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Formal Control Synthesis for Stochastic Neural
Network Dynamic Models

Steven Adams , Morteza Lahijanian , Member, IEEE , and Luca Laurenti

Abstract—Neural networks (NNs) are emerging as pow-
erful tools to represent the dynamics of control systems
with complicated physics or black-box components. Due
to complexity of NNs, however, existing methods are
unable to synthesize complex behaviors with guarantees
for NN dynamic models (NNDMs). This letter introduces
a control synthesis framework for stochastic NNDMs with
performance guarantees. The focus is on specifications
expressed in linear temporal logic interpreted over finite
traces (LTLf), and the approach is based on finite abstrac-
tion. Specifically, we leverage recent techniques for convex
relaxation of NNs to formally abstract a NNDM into an
interval Markov decision process (IMDP). Then, a strat-
egy that maximizes the probability of satisfying a given
specification is synthesized over the IMDP and mapped
back to the underlying NNDM. We show that the process
of abstracting NNDMs to IMDPs reduces to a set of con-
vex optimization problems, hence guaranteeing efficiency.
We also present an adaptive refinement procedure that
makes the framework scalable. On several case studies, we
illustrate that our framework is able to provide non-trivial
guarantees of correctness for NNDMs with architectures of
up to 5 hidden layers and hundreds of neurons per layer.

Index Terms—Formal methods, interval Markov decision
processes, neural networks, switched systems, synthesis.

I. INTRODUCTION

AUTONOMOUS systems are becoming increasingly com-
plex, often including black-box components and per-

forming complex tasks in the presence of uncertainty. In this
context, because of their data efficiency and representation
power, deep neural networks (NNs) can be a transforma-
tive technology: NNs have already achieved state-of-the-art
performance to model and control dynamical systems in
various fields, including reinforcement learning (RL) [1].
However, employing NNs in safety-critical applications, such
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as UAVs, where failures may have catastrophic effects, remains
a major challenge due to limitations of existing methods to
provide performance guarantees. This letter focuses on this
challenge and develops a correct-by-construction synthesis
framework for systems with NN dynamic models (NNDMs).

To achieve complex behaviors with strong guarantees, for-
mal synthesis for control systems have been well-studied in
recent years [2]–[4]. These methods use expressive formal lan-
guages such as linear temporal logic with infinite (LTL) [5]
or finite (LTLf) [6] interpretation over traces, to specify
complex behaviors. For synthesis, control barrier functions
(CBF) [7] and abstraction methods are proposed [3]. CBFs
allow the use of continuous dynamics but are typically limited
to invariant-set problems. The abstraction methods apply rig-
orous techniques to represent the dynamics as a finite (Kripke)
models. Then, by utilizing model-checking-like algorithms on
the abstraction, they synthesize controllers that achieve the
specification. A key aspect is that both of these methods
generally relies on (simple) analytical models. For modern
systems, however, such models are often unavailable due to,
e.g., complexity of the physics or black-box components.

For their accurate predictive ability, NNDMs are already
employed to model dynamical systems [8] and enhance con-
troller training in RL frameworks [1]. In those works, a
NN model of the system is trained in closed-loop with a
NN controllers, which can be concatenated in a single NN
representing the dynamics of the closed-loop system. These
benefits have motivated the recent development of methods
for formal analysis of NNDM properties [9]–[11], extending
verification algorithms for NNs [12] to support temporal prop-
erties. Nevertheless, these methods are limited to simple safety
properties and often neglect noise in the dynamics. As a con-
sequence, the state-of-the-art techniques for NNDM are still
unable to achieve complex behaviors.

In this letter, we close the gap by introducing a control
synthesis framework for stochastic NNDMs to achieve a com-
plex specification with formal guarantees. Our approach is
based on finite abstraction, and we use LTLf as the speci-
fication language which has the same expressively as LTL,
but specifies finite behaviors, making it an appropriate lan-
guage for stochastic models. In particular, we leverage recent
convex relaxation techniques for NNs [12] to build piece-
wise linear functions that under- and overapproximate the
NNDM and construct the abstraction as an interval Markov
decision process (IMDP) [13]. Critically, we show that this
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discretization-based method only requires solving a set of con-
vex optimization problems, which can be reduced to evaluation
of an analytical function on a finite set of points, resulting in
efficient abstraction procedure. Then, we use existing tools
to synthesize a control strategy that optimizes the probability
of satisfying a given specification while guaranteeing robust-
ness against uncertainties due to dynamics approximation and
discretization. To ensure scalability, we present an adaptive
refinement algorithm that iteratively reduces uncertainty in
a targeted manner. Finally, we illustrate the efficacy of our
framework in several case studies.

In summary, the contributions of this letter are: (i) a novel
framework for formal synthesis for stochastic NNDMs with
complex specifications, (ii) an efficient finite abstraction tech-
nique for NNDMs, (iii) an adaptive refinement algorithm for
uncertainty reduction, and (iv) illustration of the efficacy and
scalability of the framework on a set of rich case studies with
complex NNDMs, whose architecture include up to five hidden
layers and hundreds of neurons per layer.

II. PROBLEM FORMULATION

We consider the following stochastic neural network
dynamic model (NNDM):

xk+1 = f w
a (xk) + vk, vk ∼ N (0, Covv), (1)

where k ∈ N, xk, vk ∈ R
n, and a ∈ A = {a1, . . . , am} is a

finite set of actions. For every a, f w
a : Rn → R

n is a (trained)
feed-forward NN with continuous activation functions, where
w denotes the maximum likelihood weights. The noise term vk

is a random variable with stationary non-degenerate Gaussian
distribution with zero mean and covariance Covv ∈ R

n×n.
Intuitively, xk is a discrete-time stochastic process whose time
evolution is given by iterative predictions of various NNs.
We remark that models such as Process (1) are increasingly
employed in both robotics and biological systems for both
model representation and NN controller training with, e.g.,
state-of-the-art model-based RL techniques [1], [8], [14]. For
instance, Process (1) can represent a NN model in closed loop
with different (possibly NN) feedback controllers, and the role
of actions a is to switch between different controllers.

Let ωN
x = x0

a0−→ x1
a1−→ . . .

aN−1−−−→ xN be a finite path
of Process (1) of length N ∈ N and �fin

x be the set of all
finite paths. Paths of infinite length and the set of all paths of
infinite lengths are denoted by ωx and �x, respectively, with
ωx(k) denoting the state of ωx at time k. Given a finite path,
a switching strategy πx : �fin

x → A chooses the next action of
Process (1). The set of all switching strategies is denoted by
�x. For a ∈ A, X ⊆ R

n, and x ∈ R
n, we call

Ta(X|x) =
∫

X
N (x̄ | f w

a (x), Covv)dx̄ (2)

the transition kernel of Process (1) under action a, where
N (· | f w

a (x), Covv) is a normal distribution with mean f w
a (x)

and covariance Covv. For a strategy πx, Process (1) defines a
probability measure P which is uniquely defined by Ta and
by the initial conditions [15] s.t. for every k > 0,

P[ωx(k + 1) ∈ X | ωx(k) = x, πx(ωx(k)) = a] = Ta(X|x).

We are interested in the behavior of Process (1) in compact
set Xsafe ⊂ R

n with respect to the regions of interest in R =
{r1, . . . , r|R|}, where ri ⊆ Xsafe. To define properties over R,
we associate to each region ri the atomic proposition pi such
that pi is true iff x ∈ ri. The set of atomic propositions is
given by AP, and the labeling function L:X → 2AP returns the
set of atomic propositions that are true at each state. Then,
we define the observation of path ωN

x to be ρ = ρ0ρ1 . . . ρN ,
where ρi = L(ωN

x (i)) for all i ≤ N.
To express the temporal properties of Process (1), we con-

sider LTLf, which is an expressive language to specify finite
behaviors, and hence, appropriate for stochastic systems.

Definition 1: An LTLf formula is built from a set of
propositional symbols AP and is closed under the boolean con-
nectives as well as the “until” operator U : φ := 	 | p | ¬φ | φ1∧
φ2 | φ1Uφ2, where p ∈ AP.

The common temporal operators “eventually” (F) and
“globally” (G) are defined as: Fφ = 	Uφ and Gφ = ¬F¬φ.
The semantics of LTLf can be found in [6]. We say a path ωx
satisfies φ, denoted by ωx |= φ, if a prefix of its observation
satisfies φ [16].

Problem 1 (Control Synthesis): Given a NNDM as defined
in Process (1), a compact set Xsafe, and an LTLf formula φ

defined over the regions of interest in Xsafe, find a switching
strategy π∗

x that maximizes the probability that a path ωx ∈ �x
of Process (1) satisfies φ while remaining in Xsafe.

To solve Problem 1, we abstract Process (1) into a finite
Markov model, where the stochastic nature of Process (1)
and the error corresponding to the discretization of the space
are formally modeled as uncertainties. The abstraction pro-
cess involves the computation of bounds on the transition
probabilities between different regions of the state space. In
Section IV-A, we show that by using linear functions that
locally under and overapproximate f w

a , these bounds can be
efficiently computed by solving convex optimization problems.
For the resulting Markov model, we then synthesize a strategy
that maximizes the probability that the paths of the Markov
model satisfy φ and can be mapped onto Process (1). Finally,
in Section V-A, we develop a scheme that iteratively refines
the abstraction based on the synthesis results by reducing the
conservatism induced by the approximation bounds of f w

a .

III. PRELIMINARIES

Notation: We denote by x(l) the l-th element of vector
x ∈ R

n. Further, for convex region X ⊂ R
n, we denote

by X[l] ⊂ R the interval of values of X in the l-th dimen-
sion, i.e., X[l] = {x(l) | x ∈ X}. Given a linear transformation
function (matrix) T ∈ R

n×n, the image of region X ⊂ R
n

under T is defined as Im(X, T ) = {T x | x ∈ X}. The post
image of region X under action a of Process (1) and T is
defined as Post(X, T , a) = {T f w

a (x) | x ∈ X}. For vectors
x, x′ ∈ R

n, we denote by rect(x, x′) the axis-aligned hyper-
rectangle that is defined by the intervals r1 × r2 × · · · × rn,
where rl = [ min(x(l), x′(l)), max(x(l), x′(l))]. In addition, for
region X ⊂ R

n, we denote by rect(X) the hyper-rectangular
overapproximation of X, i.e., rect(X) = rect(x̌, x̂), where
x̌(l) = inf(X[l]) and x̂(l) = sup(X[l]) for every l ∈ {0, . . . , n}.
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Lastly, we define a proper linear transformation function as
follows.

Definition 2 (Proper Transformation): For X ⊂ R
n, the

transformation matrix T ∈ R
n×n is proper w.r.t. X if Im(X, T )

is an axis-aligned hyper-rectangle.
Note that, as T is a linear transformation, X must necessarily

be a convex polytope in order for T to be proper [17].
Interval Markov Decision Processes: We utilize IMDPs,

also called Bounded MDPs [13], to abstract Process (1).
IMDPs are a generalized class of MDPs that allows for a range
of transition probabilities between states.

Definition 3 (IMDP): An interval Markov decision process
(IMDP) is a tuple I = (Q, A, P̌, P̂, API , LI), where

• Q is a finite set of states,
• A is a finite set of actions available in each state q ∈ Q.
• P̌ : Q × A × Q → [0, 1] is a function, where P̌(q, a, q′)

defines the lower bound of the transition probability from
state q ∈ Q to state q′ ∈ Q under action a ∈ A,

• P̂ : Q × A × Q → [0, 1] is a function, where P̂(q, a, q′)
defines the upper bound of the transition probability from
state q ∈ Q to state q′ ∈ Q under action a ∈ A.

• API is a finite set of atomic propositions,
• LI : Q → 2AP is a labeling function assigning to each

state q ∈ Q a subset of API .
For all q, q′ ∈ Q and a ∈ A, it holds that P̌(q, a, q′) ≤

P̂(q, a, q′) and
∑

q′∈Q P̌(q, a, q′) ≤ 1 ≤ ∑
q′∈Q P̂(q, a, q′). A

path ωI of an IMDP is a sequence of states ωI = q0
a0−→

q1
a1−→ q2

a2−→ . . . such that P̂(qk, a, qk+1) > 0 for all k ∈ N.
We denote the last state of a finite path ωfin

I by last(ωfin
I )

and the set of all finite and infinite paths by �fin
I and �I ,

respectively. A strategy of an IMDP πI : �fin
I → A maps a

finite path ωfin
I ∈ �fin

I of I onto an action in A. The set of
all strategies is denoted by �I . Let D(Q) denote the set of
discrete probability distributions over Q. Given a strategy πI ,
the IMDP reduces to a set of infinitely many Markov chains
defined by the transition probability bounds of the IMDP. An
adversary chooses a feasible distribution from this set at each
state and reduces the IMDP to a Markov chain. In particular,
an adversary is defined as a function ξ : �fin

I × A → D(Q)

that, for each finite path ωfin
I ∈ �fin

I , state q = last(ωfin
I ), and

action a ∈ A, assigns a feasible distribution γ a
q which satisfies

P̌(q, a, q′) ≤ γ a
q (q′) ≤ P̂(q, a, q′). The set of all adversaries is

denoted by 
.

IV. IMDP ABSTRACTION

In order to solve Problem 1, we first abstract Process (1)
into an IMDP I = (Q, A, P̌, P̂, API , LI). To do that, sim-
ilarly as in [18], we discretize Xsafe in such way that the
transition kernel in (2) can be computed analytically. Let
T be the Mahalanobis transformation T = �− 1

2 VT , where
� = VTCovvV is a diagonal matrix whose entries are the
eigenvalues of Covv, and V is the corresponding orthogonal
(eigenvector) matrix. Then, the distribution of T xk+1 given
xk = x under action a becomes N (· | T f w

a (x), I), where I is
the identity matrix. Consequently, given a region X ⊂ R

n

for which T is a proper transformation (i.e., Im(X, T ) =

rect(x̌, x̂)), we obtain that Ta(X|x) = g(T f w
a (x)), where

g(z) = 1

2n

n∏
l=1

(
erf

(
z(l) − x̌(l)

√
2

)
− erf

(
z(l) − x̂(l)

√
2

))
, (3)

and erf(·) is the error function. Hence, we discretize Xsafe
by using a grid in Im(Xsafe, T ), and denote by Qs =
{q1, . . . , q|Qs|} the resulting set of regions. To each cell qi,
we associate a state of the IMDP I. We overload the notation
by using qi for both a region in Xsafe and a state of I. Then,
the set of states of I is defined as Q = Qs ∪ {qu}, where qu

denotes the remainder of the state space, i.e., Rn \ Xsafe.
We define the set of actions of I to be the set of actions A

of Process (1). To ensure a correct abstraction of Process (1),
we assume a discretization of Xsafe that respects the regions
of interest in R, i.e., ∀r ∈ R, ∃Qr ⊆ Q such that ∪q∈Qr q = r.
Under this assumption, the set of atomic propositions API is
equal to AP. We define the labeling function LI with LI(q) =
L(x) for any choice of x ∈ q.

To compute the transition probability bounds P̌ and P̂ for
all q, q′ ∈ Qs and a ∈ A, we need to derive the following
bounds, which are the subject of Section IV-A and IV-B:

P̌(q, a, q′) ≤ min
x∈q

Ta(q′|x), P̂(q, a, q′) ≥ max
x∈q

Ta(q′|x) (4)

The probability interval for transitioning to the state qu ∈ Q,
i.e., the region outside of Xsafe, is given by

P̌(q, a, qu) ≤ 1 − max
x∈q

Ta(Xsafe|x)
P̂(q, a, qu) ≥ 1 − min

x∈q
Ta(Xsafe|x),

for all a ∈ A and q ∈ Qs. Since we are not interested in the
behavior of Process (1) outside Xsafe, we make qu absorbing,
i.e., P̌(qu, a, qu) = P̂(qu, a, qu) = 1 for all a ∈ A.

A. Transition Probability Bounds Computation

We derive an efficient and scalable procedure for the com-
putation of the bounds in (4). Recall that the discretization
procedure described above enables to write transition kernel
Ta as the product of erf in (3). Hence, the optimization prob-
lems in (4) can be performed on (3), i.e., for q′, q ∈ Qs to
bound Ta(q|x), we can optimize g(z) over z ∈ Post(q, T , a).
However, the exact computation of Post(q, T , a) is intractable
since NN-dynamics are inherently nonconvex. Hence, we
instead seek to overapproximate Post(q, T , a) by recursively
finding linear functions on the NN-structure that under- and
overapproximate f w

a (x) for all x ∈ q ∈ Q, as shown in [12].
We can then use these linear functions to bound Post(q, T , a)

for all q ∈ Qs as shown in the following proposition.
Proposition 1: For Process (1) under action a, region

q ⊂ R
n, and proper transformation matrix T w.r.t. q,

let {v1, . . . , v(2n)} ∈ R
n be the vertices of hyper-rectangle

Im(q, T ), and f̌ , f̂ : R
n → R

n be linear functions that
bound T f w

a (T −1z) for all z ∈ Im(q, T ). Define H =
{rect(f̌ (v), f̂ (v)) | v ∈ {v1, . . . , v(2n)}}. Then, it holds that
Post(q, T , a) ⊆ conv(H), where conv(H) is the convex hull
of hyper-rectangles in H.

Proof: For z ∈ Im(q, T ), we have that T f w
a (T −1z) ∈

rect(f̌ (z), f̂ (z)). Consequently, Post(q, T , a) ⊆ P̃ost(q, T , a) =
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Fig. 1. (a) For each point z in the black rectangle (Im(q,T )),
T f w

a (T −1z) is contained in the orange rectangle whose vertices are
defined by f̌ (z) and f̂ (z). (b) The blue rectangles contain f̌ (z) and f̂ (z)
for all z ∈ Im(z,T ). (c) The orange rectangles capture T f w

a (T −1v ) for
all vertices v of Im(q,T ) and (d) fully define the red convex region that
captures T f w

a (T −1z) for all z ∈ Im(q,T ).

∪z∈Im(q,T )rect(f̌ (z), f̂ (z)). Note that Im(q, T ) is a con-
vex polytope and the construction of rect(f̌ (z), f̂ (z)) only
involves linear operations. As a consequence, P̃ost(q, T , a)

is fully described by the vertices of Im(q, T ). Hence,
P̃ost(q, T , a)⊆conv(H).

As a result of the above proposition, to construct the post
image overapproximation induced by the local linear under-
and overapproximations of the NN, we only have to check the
vertices of the image as illustrated in Figure 1. Utilizing the
analytical reformulation of the transition kernel as in (3) and
the post-image overapproximation, we obtain that

min
x∈q

Ta(q′|x) ≥ min
z∈conv(H)

g(z) (5)

max
x∈q

Ta(q′|x) ≤ max
z∈conv(H)

g(z) (6)

where H is as defined in Proposition 1. Here, (6) is a log-
concave maximization problem, which can be solved with
convex optimization algorithms, such as gradient descent [19].
Although (5) is in general non-convex, the following result –
a consequence of Corollary 32.3.4 in [17] – guarantees that to
compute lower bound (5), i.e., the minimum of a log-concave
problem, it suffices to check the vertices of conv(H).

Lemma 1: For g(z) as defined in (3) it holds that

min
z∈conv(H)

g(z) = min
z∈V

g(z) (7)

where V is the set of vertices of conv(H).

B. Efficient Computation of Transition Probabilities

Note that, although solving for (5) and (6) reduces to the
solution of convex maximization and minimization problems,
to build the abstraction, we still need to solve O(|Qs|2) of these
problems (one for each pair of states in Qs). This becomes
expensive for large |Qs|, which is often the case for high-
dimensional systems. In this section, we propose an alternative
approach to reduce this computational burden. In particu-
lar, the following theorem shows that if we overapproximate
conv(V) by an axis-aligned hyper-rectangle, to find solutions
to (4), we only have to check a finite number of points at
the boundary of the axis-aligned hyper-rectangle and perform
O(|Qs|2) function evaluations, rather than optimizations.

Fig. 2. Regions q1, q2 share the same relative position w.r.t.
rect(conv (H)), i.e., ∀z ∈ q1, q2 it holds that z(l) ≤ inf(rect(conv (H))[l ])
for all l ∈ {0, . . . , n}. Consequently, they share the same zmin and
zmax for problems (8). The white-blue coloring of the regions repre-
sents the grouping of regions accordingly. For overlapping region q3,
the minimizing location for (5) is found at a vertex of conv (H).

Theorem 1: For Process (1) under action a, regions q, q′ ⊂
R

n, and proper transformation matrix T w.r.t. q, q′, construct
H w.r.t. q per Proposition 1. Further, let vectors ž, ẑ define the
vertices of rect(conv(H)), i.e., rect(conv(H)) = rect(ž, ẑ) such
that for every l ∈ {0, . . . , n} ž(l) ≤ ẑ(l), and denote by v̄ the
center of Im(q′, T ). Then, for zmin, zmax ∈ R

n defined such
that for l ∈ {0, . . . , n}

z(l)
min = arg max

z(l)∈{ž(l),ẑ(l)}
|z(l) − v̄(l)|,

z(l)
max =

⎧⎨
⎩

v̄(l) if v̄(l) ∈ [ž(l), ẑ(l)]
arg min

z(l)∈{ž(l),ẑ(l)}
|z(l) − v̄(l)| otherwise

it holds that

min
x∈q

Ta(q′|x) ≥ g(zmin), max
x∈q

Ta(q′|x) ≤ g(zmax). (8)

Proof: We consider the max case; the min case follows
similarly. By construction conv(H) ⊆ rect(conv(H)),
hence maxx∈q Ta(q′|x) ≤ maxz∈rect(conv(H)) g(z). As
rect(conv(H)) is an axis-aligned hyperrectangle, it
holds that maxz∈rect(conv(H)) g(z) = ∏n

l=1 maxz(l)∈[ž(l),ẑ(l)]∫ v̂(l)

v̌(l) N (x̄(l) | z(l), 1)dx̄(l), where [v̌(l), v̂(l)] is the interval of
the l−th dimension of Im(q′, T ). This is a product of n
maximization problems that seek for the mean of a Gaussian
distribution that maximizes its integral on a set. Each of these
is maximized by minimizing the distance of z(l) to the center
point v̄(l) of the integration set. Hence, z(l)

max is equal to v̄(l) if
v̄(l) ∈ [ž(l), ẑ(l)], else to one of the endpoints of [ž(l), ẑ(l)].

According to the above theorem, given conv(H) there exist
a finite number of potential zmax and zmin. Moreover, given a
potential zmin or zmax we can immediately find all the regions
that take optimal value for (8) at this point, based on the posi-
tions of the regions in the grid, as illustrated in Figure 2. As a
consequence, we can simply check the finite sets of all possi-
ble zmin and zmax once to obtain zmax and zmin for all regions
in the same group, and compute (8) by evaluating function
g on zmin and zmax for each region. Although this dramatic
reduction of computation comes at the cost of more conserva-
tive bounds compared to solving (5) and (6), the introduced
overapproximation can be reduced by a refinement algorithm
as proposed in Section V-A.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 09:45:05 UTC from IEEE Xplore.  Restrictions apply. 



2862 IEEE CONTROL SYSTEMS LETTERS, VOL. 6, 2022

V. CONTROL SYNTHESIS & ABSTRACTION REFINEMENT

Given Process (1) and an LTLf property φ, our objective
is to synthesize a strategy that maximizes the probability of
satisfying φ. The IMDP abstraction I as constructed above,
captures the behavior of Process (1) w.r.t. the regions of
interest. Therefore, we can focus on finding a strategy for
I that maximizes φ subject to being robust against all the
uncertainties (errors) induced by the discretization of space
and the NN-dynamics approximation process. This translates
to assuming that the adversary’s (uncertainty) objective is to
minimize the probability of satisfaction. Hence,

π∗
I = arg max

πI∈�I
min
ξ∈


P[ωI |= φ | πI , ξ, ωI(0) = q]. (9)

We note that π∗
I can be computed using known algorithms with

a computational complexity polynomial in the number of states
in the IMDP [3]. To show that π∗

I maps to a robust strategy
for Process (1), we need to introduce a mapping between the
process and the IMDP. Let Mx : Rn → Q be a function that
maps continuous states x ∈ R

n to their corresponding discrete
regions in Q, i.e., x ∈ q =⇒ Mx(x) = q. In addition, let
Mω : �fin

x → �fin
I be a function that maps finite paths of

Process (1) to the finite paths of IMDP I, i.e., for a finite
path ωN

x = x0
a0−→ x1

a1−→ . . .
aN−1−−−→ xN , Mω(ωN

x ) = Mx(x0)
a0−→

Mx(x1)
a1−→ . . .

aN−1−−−→ Mx(xN). Then, we can map π∗
I to a

switching strategy πx through

π∗
x (ωN

x ) = π∗
I(Mω(ωN

x )). (10)

Further, we define the lower and upper bounds of the proba-
bility of satisfaction of φ under π∗

I as

p̌(q) = min
ξ∈


P[ωI |= φ | π∗
I , ξ, ωI(0) = q], (11)

p̂(q) = max
ξ∈


P[ωI |= φ | π∗
I , ξ, ωI(0) = q], (12)

respectively. The following theorem shows that the satisfaction
probability bounds also hold for Process (1) under π∗

x .
Theorem 2: Given Process (1), a compact set Xsafe ⊂ R

n,
and an LTLf formula φ defined over the regions of interest in
Xsafe, let I be the IMDP abstraction of Process (1) as described
in Section IV. Further, let π∗

I be computed by (9) with prob-
ability bounds p̌ and p̂ as in (11) and (12), respectively. Map
π∗
I into a switching strategy π∗

x as in (10). Then for any initial
state x0 ∈ Xsafe it holds that

P[ωx |= φ | π∗
x , ωx(0) = x0] ∈ [p̌(Mx(x0)), p̂(Mx(x0))].

The proof of this theorem follows similarly as the proof
of [20, Th. 2]. Theorem 2 guarantees that the probability that
Process (1) satisfies φ is contained in the satisfaction proba-
bility bounds p̌ and p̂. The difference between p̌ and p̂ can
be viewed as the error induced by space discretization and
local approximation of the NN dynamics with linear functions.
This error monotonically decreases if the size of the discretiza-
tion decreases. As a consequence, the synthesized strategy is
optimal for an infinitely fine grid.

A. Synthesis Driven Refinement

Here, we present a discretization refinement scheme that
aims to efficiently reduce the error induced by the space dis-
cretization. In each refinement step, we refine a predefined
fixed number of states in Qs, which we refer to as nref . To
enable the use of Theorem 1 and Proposition 1, our refinement
guarantees that all refined regions are axis-aligned hyper-
rectangles in the transformed space. Hence, a region is refined
by splitting the corresponding hyper-rectangle region Im(q, T )

over one dimension. To decide on which states to refine, we
define a score function θ : Q → R

+ as

θ(q) = (p̌(q) − p̂(q))
∑
a∈A

∑
q′∈Q

(
P̂(q′, a, q) − P̌(q′, a, q)

)

where p̌ and p̂ are the satisfaction probabilities as defined
by (11) and (12). We refine the nref regions with the highest
θ(q). The score function serves as a measure of uncertainty
caused by state q ∈ Qs and closely resembles the uncertainty
measure proposed in [21] in a verification context.

The rationale behind our choice of which dimension to
refine is based on the objective to reduce the conservatism
introduced by the NN overapproximation process. In particu-
lar, for q ∈ Qs, we want to find the dimension that minimizes
the volume of conv(H), as described in Proposition 1, for both
regions created by splitting Im(q, T ) over this dimension. To
do so, we transform all the edges of Im(q, T ) using the bound-
ing functions and measure the expansion of the edges, i.e., the
relative difference in distance between the vertices describing
an edge before and after the transformation. As Im(q, T ) is
an axis-aligned hyper-rectangle, we then take the dimension to
refine equal to the dimension the largest expanded edge aligns
to. The exact procedure to find the dimension to refine can be
found in the technical report [22].

VI. CASE STUDIES

We consider 3 different NNDMs learned on non-linear
datasets taken from the literature (for details see Appendix I-E
in the technical report [22]). All transition probability bounds
of the IMDP abstractions were computed using Theorem 1,
except for the lower bounds on transitions to regions that over-
lap with the post image overapproximation of the region from
which the transition starts. For those, we used Proposition 1.
Empirically, we found this approach to offer good results in
balancing between precision and scalability. All experiments
were run on an Intel Core i7-10610U CPU at 1.80GHz×
2.30Hz with 16GB of RAM.

1) Efficient Control Synthesis by Iterative Refinement: We
consider a 3-D car model from [23], with state space repre-
senting position and orientation of the car and seven discrete
actions switching between different feedback controllers that
steer the car to a given orientation. We are interested in syn-
thesizing a strategy for a static overtaking scenario as shown
in Figure 3. Here, the car should globally avoid an obsta-
cle (“O”) and eventually reach a desired (“D”) region, i.e.,
φ1 = G(¬O) ∧ F(D). To do so, we start with a very coarse
abstraction and iteratively refine the discretization, which over-
all takes approximately 36 minutes. From Figure 3 we observe
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Fig. 3. Region labeling and classification of each initial states x ∈ X
as Qyes if p̌(Mx(x)) ≥ 0.95, Qno if p̂(Mx(x)) < 0.95 and Q? otherwise,
for the first, an intermediate and the final abstraction of Experiment 1. In
blue, a simulated path labeled with the action chosen at each step.

Fig. 4. Region labeling and lower satisfaction probability bounds of the
initial states for Experiment 2 (a) and 3 (b).

that the refinement procedure preserves the initial coarseness
of the discretization for regions with small uncertainty on the
satisfaction probability, whereas the critical regions, such as
the corners around the obstacle, are further refined. Hereby, not
only the lower bounds improve (the orange regions turn green),
but also the upper bounds improve (red regions turn orange or
green), and the controller strategies based on non-informative
lower bounds are updated (red regions turn green).

2) Control Synthesis for Complex Specifications: To show
that our framework can handle complex specifications, we
use four nonlinear 2-D datasets generated by the nonlinear
system considered in [24], and perform control synthesis given
the same labeling of the domain and complex LTLf spec-
ification as in [24], i.e., φ2 = G(¬O) ∧ F(D1) ∧ F(D2).
The iterative abstraction and control synthesis procedure takes
approximately 65 seconds, and the final abstraction consists
of 1, 500 states. Figure 4a shows that, although we assume a
noisier dataset, we are able to compute informative satisfying
probability bounds that resemble the result in [24].

3) Scalability (High-Dimensional and Complex NN-
Structures): Last, we test the scalability of our framework on
a 5-D system with NNs of 5 hidden layers with 100 neurons
per layer. Here, we consider the reach-avoid specification φ1
with the labeling of the space as shown in Figure 4b. We
again start with a coarse abstraction and iteratively improve
the abstraction, which overall takes approximately 2 hours,
from which 1.5 hours for generating the IMDP abstractions.
The final abstraction consists of approximately 15, 000 states.
Figure 4b shows that we are able to guarantee for a large

part of the domain that the initial states almost always
(green regions) or almost never (red regions) satisfy the
specification using complex controller strategies as indicated
by the simulated paths and corresponding actions.

VII. CONCLUSION

We introduced a formal control synthesis framework for a
stochastic NNDMs with LTLf specifications. We showed that
in practice the abstraction can be constructed very efficiently
and developed an iterative refinement scheme to efficiently
minimize the number of states of this discretization-based
method. By experiments on various datasets, we showed that
our framework enables efficient control synthesis of prov-
ably correct strategies for complex NNDM of several input
dimensions on nontrivial control tasks. In the future, we plan to
extend our framework to NNDMs driven by Recurrent Neural
Networks and NNDMs with a continuous action space.
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