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Full length article 

Cluster-based identification algorithm for in-line recycled concrete 
aggregates characterization using Laser-Induced Breakdown 
Spectroscopy (LIBS) 
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A B S T R A C T   

To upcycle End-of-Life (EoL) concrete from demolished buildings, it is essential to efficiently identify the 
different materials that may contaminate it. The precise identification and classification of materials and con-
taminants are vital processes for in-line quality inspection of recycled concrete aggregates transported on a 
conveyor belt. In this study, a total of eight potential contaminants are considered as target contaminant ma-
terials in the streams made of coarse and fine aggregates resulting from the upcycling of EoL concrete. These 
contaminants degrade the quality of the aggregates even at low concentrations, so it is essential to identify the 
presence of such contaminants along with the main products of recycling which are recycled coarse aggregates 
(RCA) and recycled fine aggregates (RFA). An efficient method is proposed to identify and classify EoL concrete 
waste along with RCA and RFA in motion on conveyor belts via laser-induced breakdown spectroscopy (LIBS) 
coupled with a cluster-based identification algorithm. The model is verified with an accuracy of 0.97, a precision 
(weighted average) of 0.98, a recall (weighted average) of 0.97, and an F1-score (weighted average) of 0.98 for 
the validation set, under the optimal conditions. This study suggests that LIBS may be well suited for fast and in- 
line analysis of recycled concrete aggregates in industrial applications. This approach presents an innovative 
approach for the quality characterization of secondary materials produced from EoL concrete being transported 
on conveyor belts, and therefore can be of great value for the processing and high-end utilization of EoL concrete.   

1. Introduction 

Concrete has long been one of the most popular manufactured con-
struction materials. In the conventional production process, the concrete 
is usually made using cement and natural aggregates that have well- 
defined and predictable properties. Therefore, it is possible to foresee 
the mechanical and durability properties of the produced concrete. In 
contrast, when concrete is made using recycled aggregates, it is impos-
sible to predict the resulting concrete’s mechanical and durability 
properties because recycled aggregates have variable properties. That is 
why it is challenging to upcycle End-of-Life (EoL) concrete and close the 
material loop. Because recycled aggregates are often blended with other 
construction waste materials, it commonly serves for low-level 

construction, for example, embankment, sub-base, and leveling of roads 
(Vegas et al., 2015). 

A significant amount of construction work carried out in the 1950s 
during the post-World War II economic boom is reaching life expectancy 
in the next few decades, which will lead to a rapid increase in con-
struction and demolition wastes (C&DW), particularly in Europe. A large 
amount of C&DW cannot be efficiently recycled and is even dumped 
directly in landfills, causing environmental pollution (Kabirifar et al., 
2021; Nanda and Berruti, 2021). Meanwhile, it is expected that the 
demand for concrete will rise in the coming years, particularly in 
developing countries (Bonifazi et al., 2018). The gap between supply 
and demand for concrete will lead to the consumption of large amounts 
of resources, and the over-mining of raw materials for concrete also adds 
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to the damage to the environment. EoL concrete accounts for the vast 
majority of C&DW (Lotfi and Rem, 2016), and the most viable solution 
for EoL concrete is recycling or upcycling. The conventional linear 
approach to recycling needs to be upgraded to a circular process, that is, 
secondary raw materials are obtained from EoL concrete for a green and 
sustainable solution (Cossu and Williams, 2015). At present, one of the 
most popular methods for high-grade concrete recycling is the wet 
process, which produces clean concrete aggregates by washing coarse 
aggregates but also produces sludge that needs to be disposed of (Zhang 
et al., 2019). In addition, an innovation project called C2CA (Concrete to 
Cement and Aggregate, www.c2ca.eu), funded by the European Com-
mission (EC), proposes a dry alternative to the existing wet process by 
offering an innovative solution called Advanced Dry Recovery (ADR) 
(Gebremariam et al., 2020). This solution significantly reduces the cost 
of processing the coarse fraction of high-grade recycled EoL concrete. 
The complete recycling of EoL concrete can close the building and de-
molition lifecycle and is of great benefit to the environment in terms of 
reducing the depletion of natural resources, noise pollution, energy 
consumption, and dust and gases emissions (Di Maria et al., 2016). 

EoL concrete is a material with a highly variable composition. Its 
composition results from the original application and recipe of primary 
concrete, how the materials are connected to the building, and the care 
and measures are taken when the structure is disassembled and 
dismantled. The main challenge is safeguarding the quality of the sec-
ondary aggregates resulting from the recycling of the EoL concrete. It is 
challenging to keep the demolished concrete as pure material, and it is 
usually mixed with other building materials such as bricks, cement 
paste, foam, glass, gypsum, mineral fibers, plastics, and wood, all of 
which are considered waste and can have impacts on the quality of the 
resulting recycled concrete. This implies that special technical and 
organizational means are required to ensure that the recycled concrete 
has the same quality as primary concrete, despite the problems 
mentioned above. 

Recycled aggregates are a promising alternative to “Virgin Aggre-
gates”. And one of the main challenging problems affecting the quality 
of recycled concrete is the presence of different contaminant particles (i. 
e., bricks, gypsum, wood, plastic, etc.) (Bonifazi et al., 2018) that can 
severely reduce the strength of the resulting concrete (Silva et al., 2014). 
When embedded in concrete, organic substances such as wood are un-
stable when subjected to dry-wet and freeze-thaw cycles (Hansen, 
1992). Water-soluble sulfates present in substances such as gypsum can 
react and may cause expansive reactions (Alexander and Mindess, 
2005). In general, the use of crushed waste glass as coarse aggregates 
leads to a decrease in the mechanical properties of concrete, primarily 
due to its irregular shape, poor surface characteristics, and high fria-
bility(Harrison et al., 2020; Silva et al., 2014). The density of glass is 
similar to that of stone and bricks, thus complicating its separation, and 
in addition, non-crystalline metastable silica may undergo alkali-silica 
reactions (Hansen, 1992). Therefore, when contaminants normally 
present in EoL concrete waste are absent or below the limits demanded 
by market standards, the recycled aggregate may be considered "clean" 
(Lotfi et al., 2014; Lotfi and Rem, 2016; Serranti et al., 2015) so that EoL 
concrete can be recycled into clean aggregates to close the materials’ 
loop in the construction sector. To upcycle EoL concrete, contaminants 
must be identified, monitored, and minimized. It is essential to identify 
pollutants in secondary materials produced from EoL concrete to signal 
exceptions in input quality and recycling process conditions and guar-
antee clean recycled aggregate products, which requires the establish-
ment of an effective classification and quality control system. It is crucial 
to exploit efficient, reliable, non-destructive, cost-effective sensing 
technologies to identify contaminants automatically. Also, to facilitate 
the broader use of recycled aggregates as construction material, it is 
essential to create transparency on the quality of recycled aggregates 
through the value chain. 

For the recycling process, an important step is the rapid identifica-
tion of contaminants in EoL concrete waste. Under cumbersome 

industrial circumstances, this task can be challenging, particularly at 
high conveyor belt speeds. Nevertheless, given the significance of 
improving the quality of secondary materials produced from EoL con-
crete and reducing the contaminants therein, different technologies and 
procedural systems have been developed to offer unique and feasible 
approaches. A hyperspectral imaging (HSI) system in the near-infrared 
range (Serranti et al., 2012) was applied for quality control to recog-
nize the recycled aggregates from different contaminants (Serranti et al., 
2015). However, HSI is still not robust enough under harsh industrial 
conditions. A classification method based on the integration of the 
laser-induced breakdown spectroscopy (LIBS) spectral emissions (Lotfi 
et al., 2015; Xia and Bakker, 2014) was proposed for in-line quality 
inspection, the success of which relies on the quality of the training set 
and the possibly remaining false positives. 

Recently, the use of LIBS has gained more attention in the field of 
resource recovery. As a simple, rapid, and efficient analytical technique 
without sampling requirements, LIBS only samples tiny fractions from a 
target material’s surface by generating a high power density beam using 
an ultra-short pulse laser (Cremers and Radziemski, 2006; Xia and 
Bakker, 2014). As the sampled material is ablated, a plasma is formed, 
resulting in the emission of an observable spectrum. A spectrometer can 
detect or analyze to acquire information on the composition of the 
molecules and atoms of the raw material (Lasheras et al., 2011; Xia H, 
2021). Additionally, the advantages of LIBS include the removal of im-
purities from the sample surface by laser ablation, which decreases their 
influence on the results; the low cost of analyzing samples compared to 
other traditional analytical techniques (Yan et al., 2021); the relative 
simplicity and ease of use of the instrument (Hussain and Gondal, 2013); 
and the ability to analyze a large number of samples simultaneously in a 
short time and to detect a wide range of elements (Fernandes Andrade 
et al., 2021). Consequently, LIBS has been widely applied in the areas of 
elemental detection (Godoi et al., 2011; Hussain and Gondal, 2013), 
substance identification (Gondal and Siddiqui, 2007; Völker et al., 
2020), and material classification (Castro and Pereira-Filho, 2016; 
Gottlieb et al., 2017). 

Furthermore, there are many studies on combining LIBS and various 
algorithms for identification and classification, including principal 
component analysis (PCA) (Junjuri and Gundawar, 2020), scaled con-
jugate gradient (SCG) (Yang et al., 2020), classification and regression 
tree (CART) (Moncayo et al., 2015), k nearest neighbor (kNN) (Costa 
et al., 2017), soft independent modeling of class analogy (SIMCA) 
(Pease and Tchakerian, 2014), linear discriminant analysis (LDA) 
(Gaudiuso et al., 2018), partial least squares for discriminant analysis 
(PLS-DA)(Xia and Bakker, 2014), support vector machine (SVM) (Li 
et al., 2018), factorial discriminant analysis (FDA) (Baskali-Bouregaa 
et al., 2020), artificial neural networks (ANN) (Junjuri et al., 2020), and 
convolutional neural network (CNN) (He et al., 2020). Nevertheless, it is 
still necessary to increase the precision and sensitivity of this technique. 
To make algorithms based on LIBS widely available in terms of effi-
ciency and detection limits, several methodological improvements 
remain to be made. 

In this study, an EoL concrete waste identification system based on 
LIBS was developed, which targeted the precise and automated identi-
fication of contaminants. The system emulated the actual industrial 
situation as much as possible, with each material passing underneath 
LIBS through a conveyor belt. The LIBS single-shot spectra of each 
constituent of EoL concrete were collected. Based on these spectral data, 
a cluster-based classification algorithm was used to create separate 
spectral databases for each material, allowing for precise identification 
of the constituents according to a single-shot spectrum. In addition, the 
effects of different data pre-processing methods and parameters were 
investigated. 

2. Chemometric Methods 

In this research, the chemometric methods combining principal 
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component analysis and chi-square distribution are used as a classifi-
cation model (Fig. 1) for evaluating single-shot spectral data. Their ra-
tionales are introduced in detail herewith. 

2.1. Principal Component Analysis 

As an unsupervised dimensionality reduction method, PCA used for 
data visualization and pattern detection of raw data, is the most widely 
used multivariate data analysis algorithm in the LIBS community 
(Pořízka et al., 2018). Although the thousands of dimensions of the raw 
spectral data preserve all the information simultaneously, much noise is 
also retained along with it, resulting in data redundancy and leading to 
an increased computational effort. Therefore, the high-dimensional raw 
spectral data needs to be dimensionally reduced. 

A database x[s] = (x1, x2,…, xN)[s]; (s= 1, 2,…, S) of S emission 
spectra for a specific material X is generated, where xi(i = 1, …,N) is the 
intensity of plasma emission at a wavelength λi(i = 1,2,…,N), N is the 
number of spectral wavelengths recorded by the spectrometer. Thus, 
each spectrum can be considered as a point in an N-dimensional space. 
In this case, the thousands of emission spectra of material X form a cloud 
in this space that resembles a multi-dimensional ellipsoid. Different 
materials appear as different clouds of points. For a new spectrum of an 
unknown material, the classification challenge is to locate the cloud to 
which it belongs or mark it as unrecognizable if it is too far away from 
any documented cloud in the database. 

Due to a significant amount of variation in particle properties or 
plasma formation conditions, each spectrum x[s] of material X differs 
from the centroid x of the cluster, then the spectral cloud as a whole 
represents a multi-dimensional distribution with the centroid x as the 
mean. There is always the possibility to scale (transform) and rotate the 
axes of the coordinate system, aiming for a simpler multi-dimensional 
normal distribution of the points in the cluster. Notably, it is always 
possible to have a new, rotated orthonormal coordinate system with 
axes aligned along N unit vectors: ek = (ek1,ek2,…,ekN); (k = 1,2,…,N). 
Then, in this new coordinate system, the multi-dimensional normal 
distribution is equivalent to N independent one-dimensional normal 
distributions, one for each new axis. Consequently, the spectrum of 
material X in the database has been transformed into the new coordinate 
system: 

ξ[s] = (ξ1, ξ2,…, ξN)[s] = (x[s]⋅e1, x[s]⋅e2,…, x[s]⋅eN) (1) 

Then the center point or average of the spectra of material X is: 

ξ = (ξ1, ξ2,…, ξN) = (x⋅e1, x⋅e2,…, x⋅eN) (2) 

And the deviations of the spectra concerning the center point in the 
new system are: 

Δξ[s] = (Δξ1,Δξ2,…,ΔξN)[s]

= ((x[s] − x)⋅e1, (x[s] − x)⋅e2,…, (x[s] − x)⋅eN) (3) 

Thus, the components Δξg[s](g= 1,2,…,N) and Δξl[s](l= 1,2,…,N)

of the set of spectral deviations along these new axes are mutually un-
correlated with the centroids, shown in Eq. (4), 

1
S

∑S

1
Δξg[s]Δξl[s]= {Δξg

2 if g = l
0 if g ∕= l

(4) 

Moving back to the original coordinate system, Eq. (4) turns into Eq. 
(5): 

1
S

∑S

1

[
(x[s] − x)⋅eg

]
[(x[s] − x)⋅el] = Δξg

2δgl (5) 

Eq. (5) is used to find the appropriate set of new unit vectors ek. The 
new axes are chosen in such an order that the variances Δξg

2 of the 
multi-dimensional normal distribution along the new axes go from high 
to low values, so that the first one e1 coincides with the maximum 
variance Δξ1

2, etc. It is worth noting that not all of these N dimensions 
are essential for the subsequent categorization process. Only a much 
lower number n of dimensions needs to be considered. This entails that 
information from parts of the emission spectra that do not have a large 
impact (are zero or have little variation except for noise) is omitted. In 
contrast, the potentially interesting information is presented in the 
preceding dimensions of the new coordinate system. The significant 
information is filtered out by projecting the raw spectral data into a low- 
dimensional space. It is worth mentioning that the value of n will have a 
substantial impact on the classification accuracy. Therefore, after PCA, 
the spectral database of S emission spectra for material X will record a 
number n[X], a set of unit vectors em[X] (m = 1,2,…,n[X]), a set of vectors 
of principal components (ξ1,ξ2,…,ξn[X])[s], and a center point or average 

(ξ1, ξ2,…, ξn[X]) along with variances Δξm
2, to describe the multi- 

dimensional normal distribution of the S spectra in the database. 

2.2. Chi-square distribution 

If Z1,Z2,…,Zj are j independent standard normal distribution N(0,1) 
random variables, then the sum of their squares Wj = Z1

2 + Z2
2 + ⋯ +

Zj
2 is said to have a chi-square (χ2) distribution with j degrees of 

Fig. 1. Scheme for establishing the cluster-based identification model.  
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freedom, which is often expressed as Wj ∼ χ2(j) or Wj ∼ χj
2 (Lancaster 

and Seneta, 2005). The obtained principal components after data pro-
cessing can be regarded as chi-square distributions, and then a 
cluster-based identification algorithm will be established accordingly. 

After transforming the spectrum of material X to the new set of co-
ordinates and restricting to the first n[X] dimensions, (ξ1, ξ2,…, ξn[X])[s] is 
a realization of the multi-dimensional normal distribution for the prin-
cipal components of spectra of material X. This means that each 
component ξm is normally distributed with mean ξm and variance Δξm

2. 
Therefore, after z-score standardization, each value: 

Zm =
ξm − ξm̅̅̅̅̅̅̅̅̅̅̅

Δξm
2

√ (6)  

is normally distributed with a mean of 0 and a variance of 1. This implies 
that if it is not known which material was hit by the laser, then the 
spectrum x[s] can be accepted as originating from material X in case it is 
highly probable that the set of values Zm result from n[X] independent 
standard normal distributions. According to the chi-square distribution, 
the value: 

χ2[s] =
∑n[X]

1
Zm

2 =
∑n[X]

1

(ξm − ξm)
2

Δξm
2

(7)  

is used to check whether it is small enough to come from the 
χn[X]

2-distribution. Each χ2[s] can be translated into the probability P- 
value which is the p[s] of χn[X]

2-distribution. The larger the χ2[s], the 
smaller the P-value p[s], the higher the confidence level. P-values lower 
than the selected significance level indicate statistical significance. By 
setting the significance level for material X as acceptance criteria, which 
can be determined according to the P-value p[X] and the associated value 
of χ2[X] for material X, the fraction of all spectra with P-value p[s] greater 
than p[X] or χ2[s] less than χ2[X] will be considered as deriving from 
particles of material X. A small value of the threshold P-value p[X] in-
dicates that most or nearly all spectra from material X will be accepted, 
but it is also possible that spectra from other materials will be mis-
classified as material X. A large value of the threshold P-value p[X] im-
plies that many spectra will be classified as not accepted, so these 
spectra do not contribute to the quality analysis. The issue is to find a 
good compromise. 

3. Experiment and data pre-processing 

3.1. Experimental setup 

As shown in Fig. 2, the LIBS system consisted of a laboratory-scale 
conveyor belt, a compact optical module, and an Nd: YAG nanosecond 
pulse laser for the present study. The Nd: YAG nanosecond pulse laser 
(TRLi DPSS Series) emitted at a wavelength of 1064 nm, a pulse width of 
8-10 ns, a frequency of 100 Hz, and laser energy of 170 mJ per pulse. 
With a 300 mm focal length lens, the laser was focused vertically onto 
the sample surface to produce laser-induced plasma. The focusing lens 
collected the plasma emission spectra and then coupled them to an 
optical fiber attached to a spectrometer (SPECTRAL Industries, Iris 
Echelle spectrometer). A delay time of 1.5 μs was employed for the 
acquisition of the spectra to avoid interference from continuous laser- 
induced plasma radiation. The timing of the LIBS experiment was trig-
gered with a digital delay pulse generator (Quantum Composers). The 
experiments were performed under atmospheric conditions. The speed 
of the conveyor belt was variable and could reach a maximum speed of 
50 cm/s. Samples were moved at a constant speed of 20 cm/s to simulate 
the transport of materials on a typical feed conveyor belt. At 100 Hz, the 
laser shots every 2 mm on the sample stream. 

3.2. EoL concrete samples 

Several samples of demolition wastes were collected from demolition 
sites in the Netherlands. Due to selective demolition, the resulting EoL 
concrete was clean. Other demolition wastes such as bricks and glasses 
were separately handpicked from demolition sites. The coarse and fine 
recycled aggregates were processed by using C2CA technologies 
(Gebremariam et al., 2020), where the crushed 0-16 mm was treated 
with ADR and classified as the recycled coarse aggregates (RCA) 
(4-16mm), and the fine fraction (0-4mm). The fine fraction of recycled 
aggregates was further treated with Heating Air classification System 
(HAS) to produce the recycled fine aggregates (RFA) and recycled 
cement paste-rich powder. Recycled mineral fibers were collected from 
demolition sites and mechanically ground. The flat glass was also 
collected from demolition sites and broken into pieces. Recycled gypsum 
was also in its ground form, while representative forms of foam, wood, 
and plastics were used. 

3.3. Data pre-processing 

In general, appropriate pre-processing methods can improve models’ 
classification results by reducing the spectral fluctuations between 
various measurements (Zeaiter et al., 2006). This research performed no 

Fig. 2. The LIBS system  
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spectral background subtraction or additional spectral filtering methods 
on the raw spectral data. This is to avoid losing the spectral information 
of the laser-induced plasma emission after 1.5 μs since the laser inci-
dence. There were a total of 2,400 single-shot spectra per material at the 
wavelength range from 179.4 nm to 1199.4 nm with a total of 11790 
intensity values per shot. To reduce the accidental error, the average of 
every adjacent 5 intensity values (Averaged by 5) and the average of 
every adjacent 10 intensity values (Averaged by 10) were calculated, 
compared, and evaluated. In addition, Box-Cox transformation was 
performed to make the intensity values converge to normal distribu-
tions. The spectral dataset for each material was divided into training 
and validation (ratio 9:1): 240 single-shot spectra were randomly 
selected from each material and combined into a dataset of 2400 
single-shot spectra for validation. The remaining 2160 single-shot 
spectra per material were used for training to build a standard library 
for each material. 

4. Results and discussion 

4.1. Optimization of pre-processing methods 

Taking the spectral data of bricks as an example, the spectral data 
using five pre-processing methods (Box-Cox transformation, Averaged 
by 5, Averaged by 10, Averaged by 5 & Box-Cox transformation, and 
Averaged by 10 & Box-Cox transformation) were subjected to PCA and 
compared with the processing methods of the original spectral data. 
After PCA dimensionality reduction of the brick spectral data, their 
cumulative explained variance is calculated. The various pre-processing 
methods increased the explained variance of the first principal compo-
nent to different degrees. Among the effects resulting from the single- 
step pre-processing methods, the Box-Cox transformation method 
showed the most significant improvement compared to the two aver-
aging methods. The difference between the impacts caused by the two 
averaging methods was not significant. The superimposed pre- 
processing methods had a greater influence than the single-step pre- 
processing methods, but the differences between them were not signif-
icant. As for the cumulative explained variance, the first 10 principal 
components of all pre-processing methods could represent almost all 
information of the spectra. The cumulative explained variance of the 
first 50 principal components of all pre-processing methods was greater 
than 0.999, indicating that these principal components were sufficient 
to cover most of the brick spectra information. The Box-Cox trans-
formation method had a negative impact compared to the original 
spectral data, while both averaging techniques improved the impact. 
The averaging methods combined with the Box-Cox transformation 
method had a negative effect. However, the two superimposed pre- 
processing methods did not differ much from each other. 

It is worth mentioning that, in contrast to the conventional spectral 
analysis models, this identification model is not mainly dependent on 
the wave peaks in the LIBS spectra but the overall distribution of the 
spectra. Therefore, the wave peaks are not analyzed in detail in this 
paper. 

The training set of bricks was used to build its unique database, and 
the classification results with different pre-processing methods are 
compared. Because only the spectra of bricks were used as a training 
data set, ideally, all spectra should be identified as coming from bricks. 
However, because a uniform p-value was set (for comparison purposes), 
some spectra were identified as outliers i.e. not coming from bricks. 
Although the averaging of the raw spectral data could effectively 
improve the explained variance, it did not affect the discrimination of 
the training set. In contrast, the Box-Cox transformation method could 
slightly increase the classification accuracy of the training set. 

Furthermore, the validation set of all materials was used to compare 
the pre-processing methods. When identifying whether a shot was from 
bricks, there was little difference between the identification results of 
each pre-processing method, with the Box-Cox transformation method 

being slightly better. And when identifying whether a shot was from the 
outliers, the Box-Cox transformation method improved the identifica-
tion accuracy significantly. In contrast, the technique that averaged 
every five intensity values was slightly better than the method that 
averaged every ten intensity values. 

Based on the classification results of the validation set, the impact of 

Fig. 3. 3D plots of the first three principal components for each material  
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each pre-processing method on the final results of the model is evalu-
ated. Using the raw spectral data, the model showed the worst accuracy, 
while the model using Box-Cox transformation and Averaged by 5 & 
Box-Cox transformation methods showed the best accuracy, precision 
(weighted average), recall (weighted average), and F1-score (weighted 
average) all reaching 0.99. Overall, the Averaged by 5 & Box-Cox 
transformation pre-processing method was selected to reduce the 
number of computer operations while achieving better accuracy. 

4.2. Optimization of acceptance criteria 

As previously mentioned, the number of principal components is the 
main parameter that affected the final classification accuracy of the 
model. Combining the training and validation sets, 3D plots of the first 
three principal components for each material are shown in Fig. 3. Each 
point represents a single-shot spectrum. Red dots indicate single-shot 
spectra of certain material in the training set, green dots indicate 
single-shot spectra of nine materials other than that material in the 
validation set, and black dots indicate single-shot spectra of that mate-
rial in the validation set. There were significant differences in the results 
between the different materials, and it was feasible to differentiate the 
single-shot spectra from various materials based on the transformed 
principal components. Different single-shot spectra of the same type of 
material appeared clustered. For the remaining nine materials, the data 
points distributed in space were more or less mixed. So each material 
could create its own exclusive database separately using the red dots and 
identify and classify other materials accordingly. However, choosing too 
few principal components may result in a poorly differentiated database, 
with overlap between different materials. And choosing too many may 
result in a classification model with a too high threshold that excludes 
too many points that should have belonged to that material. Thereby, 
the optimum number of principal components for each material needed 
to be selected. 

In addition, the probability P-value of the chi-square distribution 
also played an essential role in the accuracy of the final model. Thus, 
combining the number of principal components and the final P-value 
was necessary to extract the optimal pairing. After several rounds of 
attempts, the best matches for different materials are selected. 

4.3. Discussion on further optimization of the algorithm 

Once the acceptance criteria and databases for each material were 
created, the validation data set was used to check the accuracy of the 
entire package of models. When comparing the validation data set with 
the established material databases, it could be found that some single- 
shot spectra were accepted by two or even three material databases. 
Thus, resulting in overlaps for which the belongings of these spectra 
could not be determined. Among them, the highest number of overlaps 
was between cement paste and RCA, with the number reaching 50. This 
was due to the presence of adhering cement paste on the surface of the 
RCA, which made it difficult to distinguish between the two. To deter-
mine the final attribution of the overlapping spectra, their P-values 
could be made use of. In this case, the P-values of each spectrum ob-
tained in the overlapped material databases should be compared, and 
the material database corresponding to the maximum P-value is the one 
to which the spectrum belonged. 

Moreover, after evaluating all spectra in the validation set through 
all material databases, some single-shot spectra were rejected by all 
material databases. As a result, the belongings of these spectra could not 
be determined. In this case, an optional method is to compare the P- 
values. Each of these spectra could obtain a corresponding P-value from 
each of the ten material databases. The spectrum was then classified into 
a material database corresponding to the largest P-value by comparing 
the magnitude of the ten P-values for each spectrum. However, among 
these spectra, some spectra remained with a P-value of 0 in all ten 
material databases and could not be classified according to their P- 

values. Eventually, these spectra were classified as unrecognizable 
spectra. 

The final classification results are shown in Fig. 4. There were still 0- 
4 single-shot spectra of each material that could not be distinguished. 
Foam and glass were misidentified the most, with up to 10 single-shot 
spectra of foam being mistaken for glass, which mainly resulted in a 
precision of 0.94 for glass. The classification report of the validation set 
is shown in Table 1. An increase in the value of accuracy, precision, or 
recall indicated that the model had a better classification performance. 
Wherein the F1 score is the harmonic mean of the precision and recall, 
which are mutually constrained. The higher the value of the F1 score is 
close to 1, the better the model’s classification performance is. The ac-
curacy of the whole model reached 0.97, with the precision (weighted 
average) of 0.98, the recall (weighted average) of 0.97, and the F1-score 
(weighted average) of 0.98. 

The results indicated that the combination of LIBS and cluster-based 
identification algorithm enabled the precise identification of contami-
nants in secondary materials produced from EoL concrete. Materials 
with similar appearance and composition could be distinguished almost 
completely. The graded materials could be used in different classes of 
construction work to improve their utilization. 

Taking bricks as an example, the raw spectral data of the validation 
set were classified as bricks, unrecognized, and misclassified spectra, 
respectively. From Fig. 5, it could be found that the unrecognized 
spectra were usually caused by the presence of certain peaks much more 
significant than typical values (pink lines). In contrast, the misclassified 
spectra had an overall scale much smaller than typical values and were 
hidden below the typical values. Thus, when translating a spectrum to a 
point in multi-dimensional space, the point from the unrecognized 

Fig. 4. Confusion matrix of the validation set  

Table 1 
Classification report of the validation set   

Precision Recall F1-score Support 

Brick 1.00 0.97 0.98 240 
Cement Paste 1.00 0.95 0.98 240 
RCA 0.94 0.96 0.95 240 
Foam 0.97 0.95 0.96 240 
RFA 0.99 0.97 0.98 240 
Glass 0.94 0.98 0.96 240 
Gypsum 0.99 1.00 1.00 240 
Mineral Fibers 1.00 1.00 1.00 240 
Plastics 1.00 0.97 0.99 240 
Wood 1.00 0.97 0.98 240 
Unrecognized 0.00 0.00 0.00 0 
weighted avg 0.98 0.97 0.98 240  
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spectrum was usually kept away from the ellipsoid of the brick database, 
while the point from the misclassified spectrum was contained within 
the ellipsoid of the brick database. This explains why these spectra were 
classified as unrecognized spectra and misclassified spectra. 

There are also a few recommendations for this identification model. 
Before using the model for identification, it should be calibrated. Sea-
sonal variations and slow, device-related changes over a long time can 
produce a drift in the database center point itself. This part of the cali-
bration must be done continuously while the LIBS system is operating. 

5. Conclusion 

Proposed was a reliable identification technique based on the LIBS 
spectral emissions for secondary materials produced from EoL concrete 
in motion. Object material sourced from concrete demolition waste was 
sampled with a laser in the air. Particular attention was paid to repro-
ducing the working conditions that the feed was experiencing moving on 
a conveyor belt in recycling practice as closely as possible. An investi-
gation of the method was carried out to analyze the technique’s ability 
to categorize spectra. Firstly different pre-processing methods were 
used, out of which the Averaged by 5 & Box-Cox transformation method 
reached the most reliable results. To avoid losing any information, no 
spectral background subtraction or other sorts of spectral filtering was 
applied to the raw spectral data. Then, the study of the best match be-
tween the number of principal components and P-values for each ma-
terial was initiated, leading to the creation of a database for each 
material. The overall accuracy of the model reached 0.97 according to 
the results of the validation set classification. This approach has excel-
lent accuracy for single-shot LIBS spectra of material in motion 
compared to conventional qualitative LIBS techniques. Moreover, the 
proposed methodology does not require the characterization of indi-
vidual wave peaks appearing in the LIBS spectra. Although the proposed 
model is sensitive to drift and computationally intensive, it is still worth 
trying because it is highly reliable in identifying the correct material. 
Besides, it can be corrected relatively easily for slowly changing con-
ditions. It works better in a reduced dimensional space of variables, 
reflecting that most of the thousands of spectral data do not contain 
essential information. 

The achieved results demonstrate that the cluster-based classifica-
tion algorithm is a practical technique for the rapid and online analysis 
of EoL concrete in motion and can serve as a new method and technique 
for the industrial selection and quality control of secondary materials 
produced from EoL concrete. Although only single material streams are 
sampled to test the quality characterization model in this research, this 
validates the feasibility of employing the technique to identify con-
taminants in secondary materials and provides the basis for future tests 
of mixed product-waste streams. The ultimate goal of the recycled 
aggregate quality assessment is to provide users with sufficient 

information about the quality of the product and how to use the material 
in the best way for a particular application. It is also worth noting that 
further studies on the levels and grain size distribution of contaminants 
are needed, which requires finding a good technique to measure and 
calculate them directly or indirectly. 
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