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1 Introduction

1.1 Background

In compliance with the Flood Defences Act of The Netherlands (“Wet op de Waterkering,
1996”), the primary coastal structures must be checked every five years (2001, 2006, 2011
etc.) for the required level of protection on the basis of the Hydraulic Boundary Conditions
(HBC) and the Safety Assessment Regulation (VTV: Voorschrift op Toetsen op Veiligheid).
These HBC must be derived anew every five years and established by the Minister of
Transport, Public Works and Water Management.

At this moment, there is a degree of uncertainty concerning the quality of the current HBC,
in particular those for the Waddenzee. This is because they were obtained from an
inconsistent set of measurements and design values (WL, 2002), while for the rest of the
Dutch coast (the closed Holland Coast and the Zeeland Delta) the SWAN wave
transformation model has been applied (Rijkswaterstaat, 2001).

For 2011 and later the Dutch government plans to define the HBC for the Wadden Sea in the
same way as for the rest of the Dutch Coast. In order to produce the best possible hydraulic
boundary conditions for that region, and to assess the uncertainty that must be associated
with such conditions, the Dutch Directorate for Public Works and Water Management
(Rijkswaterstaat)  is  financing  a  large  study  led  by  WL  |  Delft  Hydraulics.  Specifically,
Rijkswaterstaat requested WL | Delft Hydraulics to formulate, in the scope the subproject
“Boundary Conditions”, which is part of the main project “Strength and Loading of Coastal
Structures (SBW: Sterkte en Belasting Waterkeringen)”, a Plan of Action (WL, 2006). This
plan establishes a strategy to answer the principle question of “How do we arrive at reliable
Hydraulic Boundary Conditions for the Wadden Sea for 2011”, and lists a sequence of
associated activities; one of these is reported here.

1.2 Objectives of this study

One of the initial steps in defining HBC is the determination of offshore statistics on
extreme values. These are used by the HYDRA-K program and by the wave model SWAN
(Booij et al., 1999).

The offshore statistics of extremes consist of marginal (or univariate) statistics of water
level, wind speed, significant wave height and different wave period parameters—defined as
functions of the wind direction, and omni-directionally—as well as of multivariate statistics
computed mainly on the basis of deterministic relations between the different variables.

Currently, the offshore wave statistics (WL, 2004 and 2005) are computed using certain
standardized methods that are not fully in accordance with the principles of extreme value
theory. Specifically, although the data are sampled in a way consistent with one of the
approaches provided by extreme vale theory, the probability distributions used to obtain
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extrapolations are not the asymptotic distributions predicted by extreme value theory (Coles,
2001).

The aim of this work is to propose an approach for estimating offshore extremes that is more
in line with extreme value theory, and to assess and illustrate the differences between the
results of such an approach and the one currently in use. This approach also allows the
estimation of possible physical bounds on wave heights which can be compared with
estimates obtained from the wave model SWAN.

Because the goal is mainly to assess differences between methodologies rather than
determining final estimates, only the omni-directional marginal distribution of significant
wave height has been considered in this study. The extension of the proposed methods to
direction-dependent and multivariate cases, however, may not be straightforward, and in fact
our results must be seen as an initial step in tackling more complex problems.

Useful references for possible extensions include the works of Ewans and Jonathan (2006),
who look at the problem of defining direction-dependent statistics of extremes, and Zachary
et al. (1998), who look at the problem of estimating multivariate statistics of extremes.
These and related works propose new methods based on extreme value theory which may
turn out to be useful for our purposes and therefore should be kept in mind.
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2 Extreme value theory

Extreme value theory provides analogues of the central limit theorem for the extreme values
in a sample. According to the central limit theorem, the mean of a large number of random
variables, irrespective of the distribution of each variable, is distributed approximately
according to a Gaussian distribution. For example, the sea surface elevation is often
modelled as a sum of several individual random waves and therefore its distribution can
often be assumed to be Gaussian. According to extreme value theory, the extreme values in
a large sample have an approximate distribution that is independent of the distribution of
each variable.

In order to explain the basic ideas, let us define 1max , ,n nM X X , where 1 2,X X  is a
sequence of independent random variables having a common distribution function F.  In its
simplest form, the extremal types theorem states the following: If there exist sequences of
constants 0n  and n  such that P ( )n n nM z G z  as n , where G
is a non-degenerate cumulative distribution function, then G must be a generalized extreme
value (GEV) distribution, which is given by

1

( ) exp 1 zG z , (2.1)

where z take values in three different sets according to the sign of : z  if 0
(the domain of z has  a  lower  limit), z  if 0  (the domain of z has an upper
limit), and z  if 0 .

In other words, if the distribution function of (a normalization of) the maximum value in a
random sample of size n converges to a distribution function as n tends to infinity, then that
distribution function must be a GEV distribution. Moreover, this and other results of
extreme value theory hold true even under general dependence conditions (Coles, 2001).

In Eq. (2.1), the parameters ,  and  are called the location, scale, and shape parameters
and satisfy , 0  and . For 0  the  GEV  is  the  Gumbel
distribution, for 0  it is the Fréchet distribution, and for 0  it  is  the  Weibull
distribution. For 0  the tail of the GEV is “heavier” (i.e., decreases more slowly) than the
tail of the Gumbel distribution, and for 0  it is “lighter” (decreases more quickly and
actually reaches 0) than that of the Gumbel distribution. The GEV is said to have a type II
tail for 0  and a  type III  tail  for 0 . The tail of the Gumbel distribution is called a
type I tail. See the book of Coles (2001) for more information.

The extremal types theorem gives rise to the annual maxima (AM) method of modelling
extremes, in which the GEV distribution is fitted to a sample of block maxima (in this case
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annual maxima, but the same could be done for e.g. biannual, monthly or even daily
maxima).

The  sample  sizes  of  annual  maxima  data  are  usually  small,  so  that  model  estimates,
especially return values, have large uncertainties. This has motivated the development of
more sophisticated methods that enable the modelling of more data than just block maxima.
These methods are based on two well-known characterizations of extreme value
distributions: one based on exceedances of a threshold, and the other based on the behaviour
of the r largest, for small values of r, observations within a block.

We will not describe the r-largest approach in detail because it is not often used in practice.
Briefly, it consists of collecting the r-largest  values per  year  (instead of  merely the annual
maxima) and fitting the r-largest distribution (see, for instance, p. 68 of the book of S. Coles
mentioned above) to the data. An example of the application of this method to estimate
return values of significant wave height is given by Guedes Soares and Scotto (2004).

The approach based on the exceedances of a high threshold, hereafter referred to as the POT
(Peaks Over Threshold) method, consists of fitting the generalized Pareto distribution
(GPD) to the peaks of clustered excesses over a threshold, the excesses being the
observations in a cluster minus the threshold, and calculating return values by taking into
account the rate of occurrence of clusters (see Pickands, 1971 and 1975, and Davidson and
Smith, 1990). Under very general conditions this procedure ensures that the data can have
only three possible, albeit asymptotic, distributions (the three forms of the GPD) and,
moreover, that observations belonging to different peak clusters are (approximately)
independent. In the POT method, the peak excesses over a high threshold u of a time series
are assumed to occur in time according to a Poisson process with rate u  and  to  be
independently distributed with a GPD, whose distribution function is given by

1

( ) 1 1u
yF y ,

where 0 y , 0  and . The two parameters of the GPD are called scale
( ) and shape ( ) parameters. For 0  the GPD is the exponential distribution with mean

, for 0  it is the Pareto distribution, and for 0  it  is  a  special  case  of  the  beta
distribution. As for the GEV, the GPD is said to have a type II tail for 0 and a type III
tail for 0 . The tail of the exponential distribution is a type I tail.

Just as block maxima have the GEV as their approximate distribution, the threshold
excesses have a corresponding approximate distribution within the GPD. Moreover, the
parameters of the GPD of threshold excesses are uniquely determined by those of the
associated GEV distribution of block maxima. In particular, the shape parameter is the same,
and the scale parameters of the two distributions are related by u .

The choice of threshold (analogous to the choice of block size in the block maxima
approach) represents a trade off between bias and variance: too low a threshold is likely to
violate the asymptotic basis of the model, leading to bias; too high a threshold will generate
fewer excesses with which to estimate the model, leading to high variance.
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An important property of the POT/GPD approach is the threshold stability property: if a
GPD is a reasonable model for excesses of a threshold 0u , then for a higher threshold u  a
GPD should also apply; the two GPD’s have identical shape parameter and their scale
parameters are related by

0 0u u u u , which can be reparameterized as

*
u (2.2)

Consequently, if 0 is a valid threshold for excesses to follow the GPD then estimates of
both * and  should remain nearly constant above 0. This property of the GPD can be used
to find the minimum threshold at which a GPD model applies to the data.

There are several methods available for the estimation of the parameters of extreme value
distributions. Most of them, for instance the methods of moments and of probability
weighted moments, give explicit expressions for the parameter estimates. The maximum
likelihood (ML) method tends to be the preferred estimation method since it is quite general
and more flexible than other methods, especially when the number of parameters is
increased as for instance when extending the extreme value approach to account for non-
stationarity. When obtaining ML estimates, the variances of the estimates can be obtained
from the expected information matrix or from the observed information matrix. An
alternative, and usually more accurate, method is the profile likelihood method (Coles,
2001, p. 57), which is based on the deviance function and yields asymmetric confidence
bands intervals. However, in ordinary extreme value analyses like the ones we are
concerned with in this report the flexibility provided by the ML method is not necessary, and
for the range of tails typically found with wave data (not too heavy-tailed distributions) and
for small to moderate sample sizes the method of Probability-Weighted Moments (PWM)
performs better (for details, see Hosking and Wallis, 1987, and Hosking et al., 1985). For
this reason, it is this method that will be used in this work. Since, the method of PWM does
not provide asymmetric confidence bands, we will combine it with adjusted bootstrap
estimates (see Coles and Simiu, 2003) in order to compute confidence intervals. A study on
the coverage rate of confidence intervals of extreme value estimates based on different
methods is to be reported soon in the same framework of this study.

Model checking in extreme value analyses is usually done by means of probability plots,
quantile plots and return level plots. In this report we have chosen to illustrate the fits with
return level plots.
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3 Remarks on the current approach

The way in which the offshore statistics of wave extremes used to define the hydraulic
boundary conditions for 2006 have been calculated is documented in WL (2004, 2005); for
simplicity, we shall refer to it here as the current approach. In the following subsections we
briefly describe the current approach and give some remarks on the choice of the
distribution.

3.1 Choice of distribution

The sampling of the buoy data used to make predictions about extremes followed, in
essence, the POT method (details will be given later in Section 3.2). However, instead of
fitting the GPD distribution to the data, the fitted model was the so-called conditional
Weibull distribution, whose distribution function is given by

( ) 1 exp[( ) ( ) ], for ,F x x x (3.1)

where  is the shape parameter,  is the scale parameter, and  is the threshold.

The choice of this distribution is based on historical usage supported by recommendations
of RIKZ (1995b) and has been partly motivated by the work of Battjes (1970); see WL
(2004, p. 4-1). However, some comments must be formulated with regard to the motivation
of this choice. We will first try to explain the genesis of the conditional Weibull distribution,
then analyse the motivation interpreted as coming from Battjes (1970), and finally examine
the study and recommendations of RIKZ (1995b).

The Weibull distribution has distribution function

( ) 1 exp , ,W
xF x x (3.2)

where  is the location parameter,  is  the  scale  parameter,  and  is the shape parameter.
This Weibull distribution is not the Weibull distribution of maxima referred to in Section 2,
but the Weibull distribution of minima (a form of the GEV distribution for minima). In
particular,  while  the latter  has a  Type III  upper  tail,  the former has a  Type I  (exponential)
upper tail. It was introduced by Weibull in connection with failure data because it is the
approximate distribution of the minimum of many variables, which could be seen as the
weakest link among many links that can be broken in a structure. Popularized by reliability
engineers, its use has spread to other areas, in particular to ocean engineering.

Now suppose that X is a random variable with a Weibull distribution with =0, and as usual
write ( )P E  for the probability of the event E. Then the probability that X x conditionally
on the event that X  is, for x> , given by
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( ) ( ) ( )( | )
( ) ( )

( ) ( ) exp( ( ) )1
( ) exp( ( ) )

1 exp[( ) ( ) ].

P X x X P X x P XP X x X
P X P X

P X P X x x
P X

x

Since this last expression coincides with Eq. (3.1), we see that the conditional Weibull
distribution is the distribution of the exceedances from a Weibull distribution above the
threshold .

Thus it seems that the adoption of the conditional Weibull distribution to model the
exceedances of significant wave height over a high threshold is based on the idea that the
whole (non truncated) data follow a single distribution, and moreover a Weibull distribution.
The assumption that the data follow a single distribution, however, is well-known to be
unrealistic; see Ferreira and Guedes Soares (1998, 2000) and Anderson et al. (2001). On the
other hand, the Weibull distribution is not really a universally appropriate model to describe
whole sets of wave data—e.g. the lognormal distribution is another commonly used model.

It is in this context that we must examine the reference by WL (2004) to the work of Battjes
(1970). This author compared the fits of the Weibull and Lognormal distributions to one-
year long data sets from seven different locations and concluded that the Weibull
distribution of Eq. (3.2) fitted the data best. However, despite this conclusion, he clearly
points out (Battjes, 1970, p. 18) that in order to predict extreme values of significant wave
height one needs to consider annual maxima and to use a Gumbel (i.e., Fisher-Tippett
double exponential) distribution. This means that Battjes (1970) does not draw conclusions
about the prediction of extremes in terms of what seems to be a good model for the whole
data, except perhaps for the fact that the Weibull distribution indicates that a Type I tail
should be used for that purpose. For this reason, we think that the work of Battjes (1970)
must not be understood as a justification for the adoption of the conditional Weibull
distribution.

We now examine the work of RIKZ (1995b). These authors simulated a very long time
series of significant wave height using the so-called Bruinsma method, and compared the
use of the conditional Weibull distribution and the GPD distribution in estimating the
1/10,000 year return value. These distributions were fitted to 25 sets of exceedances of 10,
25 and 100 yearly samples, the exceedances being obtained over three pre-defined
thresholds: 4, 5 and 6 metres. RIKZ (1995b) concluded that the conditional Weibull
distribution was overall a better choice.

Their conclusion was based on a certain ‘robustness’ criteria. They found that the variance
of the Weibull estimates was generally lower; that at lower thresholds and with shorter time
series the GPD distribution underestimated the true return value; and that at higher
thresholds and with short time series the variance of the GPD estimates was large. They also
found that the Weibull distribution was ‘more resistant’ to outliers than the GPD.
Specifically, the estimates of the GPD distribution were more seriously affected by an
increase in the maximum value in the sample than the Weibull estimates.
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The conclusions of RIKZ (1995b) and their scope for generalization raise several issues.
First  of  all,  the  data  RIKZ (1995b)  simulated  seem to  have  a  Type  I  (or  exponential)  tail,
which besides limiting the usefulness of the study does not take into account that fitting the
exponential  distribution  (rather  than  the  GPD,  of  which  it  is  a  special  case)  might  lead  to
better results. Note that the conditional Weibull distribution has a Type I tail, and therefore
does not allow for all three possible types of tail behaviour (unlike the GPD). Therefore, if
the data being simulated had a type III tail (which would be realistic to assume in shallow
waters or even in a finite depth situation) it is not certain that a Type I tail like that of the
conditional Weibull distribution would lead to the best results.

Secondly, in the application of the POT method the choice of the threshold is usually ‘data
driven’, i.e., it is to some extent dictated by the sample, rather than fixed in advance (see
Section 2), and this may explain a putative under-performance of the GPD distribution.

As  to  the  argument  based  on  ‘resistance  to  outliers’,  it  does  not  seem  to  be  a  practically
meaningful one. Indeed, the requirement that the parameter estimates remain more or less
unaffected by an increase in the maximum value of the sample, although ‘agreeable’ from
the point of view of policy-making, seems to be extraneous to the problem of making
reliable predictions. For if the data indicate more uncertainty or variability (in the
underlying data generating process) than what one had assumed on the basis of a previous,
smaller sample, it seems more sensible to account for the new information in the data—
especially if the new information consists of bigger extremes—than to ignore it, which
implies appropriately updating the values of the parameters as well as their confidence
intervals.

This last point also brings us to what we think is a common misconception: that a model
which gives less variable estimates or narrower confidence intervals is a better model. This
will be the case only if the estimates themselves are correct. Thus, if we simulate samples
from a GPD with Type II tail and compare GPD and exponential fits, we may find that the
return value estimates of the exponential are less variable than the GPD ones, but that is not
to say that the estimates of the exponential are to be trusted nor that the variability suggested
by the GPD is spurious.

The  actual  fitting  of  the  models  in  WL (2004)  is  carried  out  in  several  stages.  In  the  first
stage, the parameters of the conditional Weibull distribution are estimated by choosing the
threshold in the region where the estimates of the shape parameter are stable (i.e., do not
change much with changes in the threshold), as it is usually done in the POT/GPD approach.
This is done for data at each location, so that after the first stage one has a collection of
estimates across a region. Because it is reasonable to assume that the estimates obtained
should depend on fetch and water depth, WL (2004) suggest that the shape parameter
estimates should vary smoothly in space as a function of fetch and water depth. Using this
principle, WL (2004) carry out a modified regional frequency analysis in which the shape
parameter estimates of both significant wave height and wave period data are used to model
a parametric relation between shape parameters, fetch and water depth (see WL, 2004, pp.
4-7,8, section 4.3). In this way, new, and final, shape parameters estimates are obtained for
each location.
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The final estimates of the shape parameter are then used to estimate the other parameters of
the conditional Weibull model by fitting the ‘reduced’ model (i.e., with fixed shape
parameter) to the 200 highest peaks over threshold (see WL, 2004, pp. 4-11, 2005, pp. 4-13).

Finally, because the estimated conditional Weibull distributions have unlimited range to the
right, and because at the locations considered the significant wave height is supposed to be
fetch and/or depth limited, WL (2005) used the wave model SWAN to estimate the physical
limit of wave height at each location, and then truncate the corresponding return value
functions.

Our main comment on these procedures is about the exclusion, a priori, of the GPD model.
As will be seen later on, the data show that the underlying tail could be of Type III—and this
at all the locations considered—which does not support the use of a Type I tail model, like
the conditional Weibull distribution, alone. The truncation of the return value function that
WL  (2005)  opt  for  in  the  final  stage  of  their  estimation  process  reflects  just  this.  If  one
adopts a GPD model then truncation is not necessary because the return value function of
the type III GPD model is already bounded above. Adopting the GPD model and estimating
the upper limit of its support also allows for the comparison with the estimates of such limit
obtained  via  SWAN,  and  hence  for  further  checks.  One  of  the  points  of  the  alternative
analysis we propose will consist of comparing the two types of estimates.

We finish this section by pointing out that there are certain situations in which it makes
sense to fit a Weibull distribution (not the conditional Weibull distribution) to the peak
excesses in place of the GPD model. Indeed, suppose that the data really follow a Type I
tail, or at least that this has been convincingly demonstrated on the basis of some statistical
analyses (which is often the case in deep waters; see Caires and Sterl, 2005). Then the
asymptotic distribution of the excesses is exponential. Since the exponential is a special case
of the Weibull distribution, one might think that there would be no harm in fitting a Weibull
rather than an exponential to the data. Now, if the data are truly exponential, this would
actually entail more uncertainty in parameter estimates, which would be undesirable
(intuitively, to know that the data are exactly exponential amounts to more information than
knowing that they are Weibull). However, it may happen that, because the exponential is
only valid asymptotically, the Weibull distribution will provide a better approximation to the
data (since it has one more parameter and hence more flexibility), and in that case fitting the
latter  would  provide  better  results  than  fitting  the  former.  In  any  case,  if  one  is  to  step
outside the GPD domain one should do so on the basis of some justification.

Still in this connection, we should add that, because wave data most often exhibits a type I
tail or a slightly lighter type III tail, studies comparing estimates from the GPD with
estimates from the Weibull are often inconclusive as to what is the most appropriate
tail/distribution (e.g. Van Vledder et al., 1993) since there are no statistically significant
differences between the two models (as was also the case in the RIKZ (1995b) study).
However, a good reason for always considering the GPD is that this model has a substantial
and solid theoretical basis stemming from asymptotic considerations.
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3.2 Data collection in the POT method

Typically, return value estimates of significant wave height are used to calculate the
corresponding sea state maximum wave heights on the basis of a short-term wave height
distribution characterized by a given value of significant wave height which is assumed
constant during a 3-hour interval. However, buoy measurements of significant wave height
are usually computed from 20-minute long records. Due to sampling variability, significant
wave  height  storm  peaks  calculated  from  such  (shorter)  records  are  biased  upwards,  i.e.,
they are overestimations of storm peaks based on 3-hour long records. According to
Forristall el al. (1996), the overestimation depends on the shape of the spectrum, the length
of the wave measurements, the number of measurements, and on how quickly the storm
passes its peak. For typical wave spectra and sampling strategies the bias is 3-10%. The
shape of the spectrum and the length of the wave measurements can be used to estimate the
standard deviation of the measurements; the higher the standard deviation, the higher the
overestimation; the longer the storm takes to pass its peak, the higher the overestimation.
Also according to Forristall et al. (1996), the upward bias can be eliminated if smooth
estimates of significant wave height are calculated from continuous wave records in the
severe storms of interest. More precisely, the bias can be eliminated if a light filter (less
smoothing) is used for short storms and a heavy filter (more smoothing) used for very long
storms.

Another problem that may affect the accuracy of storm peaks is undersampling: in short
lasting storms, when wave samples are not taken continuously, it is possible that the true
peak of the storm is missed and hence that the significant wave height peak is
underestimated. However, for typical storm durations and common sampling strategies this
problem is not serious, and the effects of sampling variability are dominant.

The measurements that were used in WL (2004, 2005) and are to be used in this study are
based on 24 years of 3-hourly wave data. The data were continuously collected in records of
10 minutes length. Every hour, two 10-minute records were combined to estimate the wave
parameters.  In  the  current  approach,  storm peaks  above  a  threshold  (the  POT sample)  are
collected from the 3-hourly time series in such a way that the sample extracted from the
original time series can be modelled as independent observations. With wave and similar
data this is usually done by a process of declustering in which only the peak (highest)
observations in clusters of successive exceedances of a specified threshold are retained and,
of these, only those which in some sense are sufficiently far apart (so that they belong to
more or less ‘independent storms’) are considered. Specifically, in the case of WL (2004,
2005) cluster maxima at a distance of less than 48 hours apart were treated as belonging to
the same cluster (storm). In order to remove the effects of sampling variability mentioned
above, the resulting sequence of storm maxima are then smoothed/filtered. See WL (2004)
for details and examples of filters that are applied depending on the type of the storm.

The  current  approach  to  data  collection  is  (apart  from the  filtering)  that  of  the  usual  POT
approach, and seems to be quite sound. Therefore, in our study we will take exactly the
same approach and use the MATLAB routines developed for the WL (2004, 2005) studies to
extract the samples of peaks. Thus the POT data to be used in this study is the same that was
used in the previous WL studies referred to.
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4 Extreme values analysis

4.1 Introduction

In this section we analyse the North Sea buoy measurements used in the WL (2004, 2005)
studies with the POT/GPD and AM/GEV approaches, in accordance with the principles of
extreme value theory summarized in Section 2. As mentioned earlier, we shall use the same
data sampling techniques as that of the WL (2004, 2005) studies for collecting the POT and
AM data. In particular, the storm maxima used do not correspond to ‘raw’ measurements but
to smoothed estimates thereof.

The data used by WL (2004, 2005) consisted of measurements covering the period of 1979-
2002 from 9 buoys located offshore along the Dutch coast; see Figure 4.1.

Figure 4.1 Measuring stations along the Dutch coast

The comparison between the current approach and the approach we advocate will be made
in terms of the corresponding 1/10000 yr return value estimates.

In a study to be reported soon and in the same framework of this study, SWAN is used in 2D
mode to determine physically-based upper bounds for the significant wave height at the
SON, ELD, YM6, EUR and SCW measurement locations. We shall also compare these
physical upper bound estimates with those obtained here from the POT/GPD method.
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If the POT/GPD and AM/GEV fits are appropriate—i.e., if the fitted distributions are indeed
close to the asymptotic distributions of the data—then the shape parameter and return value
estimates of the two models should be compatible (allowing for their sampling errors). If
this is not the case, then at least one of the fits is unreliable. The POT/GPD and AM/GEV
estimates are compared at the end of this section.

Recall that we use the method of PWM (Probability-Weighted Moments) to estimate the
parameters of both the GPD and GEV distributions. Confidence intervals are obtained using
percentile bootstrap estimates adjusted according to the recommendations of Coles and
Simiu (2003).

All computations were carried out in MATLAB and the GPD and GEV parameter estimates
were obtained using WAFO statistical toolbox (see http://www.maths.lth.se/matstat/wafo/
for more information about WAFO).

4.2 POT/GPD estimates

We have used the threshold stability property mentioned in Section 2 to choose the most
appropriate threshold for selecting a sample of peak excesses and fitting the GPD to it. More
precisely, we have looked for threshold values around which the estimate of the shape
parameter and * (see Eq. 2.2) show the least variation. For the purposes of this report we
have tried to automatize the choice of the threshold. In WL (2004, 2005) it is assumed that
the best threshold lies in a region where the estimates of the conditional Weibull distribution
do not vary much. On this basis, they fix the threshold using an automatized procedure. We
employ here a similar procedure to choose the most appropriate threshold at which to fit the
GPD. The procedure we have used is as follows:

1. POT  samples  with  at  least  10  and  at  most  252  peaks  are  collected  by  systematically
decreasing the threshold, and for each of these samples GPD fits are obtained. (Note that
the fact that there is a POT sample with, say, 20 peaks, does not mean that there is also a
POT sample with 19 peaks, since different peaks may have the same value and even a
small increase of the threshold can eliminate more than one of the peaks collected at a
lower threshold.)

2. For each sample size n, a set of parameter estimates based on sample sizes ranging from
n-k to n+k peaks, where k is  some  fixed  value  (see  below),  are  obtained,  and  the
standard deviation of such a set of estimates is computed. In the case of the shape
parameter, for example, this procedure yields one standard deviation for each value of n,
and each standard deviation quantifies the variability of the parameter estimates around
a ‘window’ of 2k+1 sample sizes (2k+1=(n+k)-(n-k)+1).

3. The threshold, or sample size n, at which the GPD is finally fitted corresponds to the
one yielding the smallest standard deviation among the standard deviations of the sets of
shape parameter estimates computed in bullet 2.

Several tests were carried out to determine the best choice of the window size on which the
standard deviations of bullet 2. are computed. In our case, k=12  turns  out  to  be  the  best:
using about 25 (2k+1 for k=12) estimates, the threshold automatically chosen coincides with
the one that we would have chosen by visual inspection of plots like those in Figure 4.2a,
and  results  in  a  generally  good  GPD  fit.  In  most  cases  the  results  are  resistant  against

http://www.maths.lth.se/matstat/wafo/
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changes in k for k between 10 and 15. With larger values of k the threshold chosen is often
too low.

Only in the case of one of the time series analysed, the YM6 data, did the automatically
chosen  threshold  produce  a  clearly  poor  GPD  fit.  In  the  analysis  of  that  series  we  have
therefore raised the threshold above the one suggested by the automatic procedure, to a
region where the variation of shape parameter estimates is also low (see details below).

Figures 4.2 a-i show the estimates of the shape parameter, of * and of the 1/10000 return
value as functions of the threshold obtained with the data from each of the 9 locations. The
threshold at which the corresponding standard deviations defined in the automatized
procedure just described are minimal are marked by vertical lines. The return value plot of
the final GPD fits (obtained according to point 3. above) are presented in Figures 4.3 a-i.
Table 4.1 presents the relevant information on the final fits, namely the sample size (n), the
threshold used (u),  the  estimates  of  the  GPD  shape  ( )  and  scale  ( )  parameters,  the
1/10000 yr return value estimate of significant wave height, all accompanied by their 95%
confidence intervals, and the estimated upper bounds for significant wave height (these are
estimates of the upper bound ( /u , if 0 )  of  the  support  of  the  GPD fitted  to  the
peak excesses of significant wave height).

Buoy n u (m) 1/10000 yr RV (m) upper bound (m)
SON 157 3.69 -0.13 ( -0.36 , 0.05 ) 1.08 ( 0.83 , 1.38 ) 9.99 ( 7.33 , 16.82 ) 11.91
ELD 171 4.09 -0.19 ( -0.37 , -0.01 ) 1.06 ( 0.82 , 1.31 ) 9.02 ( 7.35 , 13.28 ) 9.71
K13 219 4.09 -0.10 ( -0.27 , 0.04 ) 0.88 ( 0.71 , 1.06 ) 9.94 ( 7.67 , 15.33 ) 12.50
YM6 136 4.18 -0.07 ( -0.27 , 0.12 ) 0.73 ( 0.55 , 0.92 ) 9.71 ( 7.12 , 17.45 ) 14.37
MPN 186 3.20 -0.16 ( -0.32 , -0.01 ) 0.88 ( 0.69 , 1.09 ) 7.85 ( 6.32 , 10.98 ) 8.80
EUR 215 3.55 -0.14 ( -0.33 , 0.03 ) 0.79 ( 0.63 , 0.97 ) 7.99 ( 6.33 , 12.28 ) 9.10
LEG 199 3.37 -0.22 ( -0.40 , -0.06 ) 0.94 ( 0.74 , 1.16 ) 7.23 ( 6.02 , 9.76 ) 7.57
SWB 233 3.05 -0.20 ( -0.36 , -0.05 ) 0.78 ( 0.64 , 0.95 ) 6.57 ( 5.51 , 8.84 ) 6.96
SCW 215 2.46 -0.32 ( -0.52 , -0.14 ) 0.77 ( 0.62 , 0.95 ) 4.83 ( 4.25 , 6.08 ) 4.90

Table 4.1  Estimates of the parameters of the POT/GPD model and of the 1/10000 yr return value of
significant wave height with the corresponding 95% confidence intervals

The results presented in Table 4.1 suggest the following remarks:

At each location, the POT/GPD approach yields a type III tail (suggesting that the data
have an upper bound), the point estimates of  ranging from -0.32 to -0.07. In some
cases the exponential distribution, corresponding to =0, cannot be excluded as a good
model for the data, but in most cases the confidence intervals for  do not include =0.
The threshold and sample sizes adopted vary with location.
The largest return value estimates occur in the most northern North Sea locations (those
that are particularly relevant for the Wadden Sea HBC, see Figure 4.1).
The relative uncertainty in the  estimates is rather large.
As is usually the case, the point estimate of  determines the uncertainty of the return
value estimates (i.e. the width of their confidence intervals) in a crucial way: the lower
the estimate of , the narrower the confidence intervals. For this reason, the effect of
sample size in reducing the width of the confidence intervals can be quite different
across different values of  (compare the MPN and EUR estimates in Table 4.1).

We shall now analyse the choice of the threshold and the fitted GPD at each location:
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The estimates based on the SON measurements indicate that at this location there is an
upper bound of about 12 m, at least if we ignore the considerable uncertainty in the
estimates of . The threshold at which the minimum variation in estimates is achieved is
the  same  for  ,  *  and  for  the  1/10000  yr  return  value;  see  Figure  4.2a.  The  GPD fit
looks reasonable, with some scatter of the peaks around the return value line; see Figure
4.3a.
For the ELD data, the thresholds at which there is less variation in the , * and 1/10000
yr return value estimates differ, see Figure 4.2b. However, the return value estimates
based on each threshold do not significantly differ and the GPD fit based on the stability
of the shape parameter looks reasonable.
The estimates based on the K13 measurements show that the thresholds at which the
estimates of , * and of the 1/10000 yr return value have minimal variation coincide;
see Figure 4.2c. The return value plot of the final GPD fit, Figure 4.3c, shows that the
estimated distribution fits the data well.
Using our automatized procedure the thresholds for the YM6 data at which there is
minimal variation in the , * and 1/10000 yr return value estimates coincide
(u=3.68 m, n=212). However, the GPD fit of the POT data sampled above that threshold
is rather poor and significantly underestimates some of the highest observed storms, see
Figure 4.3d2. We have therefore decided to increase the threshold choosing the new
value on the basis of visual inspection of the shape parameter estimate as function of the
threshold (the top panel of Figure 4.2d). The new chosen threshold, u=4.18 m and
n=136, is in a region where the estimates of the shape parameter are also rather stable,
but the value of the shape parameter is higher. In the top panel of Figure 4.2d the
threshold at which the final POT sample was collected is marked with a vertical line.
The vertical lines in the remaining panels mark the threshold chosen by the automatized
procedure. As can be verified in Figure 4.3d, the GPD fit to the data is rather good.
Relative to the estimates based on the data from other locations, the shape parameter
and upper bound estimates obtained with these data are larger. Because there are no
reasons to assume that the behaviour of the extremes at this location should differ much
from those at the other locations, we think that there may have been some problems with
the measurements at this location.
The estimates based on the MPN measurements indicate that the thresholds at which
there is minimal variation in the , * estimates are the same but differ from the
threshold at which there minimal variation in the 1/10000 yr return value estimates. As
can be seen in Figure 4.2e, at the latter threshold, the estimates of the shape parameter
are rather low. These low shape parameter estimates are responsible for the small
variation in the return value estimates. Incidentally, this illustrates the fact that the return
value  estimates  cannot  be  used  as  a  proxy  for  the  stability  property  of  the  POT/GPD
approach. In spite of the scatter of the observed peaks around the estimated return value
line, the GPD fit looks reasonable; see Figure 4.3e.
The estimates based on the EUR measurements show that the thresholds at which there
is minimal variation in the , * and 1/10000 yr return value estimates are the same; see
Figure  4.2f.  The  return  value  plot  in  Figure  4.3f  show  a  good  fit,  although  there  is  a
storm peak rather close to the upper bound of the 95% confidence intervals.
The estimates based on the LEG measurements indicate that the thresholds at which the
estimates of  and * have minimal variation coincide (but differ from the threshold at
which there is less variation in the 1/10000 yr return value estimates). The return value
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plot presented in Figure 4.3g shows a rather good agreement between the observed
peaks and the return value estimates.
The quality of the POT/GPD fits for the SWB and the SCW data is rather similar and in
both cases quite good; see Figures 4.3h and 4.3i. Also for both data sets, the thresholds
at which less variation in the , * estimates are the same; see Figures 4.2h and 4.2i.

4.2.1 Comparison between the POT/GPD and the physical upper bound
estimates

As mentioned above, in a parallel study, SWAN was used in 2D mode to determine
physically based upper bounds for the significant wave height at the SON, ELD, YM6, EUR
and SCW locations. This was done by computing the significant wave heights generated by
extreme wind speeds from different directions applied uniformly over the whole North Sea,
and for different spatially uniform water levels. The highest water level considered was 6 m
and the highest wind speed 40 m/s. These are also the water level and wind speed at which
the significant wave height maxima were attained. We shall refer to these maxima as the
physical upper bounds.

In Table 4.2 the following quantities are provided:

bed level;
wind directions for which the maxima of significant wave height were attained in the
SWAN computations;
the attained maxima significant wave height; and
comparisons between these and the corresponding POT/GPD upper bound estimates in
terms of absolute and relative biases.

SWAN POT/GPD
Buoy

bed level

(m NAP) wind direction (ºN) upper bound (m) upper bound (m)

bias
(m)

relative

bias

SON 20.8 330 10.25 11.91 -1.66 -0.14

ELD 28.0 330 11.81 9.71 2.10 0.22

YM6 23.4 300 10.83 14.37 -3.54 -0.25

EUR 32.4 360 13.08 9.10 3.98 0.44

SCW 12.9 330 7.62 4.90 2.72 0.56

Table 4.2  Estimates of the physical maxima of significant wave height based on SWAN-2D computations
and their absolute and relative biases with respect to the estimates obtained using the POT/GPD

The SWAN physical upper bound estimates are closely related to the water depth, varying
between 34% and 40% of the water depth (the bed levels plus a 6 m water level), which
indicates that the maxima are more likely to be depth- than fetch- limited.

There is no clear relation between the SWAN-based estimated physical upper bounds and
the estimated POT/GPD upper bounds. However, the differences between the two are small
relative to the large uncertainty in the POT/GPD estimates. Table 4.1 shows that the
amplitude of the confidence intervals for the 1/10000 return value varies between 40 and
100% relative to the point estimate, the uncertainty in the POT/GPD upper bound being at
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least  as  high.  No  uncertainty  estimates  are  provided  by  the  SWAN  study,  but  such
uncertainty clearly exists and depends not only on the errors in SWAN’s results but also on
the assumptions used in the definition of the upper bounds, namely the extreme and spatially
uniform wind fields and water levels.

At the SON and YM6 locations the POT/GPD upper bound estimates are larger than the
physical ones. If we were to trust the POT/GPD estimate, the discrepancies at the SON
location could be a consequence of North Atlantic swell entering the North Sea for storms
from the Northeast/North, which are not accounted for in the SWAN computations and may
affect the local significant wave height. Given the doubts about the quality of the YM6
observations, the bigger POT/GPD upper bound estimate based on the YM6 data is probably
an overestimate. The estimated physical upper bounds at the remaining locations are larger
than the POT/GPD upper bound estimates. This may indicate that the conditions (extreme
and spatially uniform water level, wind speed and direction over the whole North Sea)
considered in the SWAN computations cannot be extrapolated on the basis of the
measurements analysed using the POT/GPD approach.

4.2.2 Comparison between the POT/GPD and the current approach

Table 4.3 presents the estimates of the 1/10000 yr return values of significant wave height
reported in WL (2004) and which were used in the definition of the HBC for 2006. No
estimates of the confidence intervals are given. In WL (2005), alternative estimates of return
values are given with the associated confidence intervals. However, the method used to
estimate these confidence intervals also affects the shape parameter estimates of the
conditional Weibull distribution obtained from the modified regional frequency analysis
carried out,  yielding estimates  of  the return values up to 2 m above the estimates  given in
WL (2004). The estimates presented in WL (2005) were, however, not further used.

Buoy WL (2004) POT/GPD bias (m) relative bias
SON 11.00 9.99 1.01 0.10
ELD 11.10 9.02 2.08 0.23
K13 10.50 9.94 0.56 0.06
YM6 9.30 9.71 -0.41 -0.04
MPN 8.00 7.85 0.15 0.02
EUR 8.20 7.99 0.21 0.03
LEG 8.10 7.23 0.87 0.12
SWB 7.10 6.57 0.53 0.08
SCW 5.70 4.83 0.87 0.18

Table 4.3  Estimates of the 1/1000 yr return value of significant wave height given by WL (2004) and their
absolute and relative biases with respect to the estimates obtained using the POT /GPD approach

By comparing the 1/1000 yr return value estimates of significant wave height obtained using
the current approach with those obtained using the POT/GPD approach (Tables 4.2 and 4.3)
we arrive at the following conclusions:

The spatial variation of the estimates is quite similar.
The point estimates of the 1/1000 yr return value of significant wave height based on the
conditional Weibull distribution are, except for the YM6 data, larger than the POT/GPD
estimates (up to about 23% or 2.1 m). This can be a consequence of the fact that the tail
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of the conditional Weibull distribution is heavier than the tails we have estimated with
the POT/GPD method.
The POT/GPD estimates are consistent with those obtained using the current approach
in the sense that the latter are well within the 95% confidence intervals of the former.

On the basis of this comparison, we can conclude that in general the current approach yields
estimates that are conservative relative to the estimates obtained here, but the differences do
not appear to be substantial because the present confidence intervals contain the point
estimates obtained in WL (2005).

4.3 AM/GEV estimates

In this section the North Sea buoy measurements used in Section 4.2.1 are reanalysed using
the annual significant wave height storm maxima. As described in Section 3.1, the storm
maxima used do not correspond to ‘raw’ measurements but represent smoothed estimates
thereof. Table 4.4 presents the estimates of the GEV shape ( ), scale ( ) and location ( )
parameters and of the 1/10000 yr return value of significant wave height together with their
95% confidence intervals, and the estimated upper bounds. Figures 4.4 a-i show the GEV
return value plots for each location.

Buoy  (m)  1/10000 yr RV (m) upper bound (m)
SON -0.16 ( -0.50 , 0.10 ) 0.89 ( 0.61 , 1.17 ) 5.53 ( 5.13 , 6.00 ) 9.84 ( 7.94 , 15.73 ) 11.15
ELD -0.18 ( -0.57 , 0.16 ) 0.61 ( 0.41 , 0.82 ) 5.80 ( 5.53 , 6.08 ) 8.49 ( 7.02 , 14.74 ) 9.10
K13 -0.38 ( -0.81 , 0.01 ) 0.73 ( 0.47 , 0.97 ) 6.03 ( 5.72 , 6.33 ) 7.87 ( 7.02 , 11.12 ) 7.93
YM6 0.04 ( -0.22 , 0.24 ) 0.59 ( 0.39 , 0.86 ) 5.28 ( 5.03 , 5.62 ) 11.91 ( 8.20 , 19.67 ) none
MPN -0.21 ( -0.51 , 0.09 ) 0.52 ( 0.37 , 0.67 ) 4.76 ( 4.52 , 5.00 ) 6.90 ( 5.96 , 10.51 ) 7.28
EUR -0.01 ( -0.28 , 0.22 ) 0.51 ( 0.34 , 0.70 ) 4.95 ( 4.73 , 5.21 ) 9.42 ( 6.50 , 16.79 ) 45.87
LEG 0.18 ( -0.12 , 0.45 ) 0.28 ( 0.15 , 0.42 ) 4.90 ( 4.77 , 5.07 ) 11.31 ( 6.85 , 26.57 ) none
SWB -0.10 ( -0.39 , 0.17 ) 0.38 ( 0.24 , 0.53 ) 4.51 ( 4.34 , 4.69 ) 6.80 ( 5.59 , 10.74 ) 8.36
SCW -0.09 ( -0.40 , 0.17 ) 0.30 ( 0.20 , 0.40 ) 3.69 ( 3.56 , 3.85 ) 5.52 ( 4.58 , 8.38 ) 6.83

Table 4.4   Estimates of the parameters of the AM/GEV model and of the 1/10000 yr return value of
significant wave height with the corresponding 95% confidence intervals

From Table 4.4 it is readily verified that the confidence intervals of the GEV shape
parameter estimates are rather wide and that in all the cases the Gumbel distribution ( =0)
cannot be excluded as a good model for the data. Because of the large uncertainty in the
GEV shape parameter estimates we shall not analyse the corresponding upper bound
estimates in detail. The upper bound estimates (or lack thereof, when the estimates of  are

0) based on the YM6, EUR and LEG data are physically impossible. The return value
estimates at these locations look rather high and do not follow the general decrease of the
1/10000 yr return values from North to South present in the POT/GPD estimates.

4.3.1 Comparison between the AM/GEV and the POT/GPD estimates

All the GEV 1/10000 yr return value estimates are consistent with the POT/GPD estimates
in the sense that the 95% confidence intervals of the POT/GPD estimates contain the point
estimates of the AM/GEV estimates. This gives us some trust in the appropriateness of both
approaches.

The following remarks can be formulated about the differences in the fits/estimates of both
approaches per location:
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The differences in both model estimates based of the SON data are rather small (15 cm
in terms of 10000 yr return value) and statistically not significant. Both fits look quite
reasonable and the compatibility between both estimates of the asymptotic tail suggest
that the extreme values were rather well estimated.
The same can be said about the fits based of the ELD data, which are also compatible.
For K13 the GEV shape parameter point estimate is outside the 95% confidence
intervals obtained for the POT/GPD estimate. The GEV return value plot shows a worse
fit  than  that  of  the  GPD.  This  leads  us  to  conclude  that  the  rather  small  GEV  shape
parameter and upper bound estimates are unreliable.
The AM/GEV fit for YM6 is reasonable and the estimates are higher but compatible
with the POT/GPD estimates. However, as we had also noted when analysing the
POT/GPD estimates, the population of bigger storms at this location does not seem to be
compatible with those at the other locations.
The differences between the POT/GPD and AM/GEV estimates based on the MPN data
are not statistically significant on the basis of the 95% confidence intervals. The GEV fit
seems to match the data better than the POT/GPD fit.
The  GEV  shape  parameter  estimate  based  on  the  EUR  data  is  much  larger  than  the
corresponding POT/GPD estimates; nevertheless, both distributions seem to fit the data
well apart from almost underestimating one of the high storm peaks; see Figures 4.3f
and 4.4f.
The  GEV  estimate  of  the  shape  parameter  for  LEG  is  the  largest  of  all  and  is  not
compatible with that obtained with the POT/GPD method. The GEV return value plot in
Figure 4.4g shows a reasonable fit given the very high uncertainty. It does not seem very
plausible, however, that the asymptotic distribution of the storms at these location have
indeed such a heavy tail.
With the SWB data there is a rather good correspondence between the POT/GPD and
AM/GEV return values estimates, and both fits look rather good.
SCW is the location with the lowest return value estimate. This is so with both the
POT/GPD and the AM/GEV methods. The AM/GEV and the POT/GPD estimates are
compatible, but the AM/GEV estimates are higher and the fit seems to be better, as can
be observed when comparing Figures 4.3i and 4.4i.
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5 Final remarks

5.1 Summary

Currently, the offshore extreme wave conditions used in the definition of the Dutch coast
HBC are estimated on the basis of the conditional Weibull distribution (WL, 2004, 2005). In
the present study the use of this distribution in place of the distributions provided by
extreme value theory has been discussed. More generally, it has been argued that the
prediction of extreme values should be based on methods furnished by extreme value theory.

These methods involve two steps: the selection of samples of extremes, and the selection of
distributions to be fitted to those samples. In the case of the Peaks over Threshold (POT)
method, peak observations above a given threshold are collected in a sample and fitted with
the generalized Pareto distribution (GPD). In the case of the annual maxima (AM) method,
yearly maxima are collected in a sample and fitted with the generalized extreme value
(GEV) distribution.

When using the POT and AM methods one must ensure that the samples collected satisfy
certain properties of homogeneity and independence.

If  other  distributions  than  the  GEV and  the  GPD are  fitted  to  the  AM and  POT samples,
respectively, then it should be explicitly acknowledged that extreme value theory does not
justify the use of such distributions, and accordingly some sound justification must be given
for using them.

An approach based on the POT/GPD and AM/GEV methods has been proposed and
illustrated by means of applications. This approach has been applied to the North Sea buoy
measurements used earlier in the WL (2004, 2005) studies and covering the period of 1979-
2002.

5.2 Conclusions

The main conclusions of this study are as follows:

1. The  estimates  from  the  POT/GPD  method  are  seen  to  be  reliable,  and  they  seem  to
suggest that in all the considered locations the asymptotic distribution of the data has a
type III tail and hence that the wave height has an upper bound.

2. However, this last statement needs to be further investigated due to the large uncertainty
in the estimation of the tail.

3. Also, on the basis of the comparison between the POT/GPD estimates and the physical
estimates of the upper bounds on the data, it can be concluded that the former estimates
do not provide a clear spatial and/or physically meaningful pattern.

4. The POT/GPD estimates obtained in this study are compatible with those given in WL
(2004) in the sense that the present confidence intervals contain the point estimates
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obtained in WL (2004). However, almost all of our estimates are less conservative (they
are lower by at most 2.1 m).

5. The uncertainty in the present estimates of parameters and return values is particularly
large in the case of the GEV distribution. Although the AM/GEV method is somewhat
more objective than the POT/GPD method, because no threshold is involved, it is rather
wasteful of data, and seems to require longer time series than those presently available
in order to provide more definite estimates of the shape parameter.

5.3 Suggestions for further work

A way of assessing and further checking the quality of the shape parameter estimates (and
consequently upper bounds on the significant wave heights) may be to perform a regional
frequency analysis, as the one proposed by Van Gelder et al. (2000), in which spatial
information is used to improve the domain of attraction estimates. Such an analysis has been
applied by WL (2004) as a means of ‘correcting’ preliminary parameter estimates.

Another approach to determining more accurately the tail underlying significant wave
height data is to use the distribution-free method of De Haan and Rootzén (1993), which is
applied to water level data and briefly explained in RIKZ (1993, 1995a).

In this report only the omni-directional marginal distribution of significant wave height has
been considered. The extension of the proposed methods to direction-dependent and
multivariate cases is by no means straightforward, and in fact the approach suggested here
must be seen as an initial step in tackling a much more complex problem. In our opinion,
further progress requires the establishment of a theoretically sound, and generally accepted
framework for multivariate extreme value analyses.

5.4 Recommendations

On the basis of this study it is recommended that estimates of return values of wave data be
obtained using methods of extreme value theory, specifically the POT/GPD approach and
extensions thereof for dealing with direction-dependent statistics of extremes (Ewans and
Jonathan, 2006) and for estimating multivariate statistics (Zachary et al., 1998). Further,
such line of approach could be complemented by non-parametric methods of establishing
the domains of attraction of the data (e.g. de Haan and Rootzén, 1993) and/or by using
spatial information by means of a regional frequency analysis (e.g. Van Gelder et al., 2000).
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GEV fit  
buoy: K13

H4803.30 gw1k13wa

Fig. 4.4cWL | DELFT HYDRAULICS
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GEV fit  
buoy: YM6

H4803.30 gw1ym6wa

Fig. 4.4dWL | DELFT HYDRAULICS
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GEV fit  
buoy: MPN

H4803.30 gw1mpnwa

Fig. 4.4eWL | DELFT HYDRAULICS
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GEV fit  
buoy: EUR

H4803.30 gw1eurwa

Fig. 4.4fWL | DELFT HYDRAULICS
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GEV fit  
buoy: LEG

H4803.30 gw1legws

Fig. 4.4gWL | DELFT HYDRAULICS
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GEV fit  
buoy: SWB

H4803.30 gw1swbwr

Fig. 4.4hWL | DELFT HYDRAULICS
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GEV fit  
buoy: SCW

H4803.30 gw1scwwr

Fig. 4.4iWL | DELFT HYDRAULICS
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