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Abstract

With the use of multi-core architectures, the Network-on-Chip (NoC) became an im-
portant research topic. The most important benefit of a NoC compared to a commu-
nication bus is that it is scalable. The heart of the NoC is the router, which provides
the communication between different computational units. This component is highly
suitable to be a 3D component, which means that the connection can go into a vertical
direction. This way the NoC is extended, with the same area footprint. This thesis de-
scribes the physical design of the 3D router, where various design problems are solved.
An existing router architecture is used as a start-point. One of the problems which this
thesis is trying to solve, is the reduction of the number of needed data lines. This is
especially useful for the vertical data lines, which are implemented with Through Sili-
con Vias (TSVs). A TSV has a large footprint compared to a transistor, which means
it takes up a lot of chip area. This results in increased cost. The reduction of the data
lines is accomplished by the serialization of the data. It is determined that the best
serialization ratio is 4. The 3D router is also adjusted for asynchronous operation. This
is accomplished with the use of FIFOs, two-flop synchronizers and Gray Encoders.
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Delft, The Netherlands
9 May 2014

vii



viii



Contents

Abstract v

Acknowledgments vii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Network-on-Chip . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 Design problems 3D router . . . . . . . . . . . . . . . . . . . . . 2

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 7
2.1 Design and Components . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 IC Design Methodology . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Standard Cell Library . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.4 Through Silicon Via . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.5 3D Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 3D Router 21
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Through Silicon Via . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.1 TSV Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5.1 Implement the RTL HDL code and testbench . . . . . . . . . . 34
3.5.2 Simulation of RTL . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5.3 Synthesis in Design Compiler . . . . . . . . . . . . . . . . . . . 35
3.5.4 Place and Route in SoC Encounter . . . . . . . . . . . . . . . . 36

4 Reducing the data lines in vertical direction by serialization 39
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Serializer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 Deserializer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 Implementation and timing . . . . . . . . . . . . . . . . . . . . . . . . 44

ix



5 The asynchronous working of the router 47
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Design of an asynchronous router . . . . . . . . . . . . . . . . . . . . . 47

5.2.1 Clocks and resets . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2.2 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3 A note about simulation of synchronizers in ModelSim . . . . . . . . . 56

6 Application and Results 59
6.1 2 routers in RTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.1.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.1.2 Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.1.3 Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.2 1 router after P&R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.2.1 Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.2.2 Asynchronous operation . . . . . . . . . . . . . . . . . . . . . . 69
6.2.3 Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7 Conclusion 75
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A TSV timing values for liberty file 79

B 3D router diagram 81

Bibliography 83

x



List of Figures

1.1 3D NoC with CPU, network interface and 7-port router . . . . . . . . . 5

2.1 ASIC semi-custom design . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Metal Cross-Section Diagram [1] . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Flow chart of the design steps . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Three dimensional 7-port router architecture . . . . . . . . . . . . . . . 22
3.2 Packet Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Memory block grid adjustment . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Tried HDL construction for TSVs . . . . . . . . . . . . . . . . . . . . . 28
3.5 Used HDL construction for TSVs . . . . . . . . . . . . . . . . . . . . . 29
3.6 Layout of a TSV from a LEF macro definition . . . . . . . . . . . . . . 31
3.7 Circuit for simulating delay and output transition time w.r.t. input

transition time and output capacitance with the influence of capacitive
coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.8 VHDL file structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.9 Floorplan of the 3D router . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 Data serialization timing diagram . . . . . . . . . . . . . . . . . . . . . 41
4.2 Data deserialization timing diagram . . . . . . . . . . . . . . . . . . . . 43
4.3 Timing diagram serializer/deserializer delayed siganls . . . . . . . . . . 45

5.1 The making of the initialization write and read resets . . . . . . . . . . 51
5.2 Two flip-flop circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3 Example of data incoherence . . . . . . . . . . . . . . . . . . . . . . . . 55
5.4 Gray encoder/decoder & synchronizer incorporated into FIFO . . . . . 56

6.1 2 routers vertically connected . . . . . . . . . . . . . . . . . . . . . . . 59
6.2 Throughput w.r.t. FIFO depth with flit injected on every clock cycle . 61
6.3 Throughput when burst rate is 1/2 . . . . . . . . . . . . . . . . . . . . 62
6.4 Throughput when burst rate is 1/8 . . . . . . . . . . . . . . . . . . . . 63
6.5 Throughput w.r.t. FIFO depth, where α = 2, 4, 8 . . . . . . . . . . . . 65
6.6 Throughput w.r.t. FIFO depth, where α = 2, 4, 8 . . . . . . . . . . . . 66
6.7 Latency w.r.t. FIFO depth . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.8 Cycle time w.r.t. serialization ratio . . . . . . . . . . . . . . . . . . . . 69
6.9 Floorplan of the 3D router block with different sizes of memory and TSV

array w.r.t. serialization ratios . . . . . . . . . . . . . . . . . . . . . . . 71
6.10 Total TSV and gate area w.r.t. serialization ratio . . . . . . . . . . . . 72
6.11 Total memory, chip and core area w.r.t. memory word depth . . . . . . 73

B.1 Complete 3D router diagram with LOCAL and UP input/output port . 82

xi



xii



List of Tables

2.1 Metal information for 1 tier [1] . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Memory block specifications . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Equation parameters with their symbols . . . . . . . . . . . . . . . . . 33
3.3 Values for the parasitic components of a TSV . . . . . . . . . . . . . . 33

4.1 Input and output signals serializer . . . . . . . . . . . . . . . . . . . . . 40
4.2 Input and output signals deserializer . . . . . . . . . . . . . . . . . . . 42

5.1 Input clocks asynchronous router . . . . . . . . . . . . . . . . . . . . . 48
5.2 Output clocks asynchronous router . . . . . . . . . . . . . . . . . . . . 48
5.3 Global clocks asynchronous router . . . . . . . . . . . . . . . . . . . . . 49
5.4 Intermediate clocks asynchronous router . . . . . . . . . . . . . . . . . 49
5.5 Clock groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.6 Reset signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.1 Tested clock cycle time at which the router is operating properly . . . . 70
6.2 TSV array with different serialization ratios . . . . . . . . . . . . . . . 72

A.1 Output transition time w.r.t. input transition time and output capacitance 79
A.2 Propagation delay w.r.t. input transition time and output capacitance . 79

xiii



xiv



Introduction 1
1.1 Motivation

1.1.1 Background

In current IC technology several problems exist regarding to chip design. They are
related to the desire for performance increase, which includes higher speed, lower power
dissipation and smaller area. Speed is related to computational performance. The usual
method to increase computational performance was to use more transistors. One way to
accomplish that was to shrink the channel length (transistor size), which meant more
transistors could be put on the same chip area and the computational performance
would increase. It also means that the transistors are getting faster and their capacity
lower, which also results in an increase in computational performance. A problem with
this method is that the channel length of the transistor is already reaching the 10 nm
border where various effects come into play. These effects include tunneling and energy
quantization [2], which significantly increases the complexity of the operation of the
transistor. Another way to increase the number of transistors is to increase the chip
area, so more transistors can be put on the chip. The problem with this method is that
with the increase of the chip area, the possibility of defects occurring also increases.
This means that after manufacturing, the number of working chips will be reduced (low
yield), resulting in increased cost.

The demand for increased performance in a chip caused engineers to find different
solutions. A trend that could be observed was that engineers began to use multi-core
chip design. An advantage of multi-core architectures is that they are suitable for paral-
lel computing, which improve computational performance in general. This type of chips
are known as chip-multi-processor (CMP). The communication between the different
cores is done by communication buses. With the increase in the number of used cores,
the complexity of the buses increases, resulting in long and complex interconnections [3].
This causes the delay, power dissipation and occupied chip area to become larger. The
delay results in decrease of the throughput. Because more cores cause problems for the
communication buses, this system is not suitable for scalability. Because transistors
were shrinking much faster then wires, wires became the larger component of the two,
resulting in longer delays and increased power dissipation [4]. The connection in a chip
was usually based on point-to-point connections. With the increasing complexity of
chips, it became increasingly hard to obey the real-time constraints in point-to-point
connections [5] which were needed to let the design work properly.
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1.1.2 Network-on-Chip

A solution for the communication problems, which is extensively researched, is the
Network-On-Chip (NoC). A NoC provides the communication between different com-
putational units, like CPU’s. It consists of routers, which are connected to each other
in a mesh, and where different computational units are connected to them through a
Network Interface (NI). Using a NoC instead of a communication bus solves the com-
plex wiring problem. Because the computational blocks are only connected to their
router, and since the router determines the communication protocol, no long wiring is
needed, and no complex real-time constraints need to be obeyed. An advantage of a
NoC is that it is scalable, which means more routers could be added together with their
computational units, without degradation of performance. This NoC can be extended
with 3D routers, enabling 3D chip design which is done by the vertical connections of
the 3D router. With a 3D router, which serves as a 3D component, multiple meshes
can be stacked on top of each other, increasing the computational performance with-
out increase of the chip area. Two meshes stacked on top of each other are shown in
Figure 1.1.

There already is a 3D router design by S. Kumar [6] which can serve as a 3D
component. The router had initially 5 ports (north, south, east, west, local). This was
extended by two additional vertical ports (up, down) which made this a 3D component.
Every port can send and receive 37-bit data flits. For this design a RTL model is
available, which simulates correctly, but there is no physical design available. In order
to be able to use this 3D component for 3D chip design, some design problems like
timing, placement and physical implementation of the vertical connections should be
solved. After this, physical design can be done.

1.1.3 Design problems 3D router

One of the design problems in the router design by S. Kumar, is that it uses 37-bit wide
data lines for all the input/output ports. This means that every port consists of 37 lines
for the input and 37 lines for the output. On every clock cycle of the router, one bit is
sent through a data line. Because this data line has a very small delay compared to the
clock cycle on which the router is operating, a bit can be sent at a much faster interval,
compared to the clock cycle of the router. In this way the capacity of a data line is
more efficiently utilized. If the interval for sending a bit through a data line would
be decreased, more bits could be transported, which means fewer data lines would be
needed in order to transport an equal amount of bits.

Another problem in the router design by S. Kumar is that it only works in one
clock domain. This means that when used in an unmodified NoC configuration, all the
routers should operate on the same clock frequency. This is hard to achieve, especially
between two routers sitting on different tiers. A solution has to be found which enables
the operation in different clock domains.

The physical design problems that arise when using the router design of S. Kumar,
are the need for Trough Silicon Vias (TSVs) for every data line in the vertical direction.
As explained earlier, there are 37 input and output data lines in each direction. Because
a TSV has a large footprint compared to a transistor, a lot of chip area will be needed
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in order to accommodate all the TSVs which will result in cost increase. If the number
of needed TSVs could be reduced, less area would be taken by them, resulting in lower
costs.

This thesis is trying to solve the above mentioned problems by using a new design
methodology. The design problems of the router by S. Kumar which this thesis is trying
to solve are:

• Low utilization of the capacity in the data lines

• Communication between multiple clock domains

• Large footprint of needed TSVs

1.2 Contributions

This thesis concentrates on the reduction of the needed data lines in the vertical
direction in order to improve the throughput of the data lines, and to reduce the
number of needed TSVs because of their footprint. The technique which is used, is
serialization/de-serialization. For this an existing design of a serializer/de-serializer is
used [5] and implemented in the 3D router. This design makes use of two clocks, which
ensures that the serialization and de-serialization is done without the need of additional
clock cycles. Some timing problems are solved in order to ensure valid operation of the
serializer/de-serializer. To enable operation in multiple clock domains, the FIFO from
the router, which consists of a two-port register file, is used together with two-flop
synchronizers and Gray encoders [7].

A physical design is made for the adjusted 3D router. The design of choice is an
ASIC semi-custom design, which consist of a standard cell library and some macro’s.
The standard cell library is composed of the 45 nm Nangate Open Cell Library. For the
FIFO, macro blocks are used, which consist of 55 nm Faraday memory blocks (two-port
register files). These blocks are adjusted for the 45 nm grid. The EDA tools which are
used for physical design are Synopsys Design Compiler for synthesis and Cadence SoC
Encounter for place&route. For the TSV a macro is made, which is composed of a RTL
model, an abstract layout model (LEF file) and a timing model (Liberty file) which is
based on the work of R. Jagtap [8]. Because it is intended to let the router operate on
as high a clock frequency as possible, some timing optimization steps are performed.

At the end, two asynchronous routers with a serializer and de-serializer in between
are connected through their vertical interconnections, which forms a basic NoC. To
test the operation of this design, an injector with a large test coverage is used, made
as a vhdl testbench, which emulates a real computational unit like a CPU core (ARM,
Micro-Blaze, X86, etc.). When connecting several 3D routers on all sides, a complete
mesh is made which looks like Figure 1.1. In this thesis only two vertically connected
routers are tested, because this forms the most complex communication where the
serialized data lines are tested, together with the asynchronous operation of the two
routers. The floorplan which is used is kept the same, where the number of TSVs are
changed, dependent on the serialization ratio of the data in the vertical direction. Also
different memory sizes are tested to see how they impact the area of the chip. In the
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end there is an overview of different results, like the throughput, latency, complete chip
area, memory area and TSV area, together with the timing results. This way it can be
determined how the different topologies and serialization factors influence the occupied
chip area and performance.

The significant contributions of this thesis include:

• Reduction of data lines in the vertical direction of a 3D router

• Enable operation of a 3D NoC in multiple clock domains

• Physical design of a 3D router

• Timing optimization in physical design of a 3D router

1.3 Thesis Organization

The thesis is organized in the following way:

Chapter 2 will describe some background information, compare similar previous im-
plementations and discuss what will be improved in this implementation.

Chapter 3 will describe the design steps on how to make a physical design of a 3-
dimensional router with 7 ports, where the 2 vertical ports are made with the use
of TSVs. First the architecture of the router [6] and then the implementation of it
will be explained. The implementation of the memory and TSVs into the design
will be discussed with the help of the used design flow and the needed EDA tools.

Chapter 4 will describe the design of the serializer and de-serializer [5], together with
the implementation into the design. Some solutions to timing problems will be
given at the end of this chapter.

Chapter 5 will describe the design of an asynchronous router using FIFO’s, two-flop
synchronizers and Gray encoders [7].

Chapter 6 will describe the performance of two vertically connected asynchronous 3D
routers where the data which is flowing in the vertical direction is serialized. Also
the timing results will be given for 1 3D router with different serialization ratios.

Chapter 7 includes the concluding remarks and recommendations for future work.
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Figure 1.1: 3D NoC with CPU, network interface and 7-port router
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Background 2
The design of a complete three dimensional chip is a long and complicated process.
For an engineer it is important to divide the design into several manageable parts and
decide on how to implement them. Each part can be implemented in a different way,
which means that a good balance has to be found between different implementations
that suit all the requirements with the lowest cost.

To understand the 3D router design and the choices made here, it is important
that some background information is given on this subject. This chapter gives some
background information about the implementation of 3D chip design. First the most
important parts in 3D chip design will be described, after which a link will be made to
the 3D router design. A complete workflow for this design will be given at the end of
this chapter.

2.1 Design and Components

This section describes the different implementation parts of 3D IC design and the
needed components. First a general description is given on the implementation of IC
design. After that the standard cell library, memory and TSV will be discussed. At
the end some 3D implementations will be described and compared. This information
mainly serves to provide more insight in the complete process of the 3D router design,
and to understand why some decisions are made.

2.1.1 IC Design Methodology

An engineer has to decide which technology he wants to use. Whether it be an ASIC
(Application-Specific Integrated Circuit) design or a FPGA (Field-programmable gate
array) design, a full-custom design or a semi-custom design. This choice will depend on
the constraints set before. An ASIC design is highly suitable for designs with a specific
function. The 3D router has such a specific function, which makes it perfect for ASIC
design. An ASIC design can be full-custom or semi-custom.

A full-custom design is the fastest design, but it is also the most complicated one,
and the design time is the longest. In this type of design all of the transistors are
shaped and placed by hand. With the access to the transistor design itself, which is the
main building block of any digital circuit, a designer has the freedom to chose different
layouts for different small circuits, and to chose the most efficient placement. This also
means the designer should keep in mind the different design rules. Design rules specify
different constraints like minimum-width and minimum-spacing requirements between
objects on the same or different layers [4]. The drawback of full-custom design is,
that it is time consuming, which translates automatically into high costs. This type of
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Figure 2.1: ASIC semi-custom design

design is mainly suitable for specific performance-critical modules which can be reused
in different designs. Another important area where full-custom design is used, is for
developing standard cells which are used in semi-custom design, or for analog blocks in
analog design.

A semi-custom design is another possibility for designing ASIC. There is some per-
formance degradation which can be accepted, while at the other hand the design time is
reduced. An semi-custom design consists primarily of standard cells and macro blocks.
Standard cells are usually available from different vendors, who make a standard cell li-
brary. A standard cell is a cell with a predefined height and adjustable width. This cell
consist of a logical gate, i.e. NOR, NAND, INV, DFF, etc. At the top of the cell, there
is a power line, where at the bottom of the cell, there is a ground line. The standard
cells are made full-custom, to have the best possible characteristics. The designer who
is using these standard cells, doesn’t have to worry about the inside of the cells. The
most important characteristics are the cell delay and power dissipation. These cells are
placed in rows, with power lines at the top of the row, and ground lines at the bottom.
In Figure 2.1a different rows can be observed with power/ground lines and standard
cells. In Figure 2.1b a layout of a XOR2 standard cell can be observed. Because of it’s
efficient use and good performance, semi-custom design is highly suitable for the 3D
router design.

Macro blocks form another important part of a semi-custom design. Using standard
cells is attractive for random logic functions, but it’s quite inefficient for more complex
parts like memory, DSP’s, etc. [4]. These parts can be designed in a more efficient
way, by using a specific structure that is suitable for it. This ensures the customized
implementations will outperform standard cell design by a wide margin. There are two
types of macro cells, the hard macro cell and the soft macro.

The hard macro is a module with a given functionality and a predefined physical
design [4]. An ASIC designer should not worry about the inside of this block, but
only about the input/output characteristics and power consumption, just like with a
standard cell. The advantage of a hard macro is, that the design itself is very efficient,
and that a block can be reused more times. A disadvantage would be that when a hard
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macro is designed for a particular technology, it will only work with that technology.
It is very hard to port a hard macro to another technology. An area where a macro
block is highly usable is when making a design with a regular structure. Here the same
components are used over and over again, and put into a regular structure. A good
example of this is a memory block. When designing a memory block, there is a basic
building block, which can be extended into a regular structure for a desired memory
size. Generators are usually made for this purpose. Such a generator will create a
macro block with the help of some input arguments. For example, these arguments can
be the desired address size or word size.

The soft macro cell is a module with given functionality, but without specific physical
implementation. The placement and wiring will determine the timing of that block,
which means that they can change every time a new synthesis and placement&routing
is ran. Compared with a hard macro, it has a disadvantage that it doesn’t use full-
custom design, which is important when using high performing blocks like memories.
The advantage is that it’s not technology specific, and that it can be ported to other
technologies quite easily.

2.1.2 Standard Cell Library

For the logic in the 3D router design, a standard cell library has to be chosen. These
libraries are usually designed by IC vendors. They develop their own cells, characterize
them, and sell them to other companies for implementation. Libraries are made with
the help of a Process Design Kit (PDK). A PDK is a bundle of files which describes
different aspects of transistors needed to design standard cells. These files consist of
design rules, simulation models for transistors and layout information for transistors.
With these files, standard cells can be made, and in the end a complete library of these
cells can be constructed.

The case here is, to chose the best possible library which will support the different
aspects of the 3D router design. The most important aspect the chosen library should
have, is support for 3D design. This means it should have support for TSVs. Another
important aspect is that it should be made in a small process technology. The third
aspect would be that it is available for free. One Standard Cell Library that was qual-
ified for the above mentioned conditions, was the Nangate Open Cell Library. The
purpose of this library is to provide research, testing, and exploring of different EDA
flows [10]. The library is generated with the Nangate Library Creator, and the 45 nm
FreePDK Base Kit from North Carolina State University (NCSU), and it is character-
ized with the Predictive Technology Model (PTM) from Arizona State University. The
only drawback of this library is, that it has not industrial grade performance, because
it was generated using a non-optimized Open PDK [10]. This is not a real problem,
because the most important aspect of this thesis is to make a functional 3D router
design, in real technology, and that it should work. The design flow and the different
optimization steps in such a physical implementation are one of the main aspects of
this thesis.

The support for 3D design is not directly incorporated into the Nangate Standard
Cell Library, but it is supported by the PDK which is used to make this library. This
PDK contains the technology library, which supplies tech files, display resources, design
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rules and scripts to permit layout design and rule checking for a generic 45 nm pro-
cess [11]. Because in this design flow primarily the Standard Cell Library will be used,
only the relevant part of the PDK will be discussed, which is the TSV implementation.

In Section 2.1.4 some background information on TSV will be given, and different
technologies will be discussed, and in the end, a comparison will be made with the one
from the NCSU PDK.

2.1.3 Memory

For every input port of the 3D router, a memory block is needed. This memory block
will be used as an input buffer. It should obey the different constraints needed for
the input buffers, like word depth, and address length. Later on in Chapter 5 it
will be explained how this memory can be used to separate two clock domains. The
available memory is a 55 nm synchronous, two port register file from Faraday. In section
Section 3.3 the exact specs will be given and explained in the context of the complete
3D router design. The model is given in several files. An HDL file, a LEF file and a
liberty file are all needed for the simulation, place&route and timing information.

The only problem with this memory block is, that it’s based on 55 nm technology,
instead of 45 nm technology like the Nangate Standard Cell Library. The reason for
using 55 nm technology is because this was the closest available memory technology
compared to the 45 nm of the Nangate Standard Cell Library. This was solved by some
modifications explained in chapter Chapter 3.

2.1.4 Through Silicon Via

A TSV is a vertical connection which is made into silicon. First a hole is etched into
the silicon, and then it’s filled with a metal like aluminum, tungsten, wolfram, etc.
There are basically three steps which are used for the complete 3D process: via drilling
and filling, wafer thinning and backside metallisation [12]. The positive side of TSV’s
is that it enables vertical interconnections, and allows the stacking of different dies.
This enables the reduction of the chip footprint, and at the same time improves the
performance due to the vertical interconnections.

To be able to use TSVs in 3D IC design, first a better understanding of the TSV
should be obtained. In this section some background information will be given on this
subject, like size, used materials, placement, and reliability. At the end a comparison
will be given with the TSV model from the NCSU FreePDK, which will be used as a
reference design. Later on in chapter Chapter 3 the implementation of the TSV will be
discussed, which will be based on the work by R. Jagtap [8].

2.1.4.1 Size

A TSV can have different diameters and different pitch. The smaller the diameter
is, the smaller the pitch, and the denser the design. This means also the larger the
diameter, the larger the pitch and the more sparse the design. The problem with TSVs
is that it cannot shrink the same way like transistors do. This is why TSVs are far
bigger than transistors. On of the reasons the TSV cannot be shrunk under a certain

10



size is if the diameter of a TSV is shrunk, the wafer thickness should also be smaller,
because of via filling reasons [12]. [12] states that when using TSV’s with the diameter
of 10 nm and less, the density can go high as 10000 TSV/mm2. Nevertheless, very
small diameter TSVs have been designed where 4 nm wide TSV have been patterned
with lithography using 3.2 µm thick photo-resist [13].

A new technology which enables TSVs with a diameter in the order of 50 nm is
monolithic 3D integration. This technology splits NMOS and PMOS transistors in
each standard cell into two device tiers. Thanks to the extremely small size of the
inter tier vias, ultra fine-grained vertical integration of devices and interconnects are
enabled [14].

2.1.4.2 Placement

The placement of TSVs on a chip determines the reliability and speed. For example,
a regular placement of TSVs improves the exposure quality of the lithographic process
and therefore improves the yield [15]. On the other end, the keep-out-zone (KOZ) is
an area outside of the TSV, where no transistor can be because of reliability issues.
But because of this, the pitch of the TSV’s becomes larger, so does the area which will
be covered by TSV’s and KOZ. The reliability issues related to KOZ are explained in
Section 2.1.4.3. R. Jagtap compares several TSV placement topologies, and states that
area and performance wise, the shielded and isolated topologies are preferred [8].

2.1.4.3 Reliability

Reliability is an important aspect in developing TSV’s to enable maximum performance
and high current demands trough the stacked package. [16] states that there are two
critical interfaces on high density TSV with diameters below 10 µm. The first one is
the transition between TSV and first metal level of Band End of Line (BEoL)–which is
a thin metallization having a thickness below 0.25 µm. The second one is the transition
between TSV and backside redistribution level–a thick metallization of about 1 to 5
µm. A thick metal process should be expected to increase the EM robustness, based
on current density considerations. This is not the case due to void nucleation occurring
right at TiN interface of TSV instead of opposite SiN capping layer. Because of this, any
thickness increase of metal level in order to increase the electromigration robustness,
should be considered carefully, because of void nucleation interface and void growth.

[17, 18] states that there are three levels of partitioning granularity. There is
core level integration, block level integration, gate-level integration and transistor level
integration. Current IC technologies support TSV diameters down to 5 µm. Alignment
precision is very important in stacking tiers.

When using TSV’s, there is a redundancy problem. If one TSV fails in a chip, the
complete chip stops working, which means such a failure can cause an increase in cost
and decreases in yield as the number of dies to be stacked increases [17, 18]. With one
redundant TSV allocated to one TSV block, the proposed structure leads to 90% and
95% recovery rates for TSV blocks of size 50 and 25, respectively.

Presently, most 3-D IC processes require each tier to be less than 100 µm thick [15].
There is a significant difference in thermal expansion between Copper and Silicon,
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which can cause significant stresses at the interface during thermal processing [19, 20].
These thermal stresses can cause mechanical stresses in the channels of the n-MOS and
p-MOS devices, which will result in an increase or decrease of the drain current of the
MOS devices. Because of this, a KOZ can be formed around the TSV, to minimize this
effect. The KOZ for an TSV is defined as an area around the TSV where the variation
in the drain current is below a certain threshold. Equation (2.1) shows the connection
between the KOZ area and the TSV diameter.

KOZ1

KOZ2

=

(

φ1

φ2

)2

(2.1)

When scaling the TSV diameter, the KOZ area reduces quadratically. Because of this,
it is very important do reduce the TSV diameter.

[21] used a Bosch-process for making TSV’s with a depth of 40 µm and a diameter
of 5.2 µm. If a transistor is placed parallel from the TSV, the effect is enhanced, and
if it is placed perpendicular, this effect gets smaller. The KOZ for a large matrix of
TSVs is over 200 µm for analog circuits and 20 µm for digital circuits.

Coefficient of thermal expansion (CTE) mismatch between the conducting metal in
TSV and silicon substrate can generate thermal stress inside and around TSVs [22]. For
TSV interfacial crack, larger landing pad size is not beneficial. A landing pad is used
to connect a TSV to a metal layer in a tier. The smallest defects occur when the TSVs
are placed 90◦, because the tensile and compressive stress from each aggressor TSV
cancels out at the victim TSV location. There is a high angular dependency in a small
pitch region. If the pitch exceeds 15 µm, angle impact is almost negligible. Array type
placement causes the lowest stress. It is best to use block placement in the design. This
agrees to the highest degree with the findings of R. Jagtap, where the bundle topology
and shielded topology (same as bundle, only with ground TSVs between signal TSVs
because of capacitive coupling issues) are chosen as the best one [8].

2.1.4.4 Comparison with NCSU FreePDK TSV

Table 2.1 shows the different dimensions of the metal layers in a tier, which are part
of a stacked 3D IC design. This is illustrated in Figure 2.2. In this process, the
TSV is created out of different metal layers. All the metal layers stacked on top of
each other, will form a vertical connection. Every metal layer has it’s own minimum
dimensions. But because all these layers are stacked on top of each other, the layer
with the largest dimension will determine the dimension of the complete TSV. In this
case this dimension pertains to the gate oxide, substrate and back metal, which is 6000
nm or 6 µm. Compared with the TSV sizes in Section 2.1.4.1, 6 µm is acceptable.
Also the TSV size which is used in [8] of 4 µm is of comparable magnitude. Only the
technology from [13] and [14], which uses TSV’s with a diameter of 10 nm and less are
far smaller. But these technologies are not suitable for this router design, because of
the lack of standard cells which support this kind of implementation.

The material used for the NCSU FreePDK TSV is not important in this design
process. The only thing that matters, is that the dimensions of the TSV are known
and obeyed. Because of this, the will be no further discussion about the TSV material.
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For the placement of TSVs, several topologies can be used. In section Section 2.1.4.3
it is stated that an array type of placement is the most suitable for high reliability.
Performance wise this is good enough to be used in this particular design. When using
the TSV dimensions from the NCSU FreePDK technology, the operation should be
acceptable. Implementing the KOZ shouldn’t be a big problem, because of the used
placing of TSVs. More details on the TSV and KOZ area will be given in chapter
Chapter 6.

Table 2.1: Metal information for 1 tier [1]

Name Pitch (Width/Space) (nm) Thickness (nm) Via dimension (nm)

Top Metal 1600 (800/800) 1000 -

TM Cap Oxide - 1000 800

ILD 9 - 2000 800

Global (9-10) 1600 (800/800) 2000 -

ILD (7-8) - 820 400

ThinGlobal (7-8) 800 (400/400) 800 -

ILD 4-6 - 290 140

Semi-global 280 (140/140) 280 -

ILD 2-3 - 120 70

Intermediate (2-3) 140 (70/70) 140 -

ILD 1 - 120 65

Metal 1 130 (65/65) 130 -

Poly-Dielectric - 85 65

Poly 125 (50/75) 85 -

Gate Oxide - 200 6000

Substrate - 40000 6000

BM Cap Oxide - 200 6000

Back Metal 1600 (800/800) 1000 -

2.1.5 3D Implementation

When having a multi-core design using a NoC as an interconnect, a three dimensional
implementation could be very suitable. First a decision has to be made how to im-
plement this 3D technology. As stated in Section 2.1, the use of TSVs is the solution.
There are several ways of implementing these vertical interconnections. All of them are
based on at what level the TSV will be implemented. A description of the most used
implementations is given:

3D-SIP [23] The most straightforward solution is to stack different dies on top of each
other, and to make the interconnections with bond wire at the peripheral pins.
This defined as a 3D system in a package (3D-SIP). The problem with this kind
of implementation is that the number of available interconnects (pins) is too low
for an complicated and fast design. Because of this reason, this implementation
is not used a lot in current designs.
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3D-SoC [23] Another implementation is with the use of internal vertical interconnec-
tions. This implementation is based on Trough Silicon Via (TSV), which is an
interconnection with low capacity and resistance. The the interconnections are
made on block level. Different blocks are interconnected with each other with
TSV’s and the number of available interconnections is much higher than the 3D-
SIP implementation. This implementation is defined as 3D System on a Chip
(3D-SoC).

3D-IC [23] 3D interconnection at the lowest level (transistor level) is called 3D-
integrated circuit (3D-IC). Here the interconnects are made locally, where the
global interconnections stay 2D. In this technology, the number of 3D intercon-
nections per unit area are the highest. This implementation is used only in very
high performance designs.

When comparing these different 3D implementations, the 3D-SoC implementation
seems to be the most suitable for the 3D router design. A 3D NoC consists primarily
of 3D routers which can be seen as blocks, and have those two vertical interconnec-
tions made with TSVs. With the 3D-SoC implementation, a mesh of 3D routers (and
attached CPU’s) can be made, which is shown in Figure 1.1.

2.2 Approach

Now that most components have been described, a way has to be found to combine
them, and design a complete digital system, in this case a 3D router. The fact is that
there are a lot of different ways to design a complete system, but it is important to find
one which will suite a particular design the best possible way and also be developed in
an efficient way.

The first thing that has to be decided upon, is the architecture of the system. The
architecture can determine for example if the design will be a single-core design or a
multi-core design. It can determine if it will be a single clock-cycle design or a multi
clock-cycle design.

Right after this comes the implementation. As stated in previous sections, the
implementation is very broad, because a design can be very complex and consists out
of several specialized blocks. These block can be digital, analog, low power, high
performance, they can be placed on the same die or they can be placed on different
dies. The digital system can be improved by extending the architecture, which will
use more transistors, which in turn will make the design larger and more complicated.
Another way to improve the design is to use multiple cores, and let them communicate
with each other. These cores can be similar, or they can be different cores with different
functions.

2.2.1 Motivation

The motivation for this type of design comes from several problems that exist in current
chips. The first one is the communication problem, where all the communication is
done by direct interconnection. This can give some performance overhead. A trend
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that can be observed today is that digital systems get multiple cores or many different
digital blocks on the same die. This takes up a lot of area, and it is even hard from a
technological perspective to make these different blocks on the same die. Also the large
amount of complex wiring is causing some problems.

To solve the first problem, a NoC is introduced. A NoC gives support for multi-
core designs, and multi-block designs. It enables a network of different cores that
all communicate with each other in a efficient way where the large amount of complex
wiring is reduced. Also it enables scalability, which enables adding or removing different
digital cores and/or blocks. This can be of interest when extending or changing the
design.

Because of the many different cores and blocks on a die, the die can get very large.
It should be possible to stack the different cores on top of each other. This is made
possible with the introduction of TSVs, which are vertical interconnections, and enable
the interconnection in three dimensions. In this way, the chip area can be reduced and
the communication can be improved because of these fast vertical interconnections.

An advantage of the NoC and 3D integration is that they can work flawlessly to-
gether. A NoC is made out of routers, which are connected to each other and to other
CPU cores and blocks. If these routers are enhanced by vertical interconnections which
enables a design of a three dimensional mesh of routers, so the NoC becomes 3D. As
stated above, this in turn will enable the reduction of area size, scalability and speed
improvement in the interconnection.

The drawback of this 3D design approach is that every vertical signal needs one
TSV. In Section 2.1.4.1 it’s explained that a TSV is a lot larger than a transistor,
which means the TSVs will occupy a lot of area. The vertical signals needed can go
up to a number above 160. It is essential to reduce this number of TSVs. This will be
explained in chapter Chapter 4.

When making an asynchronous three dimensional design based on a 3D router,
several constraints should be met. These constraints are:

• The NoC should be scalable

• It should work in 3 dimensions

• The power usage should be as low as possible

• The 3D routers should be able to operate in different clock domains

• The number of vertical lines/TSVs should be reduced

2.2.2 Components

Eventually the 3D NoC will consist of the following components:

3D router This router will be the heart of the NoC, and will have 7 ports (north,
south, east, west, local, up, down). It will be able to make horizontal as vertical
connections, and form a 3D connected mesh like in Figure 1.1.
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Serializer The serializer serves to reduce the number of vertical signals which are
going through TSVs to another stack, meaning the number of TSVs needed will
decrease.

De-serializer The de-serializer serves to recover the serialized signals coming out of
he TSVs in another stack, so they can be used in the new 3D router.

Synchronization Unit The synchronization unit consist of two-flop synchronizers
and Gray encoders. It synchronizes the read and write pointers from the FIFO,
enabling asynchronous operation of the 3D router.

Network Interface The network interface is the interface which will provide the con-
nection between the CPU and the router through the local port.

Computational Unit The computational unit can be every type of CPU, DSP, etc.
It receives data from the NoC or sends data to the NoC.

In this thesis, only a basic 3D NoC will be made out of two 3D routers, with a
serializer and deserializer in between. The network interface will be left out, as well
as the computational unit. Instead, this will be simulated with a injector, made in a
testbench, which is able to inject flits with different injection rates and injection sizes
to various network addresses. A real computational unit combined with a network
interface should be able to connect to the 3D router(s), and the design should operate
flawlessly.

2.3 Workflow

The first thing to do will be the design of the router. A suitable architecture should
be chosen for this design which will work well with the rest of the components. Also
a serializer/deserializer combination should be included for the reduction of vertical
interconnections, together with synchronizers to enable the asynchronous working of
the router. Second, TSV’s should be designed which can be incorporated into the router
design so the up and the down port can be made with it. Third, a design flow should
be chosen where this design can be implemented in. For the synthesis Synopsys Design
Compiler (DC) is chosen. The main reason for this is, that the current design flow at
the faculty already uses this tool. Nonetheless it is highly optimizable and customizable
for the designers needs. For placement and routing Cadence Soc Encounter (Encounter)
is used, for the same above mentioned reasons. The simulation tool for HDL code is
Mentor Graphics ModelSim (ModelSim). In Figure 2.3 a flow chart is given with all the
steps in the design process. These steps will be described in the following paragraphs.

Step 1: Make HDL code design + testbench

First the logical behavior of the design must be specified in an HDL language. This
language can be VHDL or Verilog. This logical behavior is usually described in the RTL
level of abstraction, because it’s most suitable for clocked designs. A complete design
can consist of more sub-designs, and the usual method would be to make separate HDL
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codes for each sub-design, and use these sub-designs into other designs higher in the
hierarchy. To test this logical behavior of a system, a testbench must be specified. A
testbench is basically also a description in HDL which supplies the top-level design with
stimulus signals. A good testbench is one which tests all the relevant inputs.

Step 2a: Simulate RTL code in ModelSim

To simulate the RTL code, it must be first compiled. The order of compiling must be;
first the lowest levels of abstraction, and then the higher levels. The reason for this is,
that a higher level code, which uses a lower level code, cannot be compiled before the
lower level code is compiled. In a simulator like ModelSim, the testbench is specified
which has to be simulated, and different settings can be set. Then the simulation can
be run, and the results will appear like waveforms. It can be chosen which input/output
signals has to be shown, and which intermediate signals. This type of simulation only
simulates the logical behavior. No delays will yet be specified.

Step 2b: See if the simulation results of the RTL code are correct

When the simulation is finished, the waveforms of the chosen signals can be studied.
Here it can be observed if the logical behavior of the RTL code is correct. If there are
signals that are false, or even worse, unknown, the RTL code has to be changed. And
the simulation has to be ran again.

Step 3: Set DC setup constraints

Now that the RTL code is logically valid, it should be synthesized into design which
exist of only the standard cells and macro’s from the different libraries. For this a tool
is needed like Design Compiler. Design Compiler can be ran in graphical mode, and
in batch mode. Batch mode is more efficient, especially because scripts can be used to
run the tool. These scripts are written in the TCL language. In these scripts different
needed files have to be specified. Also various constraints have to be specified, like
clock speed, clock latency, input/output delay, etc. These constraints will determine
the final synthesized design.

Step 4a: Synthesize in Design Compiler

After all the scrips have been finished, they can be executed, and all the commands
with their respectively constraints will be executed. In turn the Design Compiler will
map the RTL design on the standard cells and macro’s from the available library.

Step 4b: Look at the output reports from Design Compiler and see if it meets
the constraints

Different output reports will be generated by Design Compiler, ranging from the number
of gates used, to the amount of area used, to different timing reports that are the most
important reports. The timing reports specify the paths between two clocked devices
(registers and/or memories) or between the input/output en other clocked devices,
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with the largest negative slack. In the scripts, special commands can be given which
paths should be put into the timing reports. This is for debug purposes. If the timing is
correct, it should be simulated for correction. If not, the constraints should be adjusted
or the RTL code should be changed.

Step 5a: Simulate synthesized code in Modelsim

This is basically the same step as step 2a, only here the synthesized code is simulated
together with a SDF (standard delay format) file. The synthesized code is a structural
description of the design, with all the standard cells and macro’s (memory blocks)
connected to each other in the best possible way, for a functional and fastest design. The
SDF file contains of delay values for the used standard cells, and the interconnect delays
are guessed, because Design Compiler doesn’t contain any interconnect information.
These delay values are annotated into the synthesized design, and it is simulated.

Step 5b: See if the simulation results of the synthesized code are correct

As in step 2b, the waveforms can be seen, only this time with the delay information
available. Again, if there are signals that are false, of unknown, something can be
wrong with the simulation settings or synthesis settings.

Step 6: Set SoC Encounter setup constraints

Now that the synthesized code is valid, it should be placed and routed. Here the real
interconnect delay values will be calculated and extracted. For this a tool like SoC
Encounter is needed. This tool can also be run in graphical mode, and in batch mode.
Also here scripts can be used which are made in the TCL language. Here different
commands and constraints are specified which have to be executed. These constraints
will determine the final placed and routed design.

Step 7a: Perform place&route in SoC Encounter

Apart of the constraints that have to be specified in the scripts, and various TCL
commands, there are some things that have to be done manually. One of these things
is the placing of the macro blocks and the inclusion of power rings, lines and stripes.
This has to be done in the graphical way. A good thing about it is, that when these
things are done the first time, the TCL commands used by encounter to do the placing
and the power design can be found and used in a script for future execution. After the
execution of the scripts, and eventual manual adjustment of the macro placement and
inclusion of the power, SoC Encounter will place all the standard cells and macros into
a real die, and interconnect them with signal lines and power lines.

Step 7b: Look at the output reports from SoC Encounter and see if it meets the
constraints

SoC Encounter gives output reports with various information like Design Compiler does
in step 4b. The timing reports here are also the most important, because it shows if
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the design will work at the specified clock speed. If all these reports are satisfactory,
it should be simulated for correction. If not, some design constraints or placement has
to be changed to meet the specified constraints.

Step 8a: Simulate after place&route the final code in ModelSim

Here the simulation of the placed and routed design is done, together with the SDF
file. Only this time the SDF file contains real interconnection delays, so this simulation
should be the most comprehensive.

Step 8b: See if the simulation results of the final code are correct

These results are of a ’real’ design, which is placed and routed, and where real delay
values are used for simulation. If these simulation results are correct, this design is
valid, and can be taped out or used as a macro block for another design.

Make HDL code

design +

testbench

Simulate RTL

in ModelSim

Synthesize in

Design

Compiler

DC setup

constraints

Simulate
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SoC Encounter
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NO
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NO
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Figure 2.3: Flow chart of the design steps
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3D Router 3
This chapter describes the basic design of the 3D router, which is the main building
block of a 3D NoC. This excludes the serializer/deserializer and synchronizers, which
will be discussed in chapter Chapter 4 and Chapter 5. First a short motivation will be
given on the design methodology for the 3D router in Section 3.1. The architecture of
the 3D router is described in Section 3.2, followed by the description of the memory
and the through silicon via in Section 3.3 and Section 3.4. In Section 3.5 a detailed
physical implementation is given of the basic 3D router design.

3.1 Motivation

The 3D router is the heart of the 3D NoC. It routes all the signals from source to
destination, so all the attached computational units are able to communicate with each
other in an efficient way. When designing this 3D router, it is very important that
it is suitable for the complete system, which includes the complete 3D NoC and the
attached computational units.

This chapter is about the design of the 3D router, using existing technology and
tools. The emphasis will be on the implementation of the TSVs, because this is a novelty
in the design process. This implementation of the TSVs will not be conventional, in
the sense that the end result won’t be able to be taped out as a physical chip. The
TSV implementation will be based on an abstract representation, which will suffice
for synthesis, placement&routing. For real implementation of the TSV, this physical
representation can be changed into a real one, but the timing shouldn’t change much.

3.2 Architecture

The first step of the router design is to chose a suitable architecture. This architecture
should be able to support the specific function of this router, which means it should
also be able to work in 3D. The architecture of choice is the input buffered wormhole
router which is designed by S. Kumar [6]. This architecture was built initially for a
2D 5-port router with the possibility to extend it to a 3D 7-port router. With small
adjustments in the RTL code, the two extra ports (UP and DOWN) were added so
a fully functional 3D router was obtained. In this chapter the 7-port router will be
discussed, which means the two extra ports will function as vertical interconnects for
up and down communication and will be implemented with TSVs. This router is
developed in-house at TU Delft as a part of the TMFab project by S. Kumar, so this
router is easily obtainable and many documents are available for extra information
needed for it’s ASIC implementation. The architecture is shown in Figure 3.1, where

21



all the different components are pointed out, and the input and output signals are
shown.
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Figure 3.1: Three dimensional 7-port router architecture

The input stage consists of the 7 input ports (each port for one direction), where
each input port consists of a input buffer part, buffer management part, and the routing
logic&output port select part. The output stage consists of 7 output arbiters (each
arbiter for one direction). Between the input stage and output stage, there is a ordinary
crossbar which links the input ports with the output arbiters. At each input port, there
is a 37-bit wide input signal, and a 1-bit output signal. At each output arbiter, there is
a 37-bit wide output signal, and a 1-bit input signal. The 37-bit signals are data bits,
and the 1-bit signals are the flow control bits.

The used architecture uses wormhole routing for routing data packets across the
network. These data packets are divided into flits. Each flit consist of 37 bits. That
is the reason the complete NoC supports 37-bit input and output links interconnecting
nodes. Each flit consists of a header flit, a body flit and a tail flit. The main task of
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the header flit is to carry the destination address for the complete packet. The body
flit contains the payload data, just like the tail flit, where the tail flit is the last one,
and marks the end of the packet. This division of flit types enables the data to be send
flit by flit, without waiting for each other at each node. This means first the header flit
is routed across the different routers, where all the other flits simply follow the header.
Because there is no waiting for other flits at each node, this improves the routing time
significantly. The different flits are specified in Figure 3.2.
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Figure 3.2: Packet Format

Each tile has a unique Local Network Address, where a tile consists of a router
and a computational unit which is connected to the local port of the router using a
network interface. This address serves to identify each tile. When a header flit arrives
at a router, and it’s destination address matches the local network address of the tile,
this flit together with the other flits are transferred to this particular router and its
computational unit, where further processing is performed.

Network packets may contain up to 64 bytes of payload data. This payload data is
transferred as 37-bit flits, where each flit contains 4 bytes of the payload data. This
means a network packet can be at most 17 flits long (16 flits for the payload and 1
header flit).

The routing algorithm used in this three dimensional router is based on Z-X-Y
routing, which means the data is first routed in the Z direction, and subsequently in
the X and Y direction. This ensures that the packets injected into the network are
transferred directly to their destination layer through the TSVs, which will reduce the
congestion in the layer meshes. In the end, this algorithm prevents the incoming packets
from being routed through the same port as where they were received at.

In this architecture each packet is routed independently through the network, so it
eliminates the need for a connection set up. If a packet is injected into the network,
eventually it will reach its destination flit by flit. There are also situations when a link
at a router is busy, so a flit has to wait at that router. And when that link is free, it
can be processed to the next router. In the mean time this flit has to be put in some
kind of buffer. The buffer has a certain pre-specified size, which means only a limited
number of flits can be stored there and eventually it can fill up. When this happens, the
occupation of the input buffer should get under a certain threshold before processing
next flits through this particular input port. For this purpose there is a flow control
mechanism which ensures that flits are never dropped, thereby eliminating the need
for retransmission. This is implemented by a flow control bit, which gets high when
the occupation of the downstream input port buffer gets to a specified threshold value.
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This value is computed by N-2. In this particular router the value of N is 12. N is the
number of input buffer slots each 37-bits wide, which means in every slot, 1 flit can
be put. The value of N is determined from simulations by examining the variation in
average end-to-end latency and throughput with increasing input buffer depth [6]. In
Section 6.1.2 the FIFO depth will be changed to test it’s influence on the throughput
of two routers connected to each other. The pipelined nature of the router induces a
two-cycle latency for transmission stalls in the event of congestion at a downstream
router.

The output arbiters use a Round Robin arbitration scheme, which ensures fair and
best effort service to all input ports. Because the routing algorithm prevents the packets
being routed the same port they arrived at, each output arbiter will poll only 6 of the
inputs. When a header flit arrives at the input port, the Routing Logic & Output Port
Select part raises a request to the appropriate output arbiter. If the requested output
port is idle, and the downstream input port has free input buffers left, the arbiter grants
the request by asserting the Drain signal for the input buffer. After this, the round
robin arbitration is deactivated until the tail flit is passed through the output port.
Hereby the integration of the routed packets is ensured, and it prevents the flits from
other packets mixing in the output stream.

Subsequently the input port waits for access to the output port, which means keeping
its request lines asserted and input buffers stalled. If the input buffers become empty
while flits are advancing through the router, the output arbiter sets the link as idle while
maintaining the round robin arbitration in the deactivated state. This state holds until
the tail flit has advanced and the complete packet has been routed. After completion,
the arbiter asserts the Next signal and resumes round robin arbitration to service the
next waiting input stream.

This type of router has a minimum fall through latency of four cycles.

3.3 Memory

First the input buffer should be implemented by a real memory block. For this the 55
nm synchronous, two port register file from Faraday is chosen, as stated in Section 2.1.3.
The specifications are given in Table 3.1. In the router design, it is determined that
each input buffer should be at least 12 flits deep and 37 bits wide [6]. This means the
memory should be 12 words deep and 37 bits wide. The number of words is determined
by the address length, as seen in (3.1), where W is the number of words and A the
address length.

W = 2A (3.1)

Because the number of words can only be a power of two, a value of 16 is chosen,
where 4 words will stay unused. The word width is exactly the same as specified in the
architecture. For testing purposes, memory blocks with different word depths will be
used in Chapter 6.

The problem with this memory block is that it is made in the 55 nm technology
instead of the 45 nm technology used by the Nangate standard cells. Some adjustments
should be made in the LEF file, which describes the physical properties of the block in
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Table 3.1: Memory block specifications

Physical length 226.8 µm

Physical width 36 µm

Number of words 16

Bits per word 37

Address length 4

Write cycle time (WC) 1.25 ns

Write cycle time (BC) 0.49 ns

Read cycle time (WC) 1.25 ns

Read cycle time (BC) 0.49 ns

an abstract way. It is important to explain that all the cells, blocks and routing layers
sit on an grid. Every technology has it’s own grid, which means the Nangate library
and Faraday library use different grids. The Faraday routing grid is 0.28 micron in both
the X and Y direction, where the Nangate routing grid is 0.19 micron in the X direction
and 0.14 micron in the Y direction. Because this is an ASIC semi-custom design, it
means only abstract descriptions are used for the different blocks and cells. In this
particular case it means that the coordinates of the memory pins should be adjusted
in such a way that they align with the same grid as the Nangate standard cells. After
this is done, all the blocks and cells including the memory can be routed. This doesn’t
mean that it’s sufficient for fabrication, because the transistors in the memory block are
still in 55 nm technology. This adjustment is only meant to enable the routing of the
memory blocks in the place&route tool. In Figure 3.3 three memory blocks are given
on a specified grid. Figure 3.3a describes the original situation where the memory block
sits on a Faraday routing grid, which means all the pins are on the grid. Figure 3.3b
describes the non-adjusted memory block sitting in a Nangate routing grid, where the
pins are not sitting on the grid. Figure 3.3c shows the adjusted memory block for the
Nangate routing grid where the pins are perfectly snapped on the grid. The adjustment
of the memory pin coordinates is done by hand.

3.4 Through Silicon Via

The TSV is the component which enables the vertical ports of the router. In Sec-
tion 2.1.4 some background information is given about the technology needed for TSV
design. At the end of that section, the available TSV technology from the NCSU
FreePDK library is discussed. This section will focus on the implementation of the
TSV using the findings of R. Jagtap [8]. Because the TSV dimensions from the NCSU
FreePDK library are comparable with the TSV dimensions in [8], and a lot of informa-
tion is given about the timing and placement of TSVs, these findings will be used for
the implementation and calculation of TSVs in this thesis.

First the implementation of this technology into the design flow will be discussed,
where the TSV should be designed in such a way, that it can be implemented by the
tools into the design. Subsequently the placement of the TSVs will be discussed in the
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Figure 3.3: Memory block grid adjustment

router design.

3.4.1 TSV Design

First the TSV has to be designed, which later can be incorporated into the router design.
In Section 2.1.4.4 the technology from the NCSU FreePDK3D45 PDK is explained, and
together with the findings from [8] they form a good foundation which the TSV design
will be based on. The NCSU FreePDK3D45 PDK is a design kit compiler for stacked
dies (i.e. 3D-ICs) in a predictive 45 nm technology [24]. This kit contains the basics
of what is needed to perform schematic entry, SPICE simulation, layout, DRC, and
LVS checks. The design flow assumes a stackup like in [1]. Because in this design
the most important aspect is the timing and floorplan analysis, the TSV can be made
in a more abstract way, so all these files from the PDK are not really needed. The

26



only thing of importance here is that the TSV area specifications are comparable with
the PDK. So when a future designer wants to use all the PDK files, the synthesis and
place&route step can be done without large modifications. It is chosen to design the
TSV in an abstract way, and to incorporate the timing information from R. Jagtap [8].
In this design process, first the specifications of the TSV need to be pointed out. The
specification which is important for this design is basically the diameter of the TSV.
The diameter is 4 µm, which is the used diameter for the TSVs of R. Jagtap. This
means that this will be the constraint that will be used in the TSV design. The files
that are needed for the design are listed as follows:

• An HDL description, which is needed by the synthesis for determining the logical
functionality and connection

• LEF file, which is needed by the place&route for determining its physical form
and layout

• Timing information, which is needed for timing simulation

3.4.1.1 TSV HDL Description

For a TSV to be used, it should somehow be incorporated into the complete router
design. This means that it should be modeled in a HDL. Because a TSV is not an
ordinary component with an input and output port, a special construction has to be
made which describes the behavior of the TSV. A current component which comes to
mind with similar properties, is the chip pad. A chip pad is also a stack of metals,
which can be used as an input or output to the outside world. In this sense, the TSV
is the same thing, only in this case the outside world is the other stack (UP or DOWN)
to which this TSV will be connected to.

This HDL description is needed for simulation purposes, and for synthesis and
place&route purposes. For simulation purposes it is necessary that the TSV is con-
nected to the vertical input and output ports of the router. This means that a vertical
output signal from the router should go into a TSV, which in turn means the TSV
should have an input port. But at simulation, this output port should be read out from
the TSV, so the TSV should have also an output port.

A tried construction for the HDL description is shown in Figure 3.4, where in Fig-
ure 3.4a the construction for the HDL description of the input TSV is shown and in
Figure 3.4b the construction for the HDL description of the output TSV is shown.
Here it can be seen that a TSV is modeled out of two other components. This is
needed because the TSV doesn’t have an ordinary input and output port. This way
the place&route tool had to be tricked not to route the TSV input/output port to
the side of the router block, because it doesn’t know the connection is vertical. After
place&route the TSV had no input/output port at all in the structured HDL descrip-
tion, which meant it couldn’t get connected to another 3D router. A solution for this
problem was to use a normal construction with a ordinary input and output port for the
TSV, which is shown in Figure 3.5. It was calculated that the delay in the connection
between the TSV and the side of the router block (which didn’t exist in reality) was
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between 2 and 23 ps. Because the longest path in the network was in the order 4 ns,
this had no significant influence on the timing.

via oI I O

TSV_4_IN DUMMY_TSV

ivia

IN_TSV

(a) HDL design for input TSV

i viaII O

TSV_4_INDUMMY_TSV

ovia

OUT_TSV

(b) HDL design for output TSV

Figure 3.4: Tried HDL construction for TSVs

3.4.1.2 TSV LEF File

Because this is an ASIC semi-custom design, for every standard cell or macro cell a
Library Exchange Format (LEF) file is needed. A LEF file gives the physical description
of such a cell [25]. In this case a TSV will be implemented. This means a LEF file is
needed to describe the physical properties of this cell. Because a TSV is not a standard
cell, it will be implemented as a macro cell with it’s own physical properties.

A LEF file consists usually of two parts, one technology part and one macro part.
The technology part contains the technology information of the design. This includes
placement and routing design rules and process information for the layers. The macro
part contains the standard cell and macro definitions for a design. These two parts
can be put into one LEF file, or in two separate LEF files. One technology LEF file
and one macro LEF file. Even the macro part can be separated into different LEF files
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Figure 3.5: Used HDL construction for TSVs

for different cells. Because there is already a technology file and a macro file for the
Nangate standard cells and the Faraday memory, an extra LEF file will be made which
describes the TSV macro cell. The macro definition defines the macro, it’s size and it’s
pin definitions and physical characteristics of each of the macro pins.

A macro definition begins with a macro name followed by the type of macro which
is called a CLASS. The BLOCK class is chosen. The reason for this choice was that
in this case the place&route tool sees this as a ordinary macro. The only problem is
that the TSV will have an input and output port, where the output port is routed
by the place&route tool to the side of the router block, which doesn’t exist on a real
chip. But because of pragmatic reasons, this is left this way. After this a FOREIGN
specification is given, which specifies the GDSII structure name that is to be used, and
where the coordinates specify the macro origin as offset from the foreign origin. The
name chosen is the same as the macro name, and both the x and y coordinates as
0.000. The physical model of this TSV is described as an black-box in an ASCII form.
This abstraction is needed because during the place&route stage, this model will be
used for the placement and routing. A small amount of information is needed for this
task, and because of the abstraction, the file becomes very small, which increases the
speed of the place&route stage. This blackbox is defined as an rectangular area. First
the x and y coordinates are given for the origin of this macro cell, where the rest of
the coordinates are specified with respect to this origin. Usually the coordinates are
chosen to be 0.000, which is also the case for the TSV. The size specification defines
the minimum bounding rectangle of the macro, which includes all pins and blockages.
Subsequently some symmetry statements are given to define how the place&route tool
can mirror or rotate the cells in the layout of the design. Because this is just a TSV,
it can be rotated and mirrored in every possible way. Every macro description has its
own SITE specification. This defines a placement site in the design. It is important
to be compatible with the technology LEF file and the site defined therein, which is
FreePDK45 38x28 10R NP 162NW 34O.

All the pins of the macro have to be defined. However, these are not real pins
in the design, but predefined areas where the routing tool knows to route the metal
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interconnections. First the name of the PIN has to be specified, which has to be the
same as the pin name from the HDL description. There are 2 pins, from which I is
the input pin and O is the output pin. A pin specification consists of port statements,
which defines a set of geometries that are electrically equivalent points. Each port
has a layer statement, which defines the geometry of a metal layer. With the RECT
statement, the geometries are given with 4 coordinate points. The first two are the x
and y coordinates of the lower left corner, and the second two are the coordinates of
the upper right corner.

At the end of each macro description there is a OBS statement that consists of
LAYER and RECT statement just as in the PIN specification. The only difference
is that these areas are obstruction areas, which means no metal wire can be routed
through these areas. Because a TSV occupies all the metal layers and goes through the
silicon, it is impossible for a metal wire to be routed through the TSV. This is modeled
by specifying the obstruction area as the whole TSV area.

Because only rectangles can be specified in a LEF file, it is decided to implement
the TSV as a rectangle and not as a circle. The TSV layout which is defined in the
LEF file is shown in Figure 3.6. The dimensions of the TSV are specified by A and B,
which are both 4,06 µ. The reason that the dimensions are 4,06 and not 4 µ, is that it
is a multiple of the horizontal grid in the Nangate technology. This ensures the TSV
is always on the grid to be connected. The ports are specified by rectangles 1 to 4,
where rectangles 1 and 4 have the dimensions A by C, and rectangles 2 and 3 have the
dimensions D by E. C and D are 1 µm and E is 2,06 µ. In this way an outer ring is
formed with width D. Rectangles 1 and 3 are specified as input ports, where rectangles
2 and 4 are specified as output ports. The given TSV sizes can be always changed, for
other TSV dimensions.

3.4.1.3 TSV Timing

A TSV is a slab of metal which goes through silicon, and which connects two stacks with
each other. It has it’s own parasitic effects which define the timing of the interconnect.
It’s placement will define what these parasitic effects will be. A TSV has a different
behavior when sitting by it self in an area, than when it is in an array of different
TSV’s, which will be the case in this design. The timing is defined by the Capacitance
(C), Resistance (R) and Inductance (L). The values have to be found for these factors.
R. Jagtap states in [8] that the closed form equations from [26] are sufficient for the
description of the three electrical factors. All the factors are calculated to work at a
high frequency. The reason for this is, that the complete router design should work at
a frequency as high as possible. The equations are given in the following paragraphs.
The equation parameters are given in Table 3.2.

Resistance of TSV The TSV resistance RHF (Ω) is given in (3.2)

RHF =

{

α ρmL

π[R2−(R−δ)2)]
if δ < R

αρmL

πR2 if δ ≥ R
(3.2)
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Figure 3.6: Layout of a TSV from a LEF macro definition

The skin depth δ (m) is given by (3.3)

δ =
1

√

π(1/τ)µ0(1/ρm)
(3.3)

and the α factor is given by (3.4), which describes the fitting parameters

α =

{

0.0472D0.2831
µm ln( L

D
) + 2.4712D−0.269

µm if δ < R
0.0091D1.0806

µm ln( L
D
) + 1.0518D−0.092

µm if δ ≥ R
(3.4)

Inductance of TSV The TSV inductance is divided in L11 (H) for partial self in-
ductance, and in L21 (H) for mutual inductance. These equations are given by (3.5)

HF :

{

L11 = αµ0

2π
| ln(2L

R
)− 1|L

L21 = β µ0

2π
[ln(L+

√
L2+P 2

P
)L+ P −

√
L2 + P 2]

(3.5)

where α and β are given by (3.6) and (3.7)

α = 0.94 + 0.52e−10| L
D
−1| (3.6)

β = 0.1535 ln

(

L

D

)

+ 0.592 (3.7)
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Capacitance of TSV The TSV capacitance is given by (3.8)

C = αβ
ǫdiel

tdiel +
ǫdiel
ǫsub

xdTp

2πRL (3.8)

where α and β are given in (3.9) and (3.10)

α =

(

−0.0351
L

D
+ 1.5701

)

Sgndµm
0.0111 L

D
−0.1997 (3.9)

β = 5.8934Dµm
−0.553

(

L

D

)−(0.0031Dµm+0.43)

(3.10)

and the depletion region depth in p-type silicon is given by (3.11)

xdTp =

√

4ǫsubφfp

qNA

(3.11)

φfp = Vth ln

(

NA

ni

)

(3.12)

The coupling capacitance between two TSV’s is given by (3.13)

Cc = 0.4αβγ
ǫsub
S

πDL (3.13)

where α, β and γ are given in (3.14) to (3.16)

α = 0.225 ln

(

0.97
L

D

)

+ 0.53 (3.14)

β = 0.5711

(

L

D

)−0.988

ln(Sgndµm
) +

(

0.85− e−
L
D
+1.3

)

(3.15)

γ =

{

1 if S
D
≤ 1

ζ
[

ln( L
D
+ 4e−

Sµm
9 + 2.9)− 10.625Sµm

−0.51
]

if S
D
> 1

(3.16)

and ζ in (3.17)

ζ =
(

1 + e[(0.5+| P
D
−4|) L

D
]
)

(3.17)

The TSVs in this thesis are of the same size as the TSVs used in [8]. This means
that the same values for C, R and L can be used. The only difference being that the
LEF model in this thesis uses square terminals, which is the only possible abstraction in
a LEF description. This doesn’t have influence on the timing of the TSVs, because for
timing simulations the TSV is modeled as a circle. The C, R and L values for the TSV
are already determined in [8], which means these can also be used for the TSVs in this
thesis. These values are shown in Table 3.3. The delay is determined mostly by the C
and R values. If a wire has a minimum length of 20 micron which connects a TSV to a
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Table 3.2: Equation parameters with their symbols

Symbol Parameter

D TSV diameter (m)

R TSV radius (m)

P TSV pitch (m)

L TSV length (m)

S Spacing between two TSVs (m)

tdiel TSV thickness of dielectric layer (m)

Sgnd Distance of TSV from ground plane (m)

ρm Resistivity of TSV fill metal Ω.m

NA Doping concentration of p-type Si substrate (/m3)

ǫsub Permittivity of Si substrate (F/m)

ǫdiel Permittivity of dielectric layer (F/m)

µ0 Permeability of free space (H/m)

τ Clock edge (s)

component (this is because of the keep-out-zone which lies 20 micron around the TSV
array), and the C, R values for a 45 nm technology are given to be 0.20 fF/micron and
9.46 Ω/micron [8], the C and R values for that wire are 4 fF and 189.2 Ω. Compared
to the values from Table 3.3, the C is a factor of 5 smaller, where the R is a factor of
700 larger. In the end, the RC delay for the TSV is much smaller compared to the wire
delay in the 45 nm technology.

Table 3.3: Values for the parasitic components of a TSV

Component Value

RTSV 0.24 Ω

LTSV 7.50 pH

CTSV 21.60 fF

CC 2.75 fF

To be able to make a Liberty file, where propagation delay and output transition
values must be given w.r.t. input transition time and output capacitance, a schematic
has to be made where this can be simulated. The same schematic can be used as in [8],
where two capacitive coupled TSV’s with their own parasitic values are simulated. This
is shown in Figure 3.7, which is simulated in a Spice software called Cadence OrCAD. In
this simulation, both of the voltage sources are switched on simultaneously. The same
values for the input transition time and output capacitance are used as for the Nangate
liberty file. All the results are given in Appendix A, where it can be seen that the
output transition time is almost equal to the input transition time, and the propagation
delay is negligible compared to the propagation delay in the Nangate technology. For
the liberty file the output transitions are held equal to the input transitions and the
propagation delay is set to zero.
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Figure 3.7: Circuit for simulating delay and output transition time w.r.t. input transition
time and output capacitance with the influence of capacitive coupling

3.5 Implementation

3.5.1 Implement the RTL HDL code and testbench

The first step is to gather the RTL code, which is written in different VHDL files and
structure it. When having a structure, it is easier to understand the code when needed
for debugging or adjusting. These files are obtained from S. Kumar [6] as stated in
Section 3.2. To test this code, a testbench is made, which also consists of different
VHDL files. Figure 3.8 shows the complete structure of these files. In Figure 3.8a the
structure of the RTL code is shown, where in Figure 3.8b the structure of the testbench
is shown.

3.5.2 Simulation of RTL

The simulation that is performed is based on a testbench that tests the local input
port, and all the other output ports. Basically there is a injector component that
serves as a computational unit which is attached to the local port of the router. This
injector injects flits into the local port of the router, and these flits have to be routed
to the output ports of this router. When the buffer of the local input port arrives at
threshold value, the injection stops, and when the input buffer gets under the threshold
value, the injection continues. In this way, the complete routing function is tested.
Because the simulation of the RTL code is just a logical simulation and no timing
information is available, it is the best-case scenario, so it basically determines the
maximum throughput of the router. The maximum throughput will not be determined
for this basic 3D router, because in chapter Chapter 4 and Chapter 5 more functionality
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Figure 3.8: VHDL file structure

will be added. In chapter Chapter 6 the throughput will be determined of two vertically
connected 3D routers with a serializer/deserializer in between, where the injector, and
the routers work all on a different clock frequency. This way, the most important
connection in a 3D NoC will be tested.

3.5.3 Synthesis in Design Compiler

Now that the RTL HDL code is validated, it can be synthesized into standard cells.
For this purpose a synthesis tool is needed, which will be Synopsys Design Compiler.
First the data has to be prepared, and then the flow should be specified to carry out
the synthesis process. The files needed for this process are:

.synopsys dc.setup This is the setup file for Synopsys Design Compiler. In this file
paths and file names are specified for the liberty files of the used standard cells
and macros.

NangateOpenCellLibrary slow.db This is a liberty file in a binary format which
can be used by DC. In this file timing information is given for all the Nangate
standard cells working in slow (worst-case) conditions. The used delay format is
NLDM (Non Linear Delay Model).

NangateOpenCellLibrary fast.db This is a liberty file in a binary format which
can be used by DC. In this file timing information is given for all the Nangate
standard cells working in fast (best-case) conditions. The used delay format is
NLDM (Non Linear Delay Model).

SZAA55 16X37X1CM2 WC.db This is a liberty file in a binary format which can
be used by DC. In this file timing information is given for the Faraday macro
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working in WC (worst-case) conditions. The used delay format is NLDM (Non
Linear Delay Model).

SZAA55 16X37X1CM2 BC.db This is a liberty file in a binary format which can
be used by DC. In this file timing information is given for the Faraday macro
working in BC (best-case) conditions. The used delay format is NLDM (Non
Linear Delay Model).

mblite syn 7.tcl This is a script file where all the commandos are given to run DC,
together with all the design constraints.

8 RTL VHDL files This are the VHDL files which together describe the complete
router design. The logical behaviour from these files will be used, and mapped
into the specified technology.

For the synthesis of this design, two different libraries from two different vendors will
be used as stated in Section 2.1. The reason for this is given in Section 2.1.1. The
45 nm Nangate library will be used for the synthesis of the standard cells, where the
55 nm Faraday library will be used for the synthesis of the memory modules. It is
important that the synthesis tool can read these two libraries without a problem, and
use their timing information for synthesizing the best possible design. The 45 nm
Nangate library is the main library, which means the operating conditions set in the
Faraday library should be adjusted, so they match the value of the Nangate library. In
this case it means the original value of BCCOM should be changed to fast. In the
script file, where the operating conditions are specified, these should be set to slow,
and the wire load model to 5K hvratio 1 1. These are the worst-case conditions from
the Nangate library. The reason why the worst-case conditions are given is that if a
design operates under these conditions, the probability of operating under all other
or better conditions is large. The only problem is when the design is too fast, hold
violations will occur. This means that a signal will arrive too soon at a flip-flop, in the
time the previous signal isn’t properly clocked in yet. The chances of these violations
to occur are far smaller compared to the chance that the signal is too slow.

Different clock periods are used to synthesize the design. No clock latency values
are specified in this design, because DC doesn’t have accurate timing information about
the wire delay. The place&route tool will determine this value. Only the driving cell
for the clock will be specified because for simulation purposes it is not practical to use
an ideal clock with no clock rising or falling time. A simple cell with standard strength
will be used to model the non-ideal clock input. This cell is a simple inverter with 8X
the strength INV X8. This same cell is also used as the input to all the input ports
of the 3D router design, because in real-life this input is not ideal.

3.5.4 Place and Route in SoC Encounter

Now that a gate-level netlist is available, this design can be placed and routed. This is
done in Cadence SoC Encounter. The files needed for this process are:

router top.conf This is the configuration file for Cadence SoC Encounter. It this file,
items like liberty, lef and sdc files are specified. They are needed by the place and

36



route tool.

router top unique.v This is the gate-level netlist file out of Design Compiler, used
by SoC Encounter for place and route.

NangateOpenCellLibrary slow.db This is a liberty file in a binary format which
can be used by SoC Encounter. In this file timing information is given for all the
Nangate standard cells working in slow (worst-case) conditions. The used delay
format is NLDM (Non Linear Delay Model).

NangateOpenCellLibrary fast.db This is a liberty file in a binary format which
can be used by SoC Encounter. In this file timing information is given for all
the Nangate standard cells working in fast (best-case) conditions. The used delay
format is NLDM (Non Linear Delay Model).

SZAA55 16X37X1CM2 WC.db This is a liberty file in a binary format which can
be used by SoC Encounter. In this file timing information is given for the Faraday
macro working in WC (worst-case) conditions. The used delay format is NLDM
(Non Linear Delay Model).

SZAA55 16X37X1CM2 BC.db This is a liberty file in a binary format which can
be used by SoC Encounter. In this file timing information is given for the Faraday
macro working in BC (best-case) conditions. The used delay format is NLDM
(Non Linear Delay Model).

router top mapped timing.sdc This is a standard delay format (SDF) file with all
the design constraints.

NangateOpenCellLibrary.tech.lef This is the LEF file where the technology is de-
scribed.

NangateOpenCellLibrary.macro.lef This is the LEF file where all the macros are
described.

tsv in out.lef This is the LEF file where the TSV is described.

SZAA55 16X37X1CM2.lef This is the LEF file where the memory block is de-
scribed.

7 TCL files These are the files which specifies all the needed information for the tool,
and control it.

Figure 3.9 shows the floorplan of the 3D router in two versions. The floorplan in
Figure 3.9a includes the metal wiring, where the floorplan in Figure 3.9b doesn’t include
the metal wiring. In Figure 3.9b the TSV array can be observed clearly, together with
the 7 FIFO blocks. The keep-out-zone of 20 micron around the TSV array can also be
seen. The minimum clock cycle time at which the design didn’t have a negative slack,
was 4 ns, which translates into an operating frequency of 250 MHz. Comparing these
nanoseconds of the design with the femtoseconds for the TSV, it can be concluded that
the data through the TSVs could be transported much faster. With this in mind, the
data through a TSV could be serialized, which will be explained in Chapter 4.
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(a) Floorplan with metal wires shown (b) Floorplan without metal wires shown

Figure 3.9: Floorplan of the 3D router
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Reducing the data lines in

vertical direction by

serialization 4
4.1 Introduction

Because the router communicates with 37-bit data flits, various flow control signals,
different asynchronous clock signals and a reset signal, a lot of data lines are needed
for the communication between two routers. It is inefficient to use a data line for each
of the 37 bits for communication. In the current design, one bit is sent through a
data line each clock cycle on which the router operates. But a data line has much
more capacity, because it’s small delay enables the transportation of bits in a much
smaller time window. If this effect is exploited, the bits can be sent faster through
the data lines. This means also that the same amount of bits can be sent trough a
smaller amount of data lines. This is especially interesting for the vertical connections
where a TSV is needed per data line. Because the TSV has a large size compared to
standard cells, it has a negative impact on the used chip area. If the amount of TSVs
can be reduced, it would mean a substantial decrease in occupied area by it. This will
be further discussed in Chapter 6. First a way has to be found of how to reduce the
number of TSVs, thus reducing the needed vertical data lines.

In Section 3.4.1.3 it is shown that the delay of a signal in a TSV is very small,
which results in high speed communication. The communication in a TSV can run at
much higher frequencies than the router. This feature can be exploited with the use
of serialization. In one slow clock cycle at which the router operates, multiple clock
cycles can be used to send smaller amount of data in the same time frame of the slow
clock cycle [5]. This is the essence of serialization. Because a smaller amount of data is
transported, fewer data lines are needed, which in turn results in fewer TSVs. Because
this data needs to be in it’s original state when received by the receiver, a deserializer
is needed, which puts all the smaller data packets together, where at the end of the
slow clock cycle, the original data is retrieved.

Because most of the communication consists of data, they are most suitable to be
serialized. The flow control, clock and reset signal are left out, thus are not serialized.
The reason for this is that those signals should be valid all the time, else the operation
of the router could be compromised. This means that only 37-bits per input or output
UP or DOWN port will be serialized.

In the following sections the serializer and the deserializer will be discussed. These
two components together enable that the 37-bit communication takes place with the
use of fewer data lines, which will result in fewer TSVs and less occupied area. The
operation of both components will be explained and how they are implemented in the
router design.

For the design of the serializer and deserializer, a design is used from [5]. Here it
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is described how the serializer and deserializer are implemented. The only difference
is that in the design from [5] it is not used for vertical communication, but for the
communication between the CPU and the router. Other aspects are the same.

4.2 Serializer

The input and output signals of the serializer are given in Table 4.1. The basic operation
of the serializer is that it divides a chunk of data into several parts of each equal amount
of bits, and sends them on each fast clock cycle [5]. The problem in this case is, that
our input data is 37-bits wide. That is not a nice number to be divided. A trick has
to be used, which will enable an easy division of bits. Three zeros will be padded as
the most significant bits in the bit vector, so that a new vector is 40-bits wide. 40 is
a good number to be divided, i.e. it can be divided by 2,4,8,10 and 20, which means
into parts of 20,10,5,6 and 2 bits. For this thesis, these values are sufficient to see the
differences in area and performance with different serialization ratios, which will be
shown in Chapter 6.

Table 4.1: Input and output signals serializer

Name Description

clk fast i Fast serialization clock for data

clk slow i Slow router clock at which data is received from the output port

clk fast o Fast serialization output clock

clk slow o Slow router output clock

rst p i Reset signal for the serializer

rst p i pos Reset signal for the out phase

parallel i 37-bit parallel input data

serial o 40/R-bit serial output data

The fast clock frequency is determined by the serialization ratio or R in (4.1).

clk fast i = clk slow i×R (4.1)

The serializer has internal signals, which are important to understand:

piso regs: This is an array which consists of R − 1 times SERIAL REG WIDTH
bits, where the R is defined in (4.1) and SERIAL REG WIDTH is defined by
40/R.

next piso regs: This is the same array as the piso regs array, only this one is clocked
and is used as registers.

out phase: This signal is is high when clk slow i is high, and stays high for a
clk fast i period of time. It is used to flag that the data is ready on the parallel i
input.

piso phase: This signal is the same as out phase, only inverted.
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In Figure 4.1 the different steps of serialization are shown, where the serialization
ratio R is set on 4. In the rest of the examples this serialization ratio will be used,
purely for illustrative reasons. The steps explaining the operation of the serializer are
the following:

On T1: – The clk fast i and clk slow i clocks goes to high.

– The piso phase signal goes to low.

– Data from the 37-bit up-stream output port is put on parallel i(36 : 0).

– Data from parallel i(36 : 0) is put on parallel in s(36 : 0). Zeros are put on
parallel in s(39 : 37).

– Data from parallel in s(9 : 0) is put on next piso regs[1]. Data
from parallel in s(19 : 10) is put on next piso regs[2]. Data from
parallel in s(29 : 20) is put on next piso regs[3].

– Data from parallel in s(39 : 30) is put on serial o[9 : 0].

On T2: – The piso phase signal goes to high.

– The clk fast i clock goes to high.

– The previous data from next piso regs is clocked to piso regs.

– Data from parallel in s(9 : 0) is put on next piso regs[1].

clk_slow_i

clk_fast_i

parallel_i(36:0)

piso_phase

parallel_i(36:0)

next_piso_regs[1]

next_piso_regs[2]

next_piso_regs[3] parallel_in_s(29:20)

piso_regs[1]

piso_regs[2]

piso_regs[3]

serial_o(9:0)

parallel_in_s(9:0)

parallel_in_s(19:10)

parallel_in_s(29:20)

parallel_in_s(9:0)

parallel_in_s(19:10) parallel_in_s(9:0)

parallel_in_s(19:10)

parallel_in_s(9:0)

parallel_in_s(19:10) parallel_in_s(9:0)

parallel_in_s(39:30) parallel_in_s(29:20)

parallel_in_s(39:0)

parallel_in_s(9:0) parallel_in_s(9:0) parallel_in_s(9:0)

parallel_in_s(9:0) parallel_in_s(9:0)

parallel_in_s(9:0)

parallel_in_s(9:0)

parallel_in_s(9:0)

parallel_in_s(9:0)

parallel_in_s(9:0)

T1 T2 T3 T4 T5

parallel_in_s(39:0)

parallel_in_s(19:10) parallel_in_s(9:0)

Figure 4.1: Data serialization timing diagram
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– Data from piso regs[1] is put on next piso regs[2].

– Data from piso regs[2] is put on next piso regs[3].

– Data from piso regs[3] is put on serial o(9 : 0).

On T3 and T4: – The clk fast i clock goes to high.

– The previous data from next piso regs is clocked to piso regs.

– Data from parallel in s(9 : 0) is put on next piso regs[1].

– Data from piso regs[1] is put on next piso regs[2].

– Data from piso regs[2] is put on next piso regs[3].

– Data from piso regs[3] is put on serial o(9 : 0).

On T5: The same happens as on T1, only with new 37-bit data available on the parallel i
port.

4.3 Deserializer

The deserializer is the component which is used to change the data back to it’s original
state, so it can be processed further by the downstream router. The basic operation of
the deserializer is that it takes the serialized bits of data putting them back on each
fast clock cycle in a new data vector, so the original data is retrieved [5]. Because the
data which is serialized is 40 bits wide, the three zeros which were initially padded as
most significant bits, they have to be subtracted so the original data is retrieved. The
input and output signals of the deserializer are given in Table 4.2.

Table 4.2: Input and output signals deserializer

Name Description

clk fast i Fast deserialization clock for data

clk slow i Slow router clock at which data is received from the upstream output port

clk slow o Slow router output clock

rst p i Reset signal for the deserializer

serial i 40/R-bit serial input data

parallel o 37-bit parallel output data

The deserializer has internal signals, which are important to understand:

sipo regs: This is an array which consists of R − 1 times SERIAL REG WIDTH
bits, where the R is defined in (4.1) and SERIAL REG WIDTH is defined by
40/R. This array is clocked and used as registers.

In Figure 4.2 the different steps of deserialization are shown, where as in Section 4.2
the serialization ratio R is set on 4. In the rest of the examples this serialization ratio
will be used, purely for tentative reasons. The steps explaining the operation of the
deserializer are the following:

On T1: – The clk fast i and clk slow i clocks goes to high.
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– Data from serial i(9 : 0) is put on parallel out s(9 : 0).

– Data from parallel out s(9 : 0) is put on parallel o(9 : 0).

On T2: – The clk fast i clock goes to high.

– Data from serial i(9 : 0) is put on parallel out s[9 : 0].

– The previous data from serial i(9 : 0) is clocked to sipo regs[1].

– Data from sipo regs[1] is put on parallel out s(19 : 10).

– Data from parallel out s(19 : 0) is put on parallel o[19 : 0].

On T3: – The clk fast i clock goes to high.

– Data from serial i(9 : 0) is put on parallel out s(9 : 0).

– The previous data from serial i(9 : 0) is clocked to sipo regs[1].

– The previous data from sipo regs[1] is clocked to sipo regs[2].

– Data from sipo regs[1] is put on parallel out s(19 : 10).
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clk_fast_i

serial_i(9:0)

T1 T2 T3 T4 T5

sipo_regs[1]

sipo_regs[2]
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Figure 4.2: Data deserialization timing diagram
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– Data from sipo regs[2] is put on parallel out s(29 : 10).

– Data from parallel out s(29 : 0) is put on parallel o(29 : 0).

On T4: – The clk fast i clock goes to high.

– Data from serial i(9 : 0) is put on parallel out s(9 : 0).

– The previous data from serial i(9 : 0) is clocked to sipo regs[1].

– The previous data from sipo regs[1] is clocked to sipo regs[2].

– The previous data from sipo regs[2] is clocked to sipo regs[3].

– Data from sipo regs[1] is put on parallel out s(19 : 10).

– Data from sipo regs[2] is put on parallel out s(29 : 20).

– Data from sipo regs[3] is put on parallel out s(39 : 10).

– Data from parallel out s(36 : 0) is put on parallel o(36 : 0).

On T5: The same happens as on T1, only with new 10-bit data available on the serial i
port.

4.4 Implementation and timing

When looking at Figure 4.1 and Figure 4.2 all the clocks are nicely synchronous without
any clock or data delay. This example is actually based on zero-delay simulation. The
largest delay is between the serializer output and deserializer input, because they are
connected with TSVs. In Section 3.4.1.3 it is shown that the delay in TSVs is not that
big.

When implementing this into a real design like ASIC or Field Programmable Gate
Array (FPGA), these delays will impose timing problems. In case of an ASIC, these
two routers could be put on separate boards, where the timing is substantial. Even in a
3D ASIC design, what this project is about, timing could impose some communication
problems. Some timing constraints are important to obey, in order to let this design
work. Even if the delay between the serializer and deserializer is large.

In figure Figure 4.3 the timing diagram of the serializer and deserializer is shown
with delayed signals, where Ts is the slow clock cycle, Tf is the fast clock cycle, tcds is
the delay of the slow clock, tcdf is the delay of the fast clock, tdmin is the minimum data
delay and Tdmax is the maximum data delay.

The following equations describe the timing between the serializer and deserializer,
where R is the ratio which is used for serialization and α is a factor where the clock
behavior is repeating it self.

0 ≤ tcdf < tdmin (4.2)

tdmax + (α− 1)Tf < tcdf < tdmin + αTf for α = 1, 2, 3, . . . (4.3)

0 ≤ tcds ≤ tcdf (4.4)
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Figure 4.3: Timing diagram serializer/deserializer delayed siganls

tdmax + (αR− 1)Tf < tcds ≤ tcdf + (αR− 1)Tf for α = 1, 2, 3, . . . (4.5)

The fast clock delay tcdf should obey (4.2) or (4.3). If tcdf obeys (4.2), the slow clock
delay tcds should obey (4.4) or (4.5). If tcdf obeys (4.3), the slow clock delay tcds should
only obey (4.5).

(4.2) describes that if the fast clock delay is higher than 0 and lower than the
minimum data delay, the data which it clocks is valid. If the fast clock delay is higher
than the minimum data delay, it will clock false data in, because not all the bits are
valid after the minimum data delay. (4.3) describes that if the fast clock delay is
higher than the maximum data delay and lower than the minimum data delay + fast
clock cycle, the data which it clocks is valid. If the fast clock delay is lower then the
maximum data delay, it will clock false data in, because not all the bits are valid before
the maximum data delay. If the fast clock delay is higher than the minimum data delay
+ fast clock cycle, some bits of the next data have already arrived, and false data is
clocked in. (4.4) describes that if the slow clock delay is higher then 0 and lower then
the fast clock delay, the data which it clocks is valid. If the slow clock delay is higher
than the fast clock delay, it will clock false data in, because a register too many is
clocked in and shifted. (4.5) describes that if the slow clock delay is higher than the
maximum data delay + (R − 1) fast clock cycles and lower than fast clock delay +
(R − 1) fast clock cycles, the data which it clocks is valid. If the slow clock delay is
lower then the maximum data delay + (R− 1) fast clock cycles, it will clock false data
in, because not all the bits are valid before the maximum data delay. If the slow clock
delay is higher than the fast clock delay + (R − 1) fast clock cycles, it will clock false
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data in, because a register too many is clocked in and shifted.
For equations with factor α in it, all positive integers can be used, because it specifies

with how many fast clock cycles the fast clock is delayed, and exactly copied. The use
of the R factor is needed to continue the specific relation between the fast clock and
the slow clock.
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The asynchronous working of

the router 5
5.1 Introduction

The communication in this design should be handled asynchronously, which means the
routers should operate asynchronously with respect to each other. The main reason for
this is that the clock frequency of the different routers can’t be exactly the same. This
is mostly noticeable between two routers sitting on two different tiers. Another reason
is that the communication through the 3D-NoC should be flexible. The reasoning for
this is that different injectors (computational units) should be able to work on different
frequencies, and still be able to communicate with each other through a 3D-NoC.

A way has to be found how to implement the asynchronous behavior of one router,
and let a complete mesh communicate with each other at different frequencies. In this
chapter it will be explained how the router of S. Kumar [6] is changed in order to
support the asynchronous working. In this process, various problems will be tackled
which were encountered during the design of the asynchronous router.

5.2 Design of an asynchronous router

5.2.1 Clocks and resets

First the different clocks have to be determined. For all the clocks it should be known
where they are coming from, where they are going to, which part of the design they
are clocking, and what the dependency between them is.

Second, the reset signals have to be determined. For all the resets it has to be
known where they are coming from, which part of the design they are resetting, and
on which clock they are clocked on.

In Appendix B a diagram is given for the complete 3D router. The components and
signals are only shown for the LOCAL and UP input/output port. This is enough to
be able to determine the operation of the router. This will be needed for the following
sections where the clock and reset signals will be described.

5.2.1.1 Clocks

A 3D router has 7 input ports, at which the data is coming in at a particular clock
frequency, and is written into the memory. This means that every input port has it’s
own frequency. In two out of the seven ports, the UP and the DOWN port, the case
is a little bit different. Here the clocks are not used directly for the input port, but for
the deserializer, as seen in Chapter 4. All the input clocks are given in Table 5.1.

There are also 7 output arbiters available, at which the data is read from the memory
and at which the data comes out at a particular frequency. This frequency is the same
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Table 5.1: Input clocks asynchronous router

Name Description

CLK f U i Fast clock for de-serializer UP port

CLK s U i Slow clock for de-serializer UP port

CLK f D i Fast clock for de-serializer DOWN port

CLK s D i Slow clock for de-serializer DOWN port

CLK s N i Slow clock for writing input NORTH port

CLK s S i Slow clock for writing input SOUTH port

CLK s E i Slow clock for writing input EAST port

CLK s W i Slow clock for writing input WEST port

CLK s L i Slow clock for writing input LOCAL port

for all the output arbiters. It’s called the router frequency. This is the frequency at
which the router sends the data to a different router or other component. Even if all
the output arbiter clock frequencies are the same for one router, all the output arbiters
send this clock off individually, which can be used for the downstream input port. This
is done because of clocking reliability. Only output clock frequencies from the UP and
DOWN serializer are not sent directly to the output, as seen in Chapter 4, but are
first used for the serializer. The slow clock for a particular serializer comes from the
output arbiter, where the fast clock comes from the input of the router. Both these
clocks are propagated to the output of the router, which can be used for the input of
a downstream router. All the output clocks are given in Table 5.2.

Table 5.2: Output clocks asynchronous router

Name Description

CLK f U o Fast clock from the serializer UP port

CLK s U o Slow clock from the serializer UP port

CLK f D o Fast clock from the serializer DOWN port

CLK s D o Slow clock from the serializer DOWN port

CLK s N o Slow clock from the output arbiter NORTH port

CLK s S o Slow clock from the output arbiter SOUTH port

CLK s E o Slow clock from the output arbiter EAST port

CLK s W o Slow clock from the output arbiter WEST port

CLK s L o Slow clock from the output arbiter LOCAL port

Next to the mentioned clocks, there is a router slow clock, which is used for all the
input ports when reading out the data from the memory. The same clock is used for all
the output arbiters. Together with this router slow clock, there is a router fast clock,
which is a factor R faster then the router slow clock and is synchronous to the router
slow clock. The router fast clock is needed for the serialization of the data coming out
of the output arbiter, as seen in Chapter 4. These clocks are given in Table 5.3.

Because the communication between two routers is dependent on the clock, it is
important that the same clock is used for reading out the router, and writing to another
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Table 5.3: Global clocks asynchronous router

Name Description

CLK i Fast clock for the router

CLK i slow Slow clock for the router

downstream router. To accomplish this, some intermediate clocks are needed. These
clocks are given in Table 5.4.

Table 5.4: Intermediate clocks asynchronous router

Name Related to Description

s clk f U i CLK f U i Fast clock de-serializer UP from input TSV

s clk s U i CLK s U i and CLK W U i Slow clock de-serializer UP from input TSV

s clk f D i CLK f D i Fast clock de-serializer DOWN from input TSV

s clk s D i CLK s D i and CLK W D i Slow clock de-serializer DOWN from input TSV

CLK W U i s clk s U i Slow clock writing input UP from deserializer

CLK W D i s clk s D i Slow clock writing input DOWN from deserializer

CLK U o CLK i slow and s clk s U o Slow clock serializer UP from output arbiter

CLK D o CLK i slow and s clk s D o Slow clock serializer DOWN from output arbiter

s clk f U o CLK i and CLK f U o Fast clock output TSV from serializer UP

s clk s U o CLK i and CLK s U o Slow clock output TSV from serializer UP

s clk f D o CLK i and CLK f D o Fast clock output TSV from serializer DOWN

s clk s D o CLK i and CLK s D o Slow clock output TSV from serializer DOWN

All these clocks should be categorized into synchronous clock groups. All clocks
in one group are synchronous to each other, but the clocks from one group are asyn-
chronous to clocks from another group. This way, the synthesis tool knows how to
compute the timing paths. The timing paths are computed between the same clock
domains. Whenever there is a Clock Domain Crossing (CDC), the timing path is set
to false. So it is excluded from the timing analysis. In Table 5.5 all the clock groups
are shown.

Table 5.5: Clock groups

Group Clocks

I CLK i,CLK i slow

II CLK f U i,CLK s U i

III CLK f D i,CLK s D i

IV CLK s N i,

V CLK s S i,

VI CLK s E i,

VII CLK s W i,

VIII CLK s L i,
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5.2.1.2 Resets

Every design needs a reset signal. A reset ensures that the system can go into it’s initial
state at startup. There are a couple of reset signals in this design. Some of these are
global and some are local. All the resets are given in Table 5.6.

Table 5.6: Reset signals

Name Component Clocked on Used for

RST p i ROUTER TOP - All reset signals

RST p i INPUT PORT Negative edge read clock Read processes

RST p w i INPUT PORT Negative edge write clock (Initialization) write reset

RST p r i INPUT PORT Negative edge read clock Initialization read reset

S RST WE INPUT PORT Positive edge write clock Initialization write address memory

S RST RE INPUT PORT Positive edge read clock Initialization read address memory

RST p i OUTPUT ARBITER Negative edge read clock Read processes

RST p i SERIALIZER Negative edge read clock Filling registers with zeros

RST p i pos SERIALIZER Positive edge read clock Setting counter initial state

RST p i DESERIALIZER Negative edge read clock Filling registers with zeros

Because the router has to be able to reset itself, a reset is needed which will facilitate
this. The main component of the router is it’s FIFO, which is made of dual-port
memory. The memory doesn’t have it’s own reset signal, which means a way has to
be found how to bring the memory into it’s initialization state. In the design of S.
Kumar [6], a mechanism is used where when the reset signal gets high, with the first
rising clock edge, an initialization reset signal is triggered. This reset signal is used for
the writing reset. On the following rising clock edge, this reset is propagated to the
read reset. This ensures that first the write reset is getting high, after which the read
reset is getting high. The write reset signal lets the memory write zeros into it’s first
address, where after one clock cycle those zeros are read from the first address of the
memory. This process is the actual initialization of the memory.

The problem with this design is that it’s using one clock for reading and writing.
When using two asynchronous clocks, some adjustments have to be made. First of all
two different reset signals have to be made, which should be clocked on the write and
the read clock. Another condition is that the read reset can go into high state, after the
write reset went into high state, and zeros are written into the first address of the mem-
ory. Only when this happens, the read reset can go into high state, which will ensure
that the zeros from the first address are being read out. The initialization write and
read reset signals are shown in Figure 5.1. Here CLK W i and CLK R i are the write
and the read clock of the FIFO. RST is the global reset, RST p w i and RST p r i are
the resets used for the memory initialization. S RST WE and S RST RE are the ini-
tialization resets. The steps describing the generation of S RST WE and S RST RE
are:

1. At T1 the global reset RST goes high.

2. At T2 on the falling edge of CLK W i, reset RST p w i goes to high.
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Figure 5.1: The making of the initialization write and read resets

3. After two rising clock edges of CLK W i at T3, reset S RST WE goes to high,
and stays high for one write clock cycle until T4. In this time zeros are written
in the first address of the memory.

4. After RST p w i, two write cycles are needed to ensure that the S RST WE and
that the writing of zeros into the first memory address if finished. Additional two
read cycles are needed to synchronize the reset to the read clock CLK R i, and
at T5 reset RST p r i goes to high.

5. After two rising clock edges of CLK R i at T6, reset S RST RE go to high, and
stay high for one write clock cycle until T7. In this time zeros are written in the
first address of the memory.

The write reset RST p w i is further used for the synchronization of the read address
S R ADR I into the write clock, which will be discussed in Section 5.2.2. It is also
used to determine if the input at the input port is valid, and for the write process of
the data into the memory.

The read reset RST p i is used for the synchronization of the write address
S R ADR I into the read clock, which will be discussed in Section 5.2.2. It is also
used to set the state machine of the input port to it’s initial state, and for the read
process of the data from the memory.

5.2.2 Synchronization

5.2.2.1 FIFO

In the input port CDC occurs when the data comes in (written to) at one frequency,
and comes out (read from) at another frequency. A solution for this is found by S.
Kumar [6], by using a FIFO. A FIFO uses dual-port memory, which writes data at one
frequency and reads data at another frequency, without any synchronization problems.
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But a FIFO doesn’t consist only from the dual-port memory. It has added functionality
in the form of FIFO-full and FIFO-empty signals. These signals are used to let the
sender know, when the memory is full, and the memory should stop writing. Otherwise
it is used to let the memory stop reading in case the memory is empty. This signals
are important in order to ensure that the complete functionality of a FIFO is working.

The first thing to do in designing a good FIFO, is to determine to which clocks the
signals are clocked, and how these signals interact with each other. These signals are
the following:

S WE FAR This signal enables the writing to a memory address when S WE I or
S RST WE is high. Because those two signals are both clocked on the write
clock, S WE FAR is also clocked on the write clock and no CDC occurs.

S RE FAR This signal enables the reading from a memory address when S RE I and
not S RST WE is high or when S RST RE is high. Because those two signals
are both clocked on the read clock, S RE FAR is also clocked on the read clock
and no CDC occurs.

S WE I This signal is high when the input data is not zero, and the write reset is not
high. This signal is clocked on the write clock.

S RE I This signal is high when the router logic has made a connection to a valid
output port. This signal is dependent on S DAT READY , so also dependent on
it’s clock. In this case this is the read clock.

S RST WE This reset signal initializes the memory by writing zeros into the first
address. It does that on the write clock after the write reset is high.

S RST RE This reset signal initializes the memory by reading zeros from the first
address. It does that on the read clock after the read reset is high. The read
reset can get high when the write reset is high, and has written the zeros into the
first memory address. In this way it is ensured that the memory will read from
it’s address after this address has been filled with zeros. This way the memory is
initialized.

S DAT READY This signal determines if the FIFO is empty. This signal depends
on S NEXT R ADR and S W ADR I, which are both clocked at different fre-
quencies. Some synchronization has to be done to one of those signals.

S FIFO FULL This signal determines if the FIFO is full. This signal depends on
S W ADR I and S R ADR I, which are both clocked at different frequencies.
Some synchronization has to be done to one of those signals.

S NEXT R ADR This is the next address which will be read from the memory. This
signal is clocked on the read clock.

S W ADR I This is the write address at which the data is written into the memory.
This signal is clocked on the write clock.
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S R ADR I This is the read address at which the data is read from the memory. This
signal is clocked on the read clock.

The first signal where CDC is occurring, is the S DAT READY . This signal
determines if the FIFO is empty. It does that by comparing the next read address
S NEXT R ADR to the write address S W ADR I. When the read address catches
up with the write address, it means that the FIFO is empty. The problem in this
comparison is that both the addresses are clocked on two different clocks, so CDC
occurs. Because this check should be performed in the read clock domain, somehow
the write address should be synchronized from it’s write clock, to the read clock domain.

The second signal where CDC is occurring, is the S FIFO FULL. This signal
determines whether the FIFO is full. It does that by comparing the write address
S W ADR I to the read address S R ADR I with a threshold factor, determined for
this particular router design. When the difference between the write address and the
read address reaches a certain threshold value, it means that the FIFO is full. Also here
problems occur because both these addresses are clocked on different clocks and CDC
occurs. Because this check should be performed in the write clock domain, somehow
the read address should be synchronized from it’s read clock, to the write clock domain.

5.2.2.2 Synchronizer

Because there are signals which have to cross different clock domains, synchronizers
are needed. First it has to be explained what can go wrong without a synchronizer,
and how a synchronizer tries to solve this problem. We look at a signal that is trying
to cross from one clock domain into another. This happens between two flip-flops.
Usually the time available for getting the signal from the clocking of one flip-flop,
to the clocking of the second flip-flop, is exactly one clock cycle. It is important to
remember that every flip-flop has it’s own setup and hold time. The setup time is the
time at which the signal should arrive before the clock cycle of that particular flip-flop,
and shouldn’t change values. The hold time is the time after the clock of that particular
flip-flop, where the signal cannot change it’s value. This is necessary because there is
a possibility the signal is not stable enough to be clocked into the flip-flop, and will go
into a metastable state. When in this state, it takes some time for the signal to settle
down to one value. Every flip-flop has it’s own settling time, and it’s used to calculate
the Mean Time Between Failures (MTBF). The MTBF is given in (5.1) [27], where τ
is the settling time constant of the flip-flop, TW a parameter related to its time window
of susceptibility, fA the synchronizer’s clock frequency, and fD is the frequency of the
incoming data. The MTBF is designed to be much longer (in the order of 10x) than
the expected lifetime of the circuit [27]. It can be seen in (5.1) that the smaller the
settling time constant, the longer the MTBF. However, this dependent on the flip-flop
and it’s technology. If the signal goes into metastable state and is propagated further
into the circuit, it will cause a malfunction in the circuit.

MTBF =
e

T
τ

TWfAfD
(5.1)
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To solve this metastable state of the signal, it is necessary to give the metastable
output signal enough time to settle down to a stable value in the destination clock
domain [28]. At the basis of most synchronizers is a two-flop synchronizer, which is
shown in Figure 5.2. The picture shows 3 flip-flops, where the first one is clocked on

FF FF FF

dat dat_clk1 dat_clk2dat_met

clk1

clk2

Synchronizer

Figure 5.2: Two flip-flop circuit

the clk1 source clock, and the second two are clocked at the clk2 destination clock. The
actual synchronizer is composed of the second two flip-flops. When the asynchronous
dat clk1 signal is captured by the first synchronizer flip-flop into the destination clock
domain, it waits for a full destination clock cycle to let any metastability in the dat met
signal to settle to a valid value. After that clock cycle, the dat met signal is hopefully
settled and at the next destination clock cycle it is sampled into the second flip-flop [28].
This way the dat clk2 signal is the synchronized version of the dat clk1 signal. Note
that in theory, the one cycle given the metastable signal to decay to one value, may
not by enough, and this synchronization technique won’t work. But with the help of
the MTBF a designer can calculate the probability of this going wrong, and if this
probability is small enough, it may be sufficient for the design to work in it’s projected
lifetime.

Back to the FIFO, there are some signals, which have to be synchronized, in order
to let the FIFO, and the router work properly. For this, the two-flop synchronizer can
be used. However, there is another problem. The address signals which have to be
synchronized are all multiple-bit signals. It is plausible to think that if for one signal
one two-flop synchronizer is needed, for multiple signals multiple two-flop synchronizers
are needed. This is actually true, but not sufficient. In the case of the address signals,
which are binary, and which are incremented by one, it is possible for this signal to
change multiple bits at once. When trying to synchronize these simultaneous changing
bits, there is a possibility that one bit will go into metastable state, another won’t,
one will come out of it’s metastable state, and another won’t. This unpredictability is
disastrous for the circuit as it will propagate invalid signals. An example is given in
Figure 5.3. There are three address bits, from which two are changing on the positive
clock edge. Signals ADR[2] and ADR[0] both are getting high on the positive clock
edge. Signal ADR sync[2] goes into metastable state and eventually settles down at a
high value. Signal ADR sync[0] also goes into metastable state, but this signal settles
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ADR_sync[1]

ADR_sync[0]

Figure 5.3: Example of data incoherence

down at a low value. ADR[1] doesn’t change thus cannot become metastable. Looking
at the address bit vector, ’101’ is the input and ’100’ is the synchronized output, which
is invalid.

To eliminate the problem of trying to synchronize multiple changing signals on the
same clock edge, Gray Coding can be used [7, 28]. The difference between Gray Code
and Binary code is, that a Gray Code signal can change only one bit at a time, as the
Binary signal can change multiple bits at the time, the latter of which will impose a
problem as described above. When changing only one bit at a time, it is only possible
that one bit will have to be synchronized into the other clock domain. This way only
two possibilities exist. The synchronized signal will retain it’s old value, of it will
propagate it’s new value. There is no chance that an invalid state of the signal will
be propagated. In order to encode a binary signal into a Gray encoded signal, a Gray
Encoder is needed. A Gray decoder is needed for the decoding of the Gray encoded
signal back to a binary value.

The Gray encoder/decoder together with the synchronizer is incorporated into the
FIFO and is shown in Figure 5.4. To compare the two address signals with each other,
first the signal which has to be synchronized, should be Gray encoded. After this, the
signal is synchronized, and at the end, the synchronized signal is decoded back into
binary for comparison with the other address signal. This way the FIFO full and FIFO
empty states are safely determined.

Using synchronization from a fast to slow clock domain imposes a problem where
not all of the binary values can be passed to a new clock domain [7]. The question
is, if it is important whether the binary value keeps incrementing and overflowing or
underflowing the FIFO between the sampled values. When looking at the FIFO full,
this occurs when the write pointer catches up to the synchronized and sampled read
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Figure 5.4: Gray encoder/decoder & synchronizer incorporated into FIFO

pointer. The synchronized and sampled read pointer might not reflect the current
value of the actual read pointer, but the write pointer will not try to count beyond
the synchronized read pointer value, thus overflow will not occur [7]. The same theory
applies on the FIFO empty, because the read pointer will not try to count beyond the
synchronized write pointer value [7]. This way of determining the FIFO full and FIFO
empty states could be seen as pessimistic, but in the end it’s a safe method to use.

5.3 A note about simulation of synchronizers in ModelSim

In Section 5.2.2.2 it is explained that the basic component of a synchronizer consists
of two flip-flops connected to each other as shown in Figure 5.2. In real life the input
signal which changes close to the clock edge of the first flip-flop can go into metastable
state and settle down before the next clock cycle, which then in turn will be clocked in
by the second flip flop. When simulating synthesized and/or placed&routed code with
real components and timing in a HDL simulator like ModelSim, the example above will
result in setup/hold violations, and an unknown signal1 will be propagated into the
second flop. It will not come out of that unknown state as in real life, but will just be
clocked in by the second flip-flop after the second clock edge. In the end, this unknown

1An unknown signal will be shown as a red signal in ModelSim. This signal can not be defined by the
simulator.
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signal will be used further on in the logic, and the circuit behavior will be broken.
The solution for this simulation problem is to get rid of the timing of the first flip-

flop of every synchronizer. A way to do this is to adjust the sdf file, where the timing
of all the instances is defined. The setup and hold timing should be changed into zero.
This way, the first flip-flop will always propagate the right input value to the second
flip-flop.
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Application and Results 6
This chapter describes the results of two implementations. The first one is an RTL
implementation where two routers are connected to each other, and the second is a
placed and routed implementation of a single router. In Section 6.1 results are given
of the throughput and latency of the two routers, where in Section 6.2 timing and area
results are given for the single router.

6.1 2 routers in RTL

6.1.1 Design

To test the serialization, together with the asynchronous behavior, 2 routers should be
connected through their vertical interconnections, where data is injected at 1 frequency,
router 1 operates at another, and router 2 operates at a third. The serializer/de-
serializer is designed in such a way, that is has no influence on the throughput and
latency of the two connected routers. This is explained in Chapter 4. What can be
tested is the logical behavior of the serializer/de-serializer.

In Figure 6.1 the 2 routers are shown, together with their interconnections and
their associated signals. In every router block there is a de-serializer included at a
vertical input port and a serializer included at a vertical output port. Also the logic
for asynchronous working of the router is included.
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Figure 6.1: 2 routers vertically connected

6.1.2 Throughput

The throughput is determined for various interesting cases, where the FIFO depth is
changed, the burst size and the burst rate are changed, and the frequencies are changed
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to test an asynchronous environment. On every injector clock cycle, 1 37-bit flit can
be injected. If a packet is 17 flits long, it means that it takes a minimum of 17 injector
clock cycles to inject 1 packet into a router. A burst size means how many flits are
injected in sequence. The best way to test this behavior, is to change the packet size.
In this experiment the burst size is equal to the packet size. If the burst size is 3, it
means that 1 packet of 3 flits is injected. If the burst size is 8, it means that 1 packet of
8 flits is injected. A burst rate means at which rate the packet, with a specified packet
size, can be injected. If the burst rate is 1, it means that the packets with the specified
packet size can be injected one after another. If the burst rate is 1/8, it means that
after one packet, there is a delay which consists of the amount of time 7 packets to be
injected. After that, a new packet is injected.

First an ordinary case is tested where the injector, and both routers operate at
the same frequency. On every clock cycle the injector is injecting 1 flit into the input
LOCAL port of the first router, which routes the flits into it’s output UP port. This
port is connected to the input DOWN port of the second router, where the data is
propagated to it’s output LOCAL port. This test is done with different values of
the FIFO depth, to see how this influences throughput. The FIFO depths tested are
between 7 and 64. The reason why 7 is the smallest FIFO depth tested, is that the
router architecture doesn’t support smaller values. The packet size is kept at 17 flits.
The result is shown in Figure 6.2. Figure 6.2a shows that the throughput reaches it’s
maximum at the FIFO depth of 18 and stays at that value until the maximum FIFO
depth of 64 is tested. Figure 6.2b is the zoomed in version which excludes the FIFO
depth of above 18, because it doesn’t change. The maximum throughput obtained
lies around 0.67 flits/cycle. This maximum throughput is constrained by the router
architecture of S. Kumar. This has to do with the fact that there is a router overhead
time for each packet which has to be routed. This ensures that the throughput can
never be 1 flit/cycle. Increasing the FIFO depth beyond a certain point, which in this
case is 18, doesn’t help because the router overhead time still exists. The reason why
the throughput jumps up between the FIFO depth of 17 and 18, is that from that FIFO
depth one, one whole packet can fit into the FIFO. This means the time a packet has
to wait to be injected is minimized.

Figure 6.3 shows the throughput when the burst rate is 1/2, with dependence on
burst size or FIFO depth. In Figure 6.3a the case is shown where the FIFO depth is
kept at 12 (same as S. Kumars findings), the burst rate is set on 1/2 and the burst size
is changed to see what influence this has on the throughput. It is tested for a burst
size between 3 and 64. It can be observed that the throughput oscillates up until a
burst size of 23, after which it keeps rising slowly. The different peaks in throughput
have to do with the fact that packets with particular sizes can fit more easily into the
FIFO than other packets, resulting in increased throughput. Figure 6.3b shows the 2
extremes from Figure 6.3a with burst size of 3 and 64, where the FIFO depth is changed
between 7 and 64. Here it is checked what kind of influence the FIFO depth has on the
throughput, with these two burst size extremes. A couple of things can be observed
when comparing the graph with burst size 3 to the graph with burst size 64. If the
burst size is 3, the throughput will saturate at a far smaller FIFO depth, compared to
the burst size of 64. The reason for this is that for a packet with a small size, a smaller
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Figure 6.2: Throughput w.r.t. FIFO depth with flit injected on every clock cycle

FIFO size is needed to be able to fit into the FIFO. For a packet with a large size a
larger FIFO size would be needed, in order to let the packet fit into the FIFO. Because
of the fact that the throughput of a smaller packet saturates much earlier, this also
results in a much lower maximum throughput. The reason for this is when an amount
of flits is transported in smaller packets, the router has to route more packets compared
to larger packets. And because a router needs time to route, more time is lost with the
routing of smaller packets, compared to large packets.

Figure 6.4 shows the throughput when the burst rate is 1/8, with dependence on
burst size or FIFO depth. In Figure 6.4a the case is shown where the FIFO depth is
kept at 12 (same as S. Kumars findings), the burst rate is set on 1/8 and the burst
size is changed to see how this influences the throughput. It is tested for a burst size
between 3 and 64, and it can be observed that the throughput almost doesn’t change
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Figure 6.3: Throughput when burst rate is 1/2

at all. As in Figure 6.3a some oscillations can be seen, but because the throughput is
so small, the difference is negligible. This has to do with the fact that the burst rate is
1/8, which causes less data to be transported. Figure 6.4b shows the 2 extremes from
Figure 6.4a with burst size of 3 and 64, where the FIFO depth is changed between 7
and 64. As in Figure 6.3b, the smaller burst size saturates earlier, because of the same
reasons. The big difference compared to Figure 6.3b is that the maximum throughput
is the same for both the burst sizes. This has to do with the fact that the burst rate is
1/8, which means the FIFO is never fully occupied when using a burst size of 3.

In Figure 6.5 the clock cycle of one component is changed relative to the other two
components in such a way, that it is 2, 4 or 8 times smaller. Here the influence of the
FIFO depth can be tested. Figure 6.5a shows the case where the injector clock cycle is
changed, Figure 6.5b shows the case where the clock cycle of the first router is changed,
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Figure 6.4: Throughput when burst rate is 1/8

and Figure 6.5c shows the case where the clock cycle of the second router is changed.

In Figure 6.5a it can be observed that the throughput is not determined by the
injector. Even in the case where the injector runs at an 8 times faster frequency, the
throughput for all the FIFO depths stays almost the same. In Figure 6.5b it can
be observed the first router does exert influence on the throughput. If it’s frequency
increases, less FIFO depth is needed to achieve maximum throughput. The reason for
this is, when the frequency of the first router is increased, the data from it’s FIFO is
read out faster. This results in less dependability on the FIFO depth, which eventually
results in a maximum throughput at a smaller FIFO depth. In Figure 6.5c it can be
observed that the throughput is not determined by the second router. The difference
with the previous case is, that in this case the router gets it’s data from a previous
router, which has the same FIFO depth. The throughput is then determined by the
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FIFO depth of the first router. It doesn’t matter how fast the second router is, because
it will stop sending flits when it’s FIFO is full.

In Figure 6.6 the clock cycle of two components is changed relative to the other
single component in a way, that they are 2, 4 or 8 times smaller. Here the influence
of the FIFO depth can be tested. Figure 6.6a shows the case where the clock cycle of
the injector and the first router is changed, Figure 6.6b shows the case where the clock
cycle of the first and second router is changed, and Figure 6.6c show the case where
the clock cycle of the injector and the second router is changed.

In Figure 6.6a a similar scenario as in Figure 6.5b can be observed, only here the in-
jector also works at a higher frequency. This shouldn’t change the throughput, because
the second router remains the limiting factor. In Figure 6.6b an interesting case can be
observed. Here both the routers are working on a fast frequency. This means that they
should be able to process all the incoming flits from the injector, which are being sent
with a slow frequency. The limited throughput of the routers doesn’t play a substantial
role here, because this shortcoming is compensated by their higher frequency. Because
of this, the throughput is close to 1. In Figure 6.6c can be observed that if both the
injector and the second router operate at a higher speed, the FIFO depth will exert
influence on the throughput, the same way it does in Figure 6.5b.

When comparing the throughputs for different FIFO depths, the FIFO depth has
an influence only when 2 out of 3 components work on a faster frequency, or when the
first router works at a faster frequency. The maximum throughput is determined by
the slowest component, which can be observed in all the examples. Only when both
the routers operate at a faster frequency, it’s limited throughput is compensated, and
almost all the flits from the injector will be processed.

Looking at all the test results, some conclusions can be drawn:

• For larger packet sizes (i.e. 17), the FIFO depth larger than that packet size has
no influence on the throughput

• A FIFO size identical to the packet size is very beneficial for the throughput

• For smaller packet sizes, the FIFO depth has less influence on the throughput,
than for the larger packets sizes

• For a larger throughput, it is better to use large packets. The drawback is that
larger FIFO’s are needed in order to be able to process these large packets fast
enough

• For smaller burst rates, it is better to use smaller packet sizes, because in that
case, the maximum throughput is achieved much faster compared to a large packet
size

• The first router has the most influence on the throughput

• The best results are obtained when both the routers are operating at a larger
frequency compared to the injector
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6.1.3 Latency

In this experiment, the latency is tested for a burst size of 17, a burst rate of 1 and for
FIFO depths between 7 and 64. This is done in case where all the components operate
at the same frequency (see Figure 6.7a), one of the components is operating at a two
times lower frequency (see Figure 6.7b) and two of the components are operating at
a two times lower frequency (see Figure 6.7c). In case the frequency is equal for all
components, the latency is given in cycles per flit. In all other cases the latency is given
in absolute time [ns] per flit.

Figure 6.7a shows that the latency falls at the beginning, but after that keeps on
rising, with a small decrease at the FIFO depth of 18. The router architecture by S.
Kumar is designed in such a way, that after injecting a flit into a router, it goes in a
FIFO and dependent on the flow control signal from the downstream router, the flit
has to wait in the FIFO, resulting in an increased latency. If the FIFO is larger, the
flit stays longer in the FIFO, resulting in a larger latency. Figure 6.7b shows that if
the injector is operating at a lower frequency, the latency will not go up. The reason
for this is that the flits are injected at a lower frequency, and processed by the two
routers at a higher frequency. There is no stalling of flits in the routers, and that is
the reason why the latency will not go up. The worst case is when the second router
is operating at a lower frequency. In that case the latency is increasing the most. The
reason for this is that the flits are injected at a higher frequency, and in the end they
are processed by the second router at a lower frequency. In this case the FIFO will get
full more often, which will result in an increased latency. Figure 6.7c shows that the
lowest latency increase is obtained in the case the injector and the first router, or both
of the routers are operating at a lower frequency. The worst case is obtained when the
injector and the second router are operating at a lower frequency.

Looking at all the test results, some conclusions can be drawn:

• The latency will increase for larger FIFO depth

• The latency will increase the most in the case when the second router is operating
at a lower frequency

• The worst case is when both the injector and the second router operate at a lower
frequency

6.2 1 router after P&R

In this section, tests are performed on a placed and routed design of a single asyn-
chronous 3D router with serialized vertical connections. Here different timing results
will be given as well as area results.

6.2.1 Timing

This router is simulated with a different Serialization Ratio (R) to determine what
influence it has on the timing. The R which are tested are 1,2,4,5,8,10,20 and 40. For
every R, it is determined at which fast clock cycle and which slow clock cycle this
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Figure 6.7: Latency w.r.t. FIFO depth
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design will have a positive slack. This is an indication that the design should be able
to operate without any problems. The results are shown in Figure 6.8.

I can be seen that both the clock cycles are around 4 ns for R = 1. This is because
in this case the critical path is limited by the slow clock cycle, which is also around 4
ns. If R = 1, then the fast clock cycle is also 4 ns. The same case can be described
when R = 2, in which case the slow clock cycle is 4 ns, and the fast clock cycle is 2 ns.
From R = 4 a trend can be observed, where the fast clock cycle stays around 1 ns, and
the slow clock cycle is R multiplied by the fast clock cycle. This can be explained by
the fact that the critical path of the fast clock is limited at around 1 ns, which means
that the slow clock cycle is R times larger then the fast clock cycle.

It can be also observed that the critical path for the fast clock is not always 1 ns.
This is because for all the experiments, the design is placed and routed again, with
different clock trees and timing, which causes the small difference in the timing results.
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Figure 6.8: Cycle time w.r.t. serialization ratio

Looking at Figure 6.8 it can be concluded that the best R is 4. This results in the
fastest fast clock, and fastest slow clock.

6.2.2 Asynchronous operation

This is a small section about the asynchronous operation of the router. The asyn-
chronous operation means the data is written into the FIFO at one clock frequency
and read out at another clock frequency. These clock frequencies have to be asyn-
chronous to each other. For the tested clock cycle times in Table 6.1, the router is
operating properly. This means that all the packets which are injected into the local
port, are routed to the valid output port.

In Table 6.1, where TW is the write clock cycle time and TR is the read clock cycle
time, it is shown how big the frequency difference can be between the two clocks, when
the write clock is faster or when the read clock is faster. It is also shown for the
two clocks when the phase between them goes up and down. This way it is tested if
the router still operates when the two clock edges are close to each other. It can be
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Table 6.1: Tested clock cycle time at which the router is operating properly

TW [ns] TR [ns] description

4 4 Write and read frequency are the same

4 8 Write frequency is 2x faster than the read frequency

4 16 Write frequency is 4x faster than the read frequency

4 32 Write frequency is 8x faster than the read frequency

4 64 Write frequency is 16x faster than the read frequency

8 4 Write frequency is 4x lower than the read frequency

16 4 Write frequency is 4x lower than the read frequency

32 4 Write frequency is 8x lower than the read frequency

4.12 4.16 Two fast frequencies where the phase goes up and down

4.16 4.12 Two fast frequencies where the phase goes up and down

128.12 128.16 Two slow frequencies where the phase goes up and down

128.16 128.12 Two slow frequencies where the phase goes up and down

concluded that it is operating properly. The only problem lies when the write frequency
is lower than the read frequency. This has to do with the initialization of the memory
after the reset, which is explained in Section 5.2.1.2. If the write frequency is too slow
compared to the read frequency, memory initialization problems can arise. From the
test results it can be seen that it still operates correctly when the write frequency is
up to 8 times lower than the read frequency. When the frequency difference becomes
larger, the memory initialization problems will arise. Due to time constraints, this
particular problem is not solved.

6.2.3 Area

The area of the 3D router block is dependent on the components used. A large area
footprint is taken by the Faraday memory block and the TSV array. When changing the
memory or serialization factor, the area taken by them is also automatically changed.
Figure 6.9 shows the floorplan used for the final design for 1 3D router with serializer/de-
serializer and synchronizers. Here the memory is shown for word depths of 16, 32 and
64. It can be observed that the memory footprint doesn’t change a lot. This is also
shown in Figure 6.11. This has to do with the fact that in this memory architecture,
at these sizes, the area is occupied primarily by control logic instead of memory cells.
Also the TSV area is shown for all the serialization ratios (between 1 and 40). The
largest area footprint is for R = 1, and the smallest for R = 40.

The TSV array is made in such a way, that is should be as square as possible, which
is explained in Section 2.1.4.3. This means that if possible, the number of rows should
equal the number of columns. If not possible, then one of the two can be one larger
than the other. When making this kind of square arrays, it can’t be ensured that all the
area in the square is filled with TSVs. There will also be some empty spots. Table 6.2
shows the number of TSVs needed with different serialization ratios, with the number
of rows and columns needed for the array, and how many empty spots there are left.

The number of needed TSVs for different serialization ratios can be calculated by
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(6.1).

number of TSVs needed = 12 + 4× (40/R) (6.1)

Table 6.2: TSV array with different serialization ratios

Serialization ratio TSVs Columns Rows Empty spots

1 160 13 13 9

2 92 10 10 8

4 52 7 8 4

5 44 7 7 5

8 32 6 6 4

10 28 5 6 2

20 20 4 5 0

40 16 4 4 0

Figure 6.10 shows the total TSV footprint (with KOZ), and gate footprint for dif-
ferent serialization ratios. It can be observed that the TSV footprint is reduced the
most with R = 2 and 4, after which the reduction has less impact on the area. The
gate area stays relatively the same.

The used chip area is determined primarily by the memory blocks. Because of
performance issues, it is preferable to put these blocks on the I/O sides, because the
I/O pins are connected to the memory blocks. This is shown in Figure 6.9. In Figure 6.9
and Figure 6.11 it can be observed how the memory area changes for different word
depths. The difference between 16 and 64 bits is around 22%. But because of the
placement of the memory, it has a small influence on the total block dimensions. For
32 word depth instead of 16, the block size can stay the same. Only for the increase to
a 64 word depth, the size is increased by 1,5%.
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Looking at these results, it can be concluded that R = 4 is the best value for the
area as well. It can also be seen that most of the area is occupied by memory blocks. A
possibility to try out would be to make the memory blocks out of the Nangate Standard
Cells. Maybe this way the memory area would decrease. Due to time constraints, this
is not implemented.
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Conclusion 7
This chapter summarizes this thesis by highlighting the most important aspects of the
physical design of the 3D router, where information is given for all the important design
steps, and achieved goals. Additionally, areas which could be further explored will be
highlighted so future engineers can start working on them.

7.1 Summary

A solution has been given for various problems of chip design in the form of a 3D NoC,
which solves the communication and area problems. The emphasis of this work has
been the design of the main block of a 3D NoC, which is a 3D router. From the RTL
level of design to a fully placed & routed design, all the design steps and problems are
described.

First some background information is given in Chapter 2, where different aspects
like IC design methodology, Standard Cell Library, Memory, Through Silicon Via and
3D implementation are discussed, to see what to use where, and how to implement
them. For the standard cells, the Nangate Open Cell Library was chosen. The reason
for this was that is was quite small (45 nm) and was ready for 3D implementation. For
the memory, 55 nm Faraday memory is used, because this was the smallest available
memory. Various TSV technology options are discussed, where it was shown that the
TSV technology complementing the Nangate Standard Cells, had a diameter of 6 µm.
In the end of the chapter a complete work flow is described for designing the chip.

In Chapter 3 the basic building block of a 3D NoC, the 3D router is discussed. First
the architecture is determined, which is from S. Kumar, after which it is explained. The
implementation of the memory blocks is explained, with the emphasis on making them
usable in the design. This was needed because the Faraday memory was made in 55 nm,
where the Standard Cell Library was made in 45 nm. Some physical information had to
be changed, which was done with LEF files. Also some small adjustments were made in
the Liberty file, which was needed for timing. The complete design and implementation
of a TSV is described. For the geometry of the TSV, a square is used with sides of
4 µm. This was the easiest to implement and sufficient for it’s purposes. The size
is chosen based on the work of R. Jagtap, where it is used for some simulations, and
it was close to the size of the TSV from the PDK. Using the values for the parasitic
components for a TSV, from R. Jagtap [8], some simulations are done to determine the
output transition time and propagation delay for TSVs w.r.t. input transition time and
output capacitance. The result was that the output transition time was almost equal to
the input transition time, and that the propagation delay was negligible. These results
were used in the Liberty file, describing the timing for a TSV. Next to this, also a LEF
file had to be described, where all the geometrical information is stored. For simulation
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purposes, a simple RTL model had to be made in VHDL.

In Chapter 4 the serializer and deserializer are discussed. The full details of the
design are given, together with the operation. Some aspects are highlighted, like timing
constraints that needed to be obeyed in order to let the design operate in various
conditions.

Chapter 5 describes the asynchronous working of the router, and how to implement
it with the help of of synchronizers and gray en-/decoders.

In Chapter 6 some simulations are done. One is an RTL simulation with two routers
connected to each other. Here the throughput is tested for different scenario’s. It
can be seen that the FIFO depth has influence up to a value of 18, after which the
throughput stays the same at a maximum of 0.67, which is determined by the router
architecture. Different burst sizes are tested. It can be seen that the throughput gets
larger with larger burst sizes. The only drawback is that a larger FIFO is needed to
take full advantage of the throughput. Also the FIFO depth has less influence on the
throughput when the burst size is small, compared to large burst sizes. For smaller
burst rates, it is better to use smaller burst sizes, because in that case, the maximum
throughput is achieved much faster compared to a large packet size. Some tests were
also conducted to see how an increase in frequency for 1 component has influence on
the total throughput. It can be seen that the maximum throughput stays the same, but
the FIFO depth needed to achieve it, will change. This is the case when the frequency
of the routers is changed, and not of the injector. The tests where the frequency of 2
of the components is changed, support the above statement. One of the routers should
operate at a higher frequency, in order to achieve the maximum throughput with smaller
FIFO depths. The case where both routers are operating at a fast frequency is the most
interesting. Here the throughput is almost 1, which means on every clock cycle of the
injector, one flit is sent through the the network. This does make sense, because if
the two routers are working at higher frequencies, they can process far more data then
they receive, and in this way, compensate the limiting throughput of 0.67, imposed by
the routers’ architecture. The latency is also tested for different FIFO depths, for the
case where all the components are operating at the same clock frequency, when one of
the components is operating at a lower clock frequency or when two of the components
operate at a lower clock frequency. For the case when the clock frequency is the same
for all the components, it can be observed that the latency will increase with the FIFO
depth. When testing with different clock frequencies, it can be observed that the latency
will increase the most when the second router, or the injector and the second router
are operating at a lower clock frequency, compared to the other component(s).

The other simulation is a placed & routed design of one router, including serializ-
er/deserializer and synchronizers. Here the timing and area are discussed. It is observed
that the critical path of the slow clock lies around 4 ns, and of the fast clock around 1
ns. This means that the most efficient serialization ratio is 4. Together with the fact
that the TSV array area decreases the most with serialization ratios of 2 and 4, the
value 4 can be seen as the most efficient. The gate area stays the same with different
serialization ratios. Furthermore the memory size doesn’t increase substantially when
increasing the word depth from 16 to 64. This has to do with the fact that in this
memory architecture, at these memory sizes, the area is primarily occupied by control
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logic instead of memory cells. Some test results are given showing that the router also
works with two asynchronous clock frequencies.

7.2 Future work

Due to timing constraints, some aspects are not examined thoroughly enough, or not
at all. These could be interesting for future engineers who wish to continue on this
work. The areas where future work could be done are the following:

1. For this project, no real 3D design has been made because no 3D EDA tools were
available. With small adjustments, the 3D router could be implemented with real
3D EDA tools.

2. The emphasis of this project was the development and implementation of 1 3D
router. Maybe a real 3D NoC could be made and tested.

3. The used Nangate Standard Cell Library has no industrial grade performance.
This design could be synthesized with industrial grade Standard Cell Libraries.

4. The used Faraday memory seems to take up a lot of area. Maybe other more
area efficient memories could be used, or the memory could be synthesized with
ordinary standard cells. A comparison could be made with the different imple-
mentations.

5. This thesis did not look at the power dissipation at all. Especially in today’s
world where low-power becomes the norm, it would be interesting to see how
much power this design dissipates, and if it can be reduced.
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TSV timing values for liberty

file A
In Table A.1 all the output transitions are given with respect to input transitions and
output capacitance, where in Table A.2 all the propagation delays are given with respect
to input transitions and output capacitance. The input and output transition times
are calculated from 30% to 70%, and the propagation delays are calculated from 50%
input to 50% output.

Table A.1: Output transition time w.r.t. input transition time and output capacitance

Output transition time (s) Input transition time (ns)
Output capacitance (ff) 0.002 0.011 0.042 0.102 0.196 0.327 0.500

0.365 2.36p 11.26p 42.68p 102.70p 196.19p 327.37p 499.99p

1.897 2.30p 11.26p 42.68p 102.70p 196.19p 327.37p 499.99p

3.795 2.35p 11.27p 42.68p 102.69p 196.19p 327.37p 499.99p

7.591 2.43p 11.28p 42.69p 102.69p 196.19p 327.37p 499.99p

15.182 2.64p 11.20p 42.70p 102.69p 196.19p 327.37p 499.99p

30.365 2.77p 11.30p 42.69p 102.69p 196.19p 327.37p 499.99p

60.730 1.41p 11.42p 42.68p 102.70p 196.19p 327.37p 500.00p

Table A.2: Propagation delay w.r.t. input transition time and output capacitance

Propagation delay (s) Input transition time (ns)
Output capacitance (ff) 0.002 0.011 0.042 0.102 0.196 0.327 0.500

0.365 78.34f 3.86f 2.87f 3.12f 3.02f 2.75f 2.69f

1.897 140.41f 4.79f 2.98f 3.50f 3.43f 3.13f 3.05f

3.795 205.43f 9.28f 3.59f 3.50f 3.96f 3.61f 3.52f

7.591 294.38f -8.30f 4.02f 4.36f 4.95f 4.58f 4.42f

15.182 -8.17f -15.26f 6.65f 6.06f 6.64f 6.52f 6.23f

30.365 -465.15f 43.28f 10.51f 11.48f 9.93f 9.95f 9.88f

60.730 -248.93f -34.35f 1.52f 14.62f 16.05f 16.84f 17.17f
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3D router diagram B
Figure B.1 shows a 3D router diagram where only the LOCAL and UP input/output
ports are shown, because all other ports are the same.
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