

Processed cargo Idle cargo Throughput time

AB (t=h) AD (% of P0) RA (days) AB (t) AD (t) RA (days) AB (h) AD (days) RA (days)

Gate selection <0 <400% >14 >375 * >14 >72 * >14
Unloading <0 <400% >14 >0 * >14 >72 * >14
Warehouse ops <0 <400% >14 >375 * >14 >72 * >14

Note: (*) indicates that a new temporary equilibrium or steady state is reached.
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Model Variables and Parameters

To test the impact of the policies on the gate selection, unloading
aircraft and warehouse operations, we define key variables that may
influence the outcomes for these policies. For each of the three
airport processes we define the stochastic variables as listed in
Table 3.

All variables have a specific distribution and values selected
from literature, as referenced in the table. For the gate selection,
we introduce two variables: the type of aircraft arriving, resp. small,
narrow, and wide aircraft types with a probability of resp. 41%,
52%, and 7%, and arrivals for a peak day of 60, 80, or 100 incom-
ing flights that day with a discrete uniform distribution, i.e., the
outcomes are equally likely to happen. For the unloading aircraft
process, we define two variables with a normal distribution for each
of the three aircraft types of small, narrow, and wide: the unloading
time for buildup pallets (BUP) and for bulk packed cargo. Finally,
for warehouse operations, we introduce the breakdown cargo var-
iable with a continuous uniform distribution ranging from 10 to 30
(min). All further airport model parameters and their underlying
rationale and references are provided in Table 4.

The model can now be executed for any random selection of the
variables’ values above. The output of a run of the model delivers
hourly values for the performance for the key system components
(gate selection, unloading, and warehouse) under each policy in
terms of the absorptive and adaptive capacity, and the rapidity of
adaptation for the three KPIs (processed cargo, idle cargo, and
throughput time). In addition, the overall performance for the
airport system is assessed (processed cargo that is leaving the air-
port system; sum of idle cargo in all processes; average throughput
time from arrival until cargo leaves the system).

As we focus on the immediate response phase with a duration
of maximum 2 weeks (Logistics Cluster 2015), the run length of
the model is set to 20 days, divided into two segments: a shorter
segment corresponding to the pre-disaster situation and a longer
segment covering the postdisaster situation. The second segment
starts at 6 o‘clock in the morning of the sixth day, enabling us to
capture the full 14 days of the response phase.

Scenarios

Two elements have been identified that critically influence the swift
recovery of an airport: the share of personnel able to work after a

disaster, and the percentage of cargo that consists of loose boxes.
In the ideal scenario, everyone is able to work, and there are no
loose boxes in the cargo of the incoming planes. In contrast, a
worst-case scenario is that 30% of the people stay away from work,
and 30% of the cargo consists of loose boxes. The choice of 30%
is arbitrary, but roughly corresponds to documented experiences in
previous disasters and is large enough a value to contrast with the
ideal scenario case.

To understand the impact of these situations on airport resil-
ience, we set up a 2 × 2 experiment, with the four experimental
conditions being the ideal scenario (0%,0%), the worst-case sce-
nario (30%, 30%), and two intermediate conditions of (0%, 30%)
and (30%, 0%) respectively. Within each condition we run the
model 160 times, resulting in 95% of all model output values fall-
ing within an acceptable range of 10% around the mean output.

Results

In this section, we present selected results of the model runs in the
four different scenarios. A full results overview is available on a
public repository (Feil 2018a). In the figures below, the outputs are
Fcolor-coded as follows: blue shows the results in the (30%, 30%)
scenario, red the results for the (0%, 0%) scenario, and green and
yellow for the (30%, 0%) and (0%, 30%) scenarios, respectively.
The purple line is a smoothed representation for the blue output.
Figures show the results for the three KPIs of cargo processed

Table 4. Model parameters

Variable Value Source

Gate selection
Aircraft capacity: small,
narrow, wide

(2, 8, 14 cargo units) Kallen (2015)

Weight cargo unit 2.5 (t) Kallen (2015)
Taxi lane 2 (km) Google maps
Taxi speed 30 (km=h) Jordan et al. (2010)
Baseline arrivals per day 18 (aircraft) Cochran (2016)
Number of gates 10 (gates) Veatch and

Goentzel (2018)
Taxi lane capacity 150 (cargo units) Cochran (2016)

Aircraft unloading
Dolly speed 15 (km=h) Schoenmaker

(2016)
Workers unloading 8 (workers) Ballestero (2017),

Interviews
Equipment unloading 1 (high loader) Ballestero (2017),

Interviews

Warehouse operations
Unloading dolly BUP 3 (min) Schuppener (2016)
Unloading dolly bulk 7 (min) Ballestero (2017);

Kallen (2015)
Workers dolly 2 (workers) Interviews
Workers breakdown 3 (workers) Interview DHL
Customs scan 10 (%) Schuppener (2016)
Customs scan duration 10 (min) Schuppener (2016)
Customs capacity 1 (cargo unit) Assumption
Loading time truck BUP 3 (min=unit) Schuppener (2016)
Loading time truck bulk 7 (min=unit) Schuppener (2016)
Truck capacity 4 (units) Schuppener (2016)
Workers truck loading 2 (workers) Schuppener (2016)

General baseline
Number of workers 24 (workers) Interviews
Number of high loaders 3 (high loaders) Interviews

Table 3. Stochastic model variables

Variable Variable distribution Source

Gate selection
Aircraft arrival: small,
narrow, wide

∼41%; 52%; 7% Kallen (2015)

Arrivals peak days ∼U 60,80,100 Neudert (2010)

Unloading
Unloading
time BUP

Veatch and
Goentzel (2018)

Small ∼N ð63; 55Þ (min)
narrow ∼N ð119,66Þ (min)
Wide ∼N ð183,80Þ (min)
Unloading time
bulk packed

Ballestero (2017)

Small ∼N ð158,138Þ (min)
Narrow ∼N ð298,165Þ (min)
Wide ∼N ð458,345Þ (min)

Warehouse operations
Breakdown cargo ∼Uð10; 30Þ (min) Interview DHL
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(KPI1), idle cargo (KPI2), and throughput time (KPI3). All figures
show the behavior over time for each KPI before and after the
disaster occurring at day 6. The graphs present hourly values. The
fluctuations correspond to the day and night rhythm, which is pri-
marily owing to the changing patterns of flights, with different day
and night schedules. This leads to a peak in the processed cargo late
in each day, which is then visible with some delay (owing to the
lead times related to processing) in the idle cargo and throughput
times.

Results for “No Policy” Option on the Airport System

We start of by looking at the results for the overall airport system
for the no policy option, i.e., none of the six proposed policies are
implemented. This option serves as a benchmark for our discussion
on the resilience policies discussed below, and allows us to clearly
understand the impact in the different scenarios.

As the modeling results in Fig. 4 show, this option highlights
the importance of the loss in workforce, particularly for the proc-
essed cargo KPI: the scenarios with 30% loss of workforce (blue
and green) perform significantly worse than the scenarios with full
work force (yellow and red); irrespective of the amount of loose
boxes. Given the lack of resources, the processed cargo drops
from a base level of 10.6 t=h to 5.8 t for blue and green scenarios
[see Fig. 4(a)]. With a full workforce available, the airport manages
to slightly adapt and process some of the cargo that is coming in
additionally as of day 6, yet remain far below the required adaptive
level of at least 400% of P0, or at least 42, 4 t=h after 14 days. Note
that because we assume that there is no destruction of the airport,
there is the downwards shock stems from a lack in workforce,
which is not present in the yellow and red scenarios. In all scenar-
ios, despite the reduced amount of incoming cargo, the idle cargo
continues to increase over time, which also results in a continuously

increasing throughput time [Fig. 4(c)]. As such, for all scenarios,
the airport system quickly collapses, and adaptation levels or a new
steady state are not reached.

Results for Extra Resources Policy on the Airport
System

Given the impact of reduced personnel as observed in case nothing
is done, we take a closer look at the effect of bringing in extra
resources. In particular, we analyze the impact of extra resources
arriving at the airport three, respectively five, days postdisaster (day
9, resp. day 11 on our time line), as shown in Fig. 5 and Table 5.

Most notably, Fig. 5, left hand side shows that adaptation is
achieved for all indicators if extra resources arrive fast (three days
postdisaster). However, if the additional resources only arrive with
2 days further delay, a massive amount of idle cargo and dramati-
cally increased throughput times results [cf. Fig. 5, right hand side].
The higher fluctuations for the red and green scenarios as compared
to yellow and blue stem from the fact that there are no loose boxes
in these scenarios, which makes the day/night fluctuations of the
work force in terms of processed cargo and throughput time more
pronounced.

For further analysis we focus on the most extreme (blue) sce-
nario, because all other scenarios show similar, albeit less pro-
nounced, behavioral patterns (cf. Fig. 5). The results in Table 5
show that if extra resources are available three days postdisaster,
a new equilibrium is reached for processed cargo after 3.5 days,
for idle cargo after 8 days, and for throughput time after 12 days.
If, however, extra resources are available only two days later, the
airport system is unable to cope. While the absorption levels P1 for
processed cargo are the same for both cases and a peak level P2 of
570% of P0 is achieved (as compared to 540% for extra resources
on day 3), the delay of achieving peak performance in cargo

Fig. 4. (Color) Model results for no policy at airport system level. The plot shows the mean of all runs for the blue (30, 30), green (30, 0), yellow
(0, 30), and red (0,0) scenario with (% loss workforce, % loose boxes). Purple line: smooth representation of the blue scenario: (a) processed cargo;
(b) idle cargo; and (c) throughput.
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Table 5. Key values for the triple resilience triangle for the blue scenario for extra resources (ER) on day 3 and day 5 postdisaster

Resilience indicator

Processed by system Idle cargo Throughput time

ER day 3 ER day 5 ER day 3 ER day 5 ER day 3 ER day 5

T1 2.6 days 4.4 days 3.5 days 5.8 days 3.2 days 5.3 days
T2 3.1 days 5.1 days n.a. n.a. n.a. n.a.
T3 3.8 days 6 days n.a. n.a. n.a. n.a.
T4 8 days n.a. 8 days 12 days n.a. n.a.
Rapidity 3.5 days n.a. 8 days n.a. 12 days n.a.
P0 10.6 t=h 10.6 t=h 88t 88t 8.2 h 8.2 h
P1 5.8 t=h 5.8 t=h 755.4 t 1621.7 t 26.6 h 54.6 h
P2 56.9 t=h 60.5 t=h n.a. n.a. n.a. n.a.
P3 49.2 t=h n.a. 325.7 t n.a. 10.0 h n.a.

Note: T1 = reaching absorption level P1 (worst systems performance); T2 = recovery to base level P0 (bounce back); T3 = peak performance P2 (bounce up);
T4 = achieving adaptation P3; n.a. = not achieved; and ER = extra resources.

Fig. 5. (Color) Comparison of results for extra resources arriving 3 versus 5 days postdisaster at airport system level for all three KPIs. Scenarios:
blue (30, 30), green (30, 0), yellow (0, 30), and red (0,0) scenario with (% loss workforce, % loose boxes): (a) extra resources 3 days post-
disaster: processed cargo; (b) extra resources 5 days postdisaster: processed cargo; (c) extra resources 3 days postdisaster: idle cargo; (d) extra
resources 5 days postdisaster: idle cargo; (e) extra resources 3 days postdisaster: throughput time; and (f) extra resources 5 days postdisaster:
throughput time.
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processing (6 days versus 3.8 days) for the extra resources arriving
on day 5 roughly doubles P1 for both idle cargo and throughput
time as compared to extra resources arriving on day 3. This leads
to an overcrowded airport, a delayed delivery of goods to the people
in need, and eventually a collapse of the airport system.

Results of Policies on the Gate Selection Process

As an illustration of the results of the policies on airport processes,
we focus in this section on the gate selection process. The policies
illustrated are detailed next.

Prioritization by Cargo and Aircraft Size Policies
Fig. 6(e) shows that for the prioritization by cargo, the amount of
workers available is decisive: the red and yellow scenarios (without
loss in workforce) achieve a processing rate of about 37 t=h at gate,
whereas the blue and green scenarios converge to 17.3 t=h. Con-
trarily, if prioritization is done by aircraft size, the scenarios fall into

three categories, see Fig. 6(f). The red scenario performs best with
an average processing rate of more than 30 t=h, the yellow and
green scenarios (both characterized by 30% loose boxes) achieve
22 t=h, while with 15.1 t=h the blue scenario performs worse than
for the prioritization by cargo, which is still about 23% better than
the do nothing option at gate level.

However, the performance for both prioritization policies is far
below the required 400% beyond P0 in increase and not sufficient
to deal with the incoming amount of cargo. As such, it leads to a
collapse of the airport system due to a continuously increasing
amount of idle cargo and throughput time (see Fig. 6). The distinc-
tion between red and yellow versus blue and green for prioritization
by cargo (Fig. 6, left hand side) and red versus green and yellow
versus blue (Fig. 6, right hand side) is also reflected in the idle
cargo, which results in the similar categories for both prioritization
policies. In both cases the amount of cargo that is idle at the taxi
lane is over 8,000 t at the end of the 20th day for the blue scenario,

Fig. 6. (Color) Comparison of results for prioritization policies at gate component system level for all three KPIs. Scenarios: blue (30, 30), green
(30, 0), yellow (0, 30), and red (0,0) scenario with (% loss workforce, % loose boxes): (a) prioritization by cargo: processed cargo; (b) prioritization
by aircraft size: processed cargo; (c) prioritization by cargo: idle cargo; (d) prioritization by aircraft size: idle cargo; (e) prioritization by cargo:
throughput time; and (f) prioritization by aircraft size: throughput time.
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and in all cases by far exceeds the holding capacity of 375 t. As the
prioritization according to cargo (Fig. 6, left hand side) implies that
the aircrafts packed with loose boxes are not prioritized, the average
throughput time increases for the red and green scenarios over the
yellow and blue, showing the impact of the policy and leading to an
average throughput time of under 60 h by day 20 for the yellow
scenarios, as compared to more than 120 h for the green scenario.
For the prioritization by aircraft size (Fig. 6, right hand side), the
scenarios perform more similar, with the yellow and green scenar-
ios (including loose boxes) showing a slightly worse performance.

Combined Policy: Extra Resources with Prioritization and
Extra Holding Area
In Fig. 7, the analysis of a combination of extra resources with
prioritization by aircraft size and an increase of the holding area
is displayed for the gate selection component and the critical KPI
Idle Cargo. Combining the policies has a positive effect resulting
in 30% less idle cargo compared to the extra resources policy only.
By adding extra holding capacity, the initial holding capacity is
doubled from 375 to 750 t with immediate effect. The initial
amount is only sufficient if the extra resources arrive on 3 days
postdisaster, because the absorption level is just over 200 t. In this
case, the airport system reaches its adaptation level of 50.6 t of
cargo 1 day later, i.e., 4 days after the disaster hit. If extra resources
arrive later, the airport depends on the extra holding capacity.
Doubling capacity is sufficient if the extra resources arrive
4 days postdisaster because the absorption level is about 620 t
[cf. Fig. 7b]. In this case, the adaptation level of 50.9 t is
reached 10 days after the disaster, almost a week later than for
extra resources arriving on day 3. If the resources arrive 5 days
postdisaster or later, the airport is unable to handle the incoming
aircrafts even with double capacity. In this case, the absorption level

raises to 1372.3 t, adaptation levels are not reached, and the airport
should decline landing requests.

Results of All Policies on the Airport Processes in the
Worst-Case Scenario

We here present the results of the analyzed policies at airport pro-
cess level for the worst-case (blue) scenario. We chose this scenario
as it represents a likely disaster setting characterized by reduced
capacity and a significant share of loose boxes. Table 6 shows the
performance of policies with respect to all KPIs and components
for this scenario. Several important findings can be noted.

First, while bringing in extra resources improves airport perfor-
mance for all KPIs and components, the impact of targeted policies
can have a negative or rippling effect as the increase in processing
of incoming flights cannot be adequately dealt with. For instance,
we see that the prioritization on aircraft size and cargo type im-
proves adaptation (and cargo type also rapidity) for processed cargo
at unloading (15 and 17.3 versus 11.8), yet these policies have a
negative impact on idle cargo and throughput time as compared to
the no policy scenario for the unloading component (7.5=4.5 versus
3.7 and 8.1=8.0 versus 7.2) because there is no capacity to store and
handle the additionally incoming goods. This finding highlights the
need for an integral approach to modeling the airport system.

Second, the results in the policy effect Table 6 show that the gate
selection and the warehouse operations processes are more prone
to failures that eventually cause the airport to collapse than the un-
loading process. This suggests that these two processes are the most
critical in enabling resilience of the airport.

Third, we see that capacity extending policies such as adding
holding areas or temporary warehouses are only useful if there
are sufficient resources to exploit their potential. Similarly, while

Fig. 7. (Color) Performance of idle cargo KPI for combined policy (extra resource and double prioritization). Scenarios: blue (30, 30), green (30, 0),
yellow (0, 30), and red (0,0) scenario with (% loss workforce, % loose boxes): (a) extra resources 3 days postdisaster; (b) extra resources 4 days
postdisaster; and (c) extra resources 5 days postdisaster.
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prioritization policies are able to increase the performance for
processing cargo at gate selection and for unloading by 26% to
44%, this is not sufficient to prevent the collapse of the system.
Rather, the increase of processed cargo results in more idle cargo.
Taken alone, these policies do not perform significantly better than
the no policy option. However, in combination with extra resour-
ces, they are able to create buffer capacity for the airport and lower
the dependence on the swift arrival of resources in terms of absorp-
tive capacity and increase efficiency. These findings lead to an im-
portant conclusion: while there is a well-documented urge among
decision-makers to rush to action after a disaster by implementing
policies that have immediate results, no lead time and no associated
cost (such as prioritization or capacity increase at the airport), the
policy with the longer lead time of increasing extra resources in
terms of staff and equipment has, in fact, the greater contribution
to airport resilience.

Timeline Visualization for the Implementation of
Policies

To help decision-makers understand the timing of critical decisions
under different scenarios, we create a timeline visualization such

as the one shown in Fig. 8. The figure provides information for
decision-makers on the timing and related consequences for the
combined policy, which is the best performing policy in the blue
scenario (Table 6). The different critical times are denoted as A, B,
C etc., indexed for the various scenarios. Corresponding to the pre-
ceding discussion, the visualization shows that in the blue scenario
the airport logistics system can only absorb and recover if the extra
resources arrive within the first three days after the disaster. If extra
resources arrive later, the system can absorb the influx of aircraft,
but not reach a stable level within 2 weeks. If the extra resources
arrive more than 5 days after the disaster, the airport cannot absorb
the amount of cargo and collapses.

Fig. 8 also shows that for three scenarios (blue, green, yellow),
the airport reaches the limits of its coping capacity at day 11, five
days after the disasters strikes, unless extra resources arrive on time.
In both scenarios with limited human resources (blue and green),
if extra resources arrive late, the airport does not reach a new steady
state within 2 weeks after the disaster, with serious implications for
the response. The yellow scenario highlights the implications of
loose boxes: because they are an additional strain on airport capac-
ity and workforce, the yellow scenario also can lead to the collapse

Table 6. Triple resilience analysis of absorption level (AB), adaptive level (AD), and rapidity of adaptation (RA) based on the blue scenario. Units: RA (days);
and AB and AD for processed cargo (t=h), for idle cargo (t), for throughput time (h). Bold cells indicate that absorption levels exceed capacity of holding areas
or warehouses for AB or that convergence to AD is not reached within 14 days (RA). Note that capacity for holding areas and temporary warehouses are
increased for the combined policies, leading to higher failure thresholds

Policy

Processed cargo Idle cargo Throughput time

AB AD RA AB AD RA AB AD RA

Gate selection
No policy 11.0 12.0 fail fail fail fail fail fail fail
Extra resources on the 3rd day 11.0 61.3 4 276 80 4 9.4 1.3 4
Extra resources on the 4th day 11.0 61.3 10 930 77 10 22.1 1.4 10
Extra resources on the 5th day 11.0 61.3 fail 1831 fail fail 38.4 4.7 13
Prioritization on aircraft size 11.0 15.1 fail fail fail fail fail fail fail
Prioritization on cargo type 11.0 17.3 fail fail fail fail fail fail fail
Extra holding area 11.0 12.0 fail fail fail fail fail fail fail
Temporary warehouse 11.0 12.0 fail fail fail fail fail fail fail
Combined policy 3rd day 11.0 69.3 4 203 51 4 6.1 1.3 4
Combined policy 4th day 11.0 76.3 10 619 51 10 12.9 1.3 10
Combined policy 5th day 11.0 79.2 fail 1372 51 fail 21.4 4.27 12

Unloading
No policy 11.0 11.8 6 3.7 3.7 6 7.2 7.2 6
Extra resources on the 3rd day 11.0 61.3 4 4.5 2.1 4 7.2 2.7 4
Extra resources on the 4th day 11.0 61.3 10 5.6 2.2 10 8.3 2.9 5
Extra resources on the 5th day 11.0 61.3 11 5.6 2.9 11 8.4 3.6 6
Prioritization on aircraft size 11.0 15.0 6 7.5 7.5 6 8.1 8.1 6
Prioritization on cargo type 11.0 17.3 4 4.5 4.6 4 8.0 8.0 4
Extra holding area 11.0 11.8 2 3.7 3.7 6 7.2 7.2 6
Temporary warehouse 11.0 11.8 2 3.7 3.7 6 7.2 7.2 6
Combined policy 3rd day 11.0 70.7 4 5.9 2.3 4 8.0 2.8 4
Combined policy 4th day 11.0 75.8 6 7.0 2.5 6 8.3 2.8 5
Combined policy 5th day 11.0 86.5 8 7.9 2.6 8 8.3 3.0 6

Warehouse operations
No policy 5.8 fail fail fail fail fail fail fail fail
Extra resources on the 3rd day 5.8 56.9 8 523 242 8 6.1 0.6 4
Extra resources on the 4th day 5.8 60.3 fail 693 fail fail 10.7 1.0 8
Extra resources on the 5th day 5.8 60.5 fail 836 fail fail 13.8 1.6 13
Prioritization on aircraft size 5.8 fail fail fail fail fail fail fail fail
Prioritization on cargo type 5.8 fail fail fail fail fail fail fail fail
Extra holding area 5.8 fail fail fail fail fail fail fail fail
Temporary warehouse 5.8 fail fail fail fail fail fail fail fail
Combined policy 3rd day 5.8 62.2 12 580 247 12 5.6 0.6 4
Combined policy 4th day 5.8 68.1 fail 949 fail fail 9.0 1.2 8
Combined policy 5th day 5.8 74.1 fail 1160 fail fail 10.3 2.1 12
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of the airport, unless additional resources arrive. Only for the red
scenario (with full workforce available and no loose boxes), the
airport reaches adaptation levels at the latest on day 16 irrespective
of when the extra resources arrive.

Validity of the Model and Results

During the process of model building, a main concern for the
modeler is how closely the model reflects the real system it aims
to represent. We have taken the following steps in validating our
model and verifying its results: (1) historic output validation to
validate the model conclusions, (2) face validation to validate the
model assumptions, (3) internal validity test to validate the model
output consistency, and (4) sensitivity analysis to validate the re-
lationship between the input values and the model output values
(Sargent 2007).
1. Historic output validation: Although the case used in this paper

is stylized, the general findings should be in line with reality. We
therefore compare the conclusions of the model output to his-
torical events at the airports involved in the response of the Haiti
in (2010) and Nepal in (2015) earthquakes (Veatch and Goentzel
2018; Aydin et al. 2018; Baharmand et al. 2017). First, our find-
ings are in line with the literature on material convergence,
which highlights that airports in disasters are frequently collap-
sing and vital goods cannot be processed on time (Holguín-
Veras et al. 2012). Holguín-Veras et al. (2014) describe that
about a third of the staff during the Tohoku Earthquake response
was occupied sorting the incoming goods, and that 40-50% of
warehousing was used for low priority items. While our model
does not include the types of goods arriving, we can clearly con-
firm the need for extra resources to deal with the incoming
goods, and the need for extra warehousing and storage space.
Accordingly, the extra warehouse policy was also introduced in
addition to extra resources during the Nepal response (Logistics
Cluster 2015). If, indeed, the low or no priority item constitue
60% of the incoming goods (Holguín-Veras et al. 2007) redu-
cing the amount of unwanted and unsolicited donations will

drastically unburden the airport system. Moreover, we can con-
firm that the prioritization by aircraft size that was also used
during the Haiti Earthquake response (Logistics Cluster 2010)
does have a slightly positive impact on the performance. There-
by, we can confirm early research on congested airports (not in a
disaster context), which found that overall delays and queuing
times could be reduced (Janic 2009). As such, we can conclude
that the suggested policies resulting from the model are in line
with real-world policy implementations.

2. Face validation: In order to validate the underlying assumptions
of the model, we conducted a face validation during the model-
ing phase. Through interviews with aviation experts from the
US Airforce, DHL, and Dnata, the structural assumptions of
the model were inspected. The experts concluded that the as-
sumptions are acceptable. However, the experts noted that our
assumption of an intact airport infrastructural restricts the ap-
plicability of the model to cases where the airport is outside
of the affected zone. Examples of such cases include the air-
ports of Cebu and Manila in the response to Haiyan (Comes
et al. 2015) or Balikpapan airport for the response to the 2018
Sulawesi tsunami and earthquake.

3. Internal validity: Several replications of the model were run to
determine the internal variability in the model results (Sargent
2007). With 160 replications 95% of all model output values
fall within an acceptable range of the mean output. The largest
internal variability consists of the throughput time KPI of the
aircraft unloading component. The largest internal variability
was found in KPI3 (throughput time) at the aircraft unloading
component during. In Fig. 9 an overview of the validation runs
is presented. In this figure the combined policy with the extra
resources arriving 4 days after the disaster in the scenario blue
scenario (30% loss of workforce and 30% loose boxes) is dis-
played. 95% of all model output values fall within an acceptable
range of the mean output this makes the model internally valid.
For further findings and analysis, we refer to the full model and
all data, which are available publicly and openly (Feil 2018b).

4. Sensitivity analysis: For almost all input parameters, a small
change in input produced only a small change in output.

Fig. 8. (Color) Timeline for implementation of combined policy and critical points for the airport system’s resilience. Details for the blue scenario.
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One notable exception identified through the sensitivity analy-
sis is the number of high lifters and the number of unloading
workers. This is because in our model, one high lifter requires
8 unloading workers. If the number of unloading workers is
decreased to 7 workers, the high lifter is not able to operate.
According to our interviews, an aircraft can be unloaded with
7 workers, but requires substantial extra time. The dispropor-
tional influence on the number of cargo unit processed due to
a small decrease in personnel is a limitation of the model, and
policies that involve small changes in the number of workers
should therefore not be tested in this model.
Overall, we can conclude that the model is validated, with the

caveat of the sensitivity of small personnel changes for high lifter
operations and the limitation of the model’s scope to airports out-
side of the immediate disaster zone.

Conclusions

We started this paper with the introduction of a resilience frame-
work that combines the notion of graceful extensibility (Woods
2015) with the need for rapid adaptation of the system itself.
This adaptation leads to a new equilibrium or steady state of the
critical infrastructure system. The resilience of the critical infra-
structure can be measured by a triple resilience triangle based on

its absorptive and adaptive capacity, and the rapidity of adaptation.
Because rapid adaptation to changing required service levels during
a disaster response is characteristic for airports, they provide an
ideal study case to better understand the need to rapidly adapt and
ramp up, which is also common for other critical hub infrastruc-
tures such as seaports, hospitals, or train stations.

To analyze the impact of resilience policies on a critical airport
infrastructure under different scenarios, we next introduced a dis-
crete event simulation model. This approach allowed us to gain in-
sight in processes and problems within airports, and revealed the
interdependency of system components and processes. We illus-
trated our approach through a stylized disaster case with six differ-
ent policies intended to improve the level of resilience of the airport
under four different disaster impact scenarios.

Our results showed first that not implementing any policies to
handle the disaster leads to a certain collapse of the airport in view
of the increased demands. Secondly, we found that distinct policies
to improve the level of airport resilience impact multiple processes
and KPIs simultaneously and differently. As such, an integrated
approach to improve resilience is necessary. Third, our findings in-
dicate that a decision-maker should implement a combination of
different policies without delay. This includes in order of impor-
tance: (1) deploying extra resources, (2) setting up additional stor-
age units, (3) creating extra holding capacity, and (4) implementing
a prioritization policy on cargo type and aircraft size. With these

Fig. 9. (Color) Internal validity of combined policy with the extra resources arriving at the 10th day in the blue scenario (30% loss of workforce and
30 % share of loose boxes): (a) processed cargo; (b) idle cargo; and (c) throughput time.
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consecutive policies, our findings suggested that the airport has
the best chance to stay operational and provide the required surge
capacity.

Many authors have stressed the need to incorporate learning into
resilience for engineered systems (Woods et al. 2014; Mattsson and
Jenelius 2015), organizational resilience (Vogus and Sutcliffe
2007), and disaster response (Comes et al. 2017). The findings in
this paper hint at at least two important lessons for airport resil-
ience. First, timing in the aftermath of a disaster is of the essence,
and it is crucial that the airport immediately starts ramping up and
increasing its capacity. In practice, this means that decision-makers
should prepare the airport for a rapid scale-up of extra resources
and extra holding and warehouse capacity. Second, in order to be
able to swiftly implement these policies, the airport is dependent on
its environment and other critical infrastructures. The successful
implementation of airport resilience policies therefore also requires,
for instance, to ensure that staff can reach the airport on time
(e.g., by clearing roads or setting up transportation capacity), and
that organizations comply to guidelines and standards for packing
aircrafts by setting up, for example, training and awareness build-
ing activities. This also implies that stakeholders need to be in-
volved in the construction and prioritization of scenarios (Thekdi
and Lambert 2013).

Our model and analysis have several limitations that can be ad-
dressed in future work: first, we are focusing on the cargo system of
an airport. The actual airport system also entails passenger flows
and ground access (Malandri et al. 2017), which could be added to
achieve a more comprehensive understanding of the airport system.
Second, we assume that the airport infrastructure itself is not dam-
aged. As such, our model is restricted to situations where the airport
is serving as a hub into the affected areas. While damaged runways
limit the number of incoming flights, the effect of destroyed ware-
houses and storage capacity will exacerbate the problem of conges-
tion and material convergence.

Third, we focused here on the regime of the initial response
phase, which lasts at most 14 days after the shock event (Styles
2017). Evidently, and as our results show, depending on the mag-
nitude of disruption, and the capacity of the airport, it may not
be possible to achieve adaptation within this timeframe. Yet, the
14 days time horizon of the initial response phase provides a useful
frame for decision-makers, because this is the critical period of the
response phase, within which the airport has to stabilize and adapt
to serve the population in dire need. After the initial phase, typically
flight schedules will change, and transport overland or via sea be-
come more prominent. To further analyze this, we plan to expand
the analysis to understand the resilience under regime changes
(represented as the pressure by the patterns and cargo of incoming
flights and availability of workers).

Fourth, as responders typically prioritize fast, but high-cost pol-
icies in the immediate response (Şahin et al. 2014), we focus here
on the effectiveness of the policies in terms of achieving the re-
quired adaptation level. Our model can be extended with an analy-
sis of economic efficiency. To this end, the cost of the individual
measures needs to be compared with the economic impact of the
delays. While in commercial setting, this impact can be relatively
easily quantified [see, e.g., Janic (2009)], in a humanitarian setting,
it has been suggested to use welfare economics principles to cal-
culate deprivation cost (Holguín-Veras et al. 2013). To capture
these phenomena, we aim to extend the airport resilience frame-
work to include the wider supply chain network, both upstream
(transportation from suppliers to the affected country; air bridges,
etc.), and downstream (last-mile transportation to the affected areas
and distribution to the beneficiaries), and determine appropriate
deprivation cost functions.

Taken together, we strive to further develop this model-driven
approach to resilience to the benefit of decision-makers at critical
infrastructures who are facing the consequences of high-impact dis-
aster events and have to fulfill an unexpected yet crucial support
role in the life-saving response to these.

Data Availability Statement

The simulation model, scenario analyses, all data, and results are
available in a public repository: Feil, Wouter (2018) Humanitarian
airport model–data and analyses. 4TU.Centre for Research Data.
Dataset. https://doi.org/10.4121/uuid:2fdf17f8-36c0-4d97-89cc-04
0c9a76e5ed.
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del Amo, and S. Boccaletti. 2013. “Modeling the multi-layer nature
of the european air transport network: Resilience and passengers re-
scheduling under random failures.” Eur. Phys. J. Spec. Top. 215 (1):
23–33. https://doi.org/10.1140/epjst/e2013-01712-8.

Chen, L., and E. Miller-Hooks. 2012. “Resilience: an indicator of recovery
capability in intermodal freight transport.” Transp. Sci. 46 (1): 109–123.
https://doi.org/10.1287/trsc.1110.0376.

Choi, J., N. Naderpajouh, D. J. Yu, and M. Hastak. 2019. “Capacity build-
ing for an infrastructure system in case of disaster using the system’s
associated social and technical components.” J. Manage. Eng. 35 (4):
04019013. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000697.

Cimellaro, G. P., A. M. Reinhorn, and M. Bruneau. 2010. “Framework for
analytical quantification of disaster resilience.” Eng. Struct. 32 (11):
3639–3649. https://doi.org/10.1016/j.engstruct.2010.08.008.

Clark, K. L., U. Bhatia, E. A. Kodra, and A. R. Ganguly. 2018. “Resilience
of the us national airspace system airport network.” IEEE Trans. Intell.
Transp. Syst. 19 (12): 3785–3794. https://doi.org/10.1109/TITS.2017
.2784391.

Cochran, J. 2016. Haiti port au prince international airport–Toussaint
louverture. Port au Prince, Haiti: Logistics Cluster.

© ASCE 04020059-15 J. Manage. Eng.

 J. Manage. Eng., 2020, 36(5): 04020059 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

T
in

a 
C

om
es

 o
n 

06
/2

3/
20

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.

https://doi.org/10.4121/uuid:2fdf17f8-36c0-4d97-89cc-040c9a76e5ed
https://doi.org/10.4121/uuid:2fdf17f8-36c0-4d97-89cc-040c9a76e5ed
https://doi.org/10.1177/0002764214550299
https://doi.org/10.1177/0002764214550299
https://doi.org/10.1016/j.ijdrr.2018.07.022
https://doi.org/10.1016/j.ijdrr.2017.07.007
https://doi.org/10.1016/j.ijdrr.2017.07.007
https://doi.org/10.1016/j.tre.2019.05.002
https://doi.org/10.1016/j.ress.2017.08.018
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000338
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000338
https://doi.org/10.1193/1.1623497
https://doi.org/10.1140/epjst/e2013-01712-8
https://doi.org/10.1287/trsc.1110.0376
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000697
https://doi.org/10.1016/j.engstruct.2010.08.008
https://doi.org/10.1109/TITS.2017.2784391
https://doi.org/10.1109/TITS.2017.2784391


Comes, T. 2016a. “Cognitive biases in humanitarian sensemaking and
decision-making lessons from field research.” In CogSIMA, 56–62.
New York: IEEE. https://doi.org/10.1109/COGSIMA.2016.7497786.

Comes, T. 2016b. “Designing for networked community resilience.”
Procedia Eng. 159 (Jan): 6–11. https://doi.org/10.1016/j.proeng.2016
.08.057.

Comes, T., and B. de Walle. 2014. “Measuring disaster resilience: The
impact of hurricane Sandy on critical infrastructure systems.” ISCRAM
11 (May): 195–204.

Comes, T., K. Meesters, and S. Torjesen. 2017. “Making sense of crises:
the implications of information asymmetries for resilience and social
justice in disaster-ridden communities.” Sustainable Resilient Infra-
struct. 4 (3): 1–13. https://doi.org/10.1080/23789689.2017.1405653.

Comes, T., O. Vybornova, and B. Van de Walle. 2015. “Bringing structure
to the disaster data typhoon: An analysis of decision-makers’ informa-
tion needs in the response to Haiyan.” In Proc., 2015 AAAI Spring
Symp. Series. Palo Alto: Association for the Advancement of Artificial
Intelligence.

Cook, A., H. A. Blom, F. Lillo, R. N. Mantegna, S. Micciche, D. Rivas,
R. Vázquez, and M. Zanin. 2015. “Applying complexity science to air
traffic management.” J. Air Transp. Manage. 42 (Jan): 149–158. https://
doi.org/10.1016/j.jairtraman.2014.09.011.

De Neufville, R. 2016. “Airport systems planning and design.” In Air trans-
port management: An international perspective 61–78. Milton Park,
UK: Routledge.

Didier, M., M. Broccardo, S. Esposito, and B. Stojadinovic. 2018. “A com-
positional demand/supply framework to quantify the resilience of civil
infrastructure systems (re-codes).” Sustainable Resilient Infrastruct.
3 (2): 86–102. https://doi.org/10.1080/23789689.2017.1364560.

D’Lima, M., and F. Medda. 2015. “A new measure of resilience: An ap-
plication to the london underground.” Transp. Res. Part A: Policy
Pract. 81 (Nov): 35–46. https://doi.org/10.1016/j.tra.2015.05.017.

Dunn, S., and S. M.Wilkinson. 2016. “Increasing the resilience of air traffic
networks using a network graph theory approach.” Transp. Res. Part E:
Logist. Transp. Rev. 90 (Jun): 39–50. https://doi.org/10.1016/j.tre.2015
.09.011.

Elmqvist, T., E. Andersson, N. Frantzeskaki, T. McPhearson, P. Olsson,
O. Gaffney, K. Takeuchi, and C. Folke. 2019. “Sustainability and resil-
ience for transformation in the urban century.” Nat. Sustainability 2 (4):
267. https://doi.org/10.1038/s41893-019-0250-1.

Faturechi, R., E. Levenberg, and E. Miller-Hooks. 2014. “Evaluating and
optimizing resilience of airport pavement networks.” Comput. Oper.
Res. 43 (Mar): 335–348. https://doi.org/10.1016/j.cor.2013.10.009.

Feil, W. 2018a. Humanitarian airport model–data and analyses. Delft,
Netherlands: 4Tu.Centre for Research Data.

Feil, W. 2018b. “Resilient airports.” Accessed June 1, 2019. https://
repository.tudelft.nl/islandora/object/uuid%3A0b4c39d1-4ff3-4669-b4de
-0e1167542cfe?collection=education.

Francis, R., and B. Bekera. 2014. “A metric and frameworks for resilience
analysis of engineered and infrastructure systems.” Reliab. Eng. Syst.
Saf. 121 (Jan): 90–103. https://doi.org/10.1016/j.ress.2013.07.004.

Hallegatte, S., J. Rentschler, and J. Rozenberg. 2019. Lifelines: The resil-
ient infrastructure opportunity. Washington, DC: Worldbank.

Hanaika, S., Y. Indo, T. Hirata, T. Todorki, T. Aratani, and T. Osada. 2013.
“Lessons and challenges in airport operation during a disaster.” J. JSCE
1 (1). 286–297. https://doi.org/10.2208/journalofjsce.1.1_286.

Heckmann, I., T. Comes, and S. Nickel. 2015. “A critical review on sup-
ply chain risk–definition, measure and modeling.” Omega 52 (Apr):
119–132. https://doi.org/10.1016/j.omega.2014.10.004.

Holguín-Veras, J., M. Jaller, L. N. Van Wassenhove, N. Pérez, and T.
Wachtendorf. 2012. “Material convergence: Important and understud-
ied disaster phenomenon.” Nat. Hazards Rev. 15 (1): 1–12. https://doi
.org/10.1061/(ASCE)NH.1527-6996.0000113.

Holguín-Veras, J., N. Pérez, M. Jaller, L. N. Van Wassenhove, and
F. Aros-Vera. 2013. “On the appropriate objective function for post-
disaster humanitarian logistics models.” J. Oper. Manage. 31 (5):
262–280. https://doi.org/10.1016/j.jom.2013.06.002.

Holguín-Veras, J., N. Pérez, S. Ukkusuri, T. Wachtendorf, and B. Brown.
2007. “Emergency logistics issues affecting the response to katrina:

a synthesis and preliminary suggestions for improvement.” Transp.
Res. Rec. 2022 (1): 76–82. https://doi.org/10.3141/2022-09.

Holguín-Veras, J., E. Taniguchi, M. Jaller, F. Aros-Vera, F. Ferreira, and
R. G. Thompson. 2014. “The tohoku disasters: Chief lessons concern-
ing the post disaster humanitarian logistics response and policy impli-
cations.” Transp. Res. Part A: Policy Pract. 69 (Nov): 86–104. https://
doi.org/10.1016/j.tra.2014.08.003.

Holling, C. S. 1973. “Resilience and stability of ecological systems.”
Annual Rev. Ecol. Syst. 4 (1): 1–23. https://doi.org/10.1146/annurev
.es.04.110173.000245.

Hosseini, S., K. Barker, and J. E. Ramirez-Marquez. 2016. “A review of
definitions and measures of system resilience.” Reliab. Eng. Syst. Saf.
145 (Jan): 47–61. https://doi.org/10.1016/j.ress.2015.08.006.

Ilbeigi, M., and B. Dilkina. 2018. “Statistical approach to quantifying the
destructive impact of natural disasters on petroleum infrastructures.”
J. Manage. Eng. 34 (1): 04017042. https://doi.org/10.1061/(ASCE)ME
.1943-5479.0000566.

Janic, M. 2009. “Concept for prioritizing aircraft operations at congested
airports.” Transp. Res. Rec. 2106 (1): 100–108. https://doi.org/10.3141
/2106-12.
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