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Laymen’s Summary

Cooke’s Classical Model is a method that can be used the make predictions when no
historical data is available. It combines multiple predictions from experts to create one
final prediction to answer the research question. This research analyses how stable and
informative the outcomes of Cooke’s Classical Model are. We examine how the results
change when the input data is slightly altered, to see if the result is stable. Additionally,
we compare each result of the model’s with other results to see how informative they are
and which result stays the most consistent.

We have found that the more experts are included in the study, the more stable the
outcome becomes. In most cases, stability also improves when experts are asked to an-
swer more questions. Among the models tested, the outcome that gives the same weight
to all experts tends to produce the most informative results.
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Summary

When researchers are left with important questions and no historical data is available,
such as during the spread of a new virus, then Cooke’s Classical Model (CM) of Struc-
tured Expert Judgment (SEJ) is one of the methods that can be used to make predictions.
The model aggregates expert assessments into a single prediction, which we call a De-
cision Maker (DM). This bachelor thesis investigates the robustness and discrepancy of
Cooke’s Classical Model using a dataset of 49 different studies. Five types of DMs are
analyzed: Equal Weight (EWDM), Global Weight (GWDM), Global Weight Optimized
(GWDM opt), Item Weight (IWDM), and Item Weight Optimized (IWDM opt). Ro-
bustness is assessed by analyzing how calibration scores of DMs change when individual
experts or calibration questions are removed. Furthermore, we look at the Robustness by
Distribution Ratio (RDR). Discrepancy is analyzed by comparing the information score
obtained from the uniform background measure and the information scores obtained us-
ing other DMs as background measures.

The analysis shows that the more experts there are in a study, the more robust the
DMs become. For some DMs, robustness also improves with more calibration ques-
tions, while for others, no clear trend is observed. Overall, the IWDM, IWDM opt, and
GWDM opt are found to be more robust, while the EWDM and the GWDM are the least
discrepant. The thesis concludes with recommendations for choosing the best-performing,
most robust, or least discrepant DM depending on the number of experts and calibration
questions available in a study.
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1 Introduction

Imagine a new virus is spreading across the world. Researchers are faced with important
questions: How long does the infection last? How long is an infected person contagious?
How long is someone immune after recovery? Since the virus is new, the researchers
do not have official data to answer these questions with 100% certainty. This is where
models such as Cooke’s Classical Model (CM) of Structured Expert Judgment (SEJ), the
SEIR model, the Delphi technique, or others become valuable. Cooke’s Classical Model
aggregates assessments from a group of experts to compute a final prediction. There-
fore, when no historical data is available, Cooke’s Classical Model is one of the methods
that is very valuable for predicting answers to questions of interest (Hanea & Nane, 2021).

An example of a study using Cooke’s Classical Model is from the World Health Organi-
zation (WHO), which investigated the role of different foods and exposure possibilities in
preventing foodborne illnesses (Hoffmann et al., 2017). However, CM is not only limited
to public health, the model has also been applied to studies from other fields such as
climate change. One of them is a study published in PNAS that uses the model to pre-
dict sea level rise (Bamber, Oppenheimer, Kopp, Aspinall, & Cooke, 2019). Since many
different fields of study use the CM (TU Delft OpenCourseWare, 2020), it is important
to understand how well the model performs. Thus, this research focuses on a robustness
and discrepancy analysis of Cooke’s Classical Model in a expert judgment study. With
robustness we refer to the stability of the solutions when the input data changes, such
as outliers. Discrepancy measures how informative a model’s solution is compared to a
reference distribution.

We begin by explaining how the CM works and what experts assessments look like in
section 2. This section also introduces the concept of Decision Makers (DMs) and the dif-
ferent methods to construct them. Furthermore, the scoring methods, calibration score
and information score, are formulated and explained. In section 3, we explain what
robustness means in the context of the CM. We analyze how DM scores change when
individual experts or questions are removed from the data. We also introduce an ad-
ditional robustness metric, the Robustness by Distribution Ratio (RDR), explained in
section 3.3. Next, in section 4, we introduce the concept of discrepancy, focusing on the
role of the background measure in computing the information scores. We compare the
information scores of DMs using various background measures to assess how different
assumptions affect the outcome. Finally, in section 5, we present recommendations on
which DM to choose based on the number of experts and calibration questions available.
These recommendations are based on the best scoring, most robust, and most discrepant
DMs.
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2 Cooke’s Classical Model

Cooke’s Classical Model (CM) is a model of Structured Expert Judgment (SEJ) that is
used to combine multiple experts’ opinions into a single prediction for a specific question of
interest. An example of a question of interest is: What is the percentage of unvaccinated
children in Europe in 2030? In order to answer this question with a proper prediction, you
need to find and recruit multiple experts in the field of study of the question of interest.
In selecting experts, you look at criteria such as publication records, previous attribu-
tion in studies, experience, and expertise. These experts may include epidemiologists,
scientists, engineers, and professionals from government, academia, or non-governmental
organizations (Beshearse, 2021). Each expert is asked to estimate the question of interest
by giving three quantiles: 5%-, 50%− and 95%−percentile. For instance, if an expert
provides the answer 0.5%, 2.5% and 7%, for the percentiles respectively, then the expert
predicts a 5% chance that the actual percentage of unvaccinated children in Europe will
be below 0.5%. A 50% chance it will be below 2.5% and a 50% chance it will be above
2.5%. Lastly, he predicts a 5% chance that the percentage of unvaccinated children will
exceed 7%.

However, how can we be certain that these experts give reliable predictions? This is
where the Classical Model uses calibration questions. Alongside the question of interest,
each study includes several calibration questions from the same field. These questions are
based on data from official sources, often unpublished at the time of the study. Experts
are asked to answer with 5%-, 50%− and 95%−percentile estimates for each calibration
question, just as they do for the question of interest. While the researcher knows the
realizations of the calibration questions, the experts do not. This allows the researcher
to objectively evaluate the accuracy and calibration of each expert’s predictions against
the known answers to the calibration questions. Each expert receives a calibration score
based on their performance on these questions, this will be explained in more detail in
Section 2.1. In addition to calibration, the informativeness of each expert’s predictions
is also evaluated, which is discussed in Section 2.2. Then, Section 2.3 introduces the
combined score, which combines both calibration and informativeness. This combined
score is used to create the final predictions, which will be further discussed in section 2.4.
(Hanea & Nane, 2021).

But first, we will explain how the 5%-, 50%− and 95%−percentile are used to compute
the cumulative distribution function (CDF) of each expert, for each question. Suppose
that we have N experts, denoted as e1, e2, . . . , eN . Let the assessment of expert i for a
question be denoted as qi

5, qi
50 and qi

95 for the 5%-, 50%− and 95%−percentile, respec-
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tively. We define the range [L, U ] based on the percentiles and the realization of the
question by:

L = min
1≤i≤N

{
qi

5, realization
}

(2.1)

U = max
1≤i≤N

{
qi

95, realization
}

(2.2)

Here L is the smallest value of all expert’s 5%-percentiles and the realization. U is the
largest value of all expert’s 95%-percentiles and the realization of this question. From
this interval, we define the intrinsic range as:

[L∗, U∗] = [L− k · (U − L), U + k · (U − L)] (2.3)

The constant k is the overshoot, usually set to 10%. Each expert’s distribution is then
defined over this intrinsic range, and probability is assigned uniformly within each inter-
percentiles interval. For example, if an expert provides the following assessment qi

5 = 0.5
and qi

50 = 2.5, then the probability that the true value is 1 is the same as the probability
that this value is 2. This uniformity ensures that the (CDF) is piecewise linear. It starts
at the lower bound of the intrinsic range, L∗, where the CDF value is zero. At the expert’s
5%-quantile value, the CDF reaches probability 0.05. At the 50%-quantile, it increases
to 0.5. At the 95%-quantile, it reaches probability 0.95. Finally, at the upper bound of
the intrinsic range, U∗, the CDF reaches 1. Another way to describe this distribution
function is (Hanea & Nane, 2021):

Fi(x) =



0, for x < L∗

0.05
qi

5−L∗ · (x− L∗), for L∗ ≤ x < qi
5

0.45
qi

50−qi
5
· (x− qi

5) + 0.05, for qi
5 ≤ x < qi

50
0.45

qi
95−qi

50
· (x− qi

50) + 0.5, for qi
50 ≤ x < qi

95
0.05

U∗−qi
95
· (x− qi

95) + 0.95, for qi
95 ≤ x < U∗

1, for x ≥ U∗

(2.4)

To explain it more graphically, we will use an example. Suppose that we have the assess-
ments of three experts for a question with realization 30. The 5%-, 50%- and 95%-quantile
are 10,36,50 for expert 1. For expert 2 and 3 we have 20,35,45 and 27,31,36 respectively.
Then the CDF’s are shown in figure 2.1
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Figure 2.1: Cumulative distribution functions of three experts.

2.1 Calibration Scores
An expert’s calibration score shows how well their predictions match real outcomes in
the field related to both the calibration questions and the question of interest. In this
section, we will explain how this score is computed.

Suppose that we have N experts, denoted as e1, e2, . . . , eN and M calibration questions,
denoted as Q1, Q2, . . . , QM . Where we denote the prediction of expert i on question j as:
qi,j

5 ,qi,j
50 and qi,j

95 for the 5%-, 50%− and 95%−percentile, respectively. These percentiles
divide the prediction range into four inter-percentile intervals. We define the probability
vector p = (0.05, 0.45, 0.45, 0.05) that divides the prediction ranges. Next we will define
the empirical distribution for expert i. Let xj be the actual value, or realization, of cal-
ibration question Qj . Then for each expert, we count the amount of realizations that
fall into each of the four inter-percentile intervals of p. The normalized counts for each
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interval are given by the following formulas:

s1(ei) = |{k | xk ≤ qi,j
5 }|

M
= 1

M

M∑
k=1

1{xk≤qi,j
5 } for j ∈ {1, . . . , M}, (2.5)

s2(ei) = |{k | q
i,j
5 < xk ≤ qi,j

50 }|
M

= 1
M

M∑
k=1

1{qi,j
5 <xk≤qi,j

50 } for j ∈ {1, . . . , M}, (2.6)

s3(ei) = |{k | q
i,j
50 < xk ≤ qi,j

95 }|
M

= 1
M

M∑
k=1

1{qi,j
50 <xk≤qi,j

95 } for j ∈ {1, . . . , M}, (2.7)

s4(ei) = |{k | q
i,j
95 < xk}|
M

= 1
M

M∑
k=1

1{qi,j
95 <xk} for j ∈ {1, . . . , M}. (2.8)

Where we use the indicator function 1{b≤x≤a}, which is equal to 1 if the condition is true,
and 0 otherwise.

1{b≤x≤a} =
{

1, if b ≤ x ≤ a,

0, otherwise.
(2.9)

Combining these functions, we obtain s(ei) = (s1(ei), s2(ei), s3(ei), s4(ei)) which we call
the empirical distribution vector for expert i. Now we can compare this distribution
and the probability vector p using the Kullback-Leibler divergence: I(s(ei), p). The
comparison is made in the following formula:

2MI
(
s(ei), p

)
= 2M

4∑
l=1

sl(ei) ln sl(ei)
pl

(2.10)

This statistic is distributed as a chi-square random variable with 3 degrees of freedom
under the null hypothesis Hei : the inter-percentile interval containing the actual value
for each variable is drawn independently. Finally, the p-value of this statistic is used to
score each expert. This score is called the calibration score with the following formula:

Cal(ei) = Prob{2MI(s(ei), p) > r | Hei} (2.11)

Where the value r equal is to statistic 2.10, computed using the realizations of the cali-
bration questions (Hanea & Nane, 2021).

Since the calibration score of an expert represents a probability, we know that each cal-
ibration score lies within the interval between zero and one (Grimmett & Welsh, 2014).
A higher calibration score generally indicates a better calibrated expert. However, cali-
bration scores can not always be directly compared between all experts. For instance, if
we have two expert’s: e1 and e2. In figure 2.2 we see the assessments of each expert for
ten calibration questions. Each horizontal line corresponds to one calibration question.
The left and right endpoint of a line represent the 5%- and 95%-percentile, respectively.
The crosses indicate the realizations of the questions. If a realization falls within the
5%− 95% interval, then the cross is colored blue. However, if the realization falls outside
this interval, then the cross is colored yellow. The blue circle marks the 50%-percentile.
Notice that expert 1 and 2 give almost identical assessments. However, expert 1 has four
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times that their 50%-percentile coincides with the realization. To compute the calibration
scores, we count the positions of the realizations compared to the percentile intervals. For
expert 1 that is, for realization xk we once have that xk ≤ q1

5 . We have six times that
q1

5 < xk ≤ q1
50. Next, we have twice that q1

50 < xk ≤ q1
95. Finally, we have one time that

xk > q1
95. This results in the vector s(e1) = (0.1, 0.6, 0.2, 0.1). Using the same counting

method, we find for expert 2 the following s(e2) = (0.1, 0.4, 0.4, 0.1). These empirical dis-
tribution vectors give the calibration scores 0.39 for expert 1, and 0.83 for expert 2. One
might expect expert 1 to have a higher calibration score, as their assessments appear to
be better calibrated. However, this is not the case. This example shows that calibration
scores are not always directly comparable. Therefore, you should look at a threshold of
0.05. If one expert’s calibration score is below 0.05, and another expert’s calibration score
is above 0.05, then we can conclude that the second expert is better calibrated (Hanea &
Nane, 2021).

Figure 2.2: Assessments of two experts.

2.2 Information Scores
While the calibration of expert’s is important, it is not the only quality that we look for.
We also want the assessments from expert’s to be informative. To assess the informative-
ness of an expert, we examine the expert’s probability distribution and compare it to the
background measure, which is usually the uniform distribution. In a uniform distribution,
every outcome within an interval is equally likely, thus it has the same probability. For
example, in the interval [1,3], the probability of picking 1 is the same as picking 3. In
Cooke’s Classical Model as background measure for calculating information scores is the
uniform distribution used on the intrinsic range [L∗, U∗] and the function:

U(x) = x− L∗

U∗ − L∗ , for L∗ ≤ x ≤ U∗ (2.12)

With this function we can calculate the probability that a value falls within each inter-
percentile interval of the background measure. For example, the probability that the
realization of question j falls between L∗ and the 5th percentile qi,j

5 of expert i is:

r1 = U(qi,j
5 )− U(L∗) = qi,j

5 − L∗

U∗ − L∗ , for x ∈ [L∗, qi,j
5 ] (2.13)
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Similarly, for the remaining intervals we have:

r2 = U(qi,j
50 )− U(qi,j

5 ) = qi,j
50 − qi,j

5
U∗ − L∗ , for x ∈ (qi,j

5 , qi,j
50 ], (2.14)

r3 = U(qi,j
95 )− U(qi,j

50 ) = qi,j
95 − qi,j

50
U∗ − L∗ , for x ∈ (qi,j

50 , qi,j
95 ], (2.15)

r4 = U(U∗)− U(qi,j
95 ) = U∗ − qi,j

95
U∗ − L∗ , for x ∈ (qi,j

95 , U∗]. (2.16)

Cooke’s model assumes that the probability that the realization of the questions falls
below the 5th percentil q5 is 0.05. For the other inter-quantile intervals we have the prob-
abilities 0.45,0.45,0.05, respectively. This reflects in the probability vector p. Therefore,
we also know that the distribution functions for all experts should have these values at
the corresponding quantiles. Which we can also see directly from figure 2.1. Let F (·) be
the expert’s cumulative distribution function, then we have:

f1 = F (qi,j
5 )− F (L∗) = 0.05, (2.17)

f2 = F (qi,j
50 )− F (qi,j

5 ) = 0.45, (2.18)
f3 = F (qi,j

95 )− F (qi,j
50 ) = 0.45, (2.19)

f4 = F (U∗)− F (qi,j
95 ) = 0.05. (2.20)

To compute the information score of expert i on question j, we then compare the observed
probabilities r1, r2, r3, r4 with the expected ones f1, f2, f3, f4 in the following formula:

Ij(ei) =
4∑

k=1
fk ln fk

rk
(2.21)

We can then rewrite this to:

Ij(ei) = 0.05 ln 0.05
qi,j

5 − L∗
+ 0.45 ln 0.45

qi,j
50 − qi,j

5
+ 0.45 ln 0.45

qi,j
95 − qi,j

50
+ 0.05 ln 0.05

U∗ − qi,j
95

+ ln(U∗ − L∗)

(2.22)
From equation 2.22 we can see that a higher information score for a calibration question
results from a more concentrated distribution from an expert. This indicates more infor-
mativeness in the assessment of the expert.

Finally, to get the overall information score of expert i, we simply take the average
of the information scores for all questions (Hanea & Nane, 2021):

I(ei) = 1
M

M∑
j=1

Ij(ei) (2.23)

2.3 Combined Scores
In sections 2.1 and 2.2 we have introduced two different methods to objectively score ex-
perts: the calibration score and the information score. The calibration score determines
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the accuracy of an expert, while the information score assesses how informative the as-
sessment of experts are. However, we want experts to be both accurate and informative.
To achieve this, we have defined the combined score. The combined score of an expert is
their calibration score multiplied by their information score. This score includes a cutoff
level α for the calibration score. If the calibration score of an expert is smaller than the
cutoff value α, then their combined score is zero. The combined score of expert ei is
calculated as follows:

CS(ei) = Cal(ei) · I(ei) · 1α(Cal(ei)) (2.24)

Where 1α(Cal(ei)) is the indicator function that is equal to one if Cal(ei) ≥ α, and
equal to zero otherwise. We note that if there is a significant change in the number of
calibration questions, then the value of the calibration score changes quickly. However, the
information score is the average of all questions. So a change in the number of questions
has less influence on the overall information score of an expert. Therefore, the calibration
score will have more influence on the combined score. Cooke’s model compares experts
by their combined scores, so the model prioritizes calibration scores. Since the model
finds it more valuable to listen to experts who are better calibrated than experts who are
more informative (Hanea & Nane, 2021).

2.4 Decision Maker
At the beginning of section 2 we explained how each expert’s cumulative distribution
function is constructed. We now want to aggregate these cumulative distribution functions
from all experts for a given question to create a single final distribution function called
the Decision Maker (DM) for that question. To do this, weights are assigned to each
experts. However, there are several possible methods for assigning these weights. There
are Equal Weight, Global Weight and Item Weight Decision Makers. These methods will
be discussed in the following subsections.

2.4.1 EWDM
In the Equal Weight Decision Maker (EWDM), all experts receive the same weight. If
there are N experts, then each expert’s distribution is given a weight of 1/N . The
cumulative distribution function of the EWDM is then defined as:

FEW DM (x) =
N∑

i=1
wi · Fi(x) (2.25)

Since each expert has the same weight, we can rewrite this to:

FEW DM (x) =
N∑

i=1

1
N

Fi(x) (2.26)

In the previous example, there were three experts. So in the EWDM, each expert is
assigned a weight of 1/3. The EWDMs cumulative distribution function is then defined
as:

FEW DM (x) = 1
3F1(x) + 1

3F2(x) + 1
3F3(x) (2.27)

11



In figure 2.3 the cumulative distribution function of the EWDM is shown.

Figure 2.3: Cumulative distribution functions of three experts and the Equal Weight
Decision Maker.

2.4.2 GWDM
In the Global Weight Decision Maker (GWDM) the performance of experts on the cali-
bration questions play an important role. The weight that each experts gets assigned is
based on their combined score. The weight assigned to expert i is defined as:

wi = CS(ei)∑N
k=1 CS(ek)

(2.28)

This means the better an expert performs on the calibration questions, the higher the
weight they receive. Therefore, their assessment have more influence on the DM. The
formula for the cumulative distribution function of the GWDM then becomes:

FGW DM (x) =
N∑

i=1
wi · Fi(x) (2.29)

Note that the CDF of the GWDM depends on the cutoff value α. If an expert’s calibration
score is lower than this cutoff value, then they are assigned a weight of zero. However,
the GWDM usually uses α = 0. So all experts contribute to the DM (Hanea & Nane,
2021).

The GWDM CDF for the previous example with three experts and α = 0 is shown
in figure 2.4.
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Figure 2.4: Cumulative distribution functions of three experts, the Equal Weight Decision
Maker, and the Global Weight Decision Maker.

2.4.3 GWDM Optimized
As mentioned in section 2.4.2, the Global Weight Decision Maker (GWDM) typically
uses the cutoff value α = 0. However, there are different values for α that can be chosen
to change the influence of experts on the DM. For example, if α is equal to the second
lowest calibration score, then the worst calibrated expert is excluded from computing the
GWDM. Or if α is equal to the highest calibration score, then only the best calibrated
expert is left over. Thus, the GWDM becomes identical to the distribution of the best
calibrated expert (Hanea & Nane, 2021).

Generally, there are three common ways to choose α. First we have a statistical threshold
where α is chosen what is considered to be an acceptable calibration value. Typically this
statistical threshold would be α = 0.05 or α = 0.01. Next we have the inclusive threshold
where α is low enough such that all experts contribute to the DM. Thus, α is set lower
than the smallest calibration score. The last option is the optimized threshold. Where α
is chosen such that the combined score of the GWDM is maximized. This DM is called
the GWDM optimized (Cooke, n.d.).

2.4.4 IWDM
As explained in section 2.2, each expert receives an information score for every question
they answer. The overall information score of an expert is then the average of all indi-
vidual information scores. This overall information score is then used to determine the
combined score of an expert. Which is then used to construct the GWDM.

13



However, we can also compute a combined score for each question individually. The
combined score of expert i for calibration question j is computed using the following
formula:

CSj(ei) = Cal(ei) · Ij(ei) · 1α(Cal(ei)) (2.30)

The weight assigned to expert i for question j is then determined by:

wj
i = CSj(ei)∑N

k=1 CSj(ek)
(2.31)

These weights are also known as item weights. In the GWDM each, expert gets assigned
one weight. In contrast, the Item Weight Decision Maker (IWDM) assigns a vector of
weights to each expert. Each weight in the vector representing one calibration question.
Item weights are useful when experts know more about certain calibration questions, and
less about other questions. This allows experts to be up-weighted or down-weighted for
certain questions (Cooke, n.d.).

The cumulative distribution function for calibration question j, where F j
i (x) is the CDF

of expert i for that question, is defined as:

F j
IW DM (x) =

N∑
i=1

wj
i · F

j
i (x) (2.32)

To determine the cumulative distribution function for a question of interest l, the infor-
mation score for that question is first calculated for each expert. The information score
of expert i for question l is denoted as Il(ei). Using this score and the calibration score
of the calibration questions, the combined score for question l is computed by:

CSl(ei) = Cal(ei) · Il(ei) · 1α(Cal(ei)) (2.33)

With these new combined scores, the weights of the experts for question l are computed
using equation 2.31. Finally, the cumulative distribution function of the question of
interest l, using IWDM, is then defined as:

F l
IW DM (x) =

N∑
i=1

wl
i · F l

i (x) (2.34)

2.4.5 IWDM Optimized
Similar to GWDM Optimized, the IWDM can also be optimized by varying the cutoff
value α. The DM with α value such that the combined score of the IWDM is maximized,
is called the IWDM optimized.
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3 Robustness

Cooke’s Classical Model (CM) generates Decision Makers (DMs) based on datasets con-
sisting of assessments from multiple experts. Each DM also receives a calibration score
and an information score. But what happens to the DM and its scores when outliers are
present in the dataset? How can we determine whether the model’s results are robust?
Robustness in a model refers to the ability to keep stable results when there is uncertainty
in the data, such as outliers (Mia Hubert, 2004). For CM, robustness means that the
calibration score of a DM is relatively immune to changes in the dataset.

Let’s consider an example. Suppose the Global Weight Decision Maker (GWDM) has
a calibration score of 0.75 when using dataset A. However, when using dataset B, the
calibration score of the GWDM becomes 0.2. Now consider the Item Weight Decision
Maker (IWDM). Suppose that it has a calibration score of 0.1 with dataset A and 0.15
with dataset B. In this case, the IWDM has lower calibration scores when both datasets
are used respectively. However, the difference of the two scores for the IWDM is smaller
than that of the GWDM. This suggests that the IWDM, while performing worse than the
GWDM, is less sensitive to changes in the used dataset. Thus, the IWDM would be more
robust than the GWDM. This example also shows that a robust solution is not always
the optimal or best solution (Mehdi, 2022).

In this study, we analyze a dataset consisting of 49 different studies. Each study in-
cludes between 4 and 48 experts, and between 7 and 21 calibration questions. All an-
alyzes were performed on a Windows 10 computer, with R version 4.5.1 and RStudio
version 2025.5.1.513. The model used in this analysis is developed by Tina Nane, as-
sociate professor of Applied Probability at Delft University of Technology, in October
2022, to reproduce Cooke’s Classical Model. We then adapted and extended this model
in RStudio to generate the results presented in this research.

First, the calibration scores for all experts in each study are calculated. These are pre-
sented in a boxplot in figure 3.1, with the study name on the x-axis and the calibration
scores on the y-axis. Next, the DMs are computed and scored. The calibration scores of
each DM across all studies are shown in figure 3.1 as colored dots.
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Figure 3.1: Boxplots of the calibration scores of all experts in a study. The calibration
scores of all Decision Makers for each study are represented as the colored dots.

To assess robustness, we apply the following algorithm, which returns the calibration
scores after excluding individual items from the dataset. This allows us to analyze the
scores changes.

Algorithm 1 Computing Calibration Scores Excluding Items for Robustness Analysis
Input: Original dataset D
Output: Calibration scores for each Decision Maker (DM) after excluding each item
once
Step 1: Compute the Decision Makers (DMs) using the original dataset D
Step 2: Take an item i in D, and do the following:

a. Temporarily remove the item from the dataset, creating a modified dataset
D′ ← D \ {i}

b. Recompute the DMs using the modified dataset D′

c. Calculate the calibration scores for the new DMs
d. Store the calibration scores for the modified dataset D′

e. Add the excluded item i back into the dataset
Step 3: Repeat Step 2 until each item has been excluded once
Step 4: Return the set of calibration scores to assess the robustness of the DMs across
all exclusions
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3.1 Removing Experts
To analyze the robustness of the model, we modify the original dataset by excluding
individual items. In this section we will focus on excluding experts from the original
data. For each study, we remove one expert from the dataset and then recompute the
DMs and their corresponding calibration score using the same model. Once the scores
are computed, the expert is added back into the study in the dataset, and the next expert
is removed from this study. This process is repeated until every expert in every study
has been excluded once. As a result, we obtain a list of calibration scores for each DM in
each study, with the length of the total number of experts in that study in the original
dataset. Algorithm 1 is then adapted to algorithm 2.

Algorithm 2 Computing Calibration Scores Excluding Experts for Robustness Analysis
Input: Original dataset D
Output: Calibration scores for each Decision Maker (DM) after excluding each expert
once
Step 1: Compute the Decision Makers (DMs) using the original dataset D
Step 2: Take an expert ei in D, and do the following:

a. Temporarily remove the expert from the dataset, creating a modified dataset
D′ ← D \ {ei}

b. Recompute the DMs using the modified dataset D′

c. Calculate the calibration scores for the new DMs
d. Store the calibration scores for the modified dataset D′

e. Add the excluded expert ei back into the dataset
Step 3: Repeat Step 2 until each expert has been excluded once
Step 4: Return the set of calibration scores to assess the robustness of the DMs across
all exclusions

A boxplot is then created where the calibration scores are visualized for each study in
figure 3.2. The calibration score from the original dataset is indicated by a red dot. The
white dots represent outliers in the calibration scores after expert removal. On the x-axis,
the study names are shown, along with the number of experts in each study in parenthe-
ses. The studies are order by increase in number of experts.
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Figure 3.2: Calibration scores of Decision Makers for all studies with expert
removal. The red dots represent the calibration score of the original dataset.
The white dots are outliers of the calibration scores with expert removal.
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Figure 3.2 shows that for the GWDM, GWDM opt, IWDM and IWDM opt, the more
experts there are in the original dataset, the smaller the boxes become. This means that
the calibration scores vary less. Additionally, the boxes are closer to the red dot, rep-
resenting the original calibration score. This indicates that a larger number of experts
leads to a more robust DM. For example, in the study CDC all, the boxplots for these
four DMs consists only of the median, or 50% quantile, which is equal to the calibration
score from the original dataset. This suggests that for any expert you remove, the cal-
ibration score of the DM remains the same as the original calibration score. This is a
clear sign of robustness. However, this trend does not necessarily hold for the EWDM.
For studies with 14 to 21 experts, the boxes remain relatively large, indicating greater
variability. Only in studies with 32 or 48 experts does the trend of more robustness with
more experts clearly hold. In these cases, we again see that the boxplots only consist of
the 50% quantile, which is equal to the original calibration scores.

Another way to assess robustness is to only look at the number of experts, rather than
analyzing individual studies. Figures 3.3 and 3.4 present boxplots of the calibration scores
for all DMs in the original dataset in blue. The green boxplots represent the calibration
scores after removing each expert once. The black dots are the outliers of the calibration
scores for the given dataset.

Figure 3.3: Blue boxplots are the calibration scores of Decision Makers from the original
dataset. Green boxplots are the calibration scores of Decision Makers from the datasets
with experts removed. Black dots represent the outliers in the calibration scores.
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Figure 3.4: Blue boxplots are the calibration scores of Decision Makers from the original
dataset. Green boxplots are the calibration scores of Decision Makers from the datasets
with experts removed. Black dots represent the outliers in the calibration scores.

In figures 3.3 and 3.4 it is clear that for the GWDM, GWDN opt, IWDM and IWDM opt
once the number of expert reaches 21 or more, both boxes become very small, indicating
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low variabillity in calibration scores. Additionally, the two boxes, representing the orig-
inal dataset and the altered dataset, become almost identical. Which suggests that the
expected calibration scores of the DM remain the same. Thus, the calibration score is
stable. This indicates robustness. A similar pattern is observed for the EWDM, however
in this case robustness is seen from 32 experts onward.

3.2 Removing Calibration Questions
The total number of experts in a study is not the only variable that can influence robust-
ness. In this section, we analyze the influence of the number of calibration questions on
the robustness of the model. That is done in a similar way to the expert removal process
used in section 3.1. Instead of removing all experts once, each calibration question is re-
moved once from the dataset. Starting with the original dataset, one calibration question
is removed. Then the calibration scores of the DMs computed using the modified dataset.
After that, the removed calibration question is added back to the dataset, and the next
calibration question is removed. This is repeated until every calibration question in each
study has been removed once. Algorithm 1 is then adapted to algorithm 3.

Algorithm 3 Computing Calibration Scores Excluding Calibration Questions for Ro-
bustness Analysis

Input: Original dataset D
Output: Calibration scores for each Decision Maker (DM) after excluding each cali-
bration score once
Step 1: Compute the Decision Makers (DMs) using the original dataset D
Step 2: Take an calibration question i in D, and do the following:

a. Temporarily remove the question from the dataset, creating a modified dataset
D′ ← D \ {i}

b. Recompute the DMs using the modified dataset D′

c. Calculate the calibration scores for the new DMs
d. Store the calibration scores for the modified dataset D′

e. Add the excluded question i back into the dataset
Step 3: Repeat Step 2 until each calibration question has been excluded once
Step 4: Return the set of calibration scores to assess the robustness of the DMs across
all exclusions

The resulting boxplots of the calibration scores for all DMs are shown in figure 3.5. On
the x-axis, the names of the studies are shown with the number of calibration question in
parentheses. The studies are arranged in increasing order of calibration questions. The
red dots represent the calibration score of each study and DM in the original dataset.
The white dots represent outliers in the calibration scores after question removal.
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Figure 3.5: Calibration scores of Decision Makers for all studies with calibration question
removal. The red dots represent the calibration score of the original dataset. The white
dots are outliers of the calibration scores with calibration question removal.
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When removing experts, it was clear that in studies with the largest number of experts,
the boxplots for the modified dataset were significantly smaller, indicating greater robust-
ness. However, when removing calibration questions, we see less effect. For the IWDM
and IWDM opt, we observe in figure 3.5 that when there are 17 or more calibration
questions, the boxes become smaller and align more with the red dot. However, for the
EWDM, GWDM and GWDM opt we do not see a significant trend. In figures 3.6 and 3.7
we have the boxplots of the calibration scores against the number of calibration questions
for both the original dataset and the modified dataset. Once again, for the IWDM and
IWDM opt, the boxplots become smaller and more concentrated around the red dot from
17 questions onward. For the EWDM however, we see this same trend, boxes become
more narrow from 17 questions onward compared to studies with fewer calibration ques-
tions. For the GWDM and GWDM opt no clear trend is seen in these new figures.

Thus, we can conclude that a higher number of calibration questions improves robustness
in the IWDM and IWDM opt, and to some extent also for the EWDM. However, the
number of experts appears to have a greater influence on the robustness of the model
than the calibration questions. This is demonstrated by the narrower boxplots resulting
from expert removal, compared to the subtle changes in the boxplots when calibration
questions are removed.

Figure 3.6: Blue boxplots are the calibration scores of Decision Makers from the original
dataset. Green boxplots are the calibration scores of Decision Makers from the datasets
with calibration questions removed. Black dots represent the outliers in the calibration
scores.
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Figure 3.7: Blue boxplots are the calibration scores of Decision Makers from the original
dataset. Green boxplots are the calibration scores of Decision Makers from the datasets
with calibration questions removed. Black dots represent the outliers in the calibration
scores.

24



3.3 Robustness by Distribution Ratio Metric
In the previous sections, we examined the variation in calibration scores and the expected
calibration score when removing expert or questions, compared to the original calibration
scores. In this section, we will introduce a different method to assess robustness: the
Robustness by Distribution Ratio metric.

The Robustness by Distribution Ratio metric is also known as the RDR metric. This
metric evaluates the robustness of a model by combining standardized performance met-
rics into a single ratio. The metrics used in RDR are: R2, Root Mean Squared Error
(RMSE), and Dynamic Time Warping (DTW). R2 quantifies the proportion of variance
that is caused by the predictor variable. The RMSE calculates the average distance be-
tween predicted and observed values of the model. A downside is that this metric is
sensitive to outliers and large errors. The DTW can compare datasets with different
lengths (Sarkar, 2023).

3.3.1 Methodology
The RDR (Robustness by Distribution Ratio) metric assesses the robustness of a model
by analyzing the relative distribution of calibration scores in the modified dataset com-
pared to the original dataset. In this study, the original data point is the calibration
score of a Decision Maker (DM) from a given study. We then compare this to the calibra-
tion scores obtained when experts or calibration questions are removed from that study.
This creates a new dataset consisting of both the original and modified calibration scores.
Each calibration score in this data set is ranked according to its value. The lowest value
receives rank 1, the second lowest value rank 2, etc. If there is a tie, then average rank
is used. These ranks are then divided by the rank of the original calibration score to
obtain the RDR values. The RDR metric is then computed as the average of the absolute
difference between the RDR values and the RDR value of the original calibration score.
A lower RDR metric indicates that the calibration scores from the modified dataset are
consistently close to the original score and evenly distributed around it. Thus, a model
with low RDR metric is considered to be more robust (Sarkar, 2023).

In other words, we can describe the RDR metric with the following formulas. Where
S = {s1, s2, . . . , sn, sorg} is the dataset with the calibration scores of the DM if there are
n experts in the study from the original dataset. Each si represents the removal of one
expert for i ∈ {1, . . . , n}, and sorg is the original calibration score with all experts. Then
define R(sj) to be the rank of sj in this dataset with j ∈ {1, . . . , n, org}. The RDR value
of sj is then:

RDR(sj) = R(sj)
R(sorg) (3.1)
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The RDR metric for this DM and this study is then defined as:

RDR metric = 1
n
·

n∑
i=1

∣∣∣∣ R(si)
R(sorg) −

R(sorg)
R(sorg)

∣∣∣∣
= 1

n
·

n∑
i=1
|RDR(si)− 1| (3.2)

These formulas are based on experts. However, it is also possible to do this for the calibra-
tion questions. The vector S then has the calibration scores when calibration questions
are removed, and n will become the total number of calibration questions in that study.

To make it more clear, we will give an example. Suppose that a study has 4 experts
and the calibration score of the original GWDM is 0.75. Suppose that when removing
each expert once, the calibration scores of the GWDM become 0.7,0.9,0.6,0.95, respec-
tively. Then we have S = {0.7, 0.9, 0.6, 0.95, 0.75} and R = {2, 4, 1, 5, 3}. For the RDR
metric we have:

RDR metric = 1
n
·

n∑
i=1
|RDR(si)− 1| (3.3)

= 1
4 ·

4∑
i=1

∣∣∣∣ R(si)
R(sorg) − 1

∣∣∣∣ (3.4)

= 1
4 ·

4∑
i=1

∣∣∣∣R(si)
3 − 1

∣∣∣∣ (3.5)

= 1
4 · (

∣∣∣∣2
3 − 1

∣∣∣∣ +
∣∣∣∣4
3 − 1

∣∣∣∣ +
∣∣∣∣1
3 − 1

∣∣∣∣ +
∣∣∣∣5
3 − 1

∣∣∣∣) (3.6)

= 1
4 · (

1
3 + 1

3 + 2
3 + 2

3) (3.7)

= 0.5 (3.8)

3.3.2 Expert Removal
In this section, we examine the RDR metric in context of expert removal. As previously
mentioned, the original dataset is the calibration score of the Decision Maker (DM) with
all experts included. When an expert is removed, the calibration scores of that same
DM are added to the dataset where the ranks are given. Figure 3.8 presents the RDR
metrics for each DM. On the x-axis displays the study names, with the number of experts
in parentheses. The studies are ordered by increasing number of experts. The y-axis
represents the RDR metric values. The red line represents the LOESS curve, which uses
local fitting to find a smooth polynomial that captures the underlying trend in the data.
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Figure 3.8: Robustness by Distribution Ratio metric for each Decision Maker for all
studies with expert removal. The red lines are fitted smooth curves representing the
underlying trends of the data.
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The red line in figure 3.8 shows a clear downward trend in the RDR metric for all DMs
as the number of experts increases. This indicates that including more experts leads to a
more robust model for each DM. To identify the DM that yields the most robust model,
we look at figure 3.9. This figure allows us to easily compare different DMs in one study.
We can find the optimal DM for a study or a given number of experts. Optimal DM
would be the DM with the lowest RDR metric, and thus the highest robustness. For
example, in the Arkansas study with 4 experts, the EWDM has the highest RDR metric,
indicating the least robust model. In contrast, the GWDM opt and IWDM opt have the
smallest RDR metrics, this makes them the most robust models of this study.

Figure 3.9: Robustness by Distribution Ratio metric with expert removal.

To assess overall robustness, not only individual studies, we evaluate each DM using three
statistics: mean, median and standard deviation of the RDR metric across all studies.
The mean represents the average RDR metric, thus the sum of all metric values divided
by the total number of studies. The median is the middle value when all RDR metrics are
sorted in ascending order. The standard deviation calculates the variability of the metric
values by taking the square root of the average squared difference from the mean. Let
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(RDR metric)j be the RDR value for study j, and we have 49 studies. Then formulas
are:

mean RDR = 1
49 ·

49∑
j=1

(RDR metric)j (3.9)

Standard Deviation RDR =

√√√√ 1
49− 1

49∑
j=1

(
(RDR metric)j −mean RDR

)2
(3.10)

To explain the median value in more detail we will give an example. Suppose we have the
RDR metrics: 0.5,0.55,0.7,0.85, and 0.88, the median value is 0.7. These three statistics
are used to evaluate the RDR metric of each DM. The results are shown in table 3.1.
From this table it is clear that if a researcher is looking for a robust model with a low
mean RDR, the IWDM opt is the best choice. If the goal is a low median RDR, then
GWDM opt, IWDM or IWDM opt are all good choices. Finally, for a low standard
deviation GWDM opt would be the most robust choice.

Decision Maker Mean Median Standard Deviation
EWDM 0.3792 0.3185 0.3738
GWDM 0.2907 0.2485 0.1150
GWDM opt 0.2457 0.1786 0.0943
IWDM 0.2433 0.1786 0.1457
IWDM opt 0.2312 0.1786 0.1207

Table 3.1: Mean, Median, Standard Deviation of the RDR metric for all Decision Makers
with expert removal.

Another method to evaluate the performance of each DM is by calculating the percentage
of studies in which that DM is most robust, meaning it has the lowest RDR metric in
that study. For each study, the DM with the lowest RDR metric is identified. Figure
3.9 shows that some studies have multiple DMs with the lowest RDR metric. In those
cases, the study is counted for each of the DMs with the lowest RDR metric. Because
of this, the sum of the percentages of table 3.2 is not exactly 100%. This table shows
that the GWDM opt is most often identified as the most robust DM. Interestingly, the
IWDM appears in table 3.2 to perform less robust than the other DMs. However, table
3.1, which presents the mean, median, and standard deviation of the RDR scores, shows
that the IWDM is not the least robust DM, as its values for these statistics are not the
highest. This indicates that the IWDM usually performs quite well, but is likely slightly
outperformed by another DM in many studies.
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Decision Maker Percentage Most Robust (%)
EWDM 31.25
GWDM 37.50
GWDM opt 52.08
IWDM 25.00
IWDM opt 41.67

Table 3.2: Percentage of studies where the Decision Maker is identified as the most robust
Decision Maker based on expert removal.

3.3.3 Calibration Question Removal
In the previous section, we examined the RDR metric for expert removal. In this sec-
tion, we examine the RDR metric for calibration question removal, following a similar
approach. Figure 3.10 displays the RDR values for each DM across all studies. The
x-axis displays the studies, sorted in ascending order based on the number of calibration
questions. Unlike the results from expert removal, these red lines in the plots do not
show a consistent downward trend for all DMs. However, there is a noticeable dip or
low value around 13 calibration questions for all DMs. This suggests that models with
13 calibration questions are generally more robust. Notably, for the GWDM opt and the
IWDM opt we again observe that the RDR values decrease when the number of calibra-
tion questions increase. This indicates that the robustness improves when there are more
questions available.
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Figure 3.10: Robustness by Distribution Ratio metric for each Decision Maker for all
studies with calibration question removal. The red lines are fitted smooth curves repre-
senting the underlying trends of the data.
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We now return to an overall view of the RDR metric to identify the most robust model
for each study, based on the lowest RDR value when removing calibration question. All
RDR metrics are shown in figure 3.11. For the Daniela study, which includes 7 calibration
questions, the EWDM has the highest RDR metric. Which demonstrates the least robust
model. In contrast, the GWDM opt achieves the lowest RDR value, indicating it is the
most robust model for this study.

Figure 3.11: Robustness by Distribution Ratio metric with calibration question removal.

The overall robustness of question removal will be assessed once again by the three statis-
tics: mean, median, and standard deviation of the RDR metric. These results are pre-
sented in table 3.3. From this table, it can be concluded that the IWDM opt achieves
the lowest values across all three statistics. Thus, this DM performs the best across all
three statistics. This demonstrates that, when calibration questions are removed, the
IWDM opt is the most robust model. Additionally, the EWDM has the highest values
across all three statistics, which suggests that it is the least robust of the DMs.
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Decision Maker Mean Median Standard Deviation
EWDM 1.3278 0.8469 1.6432
GWDM 1.3117 0.8438 1.2992
GWDM opt 1.2663 0.6847 1.3517
IWDM 1.2031 0.6407 1.1005
IWDM opt 1.1494 0.6200 1.0237

Table 3.3: Mean, Median, Standard Deviation of the RDR metric for all Decision Makers
with calibration question removal.

We once again look at the percentage of studies in which each DM is identified the most
robust, based on the lowest RDR metric value. The results are presented in table 3.4. If
a study has multiple DMs with the smallest RDR metric, then each of them is counted as
the most robust DM for that study. Therefore, the sum of the percentages in this table
is not equal to 100%. From table 3.4, it appears that the IWDM is the most robust DM,
since it has the highest percentage of studies in which it performs best. However, the
three statistics in table 3.3 suggest that the IWDM is the second best DM, right after
the IWDM opt. This suggests that both the IWDM and the IWDM opt perform quite
robust, with the IWDM slightly outperforming the IWDM opt in a few more studies. In
both table 3.3 and table 3.4, the EWDM consistently scores the least robust, since it has
the highest values for the three statistics and the lowest percentage of studies where it is
considered most robust. Lastly, the GWDM opt is preferred over the GWDM, as it has
a higher mean and median score, and is favored in a larger proportion of studies.

Decision Maker Percentage Most Robust (%)
EWDM 18.75
GWDM 25.00
GWDM opt 33.33
IWDM 41.67
IWDM opt 35.42

Table 3.4: Percentage of studies where the Decision Maker is identified as the most robust
Decision Maker based on calibration question removal.
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4 Discrepancy

In section 2.2, we explained what the information score of an expert is and how it is
calculated. The information score of a Decision Maker (DM) is calculated in the same
way. In brief, the observed probabilities from the cumulative distribution function of
the DM are compared to those from the background measure: the uniform distribution
(0.05,0.45,0.45,0.05). The information score quantifies how discrepant the DMs distribu-
tion is from the uniform distribution (Hanea & Nane, 2021). However, what if we compare
the DMs distribution not to the uniform distribution, but to the distribution of another
DM? The metric that compares the difference between an ’ideal’ solution and an actual
solution, is called discrepancy (Matousek, 1999). In this context, discrepancy refers to the
difference between the information score of a DM based on the uniform distribution and
the information score of this DM calculated with another DM as background measure.
In this section, we analyze the discrepancy of the original dataset.

For each DM, we computed the information score across all studies, using each of the five
possible background measures: EWDM, GWDM, GWDM opt, IWDM, or IWDM opt.
The results are visualized in figures 4.1 to 4.5. On the x-axis, each study is labeled along
with the number of experts in parentheses, and the studies are ordered in ascending order
based on the number of experts. The y-axis represents the information score. The black
dots indicate the information scores of the DMs when the original uniform background
measure is used.
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Figure 4.1: Information Scores of the Decision Makers with the EWDM as background
measure. The black dots are the information scores of the Decision Makers with the
uniform distribution as background measure.

Figure 4.2: Information Scores of the Decision Makers with the GWDM as background
measure. The black dots are the information scores of the Decision Makers with the
uniform distribution as background measure.
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Figure 4.3: Information Scores of the Decision Makers with the GWDM opt as back-
ground measure. The black dots are the information scores of the Decision Makers with
the uniform distribution as background measure.

Figure 4.4: Information Scores of the Decision Makers with the IWDM as background
measure. The black dots are the information scores of the Decision Makers with the
uniform distribution as background measure.
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Figure 4.5: Information Scores of the Decision Makers with the IWDM opt as background
measure. The black dots are the information scores of the Decision Makers with the
uniform distribution as background measure.

For example, figure 4.5 shows that the information scores of the DMs in the Nebraska
study are higher when using the IWDM opt as the background measure compared to the
uniform measure. This indicates that the DM’s distributions are more closely aligned with
the uniform distribution than with the IWDM opt. The difference in information scores
between the IWDM opt background measure and uniform background measure is small-
est for the GWDM opt and IWDM opt, suggesting that these two DMs have the least
discrepancy when evaluated against the IWDM opt background measure. In contrast,
the EWDM has the largest difference between the two background measures, indicating
the highest discrepancy. In the Daniela study we see the opposite, the information scores
are higher when the uniform background measure is used than when using IWDM opt. In
this case, the EWDM and the GWDM have the smallest differences in information scores
between the two measures, suggesting lower discrepancy compared to the other DMs.

To summarize the overall performance of each background measure, we calculate the
mean, median, and standard deviation of the information scores across all DMs and stud-
ies. The results are presented in table 4.1. For example, DMs evaluated using the EWDM
as background measure have a higher mean and median information score compared to
those evaluated using the GWDM as background measure. This means that the DMs
are more closely aligned with the GWDM than with the EWDM based on the mean and
median. Conversely, the standard deviation of the information scores are lower with the
EWDM background measure than with the GWDM background measure, suggesting that
the DMs assessments are more closely aligned with the EWDM than with the GWDM
based on this statistic. The EWDM has the mean information scores 0.8072, 0.6514,
0.6936, 0.6099, and 0.5996 with the GWDM, GWDM opt, IWDM, IWDM opt, and uni-
form as background measures, respectively. The smallest mean occurs with the uniform
distribution as background measure. Similar, the median is smallest for the uniform mea-
sure as well, indicating that the EWDM is least discrepant from the uniform distribution.
However, the smallest standard deviation comes from the IWDM opt measure, indicating
that the EWDM is least discrepant from the IWDM opt based on this statistic. Similar,
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the GWDM shows it is least discrepant from the IWDM opt based on both the mean
and the standard deviation. Based on the median, the GWDM is most closely aligned
to the uniform distribution. Furthermore, the GWDM opt aligns most closely with the
IWDM opt in terms of mean and standard deviation, and with the uniform distribution
based on the median. The IWDM is the least discrepant from the IWDM opt based on
the mean, median, and standard deviation. Lastly, the IWDM opt shows that is the least
discrepant from the GWDM opt and uniform distribution.

Decision Maker Background Measure Mean Median Standard Deviation
EWDM EWDM 0.8242 0.6827 0.4920
GWDM EWDM 1.1333 1.0380 0.6060
GWDM opt EWDM 1.5690 1.4625 0.8270
IWDM EWDM 1.3080 1.2433 0.6253
IWDM opt EWDM 1.6089 1.4727 0.8291
EWDM GWDM 0.8072 0.6733 0.5332
GWDM GWDM 1.0556 0.8782 0.6324
GWDM opt GWDM 1.4754 1.3428 0.8513
IWDM GWDM 1.2300 1.1240 0.6552
IWDM opt GWDM 1.5284 1.4036 0.8451
EWDM GWDM opt 0.6514 0.5779 0.4262
GWDM GWDM opt 0.8763 0.7534 0.5366
GWDM opt GWDM opt 1.2372 1.0647 0.7116
IWDM GWDM opt 1.0268 1.0052 0.5573
IWDM opt GWDM opt 1.2953 1.1854 0.7297
EWDM IWDM 0.6936 0.5700 0.4786
GWDM IWDM 0.9513 0.8009 0.6060
GWDM opt IWDM 1.3745 1.1004 0.8580
IWDM IWDM 1.1100 1.1110 0.6265
IWDM opt IWDM 1.4184 1.2844 0.8513
EWDM IWDM opt 0.6088 0.5325 0.4136
GWDM IWDM opt 0.8419 0.7915 0.5334
GWDM opt IWDM opt 1.2145 1.0102 0.7247
IWDM IWDM opt 0.9875 0.9639 0.5501
IWDM opt IWDM opt 1.2520 1.1504 0.7231
EWDM Uniform 0.5996 0.4901 0.4224
GWDM Uniform 0.8586 0.7136 0.5478
GWDM opt Uniform 1.2492 0.9968 0.7557
IWDM Uniform 1.0247 0.9687 0.5657
IWDM opt Uniform 1.3049 1.0895 0.7663

Table 4.1: Mean, median, and standard deviation of the information scores for all Decision
Makers and all possible background measures.

Table 4.2 also presents the DMs to which each DM is least discrepant from.
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Decision Maker Mean Median Standard Deviation
EWDM Uniform Uniform IWDM opt
GWDM IWDM opt Uniform IWDM opt
GWDM opt IWDM opt Uniform IWDM opt
IWDM IWDM opt IWDM opt IWDM opt
IWDM opt GWDM opt Uniform GWDM opt

Table 4.2: Show for all Decision Makers to which other Decision Maker they are least
discrepant from, based on the mean, median, and standard deviation of the information
scores.

To quantify overall discrepancy, we compare the information score of each DM using other
DMs as background measures to the information score obtained using the uniform distri-
bution as the background. This comparison is made using two metrics: Mean Absolute
Error (MAE), and Mean Squared Error (MSE). Let I(DM)j

i represent the information
score of a DM in study j, using background measure i. For example, I(EWDM)3

IW DM

refers to the information score of the EWDM in the third study, with IWDM as back-
ground measure. The formulas for MAE and MSE are as follows:

MAE(DM)i = 1
49 ·

49∑
j=1

∣∣∣I(DM)j
i − I(DM)j

uniform

∣∣∣ (4.1)

MSE(DM)i = 1
49 ·

49∑
j=1

(
I(DM)j

i − I(DM)j
uniform

)2
(4.2)

The results are presented in tables 4.3 and 4.4. For example, the MAE of the GWDM
when using the IWDM as background measure is 0.2512, while the MSE is 0.1038. Table
4.3 that the EWDM consistently has the lowest MAE across almost all background mea-
sures, indicating that it is the least discrepant DM by the MAE. The GWDM typically
has the second lowest MAE for almost all background measures, followed by the IWDM,
indicating the GWDM is less discrepant than the IWDM. Notably, the optimized DMs,
GWDM opt and IWDM opt, have the highest MAE’s, indicating the most discrepancy.
One possible explanations is that, since these are optimized DMs, there is a cutoff value
α. If an expert’s combined score is smaller than this cutoff value, the expert is assigned
a weight of zero, and thus does not contribute to the DM. However, non optimized DMs
still assign a small weight to these experts, and therefore still contribute to the DM. As
a result comparing GWDM opt to the GWDM for example, then there are contributions
of some experts in the GWDM, but not in the GWDM opt, which could lead to a higher
error. In table 4.4, we observe a similar trend for the MSE, both the EWDM and GWDM
perform best, though in this case, GWDM does outperform the EWDM. Indicating that
the GWDM and the EWDM are the least discrepant DMs based on the MSE. Unlike
with the MAE, the IWDM does not consistently outperform the GWDM opt and the
IWDM opt with the MSE. This suggests that the GWDM opt, IWDM, and IWDM opt
are the most discrepant DMs based on the MSE.
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Decision Maker
Background Measure EWDM GWDM GWDM opt IWDM IWDM opt
EWDM 0.3241 0.3299 0.3867 0.3515 0.3828
GWDM 0.3063 0.3081 0.3363 0.3244 0.3381
GWDM opt 0.2043 0.2096 0.2298 0.2260 0.2355
IWDM 0.2438 0.2512 0.2801 0.2628 0.2852
IWDM opt 0.1957 0.1954 0.2105 0.2124 0.2268

Table 4.3: Mean Absolute Error (MAE) for each combination of Decision Maker and
background measure. The error is based on the difference between the information scores
of a Decision Maker using another Decision Maker as the background measure, and their
information scores when using the uniform distribution as the background measure.

Decision Maker
Background Measure EWDM GWDM GWDM opt IWDM IWDM opt
EWDM 0.1724 0.1692 0.2043 0.1808 0.2048
GWDM 0.1559 0.1446 0.1565 0.1571 0.1609
GWDM opt 0.0771 0.0774 0.0854 0.0870 0.0904
IWDM 0.1050 0.1038 0.1252 0.1164 0.1320
IWDM opt 0.0744 0.0739 0.0787 0.0881 0.0986

Table 4.4: Mean Squared Error (MSE) for each combination of Decision Maker and
background measure. The error is based on the difference between the information scores
of a Decision Maker using another Decision Maker as the background measure, and their
information scores when using the uniform distribution as the background measure.

From tables 4.3 and 4.4, we can identify for each DM, which other DM it has the smallest
discrepancy with. For example, the EWDM has the smallest MAE and MSE when com-
pared to the IWMD opt, suggesting that the EWDM has the smallest discrepancy with
the IWDM opt. This is also the case for the GWDM and the GWDM opt. The IWDM
has the least discrepancy with IWDM opt based on the MAE, but according to the MSE,
it has the least discrepancy with the GWDM opt. Finally, the IWDM opt shows the least
discrepancy with the GWDM opt. These findings are summarized in table 4.5.

Decision Maker MAE MSE
EWDM IWDM opt IWDM opt
GWDM IWDM opt IWDM opt
GWDM opt IWDM opt IWDM opt
IWDM IWDM opt GWDM opt
IWDM opt GWDM opt GWDM opt

Table 4.5: Background measure for the smallest discrepancy for each Decision Maker
based on Mean Absolute Error (MAE) and Mean Squared Error (MSE).

Similar as in section 3, we examine each study individually to determine the least and
most discrepant DM. For each DM across all studies, we determine its MAE and MSE,

40



following a similar approach as in formulas 4.1 and 4.2. However, this time the study is
fixed, and the information score are compared across the different DMs as background
measures. The adjusted formulas are:

MAE(DM)j = 1
5 ·

∑
i∈BG

∣∣∣I(DM)j
i − I(DM)j

uniform

∣∣∣ (4.3)

MSE(DM)j = 1
5 ·

∑
i∈BG

(
I(DM)j

i − I(DM)j
uniform

)2
(4.4)

BG = {EWDM, GWDM, GWDM opt, IWDM, IWDM opt} (4.5)

Here, BG is the set of DMs that are used as background measures. For each study, we
identify the DM with the smallest and largest MAE and MSE values. If one study has
multiple DMs who share the same smallest or largest values, then each DM is counted.
This explains why the sum of the percentages in tables 4.6 and 4.7 is not equal to 100%.
From these tables, it is clear that the EWDM is least discrepant overall, as it has the
highest percentage of studies where it is the least discrepant DM based on both the MAE
and MSE. Following the EWDM, we have the GWDM as least discrepant, as it also has
high percentage of studies as least discrepant. Additionally, both the EWDM and the
GWDM are in a small percentage of studies identified as the most discrepant DM. The
IWDM opt however, has the highest percentage of studies in which it is identified as the
most discrepant DM, and a low percentage as the least discrepant DM. This indicates that
this DM is overall the most discrepant. The GWDM opt also shows a high percentage
as the most discrepant DM, and low percentage as least discrepant DM, making it the
second most discrepant DM. Interestingly, the IWDM has low percentages in both the
most and least discrepant DMs, suggesting that in most studies there is typically at least
one other DM performing more and less discrepant than the IWDM.

Decision Maker Percentage
Most Discrepant
(MAE) (%)

Percentage
Most Discrepant
(MSE) (%)

EWDM 16.67 18.75
GWDM 2.08 4.17
GWDM opt 35.42 35.42
IWDM 2.08 0.00
IWDM opt 45.83 41.67

Table 4.6: Percentage of studies where the Decision Maker is identified as the most
discrepant Decision Maker based on MAE and MSE.
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Decision Maker Percentage
Least Discrepant
(MAE) (%)

Percentage
Least Discrepant
(MSE) (%)

EWDM 41.67 45.83
GWDM 12.50 10.42
GWDM opt 8.33 6.25
IWDM 8.33 8.33
IWDM opt 4.17 6.25

Table 4.7: Percentage of studies where the Decision Maker is identified as the least dis-
crepant Decision Maker based on MAE and MSE.
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5 Selecting the Appropriate Decision
Maker

Suppose you are conducting a study similar to those in the dataset, but you are unsure
which Decision Maker (DM) to use when you are aiming for the best performance, the
most robust, or the highest discrepancy model. Imagine that the only information you
have is the number of experts and the number of calibration questions in your study.
In this case, it would be helpful to have a clear overview of which DM performs most
robust under different conditions, based on the number of experts and questions. In the
following sections, we present the recommended DM for each of the three objectives.

5.1 Best Calibrated Selection
To recommend the best calibrated DM, we analyzed the DMs across all studies. For each
study, we recorded the number of experts and the number of calibration questions. We
then identified the DM with the highest calibration score, and recorded both the DM
and its score with the study information. This process is repeated for every study. If
multiple studies have the same number of experts and calibration questions, then only
the DM with the highest calibration question among them is stored. In figure 5.1 the
results are presented. For example, if your study includes 20 experts and 10 calibration
questions, then the DM with the highest calibration score is recommended to be the
GWDM. However, if your study has 20 experts and 16 questions, then the IWDM opt is
recommended for the highest calibration.
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Figure 5.1: Highest calibrated Decision Makers for a given number of experts and cali-
bration questions.

5.2 Robust Selection
In section 3, we discussed which models are more robust. To determine the most robust
DM for a given number of experts and calibration questions, we analyze the calibration
scores obtained after removing individual experts or questions again. For each study, we
first record the number of experts and calibration questions. Using the list of calibration
scores generated by removing one expert or one question at a time, we calculate the
Mean Absolute Error (MAE) and Mean Squared Error (MSE) for each DM. These are
determined by comparing the modified calibration scores to the calibration scores of the
original dataset, following the same approach of formulas 4.1 and 4.2 from section 4.
For each combination of numbers experts and questions, we find the DMs with the lowest
MAE and MSE, and store both the errors and the corresponding DMs. If multiple studies
share the amount of experts and questions, then only the DM with the lowest error is
stored. The resulting recommendations, based on the MAE and MSE for the expert
removal, are visualized in figures 5.2a and 5.2b. For example, a study with 14 experts
and 8 calibrations questions, the MAE suggest using the EWDM as the most robust
model. However, the MSE suggests using the GWDM opt as the most robust model.
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(a) MAE (b) MSE

Figure 5.2: Robust recommendations based on MAE and MSE of Decision Makers cali-
bration scores, with expert removal.

We repeated this process to evaluate the robustness of question removal. The resulting
recommendations are presented in figures 5.3a and 5.3b. In this case, for a study with 14
experts and 8 calibration questions, we see that the MAE recommends the GWDM opt.
However, the MSE recommends the EWDM as most robust DM.

(a) MAE (b) MSE

Figure 5.3: Robust recommendations based on MAE and MSE of Decision Makers cali-
bration scores, with calibration question removal.

To combine both sets of recommendations, we calculate the sum of the MAE values
for each DM, from expert and question removal. We then find the DM with the lowest
combined error and record this DM along with the corresponding error, number of experts,
and number of calibration questions. The same process is applied to the MSE values. The
final recommendations are visualized in figures 5.4a and 5.4b. The final recommendation
in a study with 8 experts and 14 questions, the GWDM opt is the most robust DM
according to the MAE, while the EWDM is preferred by the MSE.
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(a) MAE (b) MSE

Figure 5.4: Robust recommendations based on MAE and MSE of Decision Makers cali-
bration scores

5.3 Discrepant Selection
In section 4, it is discussed which DMs are more discrepant than the others. It showed
that the EWDM and the GWDM are, overall, the least discrepant DMs across all studies.
That section also discussed the percentage of studies in which each DM was identified to
be the least discrepant. Using the same Mean Absolute Error (MAE) and Mean Squared
Error (MSE) calculations from formulas 4.3 and 4.4, we identify the most and least
discrepant DMs for all 49 studies. For each study we have a specific number of experts
and calibration questions, along with the smallest and largest values for the MAE and
MSE. The DMs with the smallest MAE and smallest MSE are selected for that number
of experts and questions as the least discrepant choice of DM. If multiple studies share
the same number of experts and questions, then the DM with the lowest MAE is kept
for the MAE. This selection process is also done for the most discrepant DMs, using the
highest MAE and MSE. The final recommendations based on the least discrepant DMs
are visualized in figures 5.5a and 5.5b. For example, in a study with 10 experts and 10
calibration questions, the GWDM is recommended to be the least discrepant based on
the MAE. However, in this same study, the EWDM is preferred to be the least discrepant
by the MSE.
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(a) MAE (b) MSE

Figure 5.5: Recommendations for least discrepant Decision Maker based on Mean Ab-
solute Error (MAE) and Mean Squared Error (MSE) of Decision Makers. The error is
based on the difference between the information scores of a Decision Maker using another
Decision Maker as the background measure, and their information score when using the
uniform distribution as the background measure.

For the recommendations based of the most discrepant DMs we have figures 5.6a and 5.6b.
For example, in a study with 10 experts and 10 calibration questions, the GWDM opt is
recommended to be the most discrepant based on the MAE. However, in this same study,
the IWDM opt is the most discrepant by the MSE.

(a) MAE (b) MSE

Figure 5.6: Recommendations for most discrepant Decision Maker based on Mean Ab-
solute Error (MAE) and Mean Squared Error (MSE) of Decision Makers. The error is
based on the difference between the information scores of a Decision Maker using another
Decision Maker as the background measure, and their information score when using the
uniform distribution as the background measure.
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6 Conclusion

This report presented an analysis of the robustness and discrepancy of Cooke’s Classical
Model (CM) based on Structured Expert Judgment (SEJ). To evaluate robustness, sec-
tion 3 analyzes the calibration scores of each Decision Maker (DM) across all 49 studies.
To test the stability of these scores under data uncertainty, each expert and each calibra-
tion question was removed once from the data. Based on the boxplots of the calibration
scores, it can be concluded that for the GWDM, GWDM opt, IWDM, and IWDM opt,
increasing the number of experts led to more robust models, since the variation of the
scores decreased and the scores were more closely centered around the original calibration
scores. More specifically, for these DMs, the calibration scores remain constant when the
number of experts reaches 21 or more. For the EWDM, robustness increased in studies
with 32 experts or more.

When assessing robustness by the number of calibration questions, it can be concluded
that for IWDM and IWDM opt the calibration scores became more stable with more
calibration questions. Since the variety of the scores decrease when the questions in-
crease. In contrast, there was no clear trend found for GWDM, and GWDM opt. For
the EWDM it was noticeable that the variability in calibration scores decreased when the
number of calibration questions reached 17 or more. This suggests that the IWDM and
IWDM opt become increasingly robust as more questions are added, while the EWDM
shows improved robustness when at least 17 questions are available.

The Robustness by Distribution Ratio (RDR) further supports the conclusion that an
increase in number of experts generally leads to greater robustness of the models. For
all 49 studies, the GWDM opt, IWDM, and IWDM opt were the most robust DMs when
evaluated using the mean, median, and standard deviation of the RDR metric under
expert removal. Additionally, the GWDM opt and the IWDM opt have the highest per-
centage of studies in which they are identified as the most robust models. For question
removal, only the GWDM opt and the IWDM opt showed a consistent decrease in the
RDR metric as the number of questions increased. Interestingly, the EWDM, GWDM,
and IWDM showed smallest RDR metric, and thus best robustness, at 13 calibration
question based on the fitted RDR curves. Overall, the IWDM opt was found to be the
most robust with question removal based on the three statistics. Furthermore, the IWDM,
IWDM opt, and GWDM opt have the highest percentages of studies where this DM is
identified to be the most robust DM. Thus, based on expert and calibration question
removal, we can conclude that the IWDM, IWDM opt, and GWDM opt are overall the
most robust DMs.
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In section 4, discrepancy was analyzed by comparing the Mean Absolute Error (MAE)
and the Mean Squared Error (MSE) of the information scores of each DM against alterna-
tive background measures. These information scores showed that EWDM had the lowest
MAE across all background measures, followed by GWDM and IWDM, making them
the least discrepant DMs. In contrast, the GWDM opt and IWDM opt had the highest
MAE, making them the most discrepant. This is also shown in the percentage of studies
where each DM is identified as the least discrepant DM. The EWDM had the highest per-
centage, followed by the GWDM, then the IWDM, GWDM opt, and IWDM opt. For the
MSE, the GWDM and EWDM had the lowest scores, making them the least discrepant
DMs. The IWDM, GWDM opt and IWDM opt score the highest on MSE, and thus are
more discrepant by this measure. This is further supported by the percentage of studies
where each DM is identified as the least discrepant DM by the MSE. The EWDM and the
GWDM appeared most often as the least discrepant DM, while the GWDM opt, IWDM,
and IWDM opt appeared less often as the least discrepant DM. Thus overall, the EWDM
and the GWDM are suggested to be the least discrepant DMs.
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7 Discussion

This analysis is based on a dataset of 49 studies. Some of these studies focus on topics
such as vaccinations, political violence, and obesity, or represent only certain countries.
Therefore, the findings of this report may not fully generalize to Cooke’s Classical Model
(CM) across other domains, such as climate change or different geographical regions where
this model is also used. Additionally, the dataset has only a few studies with 21 or more
experts and 17 or more calibration questions. This does limit the strength of the conclu-
sion taken in this report that an increase in the number of experts leads to a more robust
model. Similar for the influence of the number of calibration questions on the robustness
of a Decision Maker (DM).

For further research, a wider dataset should be used. Including studies from other do-
mains, and a wider range of number of experts and questions.
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