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A straightforward method is presented to calculate the three-dimensional response of layered, elastic 

half-spaces to a dynamic surface loading. The derivation of the method is performed in the wave­

number-frequency domain. Space-frequency domain results are subsequently obtained through the 

application of the Fast Fourier Transform. The results show good agreements with the static solutions 

of Boussinesq and the dynamic solutions of Lamb. 
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1 Introduction 

Review of the literature on wave propagation theory shows that there is a large variety of 

techniques for solving wave propagation problems in stratified media. One formalism to describe 

the propagation of waves in layered media has been presented by Thomson (1950) and Haskell 

(1953). This formalism is based on the use of transfer matrices in the wavenumber-frequency 

domain, which relate the displacement and stress components at a given interface with those at the 

other interfaces. The Thomson-Haskel technique may exhibit numerical difficulties at high 

frequencies, large depths, and a large number of layers. These difficulties are caused by the 

occurrence in the transfer matrix of both small and large exponential elements, the combination of 

which gives rise to a loss of significant figures during matrix multiplication. 

Dunkin (1965) has avoided these difficulties by using the determinant matrix decomposition theory 

and by expressing the solution in terms of its Laplace-Fourier transformation. Gilbert and Backus 

(1966) have given another method, in which a propagator matrix is obtained through matrix 

polynomial approximations, using the method of mean coefficients as described by the Cayley­

Hamilton theorem. Richard, Hall and Woods (1970) and Kennett (1983) have also used the propaga­

tor matrix approach. The stiffness matrix approach forms an alternative method that has been 

presented by Kausel and Roesset (1981). In this method, the external loads that are applied at the 
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layer interfaces are related to the displacements at these locations through stiffness matrices. 

The application of this method is restricted to problems involving only simple geometries. 

Once the wavenumber-frequency domain solutions for a layered medium have been obtained, the 

synthesis of the space-frequency domain result or the space-time domain result forms another 

difficulty. Most of the work that has been done in this area involves mathematical methods such as 

contour integration, the steepest descent method, the Hankel-Laplace transformation, the Cagniard­

de Hoop method, etc. See, for example, Lamb (1904), Cagniard (1939), Ewing, Jardetzky and Press 

(1957), De Hoop (1960), Haskell (1964), Harkrider (1964), Hudson (1969), Harkrider (1970), Chap­

man (1978), Kennett (1983), Van der Hijden (1987), De Hoop (1988), Verweij and De Hoop (1990), 

and Wolf (1985,1988). 

In this paper, we present a method that is both mathematically straightforward and numerically 

easy to implement. The first aim is to avoid as much mathematical difficulties as possible, so that 

the method may be understood with only a basic knowledge of the theory of wave propagation. 

The second aim is to end up with wave field representations that only require commonly available 

numerical routines for their evaluation. 

The solution technique adopted in this publication will be based on expressing the load and the 

wavefield quantities in terms of their temporal and horizontal spatial Fourier transforms. 

According to the Helmholtz theory, any vector field can be expressed as the sum of the gradient of a 

scalar field and the curl of a vector field, see Ewing et al. (1957). The displacement vector will thus be 

decomposed into scalar and vector potentials. Four potential functions, the scalar potential and the 

three components of the vector potential, then represent the displacement field. Each potential 

function consists of two terms representing waves that propagate in the positive and the negative 

vertical direction, respectively. Consequently, at this stage the displacement field is described by 

eight functions for each layer. The condition of zero divergence of the vector potential provides two 

conditions, which reduces the problem to solve for six functions for each layer. Once these functions 

are obtained for all the layers, the displacement field is completely determined. For a medium that 

consists of N parallel layers, the required 6N functions will follow from solving 3N second-order 

differential equations, giving 6N general solutions. To find the 6N constant multipliers, 6N 

restrictions will be imposed. The boundary conditions at the surface of the medium give three of 

these conditions, the continuity of the displacements and stresses across the interfaces between the 

layers provide 6(N-l) conditions, and the radiation conditions at infinity yield the final three 

conditions. 

2 Basic equations and the solution insid.e the layers 
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When discussing wave propagation in an elastic medium it is usually convenient to start with the 

basic concepts of elasticity and the stress-strain relationships. Since these aspects have been well 

established by many authors, the analysis will start with the elastodynamic equation that governs 

wave propagation in a homogeneous, isotropic, elastic medium. In the absence of body forces this 

equation is given by 



(1) 

where p is the volume density of the material, V' is the nabla operator of vector calculus, and A and 

/1 are the Lame parameters of the material. According to the Helmholtz vector decomposition theo­

rem, the displacement vector field can be expressed as 

u=V'!/J+V'x'P, (2) 

i.e., the vector field u is represented as a sum of the gradient of a scalar potential !/J and the curl of a 

vector potential 'P. The condition V' . 'P = 0 provides an additional condition that uniquely 

determines the three components of 'P. Substitution of Eg. (2) into Eq. (1) reveals that !/J and 'P are 

the solutions of the wave equations 

with ci ::: (A+ 2f.1)lp, (3) 

and 

with c~ = /1/ p. (4) 

In these equations, c1 is the compressional wave speed, and c2 is the shear wave speed. The above 

formulation is discussed in more detail in many works, see for example Ewing et al. (1957), and 

Eringen and Suhubi (1975). 

The solution of the problem is conducted in the wavenumber-frequency domain, which is arrived at 

after performing the temporal Fourier transformation given by 

f(x, y, z, OJ) = J f(x, y, z, t)e;Widt , (5) 

followed by the horizontal spatial Fourier transformations 

f(ex, {3, z, OJ) = J J f(x, y, z, OJ)e-i("X+~Y)dxdy. (6) 

For each individual load component with a harmonic behavior in x, y, and t, the generated waves in 

the medium can be represented by a scalar potential !/J and a vector potential 'P with the corres­

ponding values of the transform parameters ex, {3, and OJ. Now the problem is reduced to finding 

!/J( ex, {3, z, OJ) and 'P( ex, {3, z, OJ) from the second-order, ordinary differential equations that result after 

the transformation of Eqs. (3) and (4). In the following analysis, the arguments of the functions in 

the wavenumber-frequency domain will be suppressed. We can express the solutions of the trans­

formed wave equations as 
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(7) 

(8) 

(9) 

'Pz = [(-aT PT) ii;z (aR PR ) -ii;Z] i(ax + py- rut) 
-r2+~3e +,2+~3e e (10) 

To obtain the last equation, the condition V . 'f' = 0 has been used. In Eqs. (7) - (10), we have intro-

duced the vertical slownesses ~ and S as the square roots of 

1'2 2 2 a2 
'" = k1 - a - fJ , 

and 

with 

with 

respectively. To make these vertical slownesses single-valued we require that Im[ ~l ~ 0 and 

Im[i,;] ~ o. This implies that terms with the factors ei<' and eit;z represent waves propagating in the 

positive z-direction (downward), while terms with the factors e-i<z and e-it;z represent waves 

propagating in the negative z-direction (upward). 

(11) 

(12) 

3 Transmission and reflection of waves at the interfaces 
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In each layer, the unknown coefficients Ti and Ri (i = 1,2,3) determine the amplitudes of the poten­

tial functions. These amplitudes change at the layer interfaces, depending on the transmission and 

reflection of the waves at these locations. Thus, the evaluation of the wave field in a layered 

medium that consists of N elastic layers in contact, reduces to the determination of 6N unknown 

amplitudes. These are found from 6N restrictions. As we will see, a simple recurrence scheme may 

be obtained for the generation of the transmission and reflection coefficients in the layered medium. 

Consider a layered elastic half-space (z ~ 0) consisting of N-l parallel, horizontal layers overlaying a 

uniform half-space called layer N. The jth layer (j = 1, ... ,N-1) is bounded by upper and lower inter­

faces located at depths Zj_1 and zj' respectively, so it has a thickness hj = Zj - Zj_1' The top interface is 

located at Zo = 0, and the bottom interface is in fact ZN = 00. The continuity conditions require that 

the three displacement components, (ux' uY' uz ) and the three stress components (azx' azy' az') have to 

be continuous across interfaces between different layers, i.e., 

lim u; lim u; + 1, lim a::i = lim ~71, i = x, y, z. (13) 

ztZj zt Zj zt Zj ztZj 

Next, it turns out to be convenient when we introduce the modified coefficient vectors 



T i - {Ti Ti TI}T _ {T-i i~'}_1 T-i i('1_1 T-i i(ZI_1}T 
- 1, 2, 3 - 1 e ,Ze ,3e I 

Ri - {Ri Ri Ri}T _ {R-i -i~'1 R-i -i('1 R-i -i(Zi}T 
- 1, 2, 3 - 1 e ,2e I 3e . 

(14) 

(15) 

Combining Eqs. (13) - (15) and the elasticity relations (AS) - (A7) given in Appendix A, we obtain 

the recurrence scheme 

(16) 

(17) 

in which 

(IS) 

The I-matrices may be found in Eq. (AS) of Appendix A. The matrices [Uli, [Ul;, [Dl;, and [Dl; 

can be interpreted as the local transmission and reflection matrices for the waves impinging on the 

jth layer from below and above, as shown in Fig. (1). 

Zj 

~ 
R j+l ~D] tRj+l + [D ]ITi, 

\ T j +1 

Fig. 1. The physical interpretation of the local transmission and reflection matrices. 

It is obvious from Eqs. (16) and (17) that there is an interrelation between the amplitudes of the 

transmitted and reflected waves of adjacent layers. For example, repeated application Eq. (16) 

reveals that the amplitudes of the upgoing waves at the first interface may be written as 
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RI = [Ul;[ul~ ... [Ul~-2[Ul~-ITN-I+ [Ul;[Ul~ ... [Ul~-3lUl~-2TN-2+ ... 

+ [Ul;rUl;T2+ [Ul;TI. 
(19) 

The applied recurrent process stops due to the fact that RN = 0 since no upgoing waves are coming 

from infinity. From Eq. (17) it follows that TN-I, TN- 2, •.. , TI are, in turn, functions of RN- I, RN- 2, •.• , RI 

and 1". The latter vector is determined by the boundary conditions at the surface of the medium and 

involves the action of the source. 

As shown in this example, it is not convenient to work with the local transmission and reflection 

matrices. To relate the transmitted and reflected waves at a specific interface without explicitly 

referring to the waves at the other interfaces, a global type of reflection and transmission matrices is 

required, see for example Abdelkarim (1999). These matrices are obtained through some algebraic 

manipulations with Eqs. (16) and (17). First, use of the radiation condition RN = 0 for j = N-l gives 

(20) 

Subsequently substituting the above relations in Eqs. (16) and (17), and repeating this for all inter­

faces, yields 

T j + 1 1, ... , N -1, (21) 

in which 

(22) 

where I denotes the unit matrix and 

(23) 

Now the matrices [B];, are the global reflection matrices linking the downgoing waves below an 

interface with the upgoing waves below the same interface. Similarly, the matrices [Bl~ are the 

global transmission matrices linking the downgoing waves below an interface with the downgoing 

waves above the same interface. Using Eq. (21), RI is explicitly related to TI only. This is in contrast 

to the application of Eq. (16), which led to an expression that showed the explicit dependence of RI 

on TN-I, TN-2, ... , TI. 

4 Numerical integration 
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The total response to a dynamic loading is the summation of the responses to all its harmonic 

components. This summation process is carried out using the Fast Fourier Transform. Consider an 

arbitrary time harmonic loading function O"z/X, y)e-iwt, defined on the area shown in Fig. (2). 

Omitting the time variation, the spatial Fourier integral representation of this loading function is 



~ f f ( /3) i(ax + fiY)d d/3 2 O"zz a, e lX I 

4n 
(24) 

where, inversely, 

/3) f f ) -i(ax + PY)d d 0",,( a, = O"zz(x, y e x y, (25) 

For loading functions acting in other directions, expressions similar to Eqs. (24) and (25) can be 

given. As shown in Fig. (2), there are two areas: the loaded area and the total area. The loaded area 

represents the actual area where the load is applied. The total area Xo x yO' which includes the 

loaded area, represents the domain within which the response will be evaluated. 

To obtain discrete expressions of Eqs. (24) and (25), we first divide the area Xo x Yo into (M-I) 

equidistant increments Lh in the x-direction and (N-I) equidistant increments!J.y in the y-direction. 

The load function is then defined on a set of discrete points (xP,yq) given by 

p = O, ... ,M-I, q = 0, ... , N-1. (26) 

The numerical values of the load function at the points outside the loaded area are zero. For an area 

Xo x YO' the fundamental spatial frequencies in the x and y directions are, respectively, 

Yo 

loaded area" 

-
Xo 

Fig. 2. Arbitrary loading function defined on the total area Xo x Yo' 

2n /30 = -. 
Yo 

Second, we replace the continuous wavenumber domain with a discrete one by introducing the 

discrete wavenumbers 

(27) 
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/3" n /30' 
N N 

n = -2 + 1, ... , 2' (28) 

When the above notations are employed, the exponential factor in Eq. (24) takes the discrete form 

The corresponding discrete expressions of Eqs.(24) and (25) are 

M-IN-l 

O"n(a,m /3"l = !h/';.y L I, CYzJx1" Yqle 
p~Oq~O 

"'1) +N 

Now consider a load function that is represented by 

p = 0, 1, ... ,M-l, 

q = 0, 1, ... , N - L 

M M 
m = -2 + 1, ... , 2' 

N N 
n = -2 + 1, ... , 2' 

(30). Each term under the summation 

(29) 

(30) 

(31) 

represents a load component with a harmonic behavior in the x- and y-directions. These compo­

nents are characterized by the wavenumbers am and /3", respectively, and have an amplitude 

CYn ( am, /3,,) . The corresponding amplitudes of the displacement field due to such a loading 

component can be expressed as 

(32) 

The matrices It] and I;I are given in Appendix A. The total response in the spatial domain is the 

superposition of the responses to each loading component CYzz ( am, /3,,) . Then, similarly to Eq. (30), 

the total response to an arbitrary loading function may be expressed as 

M N 

ao/3o 
"2 "2 "'1) 

u,(xP' yq) L L Ui( am, /3"le 
+N 

4n:2 

m=-¥+l n=-~+l 
p = 0, L ... , M - 1, 

(33) 

q O,l, ... ,N-l, 

where i = x,y,z. At this stage it should be noted that the inverse matrix in Eq. (22) will become 

singular for certain real values of of a and /3. These singularities may be associated with phenomena 

like surface waves (Rayleigh waves) cir interface waves (Stoneley waves). To avoid the numerical 



difficulties associated with these singularities, we apply a small amount of numerical damping. 

The idea behind this is to shift the singularities from the real (X- and f3-axes, so that the discrete inte­

gration process in Eq. (33) can be carried out without further difficulties. The only change that is 

needed for the introduction of the numerical damping consists of modifying the Lame parameters 

of the material by multiplying these with the complex factor (1 - 2isJ, where S, is the damping ratio. 

In turn, the complex elastic constants affect the wave speeds C1 and C2' which will become 

c; ~ C1 J1 - is, and c; ~ [2 J1 - is, . 
When the dynamic loading contains more than one temporal frequency component, the responses 

due to all different frequency components must be added as well. This is equivalent to determining 

the inverse of the Fourier transformation in Eq. (5). A similar numerical approach as for the horizon­

tal spatial coordinates may be employed for this. 

5 Comparison with the static Boussinesq solution 

One of the most common ways of finding the static displacements and static stresses in a homo­

geneous elastic half-space is to apply the Boussinesq solution from the theory of elasticity. For a 

vertical point load of force F acting on a homogeneous elastic half-space, the Boussinesq solution for 

the vertical component of the displacement in the half-space is 

(34) 

in which R = Jx 2 + l + Z2 is the distance from the point load to the point of observation. On the 

surface z = 0, the displacement can be written in terms of the modulus of elasticity E and the Poisson 

ratio vas 

U z (35) 

Now we will compare the amplitude of an approximately static vertical displacement obtained by 

the present method with the static vertical displacement following from the above relation. 

The former vertical displacement results from a vertical time-harmonic point load with a very small 

frequency f = 0.01 Hz. In both cases the applied vertical point load has a force F = 108 N. 

The considered homogeneous half-space is characterized by a modulus of elasticity E = 108 N / m2, 

a Poisson ratio v = 0.25, and a mass density p = 2000 kg / m3• Further we employ a numerical 

damping ratio Ss = 0.01. From Fig. (3) it is obvious that the agreement between our approximate 

solution and the exact Boussinesq solution is good. 
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Fig. 3. 
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A comparison between our approximately static vertical displacement and the Boussinesq exact 

static vertical displacement. 

6 Comparison with the dynamic Lamb solution 
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The classical analysis of waves being generated by time-harmonic line loads or point loads located 

on the surface of a half-space has been performed by Lamb (1904). Superposition techniques were 

used to obtain results for pulse loading. Here we will consider the case of a time-harmonic vertical 

point load acting on a homogeneous half-space. The main difficulty of Lamb's problem is to 

evaluate the infinite integrals appearing in the solution of the wave equations. In Lamb's solution, a 

free surface wave may be distinguished in addition to the usual compressional wave and shear 

wave. This free surface wave is called the Rayleigh wave, and it corresponds to a pole appearing in 

the integrand. Lamb found that at a great horizontal distance from the source the most important 

part of the displacement is associated with this Rayleigh wave. In the frequency domain, the 

Rayleigh wave part of the vertical surface displacement due to a vertical point source of force F is 

approximately equal to 

(36) 

in which )(= w/ c" where c,is the velocity of the Rayleigh wave. For a Poisson ratio of 0.25, the value 

of K is 0.18349 [see Lamb (1904), p.18]. 

Here we will compare the amplitude of the harmonic vertical displacement as obtained by the 

present method with the one following from the approximate solution given above. At first sight 

this may seem impossible, since the present method does not allow the separation of the Rayleigh 

wave contribution from the compressional and shear wave contributions. However, it turns out that 

the latter are relatively small when the horizontal distance r is larger than several times the wave­

length of the Rayleigh wave. For these values of r it makes sense to compare the frequency domain 

results from the present method with those given by Eq. (36). 



With the present method, the frequency domain results follow from a two-dimensional inverse 

Fourier transformation whose discrete form is given in Eq. (33). In this specific case we have, 

according to Appendix A, 

in which the boundary conditions at the surface require that 

(37) 

(38) 

where i = 2a2 + 2132 - k~ and F is the spatial Fourier transform of the frequency domain vertical 

point load F i5(x)i5(y) . To obtain an accurate numerical result, X", YO'M, and N must be sufficiently 

large. To analyze the situation, consider the case 13 = O. In the complex a-plane, the Rayleigh poles, 

in the presence of the numerical damping, are located at 

(39) 

The distance from these poles to the integration path of the inverse Fourier transformation, i.e. the 

real a-axis, is equal to WS'! c, . . To obtain accurate results, the distance between the sampling points 

on the real a-axis should be much less than the latter value, so 

2n: 2n:f S5 
ao = Xo «-c-,.-' 

and thus the requirement is 

Further, a truncation of the inverse Fourier integral should take place far away from the poles, 

which means that in the discrete case 

so another requirement is 

M» 2fXo. 
c, 

Equivalent inequalities may be found for Yo and N by considering the case a = O. 

(40) 

(41) 

(42) 

(43) 

For purpose of comparison, we again consider a homogeneous half-space characterized by a 

modulus of elasticity E = 108 N / m2, a Poisson ratio v = 0.25, a mass density p = 2000 kg / m3, and a 
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numerical damping ratio S, =0.01. The surface of this half-space is subjected to a harmonic vertical 

point load with an amplitude F = 105 N, and a frequency f = 1 Hz. The origin of the coordinate 

system is chosen to coincide with the location of the point load, as shown in Fig. (4). For this 

configuration it turns out that the requirements on Xo' yO' M, and N are 

Xo»13000, Yo» 13000, (44) 

say Xo = Yo = 32 km, and consequently 

M»493, N»493, (45) 

say M = N = 1024. 

From these values of M and N it is obvious that an accurate evaluation of the inverse Fourier 

transformation in Eq. (33) will require a fast computer with a large working memory. Nowadays the 

numerical evaluations of this kind are very well possible, however. The obtained results are in good 

agreement with those following from Lamb's approximation, as may be seen in Fig. (5). The numer­

ical damping is responsible for the faster decrease of the amplitude with the present method. On PC 

with a 450 MHz Pentium processor, the generation of each figure takes 620 s. 

vertical point load 
............................................................................................................ ··························~~-------------------,--~X 

y 

z 

Fig. 4. A half-space subjected to a harmonic vertical point load. 
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7 Conclusions 
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A mathematically straightforward method for the evaluation of the dynamic response of a layered 

half-space subjected to a surface load has been presented. The three-dimensional wave propagation 

problem has been solved by first transforming the problem to the wavenumber-frequency domain, 

then solving the corresponding problem, and finally applying the relevant inverse transformations. 

In this way, the stresses and displacements may be calculated at any point within the layered elastic 

half-space. 

The evaluation of the wave field quantities only requires a commonly available Fast Fourier 

Transformation routine. Difficulties due to the singularities in the wavenumber-frequency domain 

have been avoided by introducing a small amount of numerical damping. All types of waves are 

automatically included in the solution. Tests have been performed for two canonical situations. 

First, an almost static response has been evaluated and compared with the Boussinesq solution. 

Second, a harmonic response has been determined and compared with the far-field approximation 

of Lamb's solution. Both tests show a good agreement between the results obtained by the present 

method and the results that follow from the mentioned solutions. 

Appendix A 

In this appendix, a summary of the basic elastic equations in a Cartesian coordinate system is 

presented. To start with, the relations between the components of the strain tensor 8 and the 

displacement vector u are 

(AI) 

Substituting this in Hooke's law for an isotropic elastic medium, the following relations between the 

components of the stress tensor (J and the displacement vector u are obtained 

_ ,(dUx dU y dU,) 2 dUx 
(5xx - /\, dX + dY + dZ + /1 dX ' 

_ ll(dUx '!5i dU,) 2 dU y 
(5yy - dX + dY + dZ + /1 dY , 

_ ,(dUx dU y dU,) 2 dU, 
(5" - /\, dX + dY + dZ + /1 dZ ' 

_ _ (dUx '!5i) 
(5xy - (5yx - /1 dY + d x ' (A2) 



According to Eq. (2) of the main text, the relations between the components of the displacement 

vector u and the scalar and vector potentials I/J and 'fI are 

(A3) 

Substitution of Eq. (A3) into Eq. (A2) yields the stress components in terms of the scalar and vector 

potentials. For the stress components that are relevant to the theory in main text, the relations are 

a _ (2ft + .i(d 'fIz _ d 'fly) + .i(d 'fly _ d 'fix)) 
zx - J1 dXdZ dZ dY dZ dX dX dY , 

(A4) 

Substitution of the potential components of Eqs. (7) - (10) into Eqs. (A3) and (A4) yields the follow­

ing matrix expression for the displacement and the relevant stress components 

where 

and 

ia iaf3 
-T 

[lltl = 
if3 i(a2+ ,2) , 
i~ -if3 

213' 
2af3 

W u _ i(ax+{3y-rot) R1e_i'z jR _i~Z) 

- e 2e, 

-~(tf + ,2) 

R -i'z 
3e 

ia iaf3 i(f32+ ,2) 
T , 

iaf3 [l]d = 
if3 i 2 ,2 iaf3 

T -~( a + ) -T 
ia -i~ -if3 ia 

-2a( : 
k;_2a2 , 2af3 k;_2a2 , [Il" " +:., 

-2f3~ 2132 - k; -2af3 
lIl" " .[ 2~' 

2f3~ 

-2Pc 2a( J 

2tf-k~ -2af3 

(AS) 

(A6) 

(A7) 

(AS) 
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with 

(A9) 
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