
Logs to the Rescue
Creating meaningful representations from log
files for Anomaly Detection

G.H.R. Timmerman

Master Thesis

Logs to the
Rescue

Creating meaningful representations from log
files for Anomaly Detection

by

G.H.R. Timmerman

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Wednesday September 27, 2023 at 3:00 PM.

Student number: 5664829
Institution: Delft University of Technology
Faculty: Electrical Engineering, Mathematics and Computer Science
Project duration: December 2022 – September 2023

Thesis committee: S. Verwer, TU Delft, Associate Professor, Cybersecurity and Algorithms (supervisor)
A. Anand, TU Delft, Associate Professor, Web Information Systems
T. Mulder, Eye Security, Incident Response Lead (company supervisor)

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface
Before you lies my Master Thesis called ”Logs to the Rescue: Creating meaningful representations
from log files for Anomaly Detection”. It focuses on improving the information extraction from logs
using language models and clustering to reduce the complexity of log file representation for the
purpose of anomaly detection when investigating cyber incidents.

This thesis was written to fulfil the graduation requirements of theMaster Computer Science with a
Cybersecurity specialization at the Delft University of Technology. The study was done in combi-
nation with an internship at Eye Security during the last year of my study between December 2022
and September 2023 for a total of 9 months.

I would like to express my sincere gratitude to my daily supervisor Assoc. Prof. Ir. Sicco Verwer
(TUDelft) and company supervisor Tijmen Mulder (Eye Security) for their guidance and support in
helpingmewith difficulties along the way. They providedmewith valuable feedback, insights, and
suggestions that improved the quality of my research and thesis.

I would also like to thank Chris Hammerschmidth and TomCatshoek (APTA Technologies) for their
helpful advice and expertise on the topics and techniques used in this research. They generously
shared their knowledge and experience with me and helped me overcome several technical chal-
lenges.

I am grateful to my friends that I have met during my study that helped me stay motivated during
themeetings and ourweekly get-togethers. Theymademy study journeymore enjoyable andmem-
orable.

Additionally, I want to thank Eye Security for the opportunity and allowing me to do an internship,
providing me the help, data and computing resources needed to perform my research.

Last, but definitely not least, I would like to thank my parents and family for their unconditional
love and support throughout my life. They always encouraged me to pursue my dreams and goals
and gave me the strength and confidence to face any obstacles.

I hope you enjoy reading this thesis and find it interesting and informative.

Gerben Timmerman
Delft, September 2023

iii

Abstract
This thesis offers a comprehensive exploration of log-based anomaly detection within the domain
of cybersecurity incident response. The research describes a different approach and explores rele-
vant log features for language model training, experimentation with different language models and
training methodologies, and the investigation of the potential contribution of extra contextual fea-
tures. The newly proposed approach is compared against an already implemented baseline in a
finite-state classifier called FlexFringe, assessing their performance in detecting malicious anoma-
lies across diverse datasets and hosts.

Key findings from this research underscore the importance of including human language for the
generation of coherent clusters and a better performance of pretrained languagemodels over mod-
els that were fine-tuned or built from scratch. Furthermore, the influence of clustering parameters
on cluster quality proves to be crucial for cluster quality. Additionally, we gained insights into how
extra contextual features are useful for log analysis.

In light of these findings, the study provides several recommendations for future research, in-
cluding the expansion of the methodology to accommodate various log sources, the enhancement
of preprocessing techniques, the integration of newer andmore advanced languagemodels, and the
pursuit of efficient hyperparameter optimization. This work contributes to the continual advance-
ment of log-based anomaly detection and its critical role in enhancing cybersecurity practices.

v

Contents

1 Introduction 1
1.1 Topic Introduction. 1
1.2 Problem Relevance . 2

1.2.1 Motivation . 2
1.2.2 Stakeholders . 3

1.3 Research Questions, Hypothesis and Contributions . 3
1.3.1 Hypothesis . 4
1.3.2 Contributions . 4

1.4 Outline . 4

2 Background 5
2.1 Logs . 5

2.1.1 What are Windows Event Logs?. 5
2.2 Anomaly Detection . 7

2.2.1 Definition of Anomalies and the Anomaly Detection Task 7
2.2.2 Application in Cybersecurity . 8
2.2.3 Adversarial Examples . 8

2.3 Language Models . 9
2.3.1 What are Language Models? . 9
2.3.2 History of advancements in LMs. 9
2.3.3 Weighted word representation models . 10
2.3.4 Transformer models . 10
2.3.5 RoBERTa Transformer . 12
2.3.6 TF-IDF vs. Transformer models . 12

2.4 Clustering . 12
2.4.1 Mini-batch K-means . 13
2.4.2 DBSCAN . 13

2.5 Finite-state Automata. 14
2.6 Related Work on Anomaly Detection using Language Models 15

2.6.1 LogBert . 15
2.6.2 LAnoBERT . 15
2.6.3 ClusterLog . 15
2.6.4 Innovation over related work . 16

3 Data & Materials 17
3.1 Collection . 17

3.1.1 Data Origins . 17
3.1.2 Conversion to Usable Format for Preprocessing 17

3.2 Data Preprocessing . 17
3.2.1 Construction of the Feature String . 17
3.2.2 Data Cleaning of the Feature String . 19
3.2.3 Anonymization of sensitive information . 20

3.3 Deduplication of Validation Set . 21

4 Methodology 23
4.1 Model Build Pipeline . 23

4.1.1 Data Preprocessing . 23
4.1.2 Creating the Language Models . 25
4.1.3 Clustering of the log embeddings . 26
4.1.4 Enrichment with extra features. 27
4.1.5 FlexFringe . 29

vii

viii Contents

4.2 Training process of the models . 29
4.2.1 Training phase . 29

4.3 Finding an evaluation method . 31
4.3.1 F1-score on labelled data . 31
4.3.2 Distant supervision . 32
4.3.3 Manual inspection . 32

5 Experiments 33
5.1 Description of the datasets. 33
5.2 Experiment 1: Comparing the language models . 34
5.3 Experiment 2: Manual inspection using FlexFringe. 35

5.3.1 Experiment setup . 35
5.4 Overview experimental setup . 35

6 Results 37
6.1 Comparison between transformer models . 37

6.1.1 Measuring spread of event IDs . 37
6.1.2 Visualizing the embeddings by their clusters . 38
6.1.3 Inspecting the cluster contents. 39
6.1.4 Cluster contents with benign logs . 40
6.1.5 Choosing the best language model . 41

6.2 Transformer LM vs. TF-IDF baseline using FlexFringe. 42
6.2.1 Investigating Case April 2022 dataset . 42
6.2.2 Investigating Azure AD Labs dataset . 42
6.2.3 Investigating a benign host. 44

7 Discussion 45
7.1 Summarization of Key Findings . 45
7.2 Interpretation and Summarization of the Results . 45
7.3 Limitations . 46
7.4 Recommendations for Future Research. 47

8 Conclusion 49

A Appendix 51
A.1 Data Origins . 51
A.2 Cluster Inspection . 52

A.2.1 Malicious Authentication Requests Inspection Example 52
A.2.2 Benign Program Installation Cluster Inspection Example 53

A.3 FlexFringe Anomaly Detection Results . 54
A.3.1 TF-IDF + Mini-batch K-means FlexFringe output on DC-APHRODITE Azure AD

Labs (Test 1) . 54
A.3.2 RoBERTa-pretrained + DBSCAN FlexFringe output on DC-APHRODITE Azure

AD Labs (Test 1) . 55
A.4 Extra Features Figures . 56

A.4.1 Case April 2022: Infected Host . 56
A.5 FlexFringe Benign Host Investigation Results . 57

A.5.1 TF-IDF + Mini-batch K-means FlexFringe output on WKS-FROUKJE Azure AD
Labs (Test 1) . 57

A.5.2 RoBERTa-pretrained + DBSCAN FlexFringe output on WKS-FROUKJE Azure
AD Labs (Test 1) . 58

1
Introduction

1.1 Topic Introduction
As our society becomes increasingly digitalized, the security of our digital assets has become a
growing concern. More and more sensitive data, such as financial records, medical records, and
personal information, are stored online, making them vulnerable to unauthorized access. (Ra-
jasekharaiah et al., 2020) Furthermore, as the internet of things (IoT) connects more and more as-
pects of our lives, the attack surface grows, and the risks increase even further. (Rajendran et al.,
2019) However, as the technology that powers our digital world continues to evolve, so do the tech-
niques that hackers and cybercriminals use to exploit it. This has resulted in an increase in cyberat-
tacks, fromphishing scams andmalware infections tomassive data breaches that exposemillions of
user records. (Hammouchi et al., 2019) As a result, the need for effective cybersecurity measures is
more critical than ever, to safeguard ourselves, our businesses, and our society as a whole from the
increasing threat of cybercrime. Securing our digital assets has become a complicated challenge,
requiring a mix of technical expertise, robust security protocols, and constant vigilance.

One challenge is to detect whether the computers or network infrastructure of an individual or
organization has been breached by an adversary. Whenever these environments are compromised,
the adversaries who gained access perform various actions on those systems to achieve their mali-
cious objective. Hence, it is crucial to monitor the activities on these systems. Attackers may leave
many traces in the form of network packets, system calls, and warning or error statements to name
a few, which are stored in a collection of logs. Logs are records that store events in a chronological
order of activities, errors, and other noteworthy occurrences within a system or application. Some
systems are critical to the functionality of an organization and can not afford to be down or have
any failures. Using other methods like doing exhaustive searches or manual inspection for mali-
cious behavior can be very taxing on a system, but also very intrusive. Monitoring by only using
logs can address this issue, since logs can be easily collected without risking failures or demanding
too much from the systems that need monitoring.

The application that this thesis focuses on is that we are trying to find actions of an adversary
in a system or network environment by detecting anomalous behavior through the use of these
logs. For this task, we intend to use machine learning in the form of language models that use these
logs to learn to distinguish normal from anomalous behavior. This way we can detect suspicious
behavior before and after an attack occurred. By proactively scanning for anomalous behavior,
the likelihood of an attack spreading further through the system becomes much lower. Such mod-
els can alert security analysts that they have to be vigilant and tell them what to look for. Similar
to incident prevention, these models can also be applied to incident response, which is what our
research focuses on. The model could learn what normal behavior is happening in on the host’s
computer, only to point out where and what activities are abnormal. When an incident responder
knows where to look, the attack can be resolved much faster and more efficiently.

1

2 1. Introduction

1.2 Problem Relevance
As explained, logs can provide valuable information in detecting system compromise, but it is a
difficult task to use them effectively to determine whether activities are anomalous or not. One so-
lution is to let security analysts make the decisions based on information gathered through tools
that analyze the logs and find attackers based on common malicious behavior (e.g., brute force
attempt). A limitation of this method is that it does not detect unknown tactics, techniques, and
procedures (TTP) and creates a lot of overhead and false positives for them to make precise de-
cisions. Moreover, logs can be huge, complex, and may contain a large amount of irrelevant or
redundant information, making it hard for a human to efficiently and accurately identify important
events and patterns. Automating the detection process could make filtering through the logs more
efficient in terms of speed and accuracy. However, this approach comes with its own new set of
challenges. For example, the vast majority of logs are unstructured or semi-structured, meaning
that they are not formatted consistently. They may contain different types of data, such as times-
tamps, error messages, and systemmetrics, making it difficult to develop a consistent approach for
parsing and analyzing them. Additionally, they are often produced by multiple components, ap-
plications or services within a system, each of which may use a different logging library or format.
Another problem is that these automated solutions tend to be sensitive and thus not 100% accurate
in their decisions to mark certain events as anomalous, leading to many false alarms.

1.2.1 Motivation
While some of these automated solutions already achieve reasonable results, their performance in
terms of detection rate and accuracy is not perfect yet. This research aims at further improving the
performance of anomaly detection models.

A few of these related works that tried to tackle this problem are, for instance, LogBERT and
LAnoBERT (Guo et al., 2021; Lee et al., 2021). These approaches utilize BERT-based masked lan-
guage models to detect and classify whether certain log sequences are anomalous or not. LogBERT
employs BERT to capture semantic representations of log messages, formulating anomaly detec-
tion as a masked language modeling problem, while LAnoBERT directly feeds raw log messages
into BERT without log parsing, focusing on predictive probabilities. Another approach, Cluster-
Log (Egersdoerfer et al., 2022), addresses the challenges of noisy and ambiguous log sequences by
clustering logs based on their semantic similarity and sentiment scores, simplifying the anomaly
detection task using a sequence classification model on clustered log IDs. These will be further
described in Section 2.6.

Another approach is proposed by APTA Technologies1 and Eye Security2. APTA technologies
specializes in computer-generated data analysis, helping cybersecurity incident responders come
to findings faster and more reliably. Eye Security is a cybersecurity company that protects small-
medium enterprises against digital threats. These two companies that have partnered up to create
their own version of an anomaly detection model called FlexFringe and aim to create a less labor-
intensiveway of handling the aforementioned cyber incidents. These are also the companieswhere
this thesis was written.

Their FlexFringe implementation uses Finite-state Automata to model normal versus anoma-
lous behavior. (Verwer andHammerschmidt, 2017) It uses a weighted word representationmethod,
namely TF-IDF, to convert the contents of logs to numerical features in a vector for each log event.
Similar log events are then clustered together, and the cluster IDs are then fed into a finite-state
machine model that tracks the transitions between log events. These concepts will be further
explained in chapter 2. While the foundation of this model already exists, its TF-IDF vectorizer
method of information/feature extraction from the logs is a relatively simple method and could be
replaced with a more complex method that better captures the relations between the features in
the logs. What this thesis aims to find out is whether this feature extraction step can be performed
through the use of so-called transformer models, which are the latest state-of-the-art in language
modelling. Wewant to see how they compare with the current TF-IDF implementation in capturing
meaning of the log contents.

Therefore, the overall goal of this thesis research is to develop a new preprocessing approach

1https://www.apta.tech/
2https://www.eye.security/

https://www.apta.tech/
https://www.eye.security/

1.3 Research Questions, Hypothesis and Contributions 3

which aims to provide the anomaly detectionmodelwith features that better convey themeaning or
semantics of a log event. Using this improved preprocessing pipeline, FlexFringe will hopefully be
able tomake better distinctions between behavior that should be labelled as normal and anomalous
because of these improved features.

1.2.2 Stakeholders
The stakeholders that have an interest in this project are:

1. Industry professionals;

2. Researchers in academia;

3. End-users of the implementation.

The first group of stakeholders represent the security industry. These consist of Security Analysts
and Incident Responders before/after an attack or breach is detected, by having a proper effective
anomaly detection model and solution in place, they could save valuable time by not wasting their
efforts on false alarms raised by the detection system. If the features and models can also inform
them of where the alerts are coming from and provide context, that could be even better. Addi-
tionally, there are also model designers that would like to know how to build a good performing
information extraction model. The next group are researchers in academia. This group can study
and implement the insights gained from this research and improve on them. By providing the im-
plementation with new logs, they can further evaluate the robustness of the new approach / system
and improve on its design and usability. Finally, there are the end-users within the environments
of where the final solution will be deployed. These users have to be assured that their activities are
beingmonitoredwhile respecting their privacy. The anomaly detection process should not use any
sensitive features that can be traced back to an individual.

1.3 Research Questions, Hypothesis and Contributions
The main goal of this thesis is to enhance the information extraction techniques from event log
files to boost the performance of existing anomaly detection models. We propose to implement a
transformer encoder language model (LM) that can capture the underlying context among various
features from event logs, whose last hidden layer can serve as a feature vector for the creation of
clusters, where the sequence of clusters can be used to train a finite-state automaton (FSA) model
that detects anomalies. To accomplish this goal, this thesis addresses the following main research
question with four sub-questions:

How can embeddings and language models capture useful representations of
log files for analysis in Cybersecurity?

SQ1 What features from logs are relevant to train LMs?

SQ2 Which LM and what training method are most suited for feature extraction?

SQ3 How does a transformer LM compare to a weighted word representation model as a feature
extraction method in anomaly detection?

SQ4 Does adding additional contextual features improve anomaly detection?

We want to investigate how we can best capture useful representations of log events. First, we
want to find out what information is stored in the logs and which features are relevant to extract
meaning from. Secondly, we want to test several models and training approaches to see which
method achieves the best results. Thirdly, we want to compare the best new method against the
current implementation to see if it leads to improved results. Finally, we want to explore whether
the addition of extra contextual features can help the anomaly detection process.
To learn the language used in logs, a large amount of data is required to train and test the perfor-
mance of the language models. This data has been provided by Eye Security and will be explored
in chapter 3. All the code used to build the language models can be accessed on GitHub 3.
3https://github.com/gerbentimmerman

https://github.com/gerbentimmerman

4 1. Introduction

1.3.1 Hypothesis
The hypothesis is that the performance of anomaly detection improves using transformer-based
language models as a feature extraction method over the baseline TF-IDF weighted word represen-
tationmodel. We argue that this method enables the extraction of a better representation using the
context of features in logs, instead of relying on independent tokens in a log message, as is the case
with TF-IDF.

1.3.2 Contributions
The main contributions of this thesis towards the field of anomaly detection are the following:

C1 An insight in the feature selection process and preprocessing steps of Windows event logs.

C2 Anew feature extraction approach using transformer languagemodels that are able to capture
more complex relations between the log features and additional contextual features, leading
to an improved anomaly detection method.

C3 A comparative study between four transformer models and a baseline TF-IDF vectorizer.

1.4 Outline
The thesis is structured as follows: to answer the research questions, it is important to know more
about the theoretical background, which is presented in chapter 2. In chapter 3, a description of the
data, preprocessing and materials is given. Chapter 4 provides a detailed overview of the method-
ology used to conduct this research, namely, the model build pipeline, training of the language
models and evaluation method. An overview of the experimental setup is given in chapter 5. The
results from the experiments and evaluation method will be presented in chapter 6. Key findings
from the results and limitations will be discussed in chapter 7. Finally, in chapter 8, we offer a
conclusion where we answer the research questions and provide suggestions for future research.

2
Background

This chapter provides introductory background information about logs, previous work in the area
of Anomaly Detection, Language Models, Clustering and Finite State Automata. First, we explain
more about the origins of (EVTX) logs and what information they can contain. Second, we explore
the task of anomaly detection itself and how it will be applied to our study of finding anomalies
in log files. The third section dives into Language Models, discusses what they are, gives a brief
overview of progress over the years and elaborates on recent developments. The fourth section de-
scribes what clustering is and elaborates on the technique that we will be using in this research to
group similar log events together. In the fifth section, we explore the technique behind FlexFringe,
namely, finite-state automata and how they can be used to follow transitions of log events to find
rare patterns. Finally, we show relevant works that have tried to tackle the same problem and high-
light innovations that this research makes over those works.

2.1 Logs
Logs refer to files or records that contain a chronological record of events, actions, or messages
originating from an operating system, software applications, networks, servers, firewalls, hardware
infrastructure, etc. To give a definition in computing terms from Sharif (2021): ”An event is any
significant action or occurrence that’s recognized by a software system.”. The event is typically
recorded in a special file called the event log. All operating systems and most applications gen-
erate event logs to store events related to the source that produces them. The way a system’s or
application’s logs are populated depend on how the logging process is configured by a developer
or system administrator. These event logs are essential for purposes such as troubleshooting, per-
formance monitoring, root cause incident analysis, compliance and auditing.

In this research, we aim to develop an approach that is able to catch deviating behavior that
helps in the detection of adversarial events during a cyberattack. Therefore, we mainly focus on
the root cause incident analysis, where the logs can be used to track malicious activities happen-
ing on a computer and to monitor the system, applications and infrastructure for security-related
events. Wewill be working withWindows Event Logs to achieve this goal. A short introduction and
overview of the Windows Event Logs structure and the information that they collect and contain
are discussed next.

2.1.1 What are Windows Event Logs?
The Windows Event Log (EVTX) is a format used by Microsoft Windows to log information from a
system running a Windows operating system, together with information produced by the applica-
tions running on the system. These logs are saved in so-called .evtx files. Windows Event Logs are
often used to troubleshoot problems with the system or applications, to monitor their operations,
and to possibly detect future problems that might occur. They contain a variety of different types
of events and store them into a standard XML format which allows them to be shared with security
experts, administrators and IT support analysts for investigative purposes. Additionally, it also al-
lows them to be processed in amore structuredmanner, though the resulting format still verymuch

5

6 2. Background

varies between applications, components and services.
Each event log entry contains information about the event, where this information is then as-

signed to a so-called attribute in XML format. The entry contains data such as the event ID, event
source (e.g., the system component or application that generated the event), level, date and time of
the event, username, computer name, and other details about the event (Charter, 2008).

An example of the contents of an evtx file viewed inside theWindows Event Viewer can be seen
in Figure 2.1. Here, information related to a user logon event has been saved as an entry in the
security channel and is coming from the Security.evtx file.

Figure 2.1: Example of the log contents related to a user logon on a Windows system in XML format.

Events are written to the event logs by providers and are coming from so-called channels. Ac-
cording to nxlog (2022) a provider can be a service, driver, or program that runs on the computer.
A channel is a stream of events collected from several providers and they are saved in an evtx file
that corresponds to the channel name. Channels are organized into two groups: ’Windows Logs’
and ’Applications and Services Logs’. The first group ’Windows Logs’ are events logged by theWin-
dows operating system and can only contain the following five channels below. The second group
’Applications and Services Logs’ consist of different channels created for individual applications
and components.(SolarWinds, 2023; Yasar and Gillis, 2023)

• Application: These are events generated by applications running on the system, such as er-
rors or warnings related to the operation of the application.

• Security: These are events related to security-related activities on the system, such as logon
attempts, failed logon attempts, and other security-related activities.

2.2 Anomaly Detection 7

• System: These are events related to the operation of the Windows operating system itself,
such as system startup, shutdown, and configuration changes.

• Setup: Contains events that occur during the installation of the Windows operating system.
On domain controllers, this log will also record events related to Active Directory.

• Forwarded Events: Consists of event logs forwarded from other computers in the same net-
work.

Channels are organized into two main types: Direct and Serviced. Direct type channels, which
are disabled by default, collect a large volume of logs and cannot be shared with other programs
and systems. On the other hand, Serviced type channels collect a low log volume and they can be
shared with other programs and systems (nxlog, 2022). To make an even better distinction, these
types are split up into four subtypes: Admin (Administrative), Operational, Analytic, and Debug.
Table 2.1 shows an overview of the channel structure and their corresponding channel types. Each
channel subtype has an intended audience, which determines the type of events that you write to
the channel. Admin type channels support events that are intended for administrators, end users,
and support personnel. Events written to the Admin channels should have a well-defined solution,
on which the people reading them can act. Operational type channels should produce events that
are used for troubleshooting. Analytic type channels produce events that are published in high
volume and they describe program operations. Debug type channels intended for developers to be
used for debugging purposes (Karl-Bridge-Microsoft, 2021).

Channel groups Channels Channel type

Windows Logs

Application Administrative (serviced)
Security Administrative (serviced)
Setup Operational (serviced)
System Administrative (serviced)
Forwarded Events Operational (serviced)

Applications and
Services Logs

Microsoft-Windows-Powershell/Admin Administrative (serviced)
Microsoft-Windows-Powershell/Operational Operational (serviced)
Microsoft-Windows-SMBServer/Audit Analytic (direct)
Microsoft-Windows-SettingSync/Debug Debug (direct)
(And many more provider-defined channels)

Table 2.1: Overview of the channel structure and their types. Adapted from nxlog (2022).

More details on which contents of theWindows Event Logs are used as features in our approach
will be elaborated in Section 3.2.1.

2.2 Anomaly Detection
In this section, we explore the task of anomaly detection and how it can be applied to the cyberse-
curity domain. Additionally, we provide some adversarial examples and elaborate on what can be
learned from these.

2.2.1 Definition of Anomalies and the Anomaly Detection Task
According to Merriam-Webster (2023), an anomaly is “A deviation from the common rule”. In the
context of data analysis, anomalies refer to data points, events, or patterns that deviate significantly
from the expected or normal behavior of a dataset. These can be values that are much larger or
smaller than the average, unexpected patterns or trends, or events that are rare or unusual. Anoma-
lies also known as outliers or novelties and can occur due to various reasons such as measure-
ment errors, data corruption, unusual conditions, or undesired behavior. There are several types of
anomalies (Kampakis, 2022):

• Point anomalies: A single observation or data point that deviates from the expected pattern,
range, or norm in relation to other data points. In other words, the data point is unexpected.

8 2. Background

• Collective anomalies: Happens when looking at single data points in isolation appear nor-
mal, but when observingmultiple groups of these data points they showunexpected patterns,
behaviors, or results.

• Contextual anomalies: Occurs when a data point may appear normal when considered on its
own, but becomes anomalous when considered in the context of other data points.

The task of anomaly detection is to identify these data points. They may represent important
information or insights that could indicate potential problems or threats. The task usually involves
preparing and preprocessing the data, selecting an appropriate anomaly detection algorithm or
technique and defining a threshold or criteria for identifying anomalies, and at last analyzing and
interpreting the results. Various techniques can be used for anomaly detection, including statistical
methods, machine learning algorithms, and deep learning models.

2.2.2 Application in Cybersecurity
The identification and analysis of anomalies can be used for various applications, such as system
monitoring, and quality control to ensure that a system or application is running or functioning in
the way it should be. Some examples of applications that are related to the Cybersecurity domain
are fraud detection, malware detection, intrusion detection and incident response. Anomaly de-
tection can also proactively help to identify potential cyber threats and prevent security breaches.
By detecting anomalies in network traffic, user behavior, system activity, or financial transactions,
security teams can take appropriate action to mitigate the risks of cyberattacks and protect their
organizations frompotential damage. For this thesis, we aremainly focussing on Incident Response
(IR). IR happens when a person or organization has been compromised by an attack and takes ac-
tion to assess, respond to, and mitigate cyber threats, either by themselves or via an external party
like EYE Security. A well-thought-out IR plan combined with the proper tools are important for or-
ganizations to protect and reduce the damage dealt to their data, systems, finances and reputation.

For this application, having an effective anomaly detection tool can prove to be essential in the
case of IR to help find the root-cause of a compromised system. These automated tools can provide
suggestions of activities that look strange and advise the analyst onwhere to look,which canhelp in
a faster resolvement of the threats. Using the logs that contain clues of potential malicious actions,
our goal is to find these anomalous activities performed by adversaries on a particular system.

2.2.3 Adversarial Examples
To illustrate the type of behavior that we are trying to detect, we provide two examples below. Of
course, in theory we would like to catch all adversarial behavior even though we do not knowwhat
to look for. If an automated tool can detect this without too many false positives, that would be
ideal.

A concrete example is the modification of permissions on an object by an unauthorized user.
This action generates Event ID 4670 in the Security.evtx file. This event indicates that someone
has changed the permissions on a file, folder, registry key, or other securable object. An analyst
may want to know what object was modified, what permissions were changed, and who made the
change. This could indicate an attempt to gain unauthorized access or tamper with sensitive data
(Bradley, 2020). In our second example, we can check for the occurrence of event ID 1102 which
clears the Security logs regardless of any audit policy or status. Besides attackers aiming to cover
their tracks, it is unlikely that a ’normal’ user would intentionally delete these logs. Looking into the
user that cleared the logs can help identify whether that account was compromised or not (Bradley,
2020).

Of course these events on their ownare already interesting enough to suggest analyst to look into
them, but we also aim to do is detecting rare malicious transitions. An example of rare transitions
between events that a ‘normal’ user would not do is the execution of a program followed by the
attempts at modification of permissions on that same program or object. A ’normal’ user is unlikely
to have reasons to show behavior like this.

2.3 Language Models 9

2.3 Language Models
In this section, we provide more information about the language models that are used in this re-
search to extract information from the event logs. First, we tell more about the origin and idea
behind these models and why we want to use them. Then a short history of advancements of lan-
guagemodels is provided, wherewebuild up to the current state-of-the-art techniques andmodels,
namely, transformers. Here, we explain how they are designed and what recent models we will be
using in this thesis.

2.3.1 What are Language Models?
Language models are computational models that are trained to learn and capture the patterns and
structure of (human) language. They can be used for a wide range of natural language processing
(NLP) tasks suchas text classification, language translation, sentiment analysis, question-answering,
summarization and more. They tend to be based on statistical or machine learning techniques and
are trained with data from large corpora such as a collection of books, webpages or social media
posts. Language models were initially designed to learn relations in human language, but we can
also use them to learn the underlying structure in other forms of languages, like the log language
that we will be using in this research. Instead of training with data from human sources, we will
be training with structured computer-generated log data to train the models. The end goal is to
generate a proper numerical representation of the information contained in the log.

2.3.2 History of advancements in LMs
Language models have a long and interesting history, dating back to the mid-20th century with the
development of early computer programs that could process and generate digital human language.
It has been one of continuous development and improvement, driven by advances in computer
technology, making it more accessible and through peoples’ production of large quantities of text
data.

Starting back in the 1950s, researchers in the field of artificial intelligence (AI) were interested
in developing computer programs that could process and generate human language. Examples of
these early programs are ELIZA, SHRDLU, or LUNAR. Additionally, methods were developed early
statistical models for language processing, including the Markov Chain and Hidden Markov Model
(Baum and Petrie, 1966). These models were based on the idea that the likelihood of a word oc-
curring in a language could be estimated based on the frequency of its occurrence in a large text
corpus.

In the 1970s to 1990s, the wide availability of personal computers and large amounts of text
data allowed for the development of more sophisticated statistical language models. During this
time, n-gram models became popular, which represented a significant improvement over earlier
models. N-gram models represent language as sequences of N consecutive words, and estimate
the probability of a word occurring in a language based on its co-occurrence with previous words
in the sequence. Furthermore, Sparck Jones (1972) introduced the concept of inverse document
frequency (TF-IDF), which can be used to measure the relevance of terms in a document.

During the 2000s to 2010s, introduced the rise of Neural Networks and Deep Learning tech-
niques (Bengio et al., 2000). With the arrival of the internet and the availability of even greater
amounts of text data, researchers continued to develop more advanced language models. The rise
of deep learning and neural networks in the 2010s also led to a new generation of language models,
including the Recurrent Neural Network (RNN) and the Transformer architecturewith Bidirectional
Encoder Representations fromTransformers (BERT) and Generative Pre-trained Transformer (GPT)
(Rumelhart et al., 1986;Devlin et al., 2018; Radford et al., 2018). A shortcomingofRNNmodels is that
they are unable to capture long-term dependencies due to the vanishing gradient problem, trans-
former models are able to capture these dependencies in language and performed well on tasks
such as text generation, translation, and sentiment analysis.

Since the 2020s, there have been advancements in Pre-trained Large Language Models (LLMs),
such as GPT-3, GPT-4 and (Open-)Llama (Brown et al., 2020; OpenAI, 2023; Geng and Liu, 2023;
Touvron et al., 2023). These are very large pre-trained models with hundreds of billions or trillions
of parameters. They have been trained on enormous amounts of text data from various sources and
languages. The development of these models has led to many new applications and advances in

10 2. Background

areas where language modeling can play an important role. For example, domains such as search
engines, healthcare, robotics, and software development. Some applications of LLMs include text
generation, question-answering, code-generation, and more.

2.3.3 Weighted word representation models
Weightedword representations such as term frequency (TF) and term frequency-inverse document
frequency (TF-IDF) are used to represent text data as weighted numeric vectors. TF measures the
frequency of a term in a document. It assigns higher weight to words that appear more frequently
in the document. In Formula 2.1 the formula for TF is shown. 𝑇𝐹𝑡,𝑑 is the term frequency of term 𝑡
in document 𝑑, 𝑓𝑡,𝑑 is the frequency of term 𝑡 in document 𝑑, and the denominator is the sum of the
frequencies of all terms in document 𝑑.

𝑇𝐹𝑡,𝑑 =
𝑓𝑡,𝑑
∑𝑖 𝑓𝑖,𝑑

(2.1)

TF-IDF was introduced by Sparck Jones (1972). It assigns higher weight to words that appear
frequently in a document and infrequently in the corpus, which is the collection of documents.
The weight is lower if it occurs less frequently in the document, or if it occurs in many documents.
It is at its lowest point if it occurs in almost all documents. It is calculated as the product of the
term frequency and inverse document frequency. In Formula 2.2, 𝑇𝐹𝑡,𝑑 is the term frequency of
term 𝑡 in document 𝑑, and 𝐼𝐷𝐹𝑡 is the inverse document frequency of term 𝑡 in the corpus. The
𝐼𝐷𝐹𝑡 is calculated as shown in Figure 2.3. Here,𝑁 is the total number of documents in the corpus or
dataset, and 𝑛𝑡 is the number of documents that contain term 𝑡. The log function is used to dampen
the effect of rare terms.

𝑇𝐹𝐼𝐷𝐹𝑡,𝑑 = 𝑇𝐹𝑡,𝑑 × 𝐼𝐷𝐹𝑡 (2.2)

𝐼𝐷𝐹𝑡 = log
𝑁
𝑛𝑡

(2.3)

2.3.4 Transformer models
The transformer is a neural network model that uses a mechanism called self-attention to process
sequential data, such as natural language or speech. Self-attention enables the model to attend to
different segments of the input sequence and learn their interdependencies. For instance, given
a sentence as input, the model can identify the important words, their relations, and their irrele-
vance. Unlike recurrent models, such as RNN, LSTM and GRU, that process the input sequence se-
quentially, the transformer can process the entire sequence in parallel, resulting in faster and more
efficient computation. The transformer architecture was first proposed by Vaswani et al. (2017) and
has been widely applied to various natural language processing tasks, such as machine translation,
text summarization, question answering, sentiment classification, and more.

A simplified overview of the transformer architecture is shown in Figure 2.2. We will explain a
general overview of the main components present in the transformer architecture. A transformer
can be divided into two parts: an encoder and a decoder part. These parts can be further divided
into a total of seven steps, listed below: (Menon, 2023; Ankit, 2022).

1. Inputs and Input Embeddings: Here, the input text sequence is tokenized and transformed
into numeric vectors called embeddings that can be processed by the transformer. An em-
bedding captures some semantic and syntactic information about the token.

2. Positional Encodings: Positional encodings provide information about the position of each
token in the sequence. This way, the models can better understand the context through the
order of words. Without them, each word would be treated as independent of each other and
generating grammatically correct sentences would be much harder.

3. Encoder: The encoder takes the input sequence of embeddings that have been added with
positional encoding from the previous components andpasses it through a stack ofN encoder
layers, each consisting of two sub-layers: amulti-head self-attention layer and a feed-forward
network layer. The encoder takes the input embeddings and applies self-attention to capture
the dependencies between the input tokens. The encoder output result is a high dimensional
representation of the meaning and structure of the input sequence.

2.3 Language Models 11

Figure 2.2: Overview of the transformer architecture’s main components.

4. Outputs (shifted right): The outputs are sequences of tokens that are generated by the de-
coder. The outputs are shifted right by one position, so that each output token is predicted
based on the previous output tokens and the encoder output. The outputs are also masked to
prevent the decoder from attending to future tokens.

5. Output Embeddings: The output embeddings are learned vectors that represent each output
token in a high-dimensional space. The output embeddings are added topositional encodings
that indicate the position of each output token in the sequence.

6. Decoder: The decoder is composed of N identical layers, each consisting of three sub-layers:
a masked multi-head self-attention layer, an encoder-decoder attention layer, and a feed-
forward network layer. The decoder takes both the encoder output and the output embed-
dings as input. It then applies masked self-attention on the output embeddings to capture
the dependencies between the output tokens. The encoder-decoder attention layer allows
the decoder to use the encoder output and learn the alignment between the input and output
sequences.

7. Linear Layer and Softmax: The linear layer is a fully connected layer that projects the de-
coder output to a V-dimensional space, where V is the size of the vocabulary. The softmax
layer is a normalization layer that converts the linear output to a probability distribution over
the vocabulary. The linear layer and softmax can be seen as a shared classifier that predicts
the next token given the previous tokens.

An example of a transformer application is machine translation. For example, if the task is to
translate from Dutch to English, the encoder would take a Dutch sentence and transform it into a
representation that captures its meaning and structure. The decoder would then take that repre-
sentation and generate an English sentence that preserves themeaning and structure of the original
sentence. In this thesis, we are using so-called encoder models that only use the encoder part of
the Transformer architecture. These models are better at retrieving a high dimensional representa-
tion of an input text by using the above-mentioned self-attention mechanisms to capture the text’s
semantic and syntactic features, such as the topic, the sentiment, the style, or the structure. These
features can be to group texts that share common characteristics together into clusters, which is
what we are planning to do with the log events.

Logs are a form of data that are not typically used in human language, and thus pose a chal-
lenge for natural language processing (NLP) systems that are trained on natural language spoken

12 2. Background

by humans. Logs can be seen as a whole different language that requires specialized models to an-
alyze and understand. Training language models on log data could be beneficial to capturing their
meaning. Therefore, one of the research questions we address in this thesis is how different types
of pre-trained language models compare against each other and against models that are trained
from scratch or fine-tuned on log data.

2.3.5 RoBERTa Transformer
RoBERTa is a languagemodel that is basedonBERT, but improvesover it byusingmoredata andbet-
ter trainingmethods. RoBERTa stands forRobustlyOptimizedBERTApproach. LikeBERT,RoBERTa
is a transformer-based languagemodel that uses self-attention to process input sequences and gen-
erate contextualized representations of words in a sentence.

One key difference between RoBERTa and BERT is that RoBERTa was trained on a much larger
dataset and using a more effective training procedure. RoBERTa used 160 GB of text data from
various sources, such as books, news, web pages, and Wikipedia. RoBERTa also used larger batch
sizes, larger learning rates, more training steps, and more advanced optimization techniques than
BERT. These changes allowed RoBERTa to learnmore from the data and achieve better performance
on downstream tasks.

Another difference between RoBERTa and BERT is that RoBERTa removed the next sentence
prediction objective that BERT used for pretraining. RoBERTa found that this objective was not
helpful for learning general language understanding and could be replaced by longer sequences of
text. RoBERTaalsousedabyte-level versionofBPEas a tokenizer, whichcanhandlemore languages
and characters than the character-level version that BERT used.

Our plan in this research will be to experiment with a sentence similarity optimized language
model and the RoBERTa transformer architecture, of which we will use three variations: creating a
model from scratch, using the pre-trained as is, and thirdly fine-tuning the pre-trained model. In
Section 4.1.2, we elaborate more on the choice for these models and approaches.

2.3.6 TF-IDF vs. Transformer models
To show the difference between the two approaches, we compare the two methods using the fol-
lowing example sentence:

“Error 101: Connection failed - The user could not be authenticated on host.”

In this sentence, TF-IDF will assign weights to words based on their importance in a document
relative to a larger corpus. For this sentence, TF-IDF will recognize terms like ”Error” ”Connection”,
”failed”, ”user” ”authenticated” and ”host” as significant due to their uniqueness in the document
compared to common words. It represents the sentence based on these weighted terms, providing
a simplified yet interpretable representation.

A Transformer model, in our case RoBERTa, processes the text by tokenizing it and generating
contextual embeddings for each token, considering their context within the sentence. This contin-
ues until we reach the end of the sentence, after which we are left with a sentence embedding. In
this sentence, a transformer will understand the connections between ”Error” and ”101”, ”Connec-
tion” and ”failed”, and ”user”, ”authenticated” and ”host” as well as their long range connections,
capturing the complex relationships in the text.

TF-IDF provides an efficient and interpretable representation, but a shortcoming is that it does
not capture the relationship of words to each other. Roberta performs better in comprehending
the context and nuances of the sentence, making it potentially more suitable for our task of under-
standing a log event. However, it comes at the cost of increased computational demands.

2.4 Clustering
This section dives into the underlying concept of clustering techniques. Clustering is an unsu-
pervised machine learning technique that involves grouping similar data points together based on
some defined similarity metric. Clustering is relevant to this research, because after retrieving the
embedding vectors representing a log event through the languagemodels, wewant to group similar
log events together to reduce the granularity and complexity of event types to track in our sequence
model.

2.4 Clustering 13

2.4.1 Mini-batch K-means
The current approach with TF-IDF uses a clustering method called Mini-batch K-means (Sculley,
2010), The Mini-batch K-means clustering method is a variation of the K-means algorithm (Stein-
haus et al., 1956; MacQueen, 1967). Like the original K-means algorithm, Mini-batch K-means is a
clustering algorithm that partitions a dataset into a specified number of clusters based on the simi-
larity of their data points. However, this algorithmwas chosen over the original K-means algorithm
because Mini-batch K-means is designed to be more efficient in terms of speed and consumption
of resources when handling large datasets. K-means processes the entire dataset in each iteration,
while Mini-batch K-means processes only a small subset (mini-batch) of the dataset.

It takes the following steps to create, update and return the final clusters:

1. Initialize the cluster centroids: First, the algorithm begins by randomly selecting a set of k
initial centroids from the data points.

2. Select a mini-batch of data from the dataset.

3. Assign each data point to a centroid: For each data point in the mini-batch, the algorithm
calculates the distance to each of the k centroids and assigns it to the closest centroid.

4. Update the centroids: The algorithm calculates the mean of the data points assigned to each
centroid and moves the centroid to the mean.

5. Repeat steps 2 to4until convergence: The algorithmcontinues to iteratively assigndatapoints
to centroids and update the centroids until there is no further improvement in the clustering.

2.4.2 DBSCAN
The clustering method used for our new approach is called DBSCAN which stands for Density-
Based Spatial Clustering of Applications with Noise by Ester et al. (1996). It is a density-based clus-
tering algorithm that works on the assumption that clusters are dense regions in space separated
by regions of lower density. It groups these ‘densely grouped’ data points into the same cluster and
marks isolated points as outliers or noise, as illustrated in Figure 2.3.

Figure 2.3: Illustration of the DBSCAN clustering classification process. Figure taken and adapted fromMysiak (2020)

The algorithm has two parameters: epsilon and min_samples. Epsilon specifies the radius of a
neighborhood around a point (measured by the Euclidean distance) andmin_samples specifies the
minimum number of samples required to form a dense region. A point is classified as a core point if
it has at least min_samples points within its epsilon neighborhood (including itself). A point is seen
as a border point if it is not a core point and if it is in the epsilon neighborhood of a core point. A
point is classified as a noise point if it is neither a core point nor a border point (Mysiak, 2020).

It takes the following steps to create and return the final clusters:

1. The algorithm randomly picks a data point and checks if it is a core point.

14 2. Background

2. When a core point is picked, each point within its neighborhood is checked to see whether
they are core points as well. If the criteria are met, these points are classified as core points
and the cluster will expand with those new core points. If a point does not meet the number
of min_samples requirements, it is classified as a border point of the cluster.

3. Repeats step 1 and 2 until all points are visited.

4. At the end, noise points are those that are not assigned to any cluster.

An example of the DBSCAN clustering process is shown in Figure 2.3, where the core are classified
if the number of samples (including itself) within the reach of epsilon is larger or equal to 4. If the
number is lower than4but still connected to a corepoint, thedatapointwill be classified as aborder
point. Finally, if a point is not connected to any neighborhood of another point, it is considered an
outlier.

2.5 Finite-state Automata
In this section, we will elaborate on the nature of the FlexFringe classification model that is used
to find anomalies. Finite-state automata (FSA), otherwise called finite-state machines (FSM), are
logical models describing these traces. They are models of behavior composed of a finite number
of states, transitions between those states, and actions. A state consists of information from the
past, while a transition specifies a change from one state to another and is triggered by a condition
that must be met. An action is a definition of a task to be executed at a specific time. (Zhang et al.,
2009)

FSA can be used for anomaly detection bymodeling the normal behavior of a system and detect-
ing deviations from that behavior. The basic idea is to create an FSA that represents the expected
sequence of events or states in the system under normal conditions, and then use this model to
identify anomalous behavior. To build an FSA for anomaly detection, one needs to first define
what constitutes normal behavior. This can be done by analyzing the system logs, data collected
from sensors, or other sources of information, and identifying patterns and sequences of events
that are common under normal conditions. Once the normal behavior is understood, an FSA can
be constructed to represent this behavior.

Figure 2.4: Example of a Finite-state Machine (Na, 2021)

The FSA is typically constructed as a directed graph, as can be seen in Figure 2.4 each node
represents a state and each edge represents a transition between states. The nodes are labeled
with the events or observations that correspond to that state, and the edges are labeled with the
conditions under which the system transitions from one state to another. For example, an edge
might be labeled with a particular input or output signal, or with a threshold value for a sensor
reading.

When new events are recorded, the FSA is traversed. If the system deviates from the expected
sequence of events, an alarm can be raised to signal an anomaly. This can be done by checking
whether the observed events or observations match the labels on the edges of the FSA, and if not,
whether they fall within some acceptable tolerance.

2.6 Related Work on Anomaly Detection using Language Models 15

The motivation of using FSA models is that they enable us to find both rare states and rare tran-
sitions between states. This can help to determine whether some states or consecutive actions are
anomalous, instead of only judging from single actions.

2.6 Related Work on Anomaly Detection using Language Models
In this section, we review several important and recent works in the field of log anomaly detection
using language models. We also identify the main challenges and limitations of the existing meth-
ods, and explain how our work addresses them, while at the same time highlighting what separates
our work.

2.6.1 LogBert
Oneof the recent and influentialworks in thefieldof log anomalydetection is thepaperbyGuoet al.
(2021), who introduce LogBERT, a novel framework that leverages the power of BERT (Devlin et al.,
2018), a pre-trained language model for natural language processing, to learn semantic representa-
tions of log messages and detect anomalies. Unlike previous methods that rely on manual feature
engineering or statistical analysis, they treat log data as natural language text and apply BERT to
capture the contextual and syntactic information of log messages. They formulate the anomaly de-
tection task as a masked language modelling problem, where they first preprocess the log data by
extracting sequences of log keys, which are abstract representations of the events or attributes in
the log. Then, they randomly mask log keys and use BERT to predict the most likely candidates
to fill in the blanks. If the observed value of a masked log key is among the top-k predicted can-
didates, it is considered normal; otherwise, it is deemed anomalous. Furthermore, they define a
threshold for the number of anomalous log keys in a log sequence, and label the whole sequence
as anomalous if it exceeds that threshold. They evaluate their framework on three public datasets:
HDFS, BGL, and Thunderbird, and demonstrate that it achieves superior performance compared to
the state-of-the-art baselines.

2.6.2 LAnoBERT
Another approach that applies the BERT masked language model to log anomaly detection is pre-
sented by Lee et al. (2021). Their proposed model, LAnoBERT, is similar to LogBERT in that it uses
BERT to predict the masked log keys and compare themwith the observed values. However, unlike
LogBERT, LAnoBERT does not require a log parser to preprocess the log data. Instead, it directly
feeds the raw log messages to BERT and learns the patterns from various log sources without need-
ing a predefined log language structure. Moreover, LAnoBERT trains the model with only normal
logs and assumes that abnormal logs will produce large errors and low predictive probabilities for
the observed values. It uses the masked language modeling loss function as a scoring metric to
measure the anomaly degree of each log key during the test process. If the score exceeds a cer-
tain threshold, the log key is considered anomalous. LAnoBERT also evaluates its performance on
HDFS and BGL datasets and shows that it outperforms several existing methods and some super-
vised learning-based models.

2.6.3 ClusterLog
A different approach that tackles the problem of noisy and ambiguous log sequences is proposed
by Egersdoerfer et al. (2022). They argue that the methods based on BERT Masked language model
depend heavily on the quality of log sequences, which should be accurate and representative of
the system’s logic. However, in distributed systems and concurrent execution threads, there may
be ‘clock-skew’ issues that lead to misaligned or incomplete log sequences. Moreover, a high gran-
ularity of unique log keys makes it difficult for a classification model to learn the log patterns. To
address these issues, Egersdoerfer et al. (2022) introduce ClusterLog, which is a log preprocess-
ing method that clusters individual logs based on their semantic similarity in order to reduce the
complexity and noise of log sequences. The intuition is that by grouping similar logs together in a
cluster, the log sequences become more regular and less variable, since there are fewer unique key
identifiers and fewer combinations to learn. Their model consists of four steps.

The first step is the preprocessing step, where they remove excess characters and information
from the raw log messages and keep only natural language text (log keys). The second step is the

16 2. Background

semantic embedding step, where they feed the log keys to a pre-trained language model that gen-
erates an embedding vector for each log key, representing its semantic information. Additionally,
they append a sentiment score as an extra dimension to the embedding vector, based on the senti-
ment of the log key. The idea is that similar logs will have similar embeddings and sentiment scores,
and will be close in the embedding space, while different logs will have different embeddings and
sentiment scores, and will be far apart in the embedding space. The third step is the clustering
step, where they apply a clustering algorithm to group the logs into similar clusters based on their
embeddings and sentiment scores. They assign each log a cluster ID that represents its clustermem-
bership. The fourth step is the anomaly detection step, where they feed a sequence of 10 cluster IDs
to a two-layer LSTM classificationmodel that predicts the probabilities of each cluster ID being the
next one in the sequence. If the observed cluster ID is among the top k candidates with the high-
est probability, it is considered normal; otherwise, it is deemed anomalous. They evaluate their
method on HDFS and BGL datasets and show that ClusterLog performs best with the addition of
the sentiment feature and a variable number of candidates in the sequence classification model. It
also outperforms other state-of-the-art models on both datasets and it performs more stable when
training on a small dataset, proving that reduced granularity in log keys makes it easier to learn the
log sequence patterns with less data.

2.6.4 Innovation over related work
Similar to LogBERT and LAnoBERT, our approach will also use masked language modelling to learn
the log language. However, unlike the previous works that rely on a single language model archi-
tecture, we will explore the use of different and improved language model architectures such as
RoBERTa and compare their performance on this task. Additionally, we will investigate whether
the effect of training with log data related to our task is beneficial or not. We will also examine
which training method (training from scratch, fine-tuning or using a pre-trained model) leads to
the best results.

Secondly, our approach will use a different anomaly detection method. Instead of comparing
the observed tokenswith the top predicted candidates by themaskedmodel as in LogBERT, wewill
use an approach similar to ClusterLog, namely, to reduce the granularity of the log keys by using the
mean of all sentence token embeddings to generate sentence embeddings and cluster them based
on their similarity. Then, we will use a finite-state automata model called FlexFringe to learn the
common and rare states and transitions between the cluster ID sequences and detect anomalies
based on their occurrences.

Thirdly, we will explore the possibility of adding other extra features to the log embeddings or
next to the cluster IDs, similar to the sentiment feature used by ClusterLog. For example, we will
take into considerationwhether the event logwas generated duringwork hours or not, or whether a
new IP address, username or hostname occurred in the logs. These featuresmay provide additional
contextual information besides language to the model and can help an analyst make better and
more informed decisions when investigating certain alerts.

Finally, in our approach, wewill usewindows event logs coming from endpoints of various hosts
wheremalicious activities took place, which are from a different source from the logs present in the
public datasets used by the other related works. These windows event logs have different charac-
teristics and challenges that require different solutions.

3
Data & Materials

In order to build a language model, a large amount of training data is needed to make accurate
predictions. First, an elaboration is given on the collection process of the log data from various
hosts. Subsequently, the data preparation steps needed to train the languagemodels are explained.
At last, we dive deeper into the annotation process of our test set.

3.1 Collection
3.1.1 Data Origins
The data used in this research has been made available by Eye Security. This cybersecurity com-
pany closely monitors threats to systems and cloud environments. Additionally, they also perform
Incident Response (IR) for clients that have compromised systems. The data that we are using to
train the language models consists of multiple Windows EVTX logs that come from several of these
compromised systems also called hosts. For this research, we were allowed to work with data com-
ing from73unique hostswhose evtx files contain a total number of 42.453.253 logs. Amore detailed
view on the amount of logs per host is shown in Appendix A.1.

3.1.2 Conversion to Usable Format for Preprocessing
To get the content of the log messages into a usable format for processing, we are using a tool from
Eric Zimmerman called: EvtxECmd1. This tool is a command line interface that can process evtx
files and export them to CSV, JSON, or XML formats. It does this by using custommaps that define
how to parse and display different event types. This tool extracts the features and information from
all EVTX files present on a host and stores it into a single CSV file where each feature is represented
in a column.

3.2 Data Preprocessing
During the preprocessing phase, we want to process the log events data and get a numerical rep-
resentation of the text that is representative of the log events. First, we select the features from
the logs that provide relevant information for detecting anomalies. After which we combine them
into a string called the feature string. When providing the feature string to the model, the model’s
tokenizer will convert the text inputs to numerical tokens that can be processed by the model.

Additionally, we remove key identifiers from the feature string that are unique to a specific log
event and clean them of any noise. The goal of taking these measures is to deliver the data in a
more usable and generalizable format tomake learning log language relations easier for themachine
learning algorithms.

3.2.1 Construction of the Feature String
The first step is to select the features from the log events. These features are then concatenated
into a string. To be more elaborate, a feature string is a sequence of characters that represents
1https://github.com/EricZimmerman/evtx

17

https://github.com/EricZimmerman/evtx

18 3. Data & Materials

some aspect of the text, such as words, punctuation, capitalization, etc. The tokenizer can split the
feature string into smaller units called tokens, which are then mapped to unique IDs. The language
model then processes these IDs. When processing the generated CSV files with the features from
EvtxECmd, we selected the features shown in Table 3.1 based on expert knowledge from security
analysts.

Selected Features Removed Features

EventId,
Level,
Provider,
Channel,
Computer,
MapDescription,
UserId,
UserName,
RemoteHost,
ExecutableInfo
SourceFile,
Payload

RecordNumber,
EventRecordId,
TimeCreated,
ProcessId,
ThreadId,
ChunkNumber,
PayloadData1,
PayloadData2,
PayloadData3,
PayloadData4,
PayloadData5,
PayloadData6,
HiddenRecord,
Keywords,
ExtraDataOffset,

Table 3.1: Selected features from the CSV files generated by the EvtxECmd tool.

SourceFile + Provider + Channel + EventId + Level + MapDescription +
Computer + UserId + UserName + RemoteHost + ExecutableInfo + Payload (3.1)

Formula 3.1 shows the concatenation of the features into a specific order that improves readability
and understanding of the contents of the string. We will now elaborate on the contents of each
selected feature.

SourceFile Lists the name of the evtx file that contained the log event. This is a key feature, be-
cause it is used for identifying the source of each event record when processing multiple evtx files.
When researching the logs’ contents, we found that different meanings of the same EventId exist
when browsing the various source evtx files. Therefore, we need to provide the language model
with extra context of where these events were retrieved from.

Provider Represents the name of the application or service that generated the event record.

Channel The name of the event log channel where the event occurred. .

EventId The numeric identifier of the event.

Level The severity level of the event. This feature adds extra context to the log events, where
the idea is that more severe log events are more important to investigate. The possible options are
critical, error, warning, information and verbose types of log events.

Computer The name of the computer where the event occurred.

UserId The security identifier (SID) of the user associated with the event.

3.2 Data Preprocessing 19

UserName The security identifier (SID) of the user associated with the event, formatted as DO-
MAIN\username. Not always present, but when it is, we need to include it.

RemoteHost The IP address, hostname, or other identifier of a remote host involved in the event.
If a log contains events that contain a Remote Host which is unexpected, unauthorized or not trust-
worthy, it could indicate a malicious activity or a compromise.

ExecutableInfo The name and path of an executable file involved in the event. We split up the
path into separate tokens, because it is interesting to know whether the execution of a specific
file happens in a particular location or directory on the system, and this helps the language model
to generalize across various systems. The name of the executable can help indicate whether the
activities associated to the program are benign or show malicious actions.

MapDescription The description of the event provided by the custom map.

Payload The rawXMLdata of the event record or any additional information extractedby the cus-
tommap. The payload could contain information thatmight be valuable to understand the contents
of the log. Since they are raw logs, they contain a lot of noise, which we need to filter out because
it could disturb the language understanding process.

With the provider feature, we can observe if there are log events from a provider that is not ex-
pected or known to be installed on the system. Alternatively, we can check if an event log contains
values that are expected but with abnormal frequencies or values, it could indicate a misconfigu-
ration or a malicious activity taking place. This also holds for the Channel and EventId features.

Although the Computer, UserId and UserName will get anonymized, we still include them, rep-
resented by a tag, in the feature string whenever they are present in the log. This is done to provide
the model with the context that those features are present, might be present later on in future data
it encounters, or might not be present at all. Further elaboration on the anonymization process will
be given in Section 3.2.3.

3.2.2 Data Cleaning of the Feature String
In terms of data cleaning, we rather not change much, since simple tokenization should be suffi-
cient when dealingwith text classification. Camacho-Collados and Pilehvar (2017) show that a sim-
ple tokenization typically works equally or better than more complex preprocessing techniques in
neural networks. The paper mentions that even though complex techniques like lemmatization or
stemming have been useful in conventional linear models as an effective way to deal with sparsity.
(Toman et al., 2006; Mullen and Collier, 2004) Now, due to the generalization power of word embed-
dings, neural networks and transformer architectures are very capable of overcoming data spar-
sity. Additionally, the authors find that word embeddings trained on multiword-grouped corpora
perform surprisingly well when applied to simple tokenized datasets. This multiword-grouping
technique groups consecutive tokens (United States) together into a single token (United_States) to
represent one meaning, instead of treating them as two separate words that each have a different
meaning. Therefore, it is very useful to apply this technique to features that consists of names that
indicate a program, service, file location etc. separated by spaces. It would be more meaningful
to treat them as single words that convey a specific meaning, instead of handling them as separate
instances.

In addition to the above techniques, we also have to deal with noise. Noise in log events refers
to irrelevant or extraneous information that can make it more difficult for the language model to
correctly identify the relevant information in the log. This can include things like timestamps, IP
addresses, process IDs, and other details that are not directly related to the content of the log mes-
sage. When a language model is trained on log events that contain noise, it can lead to the model
learning incorrect or irrelevant patterns in the data. This can result in worse performance when the
model is used to analyze logs in a real-world setting. Basically, we want to remove all unique identi-
fiers of a log event, since these do not help to understand themeaning from the content. Therefore,
we take several measures in the data cleaning process that attempt to remove noisy information.

20 3. Data & Materials

The following cleaning measures are performed on the constructed feature string, and examples
are shown in Table 3.2.

1. Multi-word grouping of single features that are separated by spaces

2. Replace dates with DATE tag

3. Replace timestamps with TIME tag

4. Replace some HEX values with HEX tag

5. Replace FLOAT values with FLOAT tag

6. Strip accents from characters and provide ASCII equivalent

7. Strip line breaks, quotations, brackets and whitespace characters

8. Unescape HTML text

9. Removal of noisy tags and information

10. Removal of words > 35 characters

Cleaning Measure Original Text Cleaned Text
Multiword grouping Microsoft-Windows-User Profiles Service Microsoft-Windows-User_Profiles_Service
Replacing values with tag 0x7613 9.5 <HEX> <FLOAT>
Stripping accents and whitespace éxample: \t text \n example: text
Unescape HTML text <p>text</p> text
Remove noise {Info : ”value”} \n Info : value
Remove tokens with len>35 <LONGTEXT> ””

Table 3.2: Examples of steps taken in the data cleaning process

3.2.3 Anonymization of sensitive information
Since we are also dealing with sensitive data retrieved from specific computers and users, we also
attempt to anonymize the data as much as possible. Anonymization, in the context of data process-
ing, is the process of removing or obfuscating Personally Identifiable Information (PII) or sensitive
information from the data before it is used for training. One of the reasons to anonymize the data
before is that language models are trained on large amounts of text data, which often contains per-
sonal information such as names, addresses, and other identifying details that could potentially
be retrieved. By anonymizing the data, the privacy of individuals can be protected. Secondly, we
want to avoid bias in the models. It is not in our interest to let a particular name or IP address influ-
ence the decisions that the model has to make. Anonymization can help avoid bias in the language
model by removing PII and sensitive information that could lead to unfair discrimination against
certain groups of people or more applicable to our use case: computer names, usernames and IP
addresses. If onewants to capture behavior related to specific usernames, IPs and computers, it will
always be possible to add them later by fine-tuning the base-model to a specific host environment
or customer.

Furthermore, anonymization plays an important role in compliance with regulations. Many
countries have data protection regulations that require the anonymization of personal data before
it is processed or shared. By anonymizing the data, organizations can ensure compliancewith these
regulations.

The followinganonymization stepswereperformed tohidepersonal informationwithin the logs:
• Replace names of computers with <COMPUTER> tag.

• Replace user IDs with <USERID> tag.

• Replace usernames with <USERNAME> tag.

• Replace IPv4 and IPv6 addresses with <IP> tag.
Examples of the anonymization measures are shown in Table 3.3.

3.3 Deduplication of Validation Set 21

Anonymization Measure Original Text Anonymized Text
Replace names of computers SRV-Example, WKS-Example <COMPUTER>, <COMPUTER>
Replace usernames username1, username2 <USERNAME>, <USERNAME>
Replace IPv4 and IPv6 addresses 192.168.0.1, FE80:CD00:0:CDE:1257:0:211E:729C <IP>, <IP>

Table 3.3: Examples of steps taken in the anonymization process

3.3 Deduplication of Validation Set
A validation set is a part of the data that is held out from training and used to measure the model’s
performance on new data and avoid overfitting. It is useful for tracking the learning process and it
helps to verify if the model can handle unseen examples or if it is just learning the training data by
heart. When creating the validation set for the training process, we shuffled the whole dataset and
randomly sampled 0.1% to create a validation and test set, both having a size of 21.227 logs. During
the research, we discovered that there could be duplicate log lines in the validation set. Evaluation
with duplicate values can lead to a skewed result when judging the performance of the language
models. When the model performs well on certain log lines and they make up a large portion of
the validation set, the final results would look better than they actually are, compared to when the
variation in log lines had an equal distribution in the validation set. Therefore, we had to get rid of
duplicated and too similar looking logs in the validation set. We chose to implement a token-based
Jaccard similarity score, which is a similarity metric ranging from 0 (not at all similar) to 1 (equally
similar) (Jaccard, 1901). The metric indicates how similar two sets of words/tokens are, based on
the ratio of their intersection and union. With a similarity threshold of 0.9, we only kept log strings
that had a lower similarity than our set threshold, resulting in a final validation set of 1814 unique
log events.

4
Methodology

In this chapter, we present the methodology used to extract information from the Windows event
logs. We show the data pipeline and how the language models are created. At last, the training
process of the models is described.

4.1 Model Build Pipeline
Themodel build pipeline consists of 6 phases and an overview is shown in Figure 4.1. The first and
secondphases are the collection of logs and logpreprocessing, where the log contents get extracted
and transformed into the right format needed for the language model. The third phase consists of
the retrieval of the embeddings from the language model, which is a numerical sentence-based
representation of the information stored in the logs. The next (fourth) phase possibly adds new key
information as extra dimensions to the log embeddings. In the fifth phase, we apply clustering to
the logs to reduce log granularity by grouping similar logs together in their own separate cluster. In
the final sixth phase, we perform sequential analysis to detect any anomalous clusters or transitions
between clusters or states.

4.1.1 Data Preprocessing
The first step in the data pipeline is the extraction of the log contents from the evtx files and put
them into CSV format to be able to process them further as described in Section 3.1.2. After the evtx
files have been extracted, we can start constructing the feature string that we will give to the lan-
guage models to analyze. As shown in Section 3.2.1, the feature string consists of several important
features like Provider, Channel, etc., retrieved from the log contents based on expert knowledge
that we want the model to learn and understand to be able to form a better numerical representa-
tion (embeddings). Once the all feature strings have been created, they are stored in a clean dataset
that we can load and process without having to go through the same construction and cleaning
steps again.

However, in order to get the embeddings back from themodels, we first need to convert the fea-
ture string into the right format for the languagemodels to perform themasked languagemodelling
training task as a pretraining objective. In this task, the data represents a sentence or sequence of
text and somewords are randomlymasked. The languagemodel then predicts these masked words
based on the rest of the words present in the sentence. We will elaborate more on the task in the
next Section 4.1.2.

To be able to do this, the following four steps are needed before feeding the data to our language
models:

1. Apply byte-pair encoding to split words into subwords.

2. Add special tokens to mark sentence boundaries and masked words

3. Convert the tokens to their numerical form

23

24 4. Methodology

Figure 4.1: Illustration of the model build pipeline along with an example.

4. Truncate or add (dynamic) padding to create inputs of equal lengths

As a first step, we need to tokenize the sequences we feed to the model. A tokenizer splits text
into smaller chunks called tokenswhich could consists of individual words, punctuation, numbers,
but also phrases, sentences or complete paragraphs. Since we use the RoBERTa language model,
we apply the same tokenization method used in the RoBERTa paper by Liu et al. (2019) called byte-
pair encoding (BPE). BPE is a morphological or subword tokenization method created by Sennrich
et al. (2015) that splits words into smaller units based on their frequency in a large training corpus.
When creating the RoBERTa model, the authors used a clever implementation of BPE introduced
by Radford et al. (2019). Instead of using Unicode characters as the base subword units, this imple-
mentation uses bytes. It consists of two parts: A token learner and a token segmenter. The token
learner takes a raw training corpus and creates a vocabulary which the token segmenter can use
to tokenize or break up the input sequences. The token learner starts with a base vocabulary of
256 characters (bytes) and iteratively merges the most frequent pair of characters until reaching a
predefined vocabulary size. According to Liu et al. (2019): ”Using bytes makes it possible to learn
a subword vocabulary of a relatively modest size (50K units) that can still encode any input text
without introducing any unknown tokens.”. It treats spaces as part of the tokens and encodes them
with a special character ’Ġ’ which allows the tokenizer to distinguish between words that are at the
beginning of a sentence (without space) or not. An example can be found in Table 4.1. As shown in
the table, the Ġ character is added to indicate the start of a new word.

Input ”This is a test to test tokenization for RoBERTa-base.”
Output [’This’, ’Ġis’, ’Ġa’, ’Ġtest’, ’Ġto’, ’Ġtest’, ’Ġtoken’, ’ization’, ’Ġfor’, ’ĠRo’, ’BER’, ’Ta’, ’-’, ’base’, ’.’]

Table 4.1: Example of Byte Level BPE tokenizer

The second step involves the addition of special tokens to mark the start and end of an input
sentence, to indicate whichwords aremasked to themodel, a padding token tomake sure the input

4.1 Model Build Pipeline 25

sequences have an equal length and an unknown token if it so happens that the tokenizer does not
recognize a character. These tokens are listed in Table 4.2.

Special Token Token value
Start of sequence token <s>
End of sequence token <\s>
Masked value token <mask>
Padding token <pad>
Unknown token <unk>

Table 4.2: Special tokens added to the vocabulary of the tokenizer.

In the third step the tokens are converted to their numerical form represented by a token ID
based on the vocabulary saved by the tokenizer which maps a token to an integer ID. The fourth
step truncates or adds padding tokens to make the sequences equal to a specified length. This
is necessary when training a language model, because we perform matrix operations that require
fixed dimensions. Truncation happens when the total length of the tokens in a sequence exceeds a
certain specified amount of tokens or the maximum length the model is able to handle. In the case
of the RoBERTa-base model it is 512 tokens, but this can be increased if we were to take a larger
language model.

Using the Hugging Face library, we can use model-specific tokenizers. These model-specific
tokenizers are specifically created to easily convert the strings to a format suited to train their cor-
responding language models. (Wolf et al., 2020)

4.1.2 Creating the Language Models
Most pretrained language models are trained on natural language, and can be used to fine-tune on
a more downstream task like text classification. Since we are dealing with log data which deviates
a lot from normal language, the existing pre-trained models might not be suited for extracting in-
formation from this type of data. Therefore, we want to compare them against other newly trained
language models, either from scratch or fine-tuned, to test whether they understand the relations
between the information present in log files better. The transformer language models that we will
use in the experiments are listed below:

• sentence-transformers/all-MiniLM-L6-v2 (pre-trained)

• Normal encoder model pretrained without fine-tuning (pre-trained roberta-base)

• Normal encoder model from scratch (roberta-base with randomly initiated weights)

• Fine-tuning a pre-trained model with new log messages (pre-trained roberta-base)

We compare four different models for generating sentence embeddings from log messages. The
firstmodel is a sentence similaritymodel called all-MiniLM-L6-v2 that has been optimized to trans-
form a sentence (log) into a numerical vector (embedding) that captures its semantic information
as accurately as possible. The other three models will be based on the RoBERTa-base model, which
is a state-of-the-art transformer-based language model developed by Liu et al. (2019). This model
has been trained on several large datasets and has a high level of linguistic understanding.

The all-MiniLM-L6-v2 model has been trained on a large 1B sentence pairs corpus, where they
used a contrastive learning objective. In this objective a sentence is picked from the dataset and
the model has to predict which sentence, out of a set of randomly sampled sentences, was actually
paired with the sentence. We will use the pre-trained model as it is. Fine-tuning this model on log
data could potentially improve its performance. Unfortunately, this is not an option for us since
we do not have access to labeled sentence pairs. The second model is the RoBERTa-base model
published by the model authors, without further retraining or fine-tuning steps. The reason for
using this model is to see how the original model compares to the models what we will be training
using log data. As our third model, we train a new RoBERTa-base model from scratch, where we
randomly initialize the weights and parameters. In this case, the model has to learn the language
patterns and context of log messages from scratch, without using any prior knowledge. The fourth

26 4. Methodology

model is a fine-tuned version of RoBERTa-base. Instead of trainingmodels from scratch, which cost
a considerable amount of computing resources and time, it might be better to fine-tune these pre-
trainedmodels to a specific taskwith newdata. A fine-tunedmodel is amodel that has been trained
on a large dataset and then adapted to a specific task or domain by using a smaller dataset related
to that domain or task. In our case, the pre-trained model RoBERTa has been trained on a large
corpus in a self-supervised fashion, but now we want it to be able to better adapt to our domain
of understanding log contents. We adapt the pretrained model to our specific domain and task by
using a smaller dataset of logmessages. Fine-tuning allows us to leverage the prior knowledge of the
pretrained model and adjust it to a specific task or domain by using a new, smaller dataset related
to that domain or task.

In our case, pretrained RoBERTa-base possesses a high level of linguistic knowledge, as it has
been exposed to several large datasets during its training. This prior knowledge could be beneficial
for our task, if we can fine-tune the weights and parameters of this model to capture the specific
language patterns and context of log files. The resulting output embeddings of these models could
then reflect the language more accurately than those obtained from models trained from scratch.
Models trained from scratchwould have to relearn the semantic and syntactic information of words
in their context, as well as the relationships between the information elements in the log messages.

We train the log-basedmodels using the samemethodas thepre-trainedmodels, which is through
the masked language modeling task. In masked language modeling, a certain percentage of the
input tokens (typically around 15%) are randomly selected and replaced with a special ”<mask>”
token. The model is then trained to predict the original value of the masked tokens based on the
context provided by the other tokens in the sequence. This enables the model to learn more com-
plex and contextual relationships and dependencies between different parts of a sentence or text
passage. In short, it allows models to learn to understand language in a more comprehensive and
contextualized way. During training, the data collator will insert the “<mask>” tokens randomly for
each batch, ensuring that the model sees different data in each epoch. After the training of the lan-
guagemodels is completed, we can use them for inference. Themodels will produce an embedding
for each log, which is a numerical vector that represents the semantic information contained in the
log.

To evaluate the performance of different models for generating sentence embeddings from log
messages, we conduct experiments with the four described models, namely, the sentence similar-
ity model, the pretrained RoBERTa-basemodel, the RoBERTa-basemodel trained from scratch, and
the fine-tuned RoBERTa-basemodel. Out of these four models, only two require training on our log
data, while the other two are used as they are. By comparing the results of these models, we aim
to gain insights into which approach is most effective for this task and to answer the second sub-
question of our research: ”Which language model and what training method is best suited for fea-
ture extraction?”. If the fine-tuned or the pre-trained models perform equally well or better, there
is no need to spend valuable time and computation resources to train themodels from scratch. This
will in turn reduce the environmental impact and costs, since training a fine-tunedmodel only uses
a fraction of the resources and time compared to training models trained from scratch. To imple-
ment these complex transformer models, we use the Hugging Face library (Wolf et al., 2020), which
provides a standardized and user-friendly way for working with various state-of-the-art language
models.

4.1.3 Clustering of the log embeddings
When we have retrieved the embeddings for the log events, our next step is to convert them to
states, which are represented by a single integer ID. We use clustering to group similar looking logs
together, reducing the dimensionality and complexity of the data by finding groups of embeddings
that share common features or patterns coming from the logs (Egersdoerfer et al., 2022). By calcu-
lating the distance between the log vectors, we aim to place similar logs in the same cluster repre-
sented by an integer ID based on their embeddings. Weperformclustering on every single (security,
application, system etc.) evtx file coming from a host. These states or event IDs are then provided
to the classification model that attempts to recognize any anomalous patterns or activities.

To achieve this we chose to use a density-based clustering method called DBSCAN following
the approach of Egersdoerfer et al. (2022). They provided several good motivations on why this
algorithm is a good fit for our type of data. One of the reasons they specify is that we do not need

4.1 Model Build Pipeline 27

to specify the number of centroids or clusters to the algorithm. This is a major disadvantage since
it would mean that we will have to find an optimal number of clusters for every single user or host
and evtx files that we want to analyze since the data can vary a lot between the different hosts and
files. Having a fixed number of clusters introduces a risk that the algorithm groups logs together
that are not similar. The classification algorithm will then get served an ID that does not provide a
good representation of the event.

Another advantage comes from the second parameter in the model: min_samples When setting
this parameter to 1, DBSCANwill not mark any of the outlier data points in the dataset as noise, but
these will form their own unique clusters, allowing us to classify outlier events with a unique ID.

We found a very important third reason why choosing density-based clustering over centroid-
based clustering is preferable. Centroid-based clustering methods, such as k-means, use the mean
or average of the data points in each cluster to define the centroids. If there are many duplicate
data points, they can distort the mean and influence the cluster assignment. This can result in
suboptimal clusters that do not reflect the true structure of the data. For example, a duplicate point
can pull the centroid closer to itself and away from the other points in the cluster. Density-based
methods like DBSCAN are more suitable for this kind of data because they do not use centroids or
means to define clusters. Instead, they use local density estimates to find clusters of high-density
regions that are separated by low-density regions, which is why we think it is better suited for our
data.

We also looked into using HDBSCAN (McInnes and Healy, 2017), which is an improved version
of DBSCAN that finds clusters of varying densities (unlike DBSCAN) and is more robust to param-
eter selection. The method does not require any extensive parameter tuning and returns a well
performing clustering out-of-the-box. The only parameter left to choose was min_samples, which
we would have liked to set to 1, but it was restricted to a minimum value of 2. This made us unable
to create unique clusters for single point outliers and they would all be classified as noise under
the same cluster ID. The noise cluster ID will then get used for logs that are not at all similar and
therefore loses its meaning. This severely impacts the ability for the sequential model in the next
step to properly find anomalies. Therefore, we choose to use DBSCAN over HDBSCAN to perform
the clustering step in the pipeline.

The log events can vary for each host because of the different behaviors of people and systems.
For each host, we aim to optimize the epsilon parameter as much as possible for the data present
in their logs. To achieve this, we would have liked to use the DBCV index by Moulavi et al. (2014).
However, this method has not yet been implemented in a scalable Python solution.

Our aim was to perform multiple tests in which we increase the epsilon parameter in steps of
0.25 ranging from 0.1 to 1. Then for each change in the epsilon parameter, we would calculate
the DBCV index, which is an objective metric optimized for density-based clustering. The DBCV
index measures the density connectedness and separation of clusters. Based on this, we could
have evaluated how well-separated our clusters are and get an indication about the quality of our
clustering assignments. It assigns a score between -1 and 1. The closer to 1, the better optimized
the clustering is for our data. Based on the values it returns, we would have selected the epsilon
value that achieves the highest DBCV score. We adapted the source code from R to Python, but
calculating the score took too much time. Therefore, we opted to stick to the default epsilon of 0.5.

4.1.4 Enrichment with extra features
In addition to the existing data coming from language, we sought to extract additional information
from the logs that could serve as indicators of malicious behavior. We applied Feature Generation
to create new features from the existing log text. Feature Generation (also known as feature con-
struction, feature extraction or feature engineering) is the process of deriving new features from
the original ones. For instance, we could detect IP addresses in a log and encode their presence as
a binary feature (1 for present, 0 for absent). Feature engineering is often a vital step in machine
learning tasks, as it enhances the ability of machine learning models to better distinguish between
the data that they need to process. (Verdonck et al., 2021; Duboue, 2020)

Through various brainstorming sessions and expert knowledge from analysts at Eye Security
and APTA Technologies, we identified two categories of additional features that were worth ex-
ploring: static and dynamic features. Static features always return the same result when provided
with the same input and produce the same output for a given input, whereas dynamic features are

28 4. Methodology

dependent on the previous or current information they have encountered or processed.

Feature Type
Static Dynamic

Sentiment New Username
Business hours New IP
IP presence New Hostname
Unknown IP
Keyword presence

Table 4.3: Listing of the various extra features implemented.

During the development, we explored three different approaches or implementations for feature
enrichment. The first approach is to augment the feature string that we use to train the language
modelwith additional features. For example, we could checkwhether the log event occurredduring
or outside business hours, and append this information as text to the feature string. The rationale
behind this method is that the language model should be able to understand the log by incorporat-
ing this extra contextual information. However, this implementation has several limitations. First,
this approach reduces the interpretability of the model, as it obscures the way the features of a log
sentence are processed. Second, it is not scalable. If additional features need to be incorporated in
the anomaly detection task, the entire languagemodel needs to be retrained to accommodate these
new features, which can take a significant amount of training time and costs.

Another approach is to enrich an embedding with extra dimensions based on certain features
or the occurrence of certain words or phrases similar to Egersdoerfer et al. (2022). After generating
the sentence embeddings, additional dimensions can be appended to the embeddings to indicate
the presence or absence of features, words or phrases in the text. For instance, for the features
described in Table 4.3, an extra dimension can be added to the embedding to reflect its presence or
absence. This enrichment of features as dimensions in the embeddings is illustrated in Figure 4.2.

Figure 4.2: Illustration of old approach for feature enrichment of the embeddings.

Thismethodaddresses thedrawbackof thefirst approachbyallowingus to incorporate new fea-
tures into the embeddings without needing to retrain the language model. This makes the method
more scalable and efficient, as we only need to append the new features to the existing embeddings
and then perform the clustering step on the enriched embeddings. This would take less time than
retraining thewhole languagemodel from scratch. Moreover, thismethod enables us to createmore
transparent andmeaningful clusters, as we can leverage the additional features to capture more in-
formation about the logmessages and their relationships. We can also examine the features of each
cluster and understand why certain log messages are grouped together. However, we encountered
a challenge when applying this method to our data. The clustering algorithm that we used relies
on Euclidean Distance as a similarity measure, which works well for numeric data but not for bi-
nary data. Since our embeddings would contain both numeric and binary values, we could not find
a suitable metric that could handle both types of data effectively and accurately. Therefore, we
decided to abandon this method and only perform language based clustering on the log messages
without any additional information.

Our final approach was to use the features as enrichment attributes for the FlexFringe model
in a simplified manner. Rather than incorporating the features into the embedding as separate di-

4.2 Training process of the models 29

mensions, we generate new logs based on the occurrence of the extra feature event at the same
timestamp as the original logs. We store these new logs, timestamps and their IDs in a distinct file
for each corresponding host. Table 4.4 illustrates the structure of such a host file, which contains
the timestamp, feature description, and feature ID. FlexFringe can then load and process both these
new enriched feature log IDs and the cluster IDs derived from the language models. By examining
the patterns of these features jointly over a certain time interval, they could assist in providing
more information for detecting anomalous malicious behavior to security analysts. This approach
is scalable as well, since the list of extra features can be easily modified and extended with new
features.

RecordNumber Event Timestamp SourceFile EventID FeatureID Feature Description
590957 590957 2023-01-22 01:04:12.561 Security.evtx 4634 1 Log outside of work hours
590958 590958 2023-01-22 01:04:12.565 Security.evtx 4672 1 Log outside of work hours
590958 590958 2023-01-22 01:04:12.565 Security.evtx 4672 5 Keyword admin detected
590959 590959 2023-01-22 01:04:12.565 Security.evtx 4624 1 Log outside of work hours
590959 590959 2023-01-22 01:04:12.565 Security.evtx 4624 2 IP present in log
590959 590959 2023-01-22 01:04:12.565 Security.evtx 4624 5 Keyword admin detected
590960 590960 2023-01-22 01:04:12.565 Security.evtx 4627 1 Log outside of work hours

Table 4.4: Example of extra generated features for security events of a host

4.1.5 FlexFringe
Finally, we use the cluster representations of the events and the additional feature enrichment logs
as input to our FSA model called FlexFringe. FlexFringe is a flexible state machine learning algo-
rithmdeveloped byVerwer andHammerschmidt (2017) and implemented byAPTATechnologies. It
allows for flexible learning of state machines (deterministic automata) from traces of events, which
are the clustered log events in our case. FlexFringe can analyze the frequency and patterns of event
transitions within different host domains and identify rare or unusual transitions that may indicate
anomalies. FlexFringe encodes each sequence in the input data into a prefix tree. FlexFringe then
gradually merges states that have similar future behavior. FlexFringe stops themerge process when
no more states can be merged. The final result is a state machine model that depicts the dataset by
states and the transitions among them (Nguyen, 2022). When applying it to our case, it computes a
novelty score based on events it has not seen before or that events occur in a different context, as
can be seen in Figure 4.3. We will feed both the enriched features and clusters to FlexFringe and let
the model find anomalous behavior in the data based on these features. Although the goal of this
research is not to evaluate the performance of this sequence classifier, we still need to use it to see
how well the two pipeline approaches work in practice.

4.2 Training process of the models
4.2.1 Training phase
The models are trained using resources provided by Google Cloud Platform to Eye Security. Using
theHugging Face librarywe are able to train themodels usingGPUswhichwill decrease the time re-
quired to train the transformer languagemodels. Before testing and implementing thewholemodel
build pipeline, we had to thoroughly inspect and verify the code and approach to ensure we are not
doing anything wrong that could lead to technical debt. Additionally, several optimizations were
implemented to make the sure we utilize the GPU available optimally. Since the research was con-
ducted at a company that does not have an unlimited budget to train the models, it would be very
expensive if any errors weremade during the training phase, which requires a considerable amount
of computing power. Therefore, we had to perform several trial experiments to make sure we select
the best compute instance configuration, whichwewill discuss in the next section. All experiments
were tracked using mlflow and logged on DagsHub.

Training Costs
To estimate the costs and time required to train the roberta-base language models from scratch,
we performed several trial runs on the Google Cloud Platform (GCP). GCP offers various types of
GPUs that can be used for training deep learning models, such as NVIDIA Tesla T4, P4, P100 and

30 4. Methodology

Figure 4.3: Dashboard of the FlexFringe Anomaly Detection tool.

V100. EachGPUhas different specifications andpricing, depending on the region and the usage. To
compare theperformance andcost of differentGPUs,weperform trial runs of anhour andmeasured
the training speed in terms of logs processed per second. Based on the results, we estimate the
total time and cost for training the full model on each GPU type. This helped in choosing the most
suitable GPU for our research and budget.

GPU Type Training Specs Time (1hr +) Costs

Name VRAM Eval step
size

batch
size Steps it/s n logs log/s perfm.

vs. T4
per hour

$
per day
$ (24h) per log

T4 (Colab) 16 GB GDDR6 1000 8 11000 3,06 88000 24,4 0,846 - - -
T4 (GCP) 16 GB GDDR6 1000 8 13000 3,61 104000 28,9 1 0,477 11,448 0,0000045865
P100 16 GB HBM2 1000 8 12000 3,33 96000 26,7 0,92 1,454 34,896 0,0000151456
V100 16 GB HBM2 1000 8 35000 9,72 280000 66,7 2,308 2,11 50,64 0,0000087916
A100 40 GB HBM2 1000 32 12000 3,33 384000 106,7 3,692 2,65 63,60 0,0000069010

Table 4.5: Trial run results for using different GPU types.

The results of these trial runs are shown in Table 4.5. Based on this, we can conclude that using
the T4 GPU has the best cost/performance when looking at the costs per processed log. However,
using this GPU to train our models would take quite some time. The P100 performs worse and costs
more per log to process, so we can discard this option. When looking at faster GPUs, only the V100
and A100 remain. Both of them are more costly than the T4, but they process the data 2.3x to 3.7x
faster which, given the large training set that we use, is preferable. Between the A100 and V100, the
A100 comes out on top in processing speed, but also in costs per log. The V100 can still be used,
but only if it is the only one available.

Training from scratch and fine-tuning
Figure 4.4 shows the evaluation loss of both the fine-tuned and scratch versions of the RoBERTa
model. The fine-tuned version achieved the lowest evaluation loss of 0.246 after 1253000 steps
which amount to 40.1 million logs. The model from scratch achieved the lowest loss of 0.90 after
1288000 steps which amount to 41.2 million logs. It was to be expected that the training loss of the
fine-tunedmodel would be lower, since thatmodel already had pre-trained knowledge that it could
use to predict the masked token.

4.3 Finding an evaluation method 31

Figure 4.4: Evaluation loss during training of the RoBERTa models (scratch and fine-tuned)

4.3 Finding an evaluation method
After having developed the various language models, we need to come up with a way to evaluate
them to seehow theycompare against eachother and tofindoutwhether thebest performingmodel
improves on the existing baseline. However, evaluating the models’ performance and quality of
understanding the log contents is not a trivial task, as there are no clear-cut criteria or metrics that
can capture all the aspects of natural language and evenmore so log language. Whileworking on the
thesis, we came up with several plans to evaluate the models before choosing our final evaluation
method, since our initial plans could not be used in the end. First, we planned to use F1-score as a
comparisonmetric on labelleddata. When thatwasnotpossible, we tried tousedistant supervision,
which also did not work out. At last, we ended up using manual inspection of the cluster contents
to see how well they perform in practice.

4.3.1 F1-score on labelled data
At first, we planned to do an extrinsic evaluation where we evaluate and compare the performance
of the traditional TF-IDF vectorizer model to the more complex transformer language models with
added features to the embeddings. The final models would have been run on a test set containing
data from various systemswhere (simulated) attacks have been performed. After which, wewanted
to evaluate the predictions of the final models by calculating the macro F1-score, which treats all
possible classes as equally important. Additionally, we would have looked at the precision and
recall scores of all labels to find out how the models perform the on benign and anomalous labels.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃 (4.1)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁 (4.2)

𝐹1𝑠𝑐𝑜𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 (4.3)

The F1-score is a commonly used metric for evaluating the performance of both binary and multi-
class classification models. It combines the precision and recall of the model into a single score,
which ranges from 0 to 1, with higher values indicating better performance since it classifies all

32 4. Methodology

input as correct. Precision measures the proportion of true positives (TP) among the total num-
ber of positive predictions (TP + FP). It represents the model’s ability to correctly identify positive
examples. Recall measures the proportion of true positives (TP) among the total number of actual
positive examples (TP + FN). It represents the model’s ability to identify all positive examples. The
F1-score is the harmonic mean between precision and recall scores. It balances the trade-off be-
tween precision and recall and provides a single score that summarizes the model’s performance.
Despite being a good metric to directly compare the performance and effectiveness of the models,
it became clear during the research that we could not use this metric. The reason being that we
ended up not having proper labelled data to use as a test set for the models. Although there was
data available coming from compromised hosts, the events in these logs were not annotated.

4.3.2 Distant supervision
Another option that we considered was using a method called distant supervision to solve the an-
notation problempresented in the last section. In distant supervision, an already existing dataset is
used to collect examples for the relation (label) that wewant to extract. We then use these examples
to automatically generate labeled (training) data according to some filtering criteria. This is an ef-
fective way to create a large amount of training data. The data will most likely contain a lot of noise
that does not represent the relation. Hence, this is why distant supervision is known to be a weak
supervision method to produce (silver) data as opposed to humanly-annotated (gold) training and
test data. While mainly used to create a training set, it can also be applied to create a test set. Since
we had logs available coming from systems on which simulated attacks have been performed, our
ideawas to use the start and end times of the attacks to label the log events. Using this labelled data,
we can then observe using the F1-score whether the attacks are picked up by the sequence clas-
sifier effectively and which information extraction approach works best. Unfortunately, both the
data and start and end times were not available to use ultimately. Additionally, the data would not
be representable of real world scenarios since it would have been simulated. Therefore, we chose
to not use this evaluation method either.

4.3.3 Manual inspection
Instead of relying on automated metrics, which were not suitable for our task due to the lack of
labelled data and the introduction of noise with distant supervision, we chose to perform manual
inspection for both the process of choosing the best language model and the anomaly detection
inspection with FlexFringe. By manually examining the cluster contents and looking for anoma-
lous behavior in hosts, we can evaluate our approaches from a qualitative perspective and not be
constrained by quantitative scores. Manual inspection also has some limitations, such as the sub-
jectivity of the evaluator and the scalability issues of manually inspecting all the cluster contents
of all hosts. However, even with these limitations, we think this is the best way to judge the results
of our research.

Our idea is to perform several investigations into the resulting clusters of hosts. The first in-
vestigation focuses on how spread out the combination of the source EVTX file + event IDs are.
Secondly, we also create visualizations of low-dimensional representations of the embeddings and
conduct an investigation into several clusters to inspect their contents and see whether they are
coherent and meaningful. Based on these observations, we can compare each language model and
see which approach creates the most accurate, consistent and meaningful clusters.

After performing the cluster contents investigation, we select our best performing language
model and compare it with the baseline TF-IDF implementation in the FlexFringe anomaly detec-
tion tool. Here, we analyze several hosts where malicious activities occurred. This allows us to
assess how well our new, more complex approach performs. Additionally, we check the inclusion
of the enriched features scores for capturing additional context clues about the logmessage. Based
on these comparisons and inspections, we can determine whether the proposed solution outper-
forms the baseline TF-IDF method and investigate whether they have any limitations on specific
logs.

5
Experiments

In this chapter, we list the experiments and tests that we conduct to answer our research question:
Howcan embeddings and languagemodels capture useful representations of log files for analysis in
Cybersecurity? Ourmain hypothesis, as stated in the Introduction chapter, is that the performance
of anomaly detection improves using transformer-based language models as a feature extraction
method over the baseline TF-IDF weighted word representation model.

To test our hypothesis, we conduct two separate experiments that perform manual inspection
of the log clusters and anomalies detected by using different languagemodels. The first experiment
aims to select the best andmost consistent performing language model out of the four models. The
second experiment compares the best model from our new approach against the baseline TF-IDF
approach using the FlexFringe anomaly detection tool on several hosts where malicious activities
took place.

5.1 Description of the datasets
For our evaluation, we have used the following datasets: ’Azure AD Labs’ and ’Case April 2022’. We
perform analysis on several hosts within these datasets to see how the clustering performs based
on the generated embeddings and to see if we can detect any malicious activities using the current
and new approach.

Azure AD Labs:
Thisdataset is a syntheticdatasetwith simulatedactivities separated intofivemachines: DC-APHRODITE,
SRV-TITAN,WKS-PETER, WKS-FROUKJE, and SRV-CALYPSO illustrated in Figure 5.1. The dataset
contains the log files from four of thesemachines, except for SRV-CALYPSO. The dataset represents
four different lab tests where an attacker performed various attacks on the machines:

1: The attacker conducted a remote desktopprotocol (RDP) brute force attack on the SRV-TITAN
machine, but after a successful login, the attacker took no further action.

2: The attacker repeated the same RDP brute force attack on the SRV-TITAN machine, but this
time performed several malicious actions on it.

3: The attacker exploited awell-knownvulnerability in the exchange server on theSRV-CALYPSO
machine. After several malicious actions, the attacker stopped their events, but the log gen-
eration continued. This file is not available in the dataset.

4: The attacker repeated the same exchange server vulnerability attack on the SRV-CALYPSO
machine, but this time used their access to jump to the domain controller (DC-APHRODITE)
and started performing malicious actions on that host.

33

34 5. Experiments

Figure 5.1: Overview of the Azure AD Labs environment

Case April 2022:
This dataset is about a real-world cyber incident that occurred in April 2022, where an attacker
exploited a well-known vulnerability in Log4j. Log4j is an open-source logging framework for Java
applications that allowed remote code execution (RCE) when an attacker sends a specially crafted
input to a vulnerable system. The attacker used this vulnerability to compromise an environment
of 73machines, of whichwe have 42machines with log information available. The dataset includes
the log files from these machines, as well as the machine that was the root cause of the incident
where hmsvc.exe malware was written to the disk

5.2 Experiment 1: Comparing the language models
Thepurpose of this experiment is to select the best andmost consistent performing languagemodel
out of four models: all-MiniLM-L6-v2 and RoBERTa (pre-trained/fine-tuned/scratch). We use these
models to generate embeddings for the log messages and cluster them using DBSCAN. We evaluate
the quality of the clusters based on three criterions or indicators: the spread of combinations of
source evtx files and event IDs, low-dimensional visualizations based on the generated clusters by
DBSCAN, and the semantic coherence of the cluster contents.

1. The first criterionmeasures the spread of the combination of the source EVTX file + event IDs.
A score closer to 1 indicates that generated event combinations could be similar in terms of
their context and almost solely separated on their event ID. If not, this would indicate that
the generated events differ from each other while having the same source file and event ID,
implying that there are other similarities present besides being grouped based on event IDs.
We calculate the ratio by dividing the number of unique combinations that are in multiple
clusters (cluster spread) by the number of unique combinations.

2. In the second criterion, we want to visualize the high-dimensional data using t-SNE (Van der
Maaten and Hinton, 2008). T-SNE is a technique for nonlinear dimensionality reduction that
can create low-dimensional embeddings of high-dimensional data, which can then be visu-
alized. We want to inspect these visualizations and look for patterns, clusters, outliers, or
manifolds, that reflect the structure of the data. We provide our DBSCAN cluster labels to see
where they end up in the visualization, giving us a good impression of how well the quality of
the generated embeddings are and how easy it is to cluster similar embeddings.

5.3 Experiment 2: Manual inspection using FlexFringe 35

3. For the third criterion of the experiment, we want to confirm that the clusters that we observe
in the visualizations are in fact meaningful. We inspect the contents of several clusters per
languagemodel. We grab twomalicious and two benign events. Next, we investigate the other
logs that are present in the clusters to which the events have been assigned. We expect that
a good clustering method should group together logs that have similar or related content and
semantics. Therefore, we want to observe how well the clustering for each model captures
themeaning and logic of the logmessages. Here, we examine and provide examples of cluster
contents and elaborate further on why certain clusters are meaningful or not.

Basedon these results, we are able to choose themost consistent and accurate languagemodel to in-
clude in the secondpart of the experiments, whereweuse it to detect anomalies throughFlexFringe.

To summarize, we want to select the most optimal language model to extract information from
the evtx dataset. To find it we use the all-MiniLM-L6-v2model and the three versions of RoBERTa to
retrieve embeddings, perform clustering to place similar looking logs together and manually eval-
uate which method performs best in this step by looking at the event ID spread, visualizations and
inspecting our derived impressions by investigating the cluster contents.

5.3 Experiment 2: Manual inspection using FlexFringe
5.3.1 Experiment setup
The purpose of this experiment is to compare the best language model selected from Experiment 1
against the baseline TF-IDF approach using the FlexFringe anomaly detection tool on several hosts
wheremalicious activities tookplace. Weuse thesemodels to extract features from the logmessages
and feed them into the FlexFringe tool and APTA Dashboard to detect anomalies in the logs. We
evaluate the performance of the anomaly detection methods based on two criteria: where they are
able to identify malicious anomalous activities, and how they deal with false positive in hosts with
benign activities.

1. The first criterion measures how well the anomaly detection methods can detect logs that
contain malicious activities, such as malware infection, ransomware attack, credential theft,
etc. described in Section 5.1. We expect that a good anomaly detection method should flag
logs that indicate such activities as anomalies, while finding nothing out of the ordinary from
normal logs. Wemanually inspect the anomalies detected by eachmethod and compare them
against the information provided by security analysts to see what should have been picked
up.

2. In the second criterion, we want to get an indication of how each method deals with events
from a benign host. Ideally, we want to minimize the number of false positives, as these will
classify logs as potentiallymaliciouswhile they are not. False positives can cause alert fatigue
and reduce trust in the system.

To summarize, the aim of this experiment is to compare the performance of the two different
language models for information extraction and to examine their impact on anomaly detection.
We use the FlexFringe tool to use the clusters and information obtained from the extra features.
We then investigate the anomalies detected by the tool and attempt to identify malicious activities
by looking at the peaks in the graphs. We conduct this analysis on hosts from both datasets and
explore several labelled types ofmaliciousbehavior to evaluatehowwell the tool detects themusing
the two information extraction methods.

This evaluation method enables us to assess the suitability of the language models and the ad-
ditional features scores for capturing the context and content of a log message. Based on these
comparisons and inspections, we can determine whether our proposed solution outperforms the
baseline TF-IDF method.

5.4 Overview experimental setup
The above discussed intentions and evaluationmethods can be summarized in the overview shown
in Table 5.1. It comes down to finding the best performing language model in the first experiment.

36 5. Experiments

This model then gets compared against the baseline TF-IDF method in the second experiment to
see which method performs better in practice. In the end, we want to have enough evidence and
observations to confirm our hypothesis. The results of these experiments will be discussed in the
next Chapter 6.

Experiment Models Evaluation method
1 Comparing the language models all-MiniLM-L6-v2 1. Measure spread

RoBERTa-base 2. Visualization using t-SNE
RoBERTa-base (scratch) 3. Investigate cluster contents
RoBERTa-base (fine-tuned)

2 Manual inspection using FlexFringe Best model of Experiment #1 1. Manual inspection of hosts
TF-IDF (Baseline) containing malcious activities

2. Inspect benign host

Table 5.1: An overview of the two experiments where we compare the language models and perform manual inspection on
hosts with anomalous behavior using FlexFringe.

6
Results

In this chapter, we will analyze the interesting results of the experiments presented in Chapter 5
using the methodology explained in Chapter 4. The results will be further discussed in Chapter 7,
where we will elaborate on explanations for the most interesting results.

6.1 Comparison between transformer models
6.1.1 Measuring spread of event IDs
For the first criterion, we measure the cluster spread of the logs’ evtx source files and associated
event ID combinations. The closer the spread number is to 1, we could assume that the content of
source file and eventID logs are similar in terms of meaning and grouped together by the clustering
algorithm. The higher the spread ratio is, the clustering algorithm finds it harder to group similar
logs events together.

Dataset Model Hosts
#N

Unique Clusters
(all hosts)

Cluster spread
(all hosts)

Unique combinations
SourceFile + ID

(all hosts)
Cluster spread

ratio

Azure-AD Labs all-minilm-l6-v2 4 1735 3386 2455 1.379
(Test 1) R-finetuned 4 7859 8688 2455 3.539

R-pretrained 4 4410 5456 2455 2.222
R-scratch 4 43187 43396 2455 17.677

Case April 2022 all-minilm-l6-v2 42 30444 56959 37239 1.53
R-finetuned 42 141611 162106 37239 4.353
R-pretrained 42 83283 104297 37239 2.801
R-scratch 42 883186 898297 37239 24.122

Table 6.1: Overview of the spread ratio of the EVTX SourceFile + EventId combinations for every model based on all hosts
in the Azure-AD Labs (Test 1) and Case April 2022 datasets.

Whatwe observe from our datasets is that the all-minilm-l6model achieves the best ratio spread
scores 1.379 and 1.53 which are closest to 1 followed by RoBERTa-pretrained with scores of 2.222
and 2.801. The RoBERTa-scratch model gets the highest score away from 1, namely, 17.677 and
24.122 for both datasets. We also observe that the all-minilm-l6 model is the only model where
the number of unique clusters is lower than the number of unique SourceFile + EventId combina-
tions. Based on these results, we can conclude that all-minilm-l6 performs the best at putting each
SourceFile and EventId combination into single clusters without them spreading to other clusters
too often, while also grouping similar looking logs together into the same cluster (1735 vs. 2455 and
30444 vs. 37239). This indicates that the clusters could be well optimized for later classification by
the FlexFringe model. The RoBERTa-scratch model has the most trouble putting unique combi-
nations in a single cluster, generating significantly more unique clusters than the total number of
unique combinations (43187 vs. 2455 and 883186 vs. 37239).

37

38 6. Results

6.1.2 Visualizing the embeddings by their clusters
For this criterion, we investigated the generated t-SNE plots of every model for several hosts. We
will discuss a couple of the t-SNE plots of the Windows PowerShell evtx file of an infected host
in both dataset for all four models. We investigate how well the clusters are formed and grouped
together, as observed from these t-SNE plots. We base our final conclusions on the overall patterns
that we noticed when inspecting several of these t-SNE plots from other evtx files.

Azure AD Labs (Test 4)
In Figure 6.1, we can observe the generated t-SNE plots for the four models. The first Subfigure
6.1a shows the all-minilm-l6-v2 model, only got three clusters assigned to its logs and it tries to
separate those from each other, this could be because of a suboptimal epsilon parameter in the
DBSCAN clustering algorithm that allowed too many logs to be grouped together under the same
cluster ID. The RoBERTa models in Subfigures 6.1b, 6.1c and 6.1d show a clearer cluster forming
based on the variations in embeddings. Wenotice that theRoBERTa-pretrainedmodel gets themost
accurate forming of clusters compared to both RoBERTa-scratch and RoBERTa-finetune that both
show several data points that are close in the space get put together in different clusters. Overall,
we notice that the clustering approach does a good job at grouping similar embeddings together.

(a) all-MiniLM-L6-v2 (b) RoBERTa-base (pretrained)

(c) RoBERTa-base (scratch) (d) RoBERTa-base (fine-tuned)

Figure 6.1: t-SNE plots of Azure AD Labs (test 4) Windows PowerShell evtx file on host DC-APHRODITE for the four
language models. The color indicates the assigned cluster ID.

Case April 2022
Next, wewill investigate the t-SNEplots of an infected host in theCaseApril 2022 dataset. The plots
for the Windows PowerShell evtx logs are shown in Figure 6.2 for all four models again. As shown
by the results in Figure 6.2a, we see that the all-minilm-l6 this time also does a decent job at group-
ing logs events together. Again we observe that the clustering performed on RoBERTa-pretrained

6.1 Comparison between transformer models 39

embeddings assigns the most accurate clusters with no cluster IDs being near other clusters. The
RoBERTa-scratchmodel assigns a lot of unique cluster IDs near groups of other clusters, indicating
that the embeddings are not of the desired quality. While RoBERTa-finetune does a lot better job
than RoBERTa-scratch, it sometimes still assigns unique cluster IDs to points that close together.

Based on the resulting plots in both datasets, we assume that the RoBERTa-pretrainedmodel is
the best out of the other models at producing meaningful embeddings, since it performs best at
grouping assigned clusters together. In the next test, we will investigate our assumption further by
inspecting the cluster contents.

(a) all-MiniLM-L6-v2 (b) RoBERTa-base (pretrained)

(c) RoBERTa-base (scratch) (d) RoBERTa-base (fine-tuned)

Figure 6.2: t-SNE plots of the Windows PowerShell evtx file from the Case April 2022 dataset on an infected host for the
four language models. The color indicates the assigned cluster ID.

6.1.3 Inspecting the cluster contents
In this criterion, we perform an inspection of the contents of clusters created by our approaches.
We selected twomalicious events and two benign events, one of each type from both datasets, and
we want to inspect the clusters amongst what other logs they end up for each of the four language
models. Table 6.2 shows the selected events that we plan to investigate.

Cluster contents with malicious logs
We are interested in exploring amongst what other logs clusters containing malicious events, as
presented in Table 6.2, are combined. Specifically, we want to determine whether the context of
these malicious events tend to be grouped together with other similar potentially malicious events
or if they form distinct clusters. The first type of malicious event involves authentication requests
made by attackers in their efforts to gain unauthorized access to the system. The second event
revolves around the ’whoami’ command obfuscated in base64 encoding, often used by attackers to
identify the system they are targeting.

For the first event, we observe that the all-minilm-l6-v2 model successfully clusters all events
associated with ID 4776 into a single cluster, aligning with our expectations as these events share

40 6. Results

Type Host Source ID Activity
M DC-APHRODITE Security.evtx 4776 Malicious authentication requests

(Azure AD Labs Test 1) by user John
M Infected Host PowerShell.evtx 600 ‘whoami’ command executed in

(Case April 2022) PowerShell, output sent to external IP
B DC-APHRODITE Application.evtx 1033 A program was installed on the host

(Azure AD Labs Test 1)
B Benign Host Microsoft-Windows- 4017 Making LDAP calls to connect

(Case April 2022) GroupPolicy%4 and bind to Active Directory
Operational.evtx

Table 6.2: Selected events where M = Malicious and B = Benign.

identical meaning. However, a notable issue arises as this model also includes numerous unrelated
events within the same cluster ID. In contrast, the RoBERTa-pretrained model does not exhibit this
particular problem. As shown in Appendix Table A.2.1, we can observe that it generates multiple
clusters for the same event ID. Yet, it assigns these new clusters only when the events are show
the targeting of distinct hosts. While at the same time grouping similar events together that target
the same host, which is what we like to see. This could be useful in tracking the occurrence of new
events by the FlexFringemodel. Conversely, the other twomodels,RoBERTa-scratch andRoBERTa-
finetune, return different results. They assign each unique occurrence of event ID 4776 to a new
individual cluster, failing to group this particular set of similar events together.

When we turn our attention to the clusters containing the second event, we find that the all-
minilm-l6-v2model assigns only five clusters for the entire evtx file. Upon closer inspection of the
cluster where the malicious event is assigned to, we observe that this cluster consists of several
other logs with differing meanings. It would be more suitable to segregate these logs into separate
clusters rather than putting them in the same cluster. Showing better results are the RoBERTamod-
els that all return a consistent set of logs within the cluster containing the malicious event. These
logs include instances of the same events where base64-encoded commands are executed within
the PowerShell terminal, showing similar behavior to our selected event, which entails the ’whoami’
command. Notably, they also show similar behavior from a few months prior, which might be of
interest to a security analyst. Additionally, this cluster contains logs with different event IDs (400,
403, and 800) that feature similar obfuscated base64 code.

6.1.4 Cluster contents with benign logs
We also want to investigate some benign logs to see among which other logs they get grouped to-
gether and see if this makes sense based on their similar meaning. Appendix Table A.3, shows an
example of one of themodel’s results when inspecting a benign event with the RoBERTa-pretrained
model. The first event we investigate is the installation of a program on a host, and for the second
event we inspect the log ”Making LDAP calls to connect and bind to Active Directory” with is a log
within the

When inspecting the first event with the all-minilm-l6-v2 models, we notice some interesting
behavior. It seems that when we observe the other logs inside the clusters in which the event ID
gets put in that themodel does a good job grouping the logs together based on the program context
inwhich they are used. We see thatWindows programs get put together inside a cluster and that VS,
Python or Slack programs are put in different clusters. However, we also notice that other installer
related events like ”Installation completed successfully”, ”Program uninstalled successfully” and
”Installer Exited” are grouped in the same cluster. For the RoBERTa-pretrained model, we observe
similar behavior, it groups logs based on program context, but this time the other logs included in
the clusters are only the ”A program was deleted” events within the same program context. The
RoBERTa-scratchmodel only returned unique isolated clusters with no other logs present in them
back. These logs logically only contained the selected event. At last, the RoBERTa-finetunemodel
performs better than the RoBERTa-scratch since it not solely returns logs as unique isolated clus-
ters. It groups them together based on the program context, but does it worse than all-minilm-l6-v2
and RoBERTa-pretrained by being too specific, sometimes separating logs that could be grouped

6.1 Comparison between transformer models 41

together.
Regarding the second event’s clusters, the all-minilm-l6-v2 model only puts all occurrences of

the event into a single cluster with no other events present. It does not differentiate between the
EventData context present in the event. The RoBERTa-pretrained and RoBERTa-finetune models
generated three clusters. The clusters don’t consist of any other logs and we observe that the clus-
ters are formed based on contextual values in the EventData yet again. For RoBERTa-scratch, yet
again we notice that it forms isolated unique clusters, but noticed that it grouped two logs together
that had only 1 character different, so it looks like that was sufficient for the clustering algorithm to
group them together based on their similar embedding distance. However, if there aremore charac-
ter different as in the other events that have similar context, it will isolate these events into unique
clusters because the distance again is too large.

6.1.5 Choosing the best language model
After evaluating the results fromour experiments, wechose to continuewith theRoBERTa-pretrained
model. From our observations, we saw that we got the most consistent results based on all three
criterions. The all-minilm-l6-v2model is very promising, but we assume due to a not very well op-
timized epsilon parameter, we got several cluster results back that did not look good because they
were generalizing too often.

A pattern that we observe with RoBERTa-scratch is that it creates the highest number of unique
clusters per event ID in the evtx files out of the four models. After investigating why this happens
in the malicious and benign logs, we see that it tends to create separate clusters for almost similar
messages. As shown by the spread in Table 6.1, t-SNE Subfigures 6.1c, 6.2c and from our manual
inspection of the cluster contents, for this model the DBSCAN sometimes assigns an event to be
the only event in an isolated cluster while it could be put in a different nearby cluster together with
similar logs. While FlexFringe might still pick up on most of these new event sequences within a
certain time period, this is less than ideal since it also increases the granularity of the sequences
when no malicious activities are taking place on a host. This makes it hard to track what is normal
behavior and what is anomalous since also most of the normal behavior will get assigned to be
an isolated cluster. The RoBERTa-finetune model performed better than the previously mentioned
models. However, sometimes it is a bit too specific aswell when are slight differences in the context
of events that we observed, generating more new unique clusters while grouping them would have
been better. We observed that the RoBERTa-pretrainedmodel retrieved better andmore consistent
results by generating the most accurate clusters while also separating them based on contextual
informationwithout being too specific and generating evenmore clusters. Therefore, in the second
phase of the experiments, we will compare RoBERTa-pretrained + DBSCAN approach with the TF-
IDF + Mini-batch K-means approach.

42 6. Results

6.2 Transformer LM vs. TF-IDF baseline using FlexFringe
In this study,weconduct a comparative analysis of twodistinctmethodologieswithin the context of
anomaly detection, using FlexFringe as themain classifier. We subsequently examine and interpret
the outcomes by looking at the results presented in the APTA Dashboard. Our investigation begins
with an exploration of the Case April 2022 dataset, focusing on the detection of anomalies within
a real world infected host. Following this, we delve into the Azure AD Labs (Test 1) dataset, where
we also investigate an infected host. Lastly, we want to find out how the approaches perform when
dealing with a benign host.

6.2.1 Investigating Case April 2022 dataset
We’re examining the labeledmalicious activitieswithin the PowerShell logs of an infected host from
the Case April 2022 dataset. Security analysts identified the activities listed in Table 6.3 during the
incident response case. To safeguard security and privacy, we’ve redacted specific contents. These
activities occurred roughly around January 17th and March 29th of 2022.

Malicious activities

1 <filename1>.exe, <filename2>.dll and <filename3>.dat are downloaded via PowerShell from <IP>
and written to C:\windows\debug

2 \item ‘whoami’ command is executed via PowerShell and its output is sent to <IP>

3 \item Start of repeating malicious PowerShell persistence: IEX ((new-object net.webclient).
downloadstring(’hxxp://<IP>/vmware/horizon/<filename>.php?p=<hostname>’))

4 \item First malicious PowerShell activity: IEX ((new-object net.webclient).downloadstring
(’hxxp://<IP>/<filename>.jpg’)))

Table 6.3: Labelled malicious events in the PowerShell logs on infected host from Case April 2022 dataset.

In Figure 6.3, we present the graphical output generated by the FlexFringe model for both the
current approach and our new approach. These peaks in the graph indicate potential anomalous
events based on previous patterns and behavior, and serve as valuable cues for security analysts
conducting incident response investigations.

Initially, we applied the existing TF-IDF approach to identify these activities. As seen in Sub-
figure 6.3a, we quickly located events concerning the downloads and the installation of malicious
files, as described in the first event of Table 6.3, occurring on March 29th. Additionally, we dis-
covered the presence of the ’whoami’ command encoded in base64; although it did not show as a
distinct peak in the graph, its associationwith nearby events allowed us to identify it. Furthermore,
we traced the inception of recurring malicious PowerShell persistence back to January 17th.

When analyzing the graph generated by our new approach in Subfigure 6.3b, we successfully
detected most of the aforementioned malicious events. These events are visually represented as
peaks on January 17th and March 29th, 2022. Notably, the ’whoami’ command did not exhibit a
distinct peak either, but could be derived by inspecting events near the peaks as well.

By examining the supplementary features within the evtx file, as displayed in Appendix Figure
A.4.1, it becomes clear that these features contain a considerable amount of noise. Notably, the
most valuable peaks in this context are primarily generated when new IP addresses and usernames
appear in the logs. These IP addresses sometimes correspond to actual IPs, but at other times, they
seem to come from software versioning that coincidentally follows a similar format to an IP address.
In contrast, the static extra features, apart from the IPs present in the logs, do not significantly con-
tribute to the analyst’s understanding, as they are not notably present during the peaks coinciding
with interesting events. However, some dynamic extra features, such as newly encountered user-
names and IPs, could indeed offer valuable insights for investigation. Furthermore, it is noteworthy
that a substantial number of these events occur at the same time as the timeframes of the malicious
activities.

6.2.2 Investigating Azure AD Labs dataset
We investigated the Azure AD Lab (Test 1) dataset using both approaches to seewhat kind of behav-
ior is happening on the system at important times as classified by security analysts. They deemed

6.2 Transformer LM vs. TF-IDF baseline using FlexFringe 43

(a) TF-IDF + MB-Kmeans (b) RoBERTa-pretrained + DBSCAN

Figure 6.3: Comparison between the TF-IDF + Mini-Batch K-means vs. RoBERTa-pretrained + DBSCAN approaches for an
infected host of the Case April 2022 dataset where anomalous behavior is detected and investigated.

the time around 13:11 January 24th, 2023, as an important time when malicious activities take
place.

First, we examined the current TF-IDF approach and discovered several malicious activities by
looking at the graphs in Appendix Figure A.1. We noticed the running of a remote PowerShell ses-
sion with wsmprovhost.exe in the peak activities of the PowerShell logs. Next, we observed an
event where a password extraction script was executed, though less clearly marked by a peak. In
the security logs, we found an event that specified that the credential manager’s credentials were
read, followed by an administrative logon. At last, we sawmultiple authentication requests and the
login of a user with username ‘John’ from workstation remnux.

Next, we also investigated the logs using our new approach. We saw most peaks occurring at
the specified time in the overall FlexFringe output, as shown in Appendix Figure A.2. We discov-
ered various malicious activities represented in these peaks when we zoomed in on the date and
time. In the security logs, we found many authentication requests from a user “John” on the DC-
APHRODITE system, as well as an attempt to change a privileged object by this John. Furthermore,
in the PowerShell logs we saw the execution of a username + password extraction script, the down-
load of a privilege escalation script from GitHub obfuscated by base64 code and the running of a
remote PowerShell session via wsmprovhost.exe. Additionally, we also noticed several secondary
malicious logs that were produced by primarymalicious actions of the attackers in the system logs.

Figure 6.4 displays the addition of the extra contextual features. We could not easily determine
on which specific logs they provide context due to this not being implemented yet, but similarly to
the Case April 2022 dataset, they gave a good indication of when new anomalous events are hap-
pening that might be worth investigating. In the Figure, we clearly saw that between the 19th and

44 6. Results

24th of January, there was a lot of activity based on the extra features logs. We saw that FlexFringe
produced high peaks based on new username occurrences and admin keyword presence when we
zoomed in on the specific activities during the important times.

Figure 6.4: Extra contextual features of DC-APHRODITE in the Azure AD Labs (Test1) dataset.

6.2.3 Investigating a benign host
To see how sensitive each approach is to finding anomalous behavior, we performed some addi-
tional tests on hosts where no malicious behavior is found. Ideally, the logs should not have any
peaks (false positives) that could trigger an investigation by a security analyst, but this can be hard
to achieve since even normal behavior can be regarded as anomalous sometimes. However, as can
be derived from Appendix Figure A.4 and A.5, we see that both approaches show peaks even when
nomalicious actions are taking place on the computer. The activities present in these peaks include
anomalous behavior such as the enabling of theMinesweeper game onWindows, quick logoffs and
logons on theWKS-FROUKJEmachine as well as an administrative logon, new service installations
and some warnings and errors.

Comparing the benign host graphs to the infected hosts graphs like the one in Figure 6.3, we
see a difference in that when malicious anomalous behavior is present, there are more activities
happening on the graph and the peaks stretch out over a longer time period. Therefore, this could
potentially help a security analyst to identify when and where most of the anomalous actions are
happening, possibly caused by various malicious actions of an adversary that has infiltrated the
host.

7
Discussion

In this chapter, we present a comprehensive summary of the key findings derived from the results
presented inChapter 6. Wedelve into the context and rationale behind thesefindings. Additionally,
we highlight the limitations encountered during the course of this research andprovide recommen-
dations for future studies.

7.1 Summarization of Key Findings
Experiment 1

1. Clustermeaningfulness: Our analysis showed that the RoBERTa-pretrainedmodel produced
clusters with the highest degree of meaningfulness. Conversely, the RoBERTa-scratch model
generated the leastmeaningful clusters, often resulting in numerous isolated and unique clus-
ters.

2. Training language models with logs: When using logs to train language models, we did not
observe a significant improvement in the quality of embeddings and resulting cluster genera-
tion. It onlymade each clustermore specific instead of grouping similar looking logs together.

3. Roleof epsilonparameter: Theepsilonparameter of theDBSCANclustering algorithmproved
to be essential in optimizing the production of clusters based on the distance between em-
beddings. Careful selection of this parameter per log type is crucial for achieving meaningful
results.

Experiment 2

4. Similar performance by both approaches: Both the current TF-IDF + Mini-batch K-means
approachandnewRoBERTa-pretrained+DBSCANmethoddemonstrated similar performance
in identifying anomalous events and behaviors using FlexFringe, including malicious activi-
ties. Though, the resulting peaks in our new approach are more obvious.

5. Contextual features: The inclusion of extra contextual features provided valuable insights
into the detection of attack time periods. However, these features did not consistently offer
precise details regarding the nature of the events.

7.2 Interpretation and Summarization of the Results
In our first experiment, we conducted a detailed investigation of the clustering results, leveraging
spread, T-SNE plots, and cluster contents to gain insights into the performance of the four lan-
guage models. The all-minilm-l6-v2 model demonstrated a tendency to group logs together that
ideally should be separated. We suspect that this behavior may be caused by a suboptimal tun-
ing of the epsilon parameter in the DBSCAN algorithm, that merges logs that are in close to each

45

46 7. Discussion

other in the embedding space. This also goes for the other models where the epsilon parameter
has not been optimized either, but it seems that the default value is better suited for the RoBERTa
models. In contrast to the all-minilm-l6-v2 models, all RoBERTa models exhibited a higher spread
value and produced more coherent cluster contents. The RoBERTa-scratch model, which lacked
pretrained language knowledge, generated an excessive number of unique, isolated clusters. This
over-fragmentation is likely due to the model’s lack of language understanding, which could not
be effectively compensated for within the limited data and available training time. The RoBERTa-
finetune model also displayed a degree of specificity, while better than the RoBERTa-scratch that
led to the creation of clusters that could have beenmergedwith others. Themodel’s training on new
feature strings may have shifted its focus away from human language, creating a larger distance in
the embeddings based on that, leading to the formation of separate clusters. Among all models, the
RoBERTa-pretrained model achieved the most coherent and specific clusters. It balanced speci-
ficity without overgeneralizing based on human texts present in the logs. We attribute this to the
model’s pretraining on human language, which allowed it to create embeddings informed by this
language. This underscores the importance of incorporating human language when performing in-
formation extraction on logs, as it significantly impacts themodel’s performance and explainability.

In our second experiment, we compared the performance of two different approaches: the cur-
rentTF-IDF+mini-batchk-means approachandournewRoBERTa-pretrained+DBSCANapproach.
Our results indicate that the new RoBERTa-pretrained + DBSCAN approach performs on par with
the current TF-IDF + mini-batch k-means approach in terms of detecting (malicious) anomalous
events. This suggests that our new approach is a viable alternative for anomaly detection in log
data. We also assessed the number of false positive peaks generated by each method for a benign
host and observed similar performance. Both approaches highlighted the same benign anomalous
activities. Interestingly, the increased number of clusters produced by the RoBERTa-pretrained
+ DBSCAN approach appeared to assist the FlexFringe classifier in detecting anomalies more ef-
fectively, resulting in higher peaks. This suggests that allowing more clusters could be advanta-
geous. We speculate that over a longer time period with more diverse logs, the performance of the
RoBERTa-pretrained + DBSCAN approach may improve even further. This is because the model
can adapt to changing patterns by creating new clusters automatically, whereas the current imple-
mentation is limited to a set maximum number of clusters chosen by the model designer. However,
this assumption requires further testing and validation. Including extra contextual features did not
assist in identifying specific malicious logs in this experiment. This limitation is attributed to the
absence of this explorative feature in the FlexFringe APTA Dashboard. The potential effectiveness
of these contextual features in highlighting malicious logs may be explored in the future, should
they be better integrated into the dashboard. Nevertheless, these features did offer valuable in-
sights by providing indications of when malicious events occurred. This suggests that while they
may not directly identify malicious logs, their returned activities can serve as valuable indicators
for further investigation.

7.3 Limitations
In this section, we list some limitations thatwe came across during our research. One of the primary
limitations was the absence of clear labels for every log line in the dataset. This absence made
it challenging to perform systematic benchmarking and compare model performance objectively
using automated metrics like F1-score. The lack of clear labels hindered our ability to assess the
models’ accuracy effectively.

A second limitation came in the form of training budget and time. Training large transformer
models, such as RoBERTa, is computationally expensive and resource-intensive. Due to budget
and time constraints, we were limited in terms of the number of training epochs we could afford.
This limitation also restricted our ability to perform extensive preprocessing and hyperparameter
optimization, potentially impacting the final model’s performance and the overall approach.

A third limitation was the time required for hyperparameter tuning of the clustering algorithm,
specifically the epsilon parameter in DBSCAN. Althoughwe aimed to optimize this parameter using
the Density-Based Clustering Validation (DBCV) metric from Moulavi et al. (2014), practical con-
straints with the large volume of logs and files, led to prolonged execution times for this metric.
Consequently, we could only work with the default value for epsilon, missing the opportunity to

7.4 Recommendations for Future Research 47

achieve well-optimized clustering based on the DBCV metric.
The last and fourth limitation arose fromfile size and hardware constraints. While attempting to

process the SRV-CALYPSO host machine’s logs, which were approximately three times larger than
the average host log files, we encountered challenges. Our codewas unable to process this host due
to limitations in available RAM capacity, leading to inconsistent crashes. Future work may involve
optimizing the code for more efficient processing or upgrading hardware to handle larger log files.

7.4 Recommendations for Future Research
Regarding future research, there are several areas that might be interesting to explore further to
improve log-based anomaly detection methodologies.

A first recommendation would be to apply the methodology to different log sources besides
EVTX files. These could involve sources such as Linux system logs or Android logs. Additionally, it
would be interesting to investigate how to create source-agnostic language models, enabling their
application across various log sources.

Secondly, a different log parser could be used to get better and cleaner features into the log
string that is sent to the language model. In this research, we used EvtxECmd and were limited by
the features the parser returned. Perhaps there are better parsers out there that can retrieve more
and cleaner information from the logs, which would improve our language model’s understanding
of the log contents.

A third suggestion is to implement improved / more recent language models to extract informa-
tion from the logs. During the writing of this thesis, the development of Large Language Models
increased rapidly with the introduction of ChatGPT. It would be interesting to see how these newer
and improved language models can be used in the pipeline as a replacement and improvement of
roberta-base.

Hyperparameter tuning is also one of the areas worth investigating. Experimentation with dif-
ferent hyperparameters within the models, including parameters like the epsilon value in the DB-
SCAN clustering algorithm, could lead to improved clustering and anomaly detection outcomes.

Furthermore, exploring different data preprocessing techniques to enhance data quality and
cleanliness before input into language models is desirable.

Lastly, considering alternative clustering algorithms within the log analysis pipeline could be
explored aswell. While DBSCANwas selected for specific reasons, exploring other clusteringmeth-
ods may return new insights into potential performance enhancements.

8
Conclusion

This thesis aimed to tackle the problemof coming upwith an effectivemethod for detecting anoma-
lous behavior performed by adversaries on a system through the use of logmessages. It focussed on
coming up with a more complex method that better captures the relations between the features in
the logs than the currently implemented traditional method called TF-IDF, which was already im-
plemented in an anomaly detection pipeline. The aim of this research was to answer the following
main research question:

How can embeddings and language models capture useful representations of
log files for analysis in Cybersecurity?

The main research question was answered through four sub-questions:

SQ1 What features from logs are relevant to train language models?

SQ2 Which language model and what training method are most suited for feature extraction?

SQ3 How does a transformer language model compare to a weighted word representation model as
a feature extraction method in anomaly detection?

SQ4 Does adding additional contextual features improve anomaly detection?

First, data was collected from hosts and we explored which features are relevant to train a lan-
guage model and how they should be cleaned, processed and anonymized to remove unique iden-
tifiers and prevent bias. This data was then used to construct feature strings and create a dataset
ready for the purpose of training the language models.

Secondly, we explored the use of the all-minilm-l6-v2 and RoBERTa architectures to see which
model and training method is best suited for the purpose of feature extraction. We trained two
RoBERTa language models with log data and performed several experiments to test which model
created the most consistent and informative clusters. The RoBERTa-pretrained model emerged as
the most effective in creating meaningful clusters, while the other models exhibited challenges in
grouping logs optimally. Thefindings emphasize the necessity of including human language under-
standingwhen developingmodels for log analysis. Additionally, the results showed the importance
of tuning clustering parameters for optimal results. All in all, we can say that inclusion of log files in
the training process does not necessarily lead to a better understanding and grouping of log events.

Thirdly, the RoBERTa-pretrained model was then used together with DBSCAN clustering in a
comparisonagainst the currentTF-IDF feature extractionmethodwithMini-batchK-meanscluster-
ing implementation. Using this information as input to FlexFringe with these features, we observed
that the approaches achieved similar performance in identifying (malicious) anomalies, thus re-
jecting our hypothesis that performance of anomaly detection improves using transformer-based
language models as a feature extraction method over the baseline TF-IDF weighted word represen-
tation model. However, we did notice that, in our new approach, the anomalies were a bit more

49

50 8. Conclusion

obvious in the resulting graphs having their peaks stand out more, making them easier to spot and
identify.

At last, we observed that addition of extra contextual features did not necessary lead to an im-
provement in anomaly detection when using the FlexFringe classification model, but it proved to
be a good indicator to identify the time period in which malicious actions took place.

This thesis research encountered several limitations throughout the research process. First, the
absence of available labels hindered the ability to conduct a comprehensive comparative study,
which would have allowed for the utilization of standardized metrics for performance assessment.
Second, constraints in training budget and time imposed limitations on the extent of model train-
ing, leading to challenges in implementing thorough preprocessing and hyperparameter optimiza-
tion. Additionally, due to time constraints, hyperparameter tuning for the epsilon parameter in the
DBSCAN clustering algorithm could not be done, potentially impacting clustering performance.
Lastly, hardware limitations were encountered when processing larger log files, leading to opera-
tional constraints.

Future research in this domain could explore several promising areas. These include extending
the methodology to be able to handle different log sources, refining preprocessing techniques for
cleaner feature extraction, and perhaps making use of the latest advancements in language models
for improvedperformance. Additionally, efficientmethods for optimizing critical hyperparameters,
such as the epsilon parameter in the DBSCAN clustering algorithm, should be a priority. These
directions offer opportunities to further enhance the effectiveness of log-based anomaly detection
and contribute to the ongoing evolution of cybersecurity defense and recovery methods.

A
Appendix

A.1 Data Origins
Table A.1 shows the number of logs collected from each host origin and used in the process of
training the language models.

File name Row count
host_1 833.319
host_2 300.060
host_3 325.667
host_4 281.988
host_5 331.512
host_6 380.764
host_7 447.511
host_8 330.138
host_9 358.799
host_10 402.460
host_11 406.756
host_12 264.253
host_13 806.805
host_14 778.741
host_15 735.301
host_16 742.202
host_17 701.329
host_18 800.852
host_19 833.129
host_20 167.143
host_21 235.284
host_22 579.269
host_23 829.784
host_24 682.867
host_25 817.956

File name Row count
host_26 742.598
host_27 803.065
host_28 651.258
host_29 809.154
host_30 864.176
host_31 256.493
host_32 448.973
host_33 231.710
host_34 225.451
host_35 973.142
host_36 997.277
host_37 786.222
host_38 263.225
host_39 406.146
host_40 342.321
host_41 454.427
host_42 237.252
host_43 323.547
host_44 826.146
host_45 789.235
host_46 847.663
host_47 258.210
host_48 355.522
host_49 834.763
host_50 831.360

File name Row count
host_50 831.360
host_51 824.387
host_52 830.400
host_53 793.715
host_54 309.134
host_55 791.540
host_56 220.146
host_57 856.628
host_58 769.635
host_59 699.858
host_60 229.624
host_61 361.189
host_62 239.853
host_63 870.564
host_64 860.102
host_65 803.665
host_66 814.832
host_67 267.736
host_68 246.335
host_69 906.858
host_70 828.866
host_71 775.947
host_72 648.435
host_73 570.579
Total (n=73) 42.453.253

Table A.1: Number of log lines per host, adding up to a total of 42.453.253 logs.

51

52 A. Appendix

A.2 Cluster Inspection
Here, we provide an overview of two of the cluster inspections that took place in Section 6.1.3. To
see other comparisons, we refer you to our GitHub page 1.

A.2.1 Malicious Authentication Requests Inspection Example

Timestamp ClusterID EventID Raw Feature String

2023-01-24 13:17:20.6885240 54 4776

Security.evtx Microsoft-Windows-Security-Auditing Security 4776 2023-01-24 13:17:20.6885240
LogAlways NTLM authentication request DC-APHRODITE.Akropolys.nl
{”EventData”:{”Data”:[{”@Name”:”PackageName”,”#text”:”MICROSOFT_AUTHENTICATION_PACKAGE_V1_0”},
{”@Name”:”TargetUserName”,”#text”:”AKROPOLYS\\John”},
{”@Name”:”Workstation”,”#text”:”kali”},{”@Name”:”Status”,”#text”:”0xC0000064”}]}}

2023-01-24 13:27:38.9737497 54 4776

Security.evtx Microsoft-Windows-Security-Auditing Security 4776 2023-01-24 13:27:38.9737497
LogAlways NTLM authentication request DC-APHRODITE.Akropolys.nl
{”EventData”:{”Data”:[{”@Name”:”PackageName”,”#text”:”MICROSOFT_AUTHENTICATION_PACKAGE_V1_0”},
{”@Name”:”TargetUserName”,”#text”:”John”},
{”@Name”:”Workstation”,”#text”:”kali”},{”@Name”:”Status”,”#text”:”0xC000006A”}]}}

2023-01-24 13:37:41.0740706 54 4776

Security.evtx Microsoft-Windows-Security-Auditing Security 4776 2023-01-24 13:37:41.0740706
LogAlways NTLM authentication request DC-APHRODITE.Akropolys.nl
{”EventData”:{”Data”:[{”@Name”:”PackageName”,”#text”:”MICROSOFT_AUTHENTICATION_PACKAGE_V1_0”},
{”@Name”:”TargetUserName”,”#text”:”John”},
{”@Name”:”Workstation”,”#text”:”KALI”},{”@Name”:”Status”,”#text”:”0x0”}]}}

2023-01-24 13:13:24.6834688 54 4776

Security.evtx Microsoft-Windows-Security-Auditing Security 4776 2023-01-24 13:13:24.6834688
LogAlways NTLM authentication request DC-APHRODITE.Akropolys.nl
{”EventData”:{”Data”:[{”@Name”:”PackageName”,”#text”:”MICROSOFT_AUTHENTICATION_PACKAGE_V1_0”},
{”@Name”:”TargetUserName”,”#text”:”AKROPOLYS\\John”},
{”@Name”:”Workstation”,”#text”:”remnux”},{”@Name”:”Status”,”#text”:”0xC0000064”}]}}

2023-01-24 13:11:15.9309497 96 4776

Security.evtx Microsoft-Windows-Security-Auditing Security 4776 2023-01-24 13:11:15.9309497
LogAlways NTLM authentication request DC-APHRODITE.Akropolys.nl
{”EventData”:{”Data”:[{”@Name”:”PackageName”,”#text”:”MICROSOFT_AUTHENTICATION_PACKAGE_V1_0”},
{”@Name”:”TargetUserName”,”#text”:”John”},
{”@Name”:”Workstation”,”#text”:”EYE-4S1FGK3”},{”@Name”:”Status”,”#text”:”0xC000006A”}]}}

2023-01-24 13:18:14.8055269 96 4776

Security.evtx Microsoft-Windows-Security-Auditing Security 4776 2023-01-24 13:18:14.8055269
LogAlways NTLM authentication request DC-APHRODITE.Akropolys.nl
{”EventData”:{”Data”:[{”@Name”:”PackageName”,”#text”:”MICROSOFT_AUTHENTICATION_PACKAGE_V1_0”},
{”@Name”:”TargetUserName”,”#text”:”john”},
{”@Name”:”Workstation”,”#text”:”EYE-4S1FGK3”},{”@Name”:”Status”,”#text”:”0xC000006A”}]}}

2023-01-23 14:32:31.7939953 96 4776

Security.evtx Microsoft-Windows-Security-Auditing Security 4776 2023-01-23 14:32:31.7939953
LogAlways NTLM authentication request DC-APHRODITE.Akropolys.nl
{”EventData”:{”Data”:[{”@Name”:”PackageName”,”#text”:”MICROSOFT_AUTHENTICATION_PACKAGE_V1_0”},
{”@Name”:”TargetUserName”,”#text”:”Aphrodite”},
{”@Name”:”Workstation”,”#text”:”EYE-4S1FGK3”},{”@Name”:”Status”,”#text”:”0x0”}]}}

2023-01-24 13:53:51.7562240 110 4776

Security.evtx Microsoft-Windows-Security-Auditing Security 4776 2023-01-24 13:53:51.7562240
LogAlways NTLM authentication request DC-APHRODITE.Akropolys.nl
{”EventData”:{”Data”:[{”@Name”:”PackageName”,”#text”:”MICROSOFT_AUTHENTICATION_PACKAGE_V1_0”},
{”@Name”:”TargetUserName”,”#text”:”John”},
{”@Name”:”Workstation”},{”@Name”:”Status”,”#text”:”0x0”}]}}

2023-01-23 03:03:51.0982386 148 4776

Security.evtx Microsoft-Windows-Security-Auditing Security 4776 2023-01-23 03:03:51.0982386
LogAlways NTLM authentication request DC-APHRODITE.Akropolys.nl
{”EventData”:{”Data”:[{”@Name”:”PackageName”,”#text”:”MICROSOFT_AUTHENTICATION_PACKAGE_V1_0”},
{”@Name”:”TargetUserName”,”#text”:”HealthMailbox2f65eb98e79345249447f4860e723308@Akropolys.nl”},
{”@Name”:”Workstation”,”#text”:”EXC-CALYPSO”},
{”@Name”:”Status”,”#text”:”0x0”}]}}

2023-01-22 11:13:38.2607764 188 4776

Security.evtx Microsoft-Windows-Security-Auditing Security 4776 2023-01-22 11:13:38.2607764
LogAlways NTLM authentication request DC-APHRODITE.Akropolys.nl
{”EventData”:{”Data”:[{”@Name”:”PackageName”,”#text”:”MICROSOFT_AUTHENTICATION_PACKAGE_V1_0”},
{”@Name”:”TargetUserName”,”#text”:”SRV-HERCULES$”},{”@Name”:”Workstation”,”#text”:”SRV-HERCULES”},
{”@Name”:”Status”,”#text”:”0x0”}]}}

Table A.2: Clusters inspection of malicious authentication requests (Security.evtx + eventID 4776) from user John on
DC-APHRODITE in the Azure AD Labs (Test 1) dataset clustered by RoBERTa-pretrained.

1https://github.com/TimG-NL/cs_master_thesis

https://github.com/TimG-NL/cs_master_thesis

A.2 Cluster Inspection 53

A.2.2 Benign Program Installation Cluster Inspection Example

Timestamp ClusterID EventID Raw Feature String

2023-01-10 15:12:08.1390407 6 1033

Application.evtx MsiInstaller Application 1033 2023-01-10 15:12:08.1390407 Info A program was installed
DC-APHRODITE.Akropolys.nl S-1-5-21-894095181-724868689-229023573-500
{”EventData”:{”Data”:”vs_communityx64msi,
17.4.33006, 1033, 0, Microsoft Corporation, (NULL)”,”Binary”:”...”}}

2023-01-10 15:12:01.0081446 6 1033

Application.evtx MsiInstaller Application 1033 2023-01-10 15:12:01.0081446 Info A program was installed
DC-APHRODITE.Akropolys.nl S-1-5-21-894095181-724868689-229023573-500
{”EventData”:{”Data”:”vs_minshellinteropsharedmsi,
17.4.33006, 1033, 0, Microsoft Corporation, (NULL)”,”Binary”:”...”}}

2023-01-10 10:53:01.2131308 10 1033

Application.evtx MsiInstaller Application 1033 2023-01-10 10:53:01.2131308 Info A program was installed
DC-APHRODITE.Akropolys.nl S-1-5-21-894095181-724868689-229023573-500
{”EventData”:{”Data”:”Python 3.10.9 Utility
Scripts (64-bit), 3.10.9150.0, 1033, 0, Python Software Foundation, (NULL)”,”Binary”:”...”}}

2023-01-10 10:53:07.6251013 10 1033

Application.evtx MsiInstaller Application 1033 2023-01-10 10:53:07.6251013 Info A program was installed
DC-APHRODITE.Akropolys.nl S-1-5-21-894095181-724868689-229023573-500
{”EventData”:{”Data”:”Python 3.10.9 Tcl/Tk
Support (64-bit), 3.10.9150.0, 1033, 0, Python Software Foundation, (NULL)”,”Binary”:”...”}}

2023-01-10 15:18:03.1941393 13 1033

Application.evtx MsiInstaller Application 1033 2023-01-10 15:18:03.1941393 Info A program was installed
DC-APHRODITE.Akropolys.nl S-1-5-21-894095181-724868689-229023573-500
{”EventData”:{”Data”:”Windows SDK for Windows
Store Apps DirectX x86 Remote, 10.1.18362.1, 1033, 0, Microsoft Corporation, (NULL)”,”Binary”:”...”}}

2023-01-10 15:17:16.7262098 13 1033

Application.evtx MsiInstaller Application 1033 2023-01-10 15:17:16.7262098 Info A program was installed
DC-APHRODITE.Akropolys.nl S-1-5-21-894095181-724868689-229023573-500
{”EventData”:{”Data”:”Windows SDK for Windows Store Apps Contracts,
10.1.18362.1, 1033, 0, Microsoft Corporation, (NULL)”,”Binary”:”...”}}

Table A.3: Benign activity log inspection on DC-APHRODITE in the Azure AD Labs (Test 1) dataset clustered by
RoBERTa-pretrained.

54 A. Appendix

A.3 FlexFringe Anomaly Detection Results
A.3.1 TF-IDF + Mini-batch K-means FlexFringe output on DC-APHRODITE Azure

AD Labs (Test 1)

Figure A.1: FlexFringe graphs derived from the TF-IDF + Mini-batch K-means approach on DC-APHRODITE from Azure AD
Labs (Test 1)

A.3 FlexFringe Anomaly Detection Results 55

A.3.2 RoBERTa-pretrained +DBSCANFlexFringe output onDC-APHRODITEAzure
AD Labs (Test 1)

Figure A.2: FlexFringe graphs derived from the RoBERTa-pretrained + DBSCAN approach on DC-APHRODITE from Azure
AD Labs (Test 1)

56 A. Appendix

A.4 Extra Features Figures
A.4.1 Case April 2022: Infected Host

Figure A.3: Anomaly detection graph of the extra generated contextual features for the infected host for the Case April
2022 dataset.

A.5 FlexFringe Benign Host Investigation Results 57

A.5 FlexFringe Benign Host Investigation Results
A.5.1 TF-IDF + Mini-batch K-means FlexFringe output on WKS-FROUKJE Azure

AD Labs (Test 1)

Figure A.4: FlexFringe graphs derived from the TF-IDF + Mini-batch K-means approach on WKS-FROUKJE from Azure AD
Labs (Test 1)

58 A. Appendix

A.5.2 RoBERTa-pretrained +DBSCANFlexFringe output onWKS-FROUKJEAzure
AD Labs (Test 1)

Figure A.5: FlexFringe graphs derived from the RoBERTa-pretrained + DBSCAN approach on WKS-FROUKJE from Azure
AD Labs (Test 1)

Bibliography
Ankit, U. (2022, Jun). Transformer neural networks: A step-by-step breakdown. https://
builtin.com/artificial-intelligence/transformer-neural-network.

Baum, L. E. and T. Petrie (1966). Statistical Inference for Probabilistic Functions of Finite State
Markov Chains. The Annals of Mathematical Statistics 37(6), 1554 – 1563.

Bengio, Y., R. Ducharme, and P. Vincent (2000). A neural probabilistic language model. Advances in
neural information processing systems 13.

Bradley, S. (2020, Jun). The most important windows 10 security event log ids to monitor.

Brown, T., B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh,
D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark,
C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei (2020). Language models are
few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin (Eds.), Advances
in Neural Information Processing Systems, Volume 33, pp. 1877–1901. Curran Associates, Inc.

Camacho-Collados, J. andM. T. Pilehvar (2017). On the role of text preprocessing in neural network
architectures: An evaluation study on text categorization and sentiment analysis. arXiv preprint
arXiv:1707.01780.

Charter, B. (2008). Evtx and windows event logging. SANS Institute, InfoSec Reading Room.

Devlin, J., M.-W. Chang, K. Lee, and K. Toutanova (2018). Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805.

Duboue, P. (2020). The art of feature engineering: essentials for machine learning. Cambridge Uni-
versity Press.

Egersdoerfer, C., D. Zhang, and D. Dai (2022). Clusterlog: Clustering logs for effective log-based
anomaly detection. In 2022 IEEE/ACM 12th Workshop on Fault Tolerance for HPC at eXtreme
Scale (FTXS), pp. 1–10. IEEE.

Ester, M., H.-P. Kriegel, J. Sander, X. Xu, et al. (1996). A density-based algorithm for discovering
clusters in large spatial databases with noise. In kdd, Volume 96, pp. 226–231.

Geng, X. and H. Liu (2023, May). Openllama: An open reproduction of llama.

Guo, H., S. Yuan, and X. Wu (2021). Logbert: Log anomaly detection via bert. In 2021 international
joint conference on neural networks (IJCNN), pp. 1–8. IEEE.

Hammouchi, H., O. Cherqi, G. Mezzour, M. Ghogho, and M. El Koutbi (2019). Digging deeper into
data breaches: An exploratory data analysis of hacking breaches over time. Procedia Computer
Science 151, 1004–1009.

Jaccard, P. (1901). Distribution de la flore alpine dans le bassin des dranses et dans quelques régions
voisines. Bull Soc Vaudoise Sci Nat 37, 241–272.

Kampakis, S. (2022). 3 Types of Anomalies in Anomaly Detection | HackerNoon—hackernoon.com.
https://hackernoon.com/3-types-of-anomalies-in-anomaly-detection. [Accessed
14-Mar-2023].

Karl-Bridge-Microsoft (2021, Aug). Channeltype complex type - win32 apps.

59

https://builtin.com/artificial-intelligence/transformer-neural-network
https://builtin.com/artificial-intelligence/transformer-neural-network
https://hackernoon.com/3-types-of-anomalies-in-anomaly-detection

60 Bibliography

Lee, Y., J. Kim, and P. Kang (2021). Lanobert: System log anomaly detection based on bert masked
language model. arXiv preprint arXiv:2111.09564.

Liu, Y., M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov
(2019). Roberta: A robustly optimizedbert pretraining approach. arXiv preprint arXiv:1907.11692.

MacQueen, J. (1967). Classification and analysis of multivariate observations. In 5th Berkeley Symp.
Math. Statist. Probability, pp. 281–297. University of California Los Angeles LA USA.

McInnes, L. and J. Healy (2017). Accelerated hierarchical density based clustering. In 2017 IEEE
International Conference on Data Mining Workshops (ICDMW), pp. 33–42. IEEE.

Menon, P. (2023, Mar). Introduction to large language models and
the transformer architecture. https://rpradeepmenon.medium.com/
introduction-to-large-language-models-and-the-transformer-architecture-534408ed7e61.

Merriam-Webster (2023). Anomaly. https://www.merriam-webster.com/dictionary/
anomaly.

Moulavi, D., P. A. Jaskowiak, R. J. Campello, A. Zimek, andJ. Sander (2014). Density-basedclustering
validation. InProceedings of the 2014 SIAM international conference on datamining, pp. 839–847.
SIAM.

Mullen, T. and N. Collier (2004). Sentiment analysis using support vector machines with diverse
information sources. In Proceedings of the 2004 conference on empirical methods in natural lan-
guage processing, pp. 412–418.

Mysiak, K. (2020, Jul). Explaining dbscan clustering.

Na, Y. (2021). Finite State Machine | nana.log — yrnana.dev. https://yrnana.dev/post/
2021-03-14-finite-state-machine/. [Accessed 20-09-2023].

Nguyen, C. (2022). Sad: State machine-based anomaly detection in user behavior.

nxlog (2022). Nxlog documentation.

OpenAI (2023). Gpt-4 technical report.

Radford, A., K. Narasimhan, T. Salimans, I. Sutskever, et al. (2018). Improving language understand-
ing by generative pre-training.

Radford, A., J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al. (2019). Language models are
unsupervised multitask learners. OpenAI blog 1(8), 9.

Rajasekharaiah, K., C. S. Dule, and E. Sudarshan (2020). Cyber security challenges and its emerg-
ing trends on latest technologies. In IOP Conference Series: Materials Science and Engineering,
Volume 981, pp. 022062. IOP Publishing.

Rajendran, G., R. R. Nivash, P. P. Parthy, and S. Balamurugan (2019). Modern security threats in the
internet of things (iot): Attacks and countermeasures. In 2019 International CarnahanConference
on Security Technology (ICCST), pp. 1–6. IEEE.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams (1986). Learning representations by back-
propagating errors. nature 323(6088), 533–536.

Sculley, D. (2010). Web-scalek-means clustering. InProceedings of the 19th international conference
on World wide web, pp. 1177–1178.

Sennrich, R., B.Haddow, andA. Birch (2015). Neuralmachine translationof rarewordswith subword
units. arXiv preprint arXiv:1508.07909.

Sharif, A. (2021, Dec). What is an event log? contents and use - crowdstrike.

https://rpradeepmenon.medium.com/introduction-to-large-language-models-and-the-transformer-architecture-534408ed7e61
https://rpradeepmenon.medium.com/introduction-to-large-language-models-and-the-transformer-architecture-534408ed7e61
https://www.merriam-webster.com/dictionary/anomaly
https://www.merriam-webster.com/dictionary/anomaly
https://yrnana.dev/post/2021-03-14-finite-state-machine/
https://yrnana.dev/post/2021-03-14-finite-state-machine/

Bibliography 61

SolarWinds (2023). What Is a Windows Event Log? - IT Glossary | SolarWinds — solarwinds.com.
https://www.solarwinds.com/resources/it-glossary/windows-event-log. [Ac-
cessed 14-Feb-2023].

Sparck Jones, K. (1972). A statistical interpretation of term specificity and its application in re-
trieval. Journal of documentation 28(1), 11–21.

Steinhaus, H. et al. (1956). Sur la division des corpsmatériels en parties. Bull. Acad. Polon. Sci 1(804),
801.

Toman, M., R. Tesar, and K. Jezek (2006). Influence of word normalization on text classification.
Proceedings of InSciT 4, 354–358.

Touvron, H., T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal,
E. Hambro, F. Azhar, et al. (2023). Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971.

Van der Maaten, L. and G. Hinton (2008). Visualizing data using t-sne. Journal of machine learning
research 9(11).

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin
(2017). Attention is all you need. Advances in neural information processing systems 30.

Verdonck, T., B. Baesens, M. Óskarsdóttir, and S. vanden Broucke (2021). Special issue on feature
engineering editorial. Machine Learning, 1–12.

Verwer, S. and C. A. Hammerschmidt (2017). Flexfringe: a passive automaton learning package. In
2017 IEEE International Conference on Software Maintenance and Evolution (ICSME), pp. 638–
642. IEEE.

Wolf, T., L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf, M. Fun-
towicz, J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. L. Scao, S. Gugger,
M. Drame, Q. Lhoest, and A. M. Rush (2020, October). Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, Online, pp. 38–45. Association for Computational
Linguistics.

Yasar, K. and A. S. Gillis (2023, Mar). What is windows event log?: Definition from techtarget.

Zhang, W., Q. Yang, and Y. Geng (2009). A survey of anomaly detection methods in networks. In
2009 International Symposium on Computer Network and Multimedia Technology, pp. 1–3. IEEE.

https://www.solarwinds.com/resources/it-glossary/windows-event-log

	1 Introduction
	1.1 Topic Introduction
	1.2 Problem Relevance
	1.2.1 Motivation
	1.2.2 Stakeholders

	1.3 Research Questions, Hypothesis and Contributions
	1.3.1 Hypothesis
	1.3.2 Contributions

	1.4 Outline

	2 Background
	2.1 Logs
	2.1.1 What are Windows Event Logs?

	2.2 Anomaly Detection
	2.2.1 Definition of Anomalies and the Anomaly Detection Task
	2.2.2 Application in Cybersecurity
	2.2.3 Adversarial Examples

	2.3 Language Models
	2.3.1 What are Language Models?
	2.3.2 History of advancements in LMs
	2.3.3 Weighted word representation models
	2.3.4 Transformer models
	2.3.5 RoBERTa Transformer
	2.3.6 TF-IDF vs. Transformer models

	2.4 Clustering
	2.4.1 Mini-batch K-means
	2.4.2 DBSCAN

	2.5 Finite-state Automata
	2.6 Related Work on Anomaly Detection using Language Models
	2.6.1 LogBert
	2.6.2 LAnoBERT
	2.6.3 ClusterLog
	2.6.4 Innovation over related work

	3 Data & Materials
	3.1 Collection
	3.1.1 Data Origins
	3.1.2 Conversion to Usable Format for Preprocessing

	3.2 Data Preprocessing
	3.2.1 Construction of the Feature String
	3.2.2 Data Cleaning of the Feature String
	3.2.3 Anonymization of sensitive information

	3.3 Deduplication of Validation Set

	4 Methodology
	4.1 Model Build Pipeline
	4.1.1 Data Preprocessing
	4.1.2 Creating the Language Models
	4.1.3 Clustering of the log embeddings
	4.1.4 Enrichment with extra features
	4.1.5 FlexFringe

	4.2 Training process of the models
	4.2.1 Training phase

	4.3 Finding an evaluation method
	4.3.1 F1-score on labelled data
	4.3.2 Distant supervision
	4.3.3 Manual inspection

	5 Experiments
	5.1 Description of the datasets
	5.2 Experiment 1: Comparing the language models
	5.3 Experiment 2: Manual inspection using FlexFringe
	5.3.1 Experiment setup

	5.4 Overview experimental setup

	6 Results
	6.1 Comparison between transformer models
	6.1.1 Measuring spread of event IDs
	6.1.2 Visualizing the embeddings by their clusters
	6.1.3 Inspecting the cluster contents
	6.1.4 Cluster contents with benign logs
	6.1.5 Choosing the best language model

	6.2 Transformer LM vs. TF-IDF baseline using FlexFringe
	6.2.1 Investigating Case April 2022 dataset
	6.2.2 Investigating Azure AD Labs dataset
	6.2.3 Investigating a benign host

	7 Discussion
	7.1 Summarization of Key Findings
	7.2 Interpretation and Summarization of the Results
	7.3 Limitations
	7.4 Recommendations for Future Research

	8 Conclusion
	A Appendix
	A.1 Data Origins
	A.2 Cluster Inspection
	A.2.1 Malicious Authentication Requests Inspection Example
	A.2.2 Benign Program Installation Cluster Inspection Example

	A.3 FlexFringe Anomaly Detection Results
	A.3.1 TF-IDF + Mini-batch K-means FlexFringe output on DC-APHRODITE Azure AD Labs (Test 1)
	A.3.2 RoBERTa-pretrained + DBSCAN FlexFringe output on DC-APHRODITE Azure AD Labs (Test 1)

	A.4 Extra Features Figures
	A.4.1 Case April 2022: Infected Host

	A.5 FlexFringe Benign Host Investigation Results
	A.5.1 TF-IDF + Mini-batch K-means FlexFringe output on WKS-FROUKJE Azure AD Labs (Test 1)
	A.5.2 RoBERTa-pretrained + DBSCAN FlexFringe output on WKS-FROUKJE Azure AD Labs (Test 1)

