
UniformGAN: GAN in uniform probability spaces.

Marc Visser
Supervisor(s): Lydia Y. Chen, Zilong Zhao

EEMCS, Delft University of Technology, The Netherlands

June 19, 2022

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering

1



UniformGAN: generative adversarial networks in uniform
probability spaces.

Marc Visser

ABSTRACT
Sharing data is becoming increasingly difficult, due to the regu-

latory constraints imposed by the General Data Protection Reg-

ulation (GDPR). Businesses are not allowed to share data which

contains privacy sensitive information. Synthetic data generation

has emerged as a solution to this problem. State of the art genera-

tive adversarial networks (GAN) can generate synthetic data which

statistically resembles the original data, while changing privacy

sensitive information so that it cannot be related back to a person.

However, the process of generating synthetic data is still a very

time consuming process for data scientists.

One of the challenges faced in synthetic data generation is aptly

modeling the raw data; transforming it into numerical, and speci-

fying the hyper-parameters such as which columns are categori-

cal, mixed type, numerical or log distributed, is a non-trivial task.

Another challenge is making estimations about the underlying dis-

tributions of the data and how these different distributions are

correlated.

The proposed solution UniformGAN addresses these issues by

adopting a transformer which can handle raw data and detect the

data type and transforms it into a numerical equivalent. It uses the

data type and estimated distribution to set the hyper-parameters for

categorical columns, mixed columns, and log columns. Furthermore,

it estimates the underlying distributions of the data and leverages a

statistical transformation in order for the machine learning model

to easier learn the dependence structure of variables.

The model proposed in this article extends the novel CTAB-GAN

[21] model to add the flexibility of the probability integral transform

idea from copulaGAN [6].

CTAB-GAN leverages a mixed-type encoder, training by sam-

pling and treats long tails. copulaGAN makes use of a numerical

encoder and uses a probabilistic transformation to make capture

the dependence structure of the variables without any affect on

the margins. UniformGAN aims to combine both these methods in

order to remove the time-consuming hyper-parameter tuning of

conditional tabular GAN and simultaneously improve the training

time without sacrificing synthesizing quality.

The model works by transforming each non-categorical variable

using a probabilistic transformer. The transformer applies the prob-

ability integral transform (𝑐𝑑 𝑓 ), to construct an equivalent set of

variables, and a series of Kolmogorov–Smirnov tests is made of

whether a uniform distribution is appropriate for the constructed

data-set. CTAB-GAN is fitted with the transformed data and then

sampled. On this sample, a reverse 𝑐𝑑 𝑓 is performed, inverting the

𝑐𝑑 𝑓 of the distribution that corresponds to each variable.

The evaluation with regard to machine learning utility, statistical

similarity, and privacy preverabiliy has shown that UniformGAN

improves accuracy with regard to decision tree classification utility,

improving averaged machine learning utility by 2% compared to

CTAB-GAN, and 19.21% compared to copulaGAN, while maintain-

ing statistical similarity and privacy preservability compared to

state of the art tabular data modeling techniques.

CCS CONCEPTS
•Mathematics of computing→Distribution functions; •Com-
puting methodologies → Neural networks; • Security and
privacy→ Privacy-preserving protocols.

KEYWORDS
neural networks, GAN, distribution functions

1 INTRODUCTION
Many companies store an increasingly amount of data from various

data sources. When the data is aggregated, data-scientists often try

to enrich the datasets by merging various data in order to increase

the amount of features, and thus information and insight available.

However, the big knowledge behind big data often impedes personal

privacy and leads to unjustified analysis[12].

State of the art generative adversarial networks (GAN), particu-

larly conditional GAN, can generate synthetic data which statisti-

cally resembles the original data, while changing privacy sensitive

information so that it cannot be related back to a person.

One of the challenges faced in synthetic data generation is aptly

modeling the raw data; transforming it into numerical, and specify-

ing the hyper-parameters such as which columns are categorical,

mixed type, numerical or log distributed is a non-trivial task. An-

other difficult task is making estimations about the underlying

distributions of the data and how these different distributions are

correlated.

The aim of this research is to examine state-of-the-art data

synthesising techniques in the statistical and machine learning

realm, and further improve on conditional GAN tabular data gener-

ation. Specifically, the aim is to remove the time-consuming hyper-

parameter tuning of conditional tabular GAN and improve the

training time without sacrificing its synthesizing quality.

UniformGAN is based on CTAB-GAN[21] and copulaGAN [6].

Both copulaGAN and CTAB-GAN are based on CTGAN [19]; which

efficiently treats minority classes, and adds classification, infor-

mation and generator loss. CTAB-GAN introduces a mixed-type

encoder to better represent mixed categorical-continuous variables

as well as missing values. Additionally CTAB-GAN leverages a

log-frequency sampler to overcome the mode collapse problem for

imbalanced variables[21].

State-of-the-art GAN such as CTGAN[19], CTAB-GAN+ [20]

suffer from an exponential increase in computational efforts when

the dimensionality is increased. By transforming the data into uni-

form probability space, the model will try to learn the dependence

structure of the copula without any affect on the marginals. This

is why UniformGAN is proposed. To validate whether or not this



Marc Visser

claim is true three questions are posed.

1) Can statistical tabular data generators synthesize data with the
same accuracy and quality as conditional tabular GAN?
2) Can we generate more accurate data with by leveraging the integral
probability transform in UniformGAN?
3) Will the integral probability transform make it easier for the GAN
to learn its dependence structure?

The proposed solution takes the CTAB-GAN model and adds an

additional probabilistic transformer. After the transformation made

by the transformer all variables have uniform marginals, which

means that the GAN will try to learn the copula function, this

function describes the datasets’ dependence structure of variables.

The aim is achieved by combining state of the art techniques in

CTAB-GAN with the integral probability transform, by trans-

forming the numerical variables into marginal univariates, we can

use Sklar’s theorem 2.2. The idea is that if we have random vari-

ables; say 𝑋 and 𝑌 with uniform univariate margins 𝐹𝑥 (𝑥) and
𝐺𝑦 (𝑦) then there exists a copula function 𝐶 such that 𝐻 (𝑥,𝑦) =

𝐶 (𝐹𝑥 (𝑥),𝐺𝑦 (𝑦)). The copula function allows to model the margins

separately from the dependence structure. This is whywe transform

all variables to be uniform in order to capture the pure dependence

structure between variables without any affect of the margins. This

allows the machine learning model to easier learn the correlation.

Furthermore, 𝑢 = 𝐹 (𝑥) and 𝐹−1 (𝑢) = 𝑥 . Which means we can eas-

ily transform back to the original data. This transformation into

uniform probability space is the basis for UniformGAN.

In order to answer (1) we will examine utility metrics, making a

comparisonwith the original data, and the transformed and inverted

data.

Then in order to answer (2) UniformGAN is evaluated with re-

gard to: utility of machine learning, statistical similarity to the real

data, and privacy preservability. Specifically, the proposed Uniform-

GAN is tested on five widely used machine learning datasets: Adult,

Covertype, Intrusion and Loan. UniformGAN is tested against four

state of the art tabular data generators: Copulas, CopulaGAN, CT-

GAN and CTAB-GAN.

To conclude, we will answer (3) by analysing model performance

across epochs giving us a insight into how many iteration are

needed until we get reasonable results.

2 BACKGOUND AND RELATED STUDIES
The Copula and GAN are two building blocks for this thesis. We

first describe the background of them and how the prior art builds

on top of them.

2.1 conditional GAN
GAN are a popular method to generate synthetic data first applied

with great success to images and later adapted to tabular data [1].

GAN leverage an adversarial game between a generator trying

to synthesize realistic data and a discriminator trying to discern

synthetic from real samples. Conditional GAN are trained via a

zero-sum minimax game where the discriminator tries to maximize

the objective, while the generator tries to minimize it. Furthermore,

a conditional vector is introduced to leverage conditional sampling.

2.1.1 Copulas. Copulas are functions that enable us to separate

the marginal distributions from the dependency structure of a given

multivariate distribution [5].

Theorem 2.1. (Copula). A copula is a multivariate distribution
with CDF C : [0, 1]𝐷 → [0, 1] that has standard uniform marginals,
i.e. the marginals 𝐶 𝑗 of 𝐶 satisfy 𝐶 𝑗 ∼ 𝑈 [0, 1]

Theorem 2.2. (Sklar’s Theorem 1959). Consider a d-dimensional
CDF, F with marginals 𝐹1, ..., 𝐹𝑑 Then there exists a copula C, such
that

𝐹 (𝑥1, ..., 𝑥𝑑 ) = 𝐶 (𝐹1 (𝑥1), ..., 𝐹𝑑 (𝑥𝑑 ))

for all 𝑥𝑖 ∈ [−∞,∞] and 𝑖 = 1, ..., 𝑑

The fundamental idea behind copula theory is that we can asso-

ciate every multivariate distribution with a uniquely defined copula

C.

2.2 GAN-based generator
There have been several studies that extend GAN to integrate cate-

gorical variables by changing the GAN Architecture.

One of the first instances is MedGAN [3]. MedGAN combines

autoencoders and GAN. MedGAN is able to generate continuous

and discrete variables and has been applied in order to facilitate

Electronic Health Record data generation.

CrGAN-Cnet [11] integrates Cramer Distance [2] and a Cross-

Net architecture [18] in order to generate Airline Passenger Name

records. CrGAN-Cnet is also able to handle missing values by

adding new variable for missing records.

TableGAN [14] introduces an auxiliary classifier and informa-

tion loss the GAN. Specifically, it utilises Convolutional Neural

Networks (CNN) for the generator, discriminator and classifier.

2.3 Conditional GAN-based generator
Due to the limitation of of controlling what data class is generated

by the GAN, conditional GAN have emerged as a solution. In a

conditional GAN a conditional vector can be used to generate data

of a specific class. This is important when data is limited and/or

highly skewed. By being able to generate data from a specific class

we can re-balance the distribution as to reduce the discrepancy

between the real distribution and synthesized distribution.

CWGAN [4] builds on the conditional GAN framwork by imple-

menting wasserstein distance [1]. It uses the conditional vector to

oversample minority classes.

CTGAN [19] integrates pacGAN [9] structure in its discriminator.

Furthemore it implements Generator loss and WGAN loss and

gradient penalty to train a conditional GAN.

CTAB-GAN [21] addresses the problem of mixed type variables,

most existing GANs only treat variables as categorical or continu-

ous. Additionally it log-transforms long tail variables in order to

better capture the long tail. Furthermore training-by-sampling [19]

is utilised, but extended to include the modes of continuous and

mixed columns, in order counter imbalanced training data-sets.

An overview of the architecture of CT-GAN can be seen in figure

1



UniformGAN: generative adversarial networks in uniform probability spaces.

Figure 1: Architecture of CTGAN

2.4 Copula based generators
The Gaussian Copula model [15] (GCM) is a purely statistical gen-

erative model that relies on knowing the distribution shapes of

each of its columns. In addition to the distributions, GCM must

also calculate the co-variances between the columns. However, the

shape of the distributions might unnecessarily influence the covari-

ance estimates [16]. For this reason, the multivariate version of the

Gaussian Copula is used. The Gaussian Copula removes any bias

that the distribution shape may induce, by converting all column

distributions to standard normal before finding the co-variances.

Together, the parameters for each column distribution, and the

covariance matrix Σ becomes the generative model.

SGN [8] is a segmented generative network where the generation

process is split into two frames. One embedding the covariance or

copula information in the uniform probability space, and the other

embedding the marginal distribution information in the sample

domain. This structure also provides an empirical method to sample

directly from implicit copulas.

copulaGAN [7] is a variation of the CTGAN Model which takes

advantage of the CDF based transformation that the Gaussian Cop-

ulas apply to make the underlying CTGAN model task of learning

the data easier.

OBT & EBT [10] leverages a copula based generator to augment

the data with generated synthetic data, which improves the mean

absolute error in emulation-based training (EBT). This is not the

case in observation-based training (OBT)

Vine copula AutoEncoders [17] in which a autoencoder (AE)

compresses the data into a lower dimensional representation. Then

the multivariate distribution of the encoded data is estimated with

vine copulas. A generative model is obtained by combining the

estimated distribution with the decoder part of the AE.

3 UNIFORMGAN
UniformGAN is a tabular data generator which is based on CTAB-

GAN designed to improve modeling speed by transforming contin-

uous variables into uniform probability space in order for the GAN

to make learning the underlying distribution easier. UniformGAN

adopts a reversible probability integral transform, which consists

of bringing input data into a standard normal space by using a

combination of 𝑐𝑑 𝑓 and 𝑖𝑛𝑣𝑒𝑟𝑠𝑒𝑐𝑑 𝑓 transformations. UniformGAN

base: CTAB-GAN, uses a mixed-type encoder to better represent

mixed categorical-continuous variables as well as missing values.

Furthermore it utilises training by sampling. Additionally CTAB-

GAN leverages a log-frequency sampler to overcome the mode

collapse problem for imbalanced variables[21].

3.1 Architecture of UniformGAN
The architecture of UniformGAN is shown in Figure 2. It comprises

of four blocks: a Generator 𝐺 , Discriminator 𝐷 , and a classifier 𝐶

[21]. Additionally we add a probabilistic Transformer 𝑇 .

Instead of feeding the raw data directly into CTAB-GANs dis-

criminator; the data is first transformed using T. T can handle raw

data and detects the data type and transforms it into the desired

input for the GAN while setting hyper-parameters in CTAB-GAN

related to datatypes.

3.2 Data Transformation
The data transformation consists of two steps, (i) data inference,

and (ii) data transformation and reversal.

The first step is inferring which transformation to use based on

the object type in the column of the data-set. It maps the python

object types to either a categorical, or numerical transformer. The

raw data has to be transformed because CTAB-GAN only works

on numerical data.

The second step is the data transformation. It utilises the cate-

gorical and numerical transformers to map objects into labels, and

numerical data into uniform probabilistic space.

The data is transformed based on its column type, if it is an

"object" type a categorical transformer is used, if it is an "integer"

or "float" type the numerical transformer is used.

The categorical transformers transform the object into labels by

utilizing clustering. An example of this is ["True", "False"] -> [0,1]

or ["Alice", "Bob", "Bob"] -> [0,1,1]. This labeling step is performed

because CTAB-GAN can only handle numerical data.

The numerical transformer performs a statistical transformation

on numerical data. First it tries to fit a variable to a multitude of

distributions, the difference 𝐷 between the empirical cdf and the

model cdf is calculated with the Kolmogorov–Smirnov test. The

distribution with a 𝐷 closest to 0 is chosen as this most accurately

describes the variable.

Next, the probability integral transform is performed, the prob-

ability integral transform states that if 𝑋 is a continuous random

variable with cumulative distribution function 𝐹𝑥 , then the ran-

dom variable 𝑌 = 𝐹𝑥 (𝑋 ) has a uniform distribution on [0, 1]. After
these transformations the variable is normally distributed and the

original variable can be recovered by applying the inverse 𝑐𝑑 𝑓

also known as percent point function. The goal here is that we

are describing a copula, from 2.2. The idea being that if we have

random variables; say 𝑋𝑖 to 𝑋𝑛 with uniform univariate margins

𝐹𝑖 (𝑋𝑖 ) to 𝐹𝑛 (𝑋𝑛) then there exists a copula function 𝐶 such that

𝐻 (𝑋𝑖 , ..., 𝑋𝑛) = 𝐶 (𝐹𝑖 (𝑋𝑖 ), 𝐹𝑖 (𝑋𝑛)). The copula function allows to

model the margins separately from the dependence structure. This

is why we transform all variables to be in standard probability

space; in order to capture the pure dependence structure between

variables without any affect of the margins.

After the variables are transformed by the transformer T, the

CTAB-GAN model applies a second encoding. It converts categor-

ical label columns into on-hot columns, and the continuous and



Marc Visser

Figure 2: UniformGAN architecture.

mixed columns are treated with a variational Gaussian mixture to

estimate the number of modes and to fit a Gaussian mixture. The

transformer also passes information to the GAN specifying which

columns are categorical, mixed, log or continuous. Removing the

need to manually set these parameters.

3.3 Training
After transformation the GAN start the training process. GAN are

trained via a zero-sum minimax game where the discriminator tries

to maximize the objective, while the generator tries to minimize

it. The training process is as follows: The conditional vector along

with noise is fed into the generator, the result from the generator

is then fed into the discriminator which compares the generated

result with the encoded data. This process is displayed in 1. The

train/test split is 4/1.

To enhance the generation quality, CTAB-GAN[21] incorporates

three extra terms in the loss function of the generator: information

[14], classification [13] and generator loss [19]. The information

loss penalizes the discrepancy between statistics of the generated

data and the real data. This helps to generate data which is statisti-

cally closer to the real one. The classification loss requires to add

to the GAN architecture an auxiliary classifier in parallel to the

discriminator.

3.4 Sampling
When training is finished, we can sample by simply feeding the

generator with a conditional vector and a noise vector. The output

generated will be in the uniform probability space, so we will need

to apply the inverse 𝑐𝑑 𝑓 to transform the data back to the original

format, giving us the synthetic data.

4 EVALUATION
In order to evaluate the model we first describe the setup and data,

and then explain how the quality of synthetic data is assessed. We

will then move on to the main results in terms of data similarity, and

training time analysis, and model comparison. We will conclude

with an ablation analysis of the integral probability transform as

an independent component, and a comparison to CTAB-GAN.

To show the efficacy of the proposed UniformGAN, five com-

monly used machine learning datasets are selected, and compared

with four state-of-the-art GAN based tabular data generators. We

evaluate the effectiveness of copulaCTAB-GAN in terms of the re-

sulting ML utility, statistical similarity to the real data, and privacy

distance.

4.1 Experimental Setup and Data
4.1.1 Datasets. CopulaCTAB-GAN is tested on five commonly

used machine learning datasets. Adult, Covertype, Intrusion, Credit

and Loan. All five tabular datasets have a target variable, for which

we use the rest of the variables to perform classification. The dataset

description can be found in table 1.

4.1.2 Baselines. CopulaCTAB-GAN is compared with 4 state-of-

the-art tabular data generators: CTAB-GAN, CopulaCTGAN, Cop-

ulas and CTGAN. For Gaussian mixture estimation of continuous

variables, we use the same settings as the evaluation of CTGAN, i.e.

10 modes. All algorithms are trained for 50 epochs for Adult, Cover-

type, Credit and Intrusion datasets, whereas the algorithms are

trained for 50 epochs on Insurance dataset. Lastly, each experiment

is repeated 3 times.

4.1.3 Environment. Experiments are run under Windows 11 on

a machine equipped with 8GB memory, a NVIDIA GeForce GTX

1650 with max-Q design and a 8 core Intel i5 CPU.



UniformGAN: generative adversarial networks in uniform probability spaces.

Data-set Train/Test Split Target Variable Continuous Binary Multi-Class Mixed-Type Long-Tail

Adult 39k/9k income 3 2 7 2 0

Covertype 40k/10k Cover_Type 10 44 1 0 0

Credit 40k/10k Class 30 1 0 0 1

Intrusion 40k/10k Class 22 6 14 0 2

Insurance 1.12k/280 Charges 2 1 3 0 0

Table 1: Dataset Description

4.2 Results
The evaluation of the model is based on three aspects: (1) machine

learning utility, (2) statistical similarity and (3) privacy preservabil-

ity. The first two aspects measure if the synthetic tabular data can

be used as a good replacement of the original data. The third aspect

evaluates the nearest neighbour distances between the original

and synthetic data. For this proposition no effort has been made

to improve on privacy statistics. For this reason, we only display

privacy preservability results and show that they are similar to

state-of-the-art.

4.3 Utility Pipeline
In order to asses how well the synthesized data performs com-

pared to the real data we analyse the machine learning utility. We

consider three metrics with respect to machine learning utility; Ac-

curacy difference, Area Under Curve (AUC) difference, and F1-score

difference.

The pipeline is setup by comparing the real data utility and the

synthesized data utility. This is done by feeding the generated data

into a multitude of classifiers. Each classifier will make predictions

which are expressed in terms of accuracy, area under curve (AUC)

and F1 score metrics. The pipeline will take the difference of the

metrics. The pipeline is shown in figure 3.

4.3.1 Statistical Similarity. Another important property of the syn-

thesized data is the statistical similarity to the real data. To assess the

statistical similarity we consider the average Wasserstein distance,

average Jensen–Shannon divergence, and correlation distance.

4.4 Overall results
4.4.1 Copulas. The first question in this thesis is related to gener-

ating data with purely statistical methods and its quality. Copulas

is a purely statistical tabular data generator, this means it does

not have to train like GAN, but it tries to fit every variable with a

distribution, and uses a combination of 2.2 and inverse probability

sampling, to sample data from these distributions. This method is

highly performant when it comes to generation speed. This is why

this method is investigated.

The model requires it to learn each variable’s distribution, com-

putationally it requires n * m * c computations, where n is the

amount of variables, m is the amount of rows, and c is the amount

of fit-able distributions.

Even though its synthesising speed is unmatched compared to

GAN, the results were dissapointing. It was not able to synthesise

enough target variables for the intrusion dataset, just like CTGAN.

It did however generate adequate data for the adult dataset, having

Figure 3: Utility Pipeline

only a 8.384% difference in averaged accuracy compared to the

original dataset.

4.4.2 Transform / Reverse Transform. When the data is transformed

using the integral probability transform and transformed back, we

want to be sure that the data is the same. To test this, the adult

data-set is transformed and reverse transformed. We then run the

analysis pipeline to see if the transformation had any effect on the

data utility and statistical similarity. From table 2 we can see that the

there is a negligible difference in utility between the original and

transformed data-set. Furthermore, the statistical test resulted in

zero difference between all for WD, JSD and correlation difference.

From this analysis we know that we can transform and reverse

transform without any significant changes of the data-set.

4.4.3 UniformGAN. To measure the impact of the probabalistic

transformer for UniformGANwe compare it against CTAB-GAN, as

UniformGAN is identical to CTAB-GAN only adding a probabalistic

transformer.

To measure the difference in data generation quality we take the

averaged utility statistics for UniformGAN and CTAB-GAN and

calculate the difference. These results are shown in table 3.



Marc Visser

Model Acc AUC F1

logistic regression -0.01023 -2.7628e-06 -0.0002

decision tree -0.07165 -0.0004 -0.0007

random forest -0.07165 -0.0001 -0.0008

multi layer perceptron -0.20472 -0.0002 -0.0043

Table 2: Probability integral transform and reverse.

Model Accuracy AUC F1

logistic regression -0.795 -0.0204 0.0229

decision tree 15.749 0.114 0.154

random forest -1.152 0.00833 0.0117

multi layer perceptron -0.678 -0.0136 0.0487

support vector machine -0.960 0.0864 -0.00754

Table 3: Utility difference: UniformGAN versus CTAB-GAN

We can see that UniformGAN performs similarly for most met-

rics, being roughly 1% worse for most classification models, but

outperforming CTAB-GAN on the decision tree classifier (dt).

This difference in the dt utility, explains why UniformGAN out-

performs CTAB-GAN on averaged machine learning utility. The

majority of this difference comes from the intrusion dataset, where

CTAB-GAN had a 83.57% difference in utility compared to the

original datatset. While this was only at a 21% difference for Uni-

formGAN.

With these positive results in regard to decision tree classifica-

tion and a minimal difference in accuracy in other metrics we can

conclude that UniformGAN can generate quality synthetic data.

5 RESPONSIBLE RESEARCH
This section is meant to highlight how the research is conducted as

responsible as possible. We take a look at reproducability, scientific

integrity and specific issues in research practice.

When we want to conduct research responsibly an important

aspect is reproducability. If the results can’t be replicated, or the

replicated results differ from the original then we can never validate

the results. This is why there is an extensive section on the experi-

mental setup. To further help other researchers validate paper the

code will be shared on GitHub as to increase transparency in the

implementation.

Another important aspect of responsible research is integrity,

there have been numerous cases in the scientific community where

researchers cherry picked data, and/or trimmed data in order to

push forward "good" results. In the case of this research there was an

aim to pick datasets as to have a broad enough selection of datasets

with a variety of datatypes and amount of features. Averaging

the results over a multitude of different datasets will give a good

indication of performance in real-life scenarios. Furthermore, all

ideas borrowed from other authors should be properly cited and

given credit.

With relation to GANs there are some specific issues regard-

ing responsible research, an important part of this research is the

privacy aspect of synthetic data. In order to assess this there is a

section on privacy preservability in the experimental setup.

By addressing all these points I believe to have shown an effort

to conduct this research responsibly and with integrity.

6 DISCUSSION
In this discussion we will highlight issues encountered, general

advice and future improvements.

During the testing of copulaGAN and copulas some results were

worse than expected, which leadme to discover a bug in the learning

of the rounding scheme, all results produced in this are with the

bug resolved. A pull request will be made to SDV to fix the bug.

Furthermore, during the testing of copulaGAN and copulas, one

has to be very mindful of how the data is inferred by the model,

one can easily make a mistake by using pre-processed datasets,

which are already numeric. This will cause the issue inferring it

as purely numerical, while there might be categorical variables.

This is easily resolved by specifying the specific transformer to

use. When running UniformGAN with more iterations it starts to

under-perform compared to CTAB-GAN, this is most likely due to

the inability of gaussian copulas to model tail dependence.

7 CONCLUSION
To conclude I want to reiterate on the main research questions of

this paper, the first question is can statistical tabular data generators

synthesize data with the same accuracy and quality as conditional

tabular GAN?

Then we ask if we can generate more accurate synthetic data by

leveraging the combination of CTAB-GAN and the integral proba-

bility transform. Lastly, we answer on the hypothesis of whether

the integral probability transform makes it easier for the GAN to

learn the dependence structure of its variables.

From running the utility pipeline we have validated that we

can generate statistical tabular data with purely statistcal models,

however the quality is subpar compared to state of the art GAN.

The integral probability transform allows UniformGAN to learn

the underlying dependence structure with lowered training times,

however given enough training-time, CTAB-GAN will converge

later on more iterations and outperform UniformGAN, this is most

likely due to the inability of gaussian copulas to model tail depen-

dence.

The copula model, copulaGAN, and CTGAN all perform worse

than UniformGAN, however copulas requires no additional training

besides fitting the distributions and still gives relatively accurate

results for datasets without long tail, or extreme outliers.

From running the utility pipeline we can say that it is possible

to generate quality data using UniformGAN, while increasing the

decision tree classifier utility. The increase in the decision tree

classification utility shows us that the integral probability transform

makes it easier for the GAN to learn its dependence structure.

ACKNOWLEDGMENTS
Zilong Zhao, Lydia Y. Chen



UniformGAN: generative adversarial networks in uniform probability spaces.

Model

ML Utility Difference Statistical Similarity

Privacy Preservation

DCR NNDR

Accuracy AUC F1-score Avg JSD Avg WD Diff .Corr. R&S R S R&S R S

UniformGAN 8.708 0.115 0.176 0.013 0.0761 3.210 1.373 0.308 0.958 0.782 0.421 0.623
CTAB-GAN 11.205 0.134 0.205 0.331 0.070 1.900 1.260 0.3088 1.0840 0.751 0.4219 0.620

Copulas 18.998* 0.189 0.323 0.0172 0.126 3.703 1.759 0.308 1.584 0.826 0.421 0.745

CopulaGAN 29.97 0.21 0.371 0.082 0.294 5.814 1.424 0.201 0.535 0.815 0.337 0.538

CTGAN 35.442* 0.232 0.356 0.047 0.221 4.57 1.304 0.232 0.831 0.749 0.347 0.61

Table 4: Results 50 epochs: Average over Adult, Covtype, Intrusion and Insurance

1

REFERENCES
[1] Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein GAN.

(2017). arXiv:1701.07875 http://arxiv.org/abs/1701.07875

[2] Marc G. Bellemare, Ivo Danihelka, Will Dabney, Shakir Mohamed, Balaji Lak-

shminarayanan, Stephan Hoyer, and Rémi Munos. 2017. The Cramer Distance

as a Solution to Biased Wasserstein Gradients. (2017), 1–20. arXiv:1705.10743

http://arxiv.org/abs/1705.10743

[3] Edward Choi, Siddharth Biswal, Bradley Malin, Jon Duke, Walter F. Stewart,

and Jimeng Sun. 2017. Generating Multi-label Discrete Patient Records using

Generative Adversarial Networks. 68 (2017), 1–20. arXiv:1703.06490 http:

//arxiv.org/abs/1703.06490

[4] Justin Engelmann and Stefan Lessmann. 2021. Conditional Wasserstein GAN-

based oversampling of tabular data for imbalanced learning. Expert Systems
with Applications 174, Ml (2021). https://doi.org/10.1016/j.eswa.2021.114582

arXiv:2008.09202

[5] Martin Haugh. 2016. IEOR E4602: Quantitative Risk Management

& IEOR E4703: Monte-Carlo Simulation. Quantitative Risk Manage-
ment 1 (2016). http://www.columbia.edu/{~}mh2078/FoundationsFE/

DeterministicCashFlows.pdf{%}0Ahttp://www.columbia.edu/{~}mh2078/

FoundationsFE/for{_}swap{_}fut-options.pdf{%}0Ahttp://www.columbia.

edu/{~}mh2078/MachineLearningORFE/MCMC{_}Bayes.pdf{%}0Ahttp:

//www.columbia.edu/{~}mh2078/MonteC

[6] MIT Data To AI Lab. 2018. CopulaGAN Model Model Description. https://sdv.

dev/SDV/user_guides/single_table/copulagan.html

[7] MIT Data To AI Lab. 2018. GaussianCopula Model Kernel Description. https:

//sdv.dev/SDV/user_guides/single_table/gaussian_copula.html

[8] Nunzio A. Letizia and Andrea M. Tonello. 2022. Segmented Generative Networks:

Data Generation in the Uniform Probability Space. IEEE Transactions on Neural
Networks and Learning Systems 33, 3 (2022), 1338–1347. https://doi.org/10.1109/

TNNLS.2020.3042380

[9] Zinan Lin, Giulia Fanti, Ashish Khetan, and Sewoong Oh. 2018. PacGan: The

power of two samples in generative adversarial networks. Advances in Neural
Information Processing Systems 2018-December (2018), 1498–1507. https://doi.

org/10.1109/jsait.2020.2983071 arXiv:1712.04086

[10] David Meyer, Thomas Nagler, and Robin Hogan. 2020. Copula-based synthetic

data generation for machine learning emulators in weather and climate: applica-

tion to a simple radiation model. Geoscientific Model Development Discussions
January (2020), 1–21.

[11] Alejandro Mottini, Alix Lheritier, and Rodrigo Acuna-Agost. 2018. Airline Pas-

senger Name Record Generation using Generative Adversarial Networks. (2018).

arXiv:1807.06657 http://arxiv.org/abs/1807.06657

[12] Arvind Narayanan and Vitaly Shmatikov. 2008. Robust de-anonymization of

large sparse datasets. In 2008 IEEE Symposium on Security and Privacy (sp 2008).
IEEE, 111–125.

[13] Augustus Odena, Christopher Olah, and Jonathon Shlens. 2017. Conditional Im-

age Synthesis with Auxiliary Classifier GANs. (2017). arXiv:arXiv:1610.09585v4

[14] Noseong Park, Mahmoud Mohammadi, Hongkyu Park, and Youngmin Kim.

2018. Data Synthesis based on Generative Adversarial Networks. 11, 10 (2018).

arXiv:arXiv:1806.03384v5

[15] Neha Patki, Roy Wedge, and Kalyan Veeramachaneni. 2016. GaussianCopula -

The synthetic data vault SDV. Proceedings - 3rd IEEE International Conference
on Data Science and Advanced Analytics, DSAA 2016 (2016), 399–410. https:

//dai.lids.mit.edu/wp-content/uploads/2018/03/SDV.pdf

[16] Ludger Rüschendorf. 2013. Mathematical risk analysis. Springer Ser. Oper. Res.
Financ. Eng. Springer, Heidelberg (2013).

[17] Natasa Tagasovska, Damien Ackerer, and Thibault Vatter. 2019. Copulas as high-

dimensional generative models: Vine copula autoencoders. Advances in Neural
Information Processing Systems 32, NeurIPS (2019), 1–23. arXiv:1906.05423

[18] Ruoxi Wang, Gang Fu, Bin Fu, and Mingliang Wang. 2017. Deep & cross network

for ad click predictions. 2017 AdKDD and TargetAd - In conjunction with the 23rd

ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2017
(2017). https://doi.org/10.1145/3124749.3124754 arXiv:1708.05123

[19] Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramacha-

neni. 2019. Modeling tabular data using conditional GAN. Advances in Neural
Information Processing Systems 32, NeurIPS (2019). arXiv:1907.00503

[20] Zilong Zhao, Aditya Kunar, Robert Birke, and Lydia Y. Chen. 2022. CTAB-

GAN+: Enhancing Tabular Data Synthesis. 1 (2022), 1–13. arXiv:2204.00401

http://arxiv.org/abs/2204.00401

[21] Zilong Zhao, Aditya Kunar, Hiek Van der Scheer, Robert Birke, and Lydia Y. Chen.

2021. CTAB-GAN: Effective Table Data Synthesizing. l (2021). arXiv:2102.08369

http://arxiv.org/abs/2102.08369

https://arxiv.org/abs/1701.07875
http://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1705.10743
http://arxiv.org/abs/1705.10743
https://arxiv.org/abs/1703.06490
http://arxiv.org/abs/1703.06490
http://arxiv.org/abs/1703.06490
https://doi.org/10.1016/j.eswa.2021.114582
https://arxiv.org/abs/2008.09202
http://www.columbia.edu/{~}mh2078/FoundationsFE/DeterministicCashFlows.pdf{%}0Ahttp://www.columbia.edu/{~}mh2078/FoundationsFE/for{_}swap{_}fut-options.pdf{%}0Ahttp://www.columbia.edu/{~}mh2078/MachineLearningORFE/MCMC{_}Bayes.pdf{%}0Ahttp://www.columbia.edu/{~}mh2078/MonteC
http://www.columbia.edu/{~}mh2078/FoundationsFE/DeterministicCashFlows.pdf{%}0Ahttp://www.columbia.edu/{~}mh2078/FoundationsFE/for{_}swap{_}fut-options.pdf{%}0Ahttp://www.columbia.edu/{~}mh2078/MachineLearningORFE/MCMC{_}Bayes.pdf{%}0Ahttp://www.columbia.edu/{~}mh2078/MonteC
http://www.columbia.edu/{~}mh2078/FoundationsFE/DeterministicCashFlows.pdf{%}0Ahttp://www.columbia.edu/{~}mh2078/FoundationsFE/for{_}swap{_}fut-options.pdf{%}0Ahttp://www.columbia.edu/{~}mh2078/MachineLearningORFE/MCMC{_}Bayes.pdf{%}0Ahttp://www.columbia.edu/{~}mh2078/MonteC
http://www.columbia.edu/{~}mh2078/FoundationsFE/DeterministicCashFlows.pdf{%}0Ahttp://www.columbia.edu/{~}mh2078/FoundationsFE/for{_}swap{_}fut-options.pdf{%}0Ahttp://www.columbia.edu/{~}mh2078/MachineLearningORFE/MCMC{_}Bayes.pdf{%}0Ahttp://www.columbia.edu/{~}mh2078/MonteC
http://www.columbia.edu/{~}mh2078/FoundationsFE/DeterministicCashFlows.pdf{%}0Ahttp://www.columbia.edu/{~}mh2078/FoundationsFE/for{_}swap{_}fut-options.pdf{%}0Ahttp://www.columbia.edu/{~}mh2078/MachineLearningORFE/MCMC{_}Bayes.pdf{%}0Ahttp://www.columbia.edu/{~}mh2078/MonteC
https://sdv.dev/SDV/user_guides/single_table/copulagan.html
https://sdv.dev/SDV/user_guides/single_table/copulagan.html
https://sdv.dev/SDV/user_guides/single_table/gaussian_copula.html
https://sdv.dev/SDV/user_guides/single_table/gaussian_copula.html
https://doi.org/10.1109/TNNLS.2020.3042380
https://doi.org/10.1109/TNNLS.2020.3042380
https://doi.org/10.1109/jsait.2020.2983071
https://doi.org/10.1109/jsait.2020.2983071
https://arxiv.org/abs/1712.04086
https://arxiv.org/abs/1807.06657
http://arxiv.org/abs/1807.06657
https://arxiv.org/abs/arXiv:1610.09585v4
https://arxiv.org/abs/arXiv:1806.03384v5
https://dai.lids.mit.edu/wp-content/uploads/2018/03/SDV.pdf
https://dai.lids.mit.edu/wp-content/uploads/2018/03/SDV.pdf
https://arxiv.org/abs/1906.05423
https://doi.org/10.1145/3124749.3124754
https://arxiv.org/abs/1708.05123
https://arxiv.org/abs/1907.00503
https://arxiv.org/abs/2204.00401
http://arxiv.org/abs/2204.00401
https://arxiv.org/abs/2102.08369
http://arxiv.org/abs/2102.08369

	Abstract
	1 Introduction
	2 Backgound and Related Studies
	2.1 conditional GAN
	2.2 GAN-based generator
	2.3 Conditional GAN-based generator
	2.4 Copula based generators

	3 UniformGAN
	3.1 Architecture of UniformGAN
	3.2 Data Transformation
	3.3 Training
	3.4 Sampling

	4 Evaluation
	4.1 Experimental Setup and Data
	4.2 Results
	4.3 Utility Pipeline
	4.4 Overall results

	5 Responsible Research
	6 Discussion
	7 Conclusion
	Acknowledgments
	References



