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A B S T R A C T

A closed-form solution is derived for the buckling of orthotropic composite plates under the effect of thermal and
mechanical loads. The plates are subjected to constant temperature increment and length variation while the
width expansion is constrained. The problem is formulated in terms of displacement components, studied using
classical plate theory in combination with classical lamination theory. An analytical formula that relates critical
temperatures to applied plate displacements is obtained. The buckling of heated, fully restrained plates is also
derived as a particular case. Examples of plates made of different materials and lay-ups are presented in gra-
phical form, and are verified by finite element analysis. The obtained formula can be used during initial design,
for sensitivity analysis and also for obtaining desired buckling shapes.

1. Introduction

Thermomechanical loads are present in many applications, and
often represent a challenge for structures working in extreme en-
vironments. For example, this is the case of supersonic aircraft, which,
in addition to mechanical loads, must endure the thermal loads in-
herent to high speed flight. Under such demanding conditions their
lightweight design makes them highly susceptible to buckling. In order
to preserve safety, efficiency and structural performance, under-
standing thermomechanical buckling becomes a key task.

Thermal buckling has been a topic of research since the early stages
of supersonic flight, when the focus was on structures made of metallic
materials. In the following decades, several research activities were
conducted to investigate the thermal buckling of laminate composite
materials. Whitney and Ashton [1] studied the effect of temperature
and moisture in composite plates incorporating a generalized Duhamel-
Neumann formulation, and assessed the buckling behaviour of generic,
unsymmetric plates with all normal expansions restricted. Tauchert and
Huang [2] extended this formulation for the study of thick antisym-
metric laminate plates, incorporating Mindlin plate theory, solving the
problem via the Galerkin method and assessing the effect of fixed and
sliding boundary conditions. In later studies, Tauchert [3] particular-
ized these studies into symmetric laminates using Rayleigh-Ritz
method, while Sun and Hsu [4] developed a formula for thick, cross-
ply, symmetric and balanced laminates using the Galerkin method.
Meyers and Hyer [5] studied buckling and postbuckling of symmetric

laminates, investigating the influence of the deviation of the load di-
rection with respect to the material axis, using the Rayleigh-Ritz
method. Abramovich [6] studied the buckling of cross-ply laminates
under uniform thermal increment, considering a first-order shear de-
formation theory. Jones [7] investigated both unidirectional and cross-
ply laminates under uniform heating and restricted normal expansions.
It is especially remarkable the effort of Nemeth [8], who derived the
buckling temperatures for an extensive range of long, fully restrained
laminated plates. Matsunaga [9] developed 2D global higher-order
deformation theory for thermal buckling of cross-ply laminated com-
posite and sandwich plates. More recently, Vescovini et al. [10] de-
veloped a refined 2D model for generic panels (both sandwich and
monolithic), able to selectively account for higher order theories in
specific regions of interest. Li et al. conducted research on the effect of
scatter in material properties [11] and on the effect of thermal gradients
over the buckling temperature [12].

Thermal buckling has also been approached using finite element
analysis: Shi et al. [13] studied thermal buckling and postbuckling of
composite plates using the finite element modal coordinate method;
Shiau et al. [14] assessed the influence of the lamina stiffness ratio
E E/L T and lamina thermal expansion ratio α α/2 1 in the buckling pattern
formation of heated laminated plates using the finite element method.
Ounis et al. [15] proposed a new type of finite element using a com-
bination of linear isoparametric membrane element and a high preci-
sion rectangular Hermitian element.

However, most of mentioned analytical and numerical studies
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consider only thermal buckling, i.e. buckling caused merely by con-
strained thermal expansions, plate edges are kept straight and constant
in length and the original dimensions of the panel remain unchanged.
The influence of external mechanical loads in the buckling temperature
and shape cannot be assessed unless plate size variation is incorporated
in the formulation. Although in the last decade extensive analytical
research has been done in the field of pure mechanical buckling
[16–22], only few studies explore the buckling of mechanically and
thermally loaded panels, like the one of Jones [23] for metallic mate-
rials, or Nemeth [24] for infinite laminate plates. Some authors like
Noor et al. [25], or more recently Nali and Carrera [26], studied
thermomechanical buckling using finite element models based on
multilayered panel formulations.

This paper presents an analytical formulation for the calculation of
buckling temperatures under the effect of external mechanical load and
restrained transversal expansion. The analysis of symmetric and ba-
lanced composite laminated plates is presented, where temperature
increment is applied and mechanical load is introduced in the form of
shortening. Examples of plates made of different composite materials
and different lay-ups are analysed and compared. The obtained formula
can be used during initial design, for sensitivity analysis and also for
deriving specific buckling shapes.

2. Problem formulation

A rectangular plate of length a and width b is considered. The plate
is placed in a XYZ coordinate system, being the plane XY coincident
with the mid-plane of the plate, and the Z axis perpendicular to this
plane. In the present study two different types of boundary conditions
are considered. The first type consists of plates that can experiment
variations in length while their width remains unchanged. Plate edges
are not allowed to displace out-of-plane. A graphical representation of
the described constraints can be found in Fig. 1a, while the corre-
sponding equations are presented below:

= = ± = =
= =

= =

at X a u at Y b u free
v free v
w w

0, : Δ /2 0, :
0

0 0

x
0 0

0 0

0 0

where u v w, ,0 0 0 are the displacements of the plate mid-plane in the
respective X Y, and Z directions. The plate is subjected to total length
variations Δx along X axis. Positive values of Δx are taken for plate
stretching, while plate shortening is assumed negative. The plate ex-
periments an uniform temperature increment TΔ respect from a stress-
free state. The order of load application is indifferent: TΔ can be ap-
plied before Δx , and also the other way around.

The second type of boundary conditions can be understood as a
particular case of the first type. For this case, both plate length and
width remain unchanged. The equations describing this new set of
constraints can be easily achieved enforcing =Δ 0x in the equations for
the first type. The corresponding graphical representation is reported in
Fig. 1b.

A plate under the first type of boundary conditions will now be
considered. The plate is analysed by means of classical plate theory in
combination with classical lamination theory (CLT). The laminate layup
is assumed to be orthotropic, and material properties are considered to
remain constant within the analysed range of temperatures.

The in-plane behaviour of the laminate is governed by the mem-
brane constitutive equations (Eq. (1)):
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where N N N, ,x y xy are the force resultants at the plate edges, the terms
Aij =i j( , 1, 2, 6) are the membrane stiffness terms from CLT,

∊ ∊ γ, ,xx yy xy
0 0 0 are the engineering strains of the mid-plane of the plate, and

N N N, ,x
T

y
T

xy
T are the thermal force resultants. The in-plane displacements

can be described as linear functions of the total plate length variations
Δx . The thermal force resultants are expressed as showed in Eq. (2):
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where Qij =i j x y s( , , , ) are the in-plane stiffnesses of a single lamina
projected into XYZ coordinate system, k is a generic lamina number and
N the total amount of laminae, and α α α, ,x

k
y
k

xy
k( ) ( ) ( ) are the coefficients of

thermal expansion (CTE) for a single lamina in the same coordinate
system. Considering the temperature distribution homogeneous, the
thermal force resultants are linear functions of TΔ , and can be ex-
pressed as in Eq. (3):

= = =N N T N N T N N TΔ Δ Δx
T

x
T

y
T

y
T

xy
T

xy
T   (3)

where N N N, ,x
T

y
T

xy
T   are the thermal force resultants per unit thermal

change. These quantities are function of lamina properties and stacking
orientation. For symmetric and balanced laminates, Nxy

T vanishes.
The membrane state is analysed considering linear displacements

along the length and zero across the width, yielding Eq. (4), which are
solution to the pre-buckling problem:

Fig. 1. Heated plates: (a) Plate with transversal expansion restrained and pre-
scribed length variation. (b) Plate with all expansions restrained.
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being =N 0xy . Eq. (4) represent the force resultants at the plate edges
and constitute the membrane state of the loaded plate. They are func-
tions of both Δx and TΔ .

The buckling equation is expressed by Eq. (5):

+ + + − − =D w D D w D w N w N w2( 2 ) 0xxxx xxyy yyyy x xx y yy11 , 12 66 , 22 , , , (5)

being the Dij =i j( , 1, 2, 6) the laminate bending stiffnesses, and
meaning the comma in the subindex partial differentiation with respect
to the indicated variable. A solution for Eq. (5) is now assumed. This
solution has the form of double Fourier series, as presented in Eq. (6):
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where Wmn = …m n( , 1, 2, 3 ) are the amplitudes of the Fourier series
terms, and m and n represent the number of half-waves in X and Y
directions. After substituting Eq. (6) for the out-of-plane displacements
and Eq. (4) for the in-plane force resultants into Eqs. (5) and (7) ap-
pears:
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After proper evaluation, the expression in Eq. (8) is obtained:
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Eq. (8) represents the states of equilibrium for which the out-of-
plane deflections are nonzero. For each state of equilibrium given by
the number of half-waves m and n, the obtained Eq. (8) relates plate
length variations Δx with thermal increments TΔ . For a certain value of
Δx , the buckling temperature TΔ cr is given by the buckling configuration
(i.e. number of half-waves m and n) that delivers the lowest absolute
value of TΔ . The presented deduction has been done using Δx as loading
condition. A deduction using force resultants is also possible. However,
it would introduce complexity as two types of force resultants, one
mechanical and another thermal, would be necessary.

Eq. (8) has been deduced using simply supported boundary condi-
tions. These are a simplification of reality and may not always capture
the behaviour of the actual boundary conditions in a real structure.

3. Application cases

A few examples of heated composite plates are here presented. The
plates are subjected to the two types of boundary conditions described
in Section 2. The first set examples, reported in Section 3.1, deal with
the case of fully restrained thermal expansions. Results in this section
are given in the form of buckling charts, illustrating the change of TΔ cr
versus varying aspect ratio a b/ . The second set of examples, presented
in Section 3.2 correspond to the first type of boundary conditions, and
cope with the case of simultaneous heating and external mechanical
load. For this section, results are given in the form of buckling charts
representing the variation of TΔ cr versus applied Δx.

For all presented buckling charts, a few finite element analyses are

performed in Abaqus for verification. In all diagrams, the results of the
corresponding eigenvalue analyses are reported with the symbol of a
circle. Buckling shapes obtained using Abaqus are also reported next to
the corresponding buckling curve in the diagrams.

3.1. Buckling of heated, fully restrained plates

An orthotropic composite laminate plate is now considered. The
plate has in-plane expansions along X and Y axis restrained, while it
experiments a uniform temperature increment TΔ . The plate can buckle
when a TΔ is applied. The equation for thermal buckling can be ob-
tained from previously deduced Eq. (8). Considering that the plate does
not experiment any length variation, =Δ 0x . Thus, Eq. (9) unfolds:

= + + +

+
T π b m D a b m n D D a n D

a b b m N a n N
Δ ( 2 ( 2 ) )

( )x
T

y
T

2 4 4
11

2 2 2 2
12 66

4 4
22

2 2 2 2 2 2  (9)

Eq. (9) gives the thermal buckling of thin, orthotropic, fully re-
strained composite laminated plates. For a certain plate geometry,
material and stacking orientation, TΔ cr is given by the buckling shape,
i.e. values of m and n, delivering the minimal absolute value of TΔ . This
equation has been already obtained in previous studies [4,2].

Some important features can be inferred from Eq. (9). For instance,
the sign of the critical buckling temperature TΔ cr can often be predicted
by looking at the signs of Nx

T and N y
T . If both quantities are positive,

plates buckle when heated; if both quantities are negative, plates buckle
when cooled down. However, when quantities Nx

T and N y
T have op-

posite sign, plates may buckle either when heated, cooled down, or
under both conditions simultaneously. This particular phenomenon can
be easily clarified: for a given plate geometry, layup and material, the
numerator in Eq. (9) is always positive, because it merely depends on
plate geometry and bending stiffness; however, the denominator may
have positive and negative values due to Nx

T and N y
T , ultimately af-

fecting to the sign of TΔ cr.
Eq. (9) can also be easily related to an equivalent formula for me-

tallic materials. In terms of material behaviour, isotropy could be seen
as a particular case of orthotropy. In order to perform such conversion,
the following equivalences have to be considered:

= = + = = = =
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where ν is the isotropic Poisson ratio, α the CTE for isotropic materials,
and D the plate bending stiffness from classical plate theory. It is pos-
sible to note that isotropic materials, TΔ cr is always reached for

= =m n 1 configurations. Thus, Eq. (10) is the formula for thermal
buckling of thin, fully restrained isotropic plates. Eq. (10) has been
previously documented in literature [27,28].

Eq. (9) is at first verified against results extracted from literature
([13–15]). The aim of this verification is establishing the range of ap-
plicability of Eq. (9). The three chosen bibliographic sources analyse
the same benchmark case, consisting in simply supported, fully re-
strained composite laminated plates of dimensions

× ×381 304 1.22 mm3, made of composite material with following ply
properties: =E 155 GPa1 , =E 8.07 GPa2 , =G 4.55 GPaLT ,

= = − °−ν α0.22, 0.07·10 / CLT 1
6 , = °−α 30.1·10 / C2

6 , and stacking se-
quences [0/90/90/0]s and −[0/45/ 45/90]s. These plates are also analysed
applying Eq. (9) and performing finite element analysis using Abaqus.
For the Abaqus numerical analysis, plates were modelled as rectangular
geometries, meshed with rectangular S4R shell elements, with an ele-
ment size of approximately 25mm. The results of these verifications are
presented in Table 1.

The first row of Table 1 corresponds to a [0/90/90/0]s layup. It is a
specially orthotropic laminate. The value delivered by Eq. (9) is in very
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good agreement with the values extracted from literature, while the
result delivered by Abaqus is slightly larger, approaching to the exact
value delivered by Eq. (9) from the stiffer side. The results in the second
row of Table 1 correspond to the −[45/ 45/0/90]s quasi-isotropic stacking
sequence. In this case, the terms D16 and D26 are nonzero, so using Eq.
(9) can be considered as an approximation. The value delivered by Eq.
(9) is a bit higher than both Abaqus and literature values. This is due to
the non-negligible contribution of the bending anisotropy terms.

Three examples of composite laminate plates are now analysed and
discussed.

The first example studies plates of variable length and constant plate
width =b 375 mm. The plates have quasi-isotropic stacking sequence

−[45/ 45/0/90] s2 , and are made of AS4/3502 composite material.
Material properties are reported in Table 2. For this combination of
layup and material, both laminate CTE’s αx and αy, as well as quantities
Nx

T and Ny
T are positive. The bending-twisting coupling terms are non-

zero. However, being the ratio D D/16 22 a 7%, the influence of bending
anisotropy over the solution is negligible. These quantities are reported
in Table 3. The output of Eq. (9) are plotted in Fig. 2, in the form of a
chart representing applied TΔ versus varying aspect ratio a b/ . For in-
stance, takings =n 1 and = …m 1, 2, 3 , a set of dashed lines are gen-
erated, each one of them corresponding to buckling shapes of increasing
number of half-waves along X direction; by repeating this operation
with = =m n1, 1, 2, 3, curves related to shapes with multiple half-
waves in Y direction are obtained. For a certain value of the aspect
ratio, TΔ cr is given by the dashed curve delivering the minimal absolute
value of TΔ . The buckling curve is obtained by gathering together all
values of TΔ cr , and is represented as bold in Fig. 2. A characteristic
feature of quasi-isotropic laminated plates can be noted: under the case
of pure thermal buckling, quasi-isotropic plates tend to buckle in a
single half-wave shape in both X and Y directions, independent of plate
geometry. For increasing values of the aspect ratio, TΔ cr rapidly de-
creases and tends asymptotically to a stable value.

For very large values of a b/ , the critical temperature TΔ cr tends to
∞TΔ cr, , which is the critical buckling temperature for simply supported,

fully restrained, heated infinite plates, reported also in literature [8].
Such temperature has been reported as dash-dotted line in Fig. 2. This
trend is also observed in heated, simple supported, fully restrained
metallic plates.

The second example presents buckling temperatures for plates
having identical geometry and stacking orientation as in previous ex-
ample. However, plates are now made of IM7/8552 composite material.
For this new combination of layup and material, parameters α α N, ,x y x

T

and Ny
T are negative, as reported in Table 3; as a direct consequence TΔ cr

will also be negative. As for previous example, the bending-twisting
coupling terms are small in comparison with the rest of their bending
stiffness terms, with a maximal ratio of 7%, the influence of bending
anisotropy over the solution is negligible. The results delivered by Eq.
(9) for this second example are presented in Fig. 3, in the form of a
chart representing the change of TΔ versus a b/ .

The curve of TΔ cr for the current set of analysed plates shows si-
milarities with the first analysed set of plates. Plates still buckle under a
unique half-wave. However, laminate CTE’s are negative due to the
change of plate material, so plates now buckle under cooling and the
resulting buckling chart appears as mirrored with respect from its
AS4/3502 counterpart. Quasi-isotropic laminates with negative thermal
expansion keep similar mechanical properties to isotropic materials,
while their thermal buckling behaviour is reversed. For very long values
of a b/ , the critical temperature tends to ∞TΔ cr, , which is the critical
temperature for simply supported, fully restrained, heated infinite
plates reported in literature [8]. Composite laminate plates with ne-
gative thermal expansion are a consequence of either α k

1
( ) and α k

2
( ) la-

mina CTE’s being negative, but also due to Poisson effect due to high
fibre stiffness [1]. Such lamina properties can be used for tailoring
stacking sequences with negligible or even zero thermal expansion.

The third example corresponds to plates sharing geometries with the
two previous examples. Material remains IM7/8552 while the layup is
now −[20/ 20] s4 . Contrary to previously analysed quasi-isotropic lami-
nates, this stacking sequence shows higher membrane and bending
stiffness along one prevalent direction. Additionally, the present com-
bination of material and layup shows opposite signs for Nx

T and N y
T , as

reported in Table 3. Layup is now angle-ply, so the bending-twisting
coupling terms become proportionally larger. However, as shown in
Ref. [29], the influence of bending anisotropy becomes smaller when
the amount of layers increases. Thus, the formula can still be used for
pre-sizing. As a consequence of this, plates may buckle either under
heating, cooling, or both. The outcome of Eq. (9) is plotted in Fig. 4,
following the same procedure used for Figs. 2 and 3. Two buckling
curves appear, corresponding to both positive and negative ranges of

TΔ . Thus, a certain plate can have two buckling temperatures. For in-
stance, a plate with aspect ratio =a b/ 2.2 will buckle under

= °TΔ 23.93 C with shape (1, 2), but also under = − °TΔ 10.47 C with
shape (2, 1). The two buckling curves show opposing trends regarding
the buckling shapes: for the positive range of TΔ , increasing values of
a b/ cause the number of half-waves along Y axis to decrease. Con-
versely, for negative range of TΔ , the number of half-waves increases
along X axis. It is possible to note that half waves along a certain plate
axis are a clear indicator of main compressive direction.

Angle-ply laminates showing high stiffness along one predominant
direction can be useful when the loads are highly directional. These
stacking orientations are often the output of optimization processes,
where the fibres align to respond to critical loading directions.
However, the direction perpendicular to the main fibre orientation is
less stiff due to the lack of fibres, and it also sees much higher thermal
expansion due to the larger contribution of the matrix material. This
makes them prone to buckling when expansions along this direction are
somewhat restrained. Potential applications in thermal environments
should be considered carefully, especially if negative laminate CTE’s are
present as behaviour becomes more counter intuitive.

3.2. Buckling of loaded and heated plates

An orthotropic composite laminate plate is now considered. Its
edges are simply supported, and the plate experiments an uniform
length variation Δx along X axis, while the width remains constant. The
plate is also subjected to a spatially uniform temperature increment TΔ .
Under such situation, the plate can buckle either when a TΔ is applied,
a Δx is applied, or both take place simultaneously. The described

Table 1
Verification of buckling temperatures with different composite plates.

Stacking Eq. (9) Abaqus Shi [13] Shiau [14] Ounis [15]
[°C] [°C] [°C] [°C] [°C]

[0/90/90/0]s 6.81 6.86 6.81 6.81 6.81
−[0/45/ 45/90]s 7.86 7.67 7.62 7.65 7.63

Table 2
Material properties [24,33].

Material E [GPa]11 E [GPa]22 G [GPa]12 −ν [ ]12 °α ·10 [1/ C]1 6 α2 ·106 °[1/ C] t [mm]Ply

AS4/3502 127.6 11.3 6.0 0.3 0.45 29.6 0.127
IM7/8552 150 9.08 5.29 0.32 −5.5 25.8 0.127

J. Gutiérrez Álvarez and C. Bisagni Composite Structures 233 (2020) 111622

4



situation corresponds to the first type of boundary conditions specified
in Section 2. For these plate and loading conditions, Eq. (8) holds.

There are some substantial differences between Eqs. (8) and (9). For
instance, when the plate is subjected to a prescribed Δx, the tempera-
ture is a linear function of mechanical loading condition Δx . As a con-
sequence, the load proportionality ratio =k N N/x y no more remains
constant, and the sign of TΔ cr does not depend only on plate properties
anymore.

Eq. (8) can be related to a formula for isotropic materials, as done
previously with Eq. (9). Thus, after introducing in Eq. (8) the equiv-
alences for isotropic material and doing proper rearrangements, Eq.
(11) unfolds:

= + + +Eαhb
π D

T a b n ν b m
a n π D

N a n b m
a n

Δ ( )
x

2

2

2 2 2 4 2

2 2 2

2 2 2 2 2

4 2 (11)

Eq. (11) is the equation for thermomechanical buckling in isotropic
materials, reported in literature [7].

Three examples are then presented and discussed, analysing three
different thermomechanically loaded composite laminate plates. The
three analysed plates present the same plate width b, layup and mate-
rial of the three set of plates analysed in Section 3.1, so examples in
both sections can easily be related to each other. In all cases, plates are
very thin in comparison to their length and width, which is unrealistic
in real applications. Such choice of dimensions has been made so that
obtained buckling temperatures are small, and can be applied easily
during tests.

The first analysed plate is made of AS4/3502 material, with a quasi-
isotropic stacking sequence −[45/ 45/0/90] s2 , width =b 375 mm and
length =a 575 mm. As stated in previous Section 3.1, for this combi-
nation of stacking and material, the quantities α α N, ,x y x

T and Ny
T are

positive.
Results from Eq. (8), are plotted in a buckling chart representing TΔ

versus Δx. Starting from a buckling shape with = =m n1, 1 a line is
obtained by plotting the resulting expression and is represented as
dashed in Fig. 5. By leaving now n=1 fixed, and assuming

= …m 1, 2, 3, , analogue dashed lines can be generated, being these
lines related to buckling shapes with multiple half-waves in X direction.
By taking = =m n1, 1, 2, 3,…similar dashed lines related to buckling
shapes with multiple half-waves in Y direction are reported. For a
certain length variation Δx, the critical buckling temperature TΔ cr is
determined by the dashed line delivering the lowest absolute value of

TΔ . These lines intersect each other so the buckling shape defining the
lowest TΔ will change depending on the mechanical loading condition
Δx . The result of collecting all values of TΔ cr for any given Δx is the
buckling curve, represented as bold in Fig. 5, and is constituted by
different segments of several intersecting dashed lines.

The buckling curve divides the loading plane ( TΔ , Δx ) into two

Table 3
Laminate CTE αx and αy, and thermal forces Nx

T and N y
T , for different materials and layups.

Material Stacking °α ·10 [1/ C]x 6 °α ·10 [1/ C]y 6 °N [N/mm C]x
T °N [N/mm C]y

T

AS4/3502 −[45/ 45/0/90] s2 3.35 3.35 0.49 0.49
IM7/8552 −[45/ 45/0/90] s2 −3.23 −3.23 −0.54 −0.54
IM7/8552 −[20/ 20] s4 −8.09 20.07 −1.30 0.21

Fig. 2. Buckling temperatures of fully restrained, heated composite plates with
different lengths. Material: AS4/3502; Layup: −[45/ 45/0/90] s2 .

Fig. 3. Buckling temperatures of fully restrained, heated composite plates with
different lengths. Material: IM7/8552; Layup: −[45/ 45/0/90] s2 .

Fig. 4. Buckling temperatures of fully restrained, heated composite plates with
different lengths. Material: IM7/8552; Layup −[20/ 20] s4 .
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subspaces, corresponding to buckled and unbuckled states. The inter-
section of the buckling curve with the horizontal axis corresponds to the
loading situation in which the plate buckles under pure mechanical
loading ( = °TΔ 0 C); for this case, the length variation has a value of

= −Δ 0.04x mm and the plate buckles under the shape of one half-wave
in both X and Y directions. Conversely, the intersection with the vertical
axis represents the case in which =Δ 0x mm and buckles under pure
heating. For this case, the plate buckles under = °TΔ 8.14 Ccr , and this
value can be found also in Fig. 2. The buckling shape has only one half-
wave in both X and Y directions.

In the case that the plate experiments a stretch of =Δ 0.3 mmx , TΔ cr
increases significantly, rising up to °66.62 C and the buckling presents a
mode with two half waves in Y direction. It is possible to note that
under heating conditions, plate stretching has stabilizing effect against
buckling. States of stretching and cooling induce biaxial tension states
in the plate so buckling under this loading condition is not possible.
Conversely, if the plate experiments a shortening of = −Δ 0.02 mmx ,

TΔ cr descends to °3.06 C. Under states of shortening and heating, the
plate experiments a state of biaxial compression that noticeably reduces

TΔ cr . Considering now a shortening of = −Δ 0.3 mmx , that is larger than
the critical shortening for pure mechanical loading. In order to prevent
buckling, the plate should be cooled down to temperatures lower than

= − °TΔ 73.74 Ccr . In this case, the buckling pattern corresponds to three
half-waves in the axial direction.

It can be stated that the increase of mechanical condition Δx induces
a change in the buckling temperature TΔ cr, as well as variations in the
direction and number of half waves. The buckling behaviour of quasi-
isotropic plates under thermomechanical loads is, therefore, compar-
able to that one shown by metallic plates [7].

The second analysed plate shares dimensions and quasi-isotropic
layup with the previously analysed plate; the only difference between
the two plates is the material, which is now IM7/8552. The resulting
buckling chart is presented in Fig. 6, and is generated with the same
procedure used for Fig. 5. The new buckling chart appears as mirrored
with respect to the horizontal axis when compared to its AS4/3502
counterpart. This is a consequence of the variation in sign of quantities
α α N N, , ,x y x

T
y
T , caused by the material IM7/8552. The consequences of

such inversion is that plate stretching has now a stabilizing effect
against cooling, and under plate compression, a positive TΔ is required
in order to prevent buckling. The mechanical condition Δx induces a
change in the buckling temperature TΔ cr , as well as variations in the
direction and number of half waves. Laminates with negative CTE’s
show a counter-intuitive behaviour when external mechanical load is
present. This should be taken into account when considering them for

any application involving notable changes in temperature.
The third analysed plate is made of IM7/8552 and the stacking is
−[20/ 20] s4 . A new buckling chart, Fig. 7, is generated. For this combi-

nation of material and laminate stacking, Nx
T and Ny

T have opposite sign.
In this case, with a stretching equal to =Δ 0.1 mmx , the plate buckles
under = °TΔ 101.8 Ccr , with a (1,3) buckling shape, but also under

= − °TΔ 52.62 Ccr . It is also possible to note that the graph is not sym-
metric with respect to X axis. For heating, the plate buckles in a pattern
of increasing half-waves in transversal direction Y, while for cooling in
increasing number of half-waves along X direction. It is also remarkable
to see how the area for negative Δx area experiments a substantial re-
duction, and neither heating nor cooling have a proper stabilizing effect
against buckling when mechanical load is compressive. This kind of
information can be valuable when considering the suitability of highly
directional laminates for thermomechanically loaded environments.

Throughout the last three examples, it has been shown how the
introduction of heat and external load, combined with restrained
transversal expansions affects the buckling behaviour of some fre-
quently used families of composite laminated plates. For structural
applications in extreme environments, buckling loads experience dra-
matic changes when thermal increments are present. Such interaction
effects should be properly contemplated early on in the sizing phases,
and can be also used for obtaining desired buckling shapes.
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Fig. 5. Buckling chart for a loaded and heated composite plate. Geometry:
=a 575 mm, =b 375 mm; Material: AS4/3502; Layup: −[45/ 45/0/90] s2 .

Fig. 6. Buckling chart for a loaded and heated composite plate. Geometry:
=a 575 mm, =b 375 mm; Material: IM7/8552; Layup: −[45/ 45/0/90] s2 .

Fig. 7. Buckling chart for a loaded and heated composite plate. Geometry:
=a 575 mm, =b 375 mm; Material: IM7/8552; stacking: −[20/ 20] s4 .
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There are other factors related to materials or manufacturing, which
have not been addressed and are well worth considering. One of them is
the effect of thermal pre-stress due to curing on buckling loads [30]:
often plates and longitudinal stiffeners have different CTE’s, creating in
this way residual stresses that can have an impact on the buckling load.
Another relevant factor is the temperature dependence on material
characteristics: Temperature variation may induce changes on proper-
ties, making buckling temperatures differ from those predicted using
material values at room temperature. Such variations are strongly de-
pendent on the material of choice. It remains the task of the design
engineer to perform a thorough research on the behaviour of any po-
tential material within the desired range of temperatures. For example,
some carbon/epoxy composite materials show an increase on long-
itudinal lamina stiffness within − °50 C and − °200 C range, as docu-
mented in Ref. [31]; Nonlinear dependence of thermal expansion on
temperature has been registered in various materials, as reported in Ref.
[32].

4. Conclusions

The buckling of orthotropic laminated plates under heating, re-
strained transversal expansion and external mechanical load in axial
direction was investigated.

A closed formula was deduced and compared against the classical
thermal buckling problem with no plate size variation. Different sets of
results in graphical form for both mentioned loading cases were pre-
sented and compared. Resulting buckling charts show buckling curves
that divide the displacement-temperature loading space into two sub-
spaces, corresponding to buckled and unbuckled states. The influence of
external mechanical load over the plate buckling temperature (and vice
versa) was assessed. It was shown that mechanically loaded laminated
plates can be either stabilized or destabilized by either cooling or
heating. Besides, it was also shown how the combination of heating and
mechanical load have an impact on the buckling shape, so under spe-
cific loading conditions desired plate shapes can be targeted. The pro-
posed formula, due to its simplicity, can readily be used for initial de-
sign, sensitivity analysis or optimization.
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