
Delft University of Technology
Master of Science Thesis in Embedded Systems

FPGA-Based Design for S-Transform-Based
Fault Detection Algorithm with RTDS

Integration

Yujie Ye





FPGA-Based Design for S-Transform-Based Fault

Detection Algorithm with RTDS Integration

Master of Science Thesis in Embedded Systems

Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Van Mourik Broekmanweg 6, 2628XE Delft, The Netherlands

Yujie Ye

18th June 2025



Author
Yujie Ye

Title
FPGA-Based Design for S-Transform-Based Fault Detection Algorithm with RTDS Integration

MSc Presentation Date
25th June 2025

Graduation Committee
Dr.ir. Stephan Wong Delft University of Technology
Prof. Marjan Popov Delft University of Technology
Dr.ir. Mottaqiallah Taouil Delft University of Technology



Abstract

With the increasing integration of renewable energy sources such as Type-3/4
wind turbines and photovoltaic systems, fault current levels in power systems
have decreased, weakening the performance of traditional distance relays. To
address this, the Stockwell Transform (S-Transform) based fault detection al-
gorithm has been proposed and has proven effective in identifying fault oc-
currences. While previous work has implemented the S-Transform-based fault
detection algorithm in the Programmable Logic (PL) of the FPGA and val-
idated it through AMD Vivado simulation, integration into a physical FPGA
board and a Real-Time Digital Simulator (RTDS) environment has not yet been
achieved. This paper presents a complete hardware-software co-design in which
the exiisting implementation is deployed on an FPGA board and integrated
with an RTDS system. The proposed system enables real-time communica-
tion between the RTDS and the FPGA via the IEC 61850 protocol. The PL
of the FPGA platform executes the fault detection algorithm, while the Pro-
cessing System (PS) handles IEC 61850 protocol communication, data exchange
between the PS and the PL, and interrupt handling within a bare-metal envir-
onment. Experimental results demonstrate that the entire design meets strict
real-time performance and delay requirements, validating the system’s suitabil-
ity for high-speed fault detection in distance protection applications.
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Chapter 1

Introduction

1.1 Background and Motivation

In the coming years, a significant number of coal and nuclear power plants will be
decommissioned and replaced by renewable energy sources (RES). While RES
integration offers environmental and sustainability benefits, it also reduces the
overall system inertia and fault current levels, thereby increasing the complexity
of power system operation, control, and protection. In particular, traditional
distance protection schemes face challenges in accurately identifying faults un-
der low-inertia, low-fault-current conditions. To address these issues, a novel
fault detection algorithm based on the Fast Discrete Stockwell Transform (S-
Transform) has been proposed [1]. This algorithm enhances the performance of
distance protection by analyzing the computed S-energy across different current
phases and comparing it with a threshold determined by the root mean square
(RMS) values of the currents. The method demonstrates improved sensitivity
and reliability in detecting faults under varying system conditions, particularly
in RES-dominated networks.

The S-Transform algorithm introduced in [1] was initially developed in Real-
Time Digital Simulator (RTDS) and evaluated in MATLAB, demonstrating its
potential for fault detection in power systems. To enable practical deployment
on commercial distance relays, a hardware implementation was subsequently
proposed in [2]. This design, based on the Xilinx Zynq UltraScale+ MPSoC
ZCU104 FPGA, was evaluated through AMD Vivado simulation and demon-
strated the capability to compute S-energy and threshold values efficiently using
fixed-point input current data. However, this implementation was limited to the
Programmable Logic (PL) portion of the FPGA, lacking a complete system ar-
chitecture. The Processing System (PS) side of the FPGA, which is essential
for real-time deployment, was not addressed. Specifically, critical components
such as communication with the RTDS, communication protocol interpretation
modules, and high-throughput data streaming among the whole system were not
implemented, leaving a significant gap in realizing a fully functional embedded
system for distance protection.
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1.2 Goals of This Work

The primary objective of this thesis is to complete the FPGA-based implementa-
tion of the S-Transform-based fault detection algorithm and enable its operation
within both a Real-Time Digital Simulator (RTDS) laboratory environment and
on a physical FPGA board. Building upon the previously developed PL-side
design, this work aims to realize a full hardware-software system integration.
The specific goals of this research include:

• Build the hardware architecture of the system.

• Integrate and deploy the hardware architecture using embedded software.

• Establish high-throughput real-time communication between the RTDS
and the FPGA board.

• Validate the entire system in terms of responsiveness to simulated real-
time fault conditions, timing, and reliability.

1.3 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 provides the
background of this research and reviews related work. It also introduces the
IEC 61850 protocol selected for communication and the ZCU104 FPGA board
used in the implementation. Chapter 3 presents the high-level system design,
including the overall architecture and data flow, as well as a description of
each system module. Chapter 4 details the low-level implementation of the
system, including both the Processing System (PS) and the Programmable Logic
(PL) components. Chapter 5 discusses the experimental setup and presents the
results obtained from system validation. Finally, Chapter 6 concludes the thesis
and outlines potential directions for future work.
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Chapter 2

Background

Chapter 2 provides the necessary background for this thesis. It begins with a
brief introduction to the S-Transform-based fault detection algorithm. Previous
work related to its implementation is then discussed, along with its limitations.
The IEC 61850 communication protocol is introduced, along with the bene-
fits it brings to real-time data exchange between the FPGA and RTDS. The
chapter also introduces the development environment of the project, including
the ZCU104 FPGA board, the Real-Time Digital Simulator (RTDS) environ-
ment, and the FPGA design suite.

2.1 S-Transform-Based Fault Detection

The Stockwell Transform, or S-Transform, proposed by Stockwell in 1996 [3], is a
linear time-frequency analysis method that combines elements of the Short-Time
Fourier Transform (STFT) and the Continuous Wavelet Transform (CWT). It
employs a scalable, moving Gaussian window to achieve time-frequency local-
ization and possesses several advantages not found in the conventional CWT,
such as frequency-dependent resolution with absolute phase information.

However, due to its close relation to the Fourier Transform, the S-Transform
inherits some of the typical drawbacks of discretely sampled transforms. A
significant limitation is its high computational complexity and memory require-
ments, making it inefficient for processing even moderately sized signals due to
its inherent redundancy.

To address these issues, the Fast Discrete Stockwell Transform (FDST) was
introduced in [4] as a non-redundant version of the original transform. FDST
significantly reduces the computational burden, making the method more prac-
tical for real-time and embedded applications.

Building upon the FDST, a fault detection algorithm was proposed in [1]
to enhance the performance of distance protection in power systems. This al-
gorithm effectively improves reliability in scenarios where commercial relays
may fail or misoperate, particularly under low-inertia or renewable-integrated
grid conditions. Figure 2.1 shows the proposed enhanced relay comprising the
algorithm [1].
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Figure 2.1: The enhanced relay module with FDST-based fault detec-
tion [1]

2.2 Current Implementation

The S-Transform-Based fault detection algorithm has demonstrated strong po-
tential in enhancing distance protection [1]. However, its validation has so
far been limited to simulations in MATLAB. To transition from simulation to
real-world deployment such as in RTDS environments or commercial protective
relays, the algorithm must be implemented on a physical hardware platform.
Distance protection systems are highly time-sensitive and require exceptional

reliability. Compared with general-purpose processors or microcontrollers, Field-
Programmable Gate Arrays (FPGAs) offer significant advantages for this type
of application. FPGAs allow customized hardware-level implementation of the
algorithm, enabling parallel processing and low-latency performance. Further-
more, the embedded processing capabilities of modern FPGA platforms allow
seamless integration with external systems such as RTDS through real-time
communication protocols. A similar approach is presented in [5], where an
FPGA-based Digital Real-Time Simulation (DRTS) platform is proposed for
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testing traveling-wave-based protection relays.
The implementation of the S-Transform-Based fault detection algorithm in

the Programmable Logic (PL) was presented in [2]. The design accepts the
three-phase current signals as input and computes the corresponding S-Energy
values. Each of these values is then compared against a dynamically calcu-
lated threshold, which is updated every fixed number of cycles based on the
input current. The comparison results indicate whether a fault is detected in
each current phase. The hardware architecture is fully parameterized and fully
pipelined, operating at a clock frequency of 100 MHz. The final implementation
achieves a low-latency response, producing fault detection results within 570 ns.
The overall architecture of the previously implemented PL system is shown in
Figure 2.2 [2].

Figure 2.2: Architecture of the previously implemented PL system [2]

2.2.1 Fixed-point Representation

The input data to the implemented PL system are represented in fixed-point
format, which requires conversion from the floating-point format used in the
communication protocol. Each input is 16 bits wide, consisting of 1 sign bit,
2 integer bits, and 13 fractional bits. The experiment conducted in [2] demon-
strates that this conversion from floating-point to fixed-point representation has
minimal impact on both the S-energy and threshold calculations. The fault de-
tection results remain unchanged, as the most significant deviations occur only
when the computed S-energy values are below 33 dB, a region that does not
affect the final comparison.

2.2.2 Threshold Determination

The S-Energy threshold module takes three phase current signals into itself to
determine the S-energy threshold value with a safety margin. The value can be
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Figure 2.3: Architecture of S-Energy calculation module [2]

calculated from Equation 2.1.

STHsm = −2.6×103I4rms+3.5×103I3rms−1.7×103I2rms+4.2×102Irms−45 (2.1)

As described in [1], the S-energy threshold value is updated periodically at
fixed time intervals. In the hardware implementation, this behavior is realized
using a counter that increments with each clock cycle and triggers the calculation
of the RMS value of the input current once the predefined threshold interval is
reached.
The RMS value of the current is computed using a square root module im-

plemented based on the non-restoring square root algorithm proposed in [6].
This algorithm iteratively determines each bit of the final result, producing one
valid bit per iteration. A key feature of the method is the use of a partial
remainder, which is updated in each iteration and plays a critical role in de-
termining the subsequent operation. To improve throughput, the square root
module is designed as a pipelined architecture.

2.2.3 S-Energy Calculation

The overall architecture of the S-Energy calculation module is shown in Fig-
ure 2.3 [2].
The module consists of several sub-modules, including an FFT module, a

Gaussian window module, an IFFT module, and a square root module. It
begins with the Fast Fourier Transform (FFT) module, which converts a time-
domain signal into its frequency-domain representation. The FFT algorithm,
first introduced by Cooley and Tukey in 1965 [7], is widely used in signal pro-
cessing due to its computational efficiency in calculating the Discrete Four-
ier Transform (DFT). The FFT achieves this efficiency through a divide-and-
conquer strategy, where a 2n point DFT is recursively decomposed into two
2n−1 DFTs. This process continues until the smallest units—typically 2-point
DFTs—are reached, significantly reducing the overall computational complexity
from O(N2) to O(N logN).
The FFT module and IFFT module are implemented using both parallel-

pipelined and sequential-pipelined architectures. The parallel-pipelined imple-
mentation offers higher throughput but consumes significantly more hardware

6



resources, as it allocates dedicated resources for every mathematical operation
in the FFT algorithm. To address this issue, a resource-efficient sequential-
pipelined implementation is adopted, where processing elements are reused
across clock cycles, trading off performance for reduced hardware complexity.
The sequential architecture consists of the following four key sub-modules:

• Butterfly Module: Performs the basic FFT butterfly computation, either
passing through the data or executing addition and subtraction operations.

• Delay Line Module: Composed of shift registers, this module introduces
specific delays to align data for processing.

• Twiddle Factor Registers: Store precomputed twiddle factors required
for FFT computation.

• Complex Multiply Module: Performs complex multiplication opera-
tions using the twiddle factors and input data.

The Gaussian window module is responsible for applying a two-dimensional
Gaussian window to the output of the FFT module. In the parallel-pipelined
FFT implementation, the FFT outputs are generated simultaneously in parallel.
Therefore, the corresponding Gaussian window coefficients can be aligned with
the FFT outputs by encoding and matching their signal indices. In contrast,
the sequential-pipelined FFT implementation produces outputs serially. In this
case, the Gaussian-windowed outputs are written into a RAM, where the index
of each FFT output determines the write address. This RAM is then connec-
ted to the IFFT module, which reads the data in the correct order, thereby
preserving the alignment of the signal. The Square root module is discussed in
Section 2.2.2.

2.2.4 Limitations

The limitations of this FPGA design are evident. The design is implemented in
the PL part of the system and evaluated using Vivado simulation. There remain
significant differences between this implementation and the deployment of the
fault detection algorithm in a real-world integrated system. Typical limitations
include:

• The PL design cannot be directly deployed on a real FPGA board. The
hardware implementation must be extended and re-validated.

• The Processing System (PS) software required to support real-time oper-
ation is not implemented in this design.

• The communication between the FPGA board and RTDS is not estab-
lished in this work.

• The performance of the implemented fault detection algorithm has only
been validated using fixed inputs from static files. Therefore, its perform-
ance with high-throughput real-time current data remains unclear.

• The overall performance of this design in a real-world environment has
not been evaluated and remains uncertain.
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2.3 IEC 61850 Protocol

IEC 61850 is an international standard that defines communication protocols
to provide communication between different equipment located in a substation,
such as protection, control, and measurement equipment, as well as intelligent
electronic devices (IED). Since the fault detection algorithm runs on the IED,
the IEC 61850 protocol plays a vital role in enabling real-time data exchange
for the fault detection process. An overview of the protocol is first presented,
followed by an introduction to its key components, including Sampled Values
(SV) and Generic Object-Oriented Substation Event (GOOSE) messages which
are used extensively in this project.

2.3.1 Overview

An electrical power network transmits not only electrical energy but also critical
information. In distance protection schemes, real-time current measurements
are required as input for fault detection and decision-making. To enhance the
efficiency of data acquisition and transmission, modern substations convert ana-
log signals into digital signals, which can be easily transmitted between devices
via communication links such as fiber optics or Ethernet. However, since Intel-
ligent Electronic Devices (IEDs) are often manufactured by different vendors,
the encoding and formatting of digital data can vary significantly, leading to
incompatibility and inefficiencies in data exchange. To overcome this challenge
and ensure seamless interoperability among devices, a unified communication
protocol is essential. The key requirements of this protocol include [8]:

• High-speed and real-time data transmission

• Standard-based communication

• Supports for voltage and current samples data

• High security

• Supports for configuration

• Multi-vendor interoperability

To address these requirements, the Utility Communication Architecture (UCA)
was initially developed, providing definitions for communication protocols, data
models, and abstract services [8]. Building upon this foundation, the Interna-
tional Electrotechnical Commission (IEC) Technical Committee subsequently
extended the work into the IEC 61850 standard, titled Communication Net-
works and Systems in Substations.
The IEC 61850 protocol offers several significant advantages. By utilizing

a virtualized data model, a single Substation Configuration Language (SCL)
file can unambiguously define the expected behavior and data exchange for
each device, independent of the manufacturer. This standardization reduces the
cost and complexity of device installation and migration, as a single substation
LAN is sufficient and manual legacy configurations are no longer necessary.
Furthermore, both the speed and accuracy of data transmission are significantly
improved [9].
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IEC 61850 protocol is widely applied in modern IEDs and researches. There
have been several studies on the use of the IEC 61850 protocol in distance pro-
tection [10, 11, 12]. The Remote Integrated Switch (RIS) employs the IEC 61850
protocol with GOOSE messaging to significantly minimizing outage time and
improve the overall performance [13]. A Model is presented [14] for a microgrid
protection system with logical nodes provided in IEC 61850 and IEC 61850-7-
420 communication standards. Distributed network employs IEC 61850-based
communication for an adaptive overcurrent protection scheme which decrease
the fault conditions and reduce the operating time [15]. Closed-loop testing
using IEC 61850-configured relay is proved to be feasible in RTDS environment
[16]. Besides, IEC 61850 is also used for modern sub-station automation system
(SAS) while maintaining the reliability and availability [17].

2.3.2 SV Sampling Data

The Sampled Values (SV) protocol is based on IEC 61850-9-2 standard, which
is a simplified implementation of the IEC 61850 standard tailored for digital
substations. The core concept of SV communication is that a publisher peri-
odically transmits measurement messages at precisely defined time intervals.
This interval is determined by two parameters: the measured signal frequency
and the Samples Per Period (SPP). IEC 61850-9-2 specifies two typical SPP
values: 80 and 256. For instance, if the signal frequency is 50 Hz and SPP is
80, the resulting transmission interval is 1/(50 × 80), or 250 µs. All SV mes-
sages are published under a multicast topic. Subscribers receive all messages
on the network but process only those with the specific topic to which they are
subscribed. SV messages are widely used in scenarios where publishers need to
transmit sampling data such as current phase data.
The SV message frame format is explained in Table 2.1.
The APDU field contains the payload of an SV message. Each APDU can

include up to 8 Application-Specific Data Unit (ASDU), where each ASDU
carries one set of three-phase current and voltage measurements. Each ASDU
is associated with a unique SV identification value. The structure of an APDU
is shown in Figure 2.4.
Each ASDU should contain the following fields:

• svID: Sampled Values Identifier, a user-defined unique string identifier
used for subscription

• smpCnt: Index of the SV message

• confRev: Configuration revision

• smpSynch: The synchronization mechanism of the clock used for sending
SV messages is indicated by a specific code: 0 for None, 1 for Local, and
2 for Global synchronization

• Sequence of Data: Sequence of measured voltage and current values as
shown in Figure 2.5

The data ending with a q represents the quality of the measured values from
each logical node. Each dataset in the ASDU can be divided into eight measured
values——currents in three phases and neutral, and voltages in three phases and

9



Field name Value Description

Destination address
01:0c:cd:04:00:00 -

01:0c:cd:04:01:ff
Destination MAC address

Source address
Defined by

the sending device
Source MAC address

Priority tagged

TPID: 0x8100 Defines the 802.1Q protocol

User priority: 1 to 7
SV message priority: 4-7 is

high; 1-3 is low

CFI: 0

VID: 0 - 4095 Virtual LAN ID

Ethertype 0x88ba Defines the SV protocol

APPID 0x4000 - 0x7FFF Application ID

Length Message length

Reserved 1 0x0000 Reserved field

Reserved 2 0x0000 Reserved field

APDU Application Protocol Data Unit

Table 2.1: SV Message Frame Format

neutral——each occupying four bytes, along with their corresponding quality
indicators. The measured current and voltage values are transmitted as 32-bit
integers, with a scaling factor applied: 0.001 for currents and 0.01 for voltages.

2.3.3 GOOSE Message

The GOOSE (Generic Object Oriented Substation Event) protocol is a com-
munication model defined in the IEC 61850 standard. It uses fast and reliable
mechanisms to group various types of data (such as status and values) into a
dataset for transmission, and is therefore widely adopted for transferring fault
status. The message contains the following field:

• Destination Address: Mac address of the destination device range from
01:0c:cd:01:00:00 to 01:0c:cd:01:01:ff

• Source Address: Mac address of the source device

• Priority Tag: The TPID (Tag Protocol Identifier) is 0x8100, the user
priority is by default 4, and the VID (VLAN ID) is by default 0

• Reserved field: 0x0000

• APPID: The application ID range from 0x0000 to 0x3fff

• APDU: Application Protocol Data Unit containing the payload to be
transmitted

10



Figure 2.4: APDU architecture

2.4 Development Environment

This section presents the development environment. It first introduces the
FPGA hardware platform, followed by the RTDS system, and finally the hard-
ware/software design tools used.

2.4.1 Xilinx Zynq MPSoC FPGA

FPGAs (Field Programmable Gate Arrays) are a type of integrated circuit that
can be reprogrammed to implement any digital logic at any time after manu-
facturing [18]. This provides high flexibility, making FPGAs suitable for a wide
range of applications including IC verification [19], image processing [20], audio
processing [21], deep learning [22], and communication systems [23]. Moreover,
FPGAs also provide fast computation speed for IEC 61850 protocol [24].

The FPGA used in this work is the Xilinx Zynq MPSoC ZCU104. This device
integrates a quad-core Arm Cortex-A53 processing system and a dual-core Arm
Cortex-R5 real-time processor, enabling heterogeneous multiprocessing for ap-
plication developers. The ZCU104 evaluation board provides a flexible prototyp-
ing platform, featuring high-speed DDR4 memory interfaces, an FMC expansion
port, multi-gigabit per second serial transceivers, various peripheral interfaces,
and FPGA fabric for customized designs. The overall block diagram of the
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Figure 2.5: ASDU architecture

device is shown in Figure 2.6.
The Ethernet and memory performance of the device are critical for this work.

The ZCU104 features a Gigabit Ethernet Controller (GEM), which implements
a 10/100/1000 Mb/s Ethernet MAC compliant with the IEEE 802.3-2008 stand-
ard. It supports both half-duplex and full-duplex modes at 10/100 Mb/s and
full-duplex mode at 1000 Mb/s, ensuring high-speed communication under the
IEC 61850 protocol. In addition, the device includes a 4 GB, 64-bit wide DDR4
memory system which comprises 16 SDRAMs, each with 256 MB. This high-
speed memory system guarantees fast data transmission between the PS and
the PL.

2.4.2 RTDS

The Real-Time-Digital-Simulator (RTDS) performs electromagnetic transient
(EMT) simulations of power systems in real time. This enables highly efficient
and detailed studies, allowing users to anticipate system and device behaviors
that may threaten the stability, resilience, and performance of the grid. It also
allows physical equipment, such as protection and control devices or power elec-
tronics, to be tested in closed-loop configurations with the simulated network.
The interaction between the grid and protection, control, and power devices
during system transients can thus be analyzed in detail across a wide frequency
bandwidth.
RTDS is widely used for closed-loop testing of distance protection schemes.

For instance, a dynamic testing methodology for evaluating the performance
of distance protection was proposed in [25]. In [26], an electromagnetic transi-
ent model of a DFIG-based wind generator was developed in RTDS to study its
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Figure 2.6: Block diagram of zcu104

impact on distance relays. Furthermore, an ultra-high-voltage (UHV) test envir-
onment was established in RTDS in [27], and various relay protection strategies
were evaluated within that setup.
RTDS supports the IEC 61850 protocol. A network interface card, the GT-

NETx2, receives data from the power system simulation via optical fiber and
transmits it to external IEDs using IEC 61850. This bidirectional card can also
transfer data from external devices back to the simulated network. In this work,
the FPGA is considered as an external IED within the IEC 61850 communica-
tion framework. In this way, the RTDS publishes SV messages, as described in
Section 2.3.2, to the FPGA, and receives GOOSE messages from the FPGA, as
described in Section 2.3.3.

2.4.3 FPGA Design Suite

The development of the PS and the PL in this work is carried out using Vivado
and Vitis, both part of the Xilinx Design Suite. The PL system is developed in
Vivado, which enables simulation and implementation of the hardware design.
The hardware product used in Vitis is generated in Vivado through a pro-
cess that includes synthesis, implementation, and bitstream generation. Based
on this hardware product, a Vitis platform project is created, allowing modi-
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fication of the board support packages and device drivers. The PS software,
which also serves as the entry point of the overall system, is implemented as
an application project on top of the platform. This workflow enables seamless
hardware–software co-design and integration.
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Chapter 3

Design Architecture

In this chapter, the design requirements are presented. The overall system
architecture, including the functional flow and block diagram, is discussed. The
system is analyzed to determine whether its architecture meets the specified
design requirements.

3.1 Design Requirements

The design should meet the following requirements:

• The Ethernet LAN should be capable of receiving IEC 61850 data from
RTDS, with a throughput sufficient to handle the maximum SV sampling
data rate streamed by the RTDS.

• The received data must be extracted from the Ethernet payload and con-
verted from 32-bit floating-point format to 16-bit fixed-point format.

• The transformed data should be stored in the device memory and trans-
mitted to the PL in groups of 16 samples [2]. The overall data throughput
between the PS and the PL must remain within the throughput limitations
of both the device memory and the PL system.

• The PS should be notified immediately when a fault is detected in the PL
system.

• Upon fault detection, a GOOSE message should be sent to the RTDS with
minimal delay. If no fault is detected, periodic GOOSE messages should
still be transmitted at regular intervals.

• The RTDS must be able to receive the fault-indicating GOOSE message
within 5 milliseconds after the fault is simulated.

• The system should demonstrate high reliability and robustness to ensure
suitability for long-term operation.
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3.2 System Architecture

According to the design goals discussed in Section 3.1, the overall block diagram
of the system is shown in Figure 3.1.
The system consists of two parts: the RTDS environment and the FPGA

board. The RTDS send SV sampling data to the FPGA and receive GOOSE
message from FPGA via optic fibers.
The FPGA consists of two main components: the Processing System (PS)

and the Programmable Logic (PL). The Ethernet driver in the PS controls
the Ethernet port for data transmission and reception. The PS is responsible
for decoding SV messages (subscriber) and encoding GOOSE messages (pub-
lisher) according to the IEC 61850 protocol. All data is stored in the high-speed
DDR4 memory. A DMA controller handles memory-to-memory and memory-
to-I/O data transfers. The PS also manages the interrupt driver, which triggers
corresponding interrupt service routines.
The PL receives and sends data via AXI streams. The received data extracted

from the AXI stream are simultaneously sent to both the S-Energy calculation
module and the Threshold calculation module. The comparison module then
compares the outputs of these two modules to determine whether a fault has
occurred. If a fault is detected, an interrupt is triggered and sent to the PS;
otherwise, the system remains idle.
The data flow of the system is shown in Figure 3.2. A typical fault detection

data flow is presented:

1. Once the SV message data are generated by the RTDS component, they
are transmitted to the GTNETx2 card and forwarded through the fiber
port.

2. The FPGA receives the data via the Ethernet driver and passes it to the
SV subscriber module.

3. The current data are decoded and converted into fixed-point representa-
tion before being stored in DDR4 memory.

4. The PS monitors the number of SV packets received and invokes the DMA
controller when necessary.

5. The PL receives the current data via AXI stream through the DMA con-
troller.

6. The S-Transform calculation module and the threshold calculation module
use the data as input.

7. After the calculations, the S-Energy result is compared with the threshold.

8. If a fault is detected, an interrupt is triggered and sent to the PS.

9. The interrupt handler in the PS invokes the GOOSE publisher, which
sends the fault message via the Ethernet driver.

10. The RTDS receives the GOOSE message and updates the corresponding
simulated signals accordingly.
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Figure 3.1: Overall block diagram of the system
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Figure 3.2: Data flow of the design

3.3 System Analysis

3.3.1 SV Throughput

The system design must meet the throughput requirements outlined in Sec-
tion 3.1, particularly regarding Ethernet and DDR4 memory performance.

The SV component in RTDS supports various sampling rates ranging from
80 samples per cycle up to 250 kHz. Each SV packet can be configured with a
different number of channels and ASDUs. Given that the maximum Ethernet
bandwidth supported by the ZCU104 is 1000 Mbps, it is necessary to evaluate
the maximum size of an SV packet to ensure the system remains within band-
width limits. An approximate expression for the size of each SV packet is given
in Equation 3.1, assuming an Ethernet header size of 40 bytes and an ASDU
header size of 32 bytes:

Packet Size ≈ 40 +Nasdu × (32 + 4×Nchannel) (3.1)

Here, Nasdu is the number of ASDUs per packet, Nchannel is the number of
sampled channels in each ASDU (e.g., voltage and current phases), and each
channel is represented using a 4-byte (32-bit) integer value.

Suppose each SV packet contains 16 channels including 4 current channels,
4 voltage channels, and their corresponding 8 quality indicators. Based on
Equation 3.1, and given that each cycle of the power signal takes 20 ms (cor-
responding to a 50 Hz system), we can estimate the size of each packet and the
corresponding data throughput under different SV sampling configurations in
RTDS. The results are shown in Table 3.1.

It is evident from Table 3.1 that the FPGA provides sufficient bandwidth to
handle SV communication. In fact, the true performance bottleneck may lie in
the different SV sampling rates used in the project. As shown in the table, the
SV sampling rate of 250 kHz results in significantly higher throughput compared
to that at 80 samples/cycle. Moreover, the DDR4 memory on the ZCU104 board
theoretically offers a much higher bandwidth than even the maximum achievable
throughput of the SV sampling data, indicating that memory is unlikely to be
a limiting factor.
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SV sampling rate Size of each packet (B) Throughput (MB/s)

80 s/c, 1 ASDU 136 0.519

256 s/c, 8 ASDUs 808 1.233

4800 Hz, 2 ASDUs 232 0.531

14400 Hz, 6 ASDUs 616 1.41

96 s/c, 1 ASDUs 136 0.623

96000 Hz, 1 ASDUs 136 12.45

250 kHz, 1 ASDUs 136 32.42

Table 3.1: SV sampling rate and throughput

3.3.2 Operating System

The choice of the operating system for the PS is critical to the overall system
design. For the ZCU104 platform, three common options are: bare-metal, real-
time operating system (RTOS), and Linux.

• Bare-metal: In a bare-metal system, the application runs directly on the
hardware without any operating system. This approach minimizes both
memory footprint and latency, and reduces the likelihood of unpredictable
behavior since all code is explicitly managed by the developer [28]. How-
ever, it significantly increases development complexity, as all hardware
drivers, such as those for Ethernet, DMA, and interrupt handling, must
be implemented manually.

• RTOS: A real-time operating system (RTOS) is designed for applications
with strict timing requirements. Unlike general-purpose systems that fo-
cus on fairness or throughput, an RTOS ensures deterministic behavior
by guaranteeing that critical tasks complete within predefined deadlines.
RTOS is particularly suited for systems with multiple concurrent tasks
and hard or soft real-time constraints [29].

• Linux: Linux is an open-source, Unix-like operating system based on
the Linux kernel. It offers rich functionality, extensive library support,
and a user-friendly development environment, making it ideal for complex
applications. However, it introduces higher latency and is generally less
deterministic compared to RTOS or bare-metal, making it less suitable for
systems with tight real-time requirements [30].

In this work, the bare-metal approach is adopted as the operating system.
Given the system’s strict real-time requirements and the need for high reliab-
ility and robustness, bare-metal provides full control over hardware resources,
making it well-suited for such applications. Although RTOS is a viable alternat-
ive particularly for systems with multiple concurrent tasks, this project involves
relatively simple task scheduling, with interrupt handling being the only form
of concurrency. Additionally, the system operates on a single processor core,
meaning that there is no need for parallel task management. While the Linux
environment offers convenience in eliminating the need to implement Ethernet
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drivers, DMA controllers, and interrupt handlers, its general-purpose kernel may
introduce unanticipated delays, potentially compromising the system’s timing
constraints. For this reason, Linux was not selected.

3.3.3 Latency Analysis

In this work, system latency is defined as the elapsed time between the appear-
ance of a fault in the RTDS and the reception of the corresponding GOOSE
message by the RTDS. The approximate latency include the following:

• SV Data Reception and Parsing: The SV packets are received by the
Ethernet driver and decoded by the PS, with an estimated delay of 100 us.
Since the packets are transferred every 16 samples [2], the approximate
delay depends on the sampling configuration of the RTDS. Under the
80 s/c setting, it takes approximately 4 ms to accumulate 16 samples.

• DMA Transmission: Transferring decoded current data to the PL via
DMA takes about 100 µs.

• S-Energy calculation: The module computes the S-Energy and takes
about 500 ns.

• Fault Detection in the PL: The S-Transform and threshold comparison
modules takes within 0.5 µs.

• Interrupt Handling: The fault detection algorithm triggers an interrupt
and sends it to the PS, which calls the ISR and calls the GOOSE publisher.
This takes approximately 10 µs.

• GOOSE Transmission: The GOOSE message is encoded and sent via
the Ethernet driver, with a latency of 100 µs.

The total estimated latency is slightly exceeding 4 ms under 80 s/c conditions,
which is lower than the 5 ms requirement. However, different RTDS configura-
tions significantly influence the final system latency. The detailed latency will
be extracted from the experiment.
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Chapter 4

System Implementation

In this chapter, the detailed implementation of the system is presented. Each
module introduced in Chapter 3 is discussed in depth, including its functionality,
internal structure, and interactions with other components in the system.

4.1 Hardware Implementation

The hardware block diagram implemented in Vivado is shown in Figure 4.1.
The block diagram consists of several modules, including one ZCU104 device,

one DMA controller with two AXI FIFO streams, one MM2S (memory-mapped
to stream) data reader, three S-Energy calculation modules, one threshold cal-
culation module, and one comparison module. The S-Energy and threshold
calculation modules are implemented in [2]. Therefore, the remaining modules
will be described in this section.

4.1.1 Zynq MPSoC

This module manages all internal components of the Zynq MPSoC device. The
functional blocks within the module are illustrated in Figure 4.2.
In this work, the key functional blocks utilized are: GEM3, I2C, and CAN

modules to enable Ethernet communication; the fabric interrupt controller to
manage interrupt signals; DDR memory and AXI interfaces to achieve high-
speed data exchange between the PS and the PL; and the GPIO block, which
is accessed through EMIO for testing and debugging purposes.
The system operates with a clock frequency of 100 MHz. The reset signals for

the MM2S module, S-Energy calculation modules, threshold calculation module,
and comparison module are active-high, while reset signals for the remaining
modules are active-low. The system contains eight interrupt sources: two DMA
interrupts (for reading and writing), one Ethernet interrupt, one GPIO inter-
rupt, one timer interrupt, and three S-Energy calculation interrupts for fault
detection.

4.1.2 DMA Controller and AXI FIFO

The DMA controller settings are shown in Figure 4.3.

21



Figure 4.1: Block diagram of the hardware implementation
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Figure 4.2: Functional blocks of MPSoC

The DMA is configured in scatter-gather (SG) mode. In this mode, the DMA
transfer parameters are specified using memory-resident descriptors. The soft-
ware sets up the source (SRC) and destination (DST) descriptors and programs
the corresponding registers to point to the starting addresses of these descriptors
in memory. Once the DMA channel is enabled, it automatically fetches the SRC
and DST descriptors and uses the provided parameters to carry out the actual
data transfer. The scatter-gather mode is chosen for its flexibility and efficiency
in handling non-contiguous memory blocks, which is essential in high-speed,
real-time applications such as this system.
The data stream width of the DMA is configured to 64 bits. This ensures

that the three-phase current values for each sample can be transferred in a single
output transaction (16×3 = 48 < 64 bits). Similarly, the input test data which
comprise the three-phase S-Energy values and one threshold value can also be
transferred in a single transaction.
The AXI FIFO block is connected to the DMA controller to enable data

streaming from and to the DMA controller.

4.1.3 MM2S Reading

The MM2S module feeds the AXI-streamed FIFO data into the subsequent cal-
culation modules. Given that the data stream width is 64 bits, this module splits
each data into three 16-bit vectors representing the three-phase current values,
along with one 16-bit quality vector, which is not used in the implementation.
The following code demonstrates this logic.

data_width := 16;

-- full stream data

dout_full_buf <= s_mm2s_tdata(data_width*3-1 downto 0);
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Figure 4.3: Settings of DMA controller in the PL

-- input current phase a

dout_a_buf <= s_mm2s_tdata(data_width*3-1 downto data_width*2);

-- input current phase b

dout_b_buf <= s_mm2s_tdata(data_width*2-1 downto data_width);

-- input current phase c

dout_c_buf <= s_mm2s_tdata(data_width-1 downto 0);

The generic parameters and the ports of the module are shown in Table 4.1.
The following are the signals description:

• clk: Clock signal.

• rst: Reset signal.

• s mm2s tdata: AXI protocol signal carrying the actual streamed data.

• s mm2s tvalid: AXI protocol signal from the master module indicating
that the data is valid.

• s mm2s tready: AXI protocol signal from the slave module indicating
that it is ready to receive data. This signal is set to ‘1’ when the input
s mm2s tvalid signal is ‘1’.

• s mm2s tlast: AXI protocol signal from the master module indicating
that the current stream is the last valid data in this transfer.

• s dout tvalid: Output signal indicating to the S-Energy calculation mod-
ule whether the current data is valid. This signal is set to ‘1’ only when
both s mm2s tvalid and s mm2s tready are ‘1’; otherwise, it is ‘0’.

24



Generic Type Default Value

data width integer 16

Port Direction Type

clk input std logic

rst input std logic

s mm2s tdata input std logic vector(4*data width-1 downto 0)

s mm2s tvalid input std logic

s mm2s tready output std logic

s mm2s tlast input std logic

s dout tvalid output std logic

dout a output std logic vector(data width-1 downto 0)

dout b output std logic vector(data width-1 downto 0)

dout c output std logic vector(data width-1 downto 0)

t dout tvalid output std logic

Table 4.1: Generic parameters and ports of MM2S module

• dout a: Output current data of phase A.

• dout b: Output current data of phase B.

• dout c: Output current data of phase C.

• t dout tvalid: Output signal indicating to the threshold calculation
module whether the current input data is valid. This signal is set to ‘1’
at the same clock cycle when s dout tvalid is set to ’1’, and it remains
high until the next reset. This design ensures that the threshold module
always receives valid input when initiating a calculation, regardless of the
specific clock cycle it begins reading. This is safe because the streamed
input remains at the last valid value and does not change during invalid
periods.

4.1.4 Comparison and Interrupt

The comparison module compares the S-Energy result from the S-Calculation
module with the threshold value from the threshold calculation module, provided
that all input signals are valid. The interrupt signal is asserted one clock cycle
after the clock cycle in which the input results become valid. If the S-Energy
result exceeds the threshold value, an interrupt corresponding to the respective
current phase is asserted. This interrupt is used to indicate a fault condition
and initiate the fault handling routine in the PS.

The generic parameters and the ports of the module are shown in Table 4.2.
The following are the signals description:

• clk: Clock signal.
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Generic Type Default Value

data width integer 16

Port Direction Type

clk input std logic

rst input std logic

fault a irq output std logic

fault b irq output std logic

fault c irq output std logic

s energy a input std logic vector(data width-1 downto 0)

s energy b input std logic vector(data width-1 downto 0)

s energy c input std logic vector(data width-1 downto 0)

s energy a valid input std logic

s energy b valid input std logic

s energy c valid input std logic

threshold 16 input std logic vector(data width-1 downto 0)

threshold valid input std logic

s mm2s tdata output std logic vector(4*data width-1 downto 0)

s mm2s tvalid output std logic

s mm2s tready input std logic

s mm2s tlast output std logic

Table 4.2: Generic parameters and ports of comparison module

• rst: Reset signal.

• fault a irq: The interrupt signal of phase a indicating a fault in phase
a.

• fault b irq: The interrupt signal of phase b indicating a fault in phase
b.

• fault c irq: The interrupt signal of phase c indicating a fault in phase
a. These three signals are connected to the Zynq MPSoc block to trigger
the hardware interrupt.

• s energy a: The input signal indicating the result from S-Energy calcu-
lation module for phase a.

• s energy b: The input signal indicating the result from S-Energy calcu-
lation module for phase b.

• s energy c: The input signal indicating the result from S-Energy calcu-
lation module for phase c.
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• s energy a valid: The input signal indicating whether the result is valid
from S-Energy calculation module for phase a.

• s energy b valid: The input signal indicating whether the result is valid
from S-Energy calculation module for phase b.

• s energy c valid: The input signal indicating whether the result is valid
from S-Energy calculation module for phase c.

• threshold 16: The input signal indicating the result from threshold cal-
culation module.

• threshold valid: The input signal indicating whether the result is valid
from threshold calculation module.

• s mm2s tdata: AXI protocol signal carrying the results from all calcula-
tion modules for testing.

• s mm2s tvalid: AXI protocol signal indicating that the data is valid. This
signal is set to ’1’ when all signals from calculation modules are valid.

• s mm2s tready: AXI protocol signal from the slave module indicating that
it is ready to receive data.

• s mm2s tlast: AXI protocol signal from the master module indicating
that the current transfer contains the last valid data stream. Since only
one 64-bit data word is transmitted per transfer, this signal is set to ’1’
at the next cycle after both s mm2s tvalid and s mm2s tready are high.

4.2 Interrupt Handling

The PS uses the Arm PL-390 Generic Interrupt Controller (GIC), which com-
plies with the GICv1 architecture specification. Interrupt handling plays a fun-
damental role in supporting other modules such as the Ethernet driver, timer,
GPIO, DMA controller, and fault detection module. The initialization and
handling of interrupts across different modules follow a similar process. The
initialization procedure for the fault detection interrupt serves as a representat-
ive example and is described below:

1. The initiator software calls the XScuGic_LookupConfig() function. This
function retrieves the device configuration based on a unique device ID
and returns the corresponding configuration structure. Since there is only
one device, the ID is always set to 0.

2. The XScuGic_CfgInitialize() function is then called, using the config-
uration obtained in the previous step to initialize the interrupt controller.

3. The interrupt priority and trigger type are configured using the
XScuGic_SetPriorityTriggerType() function.

4. The XScuGic_Connect() function is used to register the device driver’s
interrupt handler. These handlers are associated with different interrupt
IDs defined by the device, allowing them to be differentiated from each
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other. This handler is invoked when the associated interrupt occurs. In
the case of fault detection, three separate handlers are defined, each cor-
responding to one of the three fault currents. The GOOSE publisher
is triggered within these handlers upon detecting a fault. Besides, each
handler has a callback function as a parameter. The handler can invoke
the callback function once an interrupt occurs.

5. Hardware interrupts are enabled by calling the XScuGic_Enable() func-
tion.

6. Finally, the exception handling system is initialized and enabled through
the functions Xil_ExceptionInit(), Xil_ExceptionRegisterHandler(),
and Xil_ExceptionEnable().

4.3 Ethernet Driver

The Ethernet Driver of the PS is implemented based on the lightweight TCP/IP
(lwIP). lwIP is a lightweight, standalone implementation of the TCP/IP pro-
tocol suite. The primary focus of the lwIP TCP/IP stack is to minimize RAM
usage while maintaining a complete and functional TCP implementation. This
makes lwIP particularly suited for embedded systems with limited resources.

4.3.1 Initialization

The progress of initialization the LwIP in this project is shown in Figure 4.4.
The description is the following:

Figure 4.4: Initialization of LwIP

1. The lwip init() is called to initialize all the sub-modules of the lwIP
including pbuf, netif, memory, TCP/UDP, etc.
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2. The Xilinx wrapper function xemac add() is invoked to add the Ether-
net MAC interface. This function is a wrapper around the generic lwIP
function netif add(), and its purpose is to provide portability across dif-
ferent Xilinx Ethernet MAC (EMAC) implementations. In this project,
the EMAC driver is used as the base Ethernet driver, so the function
xemacpsif init() is registered with the netif structure in lwIP. The netif
object created and managed by lwIP represents the network interface for
the device’s Ethernet functionality. The low level init() function is the
lowest-level initialization function within lwIP, responsible for configuring
the underlying hardware. On the ZCU104 platform, hardware initializa-
tion includes MAC controller setup, I/O configuration, buffer descriptor
initialization, and interrupt setup. The initialization flow of the EMAC
hardware on ZCU104 is illustrated in Figure 4.5.

3. The IP address, IP mask, and gateway are assigned according to the RTDS
environment.

4. The netif interface is brought up, available for processing the Ethernet
traffic.

4.3.2 Receiving and Sending

The data reception operates in polling mode, meaning that the processor act-
ively invokes the receiving function and continuously checks for incoming packets
until one is received even if the packet is empty. The process of receiving a packet
in lwIP is shown in Figure 4.6. On the ZCU104 platform, the primary function
responsible for packet reception is xemacif input(). The internal structure
and logic of this function are described below:

• The function xemacpsif input() function is invoked, which is the EMAC-
specific input handler for the Ethernet MAC (EMAC) driver used in this
project. It is responsible for retrieving incoming Ethernet frames from the
hardware buffer, allocating memory for each frame,

• The low level input() function is called by xemacpsif input(). It dir-
ectly interacts with hardware registers to check for any incoming packets.

• Once low level input() completes and a valid Ethernet frame is re-
ceived, it is passed to the netif->input() function by xemacpsif input()

for further processing by lwIP. The frame is stored in the pbuf pointer. By
default, if the received frame contains an unrecognized protocol (such as
IEC 61850), it will be discarded. Therefore, the driver must be modified
to correctly handle IEC 61850-based packets.

• The ethernet input() function is invoked by netif->input() to handle
the received Ethernet frame. It parses the frame header to determine how
the packet should be processed. To support IEC 61850, this function is
reimplemented to forward unknown protocols to the user-defined
LWIP HOOK UNKNOWN ETH PROTOCOL() hook.
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Figure 4.5: Progress of the EMAC hardware initialization on ZCU104

• A lwip hooks.h file is added to the driver. This header declares the
LWIP HOOK UNKNOWN ETH PROTOCOL() function by referencing the
iec61850 sv hook() function as extern. This enables ethernet input()

to pass unknown frames to iec61850 sv hook() within the PS software.
The iec61850 sv hook() function then extracts the Ethernet frame con-
tent from the pbuf structure and returns the data to the polling routine.

The process of sending a packet in lwIP is shown in Figure 4.7 and described
below:

1. The Ethernet frame is encapsulated within the pbuf structure using the
pbuf alloc() and pbuf take() functions.

2. The netif->linkoutput() function is then called to pass the Ether-
net frame to the low level output() function, which handles the actual
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Figure 4.6: Process of the data receiving in lwIP

transmission of the packet.

4.4 DMA Controller

The DMA controller operates in scatter-gather mode with linear buffer descriptor
(BD) storage. Scatter-gather mode is described in Section 4.1.2. In linear
descriptor mode, descriptors are stored as a contiguous array of buffer descriptors
(BDs). The characteristics of this mode include:

• Each descriptor is 128 bits wide.

• Each descriptor must be aligned to a 128-bit boundary.

• The descriptor element type is always set to 0.

Compared with linked-list and hybrid descriptor modes, linear mode is not
only developer-friendly but also appropriate for applications where each data
transfer has a fixed length. In this project, each transfer always contains 16×8 =
128 bits of data, and the number of BDs is fixed at 1.

4.4.1 Initialization

The procedures of initializing the DMA controller in scatter-gather mode is
described as follows:
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Figure 4.7: Process of the data sending in lwIP

1. The XAxiDma LookupConfig() function is called to retrieve the configur-
ation of the DMA hardware.

2. The XAxiDma CfgInitialize() function is used to initialize the DMA
controller based on the configuration obtained in the previous step.

3. Set up the TX channel. The BD ring is created using the
XAxiDma BdRingCreate() function. The XAxiDma BdRingSetCoalesce()

function is then called to ensure that only one interrupt is generated
per TX transfer. After configuration, the BD ring is started with the
XAxiDma BdRingStart() function.

4. Set up the RX channel. Similarly, the BD ring is created using
XAxiDma BdRingCreate(). Buffers are then attached to the RxBD ring
via the XAxiDma BdRingAlloc() function. For each BD, the buffer ad-
dress is set using XAxiDma BdSetBufAddr(), followed by setting the buffer
length with XAxiDma BdSetLength(). As with TX, the
XAxiDma BdRingSetCoalesce() function is called to ensure a single inter-
rupt per transfer. The descriptors are passed to hardware using
XAxiDma BdRingToHw(), which enqueues the BDs allocated by
XAxiDma BdRingAlloc(). Once this call completes, the BDs are under
hardware control. Finally, the BD ring is started with the
XAxiDma BdRingStart() function.

5. Configure the TX and RX interrupt systems. The procedures for interrupt
setup are detailed in Section 4.2.

4.4.2 DMA Data Sending

This project focuses on data transmission from the PS to the PL. Therefore,
only DMA data sending (rather than receiving) is discussed. The procedure
for transmitting data through the DMA controller in scatter-gather mode with
linear descriptors is illustrated in Figure 4.8 and described as follows:

1. Allocate the TX BD ring using the XAxiDma BdRingAlloc() function. For
each BD allocated, set its buffer address with XAxiDma BdSetBufAddr(),
followed by XAxiDma BdSetLength() to specify the data length.

2. Enqueue the TX BD(s) to the hardware using the XAxiDma BdRingToHw()

function. If all configurations are correct, the TX interrupt handler will
be triggered once the transmission is completed.
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Figure 4.8: Procedures of sending data through DMA Controller

3. The TX interrupt handler invokes the XAxiDma BdRingGetIrq() func-
tion to retrieve pending interrupt status, and acknowledges them using
XAxiDma BdRingAckIrq(). Since the TX channel is configured for one in-
terrupt per transfer, the handler can immediately identify this as a comple-
tion interrupt and proceeds to invoke the corresponding callback function.

4. The callback function retrieves all processed BDs from hardware by call-
ing XAxiDma BdRingFromHw(). It then checks the status of each BD using
XAxiDma BdGetSts() to identify any transmission errors. Finally, it frees
the processed BDs for future transmissions using the XAxiDma BdRingFree()

function.
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4.5 SV Subscriber

The SV Subscriber follows a sequence of actions to extract the actual current
data from the received Ethernet frame according to IEC 61850 protocol. It
parses the frame and reads the frame data to decide the next action. It is
worth mentioning that both SV and GOOSE messages are encoded using Basic
Encoding Rules (BER). In each tag within the frame, the length field follows
the BER format. Therefore, whenever the software encounters a length field
corresponding to any piece of data, it must decode it according to the BER
specification. The BER decoding algorithm is shown in Algorithm 1.

Algorithm 1 BER decoding Algorithm

1: procedure BER Decode(data)
2: decoded← [ ] ▷ Initialize the decoded output list
3: while data is not empty do
4: (tag, length, value)← DecodeTLV(data)
5: if IsConstructed(tag) then
6: subDecoded← BER Decode(value)
7: Append(decoded, (tag, subDecoded))
8: else
9: Append(decoded, (tag, value))

10: end if
11: end while
12: return decoded
13: end procedure
14: procedure DecodeTLV(data)
15: Parse and return (tag, length, value) from the input stream
16: return (tag, length, value)
17: end procedure
18: procedure IsConstructed(tag)
19: return True if the tag indicates a constructed type, else False
20: end procedure

The procedure of the SV Subscriber is described as follows:

1. Start by skipping the first 12 bytes, which represent the destination and
source MAC addresses. Then, check for the presence of a VLAN tag. If
present, skip the next 4 bytes associated with the VLAN tag. Afterward,
examine the following 2 bytes to verify whether the EtherType is 0x88ba,
which indicates a SV frame as defined by IEC 61850. Next, inspect the
2-byte AppID field to confirm that it falls within the range 0x4000 to
0x7FFF. Once verified, skip the remaining header fields and proceed to
parse the payload.

2. The APDU portion of the SV begins. The BER length is decoded starting
from the 0x60 tag. Decoding continues sequentially until the software
encounters the 0xA2 tag, which indicates the start of the ASDU sequences.

3. The software decodes the BER length to locate the 0x30 tag, which marks
the beginning of a single ASDU.
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4. Each ASDU contains multiple tags, each representing a specific element.
The lengths of these tags must be decoded under BER standard to cor-
rectly locate the next tag. The 0x81 tag indicates that the subsequent
bytes contain the actual current measurement data.

In this project, each ASDU is configured to include three channels, each car-
rying one of the three-phase current measurements. These values are 32-bit
integers representing current data, scaled by a factor of 0.001. The data is con-
verted into 16-bit fixed-point format as described in Section 2.2.1. Algorithm 2
illustrates the transformation process.

Algorithm 2 Convert SV ASDU 32-bit Integer Data to 16-bit Fixed-Point

1: procedure ConvertToFixedPoint(input)
2: scaleFactor ← 0.001
3: realV alue← input× scaleFactor
4: maxV alue← 3.99951172 ▷ Max value for 2.13 format: (22 − 2−13)
5: minV alue← −4.0 ▷ Min value for 2.13 signed format
6: clippedV alue← Clip(realV alue,minV alue,maxV alue)
7: scaledV alue← round(clippedV alue× 213)
8: return int16(scaledV alue)
9: end procedure

10: procedure Clip(x,minV al,maxV al)
11: if x > maxV al then
12: return maxV al
13: else if x < minV al then
14: return minV al
15: else
16: return x
17: end if
18: end procedure

4.6 GOOSE Publisher

The procedures of the GOOSE publisher are described as follows:

1. Construct the Ethernet frame header. The EtherType field for GOOSE
messages is 0x88b8.

2. Encode the GOOSE payload using BER encoding. The BER encoding of
the APDU for a packet indicating a fault in current phase A is shown in
Table 4.3.

3. Submit the complete Ethernet frame to the lwIP stack for transmission,
as described in Section 4.3.2.

From Table 4.3, it can be observed that the actual dataset containing the fault
value occupies only a small portion of the packet. The composition requirements
of the APDU are detailed in [31].
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Tag Length Value Description

0x61 0x76 length of the following items

0x80 0x08 GOOSEIDA GOOSE control block reference

0x81 0x04 0x00000004 time allowed to live

0x82 0x08 DataSetA GOOSE dataset ID

0x83 0x05 goIDA GOOSE ID

0x84 0x08 0x684EE18900000000 Event timestamp of stNum

0x85 0x01 0x01 stNum value

0x86 0x01 0x01 sqNum value

0x87 0x01 0x00 test value

0x88 0x01 0x00 configuration revision

0x89 0x01 0x00 needs commissioning

0x8A 0x01 0x00 number of dataset entries

0xAB 0x03 length of dataset

0x83 0x01 0x00 boolean value representing the fault

Table 4.3: The BER encoding of APDU

4.7 Implementation of RTDS GOOSE Setup

RTDS needs to set up GOOSE communication in order to publish or subscribe
to GOOSE packets from external IEDs such as an FPGA. In this project, this
aspect was investigated but not fully completed due to incompatibility between
the GOOSE component in RSCAD and the RTDS hardware. This section de-
scribes the configurations required to enable GOOSE communication in RTDS.
The procedures of the configurations are as follows:

1. Connect the GTNETx2 GSE card to the NovaCor processor in the RTDS
lab. This connection is necessary to enable the latest version of GOOSE
communication in RTDS.

2. Create the GOOSE component in RSCAD FX from the component library,
and access the IEC 61850 configuration tool through this component.

3. Within the configuration tool’s Draft window, create a GTNET compon-
ent and add an FPGA IED inside it. This IED is used to inform RTDS
that there is an external IED (FPGA) publishing GOOSE messages.

4. Define the data model for the logical nodes within the FPGA IED. In
this project, each current phase’s fault is published via a separate logical
node. Therefore, three logical nodes must be created: FaultA, FaultB,
and FaultC.

5. Bind the appropriate fault current data signal to each logical node. Each
logical node should contain a single boolean or integer value indicating
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the fault status. For example, the FaultA logical node should be bound
to the ASEN OK signal in the RSCAD model.

6. Configure the GOOSE control blocks and datasets in the publishing tab.
Since there are three logical nodes, three corresponding GOOSE control
blocks must be created. For example, for phase A, the dataset name should
be DataSetA, and the GOOSE control block ID should be GOOSEIDA, as
described in Section 4.6. The dataset should include the FaultA logical
node.

7. Save the configuration to an SCL file and export it into the “External
Publishing IEDs” window.

8. Create an S-Energy IED in the Draft window, which is responsible for
subscribing to the FPGA IED created earlier.

9. In the Data Model tab of the S-Energy IED, create three logical nodes
with the same names as those in the FPGA IED: FaultA, FaultB, and
FaultC.

10. In the Subscription tab, configure the S-Energy IED so that its logical
nodes subscribe to the corresponding logical nodes in the FPGA IED.
After this step, the ASEN OK, BSEN OK, and CSEN OK signals should be
bound to the GOOSE messages published by the FPGA.

11. Configure the stNum, Time Interval, and Time Allowed to Live paramet-
ers. These values should align with the implementation shown in Table 4.3,
which may require adjustment based on the APDU specification.
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Chapter 5

Experimental Results

In this chapter, the experimental results of the system and their corresponding
analysis are presented. The topics include:

• The experimental environment is described.

• Results from the hardware implementation on Vivado, including simula-
tion outputs and resource utilization, are presented.

• Evaluation results related to the IEC 61850 protocol are presented.

• Evaluation results of the fault detection are presented.

• Performance results related to the system throughput are provided.

• The overall system latency is evaluated and reported.

5.1 Experimental Environment

5.1.1 Environment Setup

The Environment of the system include:

• RTDS Software: The RTDS software runs on a local computer with
the Windows 10 operating system. It is responsible for executing RSCAD
models and generating real-time data.

• Xilinx Design Software: The Xilinx design suite runs on a remote
computer that is accessible from the local machine. It is used for hard-
ware–software co-design and implementation. The resulting design can be
deployed to and control the FPGA board.

• RTDS Lab: The RTDS lab contains the hardware required to execute
RSCADmodels. It includes GTNETx2 and GTFPGA cards, multiple pro-
cessor racks, and other supporting infrastructures. The lab is connected
to the remote computer via an RTDS network switch, enabling real-time
data exchange between the RTDS hardware and the remote computer.
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• FPGA Board: The ZCU104 FPGA board is connected to the remote
computer via a USB JTAG cable, which enables programming and debug-
ging through the board’s JTAG interface. The board’s Ethernet port is
connected to the RTDS network, allowing it to receive data generated by
RTDS environment.

A picture of the experimental environment is shown in Figure 5.1.

Figure 5.1: Picture of the experimental environment

5.1.2 Experimental Procedures

The hardware experimental flow is established through Vivado simulation, syn-
thesis, and implementation.
The software and system-level experimental environment is built upon the

hardware platform generated by Vivado. After each hardware design is com-
pleted or modified, a hardware platform file is produced through the processes of
synthesis, implementation, bitstream generation, and hardware export. Based
on this hardware output, a Vitis platform project is created. Normally, Vitis
allows updating the platform project via the ”Update Hardware Specification”
option. However, due to a known bug in Vitis 2024.2 Classic which is used
in this thesis, the platform project must be deleted and recreated each time a
new hardware design is generated. Consequently, any platform modifications
must also be reimplemented manually after each update on hardware. The PS
software is implemented as an application project on top of this platform.
For each experiment involving the PS system, the RTDS model is executed

first. Subsequently, the software initiates the PS execution from the main func-
tion.

5.1.3 RTDS Model

The RTDS model used in this project is based on the work proposed in [1],
which was developed as part of the MIGRATE project. The SV component
implemented in RSCAD is shown in Figure 5.2. The SV sampling includes
three channels, each representing one phase of the current. A value of 1 is
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added to each current signal, followed by a scale factor of 0.001, to facilitate
easier data interpretation. The destination Ethernet address of the SV packets
is configured to match the MAC address of the FPGA.

Figure 5.2: SV component implemented in RSCAD

5.2 Experiment for the Hardware Implementa-
tion

5.2.1 Experimental Setup

The hardware design is validated through Vivado simulation, and resource util-
ization is obtained from the implementation results. The simulation testbench
is shown in Figure 5.3, which includes all the custom modules described in Sec-
tion 4.1, maintaining the same architecture as in the actual implementation.
The axi4 data test 0 module inputs fault current values in 16-bit fixed-point
representation from text files to simulate real-time current data. This module
also transfers data to the MM2S module using the AXI protocol, in order to
simulate realistic AXI signal behavior.

5.2.2 Experimental Results

The simulation results of some important signals during a phase-to-phase (LL)
fault are shown in Figure 5.4.
It can be observed from Figure 5.4 that all key signals exhibit the expected

behavior as described in Section 4.1. The s mm2s tdata signal represents the
input data stream in the MM2S module. After two clock cycles, the dout a,
dout b, and dout c signals corresponding to the three-phase input currents are
extracted from the original data and forwarded to the calculation modules. The
AXI handshake signals operate according to the protocol specification. After 59
clock cycles, the S-Energy results become available. Following one additional
clock cycle for comparison, faults are detected in all three phases, and the
corresponding interrupt signals are asserted and sent to the PS.
The estimated utilization of hardware resources is shown in Table 5.1.
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Figure 5.3: The testbench design for hardware simulation

From Table 5.1, it can be seen that the overall utilization remains within
the available hardware resources. The three S-Energy modules account for the
majority of resource usage. Each S-Energy computation module includes one
FFT module, one Gaussian window module, and one IFFT module. It is worth
noting that increasing the number of FFT, Gaussian window, and IFFT modules
to two would cause the design to fail synthesis and implementation due to
insufficient resources, particularly CLBs and DSPs. This result is consistent
with the experimental results reported in [2].

The estimated power consumption of the design is 5.279W, comprising 4.574W
of dynamic power and 0.705 W of static power.

42



Figure 5.4: Simulation results of some important signals in the PL

Resource Used Available Usage (%)

LUT 74142 230400 32.18

FF 61534 460800 13.35

CARRY8 6472 28800 22.47

CLB 15501 28800 53.82

BRAM 5.5 312 1.76

DSP 920 1728 53.24

Table 5.1: Estimated utilization of hardware resources

5.3 Experiment for IEC 61850 Communication

5.3.1 Experimental Setup

In this section, the IEC 61850 communication is validated. The SV packets
received by the PS are compared with those captured by Wireshark to verify
their consistency. The SV packets output from the FPGA are transmitted via
the serial UART interface. Additionally, the GOOSE packets sent by the PS
are also validated using Wireshark to ensure they adhere to BER encoding.

5.3.2 Experimental Results

As shown in Figure 5.5, the SV packets captured by Wireshark and those re-
ceived from the FPGA are identical. Furthermore, the packet structure is con-
sistent with the SV format described in Section 2.3.2.
Figure 5.6 shows a GOOSE packet sent from the PS and captured by Wire-

shark. This packet is transmitted when a fault in current phase A is detected.
The captured packet corresponds to the format described in Section 4.6, partic-
ularly the APDU section.
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(a) One SV packet captured by wireshark

(b) One SV packet processed by FPGA

Figure 5.5: Comparison of SV packets captured by wireshark and pro-
cessed by FPGA

It is worth mentioning that, since the bare-metal operating system on the
ZCU104 does not support reading the current system time, the event timestamp
(t) fields in the APDU cannot be precisely computed. The timestamp in this
packet is therefore estimated and fixed. This limitation can be mitigated by
extracting the UTC time from incoming Ethernet packets or by integrating an
external Real-Time Clock (RTC) module designed to maintain accurate time
and physically connecting it to the FPGA.

5.4 Experiment for the Fault Detection

5.4.1 Experimental Setup

In this section, the overall fault detection functionalities of the proposed design
are evaluated. The fault signals triggered by the RTDS model are compared
with the faults detected by the system. Two types of faults, including line-
to-line (LL) and line-to-ground (LG) faults, are tested. The fault signals from
RTDS are presented using the runtime graph within the RTDS model, and the
corresponding fault detection results during the period of the generated faults
are analyzed.

5.4.2 Experimental Results

The comparison between an LG fault generated by RTDS and the corresponding
detection by the proposed design is shown in Figure 5.7. Although the fault is
applied only to phase A, all three current phases are affected, as illustrated
in Figure 5.7a. Since the design accepts current data from all three phases
as input, faults are detected across all phases, as expected. This comparison
demonstrates that the design can correctly detect the LG fault, indicating that
the major functional modules in the system operate as expected. A small period
of undetected fault is observed, but it is within a tolerable range.
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Figure 5.6: One GOOSE packet sent from the PS and captured by
Wireshark

The comparison between an LL fault generated by RTDS and the correspond-
ing detection by the proposed design is shown in Figure 5.8. Since this LL fault
occurs between phases A and B, the proposed design correctly identifies the
affected phases. However, it detects the fault only during the current transients
rather than throughout the entire fault duration. This behavior is consistent
with the experimental results reported in [2], where LL fault detection was ob-
served to be less evident compared to LG faults. Further optimization of LL
fault detection is left as future work.

5.5 Experiment for the System Throughput

5.5.1 Experimental Setup

In this section, the system throughput is evaluated. As discussed in Sec-
tion 3.3.1, the system throughput is primarily constrained by the SV sampling
rate. Thus, the experiment focuses on the SV throughput on the PS side, which
is compared with the actual SV sampling throughput in RTDS. The exper-
iment records the number of SV packets received by lwIP and processed by
SV Subscriber on the PS side within five seconds, thereby calculating the SV
throughput. Key lwIP parameters used in the setup are summarized below:

• api mode: This parameter is set to Raw mode, which is the only supported
mode in bare-metal systems.

• mem size: This parameter is set to 1048576, which is exactly 1 MB. It
defines the size of the heap memory used by lwIP. A size of 1 MB is
generally sufficient for typical SV sampling rates.
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(a) LG fault generated by RTDS (b) Fault detected by the proposed
design in real-time

Figure 5.7: Comparison between an LG fault generated by RTDS and
the corresponding detection by the proposed design

(a) LL fault generated by RTDS (b) Fault detected by the proposed
design in real-time

Figure 5.8: Comparison between an LL fault generated by RTDS and
the corresponding detection by the proposed design

• pbuf pool size: This parameter is set to 24800, indicating the number
of pbufs in the pbuf pool. Pbufs are fixed-size memory blocks chained
together to store packet data. The default value is 256, which cannot
meet the throughput requirements in this project. Hence, it is significantly
increased.

• pbuf size: This parameter is set to 1700, which defines the size (in bytes)
of each pbuf. The value is slightly larger than the maximum Ethernet
frame size to ensure all packets can be accommodated without fragment-
ation.

• mem n pbuf: This parameter is set to 128, representing the number of
pbufs that can be simultaneously used by lwIP. This value is increased
from the default to ensure sufficient buffering capacity for high-throughput
scenarios.
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5.5.2 Experimental Results

The throughput comparison between the expected and measured SV sampling
rates is shown in Figure 5.9. It is clear from the graph that the measured
throughput closely matches with the expected throughput from the RTDS model,
indicating that the lwIP stack is fully capable of providing the required through-
put for this system.

Figure 5.9: Throughput comparison between the expected and meas-
ured SV sampling rates

The graph also shows that the measured throughput is consistently slightly
higher than the expected throughput. A possible explanation for this scen-
ario is that some SV packets are retransmitted by RTDS, causing the meas-
ured throughput to be slightly higher. Additionally, the SV sampling rates of
96,000 Hz and 250 kHz mentioned in Section 3.3.1 are not supported by the
RTDS environment used in this project, and thus are left for future work.

5.6 Experiment for the System Latency

5.6.1 Experimental Setup

In this section, the overall system latency is evaluated. The latency is computed
by a timer. The timer starts when the PS begins waiting for the first SV packet
after completing a DMA transfer. This starting point is approximately aligned
with the moment when the fault signal is triggered in RTDS and transmitted
to the PS. The end point is defined as the moment when a fault interrupt is
triggered and the corresponding GOOSE packets containing the fault messages
have been transmitted. The latency is measured as the time interval between the
start and end points. Latency is evaluated for different fault types, including
line-to-line (LL) and line-to-ground (LG) faults. In addition, the impact of
different SV sampling rates on latency is analyzed.
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5.6.2 Experimental Results

The overall system latency under an 80 s/c SV sampling rate is shown in Fig-
ure 5.10. It is clear that the system meets the 5 ms latency requirement discussed
in Section 3.1, with the maximum latency remaining within 4.03 ms for both LG
and LL fault types. Furthermore, the latency remains highly consistent even
under a large number of fault interrupts, as shown in Figure 5.10a, demonstrat-
ing the reliability of the system. This result indicates that the system is capable
of meeting real-time constraints even when using a non-RTOS processor and a
bare-metal software environment.

(a) Latency of LG faults under 80 s/c
SV sampling rate

(b) Latency of LL faults under 80 s/c
SV sampling rate

Figure 5.10: Overall system latency under 80 s/c SV sampling rate

Minor deviations can be observed between different phases, which are primar-
ily caused by variations in interrupt triggering times. For instance, if the fault
in phase A is triggered first, the PS will prioritize sending the corresponding
GOOSE message for phase A, introducing a slight delay. However, a deviation
of 0.01 ms is negligible in the context of the system’s timing requirements. It is
also evident that latency tends to increase slightly in some LG fault cases. This
behavior is mostly attributed to the timing at which a new fault is triggered in
the RTDS runtime graph. When a new fault occurs, two possible scenarios may
arise:

• There may be a brief delay in SV sampling.

• As described in Section 3.1, the incoming SV packets are stored in device
memory and transmitted to the PL in groups of 16 samples. If the first
packet containing the fault current happens to arrive late in the group
(e.g., as the 15th sample out of 16), it is likely that this group will not
be identified as containing a fault by the fault detection algorithm in the
PL, and thus no interrupt will be triggered. This situation may introduce
an additional small amount of latency, as illustrated in both Figure 5.10a
and Figure 5.10b.

The LL fault in Figure 5.10b exhibits more fluctuations. This is because each
LL fault generated by RTDS triggers significantly fewer interrupts compared to
LG faults. As a result, any latency variation caused by the occurrence of a new
fault in the RTDS runtime has a proportionally greater impact on LL faults.
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Figure 5.11 shows the overall system latency under a 256 s/c SV sampling
rate. It can be observed that the latency largely decreases for both LG and LL
faults. As discussed in Section 3.3.3, when the SV sampling rate is relatively low,
it becomes the bottleneck of the system. By increasing the sampling rate from
80 Hz to 256 Hz, the expected latency is approximately 4× 80÷256 ≈ 1.25 ms,
which aligns perfectly with the experimental results shown in Figure 5.11.

(a) Latency of LG faults under 256 s/c
SV sampling rate

(b) Latency of LL faults under 256 s/c
SV sampling rate

Figure 5.11: Overall system latency under 256 s/c SV sampling rate

Several extremely low latency values (e.g., less than 50 us) were observed
during LG fault scenarios under the 256 s/c SV sampling rate. These values
are treated as outliers and were consequently filtered, resulting in a latency
distribution in Figure 5.11a that differs from that in Figure 5.10a. The presence
of such outliers may be attributed to experimental limitations in the PS or could
suggest potential reliability issues in the design. Detailed investigation of these
outliers is left for future work.
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Chapter 6

Conclusion and Future
Work

6.1 Summary

In this thesis, an FPGA-based hardware–software co-design is proposed and
analyzed for implementing the S-Transform-based fault detection algorithm with
RTDS integration.

Chapter 1 provides an overview of the thesis and states the main object-
ives of the project. Chapter 2 presents the relevant background, including the
core modules of a previously developed FPGA-based implementation of the S-
Transform fault detection algorithm. The limitation of the previous design is
then discussed. The IEC 61850 protocol is also introduced, with emphasis on
sampled value (SV) data and GOOSE messages. This chapter further outlines
the development environment used in the project, including the Xilinx Zynq
MPSoC ZCU104 FPGA board, the RTDS simulation platform, and the FPGA
design tools.

Chapter 3 presents the overall design architecture of the proposed system.
The detailed design requirements are first outlined, based on which the sys-
tem architecture is developed. Figure 3.1 illustrates the architecture, including
all the modules required to realize the design. The corresponding data flow
is shown in Figure 3.2, providing a complementary view of the system’s oper-
ational behavior. The proposed architecture is then analyzed in terms of SV
data throughput, operating system support, and system latency. The analysis
demonstrates that the architecture satisfies the design requirements described
in Section 3.1.

Chapter 4 details the implementation of the proposed design. The hardware
implementation is first introduced, including the block design in Vivado and the
custom modules developed within it. The software modules running on the Pro-
cessing System are then presented. The lwIP-based Ethernet driver, responsible
for data transmission over the Ethernet port, is described in detail, including
its initialization and data transmission procedures. The DMA controller, which
facilitates data transfer between the Processing System and Programmable Lo-
gic, is also discussed, covering both its initialization and data handling process.
Meanwhile, the implementation of the SV subscriber and GOOSE publisher, in
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compliance with the IEC 61850 protocol, is presented.
Chapter 5 presents the experimental results of the proposed design. The

hardware implementation is evaluated using Vivado, where both the utilization
report and simulation results are provided. The simulation confirms that the
hardware operates as expected. Furthermore, the IEC 61850 communication
and fault detection functionality of the proposed design demonstrate the ex-
pected behavior. The system’s throughput is analyzed, showing that lwIP is
capable of supporting various SV sampling rates. Finally, the overall latency
of the proposed design is reported, demonstrating that the system meets the
latency requirements outlined in Section 3.1.

6.2 Future Work

Possible extensions of this work include the following:

• Complete the GOOSE component setup in RTDS: The GOOSE
component setup has not yet been completed in this project. This is
mainly because the RTDS lab used in this work does not connect the GT-
NETx2 GSE card to the NovaCor processors, making the latest GOOSE
component in RSCAD FX unavailable. As alternatives, legacy GOOSE
components can be used, or the hardware configuration can be modified
to connect the GTNETx2 GSE card to the NovaCor processors instead of
the PB5 cards. Additionally, the GOOSE publisher in the FPGA design
should be modified to accommodate the future GOOSE setup in RTDS.

• Enhancing reliability and robustness: These characteristics have not
been thoroughly validated in the current design, which may pose risks
for long-term operation or commercial deployment. Improvements can be
achieved by developing fault-tolerant software, replacing the bare-metal
system with FreeRTOS or Linux, and optimizing the hardware design.
Additionally, part of the PS system could be migrated from the Cortex-
A53 APU to the Cortex-R5 RPU to enable heterogeneous computing and
enhance real-time processing capabilities.

• Deploying the design on a standalone FPGA system: The current
implementation relies on the Xilinx Zynq SDK and requires connection
to a host computer to operate. Eliminating this dependency would im-
prove the system’s flexibility and allow fully autonomous execution on the
FPGA.

• Extending the system toward a complete protection scheme: Fu-
ture work may integrate functionalities proposed in [1], including phase se-
lection, direction determination, and zone identification, thereby evolving
the system into a more comprehensive protection relay.
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