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1Introduction

In the next decades it is expected that wind energy will secure a firm share of the
total energy production capacity in many countries. To increase competitiveness of
wind power with other power sources lowering the cost of wind energy is critical.
Given the design of a turbine, this objective can be attained in several ways: by
increasing the energy production of a wind turbine, by lowering loads on the wind
turbine in order to reduce maintenance costs and by mass production. Research
performed in recent years has shown that advanced control plays an important role
in the first two aspects. Refined control design can increase power production, for
instance by using feedforward information about the wind field provided by modern
(distributed) sensors. At the same time, control can reduce wear of the turbine
by mitigating fatigue and extreme loads, also using feedforward and feedback
information from multiple sensors in combination with novel actuator concepts.
For the design process of new and advanced control concepts which meet these
objectives, detailed models are essential. Data-driven modelling can provide such
models and help to understand differences between the theoretical and practical
worlds of wind turbine modelling.

1.1 Wind power in Europe

Over the last decade, wind power has established itself as a significant provider of electrical
power in Europe. Even though the concept of wind energy raises controversy in some
quarters, the irrefutable fact is that the wind power production capacity of many European
countries has grown significantly and accounts for at least 5% of production capacity in
the majority of countries and approaches in excess of 20% of the capacity in 5 countries
(Table 1.1). Table 1.1 also shows the predicted capacities one and two decades from now,
indicating that this trend is likely to continue. The numbers mentioned thus far specify the
share of wind power in terms of total generation capacity. It is interesting to note that at
times when the demand of a certain country is below its total generation capacity, wind
power may account for a much large share of the actual generated power. For instance, in
Spain the share of wind power regularly exceeds 35% (Red Eléctrica de España, 2012). In
a recent report, the European Wind Energy Association (EWEA) has developed a number
of scenarios for the next two decades (Zervos and Kjaer, 2008). The European Union
currently imports almost 60% of its energy and this figure is growing. This power is
imported “from unstable regions, in ever-fiercer competition with the rest of the world and at
staggering environmental cost” (Zervos and Kjaer, 2008). Hence, it is crucial for Europe to
secure its own (renewable) energy resources and meet the energy demand of tomorrow in a
sustainable and reliable way. In addition, EWEA identifies this challenge as an opportunity
for Europe to lead this development and emerge as a winner from this challenge.

1.2 The cost of wind energy

While the increasing costs associated with scarce fossil fuels will in the long run increase
the competitiveness of wind power, it is important to go to great lengths to decrease the
current cost of wind power, for instance in terms of e/kWh. The reason is to increase
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% of total capacity

1980 1990 2000 2010 2020 2030

Denmark 0.0 4.2 19.5 28.3 38.6 47.4

Portugal 0.0 0.0 0.8 20.8 25.8 29.9

Spain 0.0 0.1 4.2 20.0 28.7 35.5

Ireland 2.5 18.1 37.9 46.9

Germany 0.0 0.1 5.0 16.3 24.4 29.7

Netherlands 0.4 2.2 8.4 13.8 25.9

Bulgaria 0.0 0.0 0.0 7.9 16.8 19.6

Greece 0.0 0.0 1.9 7.8 28.7

Cyprus 0.0 0.0 0.0 7.6

United Kingdom 0.0 0.0 0.5 6.6 23.1 28.0

Estonia 0.0 6.1 22.2

Sweden 0.0 0.0 0.8 6.1 14.3 23.2

Italy 0.0 0.0 0.5 4.8

Austria 0.4 4.7 5.8 7.3

France 0.0 0.0 0.0 4.7 12.8 20.2

Lithuania 0.0 0.0 0.0 4.5 7.7 13.8

Poland 0.0 0.0 0.0 3.8 15.4 15.1

Belgium 0.0 0.0 0.1 3.0 7.8 15.1

Luxemburg 0.0 0.0 1.3 2.9 3.0 3.4

Hungary 0.0 0.0 0.0 2.7 7.1 7.6

Romania 0.0 0.0 0.0 2.4 14.6 18.7

Finland 0.0 0.0 0.2 1.4 12.3 16.1

Latvia 0.0 0.0 0.1 1.2 9.9 14.8

Czech Republic 0.0 0.0 0.0 1.1 3.0 4.6

Slovakia 0.0 0.0 0.0 0.6 0.7

Slovenia 0.0 0.0 0.0 0.0 0.0

Norway 0.0 0.0 0.0 7.6 11.6

Table 1.1 – Past, current and projected wind energy production capacity in European countries as a

percentage of total electricity generation capacity (EURELECTRIC, 2011).

the competitiveness of wind power not only with fossil fuels, but also with alternative
energy sources such as nuclear power and solar energy. While this thesis does not set out
to give an opinion on the potential for alternative energy sources other than wind or a
preference for one form or the other, it is clear that a lower cost of wind energy is relevant
in allowing wind energy to secure a firm share in the European energy mix. In this context
it is important to note, however, that the scope of “cost of energy” is often defined with a far
too narrow scope. For instance, taking into account the social costs related to particulate
matter emissions, carbon dioxide emissions, acidification and treatment of waste products
it is often the case that wind energy is at a significant advantage (Wind Energy Factsheets
2010).

The cost of wind energy in relation to a single turbine is essentially dominated by two
driving factors: its effective production capacity, usually in terms of the annual energy
production (AEP), and its cost:

• Annual energy production. To increase capacity and spurred by technological
advances, the last two decades have seen a tremendous increase of rotor sizes from
the typical 30 m diameter turbines around 1990 to the 160 m diameter turbines to
appear soon. This is by far the most effective way of increasing capacity, harnessing
the fact that the rotor area grows with the square of its diameter and so does the
potential extracted power. Hence, tomorrow’s rotors will provide a near 25-fold
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�30 m

1990

e.g. Vestas

V27-225 kW

�80 m

1998

e.g. Vestas

V80-2.0 MW

�112 m

2002

e.g. Vestas

V112-3.0 MW

�164 m

2015

e.g. Vestas

V164-8.0 MW

Airbus A380-800: 79.8 m

Figure 1.1 – Development of wind turbine sizes between 1990 and 2015. Also indicated are

representative turbines marketed by Vestas in these size classes1.

increase of power production potential compared to those of 20 years ago! In
addition, compared to having numerous small turbines, mounting a larger rotor on
a single nacelle and tower structure brings the advantage of having only once the
(albeit larger) construction costs and needing to maintain only the single turbine.

• Cost. The fact that failures of large turbines lead to more severe production losses
is a first indicator that high reliability is crucial for larger turbines and also brings us
to the second driver of cost of energy: capital cost. The service life of a turbine is
related to component reliability and durability and obviously a longer service life and
reduced maintenance requirements will decrease depreciation costs and hence lower
the cost of energy.

Finally, it is worth noting that we have only so far considered the cost of energy related
to a single turbine. When considering wind farms, multiple wind farms and wind farms in
relation to the grid, additional drivers of the cost of energy emerge, such as the capability
to optimally regulate and forecast wind farm output and to maintain grid stability and
reliability as the share of wind power on a power grid increases.

Figure 1.1 shows the development of wind turbine rotor diameters over the last two
decades. The figure also presents a comparison to the dimensions of one of the largest
currently operating passenger jets. Even though this comparison is in itself not very
valuable from a technical point of view, it illustrates that the technological challenges
involved with designing and constructing such large rotors rival those in the construction
of large aircraft in some aspects. Furthermore, the fact that turbines are often designed for
a service life of 25 years introduces cyclic fatigue loads with cycle counts several orders of
magnitude larger than seen during the life of an aircraft (Sutherland, Veers and Ashwill,
1993; Nijssen, 2006). Finally, the fact that a wind turbine operates in the lowermost
atmosphere in turbulent and continuously varying wind conditions introduces significant
loads on such a large structure.

In recent years wind turbine manufactures and power companies have started to
consider and exploit offshore locations for wind turbines. Such locations provide vast areas

1The illustration of the A380 by Clem Tillier is used under the creative commons share alike license:

http://commons.wikimedia.org/wiki/File:Giant planes comparison.svg

http://commons.wikimedia.org/wiki/File:Giant_planes_comparison.svg


4 Chapter 1. Introduction

of wind resource and wind resources at sea are usually of a more sustained level and
less turbulent due to the smooth surface (Nielsen, Hanson and Skaare, 2006). Offshore
locations are typically less susceptible to raising social and environmental issues. On-
shore turbines, in particular large ones, often face problems related to visual impact, noise
production and limited availability of real estate (Burton, Sharpe, Jenkins et al., 2001).
Despite initial scepticism, offshore wind energy is gradually becoming more accepted and
with many offshore wind farms currently in operation the required technology is in the
process of becoming more mature. One of the issues in constructing offshore turbines is
the cost of the foundation, which makes construction of offshore turbines only feasible
at locations with limited depths of the sea bed (typically less than 25–50 m (Jonkman,
2007)). To circumvent this problem, several floating wind turbine concepts have now
been tested by a number of syndicates of wind turbine manufacturers with other involved
industries (Renewable Energy Focus, 2009; Roddier, Cermelli, Aubault et al., 2010).
For offshore turbines efficient and reliable operation is even more crucial. Construction
costs are often higher, in particular due to the foundations and distant grid connection.
Also, the opportunities for maintenance and repair are more restricted and expensive.
Floating wind turbines also present additional control challenges, see (Larsen and Hanson,
2007; Jonkman, 2008; Lackner, 2009; van der Veen, Couchman and Bowyer, 2012) and
Appendix B.

1.3 Modelling and control of wind turbines

In the previous section we have touched upon some of the challenges of wind turbine
engineering, mainly in terms of the high loads and large scale structures involved.

A wind turbine left on its own is an unstable system. Depending on the blade pitch
angles, the rotor speed and the wind speed, the rotor will develop a torque. This torque
acts on the main shaft of the turbine and, depending on the counter-torque exerted by
the generator, the drive train will accelerate. This mode is essentially a rigid-body mode
and hence if the torque balance is constant, the drive train will continue to accelerate
or decelerate. Traditionally, several active or passive operating modes have been used to
regulate power production, e.g.:

• fixed-speed, fixed-pitch machines;

• fixed-speed, variable-pitch machines;

• variable-speed, fixed-pitch machines;

• variable-speed, variable-pitch machines.

In Burton, Sharpe, Jenkins et al. (2001) and Bianchi, De Battista and Mantz (2007) these
modes and how they lead to power regulation are described in some detail, which is outside
the scope of this thesis. Since practically all current multi-MegaWatt turbines fall in the last
category, we will focus our discussion on this class. A variable-speed, variable-pitch turbine
has the most essential control degrees-of-freedom to enable optimal2 power production
over a wide range of wind speeds. At a certain designed cut-in wind speed the power
production on the turbine is initiated. This wind speed forms the threshold of so-called
region I. In this region, the control system aims at maximising the efficiency with which
the turbine extracts power from the wind. The aerodynamic power generated by a rotor is
typically expressed as:

Pa =
1

2
ρπR2CP (λ, β)V

3,

where ρ is the air density, R is the rotor radius, V is the undisturbed wind speed and
CP (λ, β) is a dimensionless power coefficient, the value of which depends on the current
collective pitch angle of the blades β and the tip-speed ratio λ, defined as:

λ ,
ΩR

V
. (1.1)

2The term optimal is used loosely here and in the sense that the turbine operates close to its true optimal

operating point.



1.3. Modelling and control of wind turbines 5

A typical power coefficient surface is shown in Figure 1.2. This figure clearly shows
that there is a pair (λopt, βopt) that results in maximum power capture by attaining
CP,opt(λopt, βopt). Given the definition of the tip-speed ratio this implies that the rotor speed

C
P
(λ

,β
)

λ
β (◦)
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12 m/s
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Figure 1.2 – The power coefficient surface and a representation of the above-rated (region II)

operating strategy required to maintain rated power. The character of the power

coefficient surface shown here is typical for most utility-scale wind turbines.

Ω should vary in proportion to the wind speed: as wind speed increases, so should the rotor
speed:

Ωopt =
λopt

R
V. (1.2)

In this region the generator torque Tg is controlled so that the rotor speed tracks this tip-
speed ratio for optimal efficiency. At a certain point, the rated power of the generator is
reached and the turbine enters region II, in which the objective is to maintain the generated
power at its rated value. This implies that, with the increasing wind speed, the conversion
efficiency of the rotor should be decreased. This is often achieved by pitching the blades
into the wind (pitch-to-feather) by means of which the local lift forces on the blade are
reduced and hence the aerodynamic torque (Bossanyi, 2000; van der Hooft, Schaak and
van Engelen, 2003). Again, in Figure 1.2 an example is shown of how increasing the pitch
angle can be used to reduce the power coefficient as the wind speed increases, with the
objective of maintaining rated power.



6 Chapter 1. Introduction

On many turbines, regions I and II are divided by certain other regions. For instance,
prior to the generator reaching its rated power, the rotor may reach its maximum allowed
rotational speed. The acoustic noise emission of a turbine is linked to the tip speed of
the blades and therefore this maximum rotor speed is often constrained by limitations on
acoustic noise emissions. In other cases, the generator torque may first reach its limit,
in which case the rotor is sped up after reaching maximum torque. This implies that the
tip-speed ratio departs from its optimal value before reaching rated power.

Also note that Figure 1.2 provides a first demonstration of the nonlinearity of wind
turbines. This can be seen as follows: depending on the current operating point, specified
by a pair (λ, β), a small change in pitch angle β causes a change in the power coefficient.
This change in power coefficient depends on the local gradient of the power coefficient
surface and this gradient clearly varies with the operating point. Hence, one could state
that the control effectiveness of the pitch input varies with the current operating point.

At this point we have only considered the static equilibrium behaviour of the turbine. In
practice the wind speed varies continuously and hence the controller should continuously
adjust the generator torque (in region I) or the pitch angles (in region II). This variation also
induces an elastic response of the turbine structure. The combined behaviour is determined
by the structural response, the aerodynamic response and the response of the control
system to these effects, commonly termed aeroservoelasticity. The speed with which the
controller adjusts the control parameters is the consequence of an important trade-off: a
slow adjustment results in poor tracking of the optimal tip-speed ratio (leading to loss of
produced power in region I) or regular exceedance of rated power (in region II). In contrast,
very fast adjustment introduces high loads on the structure, drive train and pitch systems.
This multi-objective character of the control system (Skogestad and Postlethwaite, 1996)
has become increasingly important in recent years. One reason is that a key to extending
the service life of a turbine and thus lowering the cost of energy is to reduce cyclic and
extreme loads. Another reason is that the increase in turbine sizes has led to larger, more
flexible blades and larger towers, causing the structural frequencies to enter the control
bandwidth of most turbines. In this context designing a “stiff” turbine is not feasible for
obvious weight and cost reasons and lowering the control bandwidth is equally undesirable.
Consequences of a smaller control bandwidth are a less stable power output and require
that larger margins be be imposed on generator speeds, torque and power limits, ultimately
leading to a more conservative operating strategy. Both solutions are not satisfactory from
a cost-of-energy viewpoint and hence more sophisticated multi-objective control is the true
answer.

In its simplest form, an objective of the control system is often to provide identical step
responses (e.g., in terms of rotor speed error) in all operational wind speeds. Given the
fact that a wind turbine’s pitch sensitivity is operating point dependent, a fact which we
have indicated before, this leads to a simple form of gain scheduling on the pitch signal
which is very common in current wind turbines (Bossanyi, 2000). In a refined sense, it
is often argued that the trade-off between power regulation and load reduction objectives
should also be time-varying (Leith and Leithead, 1996; Bianchi, De Battista and Mantz,
2007; Østergaard, Stoustrup and Brath, 2009). For instance, in a certain wind speed range,
typically in the transition from region I to region II, the rotor (stochastic) loading is high,
and hence emphasis could shift towards tower load reduction in this regime. In other
regimes, where loads are lower, emphasis could shift towards optimal power production.

As discussed before, the static operating strategy typically requires exclusively torque
actuation in region I and exclusively pitch actuation in region II. Considering a multi-
objective design where power and loads are simultaneously dynamically controlled, it
is logical to consider using simultaneous pitch and torque actuation for load control in
both region I and II, such that both degrees of freedom are exploited. The (collective)
pitch degree of freedom allows effective control of fore-aft oscillations whereas the torque
degree of freedom allows effective control of side-side and drive train oscillations. Modern
individual pitch degrees-of-freedom offer the additional benefit of allowing individual blade
loads to be controlled and reduced (Bossanyi, 2003a, 2005; Larsen, Madsen and Thomsen,
2005; van Engelen, 2006; Selvam, Kanev, van Wingerden et al., 2009; Bossanyi, Fleming
and Wright, 2012). The same can be said for local lift control devices such as trailing edge
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flaps, which typically allow higher control bandwidths (Basualdo, 2005; Marrant and van
Holten, 2006; Buhl, Bak, Gaunaa et al., 2007; van Wingerden, Hulskamp, Barlas, Marrant
et al., 2008; Barlas and van Kuik, 2010; van Wingerden, Hulskamp, Barlas, Houtzager et
al., 2011).

Finally, an active area of research is the use of LIDAR (light detection and ranging)
technology for feedforward control of wind turbines (Schlipf, Trabucchi, Bischoff et al.,
2010; Schlipf, Schlipf and Kühn, 2012; Wang, Johnson and Wright, 2012). Such devices
provide preview information on the wind field upstream of a turbine. A difficulty is that the
wind field evolves before reaching the rotor. Hence, it remains to be shown that measured
information on higher frequency turbulent structures upstream is of use for load control.
It has been shown, however, that the look ahead information (mainly at low frequencies)
can be used to lower the pitch activity of a turbine (Bossanyi, 2012), which is in itself a
significant advantage.

1.3.1 Wind turbine modelling

From the previous discussion it is clear that future wind turbines increasingly rely on
refined multiobjective control design, where power and load regulation are achieved in
a balanced manner. To enable such designs it is crucial to have accurate models describing
the aeroelastic behaviour of the turbine. In the design stage it is common practice to
develop a detailed model on the basis of first principles. Such models typically comprise
the following elements (Molenaar, 2003):

• A rotor aerodynamic model: Typically, a blade element momentum code is employed
to describe the rotor aerodynamics, extended with a number of corrections to address
its limitations. Corrections usually applied are for blade tip and root effects, dynamic
inflow, 3D effects and wake dynamics;

• A mechanical model to describe the structural response. Often, this model is based
on a superposition of structural modes (modal formulation) or a formulation in terms
of multibody elements. A direct finite element formulation is rarely used in wind
turbine simulation, but often used for separate static or dynamic analyses and to
derive mode shapes for the modal formulation mentioned earlier;

• A generator model. In many cases the generator is effectively described in terms of
a static relation, possibly with a small time delay and certain electrical losses. This is
based on the fact that power electronics employed in modern turbines are typically
orders of magnitude faster than the other wind turbine modes;

• A wind model. Since the wind is such an important factor in determining the
stochastic (fatigue) loading a turbine experiences, describing a wind field accurately
and realistically is crucial in wind turbine simulation models. The wind field is a 3D
structure and its direction and wind speed vary spatially and with time. Required
specifications on generated wind fields are laid down in, amongst others, the IEC
standard (Wind turbines – Design requirements 2005);

• A wave model. In the design of offshore turbines a significant share of the loads on
a turbine may be due to wave loads, in particular since wave frequencies are often
near structural frequencies.

It is interesting to note that while much more advanced and detailed methods exist to
address some of these aspects, these methods are often not feasible from a practical and
engineering point of view. The rotor aerodynamics and the wind field, for instance, could
be described and simulated in great detail by solving the Navier-Stokes equations in a direct
numerical simulation (DNS). This approach, however, is to date far from feasible due to its
prohibitive computational cost.

While the modelling and simulation framework described thus far is very useful for
predicting a turbine’s dynamic behaviour in response to external loading it is not suited
to systematic and multiobjective control design. The majority of control design techniques
– from the industry-standard and in fact state-of-the-art frequency-domain loop shaping
and P/I/D approaches (Ogata, 1997) to the “modern” model-based control design methods
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(Franklin, Powell and Emani-Naeini, 1994; Skogestad and Postlethwaite, 1996) – rely on
linear time invariant (LTI) models. Such models can often be obtained from the detailed
first principles models by linearising them around an operating point.

Recent efforts in modelling and control of linear, parameter-varying (LPV) systems
have been aimed at developing specific LPV control methodologies for wind turbines. By
considering wind turbines as LPV systems, the nonlinear behaviour is explicitly accounted
for and the control design framework can deliver a scheduled LPV controller. In references
such as Bianchi, Mantz and Christiansen (2004); Ohtsubo and Kajiwara (2004); Bianchi,
Mantz and Christiansen (2005); Lescher, Zhao and Martinez (2006); Bianchi, De Battista
and Mantz (2007); Østergaard (2008); Østergaard, Stoustrup and Brath (2008, 2009);
Bianchi, De Battista and Mantz (2010) progress was made on a) linking LPV model
structures to the nonlinear first principles models and b) developing control design
methodologies for these LPV systems. It is important to realise that these LPV models
usually have the wind speed as one of their scheduling parameters. This wind speed is
hard to measure on a turbine and is often estimated using one of the various techniques
discussed in Bossanyi (2000); van der Hooft and van Engelen (2003); van der Hooft,
Schaak and van Engelen (2003); van der Hooft and van Engelen (2004); Johnson,
Fingersh, Balas et al. (2004); Østergaard, Brath and Stoustrup (2007); Knudsen, Bak and
Soltani (2011).

A third control framework that has drawn a lot of attention in wind energy research is
the model predictive control (MPC) framework (Henriksen, 2008; Kumar and Stol, 2009;
Soliman, Malik and Westwick, 2011; Soltani, Wisniewski, Brath et al., 2011; Barlas, van der
Veen and van Kuik, 2012). MPC relies on models to predict the behaviour of a turbine over
a certain prediction horizon. On the basis of these predictions control actions are designed
by minimising an objective function in each time step. While most MPC formulations are
readily extended3 to time-varying or parameter-varying systems it is noteworthy that nearly
all cited references exclusively consider examples constrained to a single operating point,
exceptions being Kumar and Stol (2009); Soliman, Malik and Westwick (2011).

Finally, adaptive control methodologies have been considered for the control of wind
turbines (Johnson, Pao, Balas et al., 2006; Johnson and Fingersh, 2008; Frost, Balas
and Wright, 2009; Stotsky and Egardt, 2012). Adaptive control has a long history in
the field of control theory and many formulations apply directly to nonlinear systems
specified in the form of coupled ordinary differential equations on the basis of Lyapunov
techniques. Depending on the framework chosen, there may be challenges associated with
the control of nonminimum phase systems, with guaranteeing persistence of excitation and
with avoiding parameter drift instability (Åström and Wittenmark, 1994). The power of
adaptive control lies in its capability to adapt to certain classes of unknown, unmodelled or
slowly time-varying dynamics, either by estimating parameters or by adapting the control
law. Furthermore, adaptive control laws are often derived in such a way, by constructing a
candidate Lyapunov function, that stability and convergence conditions follow more or less
directly.

As a first step towards unifying the stages of modelling and control design, subspace
predictive control has been conceived as one way to deal with unknown but slowly-varying
dynamics. Subspace predictive control uses adaptively estimated system parameters in
a model predictive control law (Favoreel and De Moor, 1998; Favoreel, De Moor, Van
Overschee et al., 1999; Woodley, 2001; Dong, Verhaegen and Holweg, 2008; Hallouzi,
2008). Hence, this framework may also be seen as an adaptive control framework and
offers a layer of robustness to faults.

Having mentioned a number of control frameworks it is important to stress that control
paradigms beyond the classical P/I/D and SISO loop shaping techniques are not widely
used (if at all) in industry. Most wind energy systems are controlled by P/I speed
controllers, possibly augmented with SISO compensator or filter networks for load control

3Readily only in the case that, for time-varying systems, the time-varying behaviour is known over the prediction

horizon or, for LPV systems, the scheduling parameter is extrinsic and assumed to be known over the prediction

horizon.
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(e.g., drive train and tower dampers) or more refined speed/power control (Bossanyi,
2000). Since a few years, some manufacturers are exploring the potential of (multivariable)
robust control or, predictive control (typically in the role of a supervisory control system).
A main motivation for manufacturers to study these methodologies is that they allow
including load reduction objectives from the outset. One example is controller design for
floating wind turbines (van der Veen, Couchman and Bowyer, 2012). For floating turbines
a significant control challenge is to regulate the speed of the turbine and simultaneously
limit the fore-aft (and side-side) oscillations. Since these effects are directly coupled, the
potential of SISO control design, e.g. by successive loop closure, as opposed to a direct
MIMO design is limited (van der Veen, Couchman and Bowyer, 2012) (see Appendix B).

One of the reasons for the reluctance in adopting “advanced” control frameworks is that
simplicity is highly favourable in new designs of complex systems (cf. the Philips company
motto: “Sense and simplicity”). SISO control loops are intuitive and readily designed for
systems with limited coupling or frequency-separated coupling between distinct input-
output pairs. Thus, SISO control loops may work quite well and it is often hard to
demonstrate significant benefits of using advanced control solutions in terms of power
production and/or load reduction, which are required to justify research into such new
paradigms. In addition, more complex control frameworks often require expert knowledge
and present many design and tuning parameters. A third and very significant factor is
that the control system contains a large body of knowledge which has been acquired
over the years by the manufacturer. In fact, this knowledge embedded in the control
system may make or break the competitive position of a turbine for a manufacturer and
part of this knowledge might have to be discarded when transitioning to a new control
framework. Finally, a reason used to be that high order controllers and model predictive
control presented computational challenges, but these have now largely been overcome
with the advent of cheap and high capacity computing power. Obviously, the previous
statements only apply to systems where linear time invariant control is potentially feasible.
There are many systems, for example in robotics, where linear control laws cannot stabilise
the system, let alone provide any level of performance. In such cases nonlinear control
techniques, which may be seen as “advanced” by default must necessarily be considered.

1.3.2 The role of data-driven modelling in wind turbine control design

The first principles aeroelastic models described above have a few drawbacks. While
aeroelastic models are vital in the design stage of wind turbines to predict fatigue and
extreme loads, power production and evaluate possible control systems, it is inevitable
that many factors contribute to uncertainty or errors in the prediction of dynamic modes
and time constants. Among those are: differences between expected and actual material
properties; differences in manufacturing; differences in soil or foundation characteristics;
modelling assumptions and simplifications and unmodelled sensor characteristics. System
identification may aid in understanding the true underlying dynamics and as a consequence
may be a key enabler for improvements to the design of multi-objective controllers for power
production and load reduction. In the control engineering community, system identification
has proved to be a powerful tool for the analysis of dynamic systems. The capability to
derive models from operational data allows engineers to gain insight into the dynamics of
systems which have been modelled with certain coarse or restrictive assumptions or errors,
or systems of which only simplified models are available. An additional motivation for
system identification is that it automatically delivers a model that describes the phenomena
which manifest themselves in the data. In physical first-principles modelling, the model
complexity is primarily a choice made by the user, who may opt for over-modelling to
ensure that any possibly relevant dynamics are incorporated. In practice, not all modes
that can be described by a model may be relevant in the ultimate manifested behaviour.

As early as in 1994, the late Peter Bongers argued in his thesis (Bongers, 1994):

“. . . direct validation of models describing wind energy conversion systems by
a direct comparison with measured data is of very limited use. One of the
few possible solutions to this problem is the application of system identification
techniques.”
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This argument is based on the fact that control design relies on accurate knowledge of
the behaviour from (actuator) inputs to (sensor) outputs – in terms of gains and phases
for LTI systems. Updating a complicated nonlinear aeroservoelastic model on the basis of
comparisons with measured data, which are subject to significant variations due to large
stochastic contributions resulting from turbulence, is a time consuming method to obtain
accurate input-output models and is not guaranteed to be successful.

The most established identification techniques for dynamic systems are those designed
for linear time invariant (LTI) systems. The system-theoretic framework of LTI systems is
extremely powerful, with a wealth of theoretical and practical results. The practical value
of this framework is, in part, due to the fact that all smooth nonlinear systems permit a
locally linear description of their dynamics around some constant operating point (Ljung,
1999; Khalil, 2002; Verhaegen and Verdult, 2007). This is also the case for wind turbines
and indeed first results on the estimation of LTI models of wind turbines were seen in the
early 1990s and since then several scientific articles have appeared on this topic (van Baars,
Mosterd and Bongers, 1993; James III, Carne and Lauffer, 1993; van Baars and Bongers,
1994; Knudsen, Andersen and Toffner-Clausen, 1997; Marrant and van Holten, 2004;
Hansen, Thomsen, Fuglsang et al., 2006; Iribas-Latour and Landau, 2009; Houtzager,
Kulcsár, van Wingerden et al., 2010; van der Veen, van Wingerden and Verhaegen, 2010c;
Iribas-Latour and Landau, 2012).

Currently, system identification is almost not used in the wind energy industry, but
in recent years several major manufacturers have performed studies to determine the
potential for system identification in their control design approaches. In part, this could
be attributed to the fact that thus far industry has been satisfied with the performance of
controllers (van Wingerden, 2008). To date these have been aimed predominantly at power
regulation and it is to be expected that once multi-variable and multi-objective control
design becomes commonplace the need for accurate and refined models will increase.

It was argued before that wind turbines are nonlinear systems when we considered
the variable gain of the pitch input. One way to capture this nonlinearity is to identify
models in several operating points, that is at several mean wind speeds (Jelavic, Peric and
Petrovic, 2006; Iribas-Latour and Landau, 2012). However, since wind turbines operate in
a continuously changing wind field it can be particularly difficult to maintain a reasonably
steady operating point. This makes it hard, if not impossible, to obtain suitable data records
for LTI identification, since large wind speed variations cause the linearity assumptions to
be violated. The consequence is that one can only identify a “mean” model which describes
the experimental data in the best way.

If one could explicitly model the dominant nonlinear effects, one could use an arbitrary
sequence of data obtained from the turbine, in which the wind speed varies. One family
of methodologies is provided by the tools aimed at the identification of LPV systems.
Identification of LPV systems has seen major developments during the last decade (Lee and
Poolla, 1999; Verdult, 2002; van Wingerden, 2008; Tóth, 2010). While these developments
are significant steps forwards, it is hard to apply these methods to certain real systems such
as wind turbines. There are a few aspects which contribute to these difficulties:

• LPV models are specified in terms of a scheduling parameter which determines the
instantaneous dynamics. From first principles it is often possible to motivate a certain
choice of scheduling parameter for the dynamics in continuous-time, but this is far
from the case for the equivalent discrete-time models (Tóth, 2010);

• LPV identification methods often require either solving non-convex parameter es-
timation problems (for prediction-error methods) or solving very high-dimensional
least-squares problems. The latter problem was partly addressed in van Wingerden
(2008), but it remains a challenging aspect since the solution comes with an increased
variance on the estimated models.

In Figure 1.3 we show some common model classes considered in system identification.
Proceeding from LTI models on the left to full non-linear models on the right the figure
is meant to give a qualitative indication that an increase in model fidelity comes with an
increase in complexity, in terms of number of parameters, the complexity of the dynamic
behaviour and the complexity of identification and control algorithms. We have previously
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argued that LPV techniques are not yet sufficiently mature to be applied to real wind
turbines and hence our focus will be on making developments in the highlighted area.
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Figure 1.3 – Qualitative indication of fidelity versus computational complexity of different modelling

frameworks in system identification. From a practical point of view, LPV and generic

nonlinear methods are often still out of reach.

System identification and industrial practice

Given the state of the art of control system design for wind turbines it is most likely that
system identification methods will first fulfil a role in the development of new wind turbine
designs. The main role will then be to provide models of the turbine which allow the
engineers to investigate differences between the first principles models and the real (test)
turbine. Also, the controller design could subsequently be based on the identified model.

As system identification technology advances, identification could be performed for each
installed turbine, e.g. as a built-in functionality, in order to account for manufacturing
differences and local foundation characteristics. This seems to be useful only if the
model can be used directly in an (adaptive) model-based controller, or by defining a
few instrumental parameters such as natural frequencies which are to be tuned in the
commissioning phase. System identification could then also be regularly performed to
account for changing aerodynamics due to accumulation of dirt on the blades and due to
seasonal air density variations, insofar these effects are significant.

1.3.3 Prediction error methods and subspace methods

Concerning the history of the identification of LTI systems two major identification
frameworks have emerged over the years: the prediction error4 (PE) framework and the
subspace identification framework. In the present context we will consider as methods
belonging to the PE framework all those which require the specification of a model structure
explicitly in terms of parameters, where these parameters are subsequently estimated
by minimising an identification error criterion (Ljung, 1999) or maximising a certain
likelihood function. In contrast, we will call subspace methods those which rely on
constructing data matrices from input-output data and seek matrices containing system

4Informally, we will also classify output error methods under this framework.
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parameters in (intersections of) subspaces of these data matrices (Van Overschee and De
Moor, 1996; Verhaegen and Verdult, 2007).

Since we are predominantly dealing with multiple-input-multiple-output (MIMO) sys-
tems of a fairly high order (typically 20 or higher), the choice for subspace identification
methods is a natural one for the following reasons:

• Considering high-dimensional aeroelastic systems, it is most likely that these are
described by a set of coupled nonlinear differential equations. Linearising such a
model naturally leads to a high order state-space structure. It is not feasible to
write such a model explicitly in terms of physical parameters (not least because of
the inherent non-injectivity of such a description (Verhaegen and Verdult, 2007)).
Besides, it is hard to prescribe a specific structure for the disturbances, other than
modelling these as originating from filtered white noise. These two aspects lead to
a generic state-space structure which is the natural underlying structure in subspace
methods;

• It is difficult to estimate a priori which modes of a first principles model will in the
end contribute to the measured output data, i.e., which modes manifest themselves
in the data. The order detection mechanism of subspace methods allows the order of
the identified model to be selected in a systematic way and does not require it to be
fixed a priori as is the case for PE methods;

• Subspace methods do not require solving a nonlinear least-squares optimisation
problem to estimate the parameters of the state-space model. Parameterised high-
order MIMO state-space models in particular almost inevitably lead to error criteria
which have many local minima (Ljung, 1999; Haverkamp, 2001; Verdult, Bergboer
and Verhaegen, 2003). In such cases subspace methods are more likely to give
repeatable results (Haverkamp, 2001; Verhaegen and Verdult, 2007). PE methods
can always be applied in a subsequent step, where the parameters of the subspace
model are used as initial condition for the nonlinear optimisation process.

Before presenting ideas to on the one hand overcome the limitations of LTI modelling and,
on the other hand avoid the significant challenges of LPV and generic nonlinear modelling
we will devote some attention to the challenges associated with system identification of
wind turbines.

1.4 Key challenges and contributions

Wind turbines present a number of specific challenges when it comes to applying system
identification. These challenges motivate research into identification techniques tailored to
wind turbines and related systems. The result of this tailoring should be that each of these
challenges is addressed so that the resulting new identification techniques become valuable
to the wind energy industry. This motivation also leads us to the main contributions of this
thesis.

1.4.1 Closed-loop operation

A wind turbine must typically operate in closed-loop with a controller5. Maintaining the
rotor speed requires that the torque balance is dynamically regulated. A consequence of
this requirement is that the stochastic disturbances acting on the turbine – e.g., rotor speed
variations due to turbulence – are rejected by the control system and hence the input signals
to the turbine will be correlated with these disturbances. In system identification it is
often assumed that input signals are uncorrelated with stochastic disturbances in order
to achieve consistent models and this has traditionally hampered subspace identification
methods in particular. Over the last decade, methods have appeared which do not rely on
such assumptions.

5Except stall-controlled fixed-speed-fixed-pitch turbines which can be seen as “self-regulating”.
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We have developed a closed-loop subspace identification method which extends the clas-
sical multivariable output-error state-space (MOESP) algorithm for open-loop situations.
We have further placed most of the advances in closed-loop subspace identification methods
of the last fifteen years in a common framework, showing how the different methods relate
to each other.
– see Chapter 2 and (van der Veen, van Wingerden and Verhaegen, 2010a; van der
Veen, van Wingerden, Bergamasco et al., 2012)

We have also shown how the application of closed-loop subspace identification methods
can form a valuable step in the process of controller design for aeroelastic systems: in
the first place to serve as a basis for model-based control design and in the second place to
serve as a rapid diagnostic tool to evaluate closed-loop performance of the designed control
system.
– see Chapter 3 and (Barlas, van der Veen and van Kuik, 2012; Bernhammer, De
Breuker, Karpel et al., 2012; Fleming, van Wingerden, Scholbrock et al., 2013)

The closed-loop identification framework provides an interesting extension to control.
As a means to address slowly time-varying nonlinear behaviour we have considered the
subspace predictive control (SPC) framework. In this framework system parameters are
recursively estimated, which are used to construct an output predictor. This output
predictor is then used in a predictive control setting. To recursively identify parameters
in a robust way we present a directional forgetting least-squares method in square root
form. We also demonstrate the application of SPC to two real experimental systems.
– see Chapter 4

1.4.2 Periodic loads

Many components of a turbine are subject to very significant periodic loads. These loads
arise from (Burton, Sharpe, Jenkins et al., 2001; Bianchi, De Battista and Mantz, 2007):

• the rotor blades passing through the tower velocity deficit during each revolution;

• the rotor moving through a skewed wind field as a consequence of wind shear, yaw
misalignment and rotor tilt;

• the rotor rotating through a slowly (in a relative sense) moving turbulent wind field,
thereby periodically sampling the wind field;

• the cyclic effect of gravity as the rotor blades complete a revolution;

• rotor imbalance due to mass and stiffness non-uniformities.

These periodic loads are directly related to the rotor azimuth and hence present frequency
content at the instantaneous rotor frequency and higher harmonics. In system identification
it is standard practice to model disturbances as filtered white noise sources. These (almost)
periodic and hence very narrowband disturbance cannot be adequately represented as
filtered white noise.

We have extended closed-loop subspace identification methods to deal with the very
dominant (quasi)periodic signals found in certain wind turbine measurements. We
have shown on several realistic experimental data sets that by embedding periodic basis
functions, parameterised by the rotor azimuth signal, in the set of input signals we can
achieve improved identification results.
– see Chapter 3 and (van der Veen, van Wingerden and Verhaegen, 2010a,c)

1.4.3 Nonlinear system

As mentioned several times before wind turbines are nonlinear systems. When performing
LTI system identification it is necessary to ensure that the turbine operates close to a fixed
operating point during measurement. This is a challenge in a turbulent wind field and
makes it hard to obtain long data records. Identification techniques for LPV and generic
nonlinear systems are not mature enough for application to wind turbines. This aspect
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motivates research into methods which extend LTI techniques in a structured way to deal
with the specific nonlinear behaviour of wind turbines.

We have extended methods for closed-loop subspace identification of multivariable
linear time invariant systems to identification of Hammerstein systems by exploiting a
recent least-squares framework for multivariate splines. We have shown how separable
least-squares regression can be used in a classical overparameterisation approach to achieve
a desired low-rank solution. The algorithm has been demonstrated on a detailed wind
turbine simulation example.
– see Chapter 5 and (van der Veen, van Wingerden and Verhaegen, 2011, 2012)

Since wind turbines operate in a continuously changing wind field, a challenge is to
develop identification methods which are feasible in a practical context. As argued before,
sophisticated identification techniques such as LPV techniques are not sufficiently mature
to address this issue. Hence, a goal will be to develop methods which seek a balance
between the ability to describe the time-varying dynamics of wind turbines and practical
feasibility. Motivated by this desire to bring closed-loop identification methods closer to
practical applicability we have tailored Hammerstein system identification methods to the
identification of wind turbines. This makes it possible to capture the essential nonlinearities
without resorting to LPV or nonlinear black-box identification techniques which are still
limited in their practical applicability. The potential of this method has been demonstrated
and validated on the basis of experimental data obtained from a real wind turbine.
– see Chapter 6 and (van der Veen, van Wingerden and Verhaegen, 2011; van der
Veen, van Wingerden, Fleming et al., 2013)

1.4.4 Poor signal-to-noise ratio

The local loads on a turbine rotor and the rotor torque and thrust arising from these local
loads are determined by a complex 3-dimensional wind field impinging upon the rotor.
This turbulent wind field is a complicated structure with spatially and temporally varying
wind speeds, both in terms of direction and magnitude. Since there are no or very limited
means of measuring these local wind speeds it is necessary to consider a large portion
of these variations, say the deviations from the mean freestream wind speed, as stochastic
excitation. This makes system identification a challenging task and calls for robust methods
which can deal with large amounts of data and operate in a numerically reliable way.

The subspace identification methods developed and applied throughout this thesis are
numerically reliable and efficient. Furthermore, these methods, with the exception of the
Hammerstein identification method presented in Chapter 5, do not rely on nonlinear least-
squares optimisation. As a consequence, they can be seen as robust methods in the sense
that they are numerically reliable and are unlikely to give very different results for two
different experiments as a consequence of ending up in local minima of the prediction
error objective function. In this sense, the aspect of signal-to-noise ratio is a central theme
throughout this thesis.

1.4.5 Cost

For processes such as system identification or controller development and commissioning
it is necessary to perturb the regular operation of the wind turbine by exciting the system.
Typically, this consists of exciting the pitch system and the torque degrees-of-freedom in
the case of system identification, or running and monitoring the turbine’s performance over
extended periods of time in the case of controller commissioning. Usually, scheduled time
is limited a priori, since during such experimental procedures the turbine is not available
for actual power production. These aspects call for efficient use of allocated time.

In this thesis we show an example where system identification is used to rapidly evaluate
the closed-loop performance of a wind turbine with a new or redesigned controller. In this
example 10 minutes of data are sufficient to demonstrate that the controller performance
was not satisfactory for one of the controllers. In this case, other methods such as
rainflow counting methods would, on the one hand, require data acquired over extended
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periods of time and, on the other hand, give only an indirect indication of poor controller
performance, i.e., not a possible cause. In this context, system identification tools offer the
benefit of judging controller performance in a shorter time frame and hence at a lower cost
compared to traditional tools.
– see Section 3.4 in Chapter 3 and (Fleming, van Wingerden, Scholbrock et al., 2013)

It should also be noted that in certain disciplines where system identification is starting
to become quite common, e.g., in mechatronic applications, it is often feasible to perform
many repeated measurements with random inputs. Such systems are often fast and
data records only span a few seconds. In those applications spectral analysis with
averaging techniques is useful to obtain high quality nonparametric estimates (Pintelon
and Schoukens, 2012). In the field of wind turbines much longer sequences are required
– consider for instance the 0.01 Hz oscillation mode of a floating turbine – and it is
not feasible to perform many repeated experiments. In a few upcoming examples we
demonstrate how identification using one identification and validation data set has led
to successful controller design in one go.
– see Section 3.3 in Chapter 3 and (Barlas, van der Veen and van Kuik, 2012;
Bernhammer, De Breuker, Karpel et al., 2012)
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2Closed-loop subspace identification

of LTI systems

Motivated by the fact that many dynamical systems operate in closed-loop and that
traditional subspace identification algorithms may give biased estimates in such
cases, a significant number of closed-loop subspace identification methods have
been developed over the last fifteen years. In this chapter we present one such
method, the closed-loop MOESP algorithm. Furthermore, we present a framework
based on autoregressive modelling which will turn out to be at the heart of almost
all closed-loop subspace identification methods. We view many of the algorithms
found in the literature as variants of the algorithms discussed here. In this chapter
our aim is to give a clear overview of some of the more successful methods presented
throughout the last decade. Furthermore, we retrace these methods to a common
origin and show how they differ. We compare the methods both on the basis of
simulation examples and real data.

2.1 Introduction

In the previous chapter we have stressed the role of system identification as a complement
to first principles modelling. The system identification methods presented in this thesis
all rely on a common framework that will be introduced and discussed in this chapter.
Referring to the challenges set out in Section 1.4 of Chapter 1, we address the problem
of closed-loop identification. Closed-loop subspace identification of linear systems is of
great practical interest for a number of reasons. Linear models are often required for
(model-based) control design and, by directly using measured data, system identification
overcomes some of the limitations of first principles modelling. Often, simplifying
assumptions are made and limited knowledge of physical parameters is available. Since
system identification circumvents these modelling assumptions and the use of incomplete
knowledge and instead directly considers phenomena present in the data, it may provide
more accurate estimates of natural frequencies and input-output gains and hence may
also complement modelling on the basis of first principles. In particular, the advantage
of subspace methods compared to prediction error methods (Ljung, 1999) has long been
recognized in the context of multivariable systems. For these systems, the parameterization
of a prediction-error model structure often leads to an error criterion that is not convex in
the parameters. In contrast, the successful closed-loop subspace identification methods
developed in recent years consist of a sequence of linear least-squares problems and a
model reduction step. In fact, these methods combine prediction-error identification – the
estimation of a high-order ARX (Autoregressive with external inputs) model – as an initial
step with typical subspace-related subsequent steps (Qin and Ljung, 2003b; Chiuso, 2007b;
Di Ruscio, 2009b; van der Veen, van Wingerden and Verhaegen, 2010a). Furthermore,
regarding the closed-loop nature of such methods, one may observe that in many practical
cases feedback is indeed present. On the one hand this may be necessary due to instability
of the open-loop plant, tight process tolerances, limited access to internal signals of the
system or the requirement to stay close to an equilibrium around which one can consider
the behaviour of the plant linear. On the other hand, in the literature on identification for
control (Gevers, 2005) it has often been pointed out that it is desirable to identify a system
under circumstances that are close to the real application – i.e., in closed-loop – since
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this results in improved estimation of the dynamics, in particular around the cross-over
frequency.

In a closed-loop setting the input signal to the system is typically correlated with the
process and measurement noise sources. The presence of correlation due to feedback
of stochastic signals (e.g., the feedback of process and/or measurement noise) has
traditionally hampered subspace identification (and other open-loop system identification
techniques) in achieving consistent estimates. First efforts to develop subspace methods for
data obtained under closed-loop conditions were made in the mid-nineties, soon after the
development of the main open-loop subspace methods, see for instance Verhaegen (1993a);
Ljung and McKelvey (1996); Chou and Verhaegen (1997); Van Overschee and De Moor
(1997). The method developed in Verhaegen (1993a) shows similarities to the joint input–
output method well-known in closed-loop prediction-error identification (Ng, Goodwin and
Anderson, 1977; Van den Hof and de Callafon, 1996; Van den Hof, 1998), by combining
identification of the closed-loop system with knowledge about the controller. In Chou and
Verhaegen (1997) closed-loop subspace identification of a restricted class of closed-loop
systems is considered by means of instrumental variables (IV). In Van Overschee and De
Moor (1997) the N4SID (Numerical algorithm for subspace state space identification) class
of open-loop methods is extended to closed-loop systems, but certain knowledge about the
controller is required.

One could state that the ideas presented in Ljung and McKelvey (1996) have been
pivotal to reaching the current state of the art. In that article high-order ARX modelling
was first proposed as a means to deal with correlation issues due to operation in closed-
loop, and it is now a feature of the state-of-the-art algorithms. In the year 2003 several
articles appeared which again considered the problem of identification in feedback (Chiuso
and Picci, 2003a,b; Jansson, 2003; Qin and Ljung, 2003b). The article by Qin and Ljung
(Qin and Ljung, 2003b) described the first “innovation estimation” algorithm, in which
the first step is to estimate the innovations process. In the article by Jansson (Jansson,
2003) the construction of a state predictor as it is currently used in the closed-loop state
estimation algorithms, such as PBSID (Predictor-based subspace identification), was first
considered. The articles by Chiuso and Picci in that same year (Chiuso and Picci, 2003a,b)
provided much of the theoretical insight behind these methods, discussing how to deal with
feedback models.

While, as we mentioned, (Jansson, 2003) already considered the construction of a state
predictor, it was not until 2007 (Chiuso, 2007b) that these developments were combined
with the estimation of an ARX model as was proposed earlier in (Ljung and McKelvey,
1996). This resulted in the efficient PBSID (Predictor-based subspace identification)
algorithm (Chiuso, 2007b), which is currently one of the most promising solutions in
closed-loop subspace identification. The innovation estimation algorithm by Qin and Ljung
has also seen several further developments over the last decade, resulting in simpler and
more efficient implementations (Qin, Lin and Ljung, 2005; Di Ruscio, 2009b; van der Veen,
van Wingerden and Verhaegen, 2010a).

It is interesting to note that all these methods have in common that they rely on
estimating a high-order ARX structure to start with. As pointed out by Chiuso (Chiuso,
2006b), the developments in these two broad classes of subspace methods (the state
estimation and innovation estimation algorithms) can be seen as a significant step forward
towards a satisfactory solution for closed-loop subspace identification problems.

Several other modifications to the existing subspace algorithms, to deal with the closed
loop identification problem, have been proposed in parallel, see for instance Oku and
Fujii (2004); Katayama, Kawauchi and Picci (2005); Gilson and Mercère (2006). In
Oku and Fujii (2004) a method is presented that is analogous to the indirect two-stage
method in prediction error identification (Van den Hof, 1998). In Katayama, Kawauchi
and Picci (2005) a joint input–output method is presented similar to Verhaegen (1993a),
which focusses on the deterministic subsystems. Finally, in Gilson and Mercère (2006) an
IV approach was developed which requires an estimate of the noise model which is not
available a priori (see Gilson, Garnier, Young et al. (2011) for a recent overview of these
IV methods for prediction error identification.). Hence an iterative procedure is proposed
to estimate the model.
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In prediction-error identification the available approaches can typically be classified
as direct, indirect and joint input–output approaches (Van den Hof, 1998). In this paper
we focus on closed-loop susbpace methods which we would like to classify as direct
methods (Qin, Lin and Ljung, 2005; Chiuso, 2007b; Di Ruscio, 2009b; van der Veen, van
Wingerden and Verhaegen, 2010a). Although these methods consist of several steps, they
operate directly on the available input–output data. These “direct” subspace methods have
the advantage that they place the fewest restrictions on the feedback mechanism. The
main drawbacks of the indirect and joint input–output methods (Verhaegen, 1993a; Van
Overschee and De Moor, 1997; Oku and Fujii, 2004; Katayama, Kawauchi and Picci, 2005;
Gilson and Mercère, 2006) are that linearity of the closed-loop system (not just the plant)
must be assumed and that care must be taken with pole-zero cancellations between the
plant and the controller.

Based on the foregoing discussion it can be concluded that the field of closed-loop
subspace identification has been very active. So active in fact, that a first-time survey
of algorithms and methodologies may be daunting to readers who are new to the field. The
aim of this paper is to give an overview of some of the more successful methods presented
throughout the last decade. Furthermore, we retrace these methods to a common origin
and show how they differ. A natural question to be asked is which method is the best for a
particular purpose. This is a hard question, since indeed it depends on the purpose of the
identified model (Gevers, 2005), the type of the underlying system (Chiuso and Picci, 2005)
– particularly using finite sequences – and experimental conditions. Many authors have
addressed this issue from a theoretical perspective, regarding asymptotic consistency and
variance (Peternell, Scherrer and Deistler, 1996; Jansson and Wahlberg, 1998; Knudsen,
2001; Chiuso and Picci, 2005). When dealing with practical conditions, that is, finite-
length sequences and systems of unknown order (or distributed-parameter systems), the
various methods discussed here may perform rather differently.

While most of the research in system identification focuses on discrete-time models, in
many situations of practical interest (such, as, e.g., aircraft and rotorcraft identification, see
for example Klein and Morelli (2006); Tischler and Remple (2006); Bergamasco and Lovera
(2011a)) the direct estimation of the parameters of a continuous-time model from sampled
input-output data is desirable, so that dedicated methods and tools are needed. In addition,
there exist special cases in which identifying discrete-time models can be critical, such as
the identification of stiff systems or the use of non-equidistantly sampled data, which make
it necessary to develop special algorithms that can deal with these cases. The development
of identification methods for continuous-time models is a challenge of its own, and has
been studied extensively (see, e.g., the recent book by Garnier and Wang (2008) and the
references therein). The problem of closed-loop subspace identification in continuous-time
has been first considered in the literature in Mohd-Moktar and Wang (2008), where the
application of the errors-in-variables approach of Chou and Verhaegen (1997) is proposed
to deal with correlation in a continuous-time setting. More recently, see Bergamasco and
Lovera (2010a,b, 2011b), novel continuous-time SMI schemes, based on the derivation
of PBSID-like algorithms within the all-pass domains proposed in Haverkamp (2001)
and Ohta and Kawai (2004) and relying, respectively, on Laguerre filtering and Laguerre
projections of the sampled input-output data have been proposed. For an overview of recent
techniques in continuous-time closed-loop subspace identification the reader is referred to
the aforementioned papers as well as our overview paper (van der Veen, van Wingerden,
Bergamasco et al., 2012).

This chapter is organised as follows: first, in Section 2.2 we present the predictor
framework that is common to all the methods discussed in this chapter. In Section 2.3
it is shown how the results from Section 2.2 can be used in several ways to arrive at a
state-space realisation. This leads us to the essential features of many of the different
methods considered in the literature. Finally, in Section 2.4 we describe the results of some
experimental studies performed using the presented algorithms in order to highlight some
of the differences.

While this chapter mainly deals with the closed-loop identification framework and
the performance of the various methods on some test cases, the next chapter will focus
exclusively on aspects related to applying theses methods in practice, in particular in the
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domain of wind energy.

2.2 Discrete-time identification framework

In this section we present the framework for closed-loop identification of discrete-time
systems that is common to the methods described in this chapter. It is assumed throughout
that the system to be identified is a finite-dimensional, linear time invariant system, subject
to measurement and/or process noise. A state-space representation of such a system is
given by:

S :

{
xk+1 = Axk +Buk + wk,

yk = Cxk +Duk + vk,

with A ∈ R
n×n, B ∈ R

n×nu , C ∈ R
ny×n and D ∈ R

ny×nu . The vectors xk ∈ R
n,

uk ∈ R
nu , yk ∈ R

ny are the state vector, input signal and output signal, respectively.
The signals wk ∈ R

n and vk ∈ R
ny describe the process noise and measurement noise,

respectively, with joint covariance matrix:

E

{(
wj

vj

)(
wk

vk

)T
}

=

[
Q S
ST R

]
δjk. (2.2)

Furthermore, it is assumed that R ≻ 0.
It is well-known that such systems admit a so-called innovation state-space representation
given by:

P :

{
xk+1 = Axk +Buk +Kek,

yk = Cxk +Duk + ek,

(2.3a)

(2.3b)

with a Kalman gain K ∈ R
n×ny and the (unique) ergodic, zero-mean white noise

innovation sequence ek ∈ R
ny with covariance matrix E{ejeTk } =Wδjk, with W ≻ 0.

It is important to note that the model (2.3) incorporates both the dynamics of the system
to be identified as well as the dynamics of the process and measurement noise. This is
possible if it is assumed that all noise sources can be modelled as being filtered white noise
processes. This, in turn, holds for arbitrarily coloured process and measurement noise
sequences when those noise sequences have nonsingular and rational spectra.

It is assumed that the eigenvalues of A − KC are strictly inside the unit circle, which
is equivalent to the natural assumption that the model to be identified is reachable and
observable. More precisely, it is assumed that the pair (A,C) is observable and the pair

(A, [B KW
1
2 ]) is reachable.

In representation (2.3), ek may be eliminated from the first equation to yield a system
description in one-step-ahead predictor form:

xk+1 = Ãxk + B̃uk +Kyk, (2.4a)

yk = Cxk +Duk + ek, (2.4b)

where Ã ≡ A −KC and B̃ ≡ B −KD have been introduced for brevity. We will use the
notation ·̃ whenever a parameter refers to the predictor model (2.4). This representation
forms the basis for the predictor-based subspace identification (PBSID) framework (Chiuso,
2007a).

The goal of the following subsections will be to deliver a unified presentation of the
closed-loop subspace identification methods, showing that they have a common origin.
Our aim is to provide the reader with a good understanding of key steps in the algorithms,
both for implementation and analysis purposes.

For reference purposes we define the identification problem below in Problem 2.1. It is
assumed that the plant P operates in closed-loop with a, not necessarily linear, controller
C as shown in Figure 2.1. In this figure, it is already assumed that the noise effects are
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e

C
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r2

Figure 2.1 – The closed-loop configuration Σ considered in Problem 2.1.

modelled as if originating from a filtered innovation sequence. For convenience we define
a combined reference signal (without assuming that the controller is LTI):

rk = r1,k + C(r2,k).

Note that recent research has demonstrated that care must be taken when identifying
an LTI system controlled by a nonlinear feedback mechanism . In Enqvist (2012) it is
demonstrated that problems may occur if the controller is nonlinear and if the true noise
model is not stably invertible, e.g., if it is nonminimum phase.

We assume that the feedback system is well-posed, implying that the output is uniquely
determined by the states. The feedback system is well-posed if the controller or the plant or
both have no direct feedthrough component. If the system and the controller are both LTI,
the condition for well-posedness is satisfied if Iny + DDc is nonsingular, where Dc is the
feedthrough matrix of the controller (Van Overschee and De Moor, 1997; Katayama, 2005).
Hence, without any means of constraining the structure of D, we can either choose to
include it or not in the identification procedure, depending on the feedback system having
direct feedthrough or not. Note that a correct choice is necessary to obtain consistent
estimates of the Markov parameters, see Section 2.2.5.

It is further assumed that the reference signal rk is such that uk and yk are jointly
persistently exciting of sufficiently high order (see Section 2.2.5 for more details).

Problem 2.1. Discrete-time subspace identification problem Based on a finite set of

input and output data {uk, yk}N−1
k=0 obtained from a system Σ, estimate the order n of the

discrete-time system Pd and the associated system matrices (A,B,C,D,K) up to a similarity
transformation.

2.2.1 Preliminaries and notation

Before deriving the data equations for subspace identification, we will introduce some
notation. We introduce a stacked sample of input and output data zk according to:

zk =

[
uk

yk

]
.

The stacked vector z
(p)
k is defined as

z
(p)
k =

[
zTk−p, zTk−p+1, · · · , zTk−1

]T
,

where p denotes the past window size. We also define a reversed extended controllability

matrix K̃(p):

K̃(p) =
[
Ãp−1B̄, Ãp−2B̄, · · · , B̄

]
, (2.5)
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where we have defined B̄ = [B̃, K] for brevity. We emphasise that this matrix contains
parameters pertaining to the predictor representation (2.4). We will further denote block
Hankel matrices constructed from data sequences according to:

Yi,s,N =




yi yi+1 · · · yi+N−1

yi+1 yi+2 · · · yi+N

...
...

. . .
...

yi+s−1 yi+s · · · yi+N+s−2


 ,

such that Yi,s,N has yi as its first element and possesses s block rows and N columns. We
will sometimes consider block-row matrices, i.e., with s = 1, which we shall denote by

Yi,N . Finally, we define the block-Toeplitz matrix H(f)(B,D) pertaining to the innovation
model (2.3), which is to be used later when the MOESP algorithm is outlined:

H(f)(B,D) =




D 0 0 · · · 0
CB D 0 · · · 0

...
. . .

. . .
. . .

CAf−2B CAf−3B · · · CB D


 . (2.6)

Likewise, we define the matrix H(f)(K, I), and the versions with a tilde (H̃(f)(B,D)and

H̃(f)(K, 0)) containing parameters of the predictor form (2.4) instead of the innovation
form.

2.2.2 Data equations

In this section we derive the data equation that is common to many of the closed-loop
subspace algorithms. Starting from some initial state xk, the state equation (2.4a) can be
propagated forward in time, resulting in the expression:

xk+p = Ãpxk + K̃(p)z
(p)
k+p. (2.7)

Based on (2.7) and the output equation (2.4b), the output at time k+p can then be written
as:

yk+p = CÃpxk + CK̃(p)z
(p)
k+p +Duk+p + ek+p. (2.8)

By the assumption that Ã has all its eigenvalues inside the open unit disc, the term Ãp can

be made arbitrarily small, i.e., ‖Ãp‖2 ≈ 0, by choosing p sufficiently large1. For that reason,
the first term on the right hand sides of (2.7) and (2.8) will be neglected. Since all further
algorithms are based on this assumption, we introduce it formally.

Assumption 2.1 (Negligible bias). It is assumed that the choice of the past window size p

results in Ãp = 0.

Depending on the number of samples available and based on Assumption 2.1, (2.8) can
be repeated to obtain expressions for yp up to yN−1, resulting in:

Yp,Np = CK̃(p)Z0,p,Np +DUp,Np + Ep,Np . (2.9)

Here we have definedNp = N−p for brevity. In the remainder of this article the equality in
(2.9) is understood to hold under Assumption 2.1. As noted before, the feedthrough term
D should only be included when the feedback loop contains at least a one-sample delay
(i.e. has no direct feedthrough) to retain consistency of the identification problem. From
(2.9) it is clear that if the controller has direct feedthrough, Up,Np is correlated with Ep,Np

and the Markov parameters can no longer be estimated consistently.

1See also section 2.3.6 further on regarding this issue in relation to finite data lengths.
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Remark 2.1. If one leaves out the input terms in the assumed model structure (2.3), it is
possible to identify a stochastic model (spectral factor) of a process driven by white noise
on the basis of output measurements only. In these cases, however, there is no need to
apply a closed-loop identification method. See, e.g., Van Overschee and De Moor (1996,
Chapter 3), Goethals, Van Gestel, Suykens et al. (2003); Katayama (2005).

2.2.3 Relation to the ARX model structure

Taking a closer look at the data equation (2.8), neglecting the first term on the right hand
side, it is seen to have a vector-ARX (VARX) structure. Usually, an ARX model structure
prescribes a severely restrictive noise model because it forces the system and noise model
to have a common set of poles as seen from the following equation:

A(z)yk = B(z)uk + ek, (2.10)

with z−1 the unit backshift operator and:

A(z) = I − a1z−1 − · · · − apz−p,

B(z) = b0 + b1z
−1 + · · ·+ bpz

−p.

In this context, based on the assumption that p is chosen sufficiently large and working with
the predictor form (2.4), it follows that the high order VARX model is fully equivalent to the
predictor model. The fact that a high order ARX model can approximate a predictor model
with arbitrary accuracy is well-known in prediction error identification, cf. Verhaegen and
Verdult (2007, example 10.11).
Regarding the ARX model structure defined in (2.10), the parameters ai and bi can
explicitly be given as the Markov parameters of the predictor form (2.4):

ai = CÃi−1K, for i = 1 . . . p, (2.11a)

bi = CÃi−1B̃, for i = 1 . . . p, (2.11b)

b0 = D. (2.11c)

This follows by a direct comparison of (2.10) with (2.8) after neglecting the contribution
of the initial state.

2.2.4 Closed-loop identification issues

Traditional formulations of subspace identification methods often require the plant to
operate under open-loop conditions. If such methods are applied to data obtained under
closed-loop conditions, the fact that the input signal to the system is correlated with the
noise processes is disregarded or neglected. The implicit assumption in such methods is
that the input signal uk is uncorrelated with the past noise process ek. In a closed-loop
situation, however, it is clearly seen that this condition is violated:

E{uke
T
j } 6= 0 for j < k.

Over the last two decades, several strategies have been introduced to deal with this issue,
of which we mention a few:

1. Use an open-loop subspace identification method and either accept the bias on
the system estimate or use it as an initial model in a prediction-error method
(Ljung, 1999). Many prediction error methods are available to deal with closed-loop
situations (Van den Hof and Schrama, 1995; Van den Hof, 1998). It is nevertheless of
interest to use a subspace method that is better suited to closed-loop data to obtain
a better initial estimate for prediction-error methods which rely on solving a non-
convex optimization problem;
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2. Use a particularly chosen reference signal rk as, e.g., discussed in Chou and
Verhaegen (1997) to retain certain consistency properties of the identification
algorithm. In Di Ruscio (2003) it is argued that, if the feedback is still an open
choice, correlation issues due to feedback can also be remedied by a particular
choice of the feedback mechanism, e.g., if state feedback based on a Kalman filter is
applied. The states estimated by a Kalman filter are (in an ideal setting) uncorrelated
with the innovations. Hence, the feedback signal contains no feedback of the noise
process(es). Obviously, this approach only lends itself to certain design cases;

3. Use knowledge of the controller, which is then often assumed to be LTI, to
achieve consistent estimates (Verhaegen, 1993a; Van Overschee and De Moor, 1997;
Katayama, Kawauchi and Picci, 2005);

4. Modify the subspace identification algorithms so as to achieve identification methods
that are directly suited to closed-loop data (Ljung and McKelvey, 1996; Jansson,
2003; Qin and Ljung, 2003b; Oku and Fujii, 2004; Qin, Lin and Ljung, 2005; Gilson
and Mercère, 2006; Chiuso, 2007b; Katayama and Tanaka, 2007; Di Ruscio, 2009b;
van der Veen, van Wingerden and Verhaegen, 2010a). In this chapter we treat
the most dominant developments in closed-loop subspace identification, given by
the methods which perform high-order ARX modelling followed by a second step
which includes model reduction (Ljung and McKelvey, 1996; Jansson, 2003; Qin and
Ljung, 2003b; Qin, Lin and Ljung, 2005; Chiuso, 2007b; Di Ruscio, 2009b; van der
Veen, van Wingerden and Verhaegen, 2010a). In prediction-error identification the
available approaches can typically be classified as direct, indirect and joint input–
output approaches (Van den Hof, 1998). In this chapter we focus on closed-loop
subspace methods which we would like to classify as direct methods (Ljung and
McKelvey, 1996; Jansson, 2003; Qin and Ljung, 2003b; Qin, Lin and Ljung, 2005;
Chiuso, 2007b; Di Ruscio, 2009b; van der Veen, van Wingerden and Verhaegen,
2010a). Although these methods consist of several steps, they operate directly on
the available input–output data and have the advantage that they place the fewest
restrictions on the feedback mechanism.

In the PBSID framework, resulting in (VARX) data equations of the form (2.9), the
estimation is not affected by such correlation issues by segregating the data into collections
of “past” and “future” samples. Thus, asymptotically in the number of samples N and the
past window size p, the parameters can be consistently estimated.

2.2.5 Estimating the predictor Markov parameters

Based on the assumption that ek is the zero-mean white noise innovation sequence and on
Assumption 2.1, the predictor Markov parameters in (2.9) can be consistently estimated in
a least-squares sense:

arg min
[CK̃(p) D]

∥∥∥∥Yp,Np −
[
CK̃(p) D

] [
Z0,p,Np

Up,Np

]∥∥∥∥
2

F

. (2.12)

For a full-rank data matrix [ ZT
0,p,Np

, UT
p,Np ]

T
, the least-squares solution can be found

from an RQ decomposition (Golub and Van Loan, 1996) of the data. Performing an RQ
factorisation of the stacked data matrices one obtains:



[
Z0,p,Np

Up,Np

]

Yp,Np


 =

[
R11 0
R21 R22

] [
Q1

Q2

]
, (2.13)

from which it can be derived that the parameters can be found by solving:

R21 =
̂

[
CK̃(p) D

]
R11,
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e.g., using back-substitution. Additionally, using the orthogonality of the rows of Q, we
may obtain an estimate of Ep,Np , according to:

Êp,Np = R22Q2. (2.14)

This matrix contains an estimate of the innovation sequence of the innovation state-space
model (2.3). Note that the innovation sequence is obtained without explicitly solving the
least-squares problem.

We also note that the feedthrough term D, which has been included so far, should only
be included when the loop transfer function of the feedback loop contains at least a one-
sample delay to retain well-posedness of the identification problem. If D is included, it has
now been estimated and thus its estimation will not be considered further on.

Based on the least-squares solution, we now have estimates of the predictor Markov
parameters (2.11) and the innovation sequence {ek}N−1

k=p .

It is obvious that uniqueness of the parameter estimate requires Z̄ = [ ZT
0,p,Np

, UT
p,Np ]

T

to be of full rank. The information matrix I = Z̄Z̄T related to the least-squares solution
will then be positive definite. This requirement in turn depends on the experimental
data, and thus on the true system, reference excitation and the nature of the feedback
mechanism (Bazanella, Gevers and Mǐsković, 2009). For interesting accounts regarding
model identifiability and experiment requirements see, e.g., Bazanella, Gevers and Mǐsković
(2009); Gevers, Bazanella, Bombois et al. (2009). We emphasise that in practice, purely
from an identification point of view it is usually advantageous to make the reference
perturbations as large as possible within the limitations of the system and the requirement
to stay close to an operating point around which the system behaves linearly. In many cases
it may be necessary to be more judicious in the choice of perturbations: this leads to the
topic of least costly identification (Gevers, 2005; Bombois, Scorletti, Gevers et al., 2006).

2.2.6 Statistical properties and stochastic least-squares

We will briefly analyse the statistical properties of the LS solution (2.12). To maintain a
compact notation, let us for the moment denote the data equation (2.9) concisely as:

Y = ΘZ + E,

with obvious definitions of the (matrix) terms.

It is important to realise that we are considering a matrix least-squares problem. This is
in fact a multiple linear regression problem, which could be treated by solving several
vector-valued least-squares problems. In this case, each output of the system can be
considered in turn to estimate subsequent rows of Θ. In terms of the normal equations,
the LS solution to finding the parameters Θ is given by:

Θ̂ = Y ZT
(
ZZT

)−1

.

Assuming that the data is actually generated by the data equation (2.9) with the true
parameters Θ, we can compute the expected value of the parameters:

E{Θ̂} = E{(ΘZ + E)ZT
(
ZZT

)−1

}

= Θ+ E{EZT
(
ZZT

)−1

}
= Θ.

This leads to the conclusion that the least-squares estimate is unbiased. Next, we consider
the parameter error covariance. Since the parameters are contained in a matrix (Θ), and
we are considering the error variance of its elements, we vectorise the parameter matrix
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and study the covariance:

E

{
vec
(
Θ̂−Θ

)
vec
(
Θ̂−Θ

)T}

= E

{
vec

(
EZT

(
ZZT

)−1
)
vec

(
EZT

(
ZZT

)−1
)T
}

=

((
ZZT

)−1

Z ⊗ I
)
E

{
vec(E) vec(E)T

}((
ZZT

)−1

Z ⊗ I
)T

=

((
ZZT

)−1

Z ⊗ I
)
(I ⊗W )

((
ZZT

)−1

Z ⊗ I
)T

=
(
ZZT

)−1

⊗W.

Note that we have not used any information on the covariance of the innovation signal.
Had we known the value of the innovation signal covariance W , we might be prompted to
compute the weighted least-squares estimate to this stochastic least-squares problem. This
solution however, will turn out to be the same as the ordinary least squares solution given
before. The reason is that we are performing multiple linear regression, in which each
row of the parameter matrix Θ could have been solved for independently of the other
rows. Therefore, the fact that the innovation signal might have a different variance in each
output channel does not affect the estimate. We can conclude that the LS estimate (2.12)
is the best linear unbiased estimator of Θ, if a model of the form (2.9) underlies the data.

2.2.7 Least-squares sensitivity

It is interesting to note that using the estimate Êp,Np instead of the Markov parameters may

be advantageous in certain cases where the data matrix Z̄ = [ ZT
0,p,Np

, UT
p,Np ]

T
is poorly

conditioned. This may occur when the joint input-output data is not rich enough, e.g., due
to the nature of the experiment, poor excitation of reference signals or a low-complexity
feedback path (Bazanella, Gevers and Mǐsković, 2009). In fact, it can be shown that the
estimate of the least-squares residual of (2.12) is less sensitive to ill-conditioning than the
estimate of the parameters themselves. The worst-case sensitivities of the two estimates
are related to the condition number ̺ of the data matrix as follows (Golub and Van Loan,
1996):

∥∥∥∥∆
̂

[
CK̃(p), D

]∥∥∥∥
2∥∥∥

[
CK̃(p), D

]∥∥∥
2

∝ ̺
(
Z̄
)2
,

∥∥∥∆Êp,Np

∥∥∥
2∥∥Yp,Np

∥∥
2

∝ ̺
(
Z̄
)
,

where ̺(·) denotes the condition number. This shows that the estimate of the parameters
may be far more sensitive to ill-conditioning than the estimate of the residual.

It is hard to draw further general conclusions from these facts, in particular since one
of the estimates is used in state reconstruction algorithms (e.g., PBSIDopt, section 2.3.3),
whereas the other is used in algorithms which estimate the observability matrix (e.g.,
CLMOESP, section 2.3.4). It is expected, however, that in cases where the data matrix
is severely ill-conditioned, the estimate of the innovation sequence may be more reliable
than that of the Markov parameters, in particular for the subsequent step of estimating the
observability matrix and hence the eigenvalues. Section 2.4.2 discusses an example which
illustrates this possible effect.
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2.2.8 Relation to subspace predictive control

An adaptive control paradigm that was first introduced by Favoreel and De Moor (Favoreel
and De Moor, 1998; Favoreel, De Moor, Van Overschee et al., 1999) combines the predictor
estimated in Section 2.2.5 with a predictive control law to result in a multivariable adaptive
controller. These original formulations considered a predictor that was closely related to
the data equations in the open-loop N4SID class of subspace algorithms. Since the inherent
goal of these estimated predictors is to use them in a feedback control system, it is clear
that the assumption of a system operating in open-loop conditions is violated. The VARX
framework described in this section allows for consistent estimation of predictors in closed-
loop operation and this was exploited by Hallouzi (2008) and Dong, Verhaegen and Holweg
(2008); Dong (2009). For a derivation of this algorithm the reader is referred to Chapter 4.

2.3 Obtaining a state-space realisation

In the previous section estimates were obtained for the Markov parameters and the
innovation signal pertaining to the predictor model (2.4). In the following subsections
we consider four different methods to arrive at a solution to the identification problem
(Problem 2.1) based on these estimates. Figure 2.2 schematically depicts the different
routes from input-output data to an identified model with references to the appropriate
subsections.

2.3.1 Direct parameterisation

It is possible to directly obtain a non-minimal state-space model, by casting the estimated
ARX model parameters into a state-space parameterisation of order (ny + nu)p (2.15).

zk+1 =




0 I
. . .

. . .
0 I

0 · · · · · · 0
̂CK̃(p)



zk +




0
...
0
I
D



uk +




0
...
0
I


 ek (2.15a)

yk = ̂CK̃(p)zk +Duk + ek. (2.15b)

Since the VARX parameters are directly placed in the state-space matrices, we shall refer
to this parameterisation as the direct parameterisation. The order of this model could
subsequently be reduced using a model reduction algorithm. A notable advantage of
the direct parameterisation is that the state is measurable, since it is given by delayed
samples of input/output data. Furthermore, the variance on the elements of the state-
space matrices is directly provided by the least-squares estimate (2.12). These interesting
features were exploited in Kulcsár and Verhaegen (2010) for purposes of robust state
feedback compensator design. Direct use is also made of the predictor Markov parameters
in closed-loop subspace predictive control SPC (Dong, Verhaegen and Holweg, 2008). A
drawback of the direct parameterisation is that it is nonminimal and typically has a large
state dimension when p is moderate to large. This may be a problem for subsequent control
design. Standard model reduction techniques can be applied to reduce the order of this
model.

2.3.2 A realisation algorithm

Realisation methods, initiated with the development of the Ho-Kalman realisation algo-
rithm (Ho and Kalman, 1966; Kung, 1978; Juang and Pappa, 1985), are the oldest methods
that could be classified under the subspace methods. Whereas earlier approaches depart
from a set of Markov parameters or impulse response parameters, later approaches typically
start with estimating predictor Markov parameters, or, equivalently, the predictor impulse
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input-output data

{uk, yk}N−1
k=0

high order VARX modelling

(§2.2.2)

predictor

Markov

parameters
̂CK̃(p)

innovation

sequence

{êk}N−1
k=p

direct

paramet-

erisation

(§2.3.1)

Hankel

realisation

(§2.3.2)

PBSIDopt

(§2.3.3)
closed-loop

MOESP

(§2.3.4)

state-space model

(A,B,C,D,K)

Figure 2.2 – Schematic representation of the relation between the different closed-loop subspace

algorithms.

response, very similar to the VARX step described in Section 2.2.5. In fact, the approach
of estimating predictor Markov parameters followed by a realisation step was already
presented as early as in 1993 Phan, Horta, Juang et al. (1993). The approach outlined
here is a variation on the Observer/Kalman Filter Identification (OKID) method (Phan,
Horta, Juang et al., 1995). In this approach, contrary to the Ho-Kalman approach, first
an estimate is obtained of the predictor impulse response, using the fact that this response
tends to zero after p steps.

The realisation method relies on forming an extended observability-times-controllability
matrix. Let us first introduce the extended observability matrix of the predictor and
innovation models:

Γ̃(f) =




C

CÃ
...

CÃf−1


 , Γ

(f) =




C
CA

...
CAf−1


 .

Given a “future” window f > n, the extended observability-times-controllability matrix
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Γ̃(f)K̃(p) can be constructed, which has the following structure:

Γ̃(f)K̃(p) =




CÃp−1B̄ CÃp−2B̄ · · · CB̄

CÃpB̄ CÃp−1B̄ · · · CÃB̄
...

...
. . .

...

CÃp+f−2B̄ CÃp+f−3B̄ · · · CÃf−1B̄


 . (2.16)

Based on the earlier assumption that ‖Ãp‖2 ≈ 0, the same approximation can be introduced
here, resulting in:

Γ̃(f)K̃(p) ≈




CÃp−1B̄ CÃp−2B̄ · · · CB̄

0 CÃp−1B̄ · · · CÃB̄
...

. . .
. . .

...

0 CÃf−1B̄


 ≡




Ξ0

Ξ1

...


 . (2.17)

Having estimated the predictor Markov parameters ̂CK̃(p), it is straightforward to construct
this matrix, by noticing that each block-row Ξi is obtained from the previous by shifting
it and padding it with zeroes. The first block-row Ξ0 consists of all predictor Markov

parameters, i.e., Ξ0 ≡ CK̃(p).

Using the former definition of K̃(p) (2.5), it is possible to derive a recursive expression
which provides the approximate block-rows of the following extended observability-times-
controllability matrix:

Γ(f)K̃(p) ≡




H0

H1

...
Hf−1


 , (2.18)

where the recursive expression is given by (Phan, Horta, Juang et al., 1993; Dong,
Verhaegen and Holweg, 2008):

Hj = Ξj +

j−1∑

τ=0

(CÃj−τ−1K)Hτ , H0 = Ξ0.

Based on the assumption of minimality, which holds for both the innovation and predictor

representations, it immediately follows that rank(Γ(f)K̃(p)) = n. In practice the number of
nonzero singular values is not n, due to the fact that we construct the matrix (2.17) using

estimated parameters. Then, an SVD of Γ(f)K̃(p) can be used to find approximations of

Γ(f) and K̃(p) and the order n:

Γ(f)K̃(p) ≈ UnΣnVT
n ,

so that we may take:

Γ(f) = Un, K̃(p) = ΣnVT
n .

Estimates of the system matrices can then be obtained as follows: C, B and K are simply
read off from the appropriate matrices:

C = Γ(f)(1:ny, : ),

[B −KD, K] = K̃(p)(: , (p− 1)(nu + ny) + 1: p(nu + ny)),

whereas A is found as the solution to the overdetermined problem:

Γ(f)(1: (s− 1)ny, : )A = Γ(f)(ny + 1: sny, : ), (2.19)

(using MATLAB notation).
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2.3.3 Predictor-based subspace identification (PBSIDopt)

In predictor-based subspace identification, a predictor for the state sequence is constructed.
If an estimate of the state sequence is known, the system matrices can be found directly
from two least-squares problems, similar to what is done in the open-loop N4SID class of
algorithms, based on the following identities:

Xp+1,Np−1 =
[
A B K

]


Xp,Np−1

Up,Np−1

Ep,Np−1


 , (2.20)

Yp,Np =
[
C D

] [Xp,Np

Up,Np

]
+ Ep,Np . (2.21)

On the basis of (2.7) it can be concluded that, neglecting the first term, the product

K̃(p)Z0,p,Np represents the state sequence Xp,Np . Unfortunately, this product cannot be

estimated directly. What is available is an estimate of the parameters CK̃(p). As in the OKID
algorithm in Section 2.3.2 we can construct the matrix in (2.17) using these parameters.
This matrix is used in the PBSIDopt algorithm, whereas the standard PBSID algorithm makes
use of the full matrix in (2.16).

Remark 2.2. Following the estimation of the Markov parameters (2.12) we only have
available the Markov parameters required to construct the matrix in (2.17). It is also
possible, however, to construct the full matrix in (2.16), by solving a sequence of f shifted
versions of (2.12) of increasing order p. This is detailed in, e.g., Chiuso (2007b). In
Chiuso (2007a,b) it was shown that the “optimised” version described here results in a
lower variance than the standard PBSID algorithm.

Thus, having constructed the matrix Γ̃(f)K̃(p), the product Γ̃(f)K̃(p)Z0,p,Np can be
calculated. This product corresponds, by definition, to the extended observability matrix

times the state sequence: Γ̃(f)Xp,Np . Using an SVD, the order of the system and the state
sequence can then be estimated:

Γ̃(f)Xp,Np = Γ̃(f)K̃(p)Z0,p,Np = UnΣnVT
n . (2.22)

The state sequence is recovered (up to a similarity transformation) as:

X̂p,Np = ΣnVT
n . (2.23)

In practice, the matrix Γ̃(f)K̃(p) is constructed using estimated parameters. Hence, the SVD
in (2.22) will not exactly contain n nonzero singular values and we will only obtain an

estimate of the true state sequence X̂p,Np .

Subsequently, (2.20) and (2.21) are solved in a least-squares sense. First, (2.21) is

solved and subsequently its residual Êp,Np is used in the solution of (2.20).

Variants

Several variants of the PBSIDopt algorithm can be found in the literature, some of which
have already been mentioned. The PBSIDopt is asymptotically equivalent (Chiuso, 2006a)
to the SSARX algorithm proposed by Jansson (Jansson, 2003). Several other modifications
are discussed in Di Ruscio (2009a).

Recursive implementation

The PBSIDopt can be also employed for on-line applications, by working out recursive
implementations. The problem has been studied in the literature by a number of authors
and a template for recursive closed-loop subspace identification can be outlined as follows,
along the lines of the general ideas proposed in Chiuso, Muradore and Marchetti (2010)
and of the algorithm in Houtzager, van Wingerden and Verhaegen (2009a)):
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• Recursive update of the solution of the least squares problem (2.12), using a
conventional RLS scheme.

• Update of the estimate of the state sequence, i.e., of the state estimate given by
(2.23). In this respect, note that this is the most critical step in the implementation,
as one has to ensure that the recursive state estimates are expressed in a consistent
state space basis. One way of guaranteeing this is given by, e.g., the scheme proposed
in Houtzager, van Wingerden and Verhaegen (2009a), which is based on the so-called
propagator method for the recursive update of the state sequence (see also Mercère,
Lecœuche and Lovera (2004) for details).

• Recursive estimate of the state space matrices of the system, i.e., update of the
solution of the least squares problem (2.20), again by means of RLS.

2.3.4 Closed-loop MOESP

In Section 2.2.5 it was shown that besides the Markov parameters, an estimate of the
innovation sequence can be obtained. If we revisit the innovation model (2.3) an estimate,
{êk}N−1

k=p , of the innovation sequence {ek}N−1
k=p is now available (although not over the full

data horizon k = 0 . . . N − 1). First obtaining an estimate of the innovation sequence
results in a class of innovation estimation methods, first introduced by Qin and Ljung
and leading to their PARSIM method (Qin and Ljung, 2003a). Having knowledge of the
innovation sequence, we are effectively left with a deterministic identification problem to
which solutions are well-known. The deterministic MOESP (Multivariable Output-Error
State-sPace) algorithm is one such algorithm. The method described here, CLMOESP, was
presented in de Korte (2009); van der Veen, van Wingerden and Verhaegen (2010a,b) and
is inspired by and in many respects similar to (Qin and Ljung, 2003b; Di Ruscio, 2009b).

Estimating the extended observability matrix Γ(f)

Referring to Verhaegen and Verdult (2007) for a detailed derivation, we consider the
following data equation in the MOESP algorithm.

Yp,f,Nf
= Γ(f)Xp,Nf

+H(f)(B,D)Up,f,Nf
+H(f)(K, I)Ep,f,Nf

,

with Nf = N − f − p + 1. This is also the data equation considered in the deterministic
MOESP setting, since the signals constituting Up,f,Nf

and Ep,f,Nf
are both at our disposal

and no further stochastic disturbances are present. The influences of the input and the
innovation can be eliminated using orthogonal subspace projection. For this purpose we
construct the orthogonal projection matrix:

Π⊥
Zp,f,Nf

= I −Z†
p,f,Nf

Zp,f,Nf
,

where the definition Zp,f,Nf
=
[

Up,f,Nf

Ep,f,Nf

]
is used. Applying this projection results in:

Yp,f,Nf
Π⊥

Zp,f,Nf
= Γ(f)Xp,Nf

Π⊥
Zp,s,Nf

.

In practice, this projection may be obtained by performing an RQ factorisation of the input
and output data, which is numerically much more efficient and stable than evaluating the
large projection matrix:

[ Zp,f,Nf

Yp,f,Nf

]
=

[
R11 0
R21 R22

] [
Q1

Q2

]
.

Using the properties of the RQ factorisation we can then equivalently write:

Yp,f,Nf
Π⊥

Zp,f,Nf
= Γ(f)Xp,Nf

Π⊥
Zp,f,Nf

= R22Q2.
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If the input and noise sequences are persistently exciting of at least order fnu and fny

respectively for the input and innovation signals (Verhaegen and Verdult, 2007), the
following holds, since then the column space of the observability matrix is preserved in
Yp,f,Nf

Π⊥
Zp,f,Nf

after projection:

range(Γ(f)) = range

(
lim

N→∞

1√
N − pYp,f,Nf

Π⊥
Zp,f,Nf

)

= range

(
lim

N→∞

1√
N − pR22

)
.

Thus, because Q2 has full row rank, the column-space of R22 serves as a basis for the
column space of the extended observability matrix Of . Performing an SVD of R22 gives:

R22 = UnΣnV
T
n , (2.24)

where n is the number of dominant singular values and also the order of the underlying

innovation system. The columns of Un provide a basis for Γ(f). A gap between successive
singular values will often indicate the order of the system (see Verhaegen (1993b) for more
details).

Estimating the A and C matrices

Estimates of the A and C matrices can subsequently be obtained from Un. Given the

structure of Γ(f), the C matrix is found as the first ny rows of Un. A can be found as the
solution to the overdetermined problem:

Un(1: (f − 1)ny, : )A = Un(ny + 1: fny, : ), (2.25)

(using MATLAB notation). The matrices B, D and K can be computed in a second step by
solving a least-squares problem as shown in the next subsection.

Estimating B, D, K and the initial state

Based on the system description (2.3), the output at time k can be written as:

yk = CAkx0 +

k−1∑

τ=0

CAk−τ−1 (Buτ +Keτ ) +Duk + ek.

Applying the vectorisation operator and exploiting a property of the Kronecker product
(Brewer, 1978), this can be rewritten as:

yk =
[
Φx0

k ΦB
k ΦK

k ΦD
k

]
︸ ︷︷ ︸

Φk




x0
vec(B)
vec(K)
vec(D)




︸ ︷︷ ︸
Θ

+ek, (2.26)

where we have defined:

Φx0
k = CAk−1, ΦB

k =

k−1∑

τ=0

uT
τ ⊗ CAk−τ−1,

ΦK
k =

k−1∑

τ=0

eTτ ⊗ CAk−τ−1, ΦD
k = uT

k ⊗ Iny .

Equation (2.26) is a linear expression in the unknown elements of x0, B, D and K,
which can be solved for the parameters in a least-squares sense with the available data
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set {uk, yk, ek}N−1
k=p . For this purpose, define Φk and Θ as in (2.26). Then the least squares

problem can be stated as:

Θ̂ = argmin
Θ

N−1∑

k=p

‖yk − ΦkΘ‖22 = argmin
Θ
‖Y − ΦΘ‖22, (2.27)

which can be solved efficiently using a QR factorisation (Golub and Van Loan, 1996). It
must be noted that, although the described way to find B, D, K and the initial state
is conceptually simple, it is computationally prohibitive due to the Kronecker products
involved. Much more efficient procedures exist to find the matrix Φ which avoid evaluation
of Kronecker products for each k. Such procedures are detailed in Verhaegen and Varga
(1994); Haverkamp (2001). The approach presented here must be modified slightly in case
the system is open-loop unstable, see Chou and Verhaegen (1997).

Variants

Here we have considered one possible “innovation estimation” algorithm, which we have
chosen for its simplicity. One variant is the first innovation estimation algorithm: the
PARSIM method presented in Qin and Ljung (2003b), where the innovation and Markov
parameters are estimated in a recursive fashion. Subsequenlty, the DSR e algorithm was
presented in Di Ruscio (2004), Nilsen (2005, Chapter 6.2) and Di Ruscio (2009b). In
fact, the latter algorithm seems to be very similar to solving for the innovation sequence
followed by the deterministic MOESP projection (Verhaegen and Verdult, 2007; de Korte,
2009), even though this is not mentioned.

Remark 2.3. In the four previous sections, estimates have been obtained for the matrix
K using least-squares techniques. Although these estimates minimise the appropriate
least-squares criteria, they do not automatically satisfy the requirement of having a stable
predictor and thus are not proper Kalman gains. If the identified models are to be used
in the context of observing or prediction, this is a crucial property. An alternative way to
obtain K is by solving a discrete algebraic Riccati equation (DARE). Such approaches are
described in Van Overschee and De Moor (1997); Katayama (2005); Verhaegen and Verdult
(2007).

2.3.5 Closed-loop MOESP relying solely on R-factors

A potential disadvantage of the innovation estimation methods is that, considering the
RQ factorisation (2.13), the computation of the innovation sequence according to (2.14)
requires that the entire matrix Q be stored (or, at least, the Householder reflectors
constituting it). In this section it will be shown that it is possible to work with just the
triangular factor R in order to compute the column space of the extended observability

matrix Γ(f). Consider the following data equation:

Yp,f,N = Γ(f)K̃pZ0,p,N +H(f)(B,D)Up,f,N +H(f)(K, I)Ep,f,N . (2.28)

We can only solve a single row of this data equation (f = 1) for the parameters (CK̃p, D)
due to correlation between samples uk and past samples of ek. Alternatively, we can write:

Yp,f,N = Γ̃(f)K̃pZ0,p,N + H̃(f)(B,D)Up,f,N + H̃(f)(K, 0)Yp,f,N + Ep,f,N . (2.29)

Using this data equation we can solve for the parameters in a row-wise manner. This can be
performed using a single RQ factorisation, after organising the rows of the future Hankel
matrices in a staggered fashion:




Z0,p,N

Up,N

Yp,N

Up+1,N

Yp+1,N

...



=




R11

R21 R22

R31 R32 R33

R41 R42 R43 R44

R51 R52 R53 R54 R55

...







Q1

Q2

Q3

Q4

Q5

...



. (2.30)
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We emphasise that the (typically large) orthogonal matrices Qi don’t need to be stored. On
the basis of this factorisation we obtain estimates of the noise sequences:

Ep,N = R33Q3 (2.31)

Ep+1,N = R55Q5 (2.32)

etc... (2.33)

Reorganising, we can form the data equation required for analysis of the ordinary MOESP
data equation:

Yp,f,N = Γ(f)Xp,N +H(f)(B,D)Up,f,N +H(f)(K, I)Ep,f,N . (2.34)

Since Up,f,N is known and we have an estimate of the block-rows ofEp,f,N , we can perform
the MOESP projection using the following stacked data matrices:



Up,f,N

Ep,f,N

Yp,f,N


 =




R21 R22

R41 R42 R43 R44

...
0 0 R33

0 0 0 0 R55

...
R31 R32 R33

R51 R52 R53 R54 R55

...







Q1

Q2

Q3

Q4

Q5

...



. (2.35)

Performing a second RQ factorisation of this new data matrix, we obtain:



Up,f,N

Ep,f,N

Yp,f,N


 =



R′

11

R′
21 R′

22

R′
31 R′

32 R′
33





Q′

1

Q′
2

Q′
3


 . (2.36)

(Once again, the matrices Q′
i do not need to be stored.) We can then recover the column

space of the extended observability matrix Γ(f) from the column space of R′
33:

range

(
lim

N→∞

1√
N
R′

33

)
= range

(
Γ(f)

)
. (2.37)

2.3.6 User choices and other issues

Having paid attention to the main algorithmic issues in the previous sections, this section
focuses on some of the important user choices and related issues in the closed-loop subspace
algorithms. Many of these choices and issues have been studied in the literature and it
remains an area of active research with several open problems.

Past window

Algorithmically, the main effect of the past window size p is to ensure that the neglected

term Ãp in equation (2.8) is so small that it can be neglected. One should keep in mind,
however, that the number of parameters estimated in the least-squares problem (2.12) is
pny(nu + ny) + nynu and hence grows linearly with p, which is the order of the VARX
model (2.10). Thus, when using finite length data sequences the variance will grow and
there is a risk of over-fitting. Order selection tools such as the Akaike Information Criterion
(Ljung, 1999) could be used to avoid such issues in selecting the order of the VARX model
(2.10). Cross-validation between data sets is also an option.

It may also be advantageous to employ regularization in the least-squares regression
problem, e.g., using Tikhonov regularization which was pioneered in Chiuso, Pillonetto
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and De Nicolao (2008) and has been implemented in Houtzager, Wingerden and Verhaegen
(2010), or ℓ1-regularized regression. The bias due to a finite p can be remedied by using
a Vector ARMAX structure, as was proposed in Houtzager, van Wingerden and Verhaegen
(2009b). This approach was shown to work well when the order of the identified system
corresponds exactly to the order of the “true” system.

Asymptotic consistency results, e.g., for p → ∞, can be found in Bauer and Ljung
(2002); Chiuso and Picci (2005); Kuersteiner (2005); Chiuso (2007b), while the effect
of choosing a finite p remains hard to quantify for general situations. First results on
the statistical behaviour of subspace algorithms as a function of the window size p were
reported in Bauer and Ljung (2002) where the authors study the effect of p on the variance
of the estimated system’s invariants for white inputs. Reference Chiuso (2007b) also
discusses the effect of p in the context of the recent closed-loop subspace methods (PBSID).
It is shown that p must be chosen in relation to the number of available samples N to
result in the statistically optimal choice. Finally, Kuersteiner (2005) focusses on how the
infinite order ARX model which consistently describes the underlying system (i.e., (2.8)
when letting p → ∞) can be approximated by an ARX model of finite order and how p
must be chosen to achieve certain statistical properties.

Future window

The choice of the future window in the PBSIDopt algorithm in section 2.3.3, constrained
by f≥n, affects the variance of the invariants associated with the identified system (e.g.,
the elements of the system matrices in a certain fixed basis, pole locations, or the transfer
function). In particular, it can be shown for certain classes of inputs that the variance
on these invariants is a nonincreasing function of the future window. These issues are
extensively discussed in Chiuso (2010). Tools to compute the asymptotic variance on
the system matrices estimated with the PBSIDopt method are discussed in van Wingerden
(2012). For the choice of the subspace dimension parameters in the CLMOESP algorithm
we refer to results for the classical subspace algorithms (Deistler, Peternell and Scherrer,
1995; Bauer and Jansson, 2000; Bauer and Ljung, 2002).

Incorporating prior knowledge

In recent years the possibility of incorporating certain prior knowledge on the system to be
identified has regularly received attention. For instance, it is possible to enforce stability
or positive realness of the identified models. In Van Gestel, Suykens, Van Dooren et al.
(2001); Goethals, Van Gestel, Suykens et al. (2003), it is shown how the least-squares
regressions (cf. equations (2.19), (2.20), (2.25)) can be modified in a simple way by adding
a regularization term. The amount of regularization required to achieve a specific spectral
radius of A, or positive realness of the system can be determined by solving a generalized
eigenvalue problem. The former has been implemented in the PBSID toolbox (Houtzager,
Wingerden and Verhaegen, 2010). In Miller and de Callafon (2013) it is shown how linear
matrix inequalities can be formulated to constrain the eigenvalues of the identified system
to lie in certain convex regions. Finally, in Lyzell, Enqvist and Ljung (2009) some steps are
made towards prescribing a certain model structure (e.g., OE, ARMAX, . . . ) in subspace
methods. Constraints can also be added to incorporate certain prior information on the
input-output behaviour, such as the steady-state gain, as discussed in Trnka and Havlena
(2009); Alenany, Shang, Soliman et al. (2011). In a similar vein, research has been directed
towards allowing more accurate estimation of finite-order models in cases where this is
not trivial, for instance using nuclear norm regularization (Liu and Vandenberghe, 2009;
Hansson, Liu and Vandenberghe, 2012).

2.3.7 Notes on continuous-time identification

As mentioned in the introduction to this chapter, there are cases of practical interest
where direct identification of continuous-time models from sampled input-output data is
desirable. The objective of this thesis has not been to develop or improve continuous-
time subspace identification methods. The problem of closed-loop subspace identification
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K(z) F (z)

G(z)

H(z)

e2

e1

u y

Figure 2.3 – The closed-loop identification setting from Chiuso and Picci (2005).

in continuous-time has been considered by several authors (Mohd-Moktar and Wang,
2008; Bergamasco and Lovera, 2010a,b, 2011b). For an overview of recent techniques in
continuous-time closed-loop subspace identification the reader is referred to those papers
as well as our overview paper (van der Veen, van Wingerden, Bergamasco et al., 2012).

2.4 Evaluation

In this section the closed-loop subspace identification methods discussed in the previous
sections are applied to a number of examples. First, we consider two numerical examples.
The first example deals with a number of simple closed-loop systems with different
characteristics and the second example discusses the differences between PBSIDopt and
CLMOESP in the case of ill-conditioned data caused by poor excitation. Then, we consider
two experimental examples. In the first example we evaluate the performance of the
main discrete-time algorithms on datasets obtained from a flexible beam and in the second
example we identify continuous-time models of this same system.

2.4.1 Numerical example: simple closed-loop configurations

In this example we apply the different methods to a series of closed-loop identification
problems taken from Chiuso and Picci (2005). The closed-loop system shown in Figure 2.3
is simulated with the transfer functions from Table 2.1. e1 and e2 are unit variance zero-
mean white signals. For this example, past and future window sizes of 10 are chosen
and 2nd order models are identified using 1000 samples. The system is identified for
1000 Monte Carlo simulations using the four different methods. The distributions of the
identified pole locations, transfer functions and variance-accounted for (VAF) on validation
data were studied for the combinations in Table 2.1. The variance-accounted-for is defined
as (Verhaegen and Verdult, 2007):

VAF = max

{
0,

(
1− var(y − ŷ)

var(y)

)
× 100%

}
, (2.38)

and equals the coefficient of determination (R2) frequently used in statistics. It is important
to note that these systems are first order, single-input-single-output systems. Therefore,
they may not highlight some of the aspects that distinguish the different methods when
they are applied to MIMO systems with an order that is not clearly defined.

Figures 2.4 through 2.7 show the results of the Monte Carlo experiments in terms of

the identified transfer functions Ĝ(z) and their variance. In addition to these results,

Figures 2.8 show the errors in the identified pole locations the identified model Ĝ(z). The

error between an estimated pole λ̂ and a true pole λ is expressed as error = |λ̂ − λ|.
We have also included Table 2.2 showing the mean and standard deviations of the VAF
obtained with validation data. The identified models were simulated in the same closed-
loop configuration as the true system.
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Of the closed-loop methods, PBSIDopt displays the smallest variance and bias overall
in the identified transfer functions. This is also reflected in the standard deviation of the
VAF values and is consistent with the conclusions in Chiuso (2007a). The results for the
innovation estimation method CLMOESP show a slightly larger variance overall. This may
be caused by ill-conditioned projections and poor scaling related to the observability matrix
of unstable systems Chiuso and Picci, 2005. Note, in this context, that systems 2-3 are
indeed highly unstable with a pole far outside the unit disc; a situation which may not
likely arise in practice. It is interesting to note that in example 3, PBSIDopt shows a small
bias which is not seen with the other methods. In example 3, one of the closed-loop system
poles is very close to the unit circle. The variance, on the other hand, is still the smallest
among all methods. In example 3, the innovation estimation method CLMOESP experiences
some difficulties in terms of a large variance in the VAF on validation data.

It is interesting to note that in these four examples the OKID and direct parameterization
methods work quite reliably. This is in contrast to what will be observed in section 2.4.3
where a high-order MIMO system is identified. It appears that differences between the
identifications methods become far more pronounced when we are dealing with higher
order multivariable systems with an undefined system order. For low order systems these
differences are minor.

2.4.2 Numerical example: behaviour with poor excitation

In this example we consider closed-loop identification of a simple 4th order system with
2 inputs and 2 outputs. The system is controlled using a static output feedback matrix.
Figure 2.9 shows a comparison of poles estimated using the CLMOESP and PBSIDopt

methods and Figure 2.10 shows the identified transfer functions. In this example each
reference channel was supplied with a single sinusoid near π

2
rad/s. Additive white noise

with a variance of 10−12 was supplied. Due to the poor excitation, the condition number of
the VARX data matrix (cf. Eq. 2.12) was on the order of ̺ = 107. In the figures, the better

Ex. F (z) H(z) G(z) K(z)

1 0.3
z−0.7

−1 z+0.5
z

1

2 2.5
z−3

−1 z+0.5
z

1

3 2.5
z−3

−1 z+0.999
z

0.2(z+0.999)
z−0.99

4 2.5
z−3

−1 z+0.999
z

1

Table 2.1 – Systems defined in Chiuso and Picci (2005).

Ex. Direct CLMOESP PBSIDopt OKID

1
mean 89% 97% 97% 97%

std.dev. 5.3% 2.6% 2.2% 2.6%

2
mean 98% 100% 100% 100%

std.dev. 0.9% 0.6% 0.5% 0.7%

3
mean 100% 94% 100% 96%

std.dev. 0.1% 18% 0.1% 5.8%

4
mean 97% 99% 98% 99%

std.dev. 1.6% 1.2% 2.9% 1.1%

Table 2.2 – Mean and standard deviation of the VAF on validation data for the four examples and

four methods over 1000 experiments.
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Figure 2.4 – Mean and variance (±3σ confidence bounds) of identified transfer functions for

example 1 compared to the true transfer function (dark gray line).

numerical behaviour of the innovation estimation-type algorithm, in this case CLMOESP, is
evident (cf. §2.2.7).

2.4.3 Experimental example: ‘‘smart’’ beam dynamics

In this example we consider the closed-loop identification of a “smart” beam setup. This
system is of interest since it is of a distributed-parameter nature and hence of potentially
infinite order. Furthermore, within the considered bandwidth there are many resonances
at frequencies an order of magnitude apart, such that this system could be considered to be
a “stiff” system.
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Figure 2.5 – Mean and variance (±3σ confidence bounds) of identified transfer functions for

example 2 compared to the true transfer function (dark gray line).

Figure 2.11 shows the setup that was used for experimental testing. The beam is
approximately 1 m long and clamped at one end. It is equipped with six piezoelectric
transducers (type M8528, from Smart Material Corp.), of which two are used for sensing,
two for control and the two at the tip for introducing a disturbance which is to be rejected.
The beam is controlled with an H∞ controller which attempts to reject the disturbances
injected at the tip.
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Figure 2.6 – Mean and variance (±3σ confidence bounds) of identified transfer functions for

example 3 compared to the true transfer function (dark gray line).

Excitation and noise

To be able to identify a model of the system in closed-loop, it is beneficial to inject a
perturbation into the reference channels2. In principle we may choose either r1 or r2
or both to inject this perturbation (see Figure 2.1). In the present example we inject a
pseudorandom binary signal with an amplitude of 40 V into each of the two references. The
switching probability was chosen so as to obtain a white perturbation for frequencies up to
200 Hz. Similar signals were generated to act as noise on the actuators at the tip. Here,

2Although it may not be necessary, see e.g., Bazanella, Gevers and Mǐsković (2009), a higher signal to noise ratio

results in a smaller variance of the identified model.
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(b) closed-loop MOESP

Frequency rad/s

M
a
g
n

it
u

d
e

(d
B

)

0.1 π
2

π

−4

−2

0

2

4

P
h

a
se

(◦
)

Frequency rad/s

0.1 π
2

π
−180

−170

−160

(c) PBSID

Frequency rad/s

M
a
g
n

it
u

d
e

(d
B

)

0.1 π
2

π

−4

−2

0

2

4

P
h

a
se

(◦
)

Frequency rad/s

0.1 π
2

π
−180

−170

−160

(d) OKID

Figure 2.7 – Mean and variance (±3σ confidence bounds) of identified transfer functions for

example 4 compared to the true transfer function (dark gray line).

an amplitude of 20 V was used. Signals were sampled at a rate of 1 kHz and N = 4000
and N = 16666 samples were used for identification and validation respectively. 65 of
such experiments were performed, each with independent realisations of the perturbation
and disturbance signals, allowing statistical properties of the estimates to be inferred. We
remark that the data length for identification causes the data set to contain less than 15
cycles of the lowest natural frequency (3.7 Hz).

Reference model

As a reference model we consider a non-parametric spectral estimate based on a long
experiment (N = 50000 samples) performed under the same conditions as the other
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Figure 2.8 – Box plots of errors (absolute Euclidean distance in the z-plane) in the estimated pole

locations.

experiments. This estimate was subsequently averaged further over the 65 independent
experiments so as to obtain an even smoother estimate. The estimate is obtained following
the method in Akaike (1967); Pintelon, Schoukens, Vandersteen et al. (2010):

Ĝ(ejω) = Φ̂yrΦ̂
−1
ur , (2.39)

where Φ̂yr is the estimated cross spectrum between yk and rk and Φ̂yr is the estimated
cross spectrum between uk and rk. This estimate can be shown to yield an asymptotically
unbiased estimate provided the reference is persistently exciting and uncorrelated with
the noise signal. Obviously, the estimator will only give good estimates in the frequency
range where rk excites the system. We have computed this estimate using the recent local
polynomial method for nonparametric frequency response estimation (Pintelon, Schoukens,
Vandersteen et al., 2010). This is a reliable method which significantly reduces the adverse
effects of spectral leakage. Typically, a comparison with a closed-loop spectral estimate is
one powerful means of validating identified state-space models.

Results

The most critical tuning parameter common to the subspace algorithms is the choice of the
past window size p (equivalently, the VARX model order). Well-known tools in prediction-
error identification can be used to choose the value of p Peternell, Scherrer and Deistler,
1996; Ljung, 1999; Chiuso and Picci, 2005; Kuersteiner, 2005; Chiuso, 2007b. One such
tool is the Akaike information criterion (AIC) Ljung, 1999. For the VARX regression step
we have shown the average AIC over 10 experiments in Fig. 2.12 as a function of p. The
AIC clearly suggests an order in the vicinity of p = 100. To investigate the effect of the
parameter p and the validity of the value p = 100 suggested by the AIC, identification
was performed for p = {60, 100, 200}. It is clear that the asymptotic variance of the VARX
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Figure 2.11 – The “smart” beam setup. A clamped beam is equipped with six piezoelectric

transducers capable of either producing or sensing strain.

% stable models

method p = 60 p = 100 p = 200

PBSIDopt 100% 98% 91%

Direct 100% 91% 72%

OKID 40% 10% 5%

CLMOESP 100% 97% 86%

Table 2.3 – Typical success rates of identifying a stable model (65 experiments). (Instability always

occurred due to poles marginally outside the unit disc.)

Past window p

A
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Figure 2.12 – The Akaike information criterion (AIC) as a function of chosen past window size in the

VARX step (§2.2.5).
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parameters will grow when the least-squares information matrix becomes ill-conditioned.
This strongly depends on the amount of samples available and the richness of the signal zk,
as discussed in Section 2.2.5.

A choice of p ≥ 60 turned out to give a fairly “white” innovation estimate. For simplicity,
the future window f in the PBSIDopt, OKID and CLMOESP methods was taken equal to
p, but note that the choice of f also affects the variance of the estimates, as discussed in
Section 2.3.3 and in Chiuso, 2010, in particular when the input spectrum exhibits zeros
near the unit circle.

Using the order detection mechanisms (SVD) of the PBSIDopt and CLMOESP methods
a model order of n = 29 was found to give good prediction capability on a validation
dataset. This order was also selected for the SVD truncation in the OKID method, since
order detection in that method itself was rather unclear. Figures 2.13 and 2.14 show the
estimated confidence bounds resulting from the nonparametric estimate and the four key
discrete-time methods (PBSIDopt, Direct parameterization, OKID and CLMOESP) applied to
65 independent datasets for p = {60, 200}. Although the beam system is a 2-input-2-output
MIMO system, only the responses from input 1 to output 1 are shown.

Fig. 2.15 shows how well the estimated models predict the system’s output on a
validation dataset in terms of the variance-accounted-for3 Verhaegen and Verdult, 2007
(VAF). The figures show that

i) the prediction accuracy increases with past window p for the PBSIDopt method in
particular;

ii) the OKID method delivers unreliable estimates overall, where the other methods
provide good models. A large choice of p is required to obtain a reasonable model.
This is related to the direct decomposition of the matrix in (2.18);

iii) the VARX direct parameterization method exhibits more outliers and a larger variance
than the methods PBSIDopt and CLMOESP, probably due to the lack of a model
reduction step;

iv) the spectral estimation method cannot capture the first resonance mode, probably due
the the short duration (4 s) of the data records;

v) a large value of p helps to capture the first resonance mode. This may also be related
to increasing the value of f (note that we have chosen f = p).

The results show that for p = 100 all resonances are captured and that the VAF improves
when moving from p = 60 to p = 100 (much less when going from p = 100 to p = 200).
This underlines the usefulness of the AIC as an order selection tool in the VARX modelling
step. Although a choice of p = 100 was suggested by the AIC, it can be seen in Figures 2.13
and 2.14 that the variance of the VARX model increases marginally for larger p; this trend
was found to hold up to a past window of approx. p = 700, at which point the information
matrix quickly became ill-conditioned. Of course, this highly depends on the character of
zk and the amount of samples.

2.5 Concluding remarks

Besides presenting the closed-loop MOESP algorithm, the goal of this chapter was to
organise the wide range of closed-loop subspace methods that has appeared over the last
fifteen years. Most of the algorithms can be derived from a few fundamental steps, which in
turn can be traced back to autoregressive (VARX) modelling. Based on experimental data
obtained in repeated measurements several characteristics of the methods that are highly
relevant in a practical context have been demonstrated. It turns out that the PBSIDopt

method (Chiuso, 2007b) is a reliable method. The innovation estimation methods (Qin
and Ljung, 2003b), among which CLMOESP (van der Veen, van Wingerden and Verhaegen,

3VAF = max
{
0,

(
1 −

var(y−ŷ)
var(y)

)
× 100%

}
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Figure 2.15 – Histograms of model quality in terms of output prediction: histogram of attained VAFs.

2010a), are of interest due to better numerical conditioning in the case of poorly exciting
signals and their accurate order indication. The realisation-based approaches can only be
used reliably if sufficiently large Hankel matrices can be constructed and may regularly
incorrectly estimate the stability of resonant systems. Direct parameterisation of the VARX
parameters has its own value in the sense that uncertainty on the parameters is readily
characterised, but the models are not minimal and exhibit larger variance due to lack of a
model reduction step.

Finally, it is worth mentioning that all the methods in this chapter have been described
in their most basic forms. For instance, regularisation techniques are available to solve
the least-squares problem for the Markov parameters when it is ill-conditioned. None
of these techniques have been employed and, as such, the methods could each perform
differently with regularisation. This makes it hard to compare identification results found
in the literature.



3LTI identification of wind energy

systems: practical aspects

While system identification typically refers to a suite of generic techniques to obtain
dynamic models from measured data it turns out that specific domain knowledge
is essential to the success of applying such techniques. Treating systems to be
identified as “black boxes” and directly applying “black box” techniques is rarely
a successful enterprise to embark on. This chapter focusses on some practical
examples, demonstrating how specific system knowledge is of practical value for
linear system identification.

First, we pay attention to periodic disturbances that appear in wind turbine
measurements and present a way to account for these disturbances. Next we discuss
two examples in which the tools of the previous chapter have been used successfully
to identify dynamic models.

3.1 Introduction

In the previous chapter we have treated the identification of LTI models from input-
output data under closed-loop conditions. The methods presented there can be viewed
as “black box” methods in the sense that they directly produce a generic state-space model
from input-output data. The subspace techniques do not require the user to specify a
parameterisation and the only decision parameters are the subspace dimensions and the
system order, of which the algorithm itself gives an indication.

In this chapter we discuss some specific practical aspects related to identification
of models of aeroelastic systems, in particular wind turbines. First, it turns out that
incorporating domain knowledge into the identification procedure is beneficial, allowing
more accurate models to be obtained. Second, we demonstrate on the basis of examples
that the subspace techniques are reliable and efficient, allowing controller design in a “one-
shot” approach. By stressing these aspects, we aim to support the claims made in the
introduction, that the identification methods described in this thesis contribute to achieving
a lower cost of identification experiments by making the best use of available time.

First, in Section 3.2, we discuss the effect of periodic disturbances on input-output
data acquired from wind turbines. We will show how these disturbances adversely affect
identification results and how the adverse effects can be remedied in a simple way. Then, in
Section 3.3 we demonstrate application of the techniques of Chapter 2 to the identification
and control of a flutter wing. Finally, in Section 3.4 we describe how the subspace
identification framework can be applied as a tool supporting controller design, by using
it for rapid diagnosis of the performance of a new controller.

3.2 Periodic disturbances

Since wind turbines can to a large extent be classified as “rotating machinery”, it is likely
that periodic effects play an important role. Indeed, many loads are induced during wind
turbine operation which are periodic in nature. These loads typically propagate through the
structure and find their ways into blade root loads, tower loads, accelerations and any other
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structural measurements. Since most of these periodic loads originate from the (typically 2
or 31) blades which rotate about the main shaft, the combined effects can be quite different
when measured in the “fixed”2 frame of reference (Johnson, 1994; Hansen, 2007).

3.2.1 Sources of periodic loads

Main sources of periodic loads are gravity, tower shadow, wind shear, yawed inflow, rotor
tilt, and imbalance. Most of the loads originate from the blades, which experience a
significant once-per-revolution (1P) component along with higher harmonics (2P, 3P, . . . )
of this frequency. The nature of these periodic loads is complicated by that fact that
while most loads originate locally on the rotor blades, their combined effect on the hub
and turbine structure can be different (Hansen, 2003, 2007; Bir, 2008). An important
characteristic of these loads is that they are imposed on the blades with an exact 120◦

phase difference. For instance, 1P out-of-plane loads on the individual blades combine at
the hub into a loading approximately consisting of a constant (i.e., 0P, or zero-frequency)
thrust force, a constant vertical tilt moment on the hub and a constant horizontal yawing
moment on the hub3. This forms the basis for cyclic pitch or tilt-yaw control (Bossanyi,
2003b; Selvam, Kanev, van Wingerden et al., 2009). Similarly, 1P in-plane blade loads
result in constant vertical and lateral hub loads and a constant torque. For these periodic
disturbances it holds that, NP periodic loads on the blades result in (N−1)P periodic loads
on the hub. One could also call these loads the rotor loads since they express the combined
effects of the three blades.

In cases where two measurement frames of reference are involved and one of these is
fixed and the other rotating, for instance when controlling the individual pitch angles of
the blades and measuring loads in the hub frame of reference, these frames are inextricably
linked to each other by a time varying transformation (Hansen, 2003; Bir, 2008). As a
consequence, the model describing the dynamics between these signals in these cases is
also a time varying model. Frequent use has been made of the Coleman transformation to
transform these dynamics to time invariant (non)linear models (Hansen, 2003; Bossanyi,
2005; Bir, 2008; Skjoldan and Hansen, 2009). In this thesis we are only concerned
with inputs and outputs defined in the fixed frame of reference. Hence, we can treat the
dynamics as time invariant (but possibly nonlinear). The periodic loads, however, will still
affect these measurements and we will treat those loads as disturbances with the character
of periodic signals. Figure 3.1 shows a typical example of the dominance of periodic loads
in measured signals.

Finally, we note that we have only so far considered the effect of loads affecting the
blades such that these effects are 120◦ out of phase. A different situation occurs when the
natural modes of the blades are considered. The blade natural modes, say at a frequency ωn

can occur with distinct phase differences. The consequence of this is that the natural modes
of the rotor caused by the combined blade modes occur at ωn ± Ω, where Ω is the rotor
speed. Thus, in the fixed frame of reference such modes appear as two new modes, shifted
by Ω. This implies that the rotor modes are dependent upon the operating condition via the
current rotational speed. Considering the work in this thesis, however, these rotor modes
play a small role in the spectral energy content of the measured signals (see Figure 3.1)
and hence these effects are disregarded.

3.2.2 Effects of periodic loads on system identification

The LTI system identification framework introduced in Chapter 2 is very general in the sense
that it captures linear time invariant systems subject to coloured process and measurement
noise. The crucial assumption made in this framework was that these noise sources have

1Note that in this thesis only results for three-bladed turbines are discussed.
2The term fixed is relative here; while the hub is fixed in the sense that it is mounted to the tower, it can of

course rotate and translate as the tower bends.
3The loads only combine into constant hub loads under particular conditions, e.g., a constant wind speed, no

turbulence, identical blades.
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Figure 3.1 – Waterfall plots showing the spectral content of the fore-aft tower bending moment and

the high speed shaft velocity as a function of rotor speed (based on almost 2.5 hours of

data from the CART 3 turbine). The periodic effects and the tower and drive train

resonances are clearly visible. Also visible are two rotor-related modes, each with a

forward and backward component. These modes are far less dominant.

smooth, rational spectra. In the previous subsection it was shown that many loads on
wind turbines have very dominant periodic components. These components violate the
assumptions on the standard disturbance models; for all practical purposes the disturbances
have discrete or near-discrete spectra, possibly with components at 1P, 2P, etc... As will be
demonstrated in an example below, these disturbances may lead to identified models with
erroneous dynamics. In van Baars, Mosterd and Bongers (1993); van Baars and Bongers



52 Chapter 3. LTI identification of wind energy systems: practical aspects

(1994); van der Veen, van Wingerden and Verhaegen (2010c) ideas were presented to
incorporate these periodic disturbances into standard system identification frameworks.
The idea is very simple: Since the periodic disturbances are exactly related to the current
azimuth of the rotor, one can construct additional input signals representing the effect of
the periodic disturbances. The identification algorithm can then correlate the measured
signals to these constructed signals to account for the presence of the periodic effects.

Constant rotor speed

Consider first the case of a constant rotor speed Ω̄ (rad/s). Any discrete-time, zero-mean
periodic disturbance d(k) with a frequency Ω̄ can then be described in terms of a Fourier
series:

d(k) =
∞∑

n=1

an cos
(
nΩ̄k∆t

)
+ bn sin

(
nΩ̄k∆t

)
, (3.1)

where ∆t is the sampling interval and k∆t is the current time instant. Since the wind
turbine is a mechanical system it has a low-pass character and the harmonics present in the
measured signals are typically at most the first few. Thus, one conceivable way of modelling
the disturbances is to examine the spectra of the measured signals, check for the dominant
presence of 1P, 2P, . . . , NP disturbances and add sine and cosine basis functions at these
harmonics to the input vector.

Varying rotor speed

One way of dealing with a moderately varying rotor speed is to map all signals to an
azimuth domain as suggested in van Baars, Mosterd and Bongers (1993). However, due
to the complications arising when describing dynamics in a domain different from a time
or frequency domain, in particular when the rotor speed varies significantly, we will not
pursue this approach. If we assume that the shape of the disturbance does not vary with
rotor speed and only its fundamental period changes, we can simply use the same Fourier
series as before (3.1) with the same coefficients, but with the current rotor speed Ω. Note
further that in the constant-speed case the term Ω̄k∆t represents in fact the current rotor
azimuth, to which effectively all periodic effects can be related. In the case of a varying
rotor speed, the term Ωk∆t represents a similar term, but the phase information (or, in
fact, the absolute position reference) is missing. This can be solved simply by using the
actual rotor azimuth Ψ(k) (rad), resulting in:

d(k) =
∞∑

n=1

an cos (nΨ(k)) + bn sin (nΨ(k)).

A measurement of the rotor azimuth4 can hence be exploited to predict the periodic
disturbances. If Ψ is known, we can generate (vector) signals:

ψn(k) =

(
cos (nΨ(k))
sin (nΨ(k))

)
, n = 1, 2, 3, . . . , (3.2)

where n indicates which periodic component, e.g., 1P, 2P, etc..., we wish to represent.
Subsequently, we can add these signals as virtual inputs to the identification problem. Note
that for most cases of practical interest, the rotor speed is not constant and as a consequence
these signals are not truly periodic. This is beneficial for identification algorithms since this
causes the signals to be persistently exciting to some extent as opposed to signals with
spectra which are only non-zero at a few discrete frequencies.

A few remarks are in order regarding the approach here:

4Although the rotor speed and azimuth are not always measured on commercial turbines, they can be estimated

from the generator speed and azimuth and the gearbox ratio (if present), noting that these are one-to-one related at

low frequencies, i.e., below any drive train natural frequencies.
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Figure 3.2 – “Smart” rotor scale model in the Open Jet facility (van Wingerden, Hulskamp, Barlas,

Houtzager et al., 2011).

• In some cases the Fourier basis functions may not be the most efficient ones. Consider
a case where blade dynamics are identified and tower shadow is a significant
disturbance. In this case it is likely that many harmonics are necessary, while the
same could be achieved with a suitably shaped periodic function. As argued in
van Baars, Mosterd and Bongers (1993), one could use a signal with a sequence
of steps representing the tower shadow acting on the blade during the brief instant
it passes the tower. In the cases we have studied, however, most disturbances can be
represented well by a few sinusoidal basis functions;

• A major assumption is that the profile of the disturbance and its effect on the output
remains the same regardless of the current rotor speed or wind speed. Regarding
the profile of the disturbance, consider the case of tower shadow, for example. The
typical potential flow model (Burton, Sharpe, Jenkins et al., 2001) for tower shadow
shows that the velocity deficit profile can be quite different at different wind speeds.
Regarding the effect on the output, periodic disturbances may propagate through the
structure in different ways depending on the current rotor speed caused by varying
degrees of structural coupling (Hansen, 2007).

3.2.3 Example: data from an experimental ‘‘smart’’ rotor

In the framework of the European UpWind project (UPWIND, 2012) experiments were
carried out recently to determine the potential of “smart” rotors for wind turbine fatigue
load alleviation (van Wingerden, Hulskamp, Barlas, Houtzager et al., 2011). “Smart” rotors
are rotors where each of the blades is equipped with one or more flow control devices,
in this case piezoelectric trailing edge flaps. The flaps modify the local coefficient of lift
of the blade profile and as such offer a high-bandwidth (compared to the blade pitch
system) opportunity to regulate loads on the blade root and the the wind turbine structure.
The experimental turbine comprised a two-bladed configuration, where each blade was
equipped with two piezoelectric flaps (used in unison for this study) and a strain sensor at
the blade root.

In an effort to reduce the fatigue loads related to the flap-wise root bending moment,
the control objective was formulated as: minimise the variance of the strains measured at
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the blade roots. In order to obtain suitable (MIMO, LTI, state-space) models for control
design, system identification was chosen for its capacity to directly model dynamic input-
output relations. Although extensive aeroelastic modelling was performed, the stacking
of uncertainties related to material properties, unsteady aerodynamics with complicated
unsteady and rotational flows near the roots and tips, unknown actuator/sensor behaviour,
would likely imply that models can only be computed with limited accuracy.

Figure 3.3 shows the power spectra for one of the strain measurements. With no
excitation we clearly see multiple periodic disturbances, mainly at 1P through 4P. If we
excite the trailing edge flaps using their full actuation capability we see that we can
achieve a good signal-to-noise ratio, except at the 1P and 3P frequencies. Based on this
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Figure 3.3 – Power spectra of measured strain gage signals for two cases: without trailing edge flap

excitation (black) and with trailing edge flap excitation (gray). The figure clearly shows

the dominance of the 1P periodic load. (Results valid for V = 7m/s and Ω = 370 rpm.)

insight identification was performed using the closed-loop MOESP algorithm and adding
signals ψ1(k) and ψ3(k) (3.2) as inputs. Figure 3.4 shows the identified 2-by-2 system in
terms of Bode magnitude plots. Clearly, when the periodic signals are not accounted for,
spurious resonances are identified at the 1P and 3P frequencies. This is also reflected in
the phases, shown in Figure 3.5, where these spurious dynamics lead to large phase shifts.
The identified models were successfully used for subsequent feedforward-feedback control
design (van Wingerden, Hulskamp, Barlas, Houtzager et al., 2011).

3.2.4 Conclusions

In this section we have shown how periodic components in measurement data obtained
from rotating systems such as wind turbines can be accounted for in a straightforward way.
The example demonstrated the importance of doing this in order to obtain consistent and
reliable estimates. This means that one of the challenges mentioned in the introduction
(see Section 1.4), namely dealing with periodic disturbances, has been partly addressed,
specifically for the case of a constant rotor speed and constant wind speed. The results
in chapters 6 will show that these results extend to the case of varying rotor speed under
turbulent conditions. Finally, it is relevant to mention that this was possible by using specific
domain knowledge about the behaviour of wind turbines to understand where the periodic
signals originate. This knowledge could then be embedded in the otherwise “black-box”
system identification framework.
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Figure 3.4 – Amplitude responses of the identified transfer functions from the two piezoelectric flaps

to the two strain measurements. Shown are the identified models without compensation

for periodic disturbances (solid gray), with compensation for periodic disturbances

(solid black) and spectral estimate (thin gray line). (Results valid for V = 7m/s and

Ω = 370 rpm.)

3.3 Active suppression of control surface flutter

It is well-known that coupling between aerodynamics and structural mechanics can lead to
flutter (Bisplinghoff, Ashley and Halfman, 1996), a phenomenon extensively studied in the
field of aerospace engineering. One particular type of flutter is control surface flutter. In its
initial year in service, control service flutter occurred on the rudder surfaces of the Airbus
A310, which was later attributed to changes in mass distribution due to accumulation of
moisture (Aviation Investigation Report – Loss of Rudder in Flight 2005). Other structural
changes leading to control surface flutter could be wear of the control system, e.g., free
play in hinges and linkages, or changes in actuator stiffness and control surface torsional
stiffness. Typically, structural modifications such as mass balancing are made to avoid
control surface flutter inside the operating envelope of the aircraft. Flutter can lead to
premature wear of structural components and in the worst case to loss of entire airframe
components.

In a recent research project, carried out jointly between the Faculty of Aerospace
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Figure 3.5 – Phase responses of the identified transfer functions from the two piezoelectric flaps to

the two strain measurements. Shown are the identified models without compensation

for periodic disturbances (solid gray), with compensation for periodic disturbances

(solid black) and spectral estimate (thin gray line). (Results valid for V = 7m/s and

Ω = 370 rpm.)

Engineering, Delft University of Technology and Technion, Haifa, Israel, a feasibility study
was performed to investigate the use of an active flutter suppression and load alleviation
system. One such concept, which has a limited impact on mass and structural complexity,
is to use free-floating flaps with small piezoelectrically-driven trailing edge tabs. Figure 3.6
shows an illustration of this concept. The main idea is that the small tab, being located
at the trailing edge, has a leverage advantage. A small deflection of the tab causes the
rudder surface to rotate in the opposite direction, which in turn generates the desired
control surface effect. This is similar to the use of servo tabs on many current aircraft.
Important experimental work on this concept was carried out by Heinze and Karpel (2006)
and besides the potential for aeroelastic (flutter) control, the concept is also a candidate for
wind turbine load alleviation by controlling local blade loads (Barlas and van Kuik, 2007;
van Wingerden, Hulskamp, Barlas, Marrant et al., 2008).

A scale model of a vertical tailplane, depicted in Figure 3.7, with two such free-
floating flaps equipped with piezoelectric tabs was built in order to perform a technology
demonstration. The experimental tailplane – with all piezoelectrics self-contained within
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Figure 3.6 – Schematic representation of the vertical tailplane with free-floating rudder control

surface and the piezoelectric tab at the trailing edge. As the tab deflects, the

free-floating rudder moves in the opposite direction.

Figure 3.7 – The experimental vertical tailplane in the Open Jet Facility at Delft University of

Technology. The two free-floating flaps are shown deflected in opposite directions.
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the freely hinged rudder control surfaces – was such that the configuration exhibited low-
speed flutter, predominantly due to the fact that the flaps are under-balanced (Bernhammer,
De Breuker, Karpel et al., 2012). Since the active flutter suppression system relies on
feedback, it is crucial to obtain an accurate model describing the dynamic input-output
behaviour of the system in terms of the gain and phase behaviour. In this case the inputs
are the control voltages to the two piezoelectric trailing edge tabs. The controlled output is
the acceleration measured by an accelerometer mounted at the tip of the vertical tailplane,
which is assumed to be representative for any vibrations of the structure. In Bernhammer,
De Breuker, Karpel et al. (2012) the aeroservoelastic modelling procedure is described that
was used to model the dynamic behaviour of the entire vertical tailplane. The dynamic
behaviour was predicted using numerical analysis and for several reasons it cannot be
expected that, for example, the predicted eigenmodes are equal to the modes of the true
experimental structure:

• Mass, stiffness and damping properties of the structure are different than predicted.
This is mainly due to differences in the geometry and construction. Furthermore, a
situation of perfect clamping was assumed in the numerical analysis which did not
correspond to the true clamping conditions which were more flexible;

• Simplified unsteady aerodynamics were assumed in the numerical analysis, consisting
of the harmonic solution of a potential flow model. This simplified model and
assumed lift characteristics may differ from the actual behaviour;

• Actuator dynamics were not incorporated in the analysis and a simplified model of
the piezoelectric bender was applied;

• Because of the experimental nature, production inaccuracies were large and the
behaviour of the two piezoelectric tabs was not entirely equal.

One way to deal with the differences between predicted and actual behaviour of the vertical
tail plane is to iteratively tune the numerical model until a sufficient level of agreement
is reached. For the purpose of control system design, however, it is not given that such
a procedure will result in an accurate model describing the dynamics from actuators to
sensors. The interconnection of different subsystem models, each with a certain amount
of inaccuracies makes tuning of the compound model a challenging task. In these cases,
system identification can complement first principles modelling.

3.3.1 Identification experiments and control design

In initial wind tunnel measurements, the flutter point was determined by gradually
increasing the wind speed while perturbing the tip of the vertical tailplane with small
impulses. Once the flutter point had been determined, identification experiments were
performed at several wind speeds by injecting random signals into the actuator control
channels. To achieve the best possible signal-to-noise ratio, pseudo-random binary
sequences with amplitudes of ±100V (equal to the hardware limits) were used. These
signals were then filtered with a low-pass filter with cutoff frequency of 50 Hz to avoid
excitation of high-frequency modes outside the bandwidth of interest. Signals were
sampled during 90 s at a rate of 2 kHz and subsequently filtered and downsampled to
200 Hz. The closed-loop MOESP algorithm was used to identify models of the rudder.
In this application the PBSIDopt and CLMOESP methods are likely to yield similar results,
but CLMOESP was favoured because of the clearer order indication.

Figure 3.8 shows the identified transfer functions at two different wind speeds: 10 m/s

which is below the flutter speed and 16 m/s which is well into the flutter regime. The first
bending mode is identified at 3.7 Hz and the first torsion mode at 29 Hz. These frequencies
are much lower than those predicted by the first principles model and, while the amplitude
and phase behaviour are similar to the behaviour predicted by the numerical model, the
differences between the idenitified and predicted modes are likely to imply that a controller
designed for the first principles model will not stabilise the system. To make it work, the
designed controller would have to be excessively robust, resulting in a conservative design.

Models were first identified below the flutter speed, since in those conditions experi-
ments could be performed without a controller active. On the basis of one of these identified
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Figure 3.8 – Bode diagrams of the predicted (dashed) and identified (solid) transfer functions from

microtab voltages to accelerometer output. Results are shown for 10 m/s (black line) and
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Figure 3.9 – Diagram of the flutter control and load alleviation system.

models, specifically just below the flutter speed at 10 m/s, a controller was designed based
on manual frequency domain loop-shaping techniques. A schematic representation of the
control system is shown in Figure 3.9. For reasons of simplicity and since the goal was to
control only the first bending mode of the tailplane, it was decided to control both flaps in
unison. This controller is composed of several elements:

• Low-pass filters to attenuate any high-frequency content beyond 10 Hz related to the
nature of acceleration measurements;

• A notch filter to further attenuate the structural torsion mode at 35 Hz;

• A lead compensator adding phase lead to result in a loop phase close to zero degrees
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Figure 3.10 – Identified frequencies and damping ratios as a function of wind speed corresponding to

the dynamic mode related to flutter.

at the first bending mode (3.7 Hz) and sufficient gain and phase margins of 10 dB
and 45◦, respectively, at the crossover frequencies.

Once this controller was designed for a speed of 10 m/s, the wind speed was increased
beyond the original flutter speed up to the new flutter speed determined by the closed-loop
dynamics. This procedure allowed us to identify models under closed-loop conditions at
wind speeds higher than the original flutter speed; a powerful capability of closed-loop
subspace identification methods. Table 3.1 shows values of the variance-accounted-for
(cf. (2.38) on page 36) for the identified models. Figure 3.10 shows how the dominant
structural mode, namely the first bending mode, varies with wind speed and changes from
a lightly damped mode into a flutter mode at 11 m/s.

It was found that the designed control system was able to move the flutter point from
the previous value of 11 m/s to a new flutter speed just beyond 16 m/s, beyond which speed
the tailplane would become unstable. Hence, a model identified at this speed of 16 m/s

was used to redesign a controller. A Nyquist plot of the loop gain is shown in Figure 3.11
for a wind speed of 14 m/s, indicating stability and robustness of the compensator design.
With the updated controller, the flutter speed could be increased beyond 21 m/s. No further
iterations were performed, since at these wind speeds the control signals were frequently
well beyond their saturation limit. Hence, extending the flutter boundary even further
would require using control surfaces with more authority. It is important to note that in
this study no attempts were made to optimise switching between the two controllers. Both
controllers were permanently active, with the output of one of them directed to the tabs;
the switching was performed manually near a wind speed of 16 m/s.

Table 3.1 – The variance-accounted-for for the identified models at different wind speeds.

wind speed (m/s) 8 10 11 12 14 16

stable (y/n) y y n n n n

VAF (open-loop) 85.5% 86.4% – – – –

VAF (one-step-ahead predictor) 89.6% 95.4% 99.6% 93.5% 88.5% 86.7%
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At the start of this chapter we stated that system identification techniques can only be
applied successfully by combining them with specific domain knowledge. At first it might
appear that in this example the methods from Chapter 2 have been applied as “black-box”
techniques. This is not true, however. To be able to obtain accurate and reliable models
efficiently, i.e., in a short span of time, we have used knowledge of the predicted behaviour
of the wing to determine important aspects such as:

• Perturbation signals. We have used the predicted modes and input-output behaviour
to determine appropriate excitation signal bandwidths and levels. These did not need
to be adjusted afterwards.

• Bandwidth. Based on prior analysis we knew which modes to expect and which
modes would be targeted by the controller. Based on this information an appropriate
sample frequency, experiment length and identification bandwidth were chosen.

3.3.2 Experimental evaluation and load alleviation

Flutter tests were performed to evaluate the performance of the closed-loop system. For
a wind speed below flutter at 10 m/s, a model was identified and a controller designed.
Then, with the system under closed-loop control, the wind speed was steadily increased to
determine the new flutter point. At a wind speed just before this extended flutter point at
16 m/s, a new model was identified in closed-loop for which a new controller was designed.
It turned out to be sufficient to lower the gain of the updated controller at this higher wind
speed. With these two design iterations, the flutter point could be extended from 11 m/s to
beyond 21 m/s.

Besides demonstrating the flutter control potential of the microtab control system, it was
also shown that at wind speeds near the flutter point dynamic loads which excite the first
bending mode could be attenuated using the same controller by as much as 40% in terms of
the root bending moment (Bernhammer, De Breuker, Karpel et al., 2012). Interestingly, in
all tested cases the tailplane could be successfully stabilised, despite applying large impulse
excitations which caused the control signal to saturate, cf. Figure 3.12. Apparently, a bang-
bang type control law works well in this case: the rudder motion is in opposite phase to
the bending, thereby removing energy from the system (Bernhammer, De Breuker, Karpel
et al., 2012).
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Figure 3.12 – Response to a large impulse excitation. Even though the control signal saturates, the

tailplane bending motion is rapidly damped and the system retains its stability.

3.3.3 Conclusions

In this example we have shown the potential of the closed-loop subspace identification
methods described in Chapter 2 from a practical point of view. We have shown how a
controller was successfully designed in one go on the basis of an identified model, while
the first principles model would require many iterations of model updating to result in
similar dynamic behaviour. We have further shown how the stabilised system could be
re-identified under closed-loop conditions to perform an iteration of the controller design
which resulted in a refined controller for the changed dynamics at higher wind speeds.

While updating of the first principles model could potentially be very time consuming,
all these experiments, including model identification, control design and evaluation were
performed in less than two days. Of course, it is important from a design point of view
to refine first principles models. Still, in this case identification experiments can be useful
since the resulting models immediately point out the differences in behaviour between the
actual system and the first principles model. This may guide engineers to where the models
need refinement.

At the start of this chapter we stated that “black-box” system identification techniques
can only be applied successfully by combining them with specific domain knowledge. In this
section we have stressed how using this knowledge to design the perturbation signals and
the excitation bandwidth was relevant to the success of identification and control design in
this example.

3.4 Rapid evaluation of controller performance on an experimen-

tal turbine

In an ongoing effort to investigate and evaluate new control strategies for wind turbines
experiments were recently performed at the National Renewable Energy Laboratory (NREL)
in the US in collaboration with Delft University of Technology. Increasingly, turbines are
equipped with a control system which does not only regulate the power output of the
turbine, but also regulates loads. In this instance, it was investigated how the existing
speed controller, measuring generator speed and controlling generator torque, could be
extended with a load reduction controller. The goal of adding this capability was to add
damping to the very lightly damped drive train resonance and the lightly damped tower
side-side motion. The available actuation signal would remain generator torque, but to
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add information on the tower motion, a side-side accelerometer signal was incorporated
in the design. To be able to provide results which are repeatable we followed a systematic
procedure and hence (industry-) standard techniques were adhered to as much as possible
in the designs.

In this section we show how system identification can be applied to rapidly and
efficiently judge the performance of the closed-loop system. For that purpose we will first
describe how several controllers were designed. Next, we describe how the closed-loop
behaviour was identified and how perturbation signals were designed. Finally, we will
show some results of applying these ideas to the CART 3 research turbine in field tests.

3.4.1 Control design procedure

We start by briefly discussing the control design procedure which led to three designs to
be evaluated. The reader is referred to Fleming, van Wingerden, Scholbrock et al. (2013)
for details on these procedures. Controllers were designed on the basis of LTI models
governing the dynamics from torque demand to generator speed and side-side acceleration.
The models were derived from the nonlinear model of the CART 3 in the aeroelastic code
FAST (Jonkman, 2012). Some effort was made recently to tune this model on the basis of
modal tests (Osgood, Bir, Mutha et al., 2011).

The most important degrees of freedom included in these linearised models are the
generator speed, drive train torsion and tower side-side bending. Furthermore, these
models include dynamics of the torque roll-off filter and time delays. The goal of
the controllers closing the loops from generator speed to torque demand and side-side
acceleration to torque demand is to augment the baseline controller with active damping
of the drive train torsion mode and the tower side-side bending mode. The design of the
damping controllers led to three designs to be evaluated, which are listed here:

1. The baseline design. This design consists of the existing single-loop speed controller
which ensures that the generator speed setpoint is maintained. The design process
followed industry-standard techniques (Bossanyi, 2000);

2. A multi SISO (mSISO) design. In the mSISO design a classical “successive loop
closure” approach, widespread in industry, was applied to extend the baseline
controller. The two loops closed successively are:

a) A feedback loop to enhance damping of the drive train resonance. This loop was
designed using loop-shaping and root locus techniques. The tower frequency
was notched out, followed by a lead filter and a gain, to result in (mainly)
feedback of the drive train resonance;

b) A feedback loop to enhance damping of the tower side-side bending mode. This
loop was designed around the intermediate closed-loop system using similar
techniques. The accelerometer signal was first filtered and then integrated in
order to obtain a measure of tower velocity. From this signal the drive train
resonance frequency was notched out, followed by a lead-lag compensator to
result in tower velocity feedback.

Both control signals were passed through a filter cascade to attenuate feedback of
known (high frequency) noise and to avoid interference with the baseline speed
controller;

3. An H∞ design. In the H∞ design the single-input-multi-output plant was considered
and used in a mixed sensitivty H∞ synthesis procedure (Skogestad and Postlethwaite,
1996). Weights were imposed on the actuator signals and output signals expressing
the desired loop shapes. These weights were chosen very similar to the ones in the
mSISO design:

a) The actuator penalty weights comprised a bandpass filter to penalise low and
high frequency control actions and inverted notches to penalise control of
resonances which are not of interest;

b) The output penalty consisted of inverted notches on the drive train frequency
and the side-side bending frequency respectively for the generator speed and
accelerometer outputs respectively, in order to penalise these resonances.
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During a period of several months, starting in April 2012, the controllers were run under
various conditions and sensor data was acquired. In total about 20 hours’ worth of baseline
data was acquired, 1.5 hours’ worth of mSISO operation and 5.25 hours’ worth of H∞
operation. In Fleming, van Wingerden, Scholbrock et al. (2013) an extensive analysis was
performed to determine the performance of each of the controllers in terms of reducing
fatigue-critical damage equivalent loads due to cyclic loading (Hayman, 2012). This
analysis led to the following conclusions:

1. The H∞ controller successfully damped the drive train resonance whereas the mSISO
controller merely shifted the resonance frequency;

2. Both controllers damped the side-side motions equally well;

3. Both controllers resulted in an increase in torque activity, with the mSISO design
causing slightly more torque activity;

4. Both controllers achieved tower bending fatigue load reduction, but only the H∞
controller achieved drive train torsion fatigue load reduction.

Regarding these field test results it is important to note that in the design stage both
controllers worked equally well, both in linear and in nonlinear simulations. Apparently
there are differences between the LTI models and the true behaviour (Fleming, Wright,
Fingersh et al., 2011).

The foregoing analysis resulted in the conclusions that the H∞ controller performed well
since it was robust to differences between modelled and true dynamics, whereas the mSISO
controller failed as a consequence of these differences. These conclusions were based on
analysing significant amounts of data gathered over the course of months. Nevertheless, the
amount of data was not sufficient to draw definitive conclusions (Fleming, van Wingerden,
Scholbrock et al., 2013). In the next sections we will show the value of system identification
in this context and we will investigate how system identification might be able to accelerate
this process.

3.4.2 Identification of closed-loop wind turbine behaviour

To identify the closed loop LTI behaviour of a controlled system a few important aspects
must be considered. These are first discussed.

Selection of identification signals

Although many signal configurations can be considered, the basic differences are indicated
in Figure 3.13, which shows a highly simplified schematic of the CART 3 control system.
Considering the system boundary labelled as “open-loop”, the (partly controlled) signals
entering the turbine are the pitch angle β and the generator torque Tg. The wind speed
may be considered a disturbance in the context of LTI identification. Using these input
signals for identification will result in the open-loop dynamics of the wind turbine. Using
the control framework presented in Chapter 2, no restrictions are placed on how these
signals are generated, i.e., what the character of the controller is, and no knowledge of the
controllers is required.

If we now consider the boundary labelled as “closed-loop”, we have as signals entering
the system perturbations on the pitch angle, perturbations on the generator torque and
perturbations on the generator speed reference. If we use one or more of these signals
for identification, it is clear that we identify the closed-loop behaviour of the turbine.
When doing so in an effort to model the closed-loop as an LTI system, it is important
to ensure not only that the turbine operates in a fairly narrow operating range, but also
that the controllers act as LTI systems. If the controllers act in a nonlinear way, e.g.,
by switching continuously between full-load and partial-load strategies in the transition
region, identification is unlikely to be successful since the closed-loop system is then
nonlinear.

One such effect was found in preliminary data analysis of measured CART 3 data. Since
in this section the goal is to estimate the closed-loop dynamics, specifically those of the
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Figure 3.13 – Schematic representation of the CART 3 control system. The dashed areas indicate the

system boundaries used when considering the closed-loop dynamics and the open-loop

dynamics respectively.

drive train, we considered the perturbations on the generator torque as inputs, with the
“closed-loop” boundary in Figure 3.13. In data batches where the rotor speed crossed the
tower natural frequency, significant impact of the supervisory control system was found. In
order to prevent the 3P frequency (i.e., three times the rotor speed) from corresponding
with the tower side-side natural frequency, a tower resonance avoidance strategy has been
implemented in the supervisory controls of CART 3. This strategy rapidly ramps up or down
the generator torque if the 3P frequency approaches the tower frequency from above or
below, so that the turbine quickly accelerates or decelerates past this critical frequency, see
Figure 3.14. This additional torque contribution presents a nonlinear control action, which
violates the assumption of LTI behaviour. This means that data sets where this happens
are not suitable for identification of closed-loop dynamics. One straightforward solution to
bypass this problem would be to model the torque contribution by the supervisory control
system as an additional (measured) external input signal (or add it onto the perturbation
signals). The point we wish to make here, however, is that care must always be taken. It is
important to know the paths that (perturbation) signals follow before reaching the actual
controlled system. If this is not done, it is clear that this may lead to unexpected results.

Design of perturbation signals for wind turbines

In system identification it is often necessary to apply perturbation signals. This is done to
excite all relevant modes of a system and to achieve a good signal-to-noise ratio between
the output signal content due to the excitations and due to disturbances and noise. While
from an identification point of view it may appear beneficial to make these perturbation
signals as large as possible, this is not the case in practice:

• Large perturbations may cause the system to operate in a wide range, causing the
assumption of LTI dynamics to be violated;

• Large perturbations are costly. Just as is the case for many industrial systems,
perturbations cause the system to operate suboptimally. In the case of wind turbines,
torque perturbations appear in the output power and may excite lightly damped drive
train and side-side modes leading to fatigue damage. Pitch perturbations cause the
rotor speed to vary, may excite fore-aft tower motions and cause wear of the pitch
system. Both perturbations may induce large loads by exciting modes of the turbine.
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Figure 3.14 – The tower resonance avoidance strategy on CART 3: the generator torque is modified

in order to prevent the rotor speed from dwelling near 17 rpm which would cause the

3P frequency to line up with the tower natural frequency.

• Pitch and torque perturbations must satisfy actuator (rate) limits. Hence it is
necessary to design these signals and verify satisfaction of these constraints.

Typically, the wear and fatigue related aspects are less pronounced in this context, since
system identification is not a continuous process. This does not hold however for the
continuous system identification performed in subspace predictive control in Chapter 4,
where perturbation signal design is a key issue.

Figure 3.15 shows the pitch and torque perturbation signals designed for the CART 3
turbine. Initial excitation signal designs were performed with the aid of a Bladed (Bladed
2011) simulation model of the turbine. The turbine was simulated at constant mean wind
speeds and perturbation signals were applied. The turbulence was gradually increased up
to the level of the turbulence which CART 3 typically experiences (Iref = ±20%). Attempts
were made to identify models for different excitation levels. By an iterative process suitable
values were determined. These values were further adjusted on the basis of earlier field
testing and identification results. Figure 3.15 shows the designed signals, with a pseudo-
random binary signal of ±50 Nm for the torque perturbation and a pseudo-random binary
signal of ±0.3 ◦ for the pitch perturbation.

3.4.3 Identification from field test data

In our experience, controller design typically requires several iterations. Initially, a
controller is designed on the basis of linearised first principles models and simulations in
aeroelastic codes such as FAST (Jonkman, 2012). Subsequently, this controller is evaluated
in field tests. In the case of more refined controllers, mismatch between modelled and
true dynamics can cause the controller to under-perform, in particular when considering
resonance frequencies which may differ between the aeroelastic code and the true wind
turbine. Obviously, system identification can be applied to identify models of the turbine
which may then serve to support controller design. Even if this step is skipped, we will
show that system identification can quickly reveal the behaviour of the closed-loop system.

During the experiments mentioned before, in which each of the controllers was activated
in turn, system identification experiments were also performed. In these experiments the
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Figure 3.15 – Example time traces of perturbations applied to the pitch and torque reference signals.

generator torque was perturbed with a pseudo-random binary signal of ±50 Nm in order to
excite all the relevant modes – in particular the modes targeted for damping enhancement.
In this case only the generator torque was perturbed, since only the dynamics in response
to the torque input are considered. Then, on the basis of the signals measured during
periods of approximately 10 minutes, models of the closed-loop dynamics from torque input
to generator speed were identified using the closed-loop MOESP subspace identification
technique discussed in Chapter 2.

Figure 3.16 shows the identified closed-loop dynamics of the turbine in terms of the
magnitude response. The results near the drive train resonance frequency clearly indicate
that the H∞ design seems to perform rather satisfactorily, while the mSISO controller
seems to merely shift the drive train frequency as opposed to add damping. This prompts
further investigation into the design and possibly the effects of model mismatch. This quick
diagnostic may therefore significantly expedite controller design. Figure 3.18 confirms
these results by showing the power spectral densities of three relevant measurements.
These PSDs have been computed using all available measurement data. The PSD of
the generator speed shows that the H∞ controller completely damps out the drive train
resonance and both controllers add some damping to the side-side motion of the tower.
Figure 3.17 shows how the identified (open-loop) dynamics near the drive train resonance
differ from those described by the linearised first principles model, obtained from the
FAST aeroelastic code. Note that the resonance is in reality much more damped than
predicted and furthermore that the frequency is slightly different. This may indicate
that the poor damping observed with the mSISO controller can be attributed to model
mismatch. Furthermore, the phase response is quite different due to the presence of
nonminimum phase zeros in the identified model. The presence of these nonminimum
phase zeros suggests a fundamental bandwidth limit in the above-rated speed control loop.
This limit would imply a bandwidth limit of about 0.4 Hz to be safe. Nonminimum phase
zeros associated with the tower natural frequency and occurring in the loop from pitch
angle to generator speed are well-known to exist under certain conditions and have been
studied, for instance in Leithead and Dominguez (2006); Larsen and Hanson (2007); van
der Veen, Couchman and Bowyer (2012) and in Appendix B. One should keep in mind
that there is some uncertainty in the identified model, requiring further (identification)
experiments to be performed to determine the exact character of these zeros.

3.4.4 Conclusions

In this section we have described how the controller design process for a wind turbine can
be supported with system identification. Typically, extensive field tests are required to judge
the performance and effects on fatigue loads. While these field tests are still necessary to
obtain statistically significant results, the testing process can be streamlined. With only a
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Figure 3.18 – Power spectral densities of input and output signals for the baseline controller (black),

the mSISO controller (dashed) and the H∞ controller (gray).

few short data sets, system identification can give an indication of closed-loop performance,
prompting a redesign if necessary.

3.5 Conclusions

We started this chapter by stressing the importance of combining “black-box” identification
techniques with specific domain knowledge about the problem at hand. Over the course of
this chapter we have collected a number of important aspects related to domain knowledge
about the identification problem. Using this knowledge resulted in identification of accurate
and reliable models.

Summarising, we arrive at the following important aspects:

• Periodic disturbances. Knowledge of the wind turbine mechanics explains the
mechanisms by which periodic signals appear in certain measurements taken from
wind turbines. This enabled us to extend the identification framework of Chapter 2
to consistently and reliably identity models despite the presence of these periodic
disturbances.

• Perturbation signals. Knowledge of the dynamics, for instance from an aeroelastic
code, can be used to determine appropriate excitation signal bandwidths and levels.
This can speed up the identification experiments and prevents significant redesigns
from being necessary.

• Bandwidth. Based on prior analysis one knows which modes to expect and which
modes should be targeted by the controller. Based on this information, in fact
consisting of the control objectives, an appropriate sample frequency, experiment
length and identification bandwidth can be chosen.

• Nonmimimum phase behaviour. Detailed knowledge about the potential nonmin-
imum phase behaviour of wind turbines and floating wind turbines in particular
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and the mechanisms by which these occur is useful in determining where (at which
frequencies) identified models should be put under close scrutiny to determine the
actual presence of nonminimum phase behaviour. Further experiments may be
necessary to establish the full character.

• Signal paths. In Section 3.4.2 we have shown that knowing exactly where input
signals are measured is of fundamental importance. This may mean the difference
between identifying open or closed-loop dynamics. Also, it determines whether or
not actuator dynamics and/or filters are included and whether a supervisory control
system could influence signals “downstream” of where they have been measured.



4Subspace predictive control of

aeroelastic systems

This chapter considers direct data-driven control of systems whose dynamics can be
described locally by LTI models. The control algorithm is based on the predictor-
based subspace identification framework. In a linear least-squares problem, the
observer Markov parameters of the system are recursively estimated. Those
parameters are used to construct an output predictor which is used to solve a
predictive control problem subject to constraints. In this chapter we also present
a square root estimation scheme with directional forgetting of past information.

The feasibility of the approach is highlighted by applying it to two experimental
setups using an efficient implementation. First, we consider control of vibrations
in a flexible structure equipped with piezoelectric transducers. This serves to
demonstrate that computations can be performed in realtime for a realistic system
and we show how the scheme rapidly adapts when a sudden significant change
in structural dynamics is introduced by changing one of the structural parameters.
Second, we consider speed regulation of an experimental wind turbine subject to
wind speed and setpoint changes.

4.1 Introduction

In this chapter we consider subspace predictive control (SPC) as a first step towards
unifying the fields of identification and control design. The SPC framework offers a way
to combine the advantages of a model predictive control law (MPC) with the capability to
deal with unknown and slowly time-varying dynamics. Obvious advantages of MPC are the
ability to deal with constraints and the intuitive tuning which is not dissimilar to tuning of
a linear quadratic regulator. The adaptivity is useful for systems which can be considered
locally linear, but have dynamics which vary mildly with the operating condition. SPC has
been presented primarily as a framework for fault-tolerant control design (Dong, Verhaegen
and Holweg, 2008; Hallouzi, 2008), as the recursive estimation scheme will automatically
detect events such as actuator failures. This is the main strength of the SPC framework.

Subspace predictive control was first presented in Favoreel and De Moor (1998);
Favoreel, De Moor, Van Overschee et al. (1999) and later in Woodley (2001) for data-
driven H∞ control. The identification framework used in these versions was the framework
of open-loop subspace identification. Since in SPC the identification will by definition take
place under closed-loop conditions, modified versions were presented in Dong, Verhaegen
and Holweg (2008); Hallouzi (2008) using the predictor-based subspace identification
framework of Chiuso (2007a) and discussed in Chapter 2. Compared to the original
algorithms, the predictor-based version is asymptotically unbiased in closed-loop operation.

SPC comes with a number of challenges, which are still largely open problems. First,
estimation is performed recursively and to be able to identify the dynamics consistently,
all modes must be excited continuously. The challenge is to add the minimal amount of
perturbations to maintain a sufficient signal-to-noise ratio and persistence of excitation,
since perturbations will adversely affect the process. This problem has been considered in
Dong (2009). A partial remedy to this requirement of persistent excitation is to update
parameters only when new information is available using a directional forgetting scheme.
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Such a strategy is considered in this chapter. A further challenge is the stability of the
control scheme. Efforts have been made to take into account the uncertainty on the
estimated parameters to result in cautious H2 control (Dong and Verhaegen, 2009; Kulcsár
and Verhaegen, 2010). Similar techniques could be applied to take the uncertainty on the
Markov parameters into account in a stochastic robust MPC scheme (Bemporad and Morari,
1999), possibly using the framework developed in Evans, Cannon and Kouvaritakis (2012).

Despite these challenges, SPC is an attractive framework due to its conceptual simplicity.
In the literature it has been applied primarily to numerical examples, exceptions being
Woodley (2001); Kadali, Huang and Rossiter (2003); Dong, Verhaegen and Holweg (2008),
where only the latter considered the closed-loop identification framework. Important
aspects of ordinary MPC, such as offset-free control and feedforward control are readily
implemented in SPC as shown in Kadali, Huang and Rossiter (2003); Soliman, Malik and
Westwick (2012). The main focus of this chapter is to show the successful application of
SPC to two real examples. As a by-product, we derive an efficient and reliable square-
root recursive least-squares scheme with directional forgetting. This directional forgetting
scheme is based on the ideas in Bittanti, Bolzern and Campi (1990); Cao and Schwartz
(2000) and exhibits guaranteed boundedness of the covariance matrix even if there is no
excitation.

In the first example we consider vibration control of a flexible beam. Vibration control of
flexible structures continues to be an area of active research. In particular, there is interest
in “smart” structures equipped with electrically deformable materials. Recent overviews
of control design techniques for such structures are given in e.g., Preumont and Seto
(2008) and Moheimani and Fleming (2006). It is frequently the case in practice that
the characteristics of flexible structures change, e.g., due to variable loading or changing
boundary conditions. Adaptive control methodologies for resonant structures have been
proposed in Niederberger, Fleming, Moheimani et al. (2004). Alternatively, robust control
techniques can be applied to synthesise controllers that take uncertainty into account, but
dealing with shifting resonance frequencies in such a framework is challenging, and may
require resorting to LPV or IQC techniques. Recently, the feasibility of model predictive
control (MPC) for vibration control has been demonstrated, e.g., in Wills, Bates, Fleming
et al. (2008). Hence, we will show the application of SPC to such a system.

In the second example we consider SPC to track a generator speed setpoint on an
experimental wind turbine. Two cases are considered. In the first, tracking of a varying
reference is performed. In the second, the task is to maintain a constant setpoint in the
presence of a varying wind speed. In both cases the varying operating conditions may
cause the local dynamics to be different. In the second example the recursive estimation
scheme also estimates the dynamics from a wind speed change ahead of the turbine to the
rotor speed, making use of a pitot-static tube measurement. This disturbance model helps
to anticipate these wind speed variations.

The contributions of this chapter are threefold. We first present an attractive directional
forgetting recursive least-squares scheme in square root form. Second, we demonstrate the
potential of SPC as an adaptive control methodology in dealing with time-varying system
dynamics. Third, we present the application of the algorithm to realistic examples, as
opposed to most implementations of SPC thus far, posing some additional challenges.

4.2 Identification framework

The underlying model and identification framework used in the subspace predictive control
scheme are identical to those presented in Section 2.2 of Chapter 2. For that reason we will
not repeat them here. Instead, we will only present elements of the derivations which are
specific to subspace predictive control (more details can be found in Dong, Verhaegen and
Holweg (2008); Hallouzi (2008)). It is assumed that the system operates in the vicinity of
a steady operating point during some time and any variations in the operating point or the
system dynamics occur slowly. To make this more precise, it is assumed that there is a clear
separation between the time constants of the system dynamics and the much slower time
constants of parameter variations.



4.2. Identification framework 73

4.2.1 Recursive solution of the parameter estimation problem

In this section we discuss the procedure of recursively estimating the parameters in an
online setting using recursive least squares (RLS). The starting point for our derivations
is the least-squares estimation of the predictor Markov parameters (2.12), which has been
repeated here for convenience:

arg min
[CK̃(p) D]

∥∥∥∥Yp,Np −
[
CK̃(p) D

] [
Z0,p,Np

Up,Np

]∥∥∥∥
2

F

. (4.1)

This formulation considers the offline case of identification using a batch of input-output
data. We reformulate this estimation problem to deal with new samples of input-output
data arriving at each sample interval.

To maintain a compact notation, the least-squares problem (2.12) will be concisely
written in the standard form:

Θ̂k = argmin
Θ
‖Yk − ΦkΘ‖2F , (4.2)

where the subscript k signifies that data up to time instant k is available and used. Hence,
the involved matrices are defined as (cf. (4.1)):

Yk ,




yTp+1

yTp+2

. . .
yTk


 , Φk ,




ϕT
p+1

ϕT
p+2

. . .
ϕT

k


 , Θ ,

[
CK̃(p) D

]T
,

with:

ϕk ,

[
z
(p)
k

uk

]
.

Furthermore, let nΘ = dimR vec(Θ) denote the number of parameters to be estimated.

Obviously, the data matrices one time instant later, i.e., Yk+1 and Φk+1 contain the new
samples uk+1 and yk+1 and these matrices therefore grow in time. Explicitly, these matrices
become:

Yk+1 ,




yTp+1

yTp+2

. . .
yTk
yTk+1



, Φk+1 ,




ϕT
p+1

ϕT
p+2

. . .
ϕT

k

ϕT
k+1



.

The full-rank least-squares solution of (4.2) can now be written as:

Θ̂k = (ΦT
k Φk)

−1ΦT
k Yk. (4.3)

Suppose a new sample, described by (yk+1, ϕk+1) becomes available. It is straightforward
to show that the new least-squares solution satisfies:

Θ̂k+1 = (ΦT
k Φk + ϕk+1ϕ

T
k+1)

−1

︸ ︷︷ ︸
=Pk+1=I−1

k+1

(
ΦT

k Yk + ϕk+1yk+1

)
.

We now define the information matrix Ik and the covariance matrix Pk as:

Ik = ΦT
k Φk, Pk = (ΦT

k Φk)
−1.
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Making use of this definition, the underbraced term can be simplified using the matrix
inversion lemma, in order to avoid inverting a large matrix in each time step:

I−1
k+1 = (Ik + ϕk+1ϕ

T
k+1)

−1

= I−1
k − I−1

k ϕk+1

(
Iny + ϕT

k+1I−1
k ϕk+1

)−1

ϕT
k+1I−1

k

= Pk − Pkϕk+1

(
Iny + ϕT

k+1Pkϕk+1

)−1

ϕT
k+1Pk. (4.4)

Note that this expression merely requires the inversion of an ny-by-ny matrix. The
parameter update can now be written as:

Θ̂k+1 = (I − Pkϕk+1(I + ϕT
k+1Pkϕk+1)

−1ϕT
k+1)Θ̂k + Pk+1ϕk+1yk+1

= Θ̂k − Pkϕk+1(I + ϕT
k+1Pkϕk+1)

−1

︸ ︷︷ ︸ϕ
T
k+1Θ̂k + Pk+1ϕk+1yk+1

For the underbraced term in the previous equation we can derive the following identity:

Pkϕk+1(I + ϕT
k+1Pkϕk+1)

−1

= Pkϕk+1(I + ϕT
k+1Pkϕk+1)

−1(I + ϕT
k+1Pkϕk+1 − ϕT

k+1Pkϕk+1)

= (Pk − Pkϕk+1(I + ϕT
k+1Pkϕk+1Pk)

−1ϕT
k+1Pk)ϕk+1

= Pk+1ϕk+1

which allows the parameter update to be rewritten concisely as:

Θ̂k+1 = Θ̂k − Pk+1ϕk+1(yk+1 − ϕT
k+1Θ̂k). (4.5)

In practice a forgetting factor λ < 1 is introduced to maintain a finite memory in the
least-squares problem as opposed to an infinite memory. This ensures that the parameters
remain adaptive; furthermore this is required to maintain a finite (nonzero) covariance
matrix. Exponential forgetting is introduced by adding the following update step to the
algorithm:

Īk = λIk,

so that accumulated information is uniformly discounted over time. The matrix Īk is then
used instead of Ik to perform the information update in (4.4). Applying this sequence of
operations it is straightforward to show that the standard RLS algorithm with exponential
forgetting satisfies the following update relations (Åström and Wittenmark, 1994):

Pk =
1

λ

(
Pk−1 − Pk−1ϕk

(
λIny + ϕT

k Pk−1ϕk

)−1

ϕT
k Pk−1

)
(4.6)

Θ̂k = Θ̂k−1 − Pkϕk(yk − ϕT
k Θ̂k−1) (4.7)

For ny = 1 these equations simplify to their more well-known forms. It is finally noted
that in propagating the covariance matrix Pk = (ΦkΦ

T
k )

−1 in finite precision arithmetic
the RLS algorithm is not guaranteed to retain a positive definite covariance matrix due to
accumulation of round-off errors. This effect becomes more pronounced as the condition
number of Pk grows. In the next subsection we discuss an implementation that does not
suffer from these problems.

4.2.2 Square-root covariance RLS with directional forgetting

For the reasons mentioned, the simple RLS scheme above is rarely used and instead a
square-root algorithm is used (Verhaegen, 1989; Sayed, 2003). Such algorithms propagate
the Cholesky factor of the covariance matrix (or the information matrix) by executing a
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sequence of orthogonal transformations in each time step. Such square root algorithms are
numerically superior to their counterpart described above. The computational complexity
of the standard RLS as well as the square root algorithms is O(n2

Θ) per iteration (nΘ =
p(nu+ny)+nuny is the number of parameters in the LS problem for the Markov parameters
(2.12)). i.e., quadratic in the number of parameters.

We will now derive this square-root version of the update equations, in which the
Cholesky factor of the covariance is updated. This algorithm is sometimes also called
the inverse QR RLS algorithm (Sayed, 2003). For a comprehensive overview of (square-
root) recursive least-squares algorithms consult e.g., Pan and Plemmons (1989); Sayed
(2003). In Verhaegen (1989), the round-off error propagation characteristics of several RLS
algorithms are analysed. The results of the analysis show that the square-root covariance
RLS method has some attractive properties with regard to round-off error propagation
and maintaining a symmetric positive definite covariance matrix. A standard reference
regarding the update of several factorisations applied here is Gill, Golub, Murray et al.
(1974).

Let Pk = RkR
T
k , where Rk is a lower-triangular Cholesky factor of the covariance

matrix, then the covariance update (4.6) is given by:

RkR
T
k =

1

λ
Rk−1R

T
k−1 −

1

λ
Rk−1R

T
k−1ϕk

(
λIny + ϕT

k Pk−1ϕk

)−1

ϕT
kRk−1R

T
k−1 (4.8)

This equation can be factored as follows:
[√

λIny ϕT
kRk−1

0 1√
λ
Rk−1

]

︸ ︷︷ ︸
pre-array

Q =

[
a 0
Gk Rk

]

︸ ︷︷ ︸
post-array

, (4.9)

where:

Gk =

(
1

λ
Rk−1R

T
k−1ϕk

(
λIny + ϕT

k Pk−1ϕk

)−1

ϕT
kRk−1R

T
k−1

) 1
2

a =
(
λIny + ϕT

kRk−1R
T
k−1ϕk

) 1
2
.

Multiplying both sides of this equation by their respective transposes will show that (4.8)
is indeed satisfied. This array representation shows that by first forming the pre-array in
(4.9) and subsequently performing a sequence of orthogonal transformations Q in order
to lower-triangularise the post-array, we can obtain the updated Cholesky factor Rk. This
Cholesky factor is read off from the post-array. The parameter update is then given by:

Θ̂k = Θ̂k−1 +
√
λGka

−1(yk − ϕT
k Θ̂k−1) (4.10)

In a typical least-squares formulation, we consider the information matrix I, which is an
accumulation of rank-one updates. As was shown before, the information matrix is typically
updated according to:

Ik = λIk−1 + ϕkϕ
T
k .

For convenience further on, we will explicitly split the steps of forgetting and updating
according to:

Īk−1 = λIk−1,

Ik = Īk−1 + ϕkϕ
T
k .

In this relation, λ is the forgetting factor, usually close to one, used to discount old
information in an exponential way (i.e., observation k − j is weighted with λj in the
least-squares criterion). A common expression for the effective window length. is given
by (Sayed, 2003):

N =
1

1− λ .
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A drawback of this scheme is that all information is forgotten uniformly. As a consequence,
the matrix I may become singular over the course of time if the observations ϕk do not
excite all directions. Suppose the information matrix is an n-by-n square matrix I ∈ R

n,
then over time ϕk ∈ R

n should uniformly “visit” all directions in the space R
n. This effect

is coupled to the notion of persistent excitation (Johnstone, Johnson, Bitmead et al., 1982).

In Cao and Schwartz (2000) a directional forgetting algorithm is proposed that uses a
decomposition of the information matrix. At each time instant, the information matrix is
decomposed according to:

Ik = I(1)k + I(2)k .

The decomposition is such that I(1)k ϕk = 0. This implies that the update ϕk is orthogonal

to the columns of I(1)k . This does not define I(2)k uniquely. Since the updates are rank-

one modifications to Ik, one can make the restriction that I(2)k is a rank-one matrix.

Furthermore, it should hold that I(2)k ϕk = Ikϕk. In Cao and Schwartz (2000) it was
shown that a unique decomposition can then be found.

Remark 4.1. Here, we treat the derivations for the case ny = 1 for clarity of presentation.
Note that in case ny > 1, updating the covariance matrix can proceeed sequentially, i.e. by
performing the update steps for each column of ϕk in turn. The end result is the same.

We now consider an alternative derivation of these results. Based on the new regressor
vector ϕk, we can define orthogonal projection matrices:

Πϕk
=
ϕkϕ

T
k

ϕT
k ϕk

,

Π⊥
ϕk

= I −Πϕk
= I − ϕkϕ

T
k

ϕT
k ϕk

,

such that for an arbitrary vector ξ we have

Πϕk
ξ ‖ ϕk and Π⊥

ϕk
ξ ⊥ ϕk.

Thus Πϕk
projects a vector (matrix) onto ϕk and Π⊥

ϕk
projects a vector (matrix) onto the

orthogonal complement of ϕk. One decomposition of the information matrix I is:

Ik = IkΠ⊥
ϕk︸ ︷︷ ︸

⊥ϕk

+ IkΠϕk︸ ︷︷ ︸
‖ϕk

. (4.11)

The main idea is then that forgetting can be applied only along the direction of the new
data, that is, according to:

Īk = IkΠ⊥
ϕk

+ λIkΠϕk
, (4.12)

where Ī denotes the information matrix with discounted old information. The decom-
position (4.11) clearly satisfies the requirements imposed on the decomposition before.
A third requirement, however, is not satisfied automatically. The decomposition must be

symmetric in the sense that I(1)k and I(2)k must both be symmetric matrices or else the
forgetting proposed in (4.12) will result in a loss of symmetry. In general, the matrices
IkΠ⊥

ϕk
and IkΠϕk

are not symmetric (although all individual matrices are symmetric),
since the information matrix and the projection matrices do not share the same eigenspace.
To solve this, we must modify the projections to:

Πϕk
=
ϕkϕ

T
k Ik

ϕT
k Ikϕk

,

Π⊥
ϕk

= I −Πϕk
= I − ϕkϕ

T
k Ik

ϕT
k Ikϕk

.
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These projections ensure that the range of Πϕk
is still ϕk (which is necessary to ensure

Πϕk
ϕk = ϕk), while the orthogonal complement of its null space (i.e., that set of directions

which are annihilated by the projection) is given by Ikϕk, so ϕk transformed into the range
of Ik (which is necessary to ensure that Πϕk

does not modify the eigenspace of Ik).
Using these projections, we still have the decomposition (4.11), where the two components
are now each symmetric. Using the expressions for the projections, (4.12) can be written
explicitly as:

Īk = IkF = Ik
(
I + (λ− 1)

ϕkϕ
T
k Ik

ϕT
k Ikϕk

)
. (4.13)

In a recursive least-squares scheme, usually the covariance matrix Pk = I−1
k is updated, to

avoid inversion in each time step. Using the Woodbury matrix identity we obtain:

P̄k = F−1Pk =

(
I +

1− λ
λ

ϕkϕ
T
k Ik

ϕT
k Ikϕk

)
Pk.

Note that some care must be taken to ensure that the rank-one downdate in (4.13) does
not cause F to become singular (Seeger, 2004). Further simplification results in:

P̄k = Pk +
1− λ
λ

ϕkϕ
T
k

ϕT
k Ikϕk

= Pk + αkϕkϕ
T
k , (4.14)

with the scalar αk given by:

αk =
1− λ
λ

1

ϕT
k Ikϕk

≥ 0, (4.15)

which shows that the directional forgetting procedure is equivalent to a symmetric positive
rank-one update to Pk.

Note that a significant drawback of this directional forgetting algorithm is that the matrix
Ik must be available to compute (4.15). This was not mentioned in Cao and Schwartz (2000),
but implies that one should either update both the information and covariance matrices in
each time step, or that one should invert the covariance matrix in each time step. An attractive
alternative results from a square root formulation of this problem, which we shall now describe.

In the square-root RLS filter, we work with the Cholesky factor Rk of the covariance
matrix, such that Pk = RkR

T
k . Substituting this factorisation into the update law (4.14)

yields:

R̄kR̄
T
k = RkR

T
k + αkϕkϕ

T
k . (4.16)

From this equation it is straightforward to derive an array representation:

[√
αkϕk Rk

]
︸ ︷︷ ︸

pre-array

Q =
[
0 R̄k

]
︸ ︷︷ ︸

post-array

, (4.17)

with:

αk =
1− λ
λ

1

‖R−1
k ϕk‖22

, (4.18)

and where Q is an arbitrary orthogonal transformation used to zero the elements in the
first columns of the pre-array, e.g., by means of a sequence of Givens rotations.

Note that in the square root formulation we find an alternative expression to compute
αk (4.15), given by (4.18). Since we have at our disposal the Cholesky factor Rk and this
Cholesky factor is lower triangular, the term R−1

k ϕk is readily computed by means of forward
substitution as opposed to computing the inverse explicitly!
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Remark 4.2. Comparing (4.17) with the RLS update in (4.9) it is clear that, in terms
of allocated space, the same pre-array can be used for the directional forgetting and the
covariance update steps. This is shown more explicitly below:

Directional forgetting (ny = 1)

[
0 0√
αϕk Rk−1

]

︸ ︷︷ ︸
pre-array

Q1 =

[
0 0
0 R̄k−1

]

︸ ︷︷ ︸
post-array

Covariance update (ny = 1)

[
1 ϕT

k R̄k−1

0 R̄k−1

]

︸ ︷︷ ︸
pre-array

Q2 =

[
a 0
Gk Rk

]

︸ ︷︷ ︸
post-array

R̄k−1

Rk−1

Rk

Furthermore, both orthogonal factorisations require the same number of floating point
operations1.

The preceding analysis shows that it is a simple matter to incorporate directional
forgetting into an RLS scheme that is based on updating the square root of the covariance
matrix: before updating the Cholesky factor of the covariance matrix with new data (cf.
(4.9)), first (4.17) is used to apply forgetting only in the direction of the new data.

A significant advantage of the directional forgetting scheme is that old information is
only discounted if it can be replaced with new information, thus relaxing persistency of
excitation requirements. Further, as suggested in Cao and Schwartz (2000), a deadzone
can be introduced so that the forgetting is only applied if the norm of ϕk exceeds some
threshold, determined, for instance, by the noise level:

αk = 0 if ‖ϕk‖2 ≤ ǫ. (4.19)

Since each new data vector appended to the least-squares problem in (4.2) is in fact
just a shifted version of its predecessor with a new sample appended, this knowledge
can be exploited to reduce the computational complexity of the algorithm (Sayed, 2003;
Houtzager, van Wingerden and Verhaegen, 2009a). This is used in the derivation of so-
called fast-array RLS algorithms whose complexity is O(nΘ), thus linear in the number of
parameters. These formulations, however, do not typically possess the robust numerical
properties of the standard square root solutions (Sayed, 2003) and shall hence not be
considered in this work.

4.2.3 Example 1 - Parameter estimation

We simulate N = 1000 samples of the following model:

yk =
bz2

z2 + a1z + a2
uk + vk,

1In a naive implementation, that is. The structure (zeros) of the directional forgetting pre-array could be

exploited using Givens rotations to lower the number of operations.
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with

Θ ,



b
a1
a2


 =





(
0.5 0.3 0.4

)T
, 0 ≥ k ≤ 500,

(
−0.5 0.9 0.9

)T
, 500 < k ≤ 1000

where uk and vk are zero-mean white noise sequences with variances of 1 and 0.01
respectively. We simulate the traditional RLS algorithm with exponential forgetting and
the directional forgetting algorithm, both with a forgetting factor λ = 0.95. The directional
forgetting deadzone tolerance (4.19) is set to 0.4.

Case I: Loss of excitation

In case I, we simulate a loss of excitation. Between samples k = 200 and k = 400 we do
not excite the system, uk = 0 so that the output is dominated by noise.

Figure 4.1(a) shows the results. It is clear that during the period with no excitation, the
covariance matrix of the exponential forgetting algorithm grows exponentially, whereas the
covariance matrix of the directional forgetting algorithm stays bounded. As a consequence,
the parameter estimates themselves stay closer to the true values. It is also interesting to
observe that the directional forgetting algorithm exhibits a slower convergence. Possibly
this has to do with the deadzone tolerance: the value is chosen such that during no
excitation no forgetting is performed if the norms of the regressor vectors are below 0.4,
based on the noise level. It could be the case, however, that even during excitation the
norm of ϕk is sometimes less than 0.4, so that the directional forgetting algorithm is slightly
conservative in these events.

Case II: Special excitation

In case II we modify the regressor vectors ϕk. Between samples k = 700 and k = 900 we
project the regressor vectors onto the vector [1 0 1]T . This causes the regressor vectors to
be non-informative on parameter a1.

Figure 4.1(b) shows the results. The results are very similar to the ones shown in case
I. The main consequence of the projection is that the exponential forgetting algorithm
will diverge. The directional forgetting algorithm on the other hand will keep operating
properly, simply maintaining the information related to parameter a1 at a constant level as
long as no new information comes in.

4.2.4 Example 2 - Parameter tracking

As discussed in Bittanti, Bolzern and Campi (1990); Cao and Schwartz (2000), the
first directional forgetting modifications to the exponential forgetting RLS scheme were
presented in Hägglund (1983); Kulhavý and Kárný (1984); Hägglund (1985); Kulhavý
(1987). In Bittanti, Bolzern and Campi (1990) the convergence properties of these
proposed algorithms are studied and it is shown by a deterministic counterexample (a
parameter tracking problem) that these directional forgetting algorithms do not converge
for this counterexample. The article also proposes a modification to these original
directional forgetting algorithms by means of adding a regularisation term to the covariance
update in order to retain adaptivity. Figure 4.2 compares the results of the original
directional forgetting algorithm with the modified directional forgetting algorithm and the
square-root directional forgetting algorithm presented in this section. It turns out that our
method exhibits very similar convergence properties to the modified algorithm suggested
in Bittanti, Bolzern and Campi (1990). The parameter estimates generated by the latter
two approaches are barely distinguishable in Figure 4.2.
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Figure 4.1 – Progression of the parameter estimates and their covariances for the exponential RLS

algorithm (gray line and light gray shading) and the directional forgetting RLS

algorithm (black line and dark gray shading). The true parameters are indicated by the

horizontal black lines.
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Figure 4.2 – Progression of the parameter estimates for the counterexample from Bittanti, Bolzern

and Campi (1990) for the standard directional forgetting RLS algorithm (a), the

modified directional forgetting RLS algorithm proposed in Bittanti, Bolzern and Campi

(1990) (b) and the directional forgetting RLS algorithm proposed in Cao and Schwartz

(2000) and described in this chapter (c). The true parameters follow the black line.

4.3 Deriving the subspace predictor

Having estimated the predictor Markov parameters from least-squares problem (2.12),
which were explicitly given in (2.11), the next step is to construct an output predictor
for a sequence of future outputs. As a starting point (2.8) is revisited:

yk+p = ĈKz(p)k + D̂uk+p,

where the term ek+p has been omitted since for purposes of prediction we have E{ek+p} =
0.
At time instant k, we consider the outputs at time instant k + 1 up to k + N , where the

arbitrary length of the prediction interval is denoted by N ∈ [1,∞)2. Define by y
(N)
k a

stacked sequence of outputs according to:

y
(N)
k =

[
yTk+1, . . . , y

T
k+N

]T
.

A stacked sequence u
(N)
k is defined analogously. Then it is straightforward to derive that:

y
(N)
k = Γ̃(N)K̃(p)z

(p)
k + H̃(N)(B,D)u

(N)
k + H̃(N)(K, 0)y

(N)
k , (4.20)

where H̃(N)(B,D) and H̃(N)(K, 0) have been defined in (2.6) in Section 2.2 and where

Γ̃(N)K̃(p) has been defined in (2.16) in Section 2.3.

These matrices can be constructed directly from the estimated predictor Markov

parameters ̂CK̃(p), D̂. Note that since the predictor parameters are used, the output

2It is remarked here that the prediction horizon N is not limited by the past window dimension p.
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prediction y
(N)
k appears on both sides of the equation. To obtain the open-loop subspace

predictor, the data equation is pre-multiplied with (I − H̃(N)(K, 0))−1 to obtain the open-
loop predictor:

y
(N)
k = Γ(N)K̃(p)z

(p)
k +H(N)(B,D)u

(N)
k . (4.21)

There are at least two efficient ways to obtain the open-loop output predictor. First, one can

simply perform the pre-multiplication with (I−H̃(N)(K, 0))−1. For that purpose it is highly

advantageous to note that the matrix (I−H̃(N)(K, 0)) is lower unit-triangular, allowing an
efficient forward-substitution to be used. An alternative method, derived in Dong (2009),
uses a recursive formulation of the forward-substitution procedure to immediately build

the predictor matrices, without explicitly forming (I − H̃(N)(K, 0)). This procedure thus
requires less storage, but a higher amount of looped operations, so the preferred method
is implementation-dependent. In both cases it is possible to show, by carrying out the
pre-multiplication, that the open-loop predictor contains the Markov parameters of the
innovation model (2.3) as opposed to those of the predictor model (2.4).

4.4 Setting up the predictive control problem

In this section we consider the derivation of the predictive control problem, based on the
predictor (4.21) derived in the previous section. We consider a typical model predictive
control performance index with output weighting. In this context, the goal is to, at each
time instant, minimise the value of the following objective function:

Jk =

N∑

i=1

(yk+i − rk+i)
TQy(yk+i − rk+i) + uT

k+iRuuk+i +∆uT
k+iR∆u∆uk+i,

subject to:

umin ≤uk+i ≤ umax, i = 1 . . . N,

∆umin ≤ ∆uk+i ≤ ∆umax, i = 1 . . . N.

This objective expresses that the output should track a reference signal rk+i, while
minimising the control effort uk+i and control rate ∆uk+i

3,4. Using the notation introduced
before, the objective can be reduced to:

Jk = ‖y(N)
k − r(N)

k )‖Q̃y
+ ‖u(N)

k ‖R̃u
+ ‖∆u(N)

k ‖R̃∆u
, (4.22)

after defining block-diagonal matrices Q̃y, R̃u and R̃∆u appropriately. In this equation,

‖x‖Q , xTQx denotes the weighted Euclidean norm.

To obtain the control rate ∆u, the following matrices are defined:

S∆ =




Im
−Im Im

. . .
. . .
−Im Im


 , S0 =




0 · · · Im 0
...
0 · · · 0 0




so that:

∆u
(N)
k = S0z

(p)
k + S∆u

(N)
k . (4.23)

3∆uk can be related to physical rate limits using the approximation (∆uk)max ≈
(
du
dt

)
max

· Ts, with Ts the

sample time and
(
du
dt

)
max

the actual rate limit.
4Note that due to this formulation of the objective, perfect steady-state nonzero reference tracking can never be

achieved when uss 6= 0 if the second cost term is included, except when Ru = 0 is chosen.



4.4. Setting up the predictive control problem 83

Furthermore, a control horizon is introduced so that uk+j = uk+Nc for j = [Nc + 1, N ]:

u
(N)
k = SNcu

(Nc)
k , (4.24)

with:

SNc =




Im
. . .

Im
Im
...
Im




. (4.25)

Evaluating the objective function results in an inequality constrained quadratic program-
ming (QP) problem in the variables uk+i, i = 1 . . . Nc. Here, we have only shown
an elementary formulation, but obviously more sophisticated (in)equality constraints or
objective terms can be incorporated while retaining convexity of the optimisation problem.

4.4.1 Algorithm summary

The complete SPC algorithm is briefly summarised below.

Algorithm 1 Subspace predictive control

Given: k = 0, p > 0, P0, Θ0, ϕ0, Q̃y , R̃u, R̃∆u, N > 0, 0 < Nc ≤ N

loop

1. Update the covariance matrix Pk using (4.6) or the square-root equivalent (4.9) and update

the parameters Θk using (4.7) or the square-root equivalent (4.10);

2. Construct the parameter matrices in (4.20) using Θk;

3. Solve for the open-loop predictor (4.21);

4. Construct the QP based on (4.22);

5. Solve the QP;

6. Implement the first element uk+1 of the optimal input sequence;

7. k ← k + 1.

end loop

4.4.2 Implementation

The algorithm has been implemented using a tailored C++ implementation. For matrix
manipulations, use was made of the Eigen template library (Guennebaud, Jacob et al.,
2010). The QP is solved using the online active set strategy implemented in the qpOASES
package (Ferreau et al., 2012). Although we are dealing with a time-varying QP, the use
of an active set strategy is still beneficial since the Hessian in the quadratic program is
expected to vary slowly most of the time. All code was accessed through Simulink®S-
functions and executed in realtime using the xPC Target™ realtime kernel.

4.4.3 Parameter selection

The presented algorithm requires a few parameters to be tuned and these parameters
deserve some careful attention. The parameters are:
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• The past window dimension p. The value of p determines the number of system
parameters that are estimated and the order of the underlying ARX model (2.10).
In off-line identification, this parameter is usually taken quite large, e.g., several
times the maximum expected model order. In the recursive formulation (4.1),
however, this choice directly affects the computational complexity of the update.
Furthermore, estimating a larger number of parameters reduces the convergence
rate of the recursive least-squares scheme. In an off-line analysis, a suitable value of
p can be obtained, for instance, by validating the hypothesis that the least-squares
residual resembles a zero-mean white noise sequence and whether the predictor
Markov parameters indeed tend to zero at p.

• The forgetting factor λ. The value of λ should always be strictly less than 1 to
avoid overflow issues when updating the covariance matrix with new observations
(that is, for λ = 1 the information matrix will grow unbounded, cf. (4.4)). This is
also necessary to retain adaptivity of the parameters by forgetting, in an exponential
sense, older data. The effective window length is usually expressed as N ≈ 1/(1−λ).
Depending on the characteristics of new observations, if the effective window is
too short, information will be discarded too rapidly and the covariance matrix will
become ill-conditioned. This choice of λ is essentially a trade-off between the ability
to track parameter changes and the mean square errors of the estimated parameters.
Again, in off-line analysis a value for λ can be chosen that suits the process at hand.
Sometimes, λ itself may be an adaptive value, which is chosen as a function of the
regressors and excitation levels (Kulhavý, 1987).

• The directional forgetting tolerance ǫ (4.19). The value of ǫ determines when
directional forgetting is applied. In some instances where there is little excitation,
the regressor ϕk may be small and dominated by noise. In these cases ǫ can be
used to restrict directional forgetting from being applied in such instances. Also, a
large initial covariance is often chosen to expedite learning in the early stages of the
estimation.

• The prediction horizon Np is typically chosen such that the prediction interval
contains the crucial dynamics of the process; its value can be based on the system’s
step response.

• The control horizon Nc determines the number of future inputs that is free. A small
Nc reduces the complexity of the QP and further has a smoothing effect on the control
signal, which is important for stability.

• The GPC weights, Qy, Ru and R∆u, determine the trade-off between control
authority (disturbance rejection) and actuator use. In the finite-horizon predictive
control problem, these parameters also too a large extent affect the stability of the
closed-loop system. These parameters are usually tuned so as to ensure that the
control signals stay within their saturation and rate limits during regular operation.

4.5 Experimental evaluation: active damping of a ‘‘smart’’ beam

The SPC algorithm derived in the previous sections was derived before in the literature
(Dong, Verhaegen and Holweg, 2008; Hallouzi, 2008), but it has rarely been applied to
real systems (Woodley, 2001; Dong, Verhaegen and Holweg, 2008). In this section and the
next one we consider two experiments in which we have tested the SPC algorithm on real
systems.

4.5.1 Experimental setup

The subspace predictive control formulation derived in the previous sections is applied
to a vibration control problem on a beam equipped with piezoelectric transducers, see
Figure 4.3. This is the same setup as was used in Section 2.4.3. Two of these transducers
are configured as actuators and two are configured as sensors. A schematic representation
of the beam is given in Figure 4.4. The beam is an aluminium strip of 95 cm length. At
locations 1 and 2, two (almost) collocated sensor-actuator pairs are situated. The actuators
are flexible Macro Fiber Composite (MFC) devices, type M8528, from Smart Material Corp.
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Figure 4.3 – Photograph of the laboratory setup. The magnetic holding device is visible towards the

far end.

The sensors are connected to high-impedance buffers and the actuators are driven by high-
voltage amplifiers. As shown in Figure 4.3, the beam is clamped at the near end. At the
far end either of two boundary conditions can be activated by means of an electromagnetic
holding device. If the holding device is inactive, configuration (a), the beam is free at the
far end, resulting in clamped-free boundary conditions, see Figure 4.4(a). If the holding
device is active, configuration (b), the beam is effectively pinned at the far end, resulting in
clamped-pinned boundary conditions, see Figure 4.4(b). These two different configurations
result in two radically different dynamic behaviours, as can be seen from the expected
vibration modes in Figure 4.4. The beam has a potentially infinite number of vibration
modes, the lowest of which have very low intrinsic damping. For the given beam, the

first two modes of configuration (a) are located at f
(a)
1 = 3.7Hz and f

(a)
2 = 23.7Hz,

respectively. The first mode of configuration (b) is located at f
(b)
1 = 18.6Hz.

4.5.2 Control design

The objective of the control algorithm will be to augment damping of the first two vibration
modes of configuration (a) and the first mode of configuration (b). During operating, the
configuration can switch and the algorithm should track the associated changes in the
dynamic behaviour.

To allow the digital control algorithm to operate at a rate of 200 Hz, data was sampled
at 2 kHz, then filtered using a second order Butterworth anti-aliasing filter with a corner
frequency at 60 Hz and then downsampled to 200 Hz. The control signal was upsampled
to 2 kHz and then low-pass filtered at 250 Hz to eliminate the high frequency content
introduced by the zero-order hold reconstruction.

In the current experiment the following parameter values were chosen: a past window
dimension of p = 25; a forgetting factor of λ = 0.99995, a prediction horizon of Np = 50
(=0.25 s) and a control horizon of Nc = 10.

4.5.3 Results

An experiment was performed in which the beam was subjected to random excitations
on both actuators. At t = 10 s the controller is switched on. Then, at t = 50 s, an
electromagnetic actuator clamps the tip of the beam. This momentarily introduces an
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Figure 4.4 – Schematic view of the two beam configurations and the associated natural vibration

modes (Inman, 2001): (a) clamped, (b) clamped-pinned.

impulse disturbance (shock) and results in permanently changed characteristics. During
this switching, the controller is kept switched on. From Figure 4.5 (the size of the
moving window, 10 s, somewhat skews the temporal view of the results) one can see that
almost immediately after switching on the controller the second mode is almost completely
eliminated. Furthermore, after the change in dynamics, the controller adapts to the new
configuration in seconds, after which the first mode of configuration (b) is also almost
eliminated. In Figure 4.6 we compare the results of identifying the open and closed-loop
systems for the first input-output pair. These responses clearly show that the modes at

f
(a)
2 = 23.7Hz and f

(b)
1 = 18.6Hz, respectively for the two configuration, are attenuated

by approximately 20 dB. The first mode at f
(a)
1 = 3.7Hz in configuration (a) is attenuated

by about 10 dB.

4.6 Experimental evaluation: speed control of a wind turbine scale

model

In this experiment we have applied SPC to regulate the rotational speed of a small wind
turbine. In the context of a master thesis project we have studied the potential of using
look-ahead information on upcoming wind speed changes. Often, feedback control is used
to regulate a wind turbine’s rotor speed. This feedback control measures the current rotor
speed, determines the error between this speed and the setpoint and gives proportional
and integral feedback. The considerable inertia of the rotating system implies that there is a
large time constant between changes in aerodynamic torque and actual speed changes. As a
consequence, the potential of feedback control is hampered by a large phase disadvantage.
In that master thesis project we have considered how disturbance rejection improves when
a feedforward signal is used and when predictive control is used. We have taken this
opportunity to also perform experiments using the SPC algorithm presented in this chapter.

4.6.1 Experimental setup

The scale model, shown in Figure 4.7, is a modified Extractor wind turbine produced
by Alternate Power Technologies Inc. The rotor diameter is 1.5 m and the rated power
is approximately 300 W. The rotor speed is limited by a passive pitch mechanism which
actively stalls the blades when a rotational speed of ±750 RPM is approached. Since this
pitch regulation mechanism results in slow limit cycle oscillations of the rotor speed when it
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Figure 4.5 – Plot showing the spectral amplitude (estimated) and frequency of the controlled mode.

This is the second bending mode of configuration (a) in Figure 4.4 and the first bending

mode of configuration (b) in Figure 4.4, measured at sensor 1 (y1) as a function of time:

(gray) open-loop, (black) closed-loop. The vertical lines indicate switching on of the

controller (t = 10 s) and the instant at which the beam is clamped (t = 50 s).

is active, we have only considered operation in below-rated conditions to avoid interaction
of the two control systems. Electrical power is generated by a three-phase permanent
magnet alternator with a built-in rectifier to result in an (almost) direct current output.
The electrical torque is regulated by means of a variable resistive load. The schematic
of this load is shown in Figure 4.8. The load is varied by activating or deactivating one
resistor in a series network of two resistors by means of pulse width modulation (PWM).
Using the 20 kHz PWM signal the resistance can be varied (linearly as a function of the duty
cycle) between 4.8Ω (at 0% duty cycle) and 0.1Ω (at 100% duty cycle). Hence, increasing
the duty cycle implies a lower resistance, allowing a larger current I to flow through the
generator, thereby increasing the generator torque and slowing down the rotor.

The experiments took place at the Open Jet Facility of the Faculty of Aerospace
Engineering at Delft University of Technology. This wind tunnel has a large test section
and a jet opening with a diameter of 3 m allowing fairly large rotating models to be tested.
Figure 4.9 shows the measured steady-state rotor speed and electrical power for a range of
wind speeds and duty cycles. Based on these results we have chosen a wind speed of 7 m/s

and a rotor speed of 380 RPM as the central operating point for the experiments. At these
conditions the corresponding duty cycle is near 50%, giving a good control range of ±50%
in both directions.

To be able to evaluate the feedforward control strategies a pitot-static tube was placed
at the opening of the jet. The model was placed about 6 metres downwind. Theoretically,
at a wind speed of 7 m/s and disregarding the effects of induction, this would give almost

4Photograph courtesy of Nick Verwaal.
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Figure 4.6 – Identified frequency responses of the open-loop (gray) and closed-loop (black) system

under SPC control from disturbance u1 to output y1 for the clamped configuration (a)

and the clamped-pinned configuration (b).

1 second of look-ahead time. Although the wind speed measurement was taken inside
the tunnel opening, before the flow had been able to expand and slow down to its actual
velocity, the changes in dynamic pressure are still proportional to those in the test section.

All signals were sampled at 2 kHz and filtered with 1st order Butterworth low-pass filters
with a cutoff frequency of 200 Hz. Since the wind speed measurement turned out to be very
noisy, it was filtered with a cutoff frequency of 1 Hz. The PI and feedforward controllers
were run at 2 kHz, whereas SPC was run at 20 Hz.

4.6.2 Identification and controller design

To identify the dynamics of the turbine relevant to these experiments two measurements
were performed. In the first, the turbine was run in the chosen operating point
(7 m/s, 380 RPM) and the duty cycle was perturbed around its steady-state value using a
pseudorandom binary signal of ±10%. We have only focussed on the time constant related
to the rotor inertia. The measured data was used to identify the dynamics from the duty
cycle input to the rotor speed response. Using the MOESP method a first order model was
identified.

In the second experiment, the same conditions were used but now the wind speed was
changed. The measured data was used to identify the dynamics from the wind speed
measured at the pitot tube to the rotor speed response. Using the MOESP method a first
order model was identified.

The models have time constants of 7 seconds and 9 seconds, respectively, and have
different DC gains. Based on the transfer function from duty cycle to rotor speed a PI
controller was designed to regulate the rotor speed to its setpoint.
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Figure 4.7 – Photograph of the experimental wind turbine in the Open Jet Facility5. The pitot-static

tube can be seen protruding into the tunnel mouth.
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Figure 4.8 – The variable dump load configuration attached to the wind turbine scale model. The

duty cycle of the switch determines the effective resistance of the resistive load.

To avoid some of the complications arising from the fact that we are tracking a nonzero
reference and hence adding an integral component to the model would be necessary, we
have first subtracted the operating equilibrium from the input and output signals, so that
the controller truly operates around the chosen operating point. For a more elegant and
flexible solution the techniques discussed in Kadali, Huang and Rossiter (2003); Soliman,
Malik and Westwick (2012) could be employed.

In each experiment, the first 40 seconds of the simulation were used to initialise the
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Figure 4.9 – Steady-state rotor speed and electrical power for a range of wind speeds and duty cycles.

estimation of the system Markov parameters and during this time the PI controller was used
to track the reference. Over a number of trials the SPC parameters were tuned. We started
with a small weight on the tracking error, which was gradually increased to result in good
tracking end disturbance rejection while satisfying the constraints. Ultimately, the following
parameters were used: an ARX order of p = 50, a forgetting factor of λ = 1 − 2 · 10−7, a
prediction horizon of N = 50 and a control horizon of Nc = 20. Note that this forgetting
factor is so close to one that there is effectively no forgetting. No weights were imposed
on the control rate and the weight on the control input was kept equal to 1. A weight of
Qy = 8000 was imposed on the reference tracking error.

4.6.3 Results

First, a repetitive sequence of setpoint changes was applied. In the first 40 seconds of the
simulation the PI controller was used and during this time the system Markov parameters
were estimated by the RLS algorithm. After these 40 seconds, control was handed over to
the SPC controller. Figure 4.10 shows the results. It is interesting to see that the first set of
setpoint changes is not tracked very well (e.g at t = 60 s), but in the second sequence (at
140 s) the changes are tracked much better.

Note also that the wind speed signal in Figure 4.10 is very noisy. This is not due to
turbulence in the wind tunnel, but rather due to poor quality of the pressure transducer.
It remains to be investigated whether this noise level negatively affects the feedforward
performance of the SPC controller.

In the second experiment repetitive wind speed changes were created by controlling the
wind tunnel. Again, the first 40 seconds were used to initialise the RLS algorithm after
which control was handed over to SPC. Figure 4.11 shows the results. After the initial
transient at the switching instant, the SPC controller immediately starts rejecting the wind
speed disturbances. Furthermore, the control signal appears to become smoother as time
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Figure 4.10 – Result of applying SPC to track rotor speed setpoint variations indicated by the thin

line in the rotor speed plot. At t = 40 s, indicated by the vertical line, the control is

handed over from the PI controller to the SPC controller.

progresses. It is important to mention that, compared to the first experiment, wind speed
is taken as a measured input. The wind speed measurement was very noisy and this noise
presents itself in the control signal.
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Figure 4.11 – Result of appying SPC to maintain the rotor speed setpoint of 380 RPM. At t = 40 s,

indicated by the vertical line, the control is handed over from the PI controller to the

SPC controller. After an initial transient, SPC successfully maintains the speed setpoint

by rejecting the effects of wind speed variations.

4.7 Conclusions

In this chapter we have applied subspace predictive control to two illustrative examples.
We have shown that subspace predictive control can be derived as a direct extension
of the predictor-based identification framework in Chapter 2. In that sense it forms a
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first step towards the fusion of identification and control into data-driven control. The
ultimate goal of such an approach is that overall controller design and tuning becomes
more straightforward by directly exploiting system information embedded in measured
data.

We have demonstrated how subspace predictive control can be applied to vibration
control problems in flexible structures and we have shown that damping can be achieved
when the dynamics change considerably. We have also shown the application to reference
tracking on an experimental wind turbine. Key advantages are the adaptation to changes
in dynamics and the limited set of tuning parameters. Although the scheme may be
computationally complex, it can easily be run on present-day processors by exploiting
structure in the algorithm.

To maintain proper conditioning of the covariance matrix in a forgetting RLS scheme it
is necessary that conventional persistence of excitation conditions are satisfied. This can be
achieved by applying an appropriate reference perturbation that is as small as possible (to
avoid loss of performance). Guaranteeing a sufficient level of excitation during operation is
an active area of further research. In this chapter we have presented a directional forgetting
RLS scheme which ensures that the covariance matrix remains bounded during periods of
no excitation, or when the excitation does not cover the full parameter space.





5Closed-loop subspace identification

of Hammerstein systems

Many nonlinear systems, including wind turbines, can be accurately described
by linear time invariant models when operating close to a constant operating
equilibrium. For control, however, it can be desirable to have a globally valid
description as opposed to models in discrete operating points. Furthermore, in
particular in the case of wind turbines, it is nearly impossible to maintain a constant
operating point during the process of data acquisition for system identification.
Instead of resorting to available black box nonlinear identification techniques, which
are often hard to apply in practical contexts, we investigate in this chapter a new
method for identifying simple nonlinear systems consisting of static nonlinearities
in series with linear time invariant dynamics – so-called Hammerstein systems.

In this chapter we present a novel methodology to identify such systems from
closed-loop data. The dynamic subsystem is identified using one of the closed-
loop subspace methods presented in Chapter 2. The nonlinearity is described using
a recently developed linear regression framework for multivariate simplex splines.
We further propose a separable least-squares regression framework for recovery of
the low-rank structure between the nonlinearity and the LTI system.
As a relevant example application we consider the identification of a wind turbine.
We have previously shown that the elementary dynamics of wind turbines can
be represented in the form of a multivariable closed-loop Hammerstein structure,
where the nonlinear mappings consist of the torque and thrust coefficients. Similar
structures, with nonlinearities in the form of aerodynamic coefficients (or lookup
tables), are further found throughout the field of aerospace vehicle dynamics.

5.1 Introduction

One of the challenges mentioned in the introduction to this thesis is that wind turbines are
nonlinear systems. In practical situations with continuously varying operating conditions
this makes the potential for LTI system identification limited. In this chapter, we present
an extension to the well-established LTI techniques that extends the model class to
Hammerstein systems, i.e., systems consisting of a static nonlinearity in series with an
LTI dynamic part, cf. Figure 5.1. Identification techniques for Hammerstein systems have
a fairly long history (Narendra and Gallman, 1966; Chang and Luus, 1971; Verhaegen
and Westwick, 1996; Bai, 1998; Goethals, Pelckmans, Suykens et al., 2005). Main classes
of methods are nonparametric approaches (Vandersteen, Rolain and Schoukens, 1997),
subspace approaches (Verhaegen and Westwick, 1996; Goethals, Pelckmans, Suykens et
al., 2005) and parametric prediction-error approaches (Chang and Luus, 1971; Bai, 1998;
Zhu, 2000; Falck, Suykens, Schoukens et al., 2010). The latter class is often restricted to
SISO or SIMO systems. Furthermore, noise models are often not explicitly accounted for.
More crucially, perhaps, the majority of the existing methods cannot deal with closed-loop
data in a consistent manner.

The choice of a parameterisation for the nonlinear static function remains a challenging
topic. Often, this parameterisation consists in choosing an expansion in terms of basis
functions, requiring the tuning of the parameters of these functions, or imposes severe
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Figure 5.1 – The closed-loop Hammerstein configuration with references to relevant paragraphs.

restrictions on the nonlinearity. A more recent class of methods introduces techniques from
the machine learning community in the form of support vector machines. These methods
may be used to model a wide class of nonlinearities, by mapping the nonlinear features
to an infinite-dimensional feature space (Goethals, Pelckmans, Suykens et al., 2005; van
Wingerden and Verhaegen, 2009a). Still, the choice of kernel functions is challenging and,
furthermore, computational aspects limit the length of data sets used for identification.
Hence, these techniques seem to have potential when little knowledge is available about
the characteristics of the nonlinearity.

While the use of splines for modelling of functions is well-known and widespread (Lai
and Schumaker, 2007), a recently developed linear regression framework (de Visser, Chu
and Mulder, 2009) makes them particularly accessible to the engineering community. In
this chapter we exploit this framework to model the static nonlinear function using a set of
simplex splines. These simplex splines have attractive properties, e.g., they allow a priori
specification of continuity conditions and form a partition of unity (Lai and Schumaker,
2007). In addition, the tuning of the spline basis is more intuitive and provides fewer
degrees of freedom to the user than is the case for radial-basis-type functions. An important
property of the identification scheme is that it allows the input signal to be correlated with
the output signal, allowing for consistent closed-loop identification when the true system
is within the given Hammerstein model class.

One application area of interest for Hammerstein models is the field of wind energy.
In this chapter we will show, based on our previous work, that wind turbines admit a
Hammerstein model structure (van der Veen, van Wingerden and Verhaegen, 2011, 2012),
where the nonlinearities are introduced by the rotor torque and thrust which depend
nonlinearly on the inputs. In this chapter we apply the presented identification technique
to data obtained from a high-fidelity wind turbine simulation. It is important to note that,
while a wind turbine also admits locally linear models for certain constant wind speeds,
it is particularly hard in wind energy applications to maintain a reasonably constant wind
speed throughout an identification experiment. In principle, the Hammerstein description
of the turbine is globally valid, thereby removing the strict requirements on an experiment
with regards to wind speed excursions.

The contributions of this chapter are threefold. First, we extend the closed-loop MOESP
subspace identification scheme presented in Chapter 2 with a recent linear regression
framework for multivariate splines (de Visser, Chu and Mulder, 2009), which results in
a powerful method for closed-loop identification of multivariable systems with static input
nonlinearities. First ideas for this approach and its application to wind turbine dynamics
were presented in van der Veen, van Wingerden and Verhaegen (2011). Second, we
introduce a separable least-squares (LS) regression framework to recover the low-rank
structure which is lost in identification using the overparameterisation approach. Finally,
we demonstrate the method on a high-fidelity model of a wind turbine under realistic
turbulence conditions.
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5.2 Identification of MIMO Hammerstein systems

In this section we describe a novel algorithm to identify multivariable Hammerstein
systems. We consider the closed-loop configuration in Figure 5.1, where we will identify
the part in the dashed rectangle, i.e., the nonlinearity and the linear dynamic subsystem. A
controller C, not necessarily linear, may be active. We assume that the feedback loop is well-
posed. Note that if the signal f(z) entering the LTI subsystem P is known, this subsystem
can be identified using one of the closed-loop subspace identification techniques described
in Chapter 2. Since in the cases to which we restrict our attention the intermediate
signal f(z) is not known a few additional steps are necessary1. In Section 5.2.1, we
describe a linear regression framework for the use of multivariate splines, which we will
apply to describe the static nonlinear function. Then, in Section 5.2.2, we combine this
spline framework with closed-loop subspace identification to obtain a single method for
identification of the combined system.

5.2.1 Nonlinear static modelling using multivariate simplex splines

The static nonlinearity in the Hammerstein model will be approximated using a linear
expansion in terms of basis functions. In this section we describe a recently introduced
linear regression formulation of multivariate simplex splines (Lai and Schumaker, 2007;
de Visser, Chu and Mulder, 2009). The power of simplex splines as opposed to the more
common basis functions in this context (e.g., radial basis functions, sigmoid functions,
thin-plate splines, hinge functions) lies in the fact that tuning of the basis is more directly
related to a priori knowledge about the nonlinear function. First, one specifies a (data-
based) triangulation on which the splines are defined. Subsequently, degrees of freedom
for the user are the spline order, governing the degree of complexity that can be modelled
and the continuity order of the spline function. This possibility to specify the continuity
order is crucial when relying on well-behaved gradients or higher-order differentials of the
function. The brief introduction presented here closely follows de Visser, Chu and Mulder
(2009). The interested reader is referred to de Visser, Chu and Mulder (2009, 2011) for a
detailed introduction.

Simplices and barycentic coordinates

Suppose a function f(x) : Rn → R is to be approximated. In that case, the independent
variables x form a subset of Rn. The splines will be defined on a set of geometric elements,
simplices, that together span this subset of Rn. A simplex is defined as follows: given a set
Vj of n + 1 unique nondegenerate vertices Vj = {v1, . . . , vn+1} ∈ R

n, the corresponding
simplex tj is defined as the convex hull of these points (i.e a line segment for n = 1 and a
triangle for n = 2, see Figure 5.2):

tj , Co(Vj).

Each simplex has an associated local coordinate system in terms of its vertices, allowing
every point x ∈ R

n to be described as a linear combination of the vertices Vj . These
so-called barycentric coordinates b(x) = (b1, . . . , bn+1)

T , corresponding to x, are defined
by:

x =

n+1∑

i=1

bivi,

n+1∑

i=1

bi = 1.

Note that a point x is inside a simplex tj if and only if its barycentric coordinates satisfy
bi ≥ 0, i = 1 . . . n+ 1.
The subset of R

n on which we wish the splines to be defined is partitioned into a
union of simplices tj; the so-called triangulation (Figure 5.2). These simplices must

1Note that if the signal f(z) is known, we can treat the identification problem as two separate problems; one

concerning estimation of the static nonlinearity and one concerning estimation of the LTI subsystem P .
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Figure 5.2 – Example of a valid triangulation in R2 based on 6 vertices and containing 5 simplices,

where the vertices have been placed on the basis of scattered data points.

be non-overlapping (see de Visser, Chu and Mulder (2011) for further requirements on
triangulations). The triangulation typically is such that it encloses all the n-variate data
points available for regression.

The multivariate simplex spline in B-form

The simplex spline is typically expressed in the B-form, a terminology well-known in the
literature on splines (de Boor, 1987). For our purposes it is sufficient to proceed directly to
the expressions in terms of basis functions. We will define basis functions Bd

κ(b) evaluated

in the point b , b(x), where d denotes the degree of the spline function and the vector κ is
a multi-index defined by:

κ = (κ1, . . . , κn+1)
T ∈ N

n+1,

subject to:

|κ| = κ1 + . . .+ κn+1 = d. (5.1)

The basis function Bd
κ(b) then admits the following rather simple representation:

Bd
κ(b) ,

d!

κ!
bκ,

where it is important to note that the factorial operation on the multi-index κ is defined by:

κ! = κ1!κ2! · · ·κn+1!,

and furthermore that bκ , bκ1
1 bκ2

2 · · · b
κn+1
n+1 . The elements of the multi-index are

lexicographically sorted (Lai and Schumaker, 2007):

κd,0,0,...,0 > κd−1,1,0,...,0 > κd−1,0,1,...,0 > · · · > κ0,...,0,1,d−1 > κ0,...,0,0,d,
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which defines an ordering of all possible multi-indices under the constraint (5.1). In de
Boor (1987) it was shown that a complete basis for the polynomials of degree d on a
simplex is given by the set:

{Bd
κ(b) | κ ∈ N

n+1, |κ| = d},

which is a set with cardinality d̂. This follows from the fact that the constraint |κ| = d
allows

d̂ =
(d+ n)!

n!d!

permutations that result in unique vectors κ. The basis functions allow any polynomial of
degree d to be expressed in the convenient linear regression form:

p(b) =
∑

|κ|=d

cκB
d
κ(b),

in which cκ are called the B-coefficients. Gathering the basis functions on each simplex,
the regression can be written in an equation of the form:

yj = cTβ(xj) + ǫj ,

where yj is a scalar function value to be fitted, β(xj) contains the basis functions evaluated
in xj , c is the global coefficient vector and ǫj is a Gaussian white noise element. Note that
if a point x lies in simplex tl (and thus not in any other simplex) only the basis functions
corresponding to that simplex are non-zero (de Visser, Chu and Mulder, 2009), i.e., only
the basis functions corresponding to simplex tl are evaluated in β(x) leading to significant
sparsity in the vectors β(x).

Continuity between simplices

An important feature of splines is the intrinsic ability to constrain the solution to be Cr-
continuous, where r is the desired continuity order. Splines are defined in a piecewise
sense on individual simplices. Continuity conditions are prescribed for every edge shared
by two neighbouring simplices. For invaluable insights regarding continuity constraints the
interested reader is referred to de Visser, Chu and Mulder (2009); de Visser (2011); de
Visser, Chu and Mulder (2011).

Here, it suffices to mention that the global set of constraints can be formulated as a
single matrix equality constraint of the formHc = 0, whereH will be called the smoothness
matrix.

The set of equations describing the global linear regression is then formulated as:

yj = cTβ(xj) + ǫj , j = 1, 2, . . . , N,

subject to: Hc = 0.

It is also possible to enforce boundary conditions in a similar manner to how continuity
conditions are enforced (de Visser, Chu and Mulder, 2011). A very useful example would
be to constrain the 2nd order directional derivatives at the global triangulation boundary to
limit the typical divergence that polynomials exhibit outside the data domain.

A compact formulation

An important feature of the smoothness constraints is that the size of the polynomial basis
can be reduced significantly a priori. The null space of H defines the space of all vectors c
that satisfy the constraints. Thus, let NH = ker(H) be a basis for the null space of H, then
the global linear regression expression can be reformulated as:

yj = c̄T β̄(xj) + ǫj , j = 1, 2, . . . , N, (5.2)
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with β̄(xj) , N T
Hβ(xj). If necessary, the original vector c can be retrieved from c = NH c̄.

The dimension of c̄ is always smaller than or equal to that of c, resulting in a smaller
problem. This is of particular interest when we combine linear regression with LTI system
identification in the next section.

5.2.2 Hammerstein identification

We consider an innovation Hammerstein model of the following form:

P :

{
xk+1 = Axk +Bf(wk) +Kek,

yk = Cxk + ek.

(5.3a)

(5.3b)

The mapping f(wk) : R
q → R

m consists of m static nonlinear functions which need not be
invertible. Based on the previous section we can express these nonlinearities as a set of m
linear expansions:

f(wk) =



c̄T1 β̄1(wk)

...
c̄Tmβ̄m(wk)


 ≡ CB(wk) ∈ R

m, (5.4)

where C = diag(c̄T1 , . . . , c̄
T
m) contains the unknown but constant basis coefficients and

B(wk) is the basis evaluated in wk. Note that without loss of generality, linear inputs may
be represented as elements in f(wk) of the form fi(wk) = cTi wk.

We will use the well-known overparameterisation approach, first proposed by Chang
and Luus (1971). This approach is popular due to its simplicity and intuitive appeal. If we

define the low-rank matrix B̆ according to:

B̆ = BC,

an equivalent system description is given by:

P :

{
xk+1 = Axk + B̆B(wk) +Kek,

yk = Cxk + ek.

(5.5a)

(5.5b)

The key result is that this system is an LTI system, where the m-dimensional unmeasurable
input f(wk) has been replaced by a higher-dimensional input B(wk), which is fully
determined by evaluating the basis functions at the measured points wk. As a consequence
of this, one of the closed-loop subspace identification schemes discussed in Chapter 2 can
be applied without modification. The terminology “overparameterisation” stems from the

fact that the full matrix B̆ is estimated in the identification procedure, while it is actually a
low-rank product BC. This implies a redundancy in the number of parameters. Finally, we

note that since we estimate the product B̆, we can only retrieve the separate terms up to a
nonsingular m-by-m matrix.

5.3 Recovering the low-rank structure of the overparameterised

model

In principle, one may directly use the overparameterised model as it correctly describes
the system’s input-output behaviour. Furthermore, identifying the model up to this stage
is a convex problem. In several cases, however, it may be desired to recover the low-rank
structure, for instance to obtain a more compact description, or if there is a need to recover
the signals between the nonlinearity and LTI system. In Goethals, Pelckmans, Suykens et al.
(2005) this is referred to as projection onto the model class.
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5.3.1 SVD truncation

Traditionally, one approach of recovering the low-rank structure of B̆ has been to perform
an SVD of this matrix and truncate it to the desired rank. It is immediately clear that under

model mismatch and using noisy and finite data sequences it cannot be expected that B̆ is
of low rank and a truncated SVD decomposition will result in a loss of model fidelity, in the

sense that since B̆ minimises the least-squares criterion (2.27) any approximation of this
matrix will increase the least-squares objective function. Ideally, one would solve the least-

squares problem (2.27) subject to a rank-constraint on B̆nl. Since such formulations are
NP-hard to solve (Fazel, Hindi and Boyd, 2004), recent efforts in convex optimisation have
been directed towards efficient methods to solve a convex relaxation of the rank constraint
(Liu and Vandenberghe, 2009). This relaxation comes in the form of the nuclear norm
‖ · ‖∗, which equals the sum of the singular values of a matrix:

‖A‖∗ =

min (m,n)∑

i=1

σi(A).

By adding a penalty term of the form:

λ‖B̆‖∗

to the LS criterion (2.27) a “low rank” solution can be favoured over a least-squares
optimum by properly selecting λ. By incorporating a heuristic for a low-rank solution in
the least-squares problem, we can reduce the loss of model quality due to SVD truncation
(Falck, Suykens, Schoukens et al., 2010). Tuning λ is an iterative process in which the
least-squares error is increased in favor of a smaller nuclear norm until a desired trade-off
is reached. It should be noted that some loss of model quality is inevitable, since the nuclear
norm penalised regression will not achieve a truly rank-constrained solution. Further we
note that in practice we have observed that it is typically difficult to achieve a solution
with a numerical rank that approaches the desired rank if that desired rank is larger than
1 (Gebraad, van Wingerden, van der Veen et al., 2011).

5.3.2 Separable least-squares regression

Some improvement may be achievable over the solution obtained in the previous section by
performing a nonlinear optimisation. Referring to the least-squares (LS) problem governing

the estimation of B, D and K (equation 2.27 in Section 2.3.4), we seek a B̆-matrix that is
of rank m. In this section we describe how this LS problem can be modified to incorporate
a rank constraint. In that case, the least-squares formulation becomes:

min
x0,B̆,K

∥∥∥∥∥Y − Φ




x0
vec(B̆)
vec(K)



∥∥∥∥∥

2

2

, (5.6)

where Φ depends on the already estimated matrices A and C, input and innovation data
and Y contains output samples. For simplicity, but without loss of generality, we do not

consider the estimation of D. The rank-m matrix B̆ can be parameterised as:

B̆ = U(ϑ)V, (5.7)

where U(ϑ) ∈ R
n×m and V ∈ R

m×nu is fully parameterised. Although we could
parameterise U(ϑ) in terms of all its elements, without loss of generality we choose to
parameterise it as an orthogonal matrix. The further derivations do not depend on the
choice of parameterisation, thus we refer to appendix A for details on this parameterisation.
Inserting the parameterisation (5.7) into the LS formulation (5.6) and exploiting the
property of the Kronecker product vec(XY Z) = (ZT ⊗ X) vec(Y ) (Brewer, 1978), we
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obtain:

min
Θ,ϑ

∥∥∥∥∥Y − Φ



In

Inu ⊗ U(ϑ)
Inny




︸ ︷︷ ︸
Ψ(ϑ)




x0
vec(V )
vec(K)




︸ ︷︷ ︸
Θ

∥∥∥∥∥

2

2

= min
Θ,ϑ
‖Y −Ψ(ϑ)Θ‖22 . (5.8)

This LS problem is nonlinear, since the data matrix depends on ϑ, but it has the form of
a separable LS problem (Golub and Pereyra, 1973). Following the solution strategy of the
separable LS problem (Golub and Pereyra, 1973; Ruhe and Wedin, 1980), we can solve
this LS problem if we momentarily assume ϑ fixed, in which case (5.8) becomes a standard
linear LS problem. For brevity we shall denote the solution to this least-squares problem in
terms of the left-inverse of Ψ(ϑ):

Θ̂ = Ψ(ϑ)+Y,

where Ψ(ϑ)+ , (Ψ(ϑ)TΨ(ϑ))−1Ψ(ϑ)T . Substituting this solution into the LS problem
(5.8) we obtain:

min
ϑ
‖ (I −Ψ(ϑ)Ψ(ϑ)+)︸ ︷︷ ︸

Π⊥

Ψ
(ϑ)

Y ‖22 = min
Θ

∥∥∥Π⊥
Ψ(ϑ)Y

∥∥∥
2

2
. (5.9)

Since the matrix Π⊥
Ψ(ϑ) is an orthogonal projection matrix that depends on ϑ, the particular

LS residual encountered here is often referred to as the variable projection functional f(ϑ):

f(ϑ) = Π⊥
Ψ(ϑ)Y.

The LS problem can be solved using any gradient-based optimisation algorithm. Note that
the dimension of the nonlinear optimisation is only determined by the size of ϑ; the other
parameters (i.e., Θ in (5.8)) have been eliminated from the problem by rewriting it in this
form – this reduction in the number of parameters is the key advantage of separable LS
regression. We proceed by evaluating the Jacobian of the objective in (5.9) for a Gauss-
Newton solution. First, we perform a rank-revealing QR factorisation of the matrix Ψ(ϑ):

Ψ(ϑ)Π =
[
Q1 Q2

] [R11 R12

0 0

]
,

where Π is a permutation matrix. Using this decomposition, the functional can be rewritten
as:

f(ϑ) = Π⊥
Ψ(ϑ)Y = Q2Q

T
2 Y.

The Jacobian of the residual is obtained by taking the partial derivative with respect to each
of the parameters ϑj:

∂f(ϑ)

∂ϑj

= −
(
I −Ψ(ϑ)Ψ+(ϑ)

) ∂Ψ(ϑ)

∂ϑj

Ψ+(ϑ)Y

−
(
Ψ+(ϑ)

)T ∂ΨT (ϑ)

∂ϑj

(
I −Ψ(ϑ)Ψ+(ϑ)

)
Y.

In view of the computational complexity involved in calculating the second term and the
fact that it is usually small in comparison to the first term the second term is usually dropped
(this modification is due to Kaufman (1975)). Evaluation of the first term can proceed
efficiently using the same QR decomposition obtained earlier. We first compute:

Ψ+(ϑ)Y = ΠT

[
R−1

11 Q
T
1 Y

0

]
r

m̄−r
.
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Here, r denotes the numerical rank of Ψ(ϑ) and m̄ is the column dimension of Ψ(ϑ)2. Then
the evaluation of the partial derivative results in:

∂f(ϑ)

∂ϑj

= −Q2Q
T
2
∂Ψ(ϑ)

∂ϑj

Π

[
R−1

11 Q
T
1 Y

0

]
.

The partial derivative ∂Ψ(ϑ)
∂ϑj

is straightforward to calculate from its definition in (5.6). The

complete Jacobian is built up as follows:

J(ϑ) =
[
∂f(ϑ)
∂ϑ1

∂f(ϑ)
∂ϑ2

· · · ∂f(ϑ)
∂ϑnϑ

]
.

Finally, we solve the optimisation problem using the lsqnonlin solver in MATLAB and
supplying it the Jacobian as derived above. We can use the linear LS solution (2.27) with a

truncated SVD of the estimated B̆-matrix as an initial condition for the solver. For reasons of
computational efficiency the algorithm above was implemented by calling LAPACK routines
(Anderson, Bai, Bischof et al., 1999), in which the (possibly large) square matrixQ is stored
in terms of its Householder reflectors and not explicitly.

5.3.3 Obtaining local linear models

Besides the ability to describe nonlinear systems that possess a Hammerstein structure,
an additional advantage of the identification scheme presented here is that local linear
models can be obtained even when the operating conditions do not allow the system to
operate steadily in a single operating point. This is typically a requirement when obtaining
a dataset for LTI model identification.

Based on description (5.5) we can obtain a linearised model defined around an
operating equilibrium given by (xk, yk, wk) = (xss, yss, wss). If we define the substitutions
xk ← xk − xss, yk ← yk − yss and wk ← wk − wss, the linearised system can be shown to
be:

xk+1 = Axk + B̆
∂B(w)
∂w

∣∣∣∣
w=wss

wk +Kek.

The matrix ∂B(w)
∂w

containing partial derivatives of the polynomial basis functions (5.4) can
be evaluated analytically (de Visser, Chu and Mulder, 2011).

5.4 Examples

In this section we demonstrate the algorithm on two examples. The first is a theoretical
example chosen to show the potential of the algorithm to estimate 2D nonlinearities. In
the second example we apply the method to data obtained from a detailed wind turbine
simulation. This example exploits the capability to estimate MIMO systems with multiple
input nonlinearities.

5.4.1 A theoretical example

To verify the method and the fixed-rank regression approach, we simulate the following
discrete-time (∆t = 0.1 s) system with two resonances:

yk = G(z)uk +H(z)ek,

uk = f(zk),

2Note that strictly-speaking the equality only holds if Ψ(ϑ) is full-rank. Otherwise, the right-hand-side will give

a basic solution to (5.6)(Golub and Van Loan, 1996).
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Table 5.1 – Mean and standard deviations of VAF on validation data for three methods on the basis of

100 experiments.

Overparameterised Truncated SVD Fixed-rank regression

mean VAF (%) 60 20 82

std.dev. VAF (%) 12 20 6.8

where G(z) and H(z) are given by:

G(z) =
0.2571z3 − 0.2034z2 − 0.1975z2 + 0.2474

z4 − 3.421z3 + 4.838z2 − 3.297z + 0.932
,

H(z) =
0.3454z + 0.2846

z2 − 0.9381z + 0.5681
.

We further have that:

ek ∼ N (0, 0.5),

zk ∼ U
([

0
0

]
,

[
1
1

])
,

i.e., ek is Gaussian zero-mean white noise with standard deviation 0.5 and zk is uniformly
distributed on the unit interval. The input nonlinearity f(zk) is Franke’s test function
(Franke, 1979) (Figure 5.3, (a)), a weighted sum of four exponentials:

uk =
3

4
e−

(9zk(1)−2)2+(9zk(2)−2)2

4 +
3

4
e−

(9zk(1)+1)2

49
+

(9zk(2)−2)2)

10

+
1

2
e−

(9zk(1)−7)2+(9zk(2)−3)2

4 +
1

5
e−(9zk(1)−4)2−(9zk(2)−7)2)

The system is simulated for N = 2000 samples and this simulation is repeated 100 times
with independent realisations of the input and noise sequences. The typical signal-to-noise
ratio is approximately 8 dB. After each simulation, we identify the 6th order system and
simulate it with a fresh dataset. The triangulation consists of two simplices spanning the
z-plane as shown in Figure 5.3. The splines are 6th degree splines with C1-continuity.
This results in a basis with 42 functions. The gradient-search for fixed-rank regression
typically converged within 5 iterations. We estimate the model quality on the basis of the
variance-accounted-for (cf. (2.38) on page 36). Three cases are compared: the first is the
overparameterised model (5.5), the second is the truncated SVD solution (§5.3.1), the third
is the solution obtained after fixed-rank regression (§5.3.2). The results are summarised in
Table 5.1. From the results in this table we see that under noisy conditions the truncated
SVD solution typically results in a loss of model quality. Performing a fixed-rank regression
however, the quality can be improved, even with respect to the overparameterised solution.
In addition, the fixed-rank solution displays less variability between experiments.

Figure 5.3 shows the estimated nonlinear functions. The nonlinearity can only be
recovered if we estimate the rank-one representation. Hence, for the overparameterised
model representation we cannot estimate the nonlinearity and we only show it for the
truncated SVD and fixed-rank solutions. The example shows that the nonlinearity is more
reliably estimated with fixed-rank regression in this particular example.

5.4.2 Global identification of a wind turbine

In this section we apply the method described in the previous sections to data obtained
from a detailed wind turbine simulation. This application exploits the capability to estimate
MIMO systems with multiple input nonlinearities.
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Figure 5.4 – The closed-loop Hammerstein configuration found in wind turbine dynamics. The

dashed part constitutes the Hammerstein representation of the turbine.

As pointed out in the introduction, wind turbines operate in a wind field where the mean
wind speed may change significantly over time. This, in turn causes the operating point to
vary continuously, in particular in above-rated conditions as the blades pitch further into
the wind. The advantage of the present method is that it does not rely on measurement data
which is restricted to an operating point and minor deviations from it, which, in addition
implies that longer data sequences can be employed.

It was recently shown in van der Veen, van Wingerden and Verhaegen (2011) that
the core dynamics of a wind turbine can be approximated by a Hammerstein model
structure. In this structure, depicted in Figure 5.4, the static nonlinear mapping f(λ, β, V 2)
determines the aerodynamic torque Ta and thrust Fa according to (Bianchi, De Battista and
Mantz, 2007):

Ta =
1

2
ρπR3CQ(λ, β)V

2 (5.10a)

Fa =
1

2
ρπR2CT (λ, β)V

2, (5.10b)

where CQ(λ, β) is the torque coefficient and CT (λ, β) is the thrust coefficient. β is the blade
pitch angle, λ = ΩR/V is the tip speed ratio, V the wind speed,R the rotor radius and ρ the
air density. Usually, the tip speed ratio λ is fairly tightly controlled (which is a consequence
of regulating power production to an optimal or maximal value), so that we can assume
λ = λ(β), causing the coefficients to depend merely on β. Typical coefficients encountered
during operation are shown in Figure 5.5.

Remark 5.1. Theoretically, it would also be possible to directly identify the full 3D surfaces
CQ and CT , but since this introduces many additional degrees of freedom the resulting
estimate was very unreliable on data obtained under turbulent conditions. Also, it is
generally difficult or too intrusive on a real turbine to explore a wide range of tip speed
ratios λ for each setting of the pitch angle β. This would be necessary to obtain data which
uniformly covers a significant portion of the (λ, β)-plane.

The torque relation (5.10a) governs the aerodynamic torque entering the low-speed
shaft of the turbine. At the end of the high-speed shaft, the generator torque Tg is active.
The torque balance, further influenced by the drive train dynamics and rotatory inertias
of the rotor and generator, will determine the rotor speed Ω. The thrust relation (5.10b)
governs the force exerted at the tower top and thus the fore-aft tower displacement δFA.
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Figure 5.5 – Coefficients for a typical pitch and speed regulated turbine; true (black) and estimated

(gray) curves. The figure also shows the simplices (β-axis partitions) 1 to 3 and the 3

scaled spline basis functions defined on each simplex.

We tested the identification procedure on an aeroelastic simulation of the NREL Controls
Advanced Research Turbine (CART 3) in the Bladed (Bladed 2011) environment. First,
simulations were performed at a set of constant wind speeds to identify linear models
for comparison. These linear models were verified against numerical linearisations and
found to correspond well. Next, a realistic 2000 s simulation was performed under full 3D
turbulence conditions (IEC Class II, mean wind speed 17 m/s, with turbulence intensity of
16%) causing the mean wind speed to vary between 9 and 25 m/s with a significant amount
of stochastic excitation (Figure 5.6). The pitch reference signal was perturbed with a ±1◦
random binary signal and the generator torque reference with a similar signal of ±100Nm.
Data was captured at 12.5 Hz while operating under closed-loop control. Based on the SVD
order indication obtained from the subspace method, a 24th order model was identified.

Examination of the governing turbine loads showed that during an identification
experiment the fore-aft tower force, the side-side tower force and the blade flap-wise
bending moments increase by 82%, 56% and 8%, respectively in terms of their RMS values.
Since an identification experiment is only rarely performed and spans an infinitesimal
fraction of its service life, we have not considered the impact of these increased loads on the
fatigue life of the turbine. Furthermore, these load increases can be reduced significantly
by filtering the perturbations to reduce frequency content near lightly damped turbine
structural modes.

Figure 5.5 shows the true and the estimated nonlinearities, which we could recover in
this case since we had access to the internal signals. The general trend of the nonlinearities
is captured well. Figure 5.7(a) shows the linearised Hammerstein model. The figure shows
that the Hammerstein model fairly accurately describes the varying gain of the system in
the low-frequency region (0.2− 2.0Hz). Results at lower frequencies are inaccurate due to
the presence of a controller with integral action which eliminates any low-frequency and
steady-state speed errors. Furthermore, we observe some inaccuracy in the amplitudes of
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Figure 5.6 – Wind speed experienced by the turbine at hub height.

the resonant peaks. A limitation of a Hammerstein model is that local models can only
vary between operating points by a matrix-valued gain, which results here in a trade-off
between modelling of the magnitudes in the low frequency regime and at the resonant
peak.

Figure 5.7(a) also shows that the models may vary in gain by as much as 15 dB and
confirm the requirement for gain-scheduled control (Bossanyi, 2000). Clearly, an LTI model
identified from this dataset would result in an “average” LTI model which does not convey
this effect.

5.5 Discussion

In this chapter we have presented a framework for the identification of MIMO Hammerstein
systems. We have used a recent framework for linear regression using multivariate
splines, which allow for a priori specification of continuity conditions. We also introduced
a method to recover the low-rank structure lost in the overparameterisation step by
applying separable least-squares regression. The method has been demonstrated on both
a theoretical example with a 2D nonlinearity and a realistic multivariable simulation of a
wind turbine with two input nonlinearities. In both cases the approach was reasonably
successful in identifying the underlying system. A challenge remains dealing with the
number of basis functions, which rapidly grows for higher dimensions, higher spline orders
and finer triangulations required to describe complicated nonlinear functions.
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6Nonlinear data-driven modelling of

wind turbines

In the previous chapter we developed a method to estimate both the static
nonlinearity and the LTI subsystem in Hammerstein systems. This chapter presents
a practical approach to identify a global model of a wind turbine from operational
data, while it operates in a turbulent wind field with a varying mean wind speed
and under closed-loop control. The approach is based on the realisation that the
nonlinearities are dominated by the aerodynamics of the rotor which change with
the operating condition. The dynamics of a wind turbine can be decomposed into a
nonlinear static part, governed by the torque and thrust characteristics of the rotor,
and a linear time invariant dynamic part. While the previous chapter assumed very
little about the nonlinearity, it turns out that in the practice of identifying wind
turbines it is necessary to assume that these nonlinearities are known. As will be
shown in this chapter this poses no major limitations to properly estimating the
dynamic behaviour and the practical applicability of the algorithm is demonstrated
by applying it to experimental data obtained from the 600 kW NREL CART 3
research turbine.

6.1 Introduction

As was described in the introduction to this thesis in Section 1.3, most control design
approaches require detailed models of a wind turbine. Even if that were not the case,
models are crucial to understand the dynamic behaviour of the system. This fact is reflected
by the current interest in operational modal analysis of wind turbines (Osgood, Bir, Mutha
et al., 2011; Özbek and Rixen, 2012). In this chapter we present a solution to obtain such
models for control design. Referring to the challenges we set out to solve in the introduction
chapter (see Section 1.4), we present a solution to obtain models of wind turbines in a
one-step procedure, i.e., on the basis of a single batch of input-output data, while the
turbine is operating under closed-loop control in a three-dimensional time-varying wind
field. Furthermore, this proposed method takes into account the nonlinearity of the wind
turbine aerodynamics.

Considering the dynamics of wind turbines, reasonably accurate predictions can be
made on the basis of first-principles aeroservoelastic modelling and such models are
obviously the only ones available in the design stage of a turbine. Nevertheless, many
factors contribute to uncertainty or errors in the prediction of dynamic modes and time
constants. Among those are: differences between expected and actual material properties;
differences in manufacturing; differences in local soil or foundation characteristics;
modelling assumptions and simplifications and unmodelled sensor characteristics. System
identification may aid in understanding the true underlying dynamics and as such may
allow improvements to the design of controllers for power production and load reduction.
In the control engineering community, system identification has proved to be a powerful
tool for the analysis of dynamic systems. The capability to derive models from operational
data allows engineers to gain insight into the dynamics of systems which have been
modelled with certain coarse or restrictive assumptions or systems of which only simplified
models are available. An additional motivation for system identification is that it
automatically delivers a model that describes the phenomena which manifest themselves in
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Figure 6.1 – The CART 3 wind turbine at the National Wind Technology Center, Golden, CO, USA.

the data. In physical first-principles modelling, the model complexity is primarily a choice
made by the user, who may opt for over-modelling to ensure that any possibly relevant
dynamics are incorporated.

Often, well-established identification techniques for linear time invariant (LTI) dynamics
are applied in practice. This is justified by the fact that many systems, among which
wind turbines, permit a locally linear description of their dynamics around some constant
operating point (Ljung, 1999; Verhaegen and Verdult, 2007). This justification is also
valid for wind turbines and indeed first results on LTI identification of wind turbines were
seen in the early 1990s and since then, several scientific articles have appeared on this
topic (van Baars, Mosterd and Bongers, 1993; James III, Carne and Lauffer, 1993; van
Baars and Bongers, 1994; Knudsen, Andersen and Toffner-Clausen, 1997; Marrant and
van Holten, 2004; Hansen, Thomsen, Fuglsang et al., 2006; Iribas-Latour and Landau,
2009; Houtzager, Kulcsár, van Wingerden et al., 2010; van der Veen, van Wingerden and
Verhaegen, 2010c; Iribas-Latour and Landau, 2012).

Almost all variable pitch wind turbines are controlled using gain-scheduled pitch
control, due to the significantly varying gains at different wind speeds (Bossanyi, 2000),
emphasizing the fact that wind turbines are nonlinear systems and the nonlinearity must
be accounted for in the control design. One approach could be to identify models at several
mean wind speeds (Jelavic, Peric and Petrovic, 2006; Iribas-Latour and Landau, 2012).
However, since wind turbines operate in a continuously changing wind field it can be
particularly difficult to maintain a reasonably steady operating point. This makes it hard, if
not impossible, to obtain suitable data records for LTI identification, since large wind speed
variations cause the linearity assumptions to be violated. If one could explicitly model the
dominant nonlinear effects, one could use an arbitrary sequence of data obtained from the
turbine in which the wind speed varies. As will be shown further on, the key benefit of
the method presented in this chapter is that such data sets in which the wind speed varies
arbitrarily can be used directly. This also implies that the amount of costly measurement
time required to obtain identification data can potentially be smaller.

While identification techniques for general nonlinear systems are an area of active
research, we have already argued in the introduction ( Section 1.3) that these methods
still present significant challenges in terms of reliability, computational complexity and
the need for expert knowledge, making their application to real data troublesome.
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Recently, identification techniques for linear parameter-varying systems have seen many
improvements, but applying these techniques is still hampered by computational and
technical issues (van Wingerden and Verhaegen, 2009b). In Chapter 5 we have explored
the possibility of decoupling the dynamics of a wind turbine into a series connection of
static nonlinear functions, governed by the torque and thrust coefficients, and a linear time
invariant dynamic system (van der Veen, van Wingerden and Verhaegen, 2011). It was
shown that a model could be identified on the basis of simulation data. In this chapter
some of those ideas are revisited and tailored to be applied to real turbine data, where
the turbine is operating under full turbulence and throughout a significant portion of its
operating envelope. A turbine always operates in a 3D turbulent wind field with typical
turbulence intensities of 10-20%. In the conditions experienced during the experiments
performed for this paper, the turbulence intensity was as high as 23%. Since a turbine
operates in turbulent wind and the mean wind speed can be estimated reliably, the system
identification methods need to deal with significant stochastic content introduced by more
rapid wind speed fluctuations. In other words, the signal-to-noise ratios seen in actual
practice may provide a challenging task for system identification.

The identification method starts by parameterising the known or measured torque and
thrust coefficient surfaces with splines, using the recently developed linear regression
framework (de Visser, Chu and Mulder, 2009) that was earlier described in Section 5.2.1.
As was discussed there, these simplex splines have attractive numerical properties.
Knowledge of the thrust and torque coefficients allows us to estimate the thrust and
torque of the rotor. Once these have been obtained, they are used together with the other
measured input and output signals for identification of the dynamics of the wind turbine. It
is assumed that these dynamics can be considered to be linear time invariant. An important
property of the identification scheme is that it allows the input signal to be correlated with
the output signal, allowing for consistent identification under closed-loop conditions. Wind
turbines must necessarily operate under feedback control and hence it is advantageous to
apply such identification techniques.

In some parts of the control engineering community, system identification has been
adopted to complement first-principles modelling in the control design stage. The approach
is typically to design a baseline controller on the basis of the first-principles model. This
controller is then implemented on the real system. The system is then identified to obtain
more refined models, in particular near the crossover frequency. The control design can
subsequently be adjusted and made less conservative until the result is satisfactory. While
some effort is usually made to calibrate and update first-principles models of wind turbines,
the wind energy industry has only just started to adopt such an approach for control design.
It should be noted that direct validation of aeroelastic models on the basis of measured data
(e.g., calibrating loads in response to turbulent wind) is of limited use for control design
(Bongers, 1994), since control design relies on models which accurately describe the gain
and phase behaviour between inputs and outputs. For this purpose it is more interesting to
directly model the relation between the actuators and the sensors on the basis of the gain
and phase information that these signals contain.

This chapter presents two main contributions. First, an approach is presented to identify
dynamic models of wind turbines based on operating data under realistic and time-varying
wind conditions, by exploiting some physical knowledge about the wind turbine dynamics.
This leads to a practically applicable and efficient algorithm. Second, experimental results
are presented on the basis of real wind turbine data obtained from the three-bladed
Controls Advanced Research Turbine (CART 3) (Figure 6.1) and the validity and value
of the obtained results is demonstrated.

To the best of our knowledge, this chapter and the accompanying published work
present the first (non-proprietary) results on the identification of multi-input-multi-output
(MIMO) wind turbine dynamics (pitch and torque to rotor speed and tower motion) on
the basis of real operational wind turbine data and over a wide operating range. Previous
work was limited to identification of modal parameters, the use of simulation data or the
identification of single-input-single-output models (van Baars, Mosterd and Bongers, 1993;
James III, Carne and Lauffer, 1993; van Baars and Bongers, 1994; Knudsen, Andersen and
Toffner-Clausen, 1997; Marrant and van Holten, 2004; Hansen, Thomsen, Fuglsang et al.,
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Figure 6.2 – Schematic overview of the main components of the CART 3 turbine. Also shown are
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2006; Iribas-Latour and Landau, 2009; Houtzager, Kulcsár, van Wingerden et al., 2010;
van der Veen, van Wingerden and Verhaegen, 2010c; Iribas-Latour and Landau, 2012).

The organisation of this chapter is as follows. Section 6.2 provides a brief introduction
into the most important aspects of wind turbine dynamics. Then, Section 6.3 presents
our approach for system identification of wind turbines and how structural knowledge is
exploited to arrive at this approach. Subsequently, Section 6.4 demonstrates the application
of the presented identification scheme to experimental data obtained from the Controls
Advanced Research Turbine, CART 3. The chapter concludes with a brief discussion.

6.2 Basic wind turbine mechanics

In this section some of the aspects governing the dynamics of a wind turbine are briefly
described. The reader is referred to Burton, Sharpe, Jenkins et al. (2001); Manwell,
McGowan and Rogers (2002) for far more extensive introductions. Identification of the
CART 3 turbine (Figure 6.1) is considered, which is a typical horizontal axis, variable speed,
variable pitch wind turbine. The CART 3 is a re-engineered 600 kW Westinghouse turbine,
which has been converted from a 2-bladed to a 3-bladed configuration to result in a test bed
for control research on the widespread 3-bladed configuration (Fleming, Wright, Fingersh
et al., 2011). Figure 6.2 presents a schematic of the turbine.
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6.2.1 Rotor

The rotor is the main component involved in converting wind energy into a torque Ta and
a thrust Fa. The rotor is immersed in a wind field with mean (undisturbed) wind speed
V∞, rotates with a rotational speed Ω and has three blades of length R. The aerodynamic
efficiency of the rotor is typically expressed in terms of a dimensionless tip speed ratio,
defined by:

λ =
ΩR

V∞
.

In steady-state conditions the thrust and torque are governed by well-known static relations
(Bianchi, De Battista and Mantz, 2007):

Ta =
1

2
ρπR3CQ(λ, β)V

2
∞, (6.1a)

Fa =
1

2
ρπR2CT (λ, β)V

2
∞, (6.1b)

where CQ(λ, β) is the torque coefficient, CT (λ, β) is the thrust coefficient, ρ is the air density
and β is the collective pitch angle of the blades. From these relations it follows that the
thrust and torque change with wind speed, pitch angle and rotor speed. Typical torque and
thrust coefficient surfaces are shown in Figure 6.3.

From the thrust and torque relations (6.1) it is evident that an incremental change in
pitch is accompanied by changes in the rotor thrust and torque which depend on the local
gradients of the thrust and torque coefficients in Figure 6.3. This is the main cause for the
nonlinear behaviour of wind turbines and the requirement for gain-scheduled pitch control.
It should be noted that changes in rotor thrust and torque do not occur immediately after
a blade pitch change due to dynamic inflow and dynamic wake effects (Snel and Schepers,
1995; Henriksen, Hansen and Poulsen, 2012). Inclusion of these dynamics is crucial for
subsequent control design.

Since the rotor consists of three flexible blades, any change in rotational speed involves
the flexible modes of these blades and the modes of the rotor. As a consequence these
modes may manifest themselves in the overall dynamics of the turbine.

6.2.2 drive train

The torque equation (6.1a) governs the aerodynamic torque Ta entering the low-speed
shaft (LSS) of the turbine. In many turbines, a compact high-speed generator is employed,
which requires that a gearbox be used to convert the rotational speed and torque to a
suitable range. At the end of the high-speed shaft, the generator torque Tg is active, with a
rotational speed ω. The gearbox typically consists of one or more (planetary) gear stages.
The rotatory inertia of the rotor on the one hand and the generator on the other hand,
combined with flexibilities of the shafts introduce drive train dynamics. These typically
manifest themselves as highly resonant torsional modes with little intrinsic damping.

The dynamic torque balance will determine the rotor speed Ω and generator speed ω.
Typically, the generator torque Tg and the pitch angle β can be used to regulate the rotor
speed and wind turbine power output.

6.2.3 Tower

The rotor is mounted on the low-speed shaft of the drive train which is contained in
the nacelle on top of a flexible tower. The thrust equation (6.1b) governs the thrust Fa

acting on the thrust bearing of the turbine, causing a tower top motion and corresponding
bending moment Mtwr,FA. The drive train and generator dynamics are coupled with the
tower motion, predominantly due to the reaction torque of the generator, and this coupling
results in a side-side motion and corresponding bending moment Mtwr,SS of the tower.
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Figure 6.3 – The torque and thrust curves of the CART 3 turbine and typical values of (λ, β) seen

during operation.

6.2.4 Controls

Figure 6.4 depicts the layout of the CART 3 control system. In below-rated conditions, the
aim of the control system is to maximise the power production efficiency of the turbine.
This is achieved by keeping the pitch angle fixed at 3.7◦ and running the turbine at its
optimal tip speed ratio λ (resulting in the highest power coefficient), given the current
wind speed. This tip speed ratio is maintained by controlling the rotor rotational speed
using the generator torque Tg. Then, as rated generator torque and rated rotor speed are
reached, the turbine enters the so-called above-rated regime. In this regime the pitch angle
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Figure 6.4 – Schematic representation of the CART 3 control system. The diagram also indicates

where perturbation signals are injected for system identification.

is used to maintain rated power. This is achieved by gradually pitching the blades into the
wind (pitch-to-feather) so as to reduce the torque coefficient CQ(λ, β). Typically the torque
and pitch are regulated using independent single-input-single-output PI controllers. Since
the response to a change in pitch varies significantly with the current operating condition,
gain scheduling of the pitch controller is necessary. A good review of typical wind turbine
control system aspects can be found in Bossanyi (2000).

In the last decade wind turbine manufactures have increasingly considered the potential
of advanced MIMO control strategies in an effort to balance multiple control objectives,
such as optimal power production and load mitigation, in a more refined and systematic
way. Such designs typically require a detailed description of the multivariable input-output
behaviour.

6.3 Global system identification of wind turbines

In this section a novel and practical approach to identify a wind turbine from data captured
under non-stationary wind conditions is described. Previous sections already discussed that
wind turbines are nonlinear systems and that there is a demand for accurate MIMO models
to support the future design of advanced multi-objective and multivariable controllers. It
is first shown how the structure of the problem can be exploited to split the dynamics into
a static nonlinearity and a linear time invariant (LTI) dynamic subsystem. Having done
so, it is shown how the LTI part can be identified using a recent closed-loop subspace
identification technique.

6.3.1 Structure of the problem

In the previous chapter we have shown that the dynamics governing the rotor speed of a
wind turbine can be approximated by a series connection of a static nonlinear mapping and
an LTI subsystem (van der Veen, van Wingerden and Verhaegen, 2011). This situation is
depicted in Figure 6.5. In this work four output signals are considered: the rotor speed Ω,
the generator speed ω and the tower-base bending moments in the fore-aft and side-side
directions, Mtwr,FA and Mtwr,SS respectively. The mechanical part of the turbine, consisting of
the dynamics of the drive train, the tower, the generator and the rotor structure and their
interactions, is assumed to be linear and time invariant. The aerodynamics of the rotor
interact with this dynamic system through a rotor thrust and torque, which are governed
by the relations in (6.1).
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dashed part constitutes the Hammerstein representation of the turbine.

It is important to note that since these relations are static, they would imply that a
change in wind speed or pitch would result in an instantaneous change of rotor torque and
thrust. In reality, however, the aerodynamic response is governed by several time constants
related to dynamic inflow and wake dynamics (Snel and Schepers, 1995; Henriksen,
Hansen and Poulsen, 2012). It will be assumed that these time lags are incorporated in
the time invariant dynamics of the model.

In the literature on system identification, a configuration as depicted in Figure 6.5,
consisting of a static nonlinearity followed by an LTI system, is known as a Hammerstein
system. In Hammerstein system identification, as it was applied in van der Veen, van
Wingerden and Verhaegen (2011), the goal is to estimate both subsystems simultaneously.
It turned out that when data from a real turbine under full turbulence conditions is used, it
is practically impossible to estimate both the torque and thrust coefficients and the dynamic
behaviour, when it is assumed that the thrust and torque signals are not measurable. The
estimated models were found to be extremely sensitive to variations in the data. For this
reason it was necessary to resort to a two-step procedure in which it is assumed that the
thrust and torque coefficients are known, either from aerodynamic modelling or from pre-
vious measurements. In the wind energy community significant efforts have traditionally
been directed towards prediction of (static) wind turbine performance characteristics and
hence static thrust, torque and power characteristics are known with good confidence.
There is limited literature on the estimation of performance characteristics (i.e., torque,
thrust and power coefficients) of wind turbines on the basis of field data and it is still
an area of active research, demonstrating that determining these coefficients empirically
is challenging (Gottschall and Peinke, 2008). Obviously, the situation would improve if
measurements of aerodynamic torque and thrust could be obtained, but this is not often
the case and if torque and thrust sensors are available these measurements can only be
obtained indirectly after further processing1. While static performance characteristics may
be well-known from first-principles calculations, prediction of the dynamic behaviour is
still challenging and in this work system identification is applied to accurately model this
dynamic behaviour on the basis of measurement data.

It is important to outline the validity of the assumptions under which the dynamics can
be assumed to be time invariant. First, aerodynamic time constants are typically related to

1E.g., a measured torque on the low-speed shaft would incorporate not only the aerodynamic torque, but also

components due to drive train dynamics and rotor acceleration.
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local inflow velocities at the blade leading edges. As a consequence, these time constants
vary with the operating condition of the wind turbine. Second, the pitch angle may see
variations over a typical range of 35 degrees. These changes influence the dynamic modes
of the rotor and therefore may cause shifts in natural frequencies. These shifts however,
were found to be small.

On a final note it is worth mentioning that wind turbines are inherently linear time-
varying systems and indeed are often considered as such (Skjoldan and Hansen, 2012).
Since we only consider collective pitch and measure outputs in the fixed (hub, tower)
frame of reference we do not need to resort to transformations such as the frequently-used
Coleman transformation.

6.3.2 Modelling the aerodynamic coefficients using splines

In the previous chapter we have developed an approach to identify the static nonlinear
functions CQ and CT and the linear time invariant dynamics simultaneously using a so-
called Hammerstein identification method (van der Veen, van Wingerden and Verhaegen,
2011, 2012). The disadvantage of these methods is that, depending on the character and
input dimension the nonlinearities, many more parameters need to be estimated (e.g., the
full surfaces CQ and CT need to be parameterised) compared to LTI identification and
hence these methods may be more sensitive to noise and turbulence. In this chapter it is
assumed that reasonable estimates of these performance coefficients are available. At the
time of writing (2012), initiatives were being discussed to estimate those coefficients from
a tailored measurement campaign on the CART 3 turbine, possibly with the aid of LIDAR
data.

Typically, a blade element momentum code (Manwell, McGowan and Rogers, 2002) is
used to obtain tabulated estimates of CQ and CT versus λ and β. For the CART 3 turbine
the WT Perf tool (Buhl, 2012) was used to estimate the performance coefficients. For
the purpose of system identification a recent linear regression framework for multivariate
splines (de Visser, Chu and Mulder, 2009) is applied to fit spline interpolants to these
tabulated data. The advantage of doing so is that CQ and CT are subsequently defined
as functions and, as such, function and gradient evaluation can proceed analytically.
Furthermore, the interpolants can be prescribed to be, in our case, C1-continuous, implying
that the gradients are well-defined everywhere within the interpolated domain.

The ability to obtain gradients of the coefficients CQ and CT is crucial for model
linearisation (cf. Section 6.3.4) and gain-scheduling (Bossanyi, 2000; Bianchi, De Battista
and Mantz, 2007). The interested reader is referred to de Visser, Chu and Mulder (2009,
2011) for a detailed introduction into the spline regression framework.

6.3.3 Identification of a wind turbine

Using the knowledge of the wind speed, rotor speed and the pitch angle the aerodynamic
thrust and torque can be computed at each time instant k using the torque and thrust
relations, which are repeated here:

Ta(k) =
1

2
ρπR3CQ(λ(k), β(k))V

2
∞(k),

Fa(k) =
1

2
ρπR2CT (λ(k), β(k))V

2
∞(k).

These signals enter the mechanical subsystem which is assumed to be LTI. The mechanical
subsystem is modelled as an innovation state-space system which represents a generic LTI
system with measurement and process noise (see Chapter 2), of the form (2.3), in which:

yk =




Ω(k)
ω(k)

Mtwr,FA(k)
Mtwr,SS(k)


 , uk =



Ta(k)
Fa(k)
Tg(k)


 .
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Figure 6.6 – Example time traces of perturbations applied to the pitch and torque reference signals.

Note that V∞ is the free-stream wind speed ahead of the turbine. Usually, this is not
available and hard to measure. In Section 6.3.4 it is described how this wind speed signal
can be estimated.

Now that the inputs and outputs of the LTI subsystem have been defined, we can
estimate the system matrices of the innovation model using any closed-loop subspace
identification technique descibed in Chapter 2. In this chapter we have chosen to use
the closed-loop MOESP method.

6.3.4 Further aspects related to system identification

In this subsection several important aspects related to system identification and its
application in engineering practice are described. These aspects are related to the
design of an identification experiment, wind speed estimation, how to deal with periodic
disturbances and how to validate identified models.

Experiment design

To be able to identify a system in closed-loop it is necessary to inject perturbations into
the controller reference signals. This is necessary to be able to correlate the actuator
inputs to the turbine’s dynamic responses measured by the sensors. In the case considered
here, the inputs to the turbine are the collective pitch angle demand β and the demanded
generator torque Tg. The pitch angle is perturbed by an additive random binary pitch
perturbation of ±0.3◦. The demanded generator torque is perturbed by a similar signal
with amplitude ±50Nm. The torque perturbation is a pseudorandom binary sequence,
generated by sampling the sign of a Gaussian random number generator at a rate of 10 Hz.
This implies that the perturbations have spectra that are more-or-less flat up to 4 Hz. The
pitch is perturbed by a similar signal, sampled at 4 Hz, resulting in a spectrum that is flat up
to about 1 Hz. Figure 6.6 shows examples of these perturbation signals, which have further
been filtered and rate limited according to the hardware constraints. See Section 3.4.2 for
more notes on experiment design.

While a fairly reliable estimate of the wind speed can be obtained for low frequencies
of up to 0.3 Hz (essentially governed by the drive train frequencies, cf. Section 6.3.4), the
faster variations of wind speed introduce significant stochastic perturbations on the rotor
torque and thrust, with which the identification method must cope.

Signals are sampled at a high rate of 400 Hz, which is governed by the control system.
These signals are filtered and resampled to 20 Hz before identification. A measurement
sequence of 1490 s (∼25 min) is used for identification.
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Estimating the rotor effective wind speed

A common difficulty in wind energy engineering is to reliably estimate the undisturbed
mean wind speed upwind of the rotor, i.e., that wind speed resulting in the correct
aerodynamic torque as predicted by (6.1a). The nacelle anemometer is affected by
induction of the rotor and periodic effects due to the three rotor blades. A potential solution
is to use Light Detection and Ranging (LIDAR) measurements (Smith, Harris, Coffey et
al., 2006; Simley, Pao, Kelley et al., 2012). A LIDAR is capable of measuring the wind
speed at several locations upwind of the rotor in a non-intrusive manner. One method
would be to average a number of spatially separated measurements upwind of the rotor
to estimate the mean wind speed. Still, evolution of turbulent structures would cause the
wind speed estimate to be reliable only at low frequencies. At present, LIDAR data was
not available on the CART 3 and therefore a method is presented that is based on torque
measurements on the low-speed shaft. Similar procedures were used in van der Hooft
and van Engelen (2004); Johnson, Fingersh, Balas et al. (2004). It is important to note
that these methods and the method presented here can only be expected to yield accurate
estimates at low frequencies, as a consequence of neglecting drive train dynamics and other
dynamics propagating into the drive train system (for instance the side-side motion, or the
fore-aft motion).

The rotor acceleration is governed by:

JΩ̇ = Ta − TLSS,

where TLSS is the measured LSS torque and J is the rotor inertia. Since the LSS torque can
only be measured accurately at low frequencies, all signals have been filtered with a zero-
phase low-pass filter with a cutoff frequency of 0.3 Hz. This eliminates any components due
to drive train dynamics (∼2.6 Hz), fore-aft-motion-induced wind speed changes (∼0.85 Hz)
and related dynamics, of which it is assumed no knowledge is available. The aerodynamic
torque can now be estimated as:

T̂a ≈ J ̂̇Ω+ T̂LSS,

where the hats denote the filtered signals. By invoking the torque relation (6.1a) and using
the knowledge of the pitch angle β and rotor speed Ω together with the estimated torque

T̂a, the wind speed V∞ can be estimated using a root-finding technique.

Although the LSS torque is not commonly measured on commercial turbines, the
generator torque together with the gearbox ratio can be used instead, owing to the fact
that at low frequencies these signals are equivalent.

A final remark is in order regarding the position of CART 3 in relation to utility-
scale wind turbines. On multi-MegaWatt commercial wind turbines drive train and tower
frequencies may well be an order of magnitude lower, causing them to become more
relevant. One solution is to then choose a smaller filter bandwidth than the current 0.3 Hz.
On the other hand one could apply more sophisticated filtering techniques as proposed in
Østergaard, Brath and Stoustrup (2007); Knudsen, Bak and Soltani (2011). However, these
techniques require a significant amount of additional (prior) information on the dynamics
of the turbine.

Dealing with periodic disturbances

As was described in some detail in Section 3.2, wind turbines experience significant periodic
loads which need to be accounted for in the identification procedure. In this work we
have used the techniques presented in that Section (3.2) to properly model the periodic
disturbances and avoid modelling errors.

Disturbances due to yaw motion

During data analysis and identification it was found that the side-side motion of the tower
contained significant frequency content that was unaccounted for by the input signals and
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the periodic effects described in the previous section. After further investigation it was
found that this content could be linked to yawing of the turbine. The yaw system only
periodically aligns the turbine with the wind. When this happens, the nacelle is set in a
sudden motion by the yaw drive, which causes a significant excitation of the lightly damped
side-side motion of the tower. To account for these effects, the current yaw angle ψ(k) of
the nacelle was added as an additional input and was found to account for these effects in
a very satisfactory way.

Based on the discussions in Section 3.2 on compensating for periodic disturbances and
this section on compensating for yaw motion the input signal defined in Section 6.3.3 is
extended accordingly, so that the input signal becomes:

uk =
[
Ta(k) Fa(k) Tg(k) ψ(k) ϕ1(k) · · · ϕp(k)

]T
.

Validation methods

It is especially relevant for real systems, of which no “true” model is known, to be able
to validate identified models. For this purpose several techniques are used. The first is
to compare the outputs of the identified model with the measured outputs. This is done
both on the data set used for identification and on an independent dataset, as a means of
cross-validation. As quality measure the variance-accounted-for (Verhaegen and Verdult,
2007) (VAF) is used, see (2.38) on page 36.

In this work we use an additional means of simulating the identified system. Since the
wind turbine is a marginally stable system, errors accumulate and simulated trajectories
cannot be compared to the measured ones. For this reason the identified models are
simulated in closed-loop with the actual controllers on CART 3. This not only causes the
trajectories to match better, since the controllers attempt to meet the reference signals, but
also serves as a verification of the model in the sense that it shows whether the closed-loop
is stable as is the case for the true system.

Besides the ability to describe the nonlinear dynamics of the wind turbine, an additional
advantage of the identification scheme presented here is that local linear models can be
obtained even when the operating conditions do not allow the system to operate steadily
in a single operating point. Hence, as a second means of validation the identified model
is linearised at several wind speeds and compared to linearised models obtained from a
model of the CART 3 turbine in the FAST simulation environment (Jonkman, 2012).

Considering an operating point of the turbine defined by the triple (V̄∞, β̄, Ω̄), a
linearised description around this operating point can be obtained. To do so, the torque
and thrust inputs (6.1a) are linearised around this operating point:

δTa =
1

2
ρπR3

[
∂(CQV

2
∞)

∂V∞

∂(CQV
2
∞)

∂β

∂(CQV
2
∞)

∂Ω

]∣∣∣∣
(V∞,β,Ω)=(V̄∞,β̄,Ω̄)



δV∞
δβ
δΩ


 ,

δFa =
1

2
ρπR2

[
∂(CTV

2
∞)

∂V∞

∂(CTV
2
∞)

∂β

∂(CTV
2
∞)

∂Ω

]∣∣∣∣
(V∞,β,Ω)=(V̄∞,β̄,Ω̄)



δV∞
δβ
δΩ


 ,

where δTa and δFa are the variations about the steady-state values. The directional
derivatives of the torque and thrust coefficients are readily evaluated analytically on the
basis of their spline representations (de Visser, 2011). These derivatives are guaranteed to
be finite and well-behaved, by virtue of the fact that the spline functions were prescribed
to be C1-continuous. The LTI component of the model remains invariant under changes in
the operating point.

6.4 Experimental results

To validate the presented approach for identification of wind turbines and demonstrate
its practical value, identification experiments were performed on the CART 3 research
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Figure 6.7 – Wind speed experienced by the turbine and corresponding collective blade pitch angle.

turbine. During suitable wind conditions, i.e., with significant wind speed variations, the
perturbation signals were applied and data acquisition was started.

Figure 6.7 shows an example of the wind speeds and pitch angles experienced during
such an experiment. The wind speed varies considerably, and the effective turbulence
intensity I, defined as the ratio of the standard deviation of the wind speed to the mean
wind speed is equal to I = 23%. This is a very significant turbulence level and is far
higher than the commonly used wind turbine class A, which corresponds to I = 16%
(Wind turbines – Design requirements 2005). This indicates that one needs to deal with a
significant amount of stochastic excitation. Furthermore, the wind speed varies throughout
a significant part of the operational regime of the turbine since the cut-in wind speed is
near 6 m/s and the cut-out wind speed is near 24 m/s. Since the full operational regime is
experienced, the full nonlinear behaviour of the turbine is captured. This is, for instance,
reflected in the collective pitch angle which reaches high values and varies through a wide
range of almost 20◦, as the turbine control system attempts to maintain rated power at
above-rated wind speeds. It can also be seen that there is a period of below-rated operation,
between 13 and 21 minutes from the start, where the turbine operates in fine pitch and the
pitch angle is kept fixed at 3.7◦ (aside from the additive perturbation).

A model of the turbine was identified on the basis of the dataset corresponding to
Figure 6.7. For the identification algorithm window sizes of p = 180 and f = 140 were
chosen (see Chapter 2, Section 2.3 for details). Periodic signals, as discussed in Section 3.2,
were added to model 1P, 2P and 3P disturbances. The order detection mechanism of the
MOESP algorithm (2.24) indicated a number of possible system orders and for each of
those orders a model was identified and the fit on the identification data was evaluated in
terms of the VAF. Based on this evaluation, a model order of n = 23 turned out to give
good VAF values (upwards of 90%) and these values showed little improvement for higher
model orders.

As described in Section 6.3.4 several methods can be applied to validate identified
models. The following subsections describe two validation approaches.

6.4.1 Time-domain validation in closed-loop

Figure 6.8 shows the distributions of the wind speeds present in the data sets used
for identification and validation respectively. These distributions may indicate that the



124 Chapter 6. Nonlinear data-driven modelling of wind turbines

emphasis of the identified model will be on a wind speed near 15 m/s, since that wind speed
is most abundant. The validation data set contains more data at lower wind speeds.
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Figure 6.8 – Histograms displaying the distributions of wind speeds in the identification and

validation data sets.

A primary step in validating identified models is typically to study the model’s prediction
capability on a dataset. The first check is to pass the input data that was used for
identification through the model and observe the outputs. These results are shown in
the first column of Table 6.1 in terms of the variance-accounted-for (cf. Section 6.3.4) for
each channel. This column verifies that the model delivers good prediction capability on
the identification dataset. The side-side motion is not as accurately modelled.

In a second validation step the model was subjected to inputs from an independent
dataset. The problem with the open-loop dynamics of the wind turbine is that it contains
an integrator (the rigid body mode of the drive train) and therefore is unstable. For this
reason, the validation was performed in closed-loop. That is, the configuration depicted
in Figure 6.4 was simulated, where the identified model took the place of the real wind
turbine. The second column in Table 6.1 shows the results for this simulation. Time traces
of these results are also shown in Figure 6.9. The results are overall very encouraging. One
reason that the tower side-side motion shows differences, mainly in the high frequency
content, could be that during these tests a drive train damper was intermittently active,
which was not active in the simulations. Furthermore, motion could result from gyroscopic
coupling of the rotor to the tower during yaw motions. Note also that it was essential to
include the yaw position of the nacelle as an input to account for a significant part of the
tower side-side motion.

Figure 6.10 compares the true and simulated outputs in terms of power spectra in the
frequency domain. Note that the low-frequency content is accurately accounted for. The
differences in high-frequency content could be due to the fact that turbulence above the
0.3 Hz bandwidth mentioned in Section 6.3.4 is active on the real turbine which is not a
known input to the simulation model. In addition, the power levels of the high frequency
content are much lower (upwards of 10 dB) causing this content to play a very limited role
in the fit of the identified model to the data.

Finally, in these plots we also show the bands in which the periodic 1P, 2P and 3P
disturbances are active. These periodic loads have been incorporated in the identification
procedure by means of the azimuth position (cf. Section 3.2), to account for the special
character of these disturbances and to be able to consistently identify models. It is not
necessarily the case, though, that this results in accurate models describing the transfer
from the periodic signals to the outputs. This is mainly due to the fact that the rotor speed
varies and its distribution varies between data sets. This effect can be a reason for the
mismatch between the spectra in Figure 6.10 within the gray frequency bands.
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Table 6.1 – The variance-accounted-for for the four output signals on the identification and

validation data set.

open-loop closed-loop

output identification data validation data identification data validation data

Ω 97.0% 70.4% 99.7% 99.7%

ω 97.0% 70.4% 99.7% 99.7%

Mtwr,FA 93.5% 90.4% 64.5% 82.3%

Mtwr,SS 77.2% 66.8% 69.7% 65.9%
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Figure 6.9 – Validation results using an independent dataset. True CART 3 measurements (gray)

compared to identified model outputs (black) under closed-loop control.
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Figure 6.10 – Comparison of power spectra of measurement signals. True CART 3 measurements

(gray) compared to identified model outputs (black) under closed-loop control. Also

shown are the bands in which the 1P and 3P periodic loads are present along with their

mean values (dashed).
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6.4.2 Comparison of local linear models

In the next two subsections we examine the local behaviour of the identified models.
First, we consider time domain simulations of local linear models obtained from the FAST
aeroservoelastic model and the identified Hammerstein model. Next, we consider the
frequency domain behaviour of these linear models.

Time domain results

To compare the behaviour of the linearised FAST models and the linearised Hammerstein
models with real data, short segments of validation data were extracted from a large
measurement data set. The wind speed signal was binned into 2 m/s intervals centred
around wind speeds of 8 m/s to 17 m/s with steps of 1 m/s. To establish the validity of such
an approach, data was generated using the linear models at a certain wind speed (the
“central” model) using random inputs. The same inputs were then used to simulate models
in the vicinity of these central models. If the models are not too different, this should
be reflected in the outputs being very similar and hence the VAFs between the outputs
of the central models and surrounding models should be close to 100%. The results are
shown in Figure 6.11. This figure show that in all cases (except near 13 m/s for the FAST
model) VAF values within the bands of V ± 1m/s are quite high, being 95% or more. This
should convince us that data within ±1m/s from the wind speed at which a model was
linearised should be usable to compare two modelling methods (first principles vs. system
identification) to each other.
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Figure 6.11 – VAF values showing to what extent the outputs of neigbouring linear models are

similar to the outputs of a central linear model; FAST linear models (gray) and
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model) VAF values within the bands of V ± 1m/s are quite high, being 95% or more.

All consecutive sequences longer than 20 seconds were considered, resulting in one
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or more data sets for each wind speed bin. Figure 6.12 shows the results of one such
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Figure 6.12 – Results of a simulation of models linearised at V = 11m/s. The gray line is the

measured signal, the black line is the linearised FAST model and the dashed line is the

linearised Hammerstein model. Note that due to the integrator associated with the

drive train the simulation results soon drift from the measured values.

simulation using a segment of data near 11 m/s. The rotor and generator speed signals
clearly show the effect of the integrator associated with the rigid body mode of the drive
train. These signals soon drift away from the measured signals, both due to accumulation of
small errors and due to difficulties in estimating the integrator. The rigid-body dynamics are
associated with DC and very low frequencies. In closed-loop operation these frequencies
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are very tighly controlled by the (practically) infinite gain of the PI speed controller at
these frequencies. Hence the very low frequencies are hard to identify in closed loop. On
the other hand, if the model is to be used as a basis for controller design, the exact rigid
body behaviour at these low frequencies is not important for the same reason and these
models are still suitable.

The results in Figure 6.12 also demonstrate that, apart from the drift, the dynamics are
captured well. Because of the drift, the quality of the models as judged by a VAF computed
on the basis of these signals will turn out to be very poor. As a remedy, we have zero-
phase filtered all signals with a 2nd order Butterworth high-pass filter with a pass-band
starting at 0.05 Hz to eliminate low-frequency drifts. This procedure results in the signals
shown in Figure 6.13. It can be seen that comparison is now much easier. Furthermore,
VAFs computed on the basis of these results will improve and reflect whether the relevant
dynamics are captured well or not. Table 6.2 shows the VAF values for all data sets, along
with the mean VAF values found for each wind speed bin. The highlighted cells correspond
to the simulation shown in Figure 6.12.

On the basis of the values in Table 6.2 it can be concluded that in many cases the
Hammerstein model outperforms the FAST model, in particular at higher wind speeds.
This is remarkable, since the Hammerstein model structure can only allow overall gain
variations and not local (frequency-specific) variations in the dynamics. These figures also
reflect the overall difficulty in fitting the side-side tower bending moment, an issue we have
already seen in the previous section. As it turns out, these difficulties also hold for the FAST
models. Finally, it is interesting to see that while most samples in the identification data
set are associated with wind speeds between 13 m/s and 17 m/s, the VAF values are also high
outside this range. At lower windspeeds, however, the FAST model performs as well as
the identified model, while at the higher wind speeds the identified model clearly performs
better.

Frequency domain results

Figures 6.14 and 6.15, respectively, show the linearised models from pitch to generator
speed and from pitch to fore-aft bending moment at two wind speeds. Figure 6.16 shows
the linear models from generator torque demand to generator speed and side-side bending
moment. The comparisons in the figures display good agreement, in particular in terms
of the overall trend. It is important to realise that, while the FAST simulation model
has to some extent been empirically tuned to match the true CART 3 dynamics, it by no
means provides a 100% accurate reference model. For instance, in Figure 6.15 it seems
that the FAST linear model underestimates the damping of the tower fore-aft mode. This
is supported by the spectral estimate, which shows strong agreement with the identified
model in terms of the damping of the tower mode. In this context it is interesting to note
that in previous research, an attempt was made to design an active fore-aft tower damper
for the CART 3 turbine on the basis of an aeroelastic model (Bossanyi, Fleming and Wright,
2012). In field tests, however, it was found that the tower damping was much higher than
predicted (as just pointed out) thereby removing the load reduction benefits of having an
active tower damping controller. This underlines the usefulness of system identification in
obtaining accurate models for control design as well as for pointing out differences between
a first-principles model and the true system it is meant to describe.

Figure 6.16(a) shows that the low-frequency and static behaviour is captured very
accurately. The identified responses in Figure 6.16(b) also reveal a mode at 1.87 Hz, which
is not predicted by the FAST model. The existence of this mode is confirmed by the spectral
analysis. Also note that the estimate in Figure 6.16(b) is unreliable outside the resonance
bands, since there the sensor signals are dominated by noise. This is reflected in the noisy
character of the spectral estimate. The transfer functions from torque demand to tower
fore-aft bending moment and from pitch angle to tower side-side bending moment have
not been shown. These frequency responses are rather small in magnitude due to little
coupling between those input-output pairs.

Finally, in table 6.3 some of the identified modal parameters are shown which follow
from the eigenvalues of the identified system matrix. The identified values are compared
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mean VAF (%) VAF individual data sets (%)

Wind speed Output FAST ID FAST ID FAST ID FAST ID FAST ID FAST ID

8 m/s

(7–9 m/s)

02:04

Ω 91.9 90.4 91.9 90.4

ω 89.0 91.0 89.0 91.0

Mtwr,FA 25.4 24.2 25.4 24.2

Mtwr,SS 6.3 11.4 6.3 11.4

9 m/s

(8–10 m/s)

03:24

Ω 91.0 88.1 97.5 95.0 86.0 81.9 94.5 92.1 85.9 83.3

ω 87.8 87.3 94.9 95.3 82.4 84.4 93.5 90.9 80.4 78.6

Mtwr,FA 35.8 33.1 44.1 43.7 20.5 20.4 74.0 68.4 4.4 0.0

Mtwr,SS 23.4 26.5 0.0 0.0 20.9 3.8 48.8 69.8 23.8 32.6

10 m/s

(9–11 m/s)

03:22

Ω 91.2 86.1 88.6 79.2 88.4 85.5 92.6 92.1 89.1 80.0 97.6 93.6

ω 86.0 85.4 79.9 79.8 87.5 85.9 88.3 89.3 83.1 81.1 91.3 90.8

Mtwr,FA 25.1 24.3 3.7 6.1 36.3 25.8 34.2 35.7 0.2 0.0 51.4 53.9

Mtwr,SS 0.0 21.2 0.0 23.3 0.0 58.3 0.0 0.0 0.0 14.1 0.0 10.4

11 m/s

(10–12 m/s)

03:33

Ω 88.3 93.2 89.9 94.7 78.1 83.6 88.5 96.3 96.6 98.3

ω 86.2 91.0 88.0 91.5 76.3 85.1 88.4 94.2 91.9 93.1

Mtwr,FA 30.3 37.5 33.1 33.6 21.5 27.8 31.1 51.8 35.5 36.8

Mtwr,SS 12.5 19.2 7.8 3.3 0.0 4.6 0.0 12.6 42.3 56.4

12 m/s

(11–13 m/s)

04:20

Ω 65.0 83.5 60.3 77.2 97.7 97.2 0.0 63.6 84.6 89.0 82.3 90.7

ω 67.9 82.3 48.8 74.8 97.2 96.9 39.5 68.4 76.9 85.5 77.0 85.9

Mtwr,FA 38.7 54.5 87.4 91.2 32.9 37.8 47.7 62.8 6.9 16.9 18.4 63.8

Mtwr,SS 12.5 18.4 42.8 19.5 0.0 15.2 19.5 33.7 0.0 9.1 0.0 14.5

13 m/s

(12–14 m/s)

04:45

Ω 0.0 35.9 0.0 76.6 0.0 56.3 0.0 10.8 0.0 0.0

ω 0.0 42.0 0.0 78.3 0.0 55.9 0.0 34.0 0.0 0.0

Mtwr,FA 63.0 78.8 62.3 82.2 80.9 86.8 63.3 76.3 45.6 69.8

Mtwr,SS 0.0 13.7 0.0 23.5 0.0 0.0 0.0 22.2 0.0 9.2

14 m/s

(13–15 m/s)

05:21

Ω 57.6 81.3 59.7 83.7 54.6 82.1 75.3 87.9 50.5 69.0 48.0 83.7

ω 60.4 64.6 67.2 74.2 70.2 72.2 49.8 49.6 38.6 42.7 76.5 84.4

Mtwr,FA 62.8 70.9 65.4 72.6 59.4 73.2 65.2 67.7 45.7 61.1 78.3 79.9

Mtwr,SS 7.5 15.4 4.3 1.9 17.7 40.5 8.7 14.6 0.0 7.8 6.7 12.0

15 m/s

(14–16 m/s)

06:28

Ω 49.6 82.7 59.7 86.3 54.9 84.7 34.3 77.1

ω 52.9 54.1 55.4 57.7 59.5 66.0 43.7 38.5

Mtwr,FA 50.8 61.9 58.6 57.9 50.1 54.2 43.8 73.7

Mtwr,SS 1.2 10.0 3.7 0.0 0.0 20.0 0.0 10.0

16 m/s

(15–17 m/s)

06:39

Ω 35.0 86.8 35.0 86.8

ω 67.6 67.9 67.6 67.9

Mtwr,FA 70.1 66.9 70.1 66.9

Mtwr,SS 31.5 13.2 31.5 13.2

17 m/s

(16–18 m/s)

04:26

Ω 61.2 80.6 61.2 80.6

ω 44.3 51.6 44.3 51.6

Mtwr,FA 36.1 36.5 36.1 36.5

Mtwr,SS 11.7 23.8 11.7 23.8

Table 6.2 – Table comparing VAF values for simulations using short segments of data near certain

mean wind speeds (first column). VAF values are compared for the linearised FAST

models versus the linearised identified Hammerstein model. The first column also

indicates how much data (min:sec) was available for identification in each wind speed

range.
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Figure 6.13 – Results of a simulation of models linearised at V = 11m/s. The gray line is the

measured signal, the black line is the linearised FAST model and the dashed line is the

linearised Hammerstein model. The highlighted cells in Table 6.2 contain the VAF

values for the data shown in this figure. Note, compared to Figure 6.12 , that in this

case the simulated signals have been high-pass filtered and hence the signals do not

drift away from the measured signals.

with the values predicted by the FAST model. Note that there is a good agreement of
the drive train damping predicted by FAST and the identified value. This is due to the
fact that the damping in the FAST model was tuned on the basis of earlier results on the
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Figure 6.14 – Comparison of linearised models obtained at V = 8m/s and V = 16m/s using

linearisation (gray line) and identification (black line). Also shown is the spectral

transfer function estimate (thin gray line).

identification of the drive train dynamics.
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Figure 6.15 – Comparison of linearised models obtained at V = 8m/s and V = 16m/s using

linearisation (gray line) and identification (black line). Also shown is the spectral

transfer function estimate (thin gray line).

6.5 Concluding remarks

In this chapter a practical method was presented to identify models of wind turbines based
on measurement data. It was shown how standard identification tools can be tailored for
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Figure 6.16 – Comparison of LTI models obtained using linearisation (gray line) and identification

(black line). Also shown is the spectral transfer function estimate (thin gray line).

the application to wind turbines. The advantage of the method is that it can deal with
data captured over a broad operating range while the turbine is under closed-loop control.
Results of experiments of the CART 3 turbine show that the method gives promising results,
both in terms of time-domain and frequency-domain validation. These results establish the
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Table 6.3 – Predicted and estimated modal parameters of the CART 3 turbine.

predicted estimated

frequency damping frequency damping

mode (Hz) (–) (Hz) (–)

1st drive train 2.75 0.008 2.68 0.006

1st tower fore-aft 0.87 0.010 0.79 0.528

1st tower side-side 0.90 0.001 0.88 0.009

value of system identification in conjunction with first-principles modelling and as a basis
for control design.

One assumption in the method presented here is that knowledge of the performance
coefficients of the turbine is available, which is typically the case in practice. Efforts directed
towards estimating those coefficients, for instance from LIDAR data, are therefore valuable
in conjunction with the approach presented in this chapter.



7Conclusions and recommendations

In the introduction we argued that advanced control methods can lead to reductions
in the cost of energy. We also discussed that accurate models of wind turbines
are of fundamental importance to be able to design such advanced controllers for
simultaneous power and load regulation. System identification was proposed as
a powerful tool to obtain such models. We anticipated a number of challenges
associated with applying system identification to wind turbines, to which we have
sought solutions that are described in the different chapters of this thesis.

Starting with closed-loop identification of linear time invariant systems in Chapter 2,
we have gradually tailored these methods to result in techniques to identify
nonlinear wind turbine models in Chapter 6. Finally, in Chapter 4 we have
demonstrated how the same identification framework can play a role in an adaptive
predictive control setting. At several points along the way we have demonstrated
the potential and added value of these identification methods on the basis of
experimental data. In this chapter we will draw our conclusions and discuss some
opportunities for future research in this area.

7.1 Conclusions

The main conclusion of this thesis is that accurate and data-driven modelling of wind
turbines is indeed possible making use of a Hammerstein nonlinear modelling framework.
In this framework all available measurement data can be used in an efficient and effective
way since the model describes the turbine in all its operating conditions. Furthermore, we
have shown that it is important to incorporate well-known system information, such as the
static power curve, in the identification procedure to obtain accurate and reliable models.

The presented framework addresses most of the challenges listed in the introduction.
The first challenge is that wind turbines and many other aeroelastic systems must operate
in closed-loop. This can be addressed using the recent closed-loop subspace identification
methods which have been presented in Chapter 2 using a common underlying framework.
Among those methods is the closed-loop MOESP algorithm developed as part of this thesis.
Based on a number of theoretical and experimental examples we have established the
reliability and consistency of each of the methods. It turns out that the predictor-based
subspace identification method (PBSIDopt) and the closed-loop MOESP (CLMOESP) method
perform very well in practical cases. An advantage of the CLMOESP method is that the
order indication is crisper. This means that the user can more readily select possible
state space system orders and evaluate the performance. The closed-loop identification
framework in Chapter 2 forms the basis for all methods in subsequent chapters and readily
extends to identification of Hammerstein models.

Besides the challenge arising from operating in closed-loop, wind turbines experience
dominant periodic loads which further complicate reliable identification of linear time
invariant models. In Chapter 3 we have extended the methods from Chapter 2 to deal with
the periodic disturbances that are prevalent in wind turbine systems in a straightforward
way. Doing so, allowed us to consistently identify the dynamics of such a system which
would otherwise be very hard.
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Another challenge mentioned in the introduction is the poor signal-to-noise ratio
experienced when measuring in noisy conditions, for instance due to turbulent wind. Also,
performing identification experiments is expensive and hence optimal use must be made
of available time. The examples in Chapter 3 have largely been devoted to these aspects.
We have demonstrated the potential of system identification on the basis of several realistic
examples, giving further evidence for the reliability and performance of the methods in
Chapter 2. First, we have performed “one-shot” controller design for an aeroelastic flutter
control problem. Second, we have shown that system identification can support controller
design, not just by providing a tool to deliver models of the system, but to examine the
closed-loop performance. In the process of controller evaluation on the CART 3 turbine, the
closed-loop characteristics could be determined to a large extent on the basis of 10 minute
experiments. This example shows that performance can be judged reliably on the basis of
short experiments, despite measuring under severe turbulence conditions. In all examples
domain knowledge helped to understand by which mechanisms periodic disturbances are
generated, how to design perturbation signals, how to designate relevant bandwidths in
view of stochastic disturbances, how to choose input and output signal configurations
and when to expect certain behaviour in identified models (e.g., nonminimum phase
behaviour).

The linear identification framework of Chapter 2 can be combined with a predictive
control law, to result in a combined framework for identification and control. This
subspace predictive control (SPC) framework may be seen as a first step in bringing
the fields of identification and control closer together. While the SPC framework was
developed before in the literature, we have shown the results of applying it to two realistic
experimental setups. In the process of developing a real-time feasible implementation
we have developed a square root covariance filter with directional forgetting of past
information. Such a scheme offers a safe way to discount old information compared to
widespread recursive least-squares algorithms with exponential forgetting, by ensuring
boundedness of the covariance matrix and retaining adaptivity. Two experimental cases
demonstrate the capabilities of SPC. In the first example it was shown that without any
prior model information, damping could be achieved on a flexible structure which switched
between two radically different dynamic behaviours. In the second example it was shown
that speed regulation of a scale wind turbine could be achieved, both in terms of tracking
a reference as well as in terms of rejecting disturbances due to wind speed variations.

The identification methods presented thus far work for systems which operate steadily
around a fixed operating point. This was valid for the CART 3 drive train dynamics in
Chapter 3 since those dynamics can be considered to be almost LTI. If we consider the
full dynamics of a wind turbine, however, the nonlinearity appears continuously due to
the time-varying nature of the wind. Our main conclusion above is that this challenge
can be addressed by extending the framework of Chapter 2 to Hammerstein nonlinear
systems, which we have done in an intuitive way in Chapter 5. We also concluded that prior
knowledge should be incorporated and have devoted Chapter 6 to making the approach of
Chapter 5 practically feasible and to demonstrate this feasibility. To achieve this we have
assumed that a good characterisation of the static performance of the turbine is available
in order to make the algorithms more robust to poor signal-to-noise ratios.

Using experimental data from the CART 3 turbine extensive validation has been
performed by comparing identified models to models from an aeroelastic code and by
evaluating identified models on the basis of input-output data. The validation showed that
the Hammerstein model structure could accurately describe the most important dynamics
for overall regulation of the turbine and load control. In the case of the CART 3 turbine
the identified models indicated that certain modes were not correctly modelled by the
aeroelastic code in terms of frequency and damping. This is key information in establishing
fundamental control system limitations in the form of unstable modes and nonminimum
phase zeros. Open-loop time-domain simulations at various wind speeds showed that the
identified models outperformed the first principles models in the majority of the cases.

By presenting the value of system identification and providing practical tools, we have
bridged part of the gap between scientific theory and industrial practice. Over the past
few years, wind turbine manufacturers have shown an increasing interest in applying
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system identification in their control design approaches. While there will always be further
challenges, as discussed in the next section, it is hoped that these tools can complement
physical modelling in industrial practice.

7.2 Recommendations

While this thesis has addressed a number of challenges mentioned in the introduction,
there are opportunities for further research.

In Chapter 6 we have successfully exploited the idea of representing a wind turbine
system as a Hammerstein structure. Important follow-up steps would be to investigate
application to data from a full-scale (possibly floating) wind turbine. This may imply
that certain time varying modes related to the rotor become relevant. In such cases the
extension of the LTI subsystem to a simple LPV structure could perhaps be helpful. While
the focus in this thesis has been on models of the dynamics governing production and load
control, the methods could be extended to simultaneously perform modal analysis. This
would lead to a combination of the results in this thesis with the results of operational
modal analysis, with the added feature of knowing relations between the input signals and
the modes of the turbine.

In Chapter 2 we have organised many closed-loop subspace methods found in recent
literature. These methods were presented in their basic forms. Recent years have seen a
large interest in regularisation techniques. Some of these aim at imposing certain properties
(stability, positive realness, polytopic constraints on pole locations) on identified models,
while others aim at making the estimation process more reliable in the presence of noise.
At some instances we have employed these techniques, but frequently have not found them
to be very useful or necessary. An up-to-date categorisation of the literature on these ideas
including an experimental justification could be valuable to be able to judiciously select a
method for the problem at hand.

For control design purposes the positions of zeros in identified models are just as
important as the positions of the poles. These zeros define fundamental limits on the
control system performance, in particular taking into consideration that actuator inputs
are always constrained. Accuracy of the identification of zeros is frequently disregarded,
however, and efforts could be directed towards more accurate and reliable identification
of zeros. A particular challenge is that, contrary to resonances, zeros block the transfer
between inputs and outputs and hence the measured outputs at the frequencies of these
zeros are dominated by noise. Appropriate perturbation signal design or incorporation of
prior knowledge could be ways to solve this challenge.

Robust control methods require uncertainties to be specified in some way in order to
design controllers with robust performance and stability. Uncertainty descriptions are hard
to obtain for subspace methods, in particular due to the SVD model reduction step. While
one could derive first order variance results for subspace methods, just as is typically
done for the prediction error methods, it is unlikely that results will be reliable. Even
in the case of prediction error methods, variance results strongly rely on the smoothness
of the prediction error criterion and are only well-known to be reliable for linear least-
squares formulations. It seems that development of tailored Monte Carlo methods and
bootstrapping techniques could be much more useful, such that based on a limited number
of independent identification experiments a good characterisation of uncertainties can be
found.

In Chapter 4 we have made some efforts to show the potential of direct data-driven
control in the form of SPC. While these results are interesting, it is very hard to establish
the reliability of SPC. In its current state, it can only be considered for non-safety-critical
applications, in condition monitoring applications, or as a supervisory system, for instance
to generate optimal trajectories. Furthermore, the framework is limited to systems that
are essentially linear and, at most, slowly time varying. Extensions to certain nonlinear
systems, such as have been made for Hammerstein and LPV systems, and a further fusion
between obtaining a model and designing a controller are of interest to broaden the scope
of these methods.





AParameterizing an orthogonal matrix

Parameterizing a matrix Q(ϑ) ∈ R
m×n with m > n as a matrix with orthonormal columns

has the advantages that the matrix always has condition number one, its pseudoinverse
is given by its transpose, it requires fewer parameters than a full parameterisation and all
parameters ϑ can be restricted to the interval [0, 2π).
Considering the QR factorisation of a tall matrix A ∈ R

m×n into an orthogonal matrix

Q̃ ∈ R
m×m and an upper-triangular factor R̃ ∈ R

m×n:

A = Q̃R̃,

we can find a sequence of mn − 1
2
(n + 1)n elementary Givens rotations that achieves this

factorisation (Golub and Van Loan, 1996, Section 5.2.3):

Q̃T =
n∏

l=1

l+1∏

k=m

Gkl, such that Q̃TA = R̃,

where Gkl is an elementary Givens rotation of the form

Gkl = Ik−2 ⊕
[
cos(ϑi) sin(ϑi)
− sin(ϑi) cos(ϑi)

]
⊕ Im−k,

where ⊕ denotes the direct sum of matrices (i.e., diagonal concatenation). The representa-

tion thus found for the m-by-n matrix Q̃ = Q̃(ϑ) is defined in terms of the mn− 1
2
(n+1)n

parameters in ϑ. The derivative of Q̃(ϑ) with respect to one of the elements of ϑ is easily
found by replacing the elementary rotation corresponding to that element, ϑi, by its partial
derivative, given by:

∂Gkl

∂ϑi

= Ik−2 ⊕
[
− sin(ϑi) cos(ϑi)
− cos(ϑi) − sin(ϑi)

]
⊕ Im−k.

We only need to consider the “thin” QR factorisation of A:

A = QR,

with Q̃ ∈ R
m×n and R̃ ∈ R

n×n. This is achieved by retaining only the first n columns of

Q̃(ϑ).





BFloating wind turbines and

fundamental limitations1

Wind energy is a clean, renewable and extremely fast growing form of electricity
generation and the potential to install turbines deep offshore is only just being
realised. The vast majority of commercial offshore turbines have foundations on
the seabed thereby restricting the depths at which offshore farms can be installed.
In an attempt to facilitate access to a potential multi-TeraWatt resource, a number
of floating concept wind turbines have emerged. In this reproduction of a recent
tutorial paper we review the control challenges associated with the design of floating
turbines and summarise recent developments in the area. Of particular interest is
a fore-aft oscillation induced by attempting to regulate the generator speed to its
rated value. We conclude with a discussion of how the control problems presented
are likely to change with increasing turbine size and structural flexibility.

B.1 Introduction

Recent years have seen an increasing interest in development of concepts for offshore wind
turbines. Typically, the most powerful, sustained and low-turbulent winds can be found
at sea. Furthermore, offshore sites suffer less from complicated political, societal and
environmental issues related to visual impact, noise emission and acquiring the required
real estate (surface area).

To fully access the multi-TeraWatt offshore resource (Roddier and Weinstein, 2010),
wind turbine deployment needs to be viable in deep waters and at sites with loose sea-
beds. In the former, monopiled solutions are not cost effective (Roddier, Cermelli, Aubault
et al., 2010); and in the latter, they are not possible – a realisation that has motivated
the development of a number of floating wind turbine concepts, see for example (Nielsen,
Hanson and Skaare, 2006; Roddier, Cermelli, Aubault et al., 2010). Despite skepticism
from some quarters, the transition to floating offshore structures is a natural one, and has
been made previously by the oil and gas industry with considerable success (Roddier and
Weinstein, 2010). The installation and maintenance of platform-based floating turbines
carries the considerable advantage over both monopile and spar-buoy type concepts that
both processes can be performed onshore circumventing the need for extraordinarily
expensive access vessels (Roddier, Cermelli, Aubault et al., 2010).

The designers of floating wind turbines are faced with some formidable challenges, most
notably the considerable structural vibrations induced by wind and wave loads (Lackner,
2009). To sustain these high loads, offshore turbines tend to be heavier, and therefore
more expensive, than their onshore counterparts. With capital expenditure dominating
wind power plant costs (Fingersh, Hand and Laxson, 2006), any efforts to reduce these
material weights leads directly to a reduction in the cost of energy, thereby motivating the
search for load reduction via advanced control. Aside from the necessary safety systems,
the control objectives can classically be stated as achieving optimal power production whilst

1This appendix is a reprint of an article published elsewhere: G. J. van der Veen, I. A. Couchman and R. O. Bowyer

(2012). ‘Control of floating wind turbines’. In: Proceedings of the 2012 American Control Conference, Montreal, QC,

Canada
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keeping the forces and moments that the components experience to a minimum (Bianchi,
De Battista and Mantz, 2010). In this section we focus on the additional challenges faced
when designing a controller for power production of a floating wind turbine.

In Section B.2 simplified wind turbine dynamics are presented to facilitate the demon-
stration of the control issues. The operational regions are described in Section B.3 along
with a detailed discussion of the control design problems associated with regulating
generator speed to the rated value, whilst producing nameplate power. Section B.4
compares and contrasts the published solutions to such problems, whilst Section B.5 gives
a discussion of how the problems will scale to tomorrow’s larger, more aerodynamically
efficient turbine designs.

B.2 Dynamics

The combined torque Ta (Nm) generated by three blades of length R (m), pitched at β (◦),
rotating at Ω (rad/s) in an apparent wind of speed V (m/s) is defined:

Ta(Ω, V, β) :=
1

2
πR3ρCQ(Ω, V, β)V

2,

where CQ : R+ × R+ × R → R+ is the torque coefficient defined by the blade profile2,
R,R+ the sets of real and non-negative real numbers respectively and ρ (kg/m3) is the air
density (Burton, Sharpe, Jenkins et al., 2001, p. 6).

The aerodynamic torque is transferred to the electrical generator through the gearbox.
For simplicity we consider an ideal gearbox with gear ratio Rg, and hence the power
transfer is lossless and the high speed shaft rotates at RgΩ (rad/s).

The stator side of the generator provides a torque against the motion of Tg (Nm) and
hence the power generated by the system P is defined P := TgRgΩ. If the (scaled)
electrical and aerodynamic torques are not equal, the rotor will accelerate or decelerate:

J
dΩ

dt
= Ta(Ω, V, β)−RgTg − αΩ,

where α is the viscous friction and J the mass moment of inertia of the rotating
parts (Soltani, Wisniewski, Brath et al., 2011).

A side effect of extracting power from the wind is the thrust force Fa (N) on the turbine
defined:

Fa(Ω, V, β) :=
1

2
πR2ρCT (Ω, V, β)V

2,

where CT : R+ × R+ × R → R+ is the thrust coefficient, again inferred from the blade
profile (Burton, Sharpe, Jenkins et al., 2001, p. 35). The thrust force results in a motion of
the rotor from both the platform movement and flexibility of the tower. The dynamics of
nacelle fore-aft position z (m) is represented as the superposition of a tower bending mode
and a platform tilting mode, each of which can be expressed as a second order system with
associated natural frequency and damping ratio:

z̈1(t) + 4πζ1f1ż1(t) + 4π2f2
1 z1(t) = Fa(Ω(t), V (t), β(t)),

z̈2(t) + 4πζ2f2ż2(t) + 4π2f2
2 z2(t) = Fa(Ω(t), V (t), β(t)),

z(t) = a1z1(t) + a2z2(t),

where the parameters ζ1, ζ2, f1, f2 denote the damping and natural frequency (Hz) of
the platform (subscript 1) and tower (subscript 2) respectively, and a1, a2 represent the
contribution of the two modes to the nacelle motion, see Figure B.1.

2The torque coefficient CQ is written as a function of rotor speed and wind speed as opposed to the more

commonly used tip speed ratio λ := ΩR
V

for notational ease when considering linearisations in Sections III and V.
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Figure B.1 – Floating wind turbine configuration. The nacelle displacement is caused by platform tilt

and tower bending.

A motion of the nacelle forwards increases the apparent rotor wind speed, thereby
affecting both the driving torque and thrust force:

z̈1 + 4πζ1f1ż1 + 4π2f2
1 z1 = Fa(Ω, V̄ − ż, β), (B.1a)

z̈2 + 4πζ2f2ż2 + 4π2f2
2 z2 = Fa(Ω, V̄ − ż, β), (B.1b)

z = a1z1 + a2z2, (B.1c)

J
dΩ

dt
+RgTg + αΩ = Ta

(
Ω, V̄ − ż, β

)
, (B.1d)

where V̄ is the mean wind speed and ż is the component resulting from the motion of the
nacelle.

B.3 Control objectives

B.3.1 Regions of operation

The aim of a wind turbine is to maximise the power produced subject to constraints on
generator speed and power. As a result, the operation of the wind turbine can be divided
into three regions (Pao and Johnson, 2009). In low wind speeds, prior to either the
generator speed or the power reaching their limits, the aim is to maximize power. In
order to do this, the pitch angle and electrical torque are controlled to operate the blades
at their most aerodynamically efficient. In high winds, with both generator speed and
power at their respective limits, the goal is to adjust the pitch to maintain these values. The
produced power can be written

P =
1

2
πR3ρΩCQ(Ω, V, β)V

2 =
1

2
πR2ρCP (λ, β)V

3,

where λ := ΩR/V is the tip-speed ratio and CP (λ, β) := λCQ(λV/R, V, β), see (Burton,
Sharpe, Jenkins et al., 2001, p. 6). Figure B.2 shows how in full load the pitch can be
changed to reduce aerodynamic efficiency and maintain power at its rated value. A number
of transition strategies have been proposed for the interval between these regions, for an
exposition see (Bianchi, De Battista and Mantz, 2010).
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Figure B.2 – The power coefficient curve and a representation of the above-rated operating strategy

required to maintain P = Prated. These data have been scaled for intellectual property

reasons but are typical for most utility-scale wind turbines.

B.3.2 Control in above rated conditions

The main problem associated with the control of floating wind turbines concerns the tilt
stability in full load (Larsen and Hanson, 2007). To understand this problem, we must first
consider the effect of changing wind speed on the steady state thrust. The steady state
thrust curve, an example of which is shown in Figure B.3, is defined, in the above rated
region, as the thrust required at a given wind speed to produce rated power at constant
rated generator speed. The steady state pitch varies along the operating curve to achieve
constant power production:

dP := Ωrated

(
∂Ta

∂V
δV +

∂Ta

∂β
δβ

)
= 0,

=⇒ δβ = −∂Ta

∂V

(
∂Ta

∂β

)−1

δV,

where dP denotes the total derivative of P , see (Polyanin and Zaitsev, 2003), and the
partial derivatives are evaluated along the equilibrium trajectory. The variation of pitch to
maintain rated power yields a thrust curve with the gradient dFa

dV
derived as:

dFa :=
∂Fa

∂V
δV +

∂Fa

∂β
δβ,

=

(
∂Fa

∂V
− ∂Fa

∂β

∂Ta

∂V

(
∂Ta

∂β

)−1
)
δV,

=⇒ dFa

dV
=
∂Fa

∂V
− ∂Fa

∂β

∂Ta

∂V

(
∂Ta

∂β

)−1

. (B.2)

It is clear from Figure B.3 that dFa
dV

< 0 for all V above rated, a condition that is necessarily
true for all conventional pitch-to-feather wind turbines (Burton, Sharpe, Jenkins et al.,
2001).

In normal operation at above rated wind speed, the turbine nacelle will move forwards
and backwards. When the turbine is moving forwards, the rotor sees a slightly higher
relative wind speed and, if the generator speed controller is faster than the motion, the
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Figure B.3 – Steady-state values of rotor thrust Fa as a function of wind speed V , indicating the
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speed due to the tower bending mode (top) and the platform tilt mode (bottom). Only

the upper half of the complex plane is shown.

blades are pitched to prevent the generator speed from growing. As dFa
dV

< 0, this reduces
the rotor thrust, thereby causing the nacelle to move further forwards. The converse is true
when the nacelle is moving backwards. This problem is known in control circles within the
wind turbine community as the ‘negative damping problem’ (Larsen and Hanson, 2007).

The problem can be viewed analytically by considering a linearised model of (B.1), with
an example pole-zero map shown in Figure B.4. For commercial reasons, the parameters
are not specific to a given turbine or floating foundation, rather certain quantities such as
natural frequencies are selected to be in the vicinity of existing published works (Lackner
and Rotea, 2011; Namik and Stol, 2011) and efficiency tables from Jonkman, Butterfield,
Musial et al. (2009). It is well-known in control theory that the closed-loop poles of a
system migrate towards the open-loop zeros as the feedback gain is increased. On the basis
of the pole-zero configuration in Figure B.4 it becomes clear that as the feedback gain is
increased the nacelle fore-aft oscillation becomes less damped, whilst the generator speed
tracking improves. In the case where the zeros are in the right half plane, which for the
model visualised in Figure B.4 is true only for the tower zeros, the frequencies provide
bandwidth limits on the pitch to generator speed loop (Åström, 2000). In this example
the control system bandwidth must be smaller than the frequency of the tower to avoid
instability.
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The phenomenon of negative damping is in no way unique to floating turbines.
However, in turbines with fixed foundations, it is less of a problem because the lowest
frequency eigenmode is that of the first tower fore-aft mode. The generator speed controller
can be designed to have a low gain at or above this frequency with a higher gain for lower
frequencies. This implies that the generator speed can not reject disturbances at or above
the lowest fore-aft mode. Proportional-integral (PI) controllers are commonplace with
a variety of gain-scheduling schemes proposed to address the parameter varying system
nature (Bianchi, De Battista and Mantz, 2010). In other words, the speed controller is
designed to ensure tracking of signals lower than the tower fore-aft natural frequency. This
results in a generator speed response with a maximum over-shoot of less than the generator
speed limit in most operational cases (Burton, Sharpe, Jenkins et al., 2001, p. 213). With
floating turbines, the lowest natural frequency is that of the platform tilt resonance and
this is typically an order of magnitude lower than that of the tower (Nielsen, Hanson
and Skaare, 2006). If one were to simply detune the generator speed controller such
that the generator speed only tracks signals lower than the platform natural frequency,
the generator would regularly exceed its over-speed limit in normal operation. This is
illustrated in Figure B.5 for the example turbine in this paper. A more advanced solution is
therefore necessary.

B.4 Control of tilt oscillations

B.4.1 Passive solutions

Typically in structural design, one way to reduce an oscillation is to include a tuned mass
damper and indeed these have been considered and are implemented in some onshore
wind turbines (Leithead and Dominguez, 2006). However, tuned resonators are at their
most effective for sharp peaks whilst the fore-aft resonant peak is broad and so they are
shown to have only limited benefit (Leithead and Dominguez, 2006). It may also be an
option to add hydrodynamic damping to the motion of the platform in the water although
this may represent a significant cost.

B.4.2 Active solutions

Having briefly detailed passive solutions, we now turn our attention to active alternatives
using blade pitch actuators as the control input. We constrain our review to collective blade
pitch strategies as the problem concerns the thrust on the turbine as opposed to its out of
plane moments. Benefits from individual blade pitch algorithms are typically seen in side-
side tower motions and blade loads and are similar for onshore and offshore turbines. The
interested reader can discover more in Lackner (2009).

As discussed in Section B.3.2, poor generator speed tracking results in frequent
shutdowns resulting from the generator speed reaching its limit. One way to circumvent
this problem is to detune the existing PI controller on generator speed such that the
bandwidth is lower than the natural frequency of the platform; and also reduce the rated
generator speed, see (Jonkman, 2008). This means that larger deviations of generator
speed can be tolerated without shutdown, although a reduction in the power produced
and an increase in its standard deviation is implied and therefore this solution is neither
economically viable nor appreciated by the electricity generating company.

A number of proposed solutions exploit information about the tower fore-aft motion. In
the simplest form, this purely involves appending the pitch demand from the generator
speed controller with a gain multiplied by the nacelle fore-aft velocity, an approach
sometimes referred to as ‘parallel compensation’, (Leithead and Dominguez, 2006) see
Figure B.6. To analyse this strategy, consider the inner transfer function, labeled G(s) on
Figure B.6, and how it evolves with increasing velocity feedback gain, kt, see Figure B.7.

From Figure B.7 it is clear that an increasing gain moves the platform and nacelle poles
away from their respective zeros. This leads to poorer generator speed tracking in the
frequency region of the fore-aft motions, but an increased damping of nacelle oscillation.
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Figure B.5 – Generator speed (left) and nacelle displacement (right) in response to an IEC class III

extreme operating gust initiated at t = 10 s (V̄ = 12m/s). Cases: (a) on-shore turbine,

conventional controller, (b) floating turbine, conventional controller. (c) floating

turbine, reduced bandwidth controller. Note the different scales. The bandwidth of the

conventional controller is fbw = 0.22Hz whilst that of the reduced bandwidth

controller is fbw = 0.02Hz.
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Figure B.6 – Parallel modification to generator speed controller
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Figure B.7 – Pole zero maps showing the effect of velocity feedback on the open-loop system (kt = 0

(black), kt = 5 (gray), kt = 10 (light gray)). Left figure: pitch to nacelle displacement.
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Figure B.8 – Generator speed (top) and nacelle displacement (bottom) in response to an IEC class III

extreme operating gust initiated at t = 10 s (V̄ = 12m/s). Velocity feedback with kt = 0

(black), kt = 5 (gray) and kt = 10 (light gray).

Specific versions of this solution are discussed in a number of sources under a variety
of guises. In Larsen and Hanson (2007), the gain kt is chosen such that the generator
speed loop does not respond at all to deviations resulting from motion of the nacelle,
whilst Jonkman (2008) discusses the option to have both a higher and lower gain to change
the priority of generator speed tracking and nacelle velocity damping.

Another way to design such a controller would be to consider the single input two
output system mapping collective blade pitch angle to generator speed and nacelle velocity.
Clearly, a single control input cannot independently control two outputs. Using a squaring
down approach (Goodwin, Graebe and Salgado, 2001), the control objective can be made
to design a controller to minimise the output ỹ := c1Ω+c2ż where c1, c2 ∈ R are weighting
constants. Notice that {c1, c2} can now be selected such that the loop β 7→ ỹ has zeros far
into the left half plane (i.e., minimum-phase), this does not imply that the performance
constraints on generator speed tracking can be circumvented. The loop β 7→ Ω still has the
same zeros, and these still define the restrictions on the closed loop (Goodwin, Graebe and
Salgado, 2001).

Published solutions taking the parallel compensation form vary with regards to how the
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Figure B.9 – Generator speed (top) and nacelle displacement (bottom) in response to an IEC class III

extreme operating gust initiated at t = 10 s (V̄ = 12m/s). LQR with control weights:
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nacelle velocity is obtained. In Jonkman (2008) an accelerometer is fitted to the nacelle
and the signal integrated whilst in Lackner and Rotea (2011) the velocity is inferred from
information about the platform tilt angle. A range of filters for dealing with these real
sensors have been proposed, see for example (Larsen and Hanson, 2007).

In order to give an indication of the performance restrictions implied by the sensors,
we consider a full state feedback solution in the form of a linear quadratic regulator with
integral action. The cost matrices Q and R were selected to reflect both the scale of the
signals and the relative importance of a lack of deviations in their respective values. Notice
that we now have a tall transfer function, and that we cannot hope to control each of the
measured outputs independently at all times (Goodwin, Graebe and Salgado, 2001, pp.
796–800). The LQR design essentially results in a form of soft-sharing control (Goodwin,
Graebe and Salgado, 2001, pp. 796–800). An interesting observation is that the MIMO
system does not have any transmission zeros, but that this does not imply an absence
of performance limitations. Non-minimum phase zeros still lie between the pitch and
generator speed, thus irrespective of information from extra sensors, the performance

limitations due to that zero still remain (Åström, 2000; Goodwin, Graebe and Salgado,
2001). That is not to say that extra information cannot give improved performance, it
simply says that the bandwidth of the generator speed response is still limited by the
frequency of the right half plane zeros. The closed-loop responses of the LQR solution
are shown in Figure B.9, with the conclusion being that increased measurement will only
lead to a marginal increase in performance. This suggests that an additional control degree
of freedom may be required, in the form of an additional actuator.

B.5 Future turbines

From the analysis of the linearised dynamics in Section B.3.2, it is clear that the position
of the platform zeros defines the difficulty of the problem and the limit of the efficacy of
the solution. In order to consider quantitatively what affects the position of these zeros,
and thereby examine how the control problem is likely to evolve, we consider a simplified
model linearised about Ω = Ωrated, ż = 0, z = z̄, β = β̄, where ·̄ denotes the equilibrium
value, assuming a stiff tower for brevity:

δ̈z1 + 4πζ1f1δ̇z1 + 4π2f2
1 δz1 =

∂Fa

∂Ω
δΩ− ∂Fa

∂V
a1δ̇z1 +

∂Fa

∂β
δβ,

J ˙δΩ+ αδΩ =
∂Ta

∂Ω
δΩ+

∂Ta

∂V
a1δ̇z1 +

∂Ta

∂β
δβ,
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Figure B.10 – Figure showing the effect on the thrust curve of increasing rotor size and power to

maintain a constant rated wind speed. Light gray is the larger turbine with the greater

nameplate power.

where δz1, δΩ, δβ represent the deviation of z1,Ω, β from their equilibrium values,
respectively. By taking Laplace transforms, substituting for δz1 and using (B.2), the
following transfer function from pitch to generator speed can be obtained:

Ω(s)

B(s)
=

∂τ
∂β

s2 + ∂Ta
∂β

(
4πζ1f1 + a1

dFa
dV

)
s+ 4π2f2

1
∂Ta
∂β(

s2 +
(
4πζ1f1 + a1

∂Ft
∂V

)
s+ 4π2f2

1

)(
Js+ α− ∂Ta

∂Ω

)
− s ∂Ta

∂V
∂Fa
∂Ω

,

where Ω and B denote the Laplace transforms of δΩ and δβ respectively.

Typically, it is fair to assume that:

16π2f2
1 ≫

(
4πζ1f1 + a1

dFa

dV

)2

, (B.3)

and this is reflected by the complex nature of the platform zeros and the fact that their
frequency is almost exactly the platform natural frequency, see Figure B.4. In this case, the
zeros of the transfer function can be well approximated by

z ≈ −1

2

(
4πζ1f1 + a1

dFa

dV

)
± j2πf1.

Should these zeros be in the right half plane, they provide hard limits on the bandwidth
of the full load controller. Even in the left half plane, their position determines the amount
of fore-aft oscillation that must be tolerated in order to achieve a given performance level
of generator speed tracking. Clearly, increasing the damping ζ1 lessens the problem whilst
increasing the gradient of the steady state thrust curve makes it worse.

From Figure B.3, it can be seen that the curve is less steep at higher wind speeds
and therefore the problem is typically most pronounced in just above rated condtions.
We now consider how the problem will evolve for the next generation of wind turbines,
by considering a simplified relationship between CQ and CT via the axial induction
factor (Burton, Sharpe, Jenkins et al., 2001). Figure B.10 shows the effect on the thrust
curve of increasing rotor size and power to maintain a constant rated wind speed.

• Increased rotor size. Larger rotors typically lead to a better investment because they
can extract more power for the same tower height (Leithead, 2007), but this will
make the problem more severe because the magnitude of the gradient dFa

dV
increases,

see Figure B.10, thereby increasing the real part of the platform zeros.

• Taller towers. Taller towers tend to give the turbine access to less turbulent air
and a smoother resource due to the shape of the boundary layer (Leithead, 2007).
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However, these taller towers are likely to lead to lower natural frequencies of both
tower and platform. This creates a more restrictive problem because it is these natural
frequencies that define the bandwidth limitations on the generator speed controller.

B.6 Conclusions

In this appendix, we have described some of the control issues associated with designing a
floating wind turbine. Solutions from the literature have been discussed and their relative
efficacy demonstrated on a simple numerical example. These solutions all relate to using
the collective blade pitch angle as the control input. Additional control inputs may prove
advantageous, a promising option being active mass dampers. Currently, they are not
considered due to their cost and need for infeasible mechanical travel (Lackner and Rotea,
2011).

Further improvements could be made by controlling also the electrical torque Tg in full
load as in Lackner (2009). This is typically reserved for damping oscillations in the drive-
train (Bossanyi, 2003b), although this happens considerably faster than the fore-aft motion
of interest. Another promising avenue for research is the use of active mass dampers.
Currently, they are not considered due to their cost and need for infeasible mechanical
travel (Lackner and Rotea, 2011). In the final section of this appendix some insight was
given into how the problem is likely to scale to the next generation of larger, taller and
more efficient wind turbine.
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Kulhavý, R. and M. Kárný (1984). ‘Tracking of slowly varying parameters by directional
forgetting’. In: Preprints of the 9th IFAC Congress. Vol. 10, pp. 178–183.
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Summary

Identification of wind energy systems

Gijs van der Veen

In the next decades wind energy is expected to secure a firm share of the total energy
production capacity in many countries. To increase competitiveness of wind power with
other power sources it is essential to lower the cost of wind energy. Given the design of a
turbine, this objective can be attained in several ways: by increasing the energy production
of a wind turbine, by lowering loads on the wind turbine in order to reduce maintenance
costs and by mass production. Research performed in recent years has shown that advanced
control plays an important role in the first two aspects. Refined control design can increase
power production, for instance by using feedforward information about the wind field
provided by modern (distributed) sensors. At the same time, control can reduce wear of
the turbine by mitigating fatigue and extreme loads, also using feedforward and feedback
information from multiple sensors in combination with novel actuator concepts. For the
design process of new and advanced control concepts which meet these objectives, detailed
models are essential. Data-driven modelling provide such models and help to understand
differences between the behaviour of theoretical models and the real wind turbine.

A number of challenges hamper the application of standard black-box identification
techniques to data from real wind turbines. The aim of this thesis is to address these
challenges in an effort to bring theoretical results and industrial practice closer together,
and to provide evidence for the potential of system identification. The end result is a set of
tools that can be applied by engineers.

The first challenge is given by the fact that wind turbines and many other aeroelastic
systems must operate in closed-loop. This is an obstacle for the traditional subspace
methods which rely on the input signal and stochastic excitations to be uncorrelated;
an assumption which is necessarily violated in closed-loop. In this thesis we present an
overview of recent methods for closed-loop subspace identification, thereby establishing a
number of tools to solve the identification problem for linear time invariant systems which
may be operating in closed-loop. Among these tools is the closed-loop MOESP method
developed as part of this thesis. We present a common underlying framework for these
methods, allowing us to show that the large variety of closed-loop subspace methods found
in the recent literature in fact consists of a few variants with many similarities.

The second challenge is that wind turbines experience dominant periodic loads which
complicate reliable identification of linear time invariant models. In this thesis we address
this challenge by extending closed-loop subspace identification methods to deal with these
periodic disturbances. Doing so allows us to consistently identify the dynamics of such a
system which would otherwise be hard. Evidence for the reliability and performance of
these methods is given by applying them to realistic examples.

A third challenge is the poor signal-to-noise ratio experienced when measuring in the
presence of significant stochastic excitations, for instance due to turbulent wind. Besides,
a fourth challenge is that performing identification experiments is expensive and hence
optimal use must be made of available time. Parts of this thesis are devoted to these
two challenges. First, we perform “one-shot” controller design for an aeroelastic flutter
control problem, where the flutter point may be shifted to a significantly higher wind speed
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and dynamic loads may be actively reduced. We also show that system identification can
support controller design, not just by providing a tool to deliver models of the system,
but to examine the closed-loop performance. In the process of controller evaluation on
the CART 3 turbine, the closed-loop characteristics were determined on the basis of a 10
minute experiment for each of the tested controllers. In all examples domain knowledge
helped to achieve reliable and accurate models.

The fifth and perhaps most important challenge is that wind turbines are nonlinear
systems. Hence, identification techniques for linear time invariant systems are of limited
value. As the main result of this thesis we show that for the purpose of control design a wind
turbine may be described adequately with the Hammerstein model structure. This structure
allows the turbine to be modelled globally and allows long measurement sequences to be
used effectively and efficiently. Low signal-to-noise ratios require that we incorporate prior
information to obtain reliable models. We develop a practical identification approach and
show its feasibility on real data. Using experimental data from the CART 3 turbine extensive
validation was performed. The validation showed that the Hammerstein model structure
could accurately describe the important dynamics for power and speed regulation of the
turbine and for load control. In the case of the CART 3 turbine the identified models
indicated that certain modes were not correctly modelled by the aeroelastic code in terms
of frequency and damping. This is essential information for establishing fundamental
control system limitations in the related to unstable modes and nonminimum phase zeros.
Open-loop time-domain simulations at various wind speeds show that the identified models
outperform the first principles models in the majority of the investigated cases.

In the traditional control design paradigm there are the disjoint steps of dynamic
modelling on the one hand and control design on the other hand. Ideally these two steps
should be combined in a new control paradigm, such that input-output data directly leads
to the controller. This is an ambitious view, but as a first step in bringing the fields of
identification and control together, the subspace predictive control (SPC) framework is an
interesting development. In this framework system parameters are estimated adaptively
using a recursive least squares scheme with forgetting to result in an adaptive and fault-
tolerant control system. In this thesis we show the results of applying SPC to two realistic
experimental setups. In the process of developing a real-time feasible implementation we
developed a square root covariance filter with directional forgetting of past information.
Such a scheme offers a safe way to discount old information compared to widespread
recursive least-squares algorithms with exponential forgetting by ensuring boundedness
of the covariance matrix and retaining adaptivity. This is an important issue when an
estimation scheme must deal with slowly time-varying dynamics. Two examples are studied
to demonstrate the capabilities of the SPC adaptive control law. In the first example we
show that without any prior model information, damping may be achieved on a flexible
structure which switches between two radically different dynamic behaviours. In the
second example we show that speed regulation of a scaled wind turbine may be achieved,
in terms of tracking a reference as well as in terms of rejecting disturbances due to wind
speed variations.



Samenvatting

Identificatie van windenergiesystemen

Gijs van der Veen

Vandaag de dag levert windenergie een aanzienlijke bijdrage aan de energieproductie
in veel landen en het ligt in de verwachting dat deze bijdrage in de komende decennia
zal toenemen. Om de concurrentiepositie van windenergie ten opzichte van andere
energiebronnen te vergroten is het van groot belang de prijs van windenergie te verlagen.
Voor een gegeven windmolen kan deze doelstelling op drie manieren bereikt worden:
door de energieopbrengst te verhogen, door belastingen op de windmolen te verlagen
om onderhoudskosten te verlagen en door massaproductie. Onderzoek in de afgelopen
jaren heeft aangetoond dat geavanceerde regelconcepten in de eerste twee aspecten
een belangrijke rol kunnen spelen. Een verfijnd regelaarontwerp kan leiden tot een
hogere energieopbrengst, bijvoorbeeld door voorwaartskoppeling van informatie over het
aanstromende windveld, verkregen uit moderne (gedistribueerde) sensoren. Tegelijkertijd
kan een dergelijke regeling de levensduur verlengen door vermoeiingsbelastingen en
piekbelastingen te verkleinen, gebruik makend van voorwaartskoppeling en terugkoppeling
van informatie uit meerdere sensoren in combinatie met nieuwe actuatorconcepten.
Voor het ontwerpproces van nieuwe en geavanceerde regelaarconcepten die tegemoet
komen aan deze wensen is de beschikbaarheid van gedetailleerde modellen essentieel.
Systeemidentificatie op basis van meetgegevens kan een belangrijke rol vervullen in het
verkrijgen van dergelijke modellen en kan het inzicht in de verschillen tussen het gedrag
van theoretische modellen en de echte windmolen vergroten.

Een aantal uitdagingen staat het toepassen van standaard systeemidentificatiemethodes
in de weg wanneer deze toegepast worden op data van een echte windmolen. In dit
proefschrift worden deze uitdagingen aan de orde gesteld, met als doel theoretische
resultaten en de industriële praktijk nader tot elkaar te brengen en om de potentie van
systeemidentificatie te belichten. Het eindresultaat is een reeks methodes die gebruikt kan
worden door ingenieurs.

Een eerste uitdaging bestaat uit het feit dat windmolens en vele andere aeroelastische
systemen noodzakelijkerwijs in een gesloten regellus moeten functioneren. Dit belemmert
de toepassing van traditionele subspace algoritmes die aannemen dat het ingangssignaal
en de stochastische verstoringen ongecorreleerd zijn; een aanname die in gesloten lus
niet geldt. In dit proefschrift geven we een overzicht van recente methodes voor subspace
identificatie in gesloten lus. Hiermee hebben we een aantal methodes verschaft om lineaire
tijdsinvariate systemen te identificeren die mogelijkerwijs in gesloten lus functioneren.
Een van deze methodes is de gesloten lus MOESP methode die ontwikkeld is voor dit
proefschrift. We hebben dit overzicht van methodes gepresenteerd aan de hand van
een gemeenschappelijk onderliggend raamwerk, waardoor aangetoond kan worden dat
de vele methodes in de literatuur feitelijk bestaan uit een beperkt aantal varianten met veel
overeenkomsten.

Een tweede uitdaging is dat windmolens aan zeer dominante periodieke belastingen
onderhevig zijn die betrouwbare identificatie in de weg staan. In dit proefschrift hebben we
dit probleem opgelost door gesloten lus subspace identificatiemethodes uit te breiden zodat
deze om kunnen gaan met deze periodieke signalen. Hierdoor zijn we in staat de dynamica
van dergelijke systemen consistent te schatten terwijl dit normaal gesproken moeilijk zou
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zijn. De betrouwbaarheid en prestaties van deze methodes zijn aangetoond door toepassing
op realistische praktijkvoorbeelden.

Een derde uitdaging is de beperkte signaal-ruisverhouding die optreedt wanneer ge-
meten wordt in de aanwezigheid van significante stochastische verstoringen, bijvoorbeeld
door turbulentie. Een vierde uitdaging vormt het feit dat het uitvoeren van identificatie-
experimenten kostbaar is. Daarom moet de beschikbare tijd optimaal benut worden. Delen
van dit proefschrift zijn gewijd aan deze aspecten. Allereerst hebben we in één iteratie
succesvol een regelaarontwerp gemaakt voor een aeroelastisch flutterprobleem, waarbij
we in staat waren de fluttergrens aanzienlijk te verhogen en dynamische belastingen te
onderdrukken. Daarnaast hebben we laten zien dat systeemidentificatie regelaarontwerp
kan ondersteunen, niet alleen als middel om modellen van het systeem te verkrijgen,
maar ook om de gesloten lus prestaties van een regelsysteem te evalueren. Gedurende
de evaluatie van verschillende regelaars op de CART 3 turbine konden de gesloten lus
eigenschappen bepaald worden op basis van metingen die slechts 10 minuten besloegen. In
alle voorbeelden was relevante domeinkennis essentieel om betrouwbare en nauwkeurige
modellen te kunnen schatten.

De vijfde en wellicht belangrijkste uitdaging is dat windmolens niet-lineaire systemen
zijn. Daarom zijn identificatietechnieken voor lineaire, tijdsinvariante systemen van
beperkte waarde. Een belangrijk resultaat in dit proefschrift is dat we hebben aangetoond
dat een windmolen voor regelaarontwerptoepassingen adequaat beschreven kan worden
met de Hammerstein modelstructuur. Dit staat een globale modelbeschrijving van de molen
toe, waarbij lange meetseries effectief en efficiënt benut kunnen worden. De lage signaal-
ruisverhouding vereist dat we voorkennis gebruiken om betrouwbare identificatiemethodes
te verkrijgen. We hebben een praktisch uitvoerbare identificatiebenadering ontwikkeld
en deze uitvoerbaarheid aangetoond op basis van echte meetdata. Gebruik makend
van meetgegevens van de CART 3 turbine hebben we de gëıdentificeerde modellen
uitvoerig gevalideerd. Deze validatie heeft uitgewezen dat de Hammerstein modelstructuur
de relevante dynamica voor vermogens- en snelheidsregeling van de windmolen en
belastingsonderdrukking adequaat kan beschrijven. In het voorbeeld van de CART 3 turbine
wezen de gëıdentificeere modellen erop dat de frequentie en demping van bepaalde eigen-
bewegingen onjuist gemodelleerd werden door de beschikbare aeroelastische modellen.
Dit levert tevens essentiële informatie op voor het bepalen van fundamentele beperkingen
op het regelsysteem, opgelegd door onstabiele eigenbewegingen en niet-minimum-fase
nulpunten. Door middel van simulaties van het ongeregelde gëıdentificeerde model bij
verschillende windsnelheden is aangetoond dat dat de gëıdentificeerde modellen in verre-
weg het merendeel van de onderzochte gevallen beter presteerden dan het gelineariseerde
aeroelastische model.

Het traditionele model van het regelaarontwerpproces bestaat uit twee stappen:
modelvorming (bv. door middel van systeemidentificatie) en regelaarontwerp. Idealiter
zouden deze twee stappen gecombineerd worden op zodanige wijze dat gemeten ingangs-
en uitgangsdata direct de gewenste regelaar oplevert. Hoewel dit een utopisch beeld is, is
het subspace predictive control (SPC) raamwerk een eerste stap in het bijeen brengen van
syteemidentificatie en regelaarontwerp. In dit raamwerk worden de systeemparameters
adaptief geschat, resulterend in een adaptieve en fouttolerante regeling. In dit proefschrift
laten we de resultaten zien van de toepassing van SPC op twee realistische opstellingen.
Als nevenproduct van het ontwikkelen van een realtime uitvoerbare implementatie hebben
we een square root covariantiefilter ontwikkeld met richtingsgevoelige afwaardering van
verouderde informatie. Een dergelijk schema biedt een veilige manier om oude informatie
te vergeten, vergeleken met beschikbare recursieve algoritmes, door begrenzing van de
covariantiematrix te garanderen en door adaptiviteit te handhaven. Dit is een belangrijk
aspect wanneer een schatter langzaam variërende parameters moet schatten. Door middel
van experimentele voorbeelden hebben we de kwaliteiten van de SPC regelstrategie laten
zien. In het eerste voorbeeld hebben we gedemonstreerd dat demping van een flexibele
constructie bewerkstelligd kon worden zonder enige voorkennis van het systeem, terwijl
deze constructie omschakelde tussen twee zeer verschillende dynamische gedragingen. In
het tweede voorbeeld kon de snelheid van een schaalmodel van een windmolen geregeld
worden. Zowel het volgen van een snelheidsreferentiesignaal als het onderdrukken van
rotorsnelheidsvariaties ten gevolge van windsnelheidsveranderingen waren succesvol.
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