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Sensitivity analysis of a minimum lateral control speed
prediction system

F. Bouwman∗, O. Stroosma †, A.C. in ’t Veld‡ and M. Mulder§
Delft University of Technology, Delft, Zuid-Holland, 2600 HS, The Netherlands

Preventing Loss of Control In-flight (LOC-I) in commercial and general aviation is an active
research area with numerous proposed solutions. One of these solutions aims to prevent lateral
LOC-I, a special type of LOC-I, by presenting a roll-performance based minimum lateral
control speed to the pilot in roll-limited situations, such as single-engine failure scenarios in
multi-engine aircraft. This minimum lateral control speed is predicted by a system, named the
𝑉𝑐 Prediction System (VPS), which continually predicts the minimum lateral control speed 𝑉𝑐 at
which an aircraft can still obtain a certain roll angle within a certain amount of time. It consists
of three components; a linear model, a parameter estimation method and a 𝑉𝑐 prediction model.
These VPS components were designed for a simulation model of the Piper Seneca. This study
analyzes the sensitivity of the VPS design to a change in aircraft dynamics and simulation model
complexity by redesigning this system for a high-fidelity simulation model of the Fokker 50. The
results show that both aircraft favor a small linear model and the Modified Kalman Method for
parameter estimation. The original 𝑉𝑐 prediction model however gives higher 𝑉𝑐 prediction
errors for the Fokker 50 than for the Piper Seneca. By simplifying the original 𝑉𝑐 prediction
model a stable, smooth and relatively accurate 𝑉𝑐 prediction for the Fokker 50 can be obtained.

I. Nomenclature

𝑌 = Sideforce
𝑙 = Rolling moment
𝑛 = Yawing moment
𝜙 = Roll angle
𝜙𝑟𝑒𝑞 = Required roll angle
𝛿𝑎, 𝛿𝑟 = Aileron, Rudder deflection
𝐶 = Coefficient, Correction
𝛽 = Sideslip angle
𝑇 = Thrust, Tail, Time period
𝑡 = Time
𝐺 = Aileron gearing
𝑏 = Wing span
𝑉 = Velocity
𝑉𝑚𝑐𝑎 = Minimum control speed air
𝑉𝑐 = Minimum lateral control speed
𝑉𝑐𝐿 = Minimum lateral control speed for a left roll
𝑉𝑐𝑅 = Minimum lateral control speed for a right roll
𝑉0 = Current air speed
𝑉𝑇𝐴𝑆 = True air speed
𝜌 = Air density
𝑚 = Mass
𝐿 = Left
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𝑎 = Acceleration
𝑇𝑂 = Tail off
𝑝 = Roll rate
𝑞 = Pitch rate
𝑟 = Yaw rate
𝑓 = Flap
𝑥 = x-direction in the body axes
𝑦 = y-direction in the body axes
𝑧 = z-direction in the body axes
𝐷 = Discriminant
𝑃 = Constant
𝑄 = Constant
𝑅 = Right, Constant
𝑆 = Wing area, Constant

II. Introduction

Loss of Control In-flight (LOC-I) is one of the major causes of fatal accidents in commercial aviation.[1] It occurswhen an aircraft uncontrollably deviates from its intended flight path, which usually follows from a complex chain
of events such as structural or mechanical failures, loss of airspeed or combinations of these causes. Due to the variety
and complexity of these causes, finding a universal solution for preventing LOC-I is difficult. Most of the proposed
solutions in the research area of preventing LOC-I therefore focus on a particular subset of LOC-I. Lateral LOC-I is an
example of such a subset. It typically occurs after an asymmetric aircraft failure, such as a single-engine failure in a
multi-engine aircraft, wing damage or loss of aileron or rudder control. One of the proposed solutions for preventing
lateral LOC-I was published by Koolstra in 2017, which aims to aid pilots in manual recovery from roll-limited
situations.[2] Koolstra argued that, after an asymmetric aircraft failure, pilots need an indicator of the lateral-directional
control limits. Currently the only lateral-directional control limit used by pilots is the minimum control speed air
(𝑉𝑚𝑐𝑎). It is defined in the US Electronic Code of Federal Regulations Title 14 §25.149 as the minimum velocity at
which straight flight can be maintained with a maximum roll angle of 5 degrees, when the critical engine is inoperative
and the non-critical engine operates at full power.[3] The problem with preventing lateral LOC-I using 𝑉𝑚𝑐𝑎 is that
𝑉𝑚𝑐𝑎 only applies after an engine failure in a multi-engine aircraft. It does not incorporate other asymmetric failures.
Additionally, 𝑉𝑚𝑐𝑎 does not provide an indication of the aircraft’s manoeuvrability, as it is determined for a static
equilibrium condition. To solve this problem Koolstra designed a system, named the 𝑉𝑐 Prediction System (VPS),
that continually predicts the minimum lateral control speed 𝑉𝑐 of an aircraft based on the estimated roll performance.
It consists of three components; a linear model which models the aircraft’s lateral dynamics, a parameter estimation
method which estimates the parameters of the linear model online and a 𝑉𝑐 prediction model which uses the estimated
parameters to predict 𝑉𝑐. Koolstra carefully designed the linear model, the parameter estimation method and the 𝑉𝑐

prediction model based on simulations that were done using a low-fidelity simulation model of the Piper Seneca.[2] The
suitability of Koolstra’s VPS design for other aircraft and more complex simulation models is currently unknown.
The aim of this study is to analyze how sensitive the Piper Seneca VPS design is to a change in aircraft dynamics and

simulation model complexity. This is achieved by repeating Koolstra’s VPS design process with a simulation model of
the Fokker 50 and comparing the resulting Fokker 50 VPS design to the Piper Seneca VPS design. The main difference
between these aircraft is that the Piper Seneca is a light aircraft mainly used in general aviation, whereas the Fokker 50
is a mid-size passenger aircraft mainly used in commercial aviation. Furthermore, the Fokker 50 simulation model used
for this study has a higher fidelity than the Piper Seneca simulation model used in Koolstra’s research [2], as it is based
on and validated with extensive flight test data. It is therefore interesting to investigate if the Fokker 50 VPS can use
the same linear model, parameter estimation method and 𝑉𝑐 prediction model as the Piper Seneca VPS to provide an
accurate prediction of 𝑉𝑐. The VPS is redesigned for the Fokker 50 by selecting the optimal combination of linear model
and parameter estimation method, and by evaluating the accuracy of the 𝑉𝑐 prediction model based on 48 different
failure simulations using the Fokker 50 simulation model. This study focuses on the sensitivity of these three VPS
components only, which means that aircraft state estimation and presenting the predicted 𝑉𝑐 to the pilots is beyond the
scope.
This paper consists of eight sections. In Section III the differences in aircraft states and control inputs between

the Piper Seneca and the Fokker 50 in a roll-limited simulation model are identified. Following a short description of

2

D
ow

nl
oa

de
d 

by
 T

U
 D

E
L

FT
 o

n 
Ja

nu
ar

y 
25

, 2
02

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
3-

07
98

 



Koolstra’s VPS design in Section IV, the VPS is redesigned for the Fokker 50 in Section V by reselecting the linear
model and the parameter estimation method, and calculating its 𝑉𝑐 prediction error for various combinations of linear
model and parameter estimation method using Koolstra’s 𝑉𝑐 prediction model. These resulting 𝑉𝑐 prediction errors
for the Fokker 50 are relatively large compared to the 𝑉𝑐 prediction errors of the Piper Seneca. Therefore a simplified
𝑉𝑐 prediction model is derived in Section VI. Section VII discusses the results of the redesigned VPS. Based on the
differences between the Piper Seneca VPS design and the Fokker 50 VPS design, Section VIII concludes on how
sensitive the VPS design is to a change in aircraft dynamics and simulation model complexity.

III. Minimum control speed air
The starting point of the VPS sensitivity analysis is to identify the differences in aircraft states and control inputs

between the Piper Seneca and the Fokker 50 in a roll-limited equilibrium situation. These differences are used to predict
how the change in aircraft dynamics affects the Fokker 50 VPS redesign in Section V. For this study the most interesting
roll-limited situation is a single-engine failure, because Koolstra designed the VPS to replace 𝑉𝑚𝑐𝑎. Therefore the states
and control inputs of the Piper Seneca and the Fokker 50 are determined for straight flight, with the critical engine
inoperative and the propeller feathered and the non-critical engine at full throttle. This is done by solving the three
lateral non-dimensional equations of motion numerically for sideforce, rolling moment and yawing moment, in which
the four independent variables are roll angle, sideslip angle, aileron deflection and rudder deflection. To solve three
equations for four unknowns, one variable needs to be fixed to a constant value. The flight scenario determines which
variable is fixed. After a single-engine failure in a twin-turboprop aircraft two scenarios are chosen for investigation. In
the first scenario the pilot maintains a zero sideslip angle for drag minimization, which means that the sideslip angle is
fixed at zero. In the second scenario the aircraft is flying so slow that the pilot has to give full rudder input to maintain a
constant heading, which means that the rudder is fixed at its maximum deflection. Koolstra determined the states and
control inputs of the Piper Seneca in the full rudder deflection scenario, with the left engine at full throttle and the right
engine inoperative and the propeller feathered. His most relevant results are summarized and elaborated upon in Section
III.A. Similarly, the states and control inputs of the Fokker 50 for the full rudder deflection scenario are determined in
Section III.B.

A. Piper Seneca states and control inputs
Koolstra determined the states and control inputs of the Piper Seneca after a single-engine failure numerically by

solving the three lateral non-dimensional equations of motion for the sideslip angle, aileron deflection and roll angle,
assuming straight and level flight with full rudder deflection.[2] As the Piper Seneca has counter-rotating propellers, it
does not have a critical engine. The right engine was therefore randomly selected as the inoperative engine and the left
engine was set to full throttle. The results are plotted in Figure 1a.[2] It highlights various points of interest; point 1
where the sideslip angle is zero for drag minimization, point 2 where maximum aileron deflection is reached, point 3
where the fin stalls, point 4 where the roll angle is zero for passenger comfort and point 5 where the roll angle decreases
below -5 degrees, which is defined as 𝑉𝑚𝑐𝑎. It is observed that the slopes of the required sideslip and roll angles and the
required aileron deflection at 𝑉𝑚𝑐𝑎 are steep. At the velocity of 𝑉𝑚𝑐𝑎, the slopes of the required sideslip angle, roll
angle and aileron deflection are 4.0, 1.7 and -5.3 degrees per knot respectively. This indicates that lateral LOC-I in the
Piper Seneca occurs rapidly with respect to air speed once 𝑉𝑚𝑐𝑎 is reached.

B. Fokker 50 states and control inputs
Similarly, the states and control inputs of the Fokker 50 after a single-engine failure are determined numerically for

the full rudder deflection scenario by solving the three lateral non-dimensional equations of motion over a velocity
range with full rudder deflection. This approach is similar to Koolstra’s approach, but with a different model to fit
the dynamics of the Fokker 50, different lateral aerodynamic and control coefficients and different engine data. The
three lateral non-dimensional equations of motion are derived in Section 4-2-1 of [4], labeled as Equation 4-28. These
equations are adjusted to represent steady straight flight and to account for asymmetric thrust. Terms which contain
rotational rates, rotational accelerations and linear accelerations are therefore assumed to be zero, and thrust terms for
each engine are added. The resulting equilibria in sideforce, rolling moment and yawing moment, denoted by subscripts
𝑌 , 𝑙 and 𝑛 are reflected by Equations 1, 2 and 3. In these equations the variables are roll angle 𝜙, sideslip angle 𝛽, left
and right aileron deflections 𝛿𝑎𝐿

and 𝛿𝑎𝑅
, rudder deflection 𝛿𝑟 and left and right thrust coefficients 𝐶𝑇𝐿 and 𝐶𝑇𝑅 . Each

of these variables has a corresponding aerodynamic or control coefficient. Their values are determined from the data
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(a) Piper Seneca.[2] (b) Fokker 50.

Fig. 1 Numerically determined roll angle, sideslip angle and control surface deflections as a function of air
speed during straight and level flight with the left engine inoperative and the propeller feathered, the right engine
at full throttle and full rudder deflection.

tables documented in [5], which have been generated from wind tunnel experiments and flight test data. These data
tables are linearized around zero to obtain constant coefficients. Furthermore, the equations contain forces and moments
caused by the thrust forces of the left and right engines and propellers 𝑇𝐿 and 𝑇𝑅 to account for asymmetric thrust. They
are not non-dimensionalized like the other terms, because the required engine coefficients are not available from Fokker
documentation. Instead, the engine forces and moments are identified from the Fokker 50 simulation model at two
engine settings; inoperative with the propellers feathered and at full throttle. They are then modeled as a function of
air speed and inserted into Equations 1, 2 and 3. Please note that the engine forces and moments are not the same as
the coefficients related to the thrust coefficients 𝐶𝑇𝐿 and 𝐶𝑇𝑅 . These coefficients account for the propeller slipstream
effects on the fuselage and tail, while the engine forces and moments account for the direct thrust of the propeller and jet
stream, and the drag of the engine inlet.

𝑚𝑔

1
2 𝜌𝑉

2𝑆
· 𝜙+

(
𝐶𝑌𝛽𝑇𝑂

+ 𝐶𝑌𝛽𝑇

)
· 𝛽 + 𝐶𝑌𝛿𝑎𝐿

𝛿𝑎𝐿
+ 𝐶𝑌𝛿𝑎𝑅

𝛿𝑎𝑅
+ 𝐶𝑌𝛿𝑟

𝛿𝑟 + 𝐶𝑌𝐶𝑇𝐿
𝐶𝑇𝐿 + 𝐶𝑌𝐶𝑇𝑅

𝐶𝑇𝑅+

𝑌𝑇𝐿
1
2 𝜌𝑉

2𝑆
+

𝑌𝑇𝑅
1
2 𝜌𝑉

2𝑆
= 0

(1)

0+
(
𝐶𝑙𝛽𝑇𝑂

+ 𝐶𝑙𝛽𝑇

)
· 𝛽 + 𝐶𝑙𝛿𝑎𝐿

𝛿𝑎𝐿
+ 𝐶𝑙𝛿𝑎𝑅

𝛿𝑎𝑅
+ 𝐶𝑙𝛿𝑟

𝛿𝑟 + 𝐶𝑙𝐶𝑇𝐿
𝐶𝑇𝐿 + 𝐶𝑙𝐶𝑇𝑅

𝐶𝑇𝑅+
𝑙𝑇𝐿

1
2 𝜌𝑉

2𝑆𝑏
+

𝑙𝑇𝑅
1
2 𝜌𝑉

2𝑆𝑏
= 0

(2)

0+
(
𝐶𝑛𝛽𝑇𝑂

+ 𝐶𝑛𝛽𝑇

)
· 𝛽 + 𝐶𝑛𝛿𝑎𝐿

𝛿𝑎𝐿
+ 𝐶𝑛𝛿𝑎𝑅

𝛿𝑎𝑅
+ 𝐶𝑛𝛿𝑟

𝛿𝑟 + 𝐶𝑛𝐶𝑇𝐿
𝐶𝑇𝐿 + 𝐶𝑛𝐶𝑇𝑅

𝐶𝑇𝑅+
𝑛𝑇𝐿

1
2 𝜌𝑉

2𝑆𝑏
+

𝑛𝑇𝑅
1
2 𝜌𝑉

2𝑆𝑏
= 0

(3)

The left and right aileron deflections 𝛿𝑎𝐿
and 𝛿𝑎𝑅

are modeled separately such that their corresponding control
coefficients can be taken directly from [5]. Since this leads to an extra independent variable, an extra equation is needed
to solve the three lateral non-dimensional equations of motion. Equation 4 relates the left aileron deflection to the
right aileron deflection by the gearing 𝐺. In reality this gearing varies along the entire deflection range of the ailerons.
However, to keep the model quasi-linear, it is assumed to be constant in each direction of deflection. Its value depends
on the sign of the deflection to ensure that a maximum upward deflection of -33 degrees of the left aileron equals a
maximum downward deflection of 22 degrees of the right aileron and vice versa.
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𝛿𝑎𝐿
− 𝐺 · 𝛿𝑎𝑅

= 0 with 𝐺 =
22
−33 when 𝛿𝑎𝐿

>= 0 (4)

𝐺 =
−33
22

when 𝛿𝑎𝐿
< 0

Geometric and mass properties of the Fokker 50 which are required to solve the three lateral non-dimensional
equations of motion are listed in Table 1. Furthermore, the gear and flaps are assumed to be fully retracted.

Table 1 Fokker 50 properties used in the three lateral non-dimensional equations of motion for the numerical
determination of the states and control inputs after a single-engine failure.

Property Symbol Value Unit

Mass m 17000 kg
Wing area S 70 m2

Wing span b 29 m

Using these data, the three lateral non-dimensional equations of motion are solved for the Fokker 50 for the case
of a full rudder deflection of -20 degrees. The left engine is inoperative and the propeller is feathered, and the right
engine is set to full throttle, because the left engine is the critical engine of the Fokker 50. The results are shown in
Figure 1b. Comparing this figure to Figure 1a shows three differences. First, the plot is mirrored around the x-axis,
because for the Fokker 50 the left engine is inoperative instead of the right engine. Second, point 3 which indicates fin
stall is not indicated, because the drag of the vertical tail increases the yawing moment generated by the vertical tail
when the sideslip angle increases even after the fin stalls, as shown in Figure 7.2.3b of [5]. Third, the slopes of the
required roll and sideslip angles at 𝑉𝑚𝑐𝑎 for the Fokker 50 are a factor 10 smaller than for the Piper Seneca, with values
of -0.5 and -0.2 degrees per knot respectively. This means that lateral LOC-I due to a single-engine failure occurs more
gradually in the Fokker 50 than in the Piper Seneca when the air speed decreases. More importantly, the slope of the
total aileron deflection at 𝑉𝑚𝑐𝑎 is only 0.8 degrees per knot, compared to -5.3 degrees per knot for the Piper Seneca.
Since the 𝑉𝑐 prediction model predicts the velocity at which a certain roll performance can be achieved based on the
estimated available aileron deflection, this could lead to larger 𝑉𝑐 prediction errors for the Fokker 50.

IV. Description of the VPS
A short description of Koolstra’s Piper Seneca VPS design is given to gain a better understanding of its design.

The VPS predicts the velocity 𝑉𝑐 at which the aircraft can obtain a certain roll angle within a certain amount of time
during a maximum performance roll to the left or to the right.[2] It uses three lateral equations of motion to capture the
aircraft’s roll dynamics in the linear model described in Section IV.A. The parameters of this linear model are estimated
online by one of four parameter estimation methods listed in Section IV.B. The estimated parameters are then used by
the 𝑉𝑐 prediction model described in Section IV.C to predict 𝑉𝑐. The three sections below do not only describe these
three VPS components in detail, they also explain which options were considered by Koolstra for the design of the Piper
Seneca VPS. Please refer to Chapters 4, 5 and 6 of [2] for the full derivation and design of the Piper Seneca VPS.

A. Linear model
The linear model was derived by Koolstra to model the aircraft’s lateral dynamics during a maximum performance

roll.[2]. It consists of three lateral equations of motion around an arbitrary reference point to account for an unknown
location of the center of gravity due to a structural failure. They were derived from Newton’s second law, using a
first order Taylor expansion to model the external forces. The entire linear model, which calculates the sideslip angle
derivative ¤𝛽, the roll angular acceleration ¤𝑝 and the yaw angular acceleration ¤𝑟 is stated below in Equations 5, 6 and 7
respectively. It should be noted that the terms 𝑇𝐿 and 𝑇𝑅 represent the torque percentages generated by the engines over
the third power of the true air speed. This third power is required to obtain constant model parameters for an aircraft
with turboprop engines.[2]
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𝑏 ¤𝛽
𝑉

=𝑌𝛽𝛽 + 𝑌𝜙𝜙 + 𝑌𝑝 · 𝑝𝑏
2𝑉

+ 𝑌𝑟 ·
𝑟𝑏

2𝑉
+ 𝑌𝛿𝑎𝛿𝑎 + 𝑌𝛿𝑟 𝛿𝑟 + 𝑌𝑇𝐿𝑇𝐿 + 𝑌𝑇𝑅𝑇𝑅 + 𝑌𝑎𝑧

𝑎𝑧𝑏

2𝑉2
+ 𝑌𝛿 𝑓

𝛿 𝑓 +

𝑌𝑥

(
𝑝𝑏

2𝑉
𝑟𝑏

2𝑉
− 0.5 ¤𝑟𝑏

2

2𝑉2

)
+ 𝑌𝑦

(( 𝑝𝑏
2𝑉

)2
+
( 𝑟𝑏
2𝑉

)2)
+ 𝑌𝑧

(
𝑞𝑏

2𝑉
𝑟𝑏

2𝑉
− 0.5 ¤𝑝𝑏2

2𝑉2

)
+ 𝑌𝛿𝑎

3𝛿𝑎
3 + 𝑌𝛽2 𝛽2

(5)

𝑏2 ¤𝑝
2𝑉2

=𝑙𝛽𝛽 + 𝑙𝜙𝜙 + 𝑙𝑝 · 𝑝𝑏
2𝑉

+ 𝑙𝑟 ·
𝑟𝑏

2𝑉
+ 𝑙𝛿𝑎𝛿𝑎 + 𝑙𝛿𝑟 𝛿𝑟 + 𝑙𝑇𝐿𝑇𝐿 + 𝑙𝑇𝑅𝑇𝑅 + 𝑙𝑎𝑧

𝑎𝑧𝑏

2𝑉2
+ 𝑙𝛿 𝑓

𝛿 𝑓 +

𝑙 ¤𝑞
¤𝑞𝑏2
2𝑉2

+ 𝑙𝑝𝑞
𝑝𝑏

2𝑉
𝑞𝑏

2𝑉
+ 𝑙𝑞𝑟

𝑞𝑏

2𝑉
𝑟𝑏

2𝑉
+ 𝑙𝑝𝑟

𝑝𝑏

2𝑉
𝑟𝑏

2𝑉
+ 𝑙𝑞2

( 𝑞𝑏
2𝑉

)2
+ 𝑙𝑟2

( 𝑟𝑏
2𝑉

)2
+ 𝑙𝑝2

( 𝑝𝑏
2𝑉

)2
+

𝑙𝑎𝑥

𝑎𝑥𝑏

2𝑉2
+ 𝑙𝑎𝑦

𝑎𝑦𝑏

2𝑉2
+ 𝑙𝛿𝑎3𝛿𝑎

3 + 𝑙𝛽2 𝛽
2

(6)

𝑏2 ¤𝑟
2𝑉2

=𝑛𝛽𝛽 + 𝑛𝜙𝜙 + 𝑛𝑝 · 𝑝𝑏
2𝑉

+ 𝑛𝑟 ·
𝑟𝑏

2𝑉
+ 𝑛𝛿𝑎𝛿𝑎 + 𝑛𝛿𝑟 𝛿𝑟 + 𝑛𝑇𝐿𝑇𝐿 + 𝑛𝑇𝑅𝑇𝑅 + 𝑛𝑎𝑧

𝑎𝑧𝑏

2𝑉2
+ 𝑛𝛿 𝑓

𝛿 𝑓 +

𝑛 ¤𝑞
¤𝑞𝑏2
2𝑉2

+ 𝑛𝑝𝑞

𝑝𝑏

2𝑉
𝑞𝑏

2𝑉
+ 𝑛𝑞𝑟

𝑞𝑏

2𝑉
𝑟𝑏

2𝑉
+ 𝑛𝑝𝑟

𝑝𝑏

2𝑉
𝑟𝑏

2𝑉
+ 𝑛𝑞2

( 𝑞𝑏
2𝑉

)2
+ 𝑛𝑟2

( 𝑟𝑏
2𝑉

)2
+ 𝑛𝑝2

( 𝑝𝑏
2𝑉

)2
+

𝑛𝑎𝑥

𝑎𝑥𝑏

2𝑉2
+ 𝑛𝑎𝑦

𝑎𝑦𝑏

2𝑉2
+ 𝑛𝛿𝑎

3𝛿𝑎
3 + 𝑛𝛽2 𝛽

2

(7)

After this linear model was derived, Koolstra’s main goal was to select the terms which resulted in the highest
prediction accuracy of a maximum performance roll. Together these selected terms would form the optimal model for
the Piper Seneca VPS. To prepare for the term selection process, the entire linear model was split up into a basic model
containing 10 terms and 14 remaining additional terms. The 10 terms of the basic model are listed in Table 2a. Table 2b
lists the 14 additional terms.

Table 2 List of the linear model terms, including term identifiers and the corresponding model parameters.[2]

ID Term Parameter
Sideslip Roll Yaw

B1 𝛽 𝑌𝛽 𝑙𝛽 𝑛𝛽

B2 𝜙 𝑌𝜙 𝑙𝜙 𝑛𝜙

B3 𝑝𝑏

2𝑉 𝑌𝑝 𝑙𝑝 𝑛𝑝

B4 𝑟𝑏
2𝑉 𝑌𝑟 𝑙𝑟 𝑛𝑟

B5 𝛿𝑎 𝑌𝛿𝑎 𝑙𝛿𝑎 𝑛𝛿𝑎

B6 𝛿𝑟 𝑌𝛿𝑟 𝑙𝛿𝑟 𝑛𝛿𝑟

B7 𝑇𝐿 𝑌𝑇𝐿 𝑙𝑇𝐿 𝑛𝑇𝐿

B8 𝑇𝑅 𝑌𝑇𝑅 𝑙𝑇𝑅 𝑛𝑇𝑅

B9 𝑎𝑧𝑏

2𝑉2 𝑌𝑎𝑧
𝑙𝑎𝑧

𝑛𝑎𝑧

B10 𝛿 𝑓 𝑌𝛿 𝑓
𝑙𝛿 𝑓

𝑛𝛿 𝑓

(a) Basic linear model terms.[2]

ID Term Parameter
Sideslip Roll Yaw

1 𝑝𝑏

2𝑉
𝑟𝑏
2𝑉 − 0.5 ¤𝑟𝑏2

2𝑉2 𝑌𝑥 - -
2 ( 𝑝𝑏2𝑉 )

2 + ( 𝑟𝑏2𝑉 )
2 𝑌𝑦 - -

3 𝑞𝑏

2𝑉
𝑟𝑏
2𝑉 − 0.5 ¤𝑝𝑏2

2𝑉2 𝑌𝑧 - -
4 ¤𝑞𝑏2

2𝑉2 - 𝑙 ¤𝑞 𝑛 ¤𝑞
5 𝑝𝑏

2𝑉
𝑞𝑏

2𝑉 - 𝑙𝑝𝑞 𝑛𝑝𝑞

6 𝑞𝑏

2𝑉
𝑟𝑏
2𝑉 - 𝑙𝑞𝑟 𝑛𝑞𝑟

7 𝑝𝑏

2𝑉
𝑟𝑏
2𝑉 - 𝑙𝑝𝑟 𝑛𝑝𝑟

8 ( 𝑞𝑏2𝑉 )
2 - 𝑙𝑞2 𝑛𝑞2

9 ( 𝑟𝑏2𝑉 )
2 - 𝑙𝑟2 𝑛𝑟2

10 ( 𝑝𝑏2𝑉 )
2 - 𝑙𝑝2 𝑛𝑝2

11 𝑏𝑎𝑥

2𝑉2 - 𝑙𝑎𝑥
𝑛𝑎𝑥

12 𝑏𝑎𝑦

2𝑉2 - 𝑙𝑎𝑦
𝑛𝑎𝑦

13 𝛿𝑎
3 𝑌𝛿𝑎

3 𝑙𝛿𝑎3 𝑛𝛿𝑎
3

14 𝛽2 𝑌𝛽2 𝑙𝛽2 𝑛𝛽2

(b) Additional linear model terms.[2]
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B. Parameter estimation method
Since the VPS requires the parameters to be estimated online, the parameter estimation method needs to be recursive.

Koolstra considered four parameter estimation methods for the Piper Seneca VPS: Recursive Least Squares (RLS) [6], a
Forgetting Algorithm with Damping (FAD) with 𝜆 = 0.995 and 𝛿 = 200 [7], the Modified Kalman Method (MKM)
[6] and a Forgetting Algorithm (FA) with 𝜆 = 0.9975 [8][9]. Koolstra selected one of these four parameter estimation
methods by combining them with three linear model sizes and calculating the means and standard deviations of the 𝑉𝑐

prediction errors of each combination. Based on these values, it was concluded that the combination of the basic linear
model and the MKM formed the optimal configuration of the Piper Seneca VPS.

C. 𝑉𝑐 prediction model
The 𝑉𝑐 prediction model predicts at which velocity 𝑉𝑐 the aircraft can obtain the required roll angle 𝜙𝑟𝑒𝑞 within the

time period 𝑇 using the estimated linear model parameters. To obtain a 𝑉𝑐 prediction from these inputs Koolstra derived
a model which predicts the roll angle 𝜙 as a function of time 𝑡 during a maximum performance roll to the left and to the
right.[2] The starting point of the derivation is Equation 6. All but the roll rate and the aileron terms are temporarily
discarded from the right-hand side of this equation, under the assumptions that the sideslip angle and the yaw rate
are zero, and that the load factor and the engine settings are constant. This results in the first order linear differential
equation shown in Equation 8. To account for the discarded model terms, the aileron deflection 𝛿𝑎 is changed to the
total available aileron deflection 𝛿𝑎𝑎𝑣

, which is the available aileron travel for the maximum performance roll.

𝑏2 ¤𝑝
2𝑉2

=𝑙𝑝 · 𝑝𝑏
2𝑉

+ 𝑙𝛿𝑎𝛿𝑎𝑎𝑣
(8)

After solving this differential equation for the roll rate as function of time using 𝑝(0) = 0 radians per second as an
initial condition, integrating once more using 𝜙(0) = 𝜙0 radians as an initial condition, and substituting 𝜙(T) = 𝜙𝑟𝑒𝑞 +
𝜙0, the total available aileron deflection 𝛿𝑎𝑎𝑣

is calculated and substituted. This total available aileron deflection 𝛿𝑎𝑎𝑣
is

defined as the difference between the aileron limits, the current aileron deflection 𝛿𝑎𝑉0 and 9 corrections denoted by 𝐶
in Table 3. For the definitions and equations of these corrections please refer to [2].

Table 3 Corrections for the total available aileron deflection 𝛿𝑎𝑎𝑣
used in the 𝑉𝑐 prediction model.[2]

Correction Description Correction Description

𝐶1 Roll constant at 𝑉 = 0 𝐶6 Asymmetric mass
𝐶2 Change of roll constant with 𝑉𝑇𝐴𝑆 𝐶9 Roll coupling
𝐶3 Current ¤𝑝 and 𝑝 𝐶10 Maximum 𝛿𝑟 in OEI
𝐶4 Thrust asymmetry 𝐶11 Adverse yaw
𝐶5 Maximum 𝛿𝑟

Finally the total available aileron deflection for a maximum performance left and right roll is predicted with Equations
9 and 10 respectively. The independent variables in these equations are the predicted 𝑉𝑐 for a left roll 𝑉𝑐𝐿 and the
predicted 𝑉𝑐 for a right roll 𝑉𝑐𝑅 . If valid solutions for 𝑉𝑐𝐿 and 𝑉𝑐𝑅 exist, a damped and limited Newton’s method is used
to determine 𝑉𝑐𝐿 and 𝑉𝑐𝑅 . This damped and limited Newton’s method uses the predicted 𝑉𝑐 from the previous time step
as a starting point, and does only one iteration per time step with a maximum velocity step of 0.5 meters per second.
This is different from the regular Newton’s method, which keeps iterating until the solution has converged to a certain
velocity error. In addition to limiting and damping Newton’s method, the resulting values of 𝑉𝑐𝐿 and 𝑉𝑐𝑅 are clipped
between 25 meters per second and the current velocity 𝑉0 + 15 meters per second to remove peaks from the predicted
𝑉𝑐. If no valid solution to Equations 9 or 10 exists, 𝑉𝑐𝐿 or 𝑉𝑐𝑅 is set to 25 meters per second. Finally the output of the
𝑉𝑐 prediction model, which is the predicted 𝑉𝑐, is found by taking the maximum value of 𝑉𝑐𝐿 and 𝑉𝑐𝑅 .
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0 = − 𝜙𝑟𝑒𝑞𝐿 +
(
𝐶1 · 𝑉𝑐𝐿 + 𝐶2 · 𝑉2𝑐𝐿

)
·
(−2 · 𝑙𝛿𝑎

𝑏 · 𝑙𝑝

)
·
[
𝛿𝑎𝑚𝑎𝑥

− 𝛿𝑎𝑉0 + 𝐶3

− 𝐶4 ·
(
𝑉20

𝑉2𝑐𝐿
− 1

)
− 𝐶6 ·

(
𝑉20

𝑉2𝑐𝐿
− 1

)
− 𝐶5𝐿 − 𝐶9𝐿 − 𝐶10𝐿 − 𝐶11𝐿

] (9)

0 = − 𝜙𝑟𝑒𝑞𝑅 +
(
𝐶1 · 𝑉𝑐𝑅 + 𝐶2 · 𝑉2𝑐𝑅

)
·
(−2 · 𝑙𝛿𝑎

𝑏 · 𝑙𝑝

)
·
[
𝛿𝑎𝑚𝑖𝑛

− 𝛿𝑎𝑉0 + 𝐶3

− 𝐶4 ·
(
𝑉20

𝑉2𝑐𝑅
− 1

)
− 𝐶6 ·

(
𝑉20

𝑉2𝑐𝑅
− 1

)
− 𝐶5𝑅 − 𝐶9𝑅 − 𝐶10𝑅 − 𝐶11𝑅

] (10)

The exact same 𝑉𝑐 prediction model is used for the redesign of the Fokker 50 VPS in Section V, except for the inputs
𝜙𝑟𝑒𝑞 and 𝑇 . The Piper Seneca VPS as designed by Koolstra used a required roll angle of 𝜙𝑟𝑒𝑞 = 30 degrees within a
time period of 𝑇 = 1.5 seconds. Table XXVIII in Mil. Spec. 1797 prescribes that the Fokker 50, a class II-L aircraft, in
category C conditions requires 𝜙𝑟𝑒𝑞 = 30 degrees of roll in 𝑇 = 1.8 seconds or less for level 1 handling qualities.[10]
These values are therefore used as inputs for Koolstra’s 𝑉𝑐 prediction model instead.

V. Fokker 50 VPS redesign
The VPS is redesigned for the Fokker 50 by repeating Koolstra’s VPS design process described in Chapters 5 and 6

of [2]. The design process consists of three steps. First, in Section V.A the 48 hypothetical failure simulations that
Koolstra used are introduced, and on which the Fokker 50 VPS design choices were based, are simulated using the
Fokker 50 simulation model. Second, in Section V.B additional terms of the linear model described in Section IV.A are
selected, which leads to three suggested linear models. Third, in Section V.C these three linear models are combined
with the four parameter estimation methods listed in Section IV.B, to determine which combination gives the lowest 𝑉𝑐

prediction error with Koolstra’s 𝑉𝑐 prediction model.

A. Failure simulations
The first step in redesigning the VPS for the Fokker 50 is to generate data on which linear model term selection and

parameter estimation method selection is based. Koolstra performed 48 different simulations with the Piper Seneca
simulation model controlled by an autopilot. During these simulations the autopilot tracked altitude and velocity
reference trajectories for 170 seconds. After that, the aircraft performed a maximum performance roll. Four different
variations were added to the simulations by introducing the failures listed in Table 4, switching turbulence on or off,
giving one or two sinusoidal input signals on the control surfaces to excite the system and by performing the maximum
performance roll to the left or right.

Table 4 List of the failure types, roll direction during the maximum performance roll and the amount of
simulations out of the total of 48 simulations.[2]

Failure Roll direction Runs Failure Roll direction Runs

No failure Left and right 8 Asymmetry left wing heavy Right 4
50% loss of aileron Left and right 8 Asymmetry right wing heavy Left 4
100% loss of rudder Left and right 8 Rudder hardover to the left Right 4
Left engine failure Right 4 Rudder hardover to the right Left 4
Right engine failure Left 4

These 48 simulations are recreated with the Fokker 50 simulation model by tracking similar altitude and velocity
reference signals using a custom-made autopilot. The four variations are replicated as well. First, the failures listed
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in Table 4 are activated after 30 seconds. 50% loss of aileron and 100% loss of rudder are simulated by fixing the
right aileron and the rudder at zero degrees deflection. Rudder hardover is simulated by fixing the rudder at maximum
deflection. Left wing and right wing mass asymmetries are simulated by shifting the center of gravity 0.25 meters to the
left and right. Second, turbulence is generated using the Joint Aviation Regulations (JAR) turbulence generator that was
included in the Fokker 50 simulation model. Third, input signals are applied after 30 and optionally 90 seconds to all
primary lateral controls including the throttle levers as a single sine wave with an amplitude of 10 degrees and a period
of 5 seconds. Fourth, the maximum performance rolls are simulated by applying an instant minimum or maximum
aileron deflection after 170 seconds. To provide an example of the trajectory of one of the 48 simulations, the velocity
and altitude of a simulation with 50% loss of aileron, no turbulence, one set of control inputs and a left roll is plotted in
Figures 2a and 2b. These figures are similar to Figures 5.2b and 5.2c presented in [2], which present the velocity and
altitude of the Piper Seneca during the same simulation.

(a) Velocity. (b) Altitude.

Fig. 2 Trajectory of the Fokker 50 during a simulation with 50% loss of aileron, no turbulence, one set of
control inputs and a maximum performance roll to the left.

B. Linear model selection
The second step in redesigning the VPS for the Fokker 50 is to reselect the linear model based on the 48 failure

simulations, which is done by repeating the selection process described in Chapter 5 of [2]. In the derivation of the 𝑉𝑐

prediction model Koolstra obtained linear models for the sideslip angle derivative, the roll angular acceleration and the
yaw angular acceleration. These three models contain a total of 24 different terms, which altogether form the entire
model. To determine which of these terms are most capable of predicting the model outputs during the maximum
performance rolls, Koolstra selected 10 terms to form a basic model. The 14 additional terms were either accepted or
omitted through a selection process.
This selection process works a follows. The data from the simulations up to the maximum performance roll were

used to estimate the parameters of the linear model offline using an Ordinary Least Squares (OLS) estimator. With these
estimated parameters the three model outputs during the maximum performance roll were predicted. Each of these
three model outputs were integrated once with the Runge Kutta method, to obtain predictions of the sideslip angle,
the roll rate and the yaw rate during the maximum performance roll. The measured sideslip angle, roll rate and yaw
rate at the start of the maximum performance roll were the initial conditions for this integration. Next, the accuracy
of the predicted sideslip angle, roll rate and yaw rate was evaluated with one of six term selection methods, and the
decision to accept or omit a term was made. Accepting or omitting additional model terms was a sequential process.
Starting with the basic model, each additional model term was sequentially added to the current model and subjected to
one of six selection methods. Based on the outcome, the additional term was either definitely added to the current
linear model, or omitted. Therefore the order in which terms were added to the linear model affected the decision of
accepting or omitting the remaining additional model terms. The intermediate result was a final model for each of the
48 simulations, which contained the additional terms that were accepted for that particular simulation. The desired end
result was a single optimal model, which was obtained by composing a list of selection rates for each additional term
over all 48 simulations and selecting three terms with relatively high selection rates to form the optimal model for the
Piper Seneca. Finally this optimal model was evaluated based on its prediction errors.
This process is repeated to obtain similar results for the Fokker 50. The process starts by selecting the additional
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linear model terms using a one of Koolstra’s six term selection methods in Section V.B.1. Based on the resulting
selection rates of the additional terms in the final models, an optimal model for the Fokker 50 is formed in Section
V.B.2. This optimal model is evaluated based on its prediction errors in Section V.B.3.

1. Term selection method
The final models for each failure simulation of the Fokker 50 are found by choosing and applying one of the six

selection methods used by Koolstra to the simulated data.[2] Initially Koolstra considered four different statistical
selection methods, which all had a tendency to over-fit. These methods selected too many additional terms, which
increased the prediction errors of the final models. Two ’Alternate methods’ were therefore developed based on the
Prediction Sum of Squares (PRESS) method, which uses one part of a data set to train the model and the other part to
quantify the prediction accuracy by squaring and summing the prediction errors.[11] The two ’Alternate methods’ do the
same, using the first part of the data set to estimate the model parameters and the maximum performance roll to rate the
increase in prediction accuracy based on five evaluation steps. In these five steps, each additional term is judged on three
criteria. The first criterion is that the additional term must have a collinearity lower than 95% with other terms that have
already been selected. The second criterion is that the improvement in the Sum of Squared Errors (SSE) of the predicted
sideslip angle, roll rate or yaw rate must be higher than the prediction uncertainty originating from the uncertainty of the
OLS parameter estimate. The third criterion is that the increased prediction accuracy must be significant, with a margin
of at least one percent improvement of the SSE. The difference between the two ’Alternate methods’ is that the regular
’Alternate method’ selects terms based on the sideslip, roll and yaw equations, whereas the ’Alternate method - 𝜙’ selects
terms based on the roll equation only. Koolstra decided to select the model terms with the regular ’Alternate method’,
because the ’Alternate method - 𝜙’ might give inaccurate predictions for sideslip and yawing motion. Therefore the
regular ’Alternate method’ is used to select the terms of the optimal model for the Fokker 50 as well.

2. Optimal model selection
Using Koolstra’s regular ’Alternate method’ as a selection method the selection rates of the additional terms in the

final models are found, which finally leads to the optimal model containing the most relevant additional terms. The
selection rates for the additional terms in the final models are shown in Table 5, along with the selection rates found by
Koolstra for the additional terms of the Piper Seneca.[2] Two differences between the selection rates for Piper Seneca
and the Fokker 50 are observed. First, the mean selection rate for additional terms of the yaw equation is more than

Table 5 Selection rates for the additional sideslip model terms.

ID Term Selection rates [%]
Piper Seneca Fokker 50

1 𝑝𝑏

2𝑉
𝑟𝑏
2𝑉 − 0.5 ¤𝑟𝑏2

2𝑉2 0.0 18.8
2 ( 𝑝𝑏2𝑉 )

2 + ( 𝑟𝑏2𝑉 )
2 20.8 33.3

3 𝑞𝑏

2𝑉
𝑟𝑏
2𝑉 − 0.5 ¤𝑝𝑏2

2𝑉2 0.0 43.8
13 𝛿𝑎

3 22.9 39.6
14 𝛽2 14.6 4.2

Mean 11.7 27.9

twice as small for the Fokker 50, which means that the additional yaw terms do not improve the yaw rate prediction for
the Fokker 50 as much as for the Piper Seneca. The opposite is true for the sideslip and roll equations. Second, term 13,
which is the term that represents non-linear aileron effects, is an important term for the roll equation of the Fokker 50.
Since the output of the VPS is based on the predicted roll performance, this term is included in the optimal model for
the Fokker 50, whereas Koolstra selected terms 2, 5 and 10 for the optimal model of the Piper Seneca. In short, the
optimal model for the Fokker 50 is a combination of the basic model and additional term 13.
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Table 6 Selection rates for the additional roll and yaw model terms.

ID Term Selection rates [%]
Piper Seneca Fokker 50

4 ¤𝑞𝑏2
2𝑉2 0.0 10.4

5 𝑝𝑏

2𝑉
𝑞𝑏

2𝑉 12.5 10.4
6 𝑞𝑏

2𝑉
𝑟𝑏
2𝑉 0.0 2.1

7 𝑝𝑏

2𝑉
𝑟𝑏
2𝑉 6.3 2.1

8 ( 𝑞𝑏2𝑉 )
2 2.1 8.3

9 ( 𝑟𝑏2𝑉 )
2 8.3 6.3

10 ( 𝑝𝑏2𝑉 )
2 31.3 18.8

11 𝑏𝑎𝑥

2𝑉2 4.2 6.3
12 𝑏𝑎𝑦

2𝑉2 4.2 2.1
13 𝛿𝑎

3 2.1 47.9
14 𝛽2 4.2 22.9

Mean 6.8 12.5
(a) Roll equation.

ID Term Selection rates [%]
Piper Seneca Fokker 50

4 ¤𝑞𝑏2
2𝑉2 10.4 0.0

5 𝑝𝑏

2𝑉
𝑞𝑏

2𝑉 37.5 6.3
6 𝑞𝑏

2𝑉
𝑟𝑏
2𝑉 22.9 6.3

7 𝑝𝑏

2𝑉
𝑟𝑏
2𝑉 25.0 8.3

8 ( 𝑞𝑏2𝑉 )
2 14.6 6.3

9 ( 𝑟𝑏2𝑉 )
2 22.9 6.3

10 ( 𝑝𝑏2𝑉 )
2 41.7 12.5

11 𝑏𝑎𝑥

2𝑉2 0.0 4.2
12 𝑏𝑎𝑦

2𝑉2 8.3 2.1
13 𝛿𝑎

3 18.8 22.9
14 𝛽2 20.8 12.5

Mean 20.3 8.0
(b) Yaw equation.

3. Optimal model evaluation
The prediction errors of this newly found optimal model are compared to the prediction errors of the basic model,

the final models and the entire model to evaluate the performance of the optimal model. These prediction errors are
obtained by taking the mean SSE of the sideslip angle, roll rate and yaw rate over all 48 simulations. The results for the
Piper Seneca in Table 7a show that the final models have a lower prediction error than the basic model, which means that
the term selection process improved the overall prediction accuracy.[2] Also, the optimal model has a higher prediction
error than the basic model, which was described by Koolstra as over-fitting. Similar results are obtained for the Fokker
50 in Table 7b. The final models have a lower prediction error than the basic model, while the optimal model shows
mixed results.

Table 7 Sum of the squared prediction errors for the three model equations of the basic model, the final models
and the optimal model for the Fokker 50.

Variable Model
Basic Final Optimal

𝛽 [rad2] 0.4453 0.3494 1.0528
𝑝 [(rad/s)2] 0.0226 0.0160 0.0719
𝑟 [(rad/s)2] 0.0127 0.0077 0.0211

(a) Piper Seneca.[2]

Variable Model
Basic Final Optimal

𝛽 [rad2] 0.4453 0.3494 1.0528
𝑝 [(rad/s)2] 0.0226 0.0160 0.0719
𝑟 [(rad/s)2] 0.0127 0.0077 0.0211

(b) Fokker 50.

To obtain a more visual representation of the prediction errors of the linear model, the model outputs during the
maximum performance roll of one of the 48 simulations are plotted next to the measured values. The predicted sideslip
angle, roll rate and yaw rate during the maximum performance roll of the simulation with mass asymmetry with a heavy
right wing, no turbulence, one set of control inputs and a maximum performance roll to the left are plotted in Figure 3.
The figure shows that the basic and final models are able to predict the roll rate relatively accurately, the optimal model
over-estimates the roll rate and the entire model even diverges. At this stage the basic model therefore seems to be the
most suitable for predicting a maximum performance roll of the Fokker 50. Following Koolstra’s VPS design process
however, the basic model, the optimal model and the entire model are all considered for the selection of the optimal
configuration of the Fokker 50 VPS in Section V.C.
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(a) Sideslip angle. (b) Roll rate. (c) Yaw rate.

Fig. 3 Outputs of the linear models during a maximum performance roll with mass asymmetry with a heavy
right wing, no turbulence, one set of control inputs and a maximum performance roll to the left.

C. Parameter estimation method selection
The third step in redesigning the VPS for the Fokker 50 is to choose a configuration of linear model and parameter

estimation method which gives the lowest 𝑉𝑐 prediction error. Koolstra analyzed a total of 48 configurations for the
VPS; three model sizes, four parameter estimation methods, two normalization options of the engine model and two
initial velocities of 80 and 120 knots.[2] This study limits itself to 12 configurations; three linear model sizes and
four parameter estimation methods. The normalization option is not considered, because it hardly affected the 𝑉𝑐

prediction error of the VPS for the Piper Seneca. Furthermore, only the initial velocity of 120 knots is used, because
the initial velocity of 80 knots is lower than the stall speed of the Fokker 50. The 12 combinations of linear model
and parameter estimation method therefore consist of three linear models; the basic model, the optimal model and the
entire model, and the four parameter estimation methods described in Section IV.B. These 12 configurations are all
re-implemented in the Fokker 50 VPS, and they are used to calculate estimates of the linear model parameters online in
each of the 48 simulations. With these estimated model parameters the 𝑉𝑐 prediction model predicts 𝑉𝑐 for each of the
12 configurations in each of the 48 simulations based on the maximum performance rolls. The final result is the mean
and standard deviation of the 𝑉𝑐 prediction error for each of the 12 configurations over the 48 simulations, from which
the optimal VPS configuration is selected.
To calculate the 𝑉𝑐 prediction error, the predicted 𝑉𝑐, which is the output of the VPS, needs to be compared with the

actual 𝑉𝑐, which is the actual velocity at which the required roll angle of 30 degrees is reached within precisely 1.8
seconds during a maximum performance roll. The problem however, is that it would require a sequence of maximum
performance rolls at a range of air speeds to the determine the actual 𝑉𝑐 numerically. Koolstra found a solution by
reversing the problem, using the measured change in roll angle achieved within the time period 𝑇 during the maximum
performance roll in each of the 48 simulations as input for the 𝑉𝑐 prediction model, defining the resulting 𝑉𝑐 as the
predicted 𝑉𝑐, and defining the true air speed 0.5 seconds before the maximum performance roll as the actual 𝑉𝑐.
Through this reversal, the predicted 𝑉𝑐 can be compared directly to the actual 𝑉𝑐. This results in the mean and standard
deviation of the 𝑉𝑐 prediction error over each of the 48 simulations for each VPS configuration. Koolstra’s results for
the Piper Seneca in Table 8a show that four linear model and parameter estimation method combinations give a mean 𝑉𝑐

prediction error of nearly 2.0 meters per second.[2] Koolstra decided to select the MKM and the basic linear model as
the optimal configuration. The results for the Fokker 50 in Table 8b however show that the 𝑉𝑐 prediction error is almost
an order of magnitude larger for all configurations.
The cause of these disappointing results for the 𝑉𝑐 prediction errors of the Fokker 50 is found by plotting the

predicted 𝑉𝑐 during the left engine failure simulation with one set of control inputs, turbulence on and the maximum
performance roll to the right. Figure 4 plots the values of 𝑉𝑐𝐿 and 𝑉𝑐𝑅 as a function of time, as well as the true air speed
using the basic model, the MKM and Koolstra’s 𝑉𝑐 prediction model. It clearly shows that the 𝑉𝑐 prediction model
struggles to find a stable solution. The 𝑉𝑐 prediction model clips the 𝑉𝑐 predictions to values between 25 and the true air
speed plus 15 meters per second. Since Section V.B.3 showed that the basic model accurately predicts the maximum
performance roll, these large prediction errors must be caused by the 𝑉𝑐 prediction model. Variations to Koolstra’s 𝑉𝑐

prediction model were therefore applied, such as setting all corrections and the current aileron deflection in Equations 9
and 10 to zero. This led to a mean prediction error of 5.2 meters per second with a standard deviation of 7.3 meters per
second for the combination of basic model and MKM, hinting that Koolstra’s 𝑉𝑐 prediction model might be too complex
for the Fokker 50 VPS. Therefore a new, simplified 𝑉𝑐 prediction model was derived.
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Table 8 Means and standard deviations of the 𝑉𝑐 prediction errors for each VPS configuration in meters per
second.

Model Size RLS FAD MKM FA

Basic 10 Mean 2.1 3.0 2.2 2.8
SD 2.3 3.3 2.3 2.7

Optimal 13 Mean 2.0 3.0 2.2 2.9
SD 2.1 3.3 2.3 2.5

Entire 22 Mean 5.6 15.0 5.4 7.9
SD 7.4 8.2 6.3 10.8

(a) Piper Seneca.[2]

Model Size RLS FAD MKM FA

Basic 10 Mean 11.7 9.6 14.4 10.5
SD 10.7 16.0 17.4 11.1

Optimal 11 Mean 12.7 26.3 15.6 13.3
SD 11.4 17.4 17.6 16.2

Entire 24 Mean 12.6 31.2 18.4 13.1
SD 10.6 11.6 21.0 16.2

(b) Fokker 50.

Fig. 4 Predicted 𝑉𝑐𝐿 and 𝑉𝑐𝑅 during the left engine failure simulation with one set of control inputs, turbulence
on and a maximum performance roll to the right using the basic model, the MKM and Koolstra’s 𝑉𝑐 prediction
model.

VI. Simplified 𝑉𝑐 prediction model
A simplified 𝑉𝑐 prediction model is derived to decrease the 𝑉𝑐 prediction errors of the redesigned Fokker 50 VPS.

The starting point of the derivation is the same as for Koolstra’s 𝑉𝑐 prediction model; Equation 6. Koolstra’s approach
to solving this equation was to substitute the total available aileron deflection 𝛿𝑎𝑎𝑣

for most of the right-hand terms,
solving the resulting first order linear differential equation algebraically, and applying corrections for the available
aileron travel later on. For simplification purposes however, this derivation solves Equation 6 directly for the roll angle
𝜙 as a function of time 𝑡 without substituting 𝛿𝑎𝑎𝑣

, such that no corrections are required. All aircraft states, control
inputs and air path variables which are not derivatives of the roll angle are assumed to be constant during a maximum
performance roll of 1.8 seconds. As a result, this equation can be re-written in the form of Equation 11 with the current
roll angle and roll rate as initial conditions and the constants 𝑃, 𝑄, 𝑅 and 𝑆 defined in Equations 12 to 15.
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𝑃 ¥𝜙(𝑡) +𝑄 ¤𝜙(𝑡) + 𝑅𝜙(𝑡) = 𝑆 with 𝜙(0) = 𝜙0
¤𝜙(0) = 𝑝0

(11)

𝑃 =
𝑏2

2𝑉2
(12)

𝑄 = − 𝑏

2𝑉
𝑙𝑝 (13)

𝑅 = − 𝑙𝜙 (14)

𝑆 =𝑙𝛽𝛽 + 𝑙𝑟 ·
𝑟𝑏

2𝑉
+ 𝑙𝛿𝑎𝛿𝑎 + 𝑙𝛿𝑟 𝛿𝑟 + 𝑙𝑇𝐿𝑇𝐿 + 𝑙𝑇𝑅𝑇𝑅 + 𝑙𝑎𝑧

𝑎𝑧𝑏

2𝑉2
+ 𝑙𝛿 𝑓

𝛿 𝑓 (15)

This equation is a second order non-homogeneous linear differential equation with initial conditions 𝑝(0)=𝑝0 and
𝜙(0)=𝜙0. It can have three different algebraic solutions, depending on the value of the discriminant 𝐷 in Equation
16.[12].

𝐷 = 𝑄2 − 4𝑃𝑅 (16)

When 𝐷 > 0 the roots of the auxiliary equation are real and distinct, which means that the general solution is given
by Equation 17 with the constants defined in Equations 18 to 21. Substituting 𝜙(𝑇) = 𝜙0 + 𝜙𝑟𝑒𝑞 leads to Equation 22.

𝜙(𝑡) =𝑐1𝑒𝑟1𝑡 + 𝑐2𝑒
𝑟2𝑡 + 𝑆

𝑅
(17)

𝑟1 =
−𝑄 −

√
𝐷

2𝑃
(18)

𝑟2 =
−𝑄 +

√
𝐷

2𝑃
(19)

𝑐2 =
𝑝0 − 𝑟1 (𝜙0 − 𝑆

𝑅
)

𝑟2 − 𝑟1
(20)

𝑐1 =𝜙0 −
𝑆

𝑅
− 𝑐2 (21)

0 = − (𝜙0 + 𝜙𝑟𝑒𝑞) + 𝑐1𝑒
𝑟1𝑇 + 𝑐2𝑒

𝑟2𝑇 + 𝑆

𝑅
(22)

When 𝐷 = 0 the auxiliary equation has only one real root, which means that the general solution is given by Equation
23 with the constants defined in Equations 24 to 26. Substituting 𝜙(𝑇) = 𝜙0 + 𝜙𝑟𝑒𝑞 leads to Equation 27.

𝜙(𝑡) =𝑐1𝑒𝑟1𝑡 + 𝑐2𝑡𝑒
𝑟1𝑡 + 𝑆

𝑅
(23)

𝑟1 =
−𝑄
2𝑃

(24)

𝑐1 =𝜙0 −
𝑆

𝑅
(25)

𝑐2 =𝑝0 − 𝑟1𝑐1 (26)

0 = − (𝜙0 + 𝜙𝑟𝑒𝑞) + 𝑐1𝑒
𝑟1𝑇 + 𝑐2𝑇𝑒

𝑟1𝑇 + 𝑆

𝑅
(27)

When 𝐷 < 0 the roots of the auxiliary equation (𝛼 − 𝛽𝑖 and 𝛼 + 𝛽𝑖) lie in the complex plane, which means that the
general solution is given by Equation 28 with the constants defined in Equations 29 to 32. Substituting 𝜙(𝑇) = 𝜙0 + 𝜙𝑟𝑒𝑞
leads to Equation 33.
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𝜙(𝑡) =𝑒𝛼𝑡 · [𝑐1cos(𝛽𝑡) + 𝑐2sin(𝛽𝑡)] +
𝑆

𝑅
(28)

𝛼 =
−𝑄
2𝑃

(29)

𝛽 =

√
−𝐷
2𝑃

(30)

𝑐1 =𝜙0 −
𝑆

𝑅
(31)

𝑐2 =
𝑝0 − 𝛼𝑐1

𝛽
(32)

0 = − (𝜙0 + 𝜙𝑟𝑒𝑞) + 𝑒𝛼𝑇 · [𝑐1cos(𝛽𝑇) + 𝑐2sin(𝛽𝑇)] +
𝑆

𝑅
(33)

Depending on the value of the discriminant, Equation 22, 27 or 33 is solved for 𝑉𝑐𝐿 and 𝑉𝑐𝑅 with the bisection
method. For a left roll 𝜙𝑟𝑒𝑞 is equal to -30 degrees and 𝛿𝑎 is equal to the minimum aileron deflection. For a right roll
𝜙𝑟𝑒𝑞 is equal to 30 degrees and 𝛿𝑎 is equal to the maximum aileron deflection. For all other aircraft states and control
inputs the currently measured values are used. The bisection method has velocity bounds of 30 to 300 meters per second
and a convergence error of 0.1 meters per second. The reason why the lower velocity bound is not 0 meters per second,
is that these equations can have two solutions between 0 and 300 meters per second, the first of which usually lies
between 0 and 30 meters per second. Additionally, these equations are undefined for 𝑉 = 0. By using the bisection
method instead of Newtons method, there is no need to calculate any function derivatives.
With this simplified 𝑉𝑐 prediction model the mean 𝑉𝑐 prediction errors are re-evaluated for the basic linear model

and each of the four parameter estimation methods. The results in Table 9 show an improved 𝑉𝑐 prediction accuracy for
the MKM. The forgetting algorithms on the other hand perform worse. In an effort to improve their performance their
forgetting factors are changed to 0.9 and 1.0. As a result, the mean 𝑉𝑐 prediction error of the FAD changes to 193.5 and
22.9 meters per second respectively. The mean 𝑉𝑐 prediction error of the FA is much less sensitive to these changes,
with 100.5 and 95.8 meters per second respectively.

Model Size RLS FAD MKM FA

Basic 10 Mean 15.8 152.7 5.2 95.8
SD 14.0 92.3 6.4 82.8

Table 9 Means and standard deviations of the 𝑉𝑐 prediction errors for each VPS configuration of the Fokker 50
in meters per second using the simplified 𝑉𝑐 prediction model.

These results show that the optimal configuration for the Fokker 50 VPS is the basic model, the MKM and the
simplified 𝑉𝑐 prediction model. The values of 𝑉𝑐𝐿 and 𝑉𝑐𝑅 predicted by this VPS configuration during the left engine
failure simulation with one set of control inputs, turbulence on and a maximum performance roll to the right is plotted
in Figure 5. The MKM needs the first five seconds to find realistic parameter estimates. After that, the predicted 𝑉𝑐

settles around 120 knots. This plot shows that the simplified 𝑉𝑐 prediction model provides a more stable 𝑉𝑐 prediction
for the Fokker 50 than the 𝑉𝑐 prediction model of the Piper Seneca VPS. Also, the mean 𝑉𝑐 prediction error of 5.2
meters per second is better than the 𝑉𝑐 prediction errors using Koolstra’s 𝑉𝑐 prediction model from Table 8b, but still
twice as large as the smallest mean 𝑉𝑐 prediction error for the Piper Seneca from Table 8a.

VII. Discussion
The final step in the sensitivity analysis is to discuss what the results from the redesign of the Fokker 50 VPS mean

for the sensitivity of the VPS to a change in aircraft dynamics and simulation model complexity. Since the VPS consists
of three components, the sensitivity of each of these components is discussed separately below. It should be noted that
this discussion is only based on two data points; the Piper Seneca VPS design and the Fokker 50 VPS design.
In Section V.B it was found that both the Piper Seneca and the Fokker 50 favor the basic linear model. The basic

linear model is able to accurately predict the roll rate of both the Piper Seneca and the Fokker 50 during a maximum
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Fig. 5 Predicted 𝑉𝑐𝐿 and 𝑉𝑐𝑅 during the left engine failure simulation with one set of control inputs, turbulence
on and a maximum performance roll to the right using the basic model, the MKM and the simplified𝑉𝑐 prediction
model.

performance roll. Even though the used Fokker 50 simulation model is more complex than the Piper Seneca simulation
model, adding additional terms did not improve the prediction accuracy but led to over-fitting. The linear model of the
VPS is therefore not sensitive to a change in aircraft dynamics and simulation model complexity.
The four parameter estimation methods showed similar 𝑉𝑐 prediction errors for the Fokker 50 when they were used

in combination with Koolstra’s 𝑉𝑐 prediction model in Table 8b. The same is true for the 𝑉𝑐 prediction errors of the
Piper Seneca in Table 8a. Comparing these two tables shows that the relative differences between the four parameter
estimation methods are small for both aircraft. When these four parameter estimation methods were combined with
the simplified 𝑉𝑐 prediction model however in Table 9, the two forgetting algorithms caused diverging 𝑉𝑐 predictions.
This means that the simplified 𝑉𝑐 prediction model favors parameter estimation methods with covariance matrix resets
after failure detection such as RLS and MKM, because they provide stable and steady parameter estimates. This
comparison however analyzes the sensitivity of the parameter estimation methods to a change in 𝑉𝑐 prediction model.
The sensitivity of the parameter estimation method to a change in aircraft dynamics and simulation model complexity
is displayed in relative differences in Tables 8a and 8b, and the fact that the MKM was selected for the VPS of both
aircraft. The parameter estimation methods are therefore not sensitive to a change in aircraft dynamics and simulation
model complexity either.
The 𝑉𝑐 prediction model from the Piper Seneca VPS however is very sensitive to a change in aircraft dynamics and

simulation model complexity, as it struggled to find a stable and accurate 𝑉𝑐 prediction when it was implemented in the
Fokker 50 VPS. Especially the corrections in Equations 9 and 10 seemed to suit the dynamics of the Piper Seneca only.
Even after deriving a simplified 𝑉𝑐 prediction model, the mean 𝑉𝑐 prediction error for the Fokker 50 was still more than
twice as large as the mean 𝑉𝑐 prediction error for the Piper Seneca. This was already expected after analyzing the states
and control inputs of the two aircraft in a roll-limited situation in Section III, but based on only two data points it is
uncertain whether this is the only reason for the decrease in 𝑉𝑐 prediction accuracy.

VIII. Conclusion
In this paper the sensitivity of the Piper Seneca VPS design to a change in aircraft dynamics and simulation model

complexity has been analyzed using a Fokker 50 simulation model. By repeating Koolstra’s VPS design process for the
Fokker 50 it was shown that no changes to the linear model are required, since the basic linear model accurately predicts
a maximum performance roll for both aircraft. Also, the MKM was selected for both aircraft, because this parameter
estimation method gives the lowest 𝑉𝑐 prediction errors. The 𝑉𝑐 prediction model is very sensitive to a change in aircraft
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dynamics and simulation model complexity. Whether this high sensitivity can be attributed to the change in aircraft
dynamics, the change in simulation model complexity or both, can not be concluded based on the results from this study.
This study has however provided a first indication that the Piper Seneca VPS is not generally applicable to all aircraft
types and/or simulation models. It is only a first indication, because this sensitivity analysis is only based on two data
points; the Piper Seneca VPS design and the Fokker 50 VPS design.
For further research it is therefore recommended to implement the VPS in the simulation model of another aircraft

type, such as a long-range passenger jet or a large transport aircraft. If the results show that the VPS consisting of the
basic linear model, the MKM and the simplified 𝑉𝑐 prediction model is the optimal VPS configuration for this new
aircraft type as well, this would indicate that the simplification of the 𝑉𝑐 prediction model has made the VPS more
applicable to a wider range of aircraft dynamics. Otherwise it should be investigated which specific dynamic features of
an aircraft determine the applicability the 𝑉𝑐 prediction model.
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