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Abstract

Traditional path-planning methods for mobile robots typically focus on avoiding obstacles but often fall
short when obstacles block the path to the goal. This paper addresses the challenge of Navigation
Among Movable Obstacles (NAMO), where a single robot can reposition obstacles to create previously
inaccessible pathways. We introduce SVG-MPPI, a novel approach that integrates semantics to incor-
porate continuous movability into both path planning and local control strategies, allowing the robot to
navigate cluttered environments by moving obstacles as needed to reach its goal.

SVG-MPPI refines the traditional Visibility Graph (VG) method by introducing the Semantic Visibility
Graph (SVG). In this advanced approach, additional nodes are placed near movable obstacles, with
the movability of these obstacles assessed based on their estimated mass—a key semantic property
defining movability. This enables the modeling of potential passages through these barriers. The
cost of push actions needed to navigate to these additional nodes is incorporated into the path-finding
algorithm, eliminating the need for explicit obstacle placement and reducing the overhead of custom
task planning. The local control strategy employsModel Predictive Path Integral (MPPI), which uses the
IsaacGym physics engine to simulate robot and obstacle state transitions. MPPI minimizes trajectory
contact forces as part of its objective, thereby reducing the push actions executed by the robot. The
system supports optional replanning by continuously evaluating obstacle movability and adjusting the
path if actual conditions deviate from initial estimates.

Our solution was evaluated through both qualitative and quantitative experiments. Qualitative experi-
ments demonstrated the algorithm’s success in a simulated environment, where it effectively handled
path execution and replanning scenarios. In real-world testing, an omnidirectional robot successfully
pushed an obstacle and established a path to a goal. Quantitative analyses compared SVG-MPPI with
its unaltered planning method (VG), which has no notion of movability, and Rapidly-exploring Random
Tree (RRT) adapted to include binary movability. Each of these path planning methods was equipped
with MPPI, which had a similar notion of movability as the planner. Results showed that SVG-MPPI
consistently outperformed both VG and RRT in terms of path planning success rate and execution
success rate. Furthermore, SVG-MPPI exhibited lower cumulative contact forces over the trajectory,
indicating that the integration of continuous movability allowed the algorithm to select paths of least
resistance and navigate around obstacles where possible.

Overall, SVG-MPPI represents a significant advancement in NAMO planning by offering a cohesive
solution that addresses the complexities of navigating random, cluttered environments with movable
obstacles. By prioritizing direct progress toward the goal while repositioning obstacles, SVG-MPPI intro-
duces a novel, integrated approach with promising results and substantial potential for future research
and development.
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1
Introduction

The deployment of modern service robots is rapidly expanding across both human-centered and non-
human-centered environments, impacting society as a whole. These robots, designed to assist with
tasks traditionally carried out by humans, feature advanced perception and adaptive behavior capabil-
ities, revolutionizing our interaction with technology [1].

In domestic environments, service robots handle everyday chores, allowing individuals to allocate their
time more freely to focus on meaningful activities [2]. They are also employed in other human-centered
environments such as retail stores, office buildings, and educational settings [3–5]. In these settings,
robots assist customers in stores, manage reception areas, and serve as teaching assistants in class-
rooms. In healthcare and hospitals, service robots can help care for the elderly, children, and individuals
with disabilities, thereby easing the workload of caregivers and addressing personnel shortages [6, 7].

Figure 1.1, shown on page 2, presents a multi-purpose service robot1 designed for use in a typical clut-
tered domestic environment. This robot can be instructed to perform everyday tasks such as cleaning,
organizing, and retrieving items.

In non-human-centered environments, service robots operate autonomously, performing tasks without
direct human intervention or interactions. In agriculture, robots manage greenhouses by monitoring
plant conditions, managing harvests, and applying precision techniques for pest and weed control [8,
9]. In industrial settings, they inspect critical infrastructure such as pipelines and energy grids to detect
damage and ensure safety [10]. Their roles also extend to surveillance, security, reconnaissance, and
search-and-rescue operations [11, 12].

For these autonomous service robots, navigation typically involves moving towards specific waypoints
while avoiding collisions [13]. But despite their versatility, these robots often face challenges in complex
and cluttered environments, particularly in domestic settings [14, 15]. This is where Navigation Among
Movable Obstacles (NAMO) becomes relevant. NAMO involves navigating environments where obsta-
cles can be moved to clear a path, requiring interaction with the environment and thereby relocating
obstacles to create previously blocked pathways [16–18]. Occupation-based representations work well
for basic obstacle avoidance. However, they fall short when obstacles block the path to the goal as
characteristics like size, shape, or mass of individual objects is ignored [19].

Semantic mapping offers a promising solution by providing a detailed representation of the environ-
ment, including information about objects, structures, and features [20]. This enriched representation
improves the robot’s ability to understand and interact with its surroundings. However, the potential
of semantic mapping in addressing NAMO has not yet been explored. This study presents an algo-
rithm that leverages semantic information to infer obstacle movability, aiming to improve navigation
efficiency and effectively handle complex cluttered scenarios. This advancement could significantly
enhance autonomous navigation and the deployment of service robots.

1https://www.unlimited-robotics.com/gary
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Figure 1.1: The multi-functional service robot ’Gary’, employed in a cluttered domestic environment.

Figure 1.2: Achievement of a simple NAMO task under partial observed information. Movable objects are yellow (light), while
immovable ones are in blue (dark). In (a), dashed lines signify unknown objects. (b) illustrates the progression of the robot’s

internal map [18].
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1.1. Related Work
Navigation Among Movable Obstacles (NAMO) involves a single robot manipulating objects within the
environment to create previously inaccessible pathways. The study of NAMO dates back to research
conducted by Reif and Sharir in 1985 [21]. This early work considered a two-dimensional polygonal
workspace, modeling both the movable object and robot as convex polygons. This study demonstrated
the computational complexity by proving that determining whether a robot can reach a specified goal
position in the presence of movable obstacles is NP-hard. This complexity persists even in simplified
scenarios with unit square obstacles, requiring extensive computational resources to explore all poten-
tial configurations and movement sequences to ensure the robot can navigate effectively to the goal
[21, 22]. Navigation Among Movable Obstacles, as a category of research, was formally introduced by
Stilman and Kuffner [17] in 2004 as a practical extension for humanoid and dexterous mobile robots,
enabling them to tackle complex tasks where the goal pose is not directly reachable.

The NAMO problem, even in its simplest form, is classified as NP-Complete [22]. This complexity stems
from its vast search space and the large number of potential configurations to check as a possible
solution. Consequently, most solutions focus on approximations rather than exact solutions. Despite
the importance of this problem, fully autonomous NAMO systems are rare in mobile robotics research
[23], with even fewer examples of real-world applications.

Therefore, many studies focus on addressing a subset of the NAMO problem, known as LP1. In LP1

scenarios, two disconnected segments are blocked by a single obstacle. By manipulating this obstacle
using basic repositioning techniques such as pushing, the robot can create a path towards the goal.
This approach reduces the problem’s complexity by focusing on the navigational challenge and repo-
sitioning of a single object. Research also addresses solutions to the LP2 problem, in which up to two
objects may be moved multiple times to connect free space components for the robot and achieve the
final positions of the obstacles. This approach can be further generalized to LPk, where k obstacles
are involved. Other variations focus on more complex aspects such as partial environmental data or
socially aware placement of the obstacles [17, 18, 24].

Figure 1.2, shown on page 2, illustrates a straightforward example of NAMO, highlighting a scenario
where reaching the goal point necessitates altering the environment [18]. Movable objects are shown
in yellow (light), while immovable ones are in blue (dark). Initially, one mandatory manipulation is
necessary to create a path to the goal. Subsequently, a second manipulation is performed to create
a faster route to the goal, eliminating detours and reducing the traveled distance. In this example,
movability is inferred during execution by applying a push action executed by the robot. When a push
action fails, the obstacle is considered to be static, and the task planner will generate an alternative
route to the goal.

Solutions for Navigation Among Movable Obstacles (NAMO) that deal with a variety of obstacles, de-
noted as LPk, usually depend on specialized task planners to direct the robot’s actions. The task
planner determines instances when the robot should move without displacing an obstacle (transit) and
when it should relocate an obstacle (transfer). While these task planners are tailored to solve specific
subsets of the problem, they often make several assumptions to streamline the algorithm and simplify
the problem.

Table 1.1 provides a comprehensive overview of NAMO algorithms found in the literature, highlighting
key criteria related to prior knowledge and implementation strategies. Three important observations can
be drawn from the table. First, the movability of an object is frequently either given or detected using
simple obstacle detection techniques such as QR codes or color codes. This movability is typically
treated as a binary property, which fails to account for the varying characteristics of obstacles that
influence the ease or difficulty of interaction. Such a binary simplification complicatesminimizing energy,
time, or effort. Algorithms aiming to reduce effort during the execution of NAMO typically quantify it by
the number of obstacles moved and the length of the route taken.

The second observation centers around task planners; current solutions often rely on custom-designed
planners, indicating a lack of generalizable or reproducible approaches. Finally, many algorithms are
primarily tested in simulated environments, with limited real-world demonstrations. This gap highlights
the need for more practical evaluations to validate the effectiveness of these algorithms.
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Integrating semantic information into NAMO algorithms has been a relatively unexplored topic. Tradi-
tionally, navigation maps account only for free and occupied spaces, lacking detailed contextual infor-
mation about the objects within the environment. A semantic map, however, provides a richer repre-
sentation by incorporating both *what* objects are (semantic information) and *where* they are located
(geometric information). This combination of semantic and geometric data offers valuable insights into
the general characteristics of objects, which can be useful for the robot, especially in NAMO.

By understanding the nature of the obstacles, whether they are furniture, appliances, or other entities,
robots can make more informed decisions about how to interact with their environment. For example,
knowing whether an obstacle is a chair or a table can influence the robot’s strategy for moving it or
navigating around it. Semantic information can also help in predicting the potential movability of objects
and in planning the most efficient path with minimal energy expenditure.

Table 1.1: Overview of differentiating NAMO algorithms.

Author & Reference Env. Mov. Quant. Cost C-Space Task Plan-
ner

Transit
Planner

Transfer
Planner

Demo

Stilman et al. [17] Full Given No Energy Disc. DFS A* BFS No

Wu et al. [18] None Man. No - Disc. Custom D*lite DFS No

Nieuwenhuisen et al. [25] Full Given No Distance Cont. Custom RRT RRT No

Mueggler et al. [26] Full Rec. No Time Disc. Custom A* Dijk Yes

Castaman et al. [27] Full Given No Time Disc. KPIECE A* A* No

Moghaddam et al. [28] Full Given No Energy Cont. DFS Dijk + VG Dijk + VG No

Meng et al. [29] Part. Rec. No Distance Cont. Custom RRT RRT Yes

Ellis et al. [23] Part. Man. No Distance Cont. Custom A* + VG - No

Legend: ’-’ = Not Found; ’+’ = Combination; Ref = Reference; Env = Environment; Quant = Quantified; C-space =
Configuration-Space; Man = Manipulation, Part = Partial, Rec = Recognized, Disc = Discrete, Cont = Continuous, Demo = Real

World Demonstration

1.2. Contribution
This work demonstrates the integration of semantic information into the NAMO-solving process, en-
hancing decision-making regarding object manipulation to achieve goal positions effectively. Inspired
by the framework proposed by Ellis et al. [23], which uses IsaacSim as a physics engine to model state
transitions of the environment, we introduce the Semantic Visibility Graph combined with Model Predic-
tive Path Integral (SVG-MPPI). This method accommodates NAMO without explicit obstacle placement
or the need for a task planner, distinguishing it from the solutions outlined in Table 1.1. The main con-
tributions of this work include:

1. Integration of Continuous Quantified Movability: We introduce quantified movability of obsta-
cles on a continuous scale instead of binary classification. Supported by semantic information,
this quantified movability is included in the global path planner as a node cost in the weighted
semantic visibility graph (SVG).

2. Contact-Force Minimization using MPPI: Our approach incorporates the concept of movability
into the local planner by minimizing contact forces between the robot and the environment while
following the trajectory from start to goal.

3. Elimination of Explicit Obstacle Placement: We remove the need for explicit obstacle place-
ment used in existing NAMO methods, thereby eliminating the overhead of a task planner for
defining the sequence of actions.

4. Replanning on Movability Evaluation: We evaluate the quantified movability of obstacles dur-
ing interactions and replan if the evaluation does not match the initial estimation.
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1.3. Overview
First, Chapter 2 will cover important preliminaries to provide the necessary background information on
the topics and algorithms addressed in this thesis. Specifically, the widely used Visibility Graph will
be explained, along with the MPPI control algorithm used to determine control actions. Following this,
Chapter 3 will detail the modifications to components of the proposed SVG-MPPI algorithm, explaining
and motivating each change. Next, in Chapter 4, the solution is tested in various simulated environ-
ments to showcase and quantify its behavior with a final demonstration in a real life scenario. The
results of the test are then discussed in Chapter 5. Finally, Chapter 6 will conclude, accompanied by a
critical discussion of the results and potential follow-up actions to further extend this work.



2
Preliminaries

This chapter provides essential background information for the thesis. It starts with an overview of the
traditional Visibility Graph (VG) algorithm, highlighting both its strengths and limitations. The discussion
then moves to the Model Predictive Path Integral (MPPI) control strategy used in IsaacGym1, a physics
simulation environment responsible for computing system dynamics and determining control actions
for the robot.

2.1. Visibility Graphs (VG)
A Visibility Graph represents intervisible locations for an agent, forming a weighted graph where each
node corresponds to a point location and each edge denotes a visible connection between them [30].
This graph provides a way of constructing a set of nodes and edges between a starting node and a
goal node, facilitating path planning algorithms like Dijkstra [31], Bi-directional Dijkstra [31], or A* [32].

Visibility graphs inherently address the challenge of navigating around stationary obstacles by main-
taining a sufficient distance from each obstacle within the environment. Nodes are placed at a safe
distance from the obstacles, where the safety margin is considered a hyperparameter and often de-
pends on the robot [33]. Edges connect nodes that have a direct line of sight or visibility to each other
without passing through any obstructing obstacles. This direct visibility ensures that paths in the graph
are obstacle-free, minimizing detours to find a path towards the goal.

Algorithm
In Algorithm 1, the construction of the visibility graph is summarized on which we will later build our
semantic visibility graph in Section 3. Here, V represents the set of all vertices in the visibility graph,
while E denotes the set of edges connecting these vertices. The algorithm iterates through each poly-
gon Si in the set of obstacles S, inflates it to account for a safety margin r, and extracts its vertices
Pi. For each vertex v in Pi, the algorithm identifies visible verticesW using the visibleVertices method.
Next, it adds edges connecting v to each visible vertex w in the set of edges E and then adds v to the
set of vertices V . The algorithm concludes by returning the constructed visibility graph G = (V,E).

The method visibleVertices takes as input a set S of polygonal obstacles and a point v in the plane
(typically a vertex of one of the obstacles in S) and outputs all obstacle vertices that are visible from
v. A vertex w is deemed visible from v if the segment (v, w) doesn’t intersect any obstacle’s interior.
This requires searching with w along the obstacle edges intersected by the half-line starting at v and
extending through w. If the edge does not intersect any of the obstacles, it is considered to be in free
space and allowed to be added to the set of edgesE. Applying the visibleVerticesmethod to all vertices
of all polygons implies full visibility for the algorithm, enabling the construction of the entire map.

1https://developer.nvidia.com/isaac-gym

6
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Algorithm 1: Visibility Graph [30]
1 input A set S of disjoint polygonal obstacles.
2 output The visibility graph G(S).
3 V ← ∅;E ← ∅
4 for i = 0, . . . , |S| do
5 Pi ← vertices of inflated polygon Si with safety margin r
6 for j = 0, . . . , |Pi| do
7 v ← Pi[j]
8 W ← visibleVertices(v, S)
9 for each vertex w ∈W do
10 E ← E ∪ {(v, w)}
11 V ← V ∪ {v}

12 return G = (V,E)

limitations
Visibility graphs possess inherent limitations. Suppose S comprises a collection of disjoint polygonal
obstacles within a plane, amounting to n boundaries. Constructing a visibility graph for S means identify-
ing pairs of vertices that share direct line-of-sight connections. Initially, this detection can be performed
in O(n) time per vertex. However, fully evaluating all potential vertex pairs escalates the complexity to
O(n3), placing substantial computational demands [30]. Over time, several improvements have been
proposed to mitigate the time complexity of this naive search algorithm. Examples include the radial
scanning algorithm by Lee [34], the plane-sweep algorithm introduced by Ghosh and Mount [35], and
the convex-point approach suggested by Priya and Sridharan [36]. More modern methodologies in-
clude the triangular approach Ganguli, Cortés, and Bullo [37] and the use of geometric spatial querying
Masud et al. [38].

Another significant drawback arises when the environment contains disconnected regions due to ob-
stacle barriers. In such cases, not all locations are visible to each other, leading to gaps in the visibility
graph. For instance, if obstacles surround the goal position, the visibility graph algorithm fails to find a
path because there are no feasible edges connecting nodes within the visible region to the goal. This
limitation prevents the algorithm from providing a solution in environments where the goal is entirely
enclosed by obstacles, effectively isolating it from the start position or any other reachable area.

2.2. Model Predictive Path Integral (MPPI)
Model Predictive Path Integral (MPPI) control is a sophisticated control strategy designed to solve
stochastic optimal control problems in discrete-time dynamical systems. MPPI leverages a sampling-
based approach to determine optimal control actions, making it particularly effective in complex or
uncertain environments [39].

The core of MPPI involves generating multiple sequences of control inputs, each perturbed by noise
to explore a wide range of possible actions. These sequences are then used to simulate potential
trajectories of the system using a systemmodel over a specified time horizon. A cost function evaluates
each trajectory based on criteria such as distance to waypoint and obstacle collisions. The trajectories
with lower costs are given higher importance, and the control inputs that generate these trajectories are
weighted more heavily. This process iteratively refines the control strategy, guiding the system toward
optimal performance while accounting for uncertainties in the environment and system dynamics.

In the works presented by Pezzato et al. [40], MPPI has been implemented using the physics engine
provided by IsaacGym. MPPI provides the control framework, leveraging its sampling-based method-
ology to identify high-performing control actions, while IsaacGym simulates the robot’s behavior and
its environment. Leveraging IsaacGym’s parallel environmental setup, which uses GPU power for con-
current computing, multiple action samples, also known as rollouts, can be simulated simultaneously,
drastically reducing computation time for the robot.
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Algorithm
The integration of MPPI with IsaacGym is detailed in Algorithm 2. The algorithm starts by initializing an
input sequence Uinit as a vector of zeroes, with a length corresponding to the time horizon T in steps.
To explore the input space, K sequences of additive input noise Ek are sampled using the Halton
Sequence, chosen for its ability to enhance exploration and produce smoother trajectories [41].

The environment state x is observed, and all rollouts are reset to this state. The sampled noise Ek

is added to Uinit, which represents the best control action from the previous sequence. Using these
action sequences, rollout costs are computed. IsaacGym facilitates this by computing the next state
xt+1 from xt and control input vt, avoiding the explicit definition of system dynamics f(xt, vt).

In the computeRolloutCost function, sampled input sequences Vk are used to simulate state trajectories
Qk over a planning horizon T . The cost of each trajectory Sk is then calculated using a cost function
C, as detailed in Equation (2.1). This cost function measures the performance of the system, aiming
to be minimized. To emphasize the importance of earlier actions, the cost is discounted using a factor
γ, making early actions more significant in the overall evaluation.

Once the costs are determined, the function calculates importance sampling weights wk to rank the
quality of each rollout, as shown in Equation (2.2). The weights are computed based on the cost
values, with the normalization factor η ensuring that the weights sum to 1. The parameter β adjusts
how sensitive the weights are to differences in cost Sk, influencing how the importance is distributed
among the rollouts. The term ρ represents the minimum sampled cost, helping to keep the weights
positive and properly scaled.

Sk =

T−1∑
t=0

γtC(xt,k,vt,k) (2.1)

wk =
1

η
exp

(
− 1

β
(Sk − ρ)

)
,

K∑
k=1

wk = 1 (2.2)

The optimal control sequence U∗ is approximated as a weighted average of the sampled inputs, with
the weights reflecting their respective importance. Once U∗ is computed, it updates the initial control
sequence Uinit for the next iteration. The first action u∗

0 of the new sequence U∗ is applied to the system,
and this process repeats until the task is completed. Leveraging the GPU capabilities of IsaacGym,
all rollouts can be computed in parallel, significantly reducing computation time and enhancing the
efficiency of the robot’s control.

Algorithm 2: MPPI Using IsaacGym [40]
1 Initialize:
2 Uinit = [0, . . . , 0]
3 Ek ← sampleHaltonSplines()
4 while taskNotDone do
5 x← observeEnvironment()
6 resetSimulations(x)
7 for k = 1 to K do
8 Vk ← Uinit + Ek ; // in parallel
9 [Qk, Sk]← computeRolloutCost(Vk, γ) ; // in parallel
10 wk ← importanceSampling ; // in parallel
11 β ← updateBeta(β, η)
12 U∗ ←

∑K
k=1 wkVk

13 Uinit ← timeShift(U∗)
14 applyInput(u∗

0)
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2.3. Semantics To Object Movability
Affordances, a concept introduced by psychologist Gibson, describe the potential interactions between
an agent and its environment, based on the object’s properties and contextual factors [42]. These
interactions are inherently subjective and vary with the capabilities of the agent. For instance, humans
can intuitively recognize that a ball can be rolled, while the ease of this action depends on specific
characteristics of the ball, such as its material, size, and density. Affordance is not exclusive to humans,
in robotics affordances are extended to how robots interact with their environment [43, 44].

Semantic information is essential for interpreting affordances, as it involves understanding an object’s
properties and its roles in different contexts [45]. For instance, a flat surface can afford different uses
depending on its context. In a home, a table surface is used for placing and organizing items, aided by
surrounding furniture. Outside, the same flat surface might be used for walking or resting, influenced
by its environment, like cars and trees. This shift in utility can be understood through contextual infor-
mation, which considers the surrounding environment, or semantic information, which relates to the
object’s functional roles.

In practice, affordances are often simplified into binary categories [46], which can obscure important
details such as the costs associated with actions, including energy and time. This simplification can
be problematic as it fails to account for the full range of interactions between objects and agents. For
instance, categorizing a ball simply as ”rollable” overlooks the differences between various types of
balls, such as a football versus a bowling ball. This limitation highlights the need for a more nuanced
approach that incorporates semantic understanding to capture the complexities of object interactions.

Estimating Movability
In the context of NAMO, affordances often translate to the concept of movability, which can be further
simplified to pushability for robots without manipulators [47]. For example, when a robot encounters
an obstacle like a box, labeling it as ”movable” does not account for the effort required to move it,
which depends on factors such as the box’s size, mass, inertia, and ground friction [44]. The agent’s
capabilities are leading in determining the affordance; an adult might easily move a box, while a child
might struggle. Therefore, the semantic understanding of movability involves recognizing how various
factors influence the effort required for manipulation.

Estimating movability is an area that has not been extensively explored in the literature. Both learning-
based and non-learning methods usually focus on determining the probability of movability but often
neglect the associated costs or handling difficulties. Non-learning methods, such as those using geo-
metric primitives extracted from point cloud data [48] or pose graphs to monitor object behavior [49],
offer valuable insights but may not fully capture the nuances of cost and semantic context.

Learning-based methods, while versatile, often emphasize human-centric affordances, complicating
their application to robots. For instance, models like AffordanceNet [50] are designed to detect affor-
dances such as graspability but are typically trained on datasets that focus on human interactions. This
human-centric focus can make it challenging to adapt these models for robots. Recent advancements,
such as visual interaction models [51] and object-based representations [52], show promise but may
require extensive data and might not fully address the nuances of movability for different robots.

Evaluating Movability
Evaluatingmovability is well-documented, with clear distinctions between analytical and learning-based
models. Analytical methods, including those based on classical mechanics for planar pushing [53] and
friction estimation [54], rely on strong assumptions such as quasi-static conditions and simplified friction
models. While foundational, these methods might not always capture the complexities of real-world
interactions.

On the other hand, learning-based approaches offer greater flexibility. Recent advancements in rein-
forcement learning and neural physics engines [55, 56] provide dynamic methods for understanding
object manipulation. Techniques incorporating tactile feedback [57] and interactive learning models,
such as the ”push to know” framework [58], represent significant progress. These methods enhance
the robot’s ability to predict and adapt to the costs of object manipulation, offering a more nuanced
understanding of movability.



3
Methodology

This section introduces the Semantic Visibility Graph (SVG) combined with the Model Predictive Path
Integral (MPPI), abbreviated as SVG-MPPI. This solution is specifically designed for navigating indoor
environments without requiring explicit object placement to establish pathways toward the goal. The
chapter provides a detailed overview of the solution’s procedural steps and integral components.

Figure 3.1 clarifies the solution by outlining three primary components: SVG, Shortest Path, and MPPI.
Within the SVG framework, the environment is represented as a 2D map with discrete objects char-
acterized by semantic attributes. A weighted graph is constructed based on the spatial properties of
obstacles, including their size and movability. This graph serves as the basis for applying a shortest-
path algorithm to compute waypoints from the initial position to the goal.

Movability is extended to a continuous value, allowing certain objects to be more favorable to move
compared to others. Mass is identified as the primary semantic property for estimating movability. In
practice, this property can be estimated based on object categories or determined using advanced
learning methods such as Image2Mass [59] and Galileo [60]. Additionally, mass can be assessed
through object interactions using learning-based techniques, including tactile feedback [57], the ”push
to know” model [58], or by observing object dynamics during manipulation [61]. It is important to note
that deriving mass from environmental data is beyond the scope of this work, and therefore mass
distributions are assumed to be known a priori.

The mass of an object is represented as a Gaussian distribution with a mean and standard deviation
for each object category. If the mass is below the threshold that the robot can handle for pushing,
the object is deemed movable, with lighter objects being more favorable. Friction is assumed to be
constant across all objects. However, the strategy can be improved if additional semantic information
is available.

The MPPI strategy directs velocity commands for the robot. Using a customized objective function and
adhering to specified constraints, the control actions guide the robot through waypoints while minimiz-
ing manipulation efforts. When manipulation fails, the algorithm adjusts its assessment of obstacle
movability and recalculates the path generation process accordingly. The execution concludes either
when no path to the goal can be found or when the goal is reached.

10
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Figure 3.1: Overview of the SVG-MPPI solution to navigate the environment.
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3.1. Semantic Visibility Graph (SVG)
This section introduces an extension to traditional Visibility Graphs (VG) that incorporates continuous
movability. Traditional VGs are limited when obstacles obstruct parts of the map, hindering progress
toward the goal. To overcome this limitation, the Semantic Visibility Graph (SVG) adds new nodes
based on the (semantic) movability of obstacles. This alteration involves strategically placing extra
nodes near movable obstacles and including additional node costs for push actions needed to access
these nodes. These new passage nodes connect previously disconnected sets of nodes and vertices,
thereby creating new pathways. Details of the modified algorithm can be found in Algorithm 3.

The algorithm’s initial phase, lines 1-11 in Algorithm 3, follows the original approach of VGs outlined
in Chapter 2. Obstacles are inflated to include a safety margin, and nodes are positioned at the ver-
tices of these free-space polygons. Each node connects to visible vertices, ensuring that edges avoid
intersecting other obstacles, resulting in vertices and edges being at a safe distance from the obstacles.

The subsequent phase, lines 12-19 in Algorithm 3, introduces passage nodes strategically placed near
movable obstacles. First, unique combinations of obstacles on the map are identified. Obstacles that
do not overlap when inflated with the safety margin are considered sufficiently apart for the robot to pass
between. Pairs where the inflated obstacles overlap, meaning the distance between the two obstacles
is below twice the safety margin, are too close for the robot to pass through.

Pairs considered too close to pass between, and with at least one movable obstacle (mass below
the allowed threshold), can be processed for a passage. These newly created passage nodes are
integrated into the weighted visibility graph similarly to existing nodes, establishing connections through
visible vertices. As a result, previously disconnected regions are now linked, allowing shortest-path
planning to reach previously inaccessible areas. However, accessing these passage nodes requires
the robot to manipulate an obstacle, adding cost to visiting these nodes.

The specifics of node placement and visitation costs for passage nodes will be explained in subsequent
sections. Following this, a shortest path algorithm is applied to the weighted graph to determine a path
to the goal, considering both obstacle manipulation and movement between waypoints.

Algorithm 3: Semantic Visibility Graph
1 Input: A set S of disjoint polygonal obstacles.
2 Output: The visibility graph G(S).
3 V ← ∅;E ← ∅
4 for i = 0, . . . , |S| do
5 Pi ← vertices of inflated polygon Si with safety margin r
6 for j = 0, . . . , |Pi| do
7 v ← Pi[j]
8 W ← visibleVertices(v, S)
9 for each vertex w ∈W do
10 E ← E ∪ {(v, w)}
11 V ← V ∪ {v}

12 for each pair (Pi, Pj) where i ̸= j do
13 if distance between Pi and Pj < 2r then
14 if mass(Pi) ≤ max_mass or mass(Pj) ≤ max_mass then
15 p← passageNodes(Pi, Pj) ; // Generate Passages
16 W ← visibleVertices(p, S) ; // Connect Passages
17 for each vertex w ∈W do
18 E ← E ∪ {(p, w)}
19 V ← V ∪ {p}

20 return G = (V,E)
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3.1.1. Passage Nodes
This section describes a method for strategically placing passage nodes to connect areas obstructed by
movable obstacles. The primary objective of these nodes is to link disconnected regions of the visibility
graph, thereby facilitating paths through blocked waypoints. This method assumes that the robot has
complete visibility of the entire map or room and can identify objects using basic semantic information,
such as their class and mass.

Initially, inspiration is drawn from the Separating Hyperplane Theorem [62], which states that if two con-
vex sets are disjoint, there exists a hyperplane that separates them. This theorem helps to understand
that a line or space can exist between the obstacles. However, even with such a space or line, the exact
node placement is not yet defined. Therefore, a different method for calculating entry and exit points
between two convex sets is introduced. By defining a small area between two convex shapes, entry
and exit points are created, enabling node placement based on the points reachable by both disjoint
regions. The stages of constructing these passage nodes are discussed below, with stage numbers
referencing the corresponding visualizations seen in Figure 3.2.

Stage 1-2
To create the passage nodes, obstacle pairs are first identified. Let O = {O1, O2, . . . , On} denote the
set of known obstacles in the environment. Unique pairs (Oi, Oj) are generated where i ̸= j, filtered
based on their distance and mass properties. The pairs P = {(Oi, Oj) | d(Oi, Oj) ≤ 2r} consist of
obstacles too closely spaced for the robot to pass between, with at least one obstacle in each pair
being movable. For each pair (Oi, Oj) ∈ P , convex hulls A and B are constructed around the vertices
of polygons Oi and Oj respectively. These hulls define the outer boundaries of the polygons, ensuring
coverage of all vertices.

In Figure 3.2, the first two steps show a unique combination of two movable obstacles: a hexagon (O1)
and a square (O2), with masses m1 = 20 kg and m2 = 5 kg, respectively. Both obstacles are already
convex and below the fictional movability threshold of 30 kg. A fictional safety margin r = 1meter is set
to demonstrate that the minimum distance between the two shapes is below the threshold, 0.534 < 2r.

Stage 3-4
SubsetsA′ ⊆ A andB′ ⊆ B are identified by selecting the closest points betweenA andB. Specifically,
each vertex of obstacle A is matched with the closest point on convex hull B, and vice versa. This
process ensures A′ and B′ consists of points that establish the closest correspondence between the
vertices of the two polygons, facilitating the creation of a new polygonal area C between Oi and Oj .
Polygon C inherently defines two boundaries that encapsulate the area between the two polygons,
serving as entry and exit points connecting the two areas.

In Figure 3.2, the closest correspondence points on the other polygon are shown as colored lines and
points. Using these points, the outer boundary of the convex hull can be defined, where there are
exactly two boundaries with points on both shapes, represented as the entry and exit boundaries.

Stage 5-6
A node is placed on both the entry and exit boundary and is shifted according to the masses of the
obstacles. The starting point v1 of the line within obstacle Oi or Oj is identified, along with the cor-
responding mass mi or mj . The total boundary length l is then divided by the total mass mi + mj

and multiplied by the weight of the mass of the obstacle where the node is positioned. The position
of the node is adjusted to be further from the heavier obstacle and closer to the lighter one, with the
interpolation length limited by the safety margin r. This is based on the following interpolation formula:
p = (1 − t)v1 + tv2, where t =

mj

mi+mj
and the maximum interpolation length is r. This ensures that

the node is placed proportionally closer to the lighter obstacle and further from the heavier one, while
ensuring the placement does not exceed the safety margin r, balancing the placement for optimal
navigation.

In Figure 3.2, the center of each boundary is shown, after which it is shifted away from the heavier
obstacle (the hexagonOi) and towards the lighter obstacle (the squareOj). The nodes are then labeled
as passage nodes, indicating that they can serve as both entry and exit points.
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Figure 3.2: Example of a passage node construction between two convex polygons considering a safety margin of r = 1meter.

Figure 3.3: Normal Visibility Graph
(VG).

Figure 3.4: Semantic Visibility
Graph (SVG)

Figure 3.5: Weighted Semantic Visibility
Graph (SVG).

Figure 3.6: A simple environment for comparison of Visibility Graph (VG) and Semantic Visibility Graph (SVG), including the
weighted SVG with node costs.
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Semantic Node Cost
TheSVGalgorithm extends Visibility Graphs to accommodate scenarios withmovable obstacles through
the strategic placement of nodes known as passage nodes. In this framework, edge costs represent
the Euclidean distance between two nodes. Additionally, an optional node cost reflects the extra effort
required to move an obstacle to access a passage node. This section outlines how these node costs
are calculated.

Two subsets of nodes are defined: free-space nodes (Vfree) and passage nodes (Vpassage). Free-space
nodes have a cost of zero, as no pushing action is required to access them. In contrast, passage nodes
require a ”push” action for the robot to reach them. The cost for these nodes is determined based on the
distance each obstacle must be moved to create the passage and the mass of the obstacles involved.

The boundary, illustrated in Figure 3.2 as entry and exit points i and j, defines the Euclidean distance
from the passage point to the obstacles. For each passage node, the cost is computed using the
distances from the passage point to the lighter and heavier obstacles, adjusted by their respective
masses. Specifically, the cost is calculated by:

ck =

{(
max(0, 1− di

r ) ·mi

)
+
(
max(0, 1− dj

r ) ·mj

)
if vk ∈ Vpassage

0 if vk ∈ Vfree
(3.1)

Here, di and dj represent the distances from the passage point to the obstacles, while mi and mj are
their respective masses. Points closer to heavier obstacles incur a higher cost due to the increased
impact of the obstacles’ weight. This reflects the greater effort required by the robot to move or navigate
around these heavier obstacles.

This formulation calculates the cost based on the total effort required to move obstacles, taking into
account both their distance from the passage point and their mass. Figure 3.6 illustrates a hallway
scenario where the goal position is obstructed by two movable obstacles of equal weight. Figure 3.3
shows the standard Visibility Graph (VG), highlighting the disconnected regions of the graph. Figure
3.4 visualizes the passage nodes, while Figure 3.5 presents the weighted nodes, with color coding to
indicate their associated costs.

Edge Case and Exceptions
Obstacles in indoor environments can vary widely in size and shape. Some obstacles have straight-
forward convex geometries, such as simple polygons, as illustrated in Figure 3.2. Others, like corner
sofas, feature more complex, non-convex forms. The method proposed for identifying passage nodes
is designed to handle these diverse scenarios effectively. Nonetheless, certain exceptions must be
considered to understand the algorithm’s robustness in different situations and edge cases.

The algorithm generates unique combinations of all known obstacles on the map, but there are cases
where no passage can be created. For example, if both obstacles are classified as non-movable due
to their mass, it is not possible to shift any obstacle to create a passage. Similarly, if the convex hulls of
the obstacles overlap, the algorithm cannot place passage nodes effectively, resulting in no passage
being created. When dealing with non-convex shapes, the algorithm approximates them as convex
shapes. This conservative approach means that the algorithm assumes less space than is available.

Figure 3.7 illustrates the application of the algorithm to simple rectangular shapes, highlighting its effec-
tiveness with basic convex geometries. Figure 3.8 shows various scenarios involving convex polygons.
It includes cases where the shortest distance involves a node from each polygon, a node from one
polygon, and a boundary from another, and where the closest points are on two boundaries. Finally,
Figure 3.9 demonstrates how the algorithm handles non-convex shapes by treating them as convex,
thereby providing conservative calculations for passage nodes.
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Figure 3.7: Examples of rectangular polygons and their corresponding passage nodes, showcasing three distinct examples:
(1) Two movable obstacles with differing boundary lengths at the passage, (2) Two movable obstacles with similar boundary

lengths at the passage, and (3) A single movable obstacle.

Figure 3.8: Examples of convex polygons and their corresponding passage nodes, illustrating three distinct examples: (1) Two
movable obstacles with vertices at the passage, (2) Two movable obstacles with a vertex and an edge at the passage, and (3)

One movable obstacle with two boundaries at the passage.
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Figure 3.9: Examples of non-convex polygons and their corresponding passage nodes, showcasing three distinct cases: (1)
Two movable obstacles with non-overlapping convex hulls, (2) Two movable obstacles with overlapping convex hulls, and (3) A

single movable obstacle.

(a) Shortest path algorithm output. (b) Interpolation on the shortest path output.

Figure 3.10: Defining the waypoints for the robot to follow based on the weighted graph of SVG.
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3.2. Shortest Path
The Semantic Visibility Graph (SVG) creates a weighted graph where edge costs represent the dis-
tances between waypoints, and node costs reflect the effort required to move obstacles out of the way,
as detailed in Section 3.1. This section describes the application of a shortest-path algorithm to find a
path and the use of interpolation to ensure a consistent interval between waypoints.

In an SVG, all edge costs are greater than zero, and the graph is considered undirected. Visibility
graphs inherently support multiple queries, enabling path planning from various start and end points,
provided the environment remains unchanged. However, this flexibility is reduced when movable ob-
stacles are present, as interactions with these obstacles alter the environment.

Dijkstra’s algorithm is traditionally employed to efficiently find the shortest path on such graphs, com-
puting routes from a single source node to other nodes with non-negative edge weights [31]. Among
the variations of Dijkstra’s algorithm, A* is notable for its use of heuristics to guide the search towards
promising vertices [32]. The A* algorithm typically uses heuristics such as Euclidean or Manhattan
distance to ensure admissibility (the heuristic never overestimates the true cost to reach the goal) and
consistency (the heuristic is monotonically non-decreasing along the path).

Several adaptations of A* offer practical benefits for different scenarios. For instance, Bi-directional A*
[63] performs simultaneous searches from both the start and goal nodes, potentially reducing search
time by finding paths that converge midway. Anytime Repairing A* begins with a quick but subopti-
mal solution and progressively refines it over time [64]. Real-time Adaptive A* dynamically adjusts
it’s heuristic based on real-time feedback, making it useful for navigating environments with changing
conditions or unexpected obstacles [65]. Dynamic A*, also known as D*, is designed for environments
that are partially known or continuously evolving, proving particularly advantageous for robotic path
planning [66].

Selecting the most suitable shortest path algorithm for the SVG-generated weighted graph depends on
the graph’s properties and the environment. When full environmental visibility is available, there are no
dynamic entities, and the configuration space meets the criteria for admissibility and consistency, A*
with Euclidean distance as the heuristic is most appropriate. This approach assumes a custom weight
function where traversing an edge incurs the edge cost and visiting a node adds the node cost.

Figure 3.10a illustrates the result of applying the shortest path algorithm to the SVG-weighted graph
from the previously discussed example. The figure demonstrates that the passage nodes are effectively
utilized and that the direct line represents the shortest path from the start to the finish.

3.2.1. Waypoint Interpolation
This section describes the interpolation method used between generated waypoints to ensure a con-
sistent interval between them. This approach standardizes the distance between waypoints, which is
crucial for maintaining uniform behavior of the objective function across varying waypoint distances.

Interpolation estimates values within the range of known data points. Specifically, splines are used
to create smooth curves that pass through these data points [67]. Among various spline types, linear
splines connect points with straight lines, while quadratic and cubic splines use polynomial functions
to provide smoother curves. Cubic splines, in particular, offer continuous first and second derivatives,
balancing smoothness with complexity.

Despite the advantages of higher-order splines, such as better continuity in velocity and acceleration,
they can introduce unwanted curvature that might intersect with obstacles. To avoid this, a first-order
polynomial is employed for interpolation between waypoints. This approach uses straight lines with a
default interval of α = 0.5 meters, ensuring that waypoints are connected linearly and reducing the risk
of intersecting obstacles.

Figure 3.10b illustrates how this interpolation method is applied to the shortest path algorithm’s output.
The default interval value helps maintain a consistent distance between waypoints, preventing nodes
from being placed too close together and ensuring the path remains clear of obstacles.
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3.3. MPPI with Contact-Force Minimization
The output of the shortest path algorithm, described in Section 3.2, which uses the weighted graph pro-
duced by the Semantic Visibility Graph algorithm (explained in Section 3.1), is a sequence of waypoints
from the starting position to the goal. Using Model Predictive Path Integral (MPPI) as the local control
strategy, the goal is to follow these waypoints effectively while minimizing the robot’s push actions. This
section details the constraints and objective function of MPPI to achieve precise waypoint following and
reduce push actions by minimizing contact forces on the robot.

To understand the details of MPPI, it’s essential to recap several key variables, as introduced in Section
2. MPPI involves sampling a total ofK state trajectories Qk, often referred to as rollouts, across a time
horizon T . Each rollout Qk represents a series of state vectors xt,k, meaning each rollout k has a
series of prediction steps t over a total horizon of T . The state vector specifies the robot’s position
and orientation (x, y, θ). The derivative of the state vector, ẋt,k, denotes the velocities associated with
these state variables. In the context of MPPI, vt,k signifies the action applied to the robot during each
prediction step in each rollout. The action is based on velocity control for a holonomic robot, having
the same degrees of freedom in configuration space as in state space.

3.3.1. Constraint Violation
The main goal of MPPI control is to minimize a cost function over a finite time horizon while satisfying a
set of constraints. Instead of directly solving the optimization problem, MPPI samples various potential
control trajectories and evaluates them using the cost function. As with many optimization problems,
MPPI incorporates constraints that define the feasible region for solutions, addressing physical limita-
tions, safety requirements, and other specific considerations.

In the proposed framework, SVG-MPPI, constraints are defined to ensure feasibility control inputs. Only
hard constraints are applied, which must always be satisfied. The key constraints in SVG-MPPI are
detailed in equations 3.2a, 3.2c, 3.2d, and 3.2b. The state transition constraint (3.2a) describes how
the system evolves at each prediction step t based on its current state xt and control inputs vt. Since
MPPI is used in combination with Isaac Gym, the state transition is managed by the physics engine [40].
The state feasibility constraint (3.2b) requires the robot’s state to remain within a defined feasible region
throughout its operation. The control input constraint (3.2c) specifies the set of allowable actions for the
robot, ensuring that velocities remain within the defined maximum andminimum limits for the holonomic
robot. The initial state constraint (3.2d) ensures that the robot starts from a predetermined known pose.

xt+1 = f(xt,vt) , t = 0, 1, . . . , T − 1 State Transition (3.2a)
xt ∈ X , t = 0, 1, . . . , T − 1 State Feasibility (3.2b)
vt ∈ V , t = 0, 1, . . . , T − 1 Control Input (3.2c)
x0 = xinit Initial State (3.2d)

3.3.2. Cost function
MPPI aims to minimize its objective function by evaluating the accumulated cost Sk for each sample k
over a planning horizon T . As detailed in Equation 2.1 on page 8, Sk represents the cumulative cost
across all prediction steps, discounted by a factor γ for each rollout k. The cost function c(xt,k,vt,k)
assesses the state xt,k and the action vt,k applied at each prediction step t within rollout k. This section
offers a detailed explanation of the cost function.

Each rollout is evaluated using the cost function at every prediction step t. IsaacGym’s support for par-
allel computation allows these evaluations to be efficiently handled through matrix operations. Instead
of calculating vectors for each prediction step t and rollout k individually, matrices are used to aggre-
gate data. Specifically, for each prediction step t, a matrix is constructed where each row represents
data from a different rollout. This approach enhances computational efficiency by leveraging parallel
processing capabilities.
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The total cost function is defined in Equation 3.3. This function distinguishes between stage costs and
terminal costs. The stage cost is applied at every prediction step t whereas the terminal cost is applied
solely at the final prediction step of the horizon.

c(Xt, Ẋt,Vt,Ft,P) =

{
cterminal(Xt, Ẋt,Vt,Ft,P) , if t = T − 1

cstage(Ẋt,Vt,Wcontrol) , otherwise
(3.3)

The stage cost function and terminal cost function are detailed in Equations 3.4a and 3.4b, respectively.
Here, Xt represents the matrix of state vectors for all rollouts at prediction step t, Ẋt is the matrix
of velocity vectors, Vt denotes the matrix of control actions, and Ft is the matrix of contact force
tensors provided by Isaac Gym for all actors in the environment. The matrix P contains all waypoints,
determined by the shortest path algorithm and interpolated between these points.

cstage(Ẋt,Vt) = ccontrol(Ẋt,Vt,Wcontrol) Stage Cost (3.4a)
cterminal(Xt, Ẋt,Vt,Ft,P) = ccontrol(Ẋt,Vt,Wcontrol)

+ wdistance · cdistance(Xt,P)

+ wprogress · cprogress(Xt,P)

+ wrotation · crotation(Xt,P)

+ wforce · cforce(Ft)

Terminal Cost (3.4b)

The individual components each address distinct penalty conditions to assess the robot’s performance.
By placing most of the cost terms in the terminal cost, longer horizons provide greater flexibility during
the intermediate steps, as deviations are less penalized. Themotivation is to enable the robot to deviate
from the waypoints to find optimal trajectories around obstacles, thereby reducing push actions where
possible. The weights assigned to each cost component determine its relative importance and are
treated as hyperparameters. Table 3.1 provides explanations of the objectives for each component,
supplemented with additional descriptions for clarity.

Table 3.1: Description of cost components for SVG-MPPI.

Symbol Goal Description

ccontrol Penalize differences between
actions and velocities

Penalizes the difference between the desired velocity (action)
and the current velocity at each time step along the horizon.

cdistance Minimize distance to the next
waypoint

Penalizes the distance of the robot to the next desired way-
point position.

cprogress Favor progress over all the way-
points

Encourages the robot to advance along the path by rewarding
progress towards waypoints.

crotation Alignment of the robot with target
direction

Ensures that the robot is properly aligned with the direction of
the next waypoints.

cforce Minimize contact forces with the
environment

Penalizes the force exerted by the robot when it comes into
contact with obstacles.

The total cost is derived from a weighted combination of individual components, resulting in a unitless
value. Since each component operates on its own scale and range, the resulting penalties can vary
significantly, leading to challenges in tuning due to potential imbalances. To address this, each compo-
nent is normalized to ensure that its value falls within a standardized range of 0 to 1 before adjusting
the weights. This normalization simplifies the subsequent tuning process. While each weight factor for
the individual components is typically a scalar, the control weight consists of three distinct elements for
each control input.
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3.3.3. Cost Components
This section outlines the components of the cost function: distance cost, progress cost, control cost, ro-
tation cost, and force cost. Each component is assigned a weight, which reflects its relative importance.
These weights must be carefully tuned to achieve a balanced performance across different aspects of
the robot’s behavior.

Control Cost
To address jerky movements and oscillations around waypoints, a cost term is introduced to penal-
ize significant deviations between the velocity command and the robot’s current velocity. This cost is
computed based on the absolute difference between these velocities. As detailed in Equation 3.5a,
the difference is normalized by dividing by the maximum allowable velocity (umax), and then penalized
quadratically using a weight matrix. The weight matrix Wcontrol is diagonal, with each element corre-
sponding to the weights for the velocity components in the x and y directions, as well as the angular
velocity around the z-axis.

ccontrol(Ẋt,Vt,Wcontrol) =

(
|Ẋt −Vt|

umax

)T

Wcontrol

(
|Ẋt −Vt|

umax

)
(3.5a)

Distance Cost
The distance cost evaluates the importance of reaching the next waypoint. For the distance cost term,
the Euclidean distance between the robot’s current position and each waypoint is computed, as detailed
in Equation 3.6b. In this distance matrix Dt, each row corresponds to a different rollout, while each
column represents the distance to a waypoint for that rollout.

For each rollout, the waypoint closest to the robot is identified by finding the waypoint it with the smallest
distance in the corresponding row of Dt, as described in Equation 3.6c. The next waypoint to target
is determined based on the hyperparameter m. For SVG-MPPI, setting m = 1 means that the next
waypoint to target is the one immediately following the closest waypoint. If the waypoints are too close
together, m can be increased, but it + m must not exceed the total number of waypoints. Therefore,
the constraint 1 < it +m < |P| must be satisfied, where |P| is the total number of waypoints.

The computed distances are then normalized by a factor α to ensure that the distance cost remains
within the range of 0 to 1. For SVG-MPPI α = 0.5, reflecting the interpolation interval used in shortest
path calculations. This normalization prevents division by zero and maintains consistent scaling of
distances. The resulting distance cost is given by Equation 3.6a.

cdistance(Xt,P) =
Dit+m

t

α
, 1 < it +m < |P| (3.6a)

Dt = ∥Xt −P∥2 Distances to Waypoints (3.6b)

it = argmin
j

(Dt,j) Indices of Closest Waypoints (3.6c)

Progress Cost
The distance cost penalizes the deviation between the robot’s position and the next waypoint relative
to the closest waypoint. However, this approach might result in higher penalties for rollouts where the
next waypoint has a higher index i, even if it is further along the track. To address this, a penalty term
is introduced to account for the indices of the waypoints.

Similar to the distance cost, the indices it for each rollout are determined based on distances to all
waypoints D, and these indices are reused from the previous calculation. The relative difference rt
between the minimum and maximum waypoint indices is computed. If rt = 0, it means all rollouts are
targeting the same closest waypoint, so no additional penalty is applied.
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If rt > 0, indicating that different rollouts target different waypoints, a penalty is applied. This penalty is
linearly scaled from 0 to 1, where the lowest indices receive a maximum penalty of 1, and the highest
indices receive no additional penalty. This ensures that rollouts targeting waypoints further along the
track, which are preferable, are not unfairly penalized.

The vector it contains the indices of the closest waypoints for each rollout, as determined by Equation
3.6c. The scalar rt, representing the range of these indices, is computed using Equation 3.7b. The
penalty term cprogress, calculated by Equation 3.7a, adjusts the cost based on the waypoint indices. This
approach ensures that rollouts that end further along the path are preferred over those that fall behind.

cprogress(Xt,P) = 1− it −min(it)

rt
(3.7a)

rt = max(it)−min(it) Range Of Indices (3.7b)

Rotation Cost
The rotation cost measures how well the robot’s orientation aligns with the direction toward the next
waypoint. This alignment offers two main advantages: it makes the robot’s movement appear more
natural by ensuring its front is oriented along the path, and it aids navigation through narrow passages
by aligning the robot with the path as the width of a wheeled mobile robot is typically shorter compared
to the length [68].

The target angle θtarget is calculated using the atan2 function, which determines the angle between the
robot’s current orientation θrobot and the direction to the waypoint based on their relative positions, as
shown in Equation 3.8b. The resulting angle is normalized by π to fit within the range [0, 1], correspond-
ing to the atan2 function’s range of [−π, π]. The rotation cost crotation in Equation 3.8a quantifies the
difference between the robot’s current orientation and the computed target orientation.

crotation(Xt,P) =
|θtarget − θrobot|

π
(3.8a)

θtarget = atan2(Py − xy
t ,Px − xx

t ) Target Angle (3.8b)

Force Cost
The force cost quantifies the interaction forces exerted on the robot by its environment. During inter-
actions with obstacles, IsaacGym’s physics engine computes the forces applied to both the robot’s
joints, which are described in the robot’s URDF (Unified Robot Description Format), a standardized
XML format that outlines a robot’s physical structure, and the obstacles at each prediction step.

Rollouts that involve fewer push actions will accumulate less force over the prediction horizon T com-
pared to those with more frequent push actions. As a result, rollouts with higher cumulative contact
forces on the robot’s joints incur a penalty. In Equation 3.9a, cforce represents the normalized force cost,
where frob denotes the total cumulative force applied to the robot’s joints over the prediction horizon T
for each Rollout. The force matrix Ft at each prediction step t contains the forces f t

ij applied to joint i
at step t across all rollouts, with N being the total number of joints.

cforce(Ft) =
frob

max(frob) + ϵ
(3.9a)

frob =

T−1∑
t=0

N−1∑
i=0

f t
ij Cumulative Force (3.9b)
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The cumulative force frob is obtained by summing these forces across all joints and all prediction steps.
The normalized force cost is calculated by dividing frob by the maximum cumulative force observed
across all rollouts, with a small ϵ added to avoid division by zero. Although this penalty is considered
part of the terminal cost, the forces are calculated and stored at each stage throughout the prediction
horizon.

3.4. Movability Evaluation
The robot assesses the movability of objects based on their perceived mass distribution in the environ-
ment. Discrepancies between estimated and actual object properties, or incorrect object classification,
can lead to inaccuracies. If an object behaves differently than expected, the planned trajectory using
SVG-MPPI may become infeasible, necessitating replanning. This section outlines the conditions that
trigger replanning.

Replanning is initiated when an object initially assumed to be movable is found to be non-movable.
If an object fails to move as anticipated, its mass distribution is updated to the maximum threshold,
reclassifying it as non-movable. This approach avoids recalibration based on observed behavior, which
can be problematic due to difficulties in converting velocity feedback into accurate force and mass
estimates. Replanning is considered only when the robot is approaching its final waypoint.

The conditions that trigger replanning are detailed in Table 3.2. If any of these conditions are met, a
watchdog mechanism is activated. This mechanism uses a timer, twatchdog, to monitor if a predefined
threshold is exceeded. If twatchdog surpasses τreplan (set to 5000 milliseconds by default), replanning
is triggered. Replanning involves taking a new snapshot of the environment, updating the movability
data for the specific obstacle or obstacle class that did not behave as expected, and generating a new
graph and path to the goal.

Specifically, obstacles initially assumed to be movable but found non-movable will have their mass
distribution updated to the maximum threshold, reflecting their true non-movability. This update affects
both the global planning graph and the MPPI environmental data. If none of the conditions are triggered,
twatchdog is reset to zero, pausing the replanning process until a condition activates it again.

Table 3.2: Conditions for Replanning, their Descriptions, and Default Values.

Condition Description Default Value

Velocities are too close to zero Check if the robot’s joint velocities are very low,
which may indicate the robot is stuck or facing sig-
nificant resistance. If the magnitude of joint veloci-
ties ẋrob falls below the threshold, it suggests inef-
fective movement.

ϵ = 0.1

Desired velocity deviation from ac-
tual velocity

Assess whether actual joint velocities significantly
deviate from the desired velocities. A deviation is
significant if it exceeds λ percent of the desired ve-
locities. If the difference between actual velocities
ẋrob and desired velocities vdesired exceeds λ times
the magnitude of the desired velocities, replanning
is triggered.

λ = 0.75

The robot is slipping Evaluates whether the robot is slipping, indicated
by a stable position despite significant joint veloc-
ities. The robot is considered to be slipping if its
position xrob remains relatively constant while its
joint velocities ẋrob exceed µ.

µ = 0.1



4
Experimental Setup

This section details the experimental setup used to validate and benchmark the proposed solution,
covering both qualitative and quantitative aspects. The qualitative experiments demonstrate the algo-
rithm’s functionality and its ability to navigate to a blocked goal position in both simulated and real-world
environments. Meanwhile, the quantitative experiments compare the proposed method with other ap-
proaches, emphasizing the benefits of quantified movability for enhanced navigation.

The discussion starts with an overview of the experimental framework, including the hardware used
and the SVG-MPPI hyperparameters. It then provides a comprehensive explanation of the qualitative
and quantitative experiments conducted.

4.1. Experimental Framework
The experiments utilize the Dingo-O robot, an indoor mobile robot from Clearpath Robotics, known for
its omnidirectional wheels that enable movement in any direction without changing orientation, making
it holonomic 1. Although the Dingo-O lacks onboard sensors for navigation or mapping, it features a
ROS interface for precise control over its velocity, including linear velocities in the x and y directions
and angular velocity around the z-axis.

In the simulation environment, the Dingo-O is represented using the URDF model. For real-world
experiments, the actual physical robot is used. Both in simulation and the real world, obstacles are
limited to rectangular shapes due to IsaacGym’s support for only these convex customizable objects.
For perception tasks such as object localization and semantic labeling, IsaacGym provides tensor data.
Real-world experiments are conducted in a laboratory equipped with a Vicon high-precision tracking
system 2.

A summary of the experimental parameters is provided in Table 3 in Appendix C. The maximum push
mass is set to 30 kg, ensuring safe operation without risking damage to the robot or obstacles. A safety
margin of r = 0.3m, based on the robot’s width of 517mm, is applied to avoid collisions and ensure
smooth navigation between obstacles.

For waypoint navigation, the interpolation interval is set to α = 0.5m. This interval provides a balance
between computational efficiency and path smoothness. Replanning is triggered if the condition for
replanning is met for τreplan = 30 seconds, indicating that the robot needs to update its path and envi-
ronmental data. In the MPPI (Model Predictive Path Integral) control configuration, the simulation uses
a time step of dt = 0.08 seconds with a prediction horizon of 25 steps, resulting in a total prediction time
of 2 seconds. These settings are optimized to balance responsiveness and planning accuracy.

1https://clearpathrobotics.com/dingo-indoor-mobile-robot/
2https://www.vicon.com/

24
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Metrics
The followingmetrics are used to evaluate the performance of the solution in the quantified experiments:

Table 4.1: Metrics for evaluating the performance in the quantified experiments.

Metric Unit Description

Path-finding Success Rate Ratio (0-1) Proportion of successful attempts by the planner
in finding a viable path from the start to the goal
position. Calculated as the ratio of successful trials
to the total number of trials.

Reaching Goal Success Rate Ratio (0-1) Proportion of successful attempts by the robot in
reaching the goal position. Calculated as the ratio
of successful runs to the total number of simula-
tions.

Planner Computation Time Milliseconds Time required by the planner to generate a path
solution.

Goal Achievement Time Seconds Total duration taken by the robot to reach the goal
position from the start.

Trajectory Contact Force Newtons Contact force exerted by the robot while navigating
over the entire trajectory, with higher values indicat-
ing greater effort and lower efficiency.

4.2. Qualitative Experiments
The qualitative experiments aim to showcase the capabilities of the SVG-MPPI algorithm in navigating
to a blocked goal position while effectively managing both stationary and movable obstacles. This
section is divided into two parts: a simulated environment demonstration and a real-world application.

4.2.1. Setup A: Simulated Demonstration
Figure 4.1 presents a simple room setup where various obstacles obstruct the path to the goal posi-
tion. In this scenario, it becomes apparent that moving the top obstacle provides the shortest route to
the goal, which the robot is designed to prioritize. Additionally, this experiment will demonstrate the
algorithm’s adaptive behavior when the mass of the top obstacle is increased, rendering it immovable.
When the obstacle cannot be pushed, the robot recognizes the need to reroute and uses the lower
movable obstacles to find an alternative path to the goal. This highlights the algorithm’s flexibility and
responsiveness to wrong estimations of obstacle movability in the environment.

4.2.2. Setup B: Real World Demonstration
The real-world experiment illustrates the practical application of the SVG-MPPI algorithm on a physical
robot. Using the Vicon motion capture system, which provides precise positioning and orientation data,
the experiment replicates the perception pipeline used in simulations. Figure 4.2 depicts the layout of
obstacles in the environment, effectively blocking a ”hallway” the robot needs to navigate through. In
this setup, three obstacles (A, B, and C) are designated as movable, with masses of 25 kg, 20 kg, and
5 kg respectively. The boundaries of the hallway are treated as immovable walls, which the robot must
work around.

The robot’s task is to reach the other side of the hallway by moving the obstacles to create a passage.
This experiment demonstrates the algorithm’s ability to define and execute a viable path in a real-world
setting, considering the physical constraints and properties of the obstacles. The results section will
provide a detailed account of how the algorithm plans and adjusts the robot’s path, showcasing its
practical effectiveness and robustness.
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(a) Map with movable obstacles blocking the goal position for the
robot.

(b) The simulated IsaacGym environment with the obstacles.

Figure 4.1: Simulation with movable obstacles blocking the goal position for the robot.

(a) Vicon camera view of the real-world environment. (b) Map of the real-world environment with
obstacles.

Figure 4.2: Real-world demonstration with three obstacles Real-world demo of the robot navigating a hallway with three
obstacles (A, B, and C) having masses of 25 kg, 20 kg, and 5 kg, respectively. The robot is tasked to move from one side of the

hallway to the other.
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4.3. Quantitative Experiments
This experiment assesses the performance of the SVG-MPPI solution in various simulated environ-
ments. Two distinct setups are used: one with a room featuring organized obstacles blocking the goal
position, and another with a room cluttered randomly to obstruct the goal. This section outlines the
comparison with alternative solutions and the rationale behind their selection.

To the authors’ knowledge, this approach is novel in its continuous quantification of movability and its
integration into both path planning and local control methods. As such, there are no existing off-the-
shelf solutions or published statistics for direct comparison. Instead, comparisons are made with two
well-established path-planning methods from the literature that have been adapted for this study.

For the quantitative experiments, two alternative path-planning methods are introduced alongside the
proposed SVG solution. The first method is the standard Visibility Graph (VG) algorithm, which does
not account for obstacle movability and maintains a safe distance from all obstacles, as detailed in
Chapter 2. The second method is a more advanced, sampling-based technique using the Rapidly
Exploring Random Tree (RRT) algorithm. RRT is widely used in the literature, as shown in Table
1.1 on Page 4, making it a suitable benchmark. In this study, RRT is modified to incorporate binary
knowledge of movability, allowing it to sample near movable obstacles without a safety margin while
avoiding stationary obstacles. However, RRT does not distinguish between obstacles that are easy or
difficult to move; this modification is detailed in Appendix B.

Three path planning methods are compared: one without knowledge of movability (VG), one with bi-
nary knowledge of movability (modified RRT), and the proposed solution with a continuous scale of
movability (SVG). All three planners use the same local control method, MPPI, which interprets ob-
stacle masses according to the planner’s movability knowledge. This means that while the planners
operate in the same environment, the interpretation of obstacle movability differs depending on the
planner-runner combination.

Each setup is executed 50 times in simulation, with obstacle masses uniformly randomly assigned
between 4 and 36 kg and a mass threshold set at 30 kg, similar to the qualitative experiments. The
SVG method is expected to outperform other path-planning approaches by strategically placing nodes
within the map. MPPI will benefit from the continuous movability scale, as contact force minimization
allows it to better adapt its path based on these varying masses.

4.3.1. Setup 1: Organized Environment
The first setup features a room measuring 4 meters by 12 meters, populated with fixed-position obsta-
cles that are randomly rotated. These random rotations create varying boundaries, leading to different
gaps between obstacles, which in turn generate preferred routes where the gaps are larger. Each ob-
stacle is a fixed-size square with a randomly assigned mass. After constructing the room, each path
planner attempts to find a path from the start to the goal. If a path is found, it is executed using MPPI
while adhering to the specific movability properties of the planner. Performance metrics are collected
and stored for later analysis. Figure 4.3 shows an example of a random room for this setup, illustrat-
ing different interpretations of movability: the first figure shows no movability knowledge, the second
shows binary movability, and the third depicts continuous movability, as used by VG, RRT, and SVG
respectively.

4.3.2. Setup 2: Cluttered Environment
The second setup simulates a more realistic, cluttered environment with obstacles that vary in position,
rotation, size, and mass. This setup uses a slightly smaller room, measuring 4 meters by 8 meters, to
reduce runtime while increasing complexity. Approximately 20% of the room is occupied by obstacles
with uniformly random masses between 4 and 36 kg. To further increase complexity, an additional
5% of stationary obstacles is added, bringing the total occupied space to 25% within a y-axis range of
-2 to 2 meters, thus increasing density. The obstacles vary in width and length, uniformly distributed
between 0.25 meters and 1.25 meters, ensuring they are sufficiently large to be effectively pushed
aside by the robot. Figure 4.4 provides an example of a random room for this setup, illustrating different
interpretations of movability: the first figure shows no movability knowledge, the second shows binary
movability, and the third depicts continuous movability, as used by VG, RRT, and SVG respectively.
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Figure 4.3: Setup 1: Two examples of a grid layout with varying obstacle masses and rotation.

Figure 4.4: Setup 2: Two examples of a random layout with varying obstacle mass, position, and rotation.



5
Results

This chapter details the results from experiments designed to evaluate the performance and effective-
ness of the proposed solution. The chapter begins with a discussion of qualitative experiments, which
demonstrate how the SVG-MPPI algorithm operates in practice. This section focuses on the practical
application of the algorithm without delving into the quantitative metrics. Following this, the chapter tran-
sitions to the quantitative experiments, which benchmark the solution using the previously discussed
performance metrics.

5.1. Qualitative Experiments
The initial experiment conducted in simulation, as shown in Figure 5.1, demonstrates how the algorithm
finds and follows a path to the goal position using a local control strategy. In this setup, the robot pushes
an obstacle slightly to create a passage, allowing it to move toward the goal. Tuning the parameters
for this experiment was challenging due to the inherent contradiction of minimizing contact forces while
still needing to push obstacles. Balancing these requirements was difficult because the robot needed
to apply enough force to move obstacles but also had to avoid excessive contact forces to prevent
damage or inefficiency. Additionally, the simulation environment allowed for precise trajectory following
with minimal overshoot, which is more difficult to achieve in the real world.

Another issue stemmed from the noisy force data provided by IsaacGym. This noise particularly af-
fected the rear joints of the robot, causing unnecessary pushing actions when the robot turned and
complicating the parameter tuning process. Despite these difficulties, the robot was still able to reach
the goal position in the simulation, demonstrating the algorithm’s effectiveness in a controlled environ-
ment.

Figure 5.2 shows a modified scenario within the same environment. Here, when the robot encounters
the first obstacle, the pushing action fails, and the robot must replan its path. The obstacle, initially con-
sidered movable, is reclassified as non-movable, leading the robot to find a new route. This adjustment
requires the robot to first navigate to the upper obstacle and then reroute through an alternative path
to reach the goal. The figure illustrates the slight displacement of the upper obstacle and the robot’s
adjusted path. During this replanning, the MPPI rollouts initially struggled to find the best solution,
resulting in some uncertainty in the robot’s movements.

The algorithm’s performance in the real world is shown in Figure 5.3. In this experiment, the Vicon sys-
tem accurately tracks obstacle positions and orientations, effectively simulating the perception pipeline.
Additionally, the graph and path associated with this behavior can be found in Appendix D. The robot’s
goal is to move to the other side of the hallway by relocating an obstacle to create a passage. This real-
world test confirms that, despite the challenges of translating simulation results to practical applications,
the algorithm successfully guides the robot to the goal position.

29
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(a) The path calculated by SVG to reach the goal. (b) The path executed by the robot to reach the goal.

Figure 5.1: Example of the robot reaching the goal with estimations being correct.

(a) Path replanning when the original path fails. (b) The path executed by the robot including the replanning.

Figure 5.2: Example of the robot reaching the goal with evaluation triggering a replanning sequence.



5.1. Qualitative Experiments 31

Figure 5.3: Real-world demonstration of the robot navigating a hallway, depicted in six stages. Stage 1 shows the initial
position of the robot, and Stage 6 shows the goal position. In the intermediate stages, the robot moves towards the right side of

the barrier, which is a lighter obstacle, and successfully pushes it to clear a path to the goal.
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5.2. Quantitative Experiments
Table 5.1 presents the success percentages for path planning and execution by the planners—VG,
RRT, and SVG—in Setup 1 and Setup 2. Table 5.2 shows the mean times for each planner to generate
waypoints and execute paths. Due to the randomized nature of the room setups, the analysis focuses
on the mean performance and the reliability of these estimates. Therefore, we use the standard error
(SE) rather than the standard deviation (SD) as SE provides a more accurate measure of how well the
sample mean reflects the true population mean [69]. Additional visual examples of the solutions for
each setup are provided in Appendix D, displaying the weighted graphs and shortest paths of a single
run for each planner in Setup 1 and Setup 2.

Success Ratio in Path Planning and Execution
In Setup 1, VG had a 0% success rate in both path planning and execution due to its inability to navigate
around fixed barriers. RRT achieved a path planning success rate of 95.65% and an execution success
rate of 65.22%, indicating effective path-finding but challenges during execution, likely due to the vari-
ability inherent in its sampling-based approach. SVG achieved a 100% path planning success rate and
a 69.57% execution success rate, showing reliable path-finding but occasional difficulties navigating
large obstacles.

In Setup 2, with randomly placed obstacles, VG improved slightly with a 6.45% success rate in both
planning and execution, as clear paths are infrequent. RRT’s success rates were 77.42% for planning
and 35.48% for execution, indicating better path-finding but ongoing challenges with execution due
to less optimal node placement. SVG showed significant improvement with a 96.77% path planning
success rate and a 77.42% execution success rate, reflecting its adaptability to the less constrained
environment of Setup 2.

Planning and Execution Latency
In Setup 1, VG’s data are not available due to its failure to find a path. RRT had a mean planning time
of 11.45 sec with a high standard error of 10.80 sec, suggesting significant variability in its sampling-
based approach. SVG had amean planning time of 0.14 secwith a very low standard error of 0.002 sec,
reflecting consistent performance due to its deterministic approach to node placement. The difficulties
both RRT and SVG experience in executing the paths are likely due to large obstacles that prevent
effective sampling around objects, leading to either continuous pushing or collisions by the robot.

In Setup 2, VG demonstrated efficient planning with amean time of 0.12 sec and a standard error of 0.05
sec. VG’s execution time was 17.30 sec with a standard error of 0.74 sec, indicating straightforward
paths due to the smaller room size. RRT’s mean planning time improved to 0.82 sec with a standard
error of 0.42 sec, reflecting better path-finding as the randomized environment often presents multiple
routing options to the goal. However, RRT’s execution time was higher, likely due to navigating close to
heavy obstacles, which can create new boundaries andmake the RRT path infeasible. SVGmaintained
a low mean planning time of 0.14 sec with a standard error of 0.006 sec, while its execution time
remained efficient, benefiting from better passage node placements that avoid heavy obstacles.

Trajectory Contact Force
Figure 5.4 shows the cumulative contact force exerted by the robot during trajectory execution, mea-
sured in Newtons. The force is recorded at a rate of 25 times per second. This high sampling frequency
means that even minor push actions are captured frequently, which can result in high cumulative force
values. In Setup 1, VG had a significantly lower average cumulative force of 308.66 N with a standard
error of 180.06 N because this planning method focuses solely on avoidance. In comparison, RRT ap-
plied an average cumulative force of 557,900.67 N with a standard error of 104,596.54 N, while SVG
applied 416,354.08 N with a standard error of 108,355.60 N. For Setup 2, VG again showed a notably
lower average cumulative force of 308.66 N with a standard error of 180.06 N. RRT’s average cumu-
lative force was 297,360.47 N with a standard error of 125,251.49 N, and SVG’s was 123,463.09 N
with a standard error of 30,835.55 N. RRT’s consistently higher total trajectory force demonstrates that
integrating continuous movability is beneficial for node placement and contact force reduction. While
higher cumulative forces generally indicate more effort, this metric may be suboptimal as it aggregates
force measurements without distinguishing the effectiveness or impact of the push actions. The fre-
quent measurement can amplify the apparent force, as even small push actions contribute significantly
to the cumulative total.
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Table 5.1: Success Percentages by Setup and Planner

Setup Planner Path Planning Execution to Goal
Success (%) Success (%)

1
VG 0.00 0.00
RRT 95.65 65.22
SVG 100.00 69.57

2
VG 6.45 6.45
RRT 77.42 35.48
SVG 96.77 77.42

Table 5.2: Timing Metrics by Setup and Planner

Setup Planner Planner Time (s) Runner Time (s)
Mean SE Mean SE

1
VG - - - -
RRT 11.45 10.80 106.16 16.15
SVG 0.14 0.002 109.91 19.65

2
VG 0.12 0.05 17.30 0.74
RRT 0.82 0.42 62.21 16.53
SVG 0.14 0.006 43.57 5.74

Figure 5.4: Cumulative push force for each planner over the entire trajectory.
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Conclusions and Future Research

In this section, we summarize the key findings and results of our research and reflect on the initial
motivations behind the study in our conclusion. We then offer recommendations for future research,
highlighting the limitations of our solution and considering insights from other works addressing the
same problem.

Conclusion
This research introduces SVG-MPPI, a novel solution for Navigation AmongMovableObstacles (NAMO)
that emphasizes continuous movability, representing a significant advancement over traditional meth-
ods. Unlike conventional NAMO algorithms that rely on binary movability properties and require sep-
arate planners for different functions [17, 18, 23, 25–29], SVG-MPPI integrates continuous movability
into a unified approach. This approach simplifies navigation and is not restricted to specific types of ob-
stacle configurations (e.g., LP1 or LP2), effectively handling an arbitrary number of blocking obstacles.

SVG-MPPI is built on two key innovations: first, the Semantic Visibility Graph (SVG), an adaptation of
the classical Visibility Graph (VG) that incorporates semantic information to determine the continuous
movability of obstacles for path planning; second, the integration of this continuous movability into the
local control strategy using Model Predictive Path Integral (MPPI). In SVG-MPPI, the mass of obstacles
is used as a primary indicator of movability, represented within a distribution specific to each object
category. Objects with mass below a threshold are considered movable, with lighter objects being
more favorable for pushing. TheMPPI strategy uses the IsaacGym physics engine and includes contact
force minimization in its objective function to reduce redundant push actions and ensure interactions
with obstacles are only as necessary to follow the path. This unified approach effectively merges global
path planning with local control, addressing scenarios where the goal pose can be obstructed by an
arbitrary number of blocking obstacles.

To the authors’ knowledge, SVG-MPPI is the first approach to incorporate a continuous movability
scale into planning strategies. Consequently, there are no existing comparative solutions or statistics
in the literature. To benchmark SVG-MPPI, we compared it to two alternative global planning strategies:
the basic Visibility Graph (VG) with no movability information and the Rapidly-exploring Random Tree
(RRT), a sampling-based method with binary knowledge of obstacle movability. Each method was
combined with MPPI as the local control strategy. The MPPI control received the same movability
information as the global planner: VG-MPPI uses no movability information, RRT-MPPI uses binary
movability information, and SVG-MPPI employs a continuous movability scale.

The solution was demonstrated through both qualitative and quantitative experiments. Qualitative ex-
periments highlighted SVG-MPPI’s effectiveness in navigating environments that requiredmultiple push
actions. The robot successfully created passages through obstacles, and in cases where initial estima-
tions were incorrect, it was able to replan effectively. Real-world testing, detailed in Section 4.2, further
confirmed SVG-MPPI’s adaptability. The robot selected the most manageable obstacles to push and
chose the path with the least effort, as shown in the results discussed in Section 5.1.
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For the quantitative evaluation, described in Section 4.3, two different room setups were used to bench-
mark SVG-MPPI against other path planners: one with a fixed cluttered layout and another with random-
ized obstacles. The results from these quantitative experiments, presented in Section 5.2, demonstrate
that SVG-MPPI outperforms both VG and RRT in path planning and execution success rates in the first
setup. SVG’s strategic placement of nodes allows for more effective navigation around obstacles, lead-
ing to higher success rates. Its approach ensures that paths of least resistance are chosen, making it
particularly effective in environments requiring multiple push actions.

In the second setup with randomized obstacles, SVG again demonstrated superior performance com-
pared to RRT, achieving higher success rates for both path planning and execution, as also shown in
Section 5.2. Notably, SVG exhibited lower cumulative trajectory contact force, indicating fewer push
actions and greater efficiency compared to RRT. Although RRT performs well in less structured en-
vironments, it is slower in waypoint calculation and less efficient in execution compared to SVG. VG,
while offering the fastest planning times due to its simple obstacle avoidance strategy, fails in scenar-
ios requiring obstacle pushing. In contrast, SVG achieves a reasonable deterministic planning speed
close to real-time for the experiments, with effective navigation and reduced force application. Overall,
SVG-MPPI proves to be a more reliable and efficient solution for Navigation Among Movable Obstacles
(NAMO), combining high success rates with effective handling of complex scenarios.

In conclusion, SVG-MPPI has proven to be effective in navigating environments with movable obsta-
cles by focusing on the concept of continuous movability. By integrating this continuous movability into
both local and global planning strategies, SVG-MPPI enables the robot to dynamically push obstacles
when necessary and maneuver around them when possible. The elimination of separate task, transit,
and transfer planners provides a cohesive solution that combines strategic node placement with effi-
cient path planning. Additionally, the system’s capability to handle inaccurate movability estimations
and adjust plans based on real-time evaluations highlights its robustness. Overall, SVG-MPPI rep-
resents a novel and modern approach to navigating complex environments with movable obstacles,
demonstrating significant potential for further extension and application of the algorithm.

Future Research
Although SVG-MPPI has demonstrated promising results, several areas require further refinement to
enhance its performance and practical application. Addressing these issues could significantly improve
SVG-MPPI’s reliability and effectiveness in navigating environments with movable obstacles.

One key area for improvement is the current approach to continuous movability, which is based solely
on the mass of the obstacle. While mass is an important factor, movability also depends on additional
physical properties such as friction and stability. Expanding the definition of movability to include these
factors would enhance the algorithm’s accuracy and effectiveness in diverse scenarios. The framework
does allow for adjustments in movability estimation by modifying the node cost, but more comprehen-
sive integration could be beneficial. Recent research into learning-based models, such as Large Lan-
guage Models (LLMs) and reinforcement learning approaches, has shown promise in estimating these
physical properties [70–72]. Additionally, analytical approaches for deriving object properties have
been extensively studied and proven useful to derive physical properties of objects in the environment
[73, 74].

Another area for enhancement is the simulation environment, which currently restricts obstacle rep-
resentation to simple rectangular shapes. This simplification facilitates implementation but does not
fully capture the complexity of real-world obstacles. To address this limitation, SVG-MPPI should con-
sider transitioning to more advanced simulation and physics engines that can model a wider range of
objects, such as chairs and tables. Research indicates that alternatives like IsaacGym, Omniverse,
Mujoco, and DART offer greater flexibility and accuracy in simulating complex environments [75, 76].

To advance the SVG algorithm, addressing inefficiencies in distance calculations between geometric
shapes can also be beneficial. The current brute-force method, with a quadratic complexity of O(m ·n),
becomes inefficient as the number of vertices increases [30]. Adopting more advanced methods, such
as the Rotating Calipers approach [77], which offers O(m + n) complexity, or the Gilbert-Johnson-
Keerthi (GJK) Distance Algorithm [78, 79], could significantly improve efficiency. Integrating these
techniques would improve performance in larger and more complicated scenarios.



36

Lastly, implementing gain scheduling could optimize the objective function for obstacles with varying
movability. The current system faces a challenge: it aims to minimize push actions while allowing
the robot to push obstacles when necessary. the objective function tends to behave differently for
obstacles that are easily moved compared to those that are more difficult to move. Gain scheduling
could address this by dynamically adjusting control parameters based on obstacle movability, enabling
more precise tuning [80]. This would improve the algorithm’s ability to balance minimizing push actions
with effectively navigating around obstacles. Our current solution could benefit significantly from these
improvements, as gain scheduling would enable more nuanced and adaptive control strategies, leading
to better performance and efficiency in complex environments with diverse obstacles.
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Appendices

A. Nomenclature

Abbreviations

Abbreviation Definition

NAMO Navigation Among Movable Obstacles
VG Visibility Graph
SVG Semantic Visibility Graph
RRT Rapidly Random Exploring Random Tree
MPPI Model Predictive Path Integral
URDF Unified Robot Description Format

Symbols

Symbol Definition

V Set of all vertices in a graph
E Set of edges connecting vertices in V
S Set of obstacles in the environment
r Safety margin used around obstacles
p Passage node placed between obstacles
d Distance metric between nodes or obstacles
l Length of a boundary or path
t Time or an interpolation factor
A,B Sets or regions of interest
C Combined or resulting area from operations on A and B
m Mass or other scalar property of an object
T Time horizon for planning or analysis
K Number of iterations, samples, or elements in a set
x State vector representing a position or condition
v Control input vector or velocity
γ Discount factor or scaling coefficient
F Force vector or matrix
P Set of waypoints or positions
c Cost function or vector
W Weight matrix for optimization or control
α Normalization or scaling factor
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B. Rapidly Exploring Random Tree (RRT)
The Rapidly Exploring Random Tree (RRT) algorithm is a popular method used in robotics and motion
planning for efficiently searching non-convex, high-dimensional spaces. It incrementally builds a space-
filling tree, which helps in exploring feasible paths from an initial position to a target goal while avoiding
obstacles. The main idea of RRT is to sample points randomly in the search space and incrementally
build a tree that extends towards these random points. This allows the tree to rapidly explore the space,
hence the name.

As can be seen in Table 1.1, solutions to (a subset of) NAMO problems, also often use this algorithm to
produce a path from a starting pose to a goal pose. Algorithm 7 presents how RRT calculates the path
towards the goal. The modification in blue is implemented to provide a fair comparison to the modified
SVG algorithm, explained in Chapter 3. Each step, including the modification, is explained afterwards.

Algorithm 4: Rapidly-exploring Random Trees (RRT)
1 V ← {xinit}; E ← ∅;
2 for i = 1, . . . , n do
3 xrand ← sampleFreei;
4 xnearest ← nearest(G = (V,E), xrand);
5 if obstacleFree(xnearest, xnew) then
6 V ← V ∪ {xnew}; E ← E ∪ {(xnearest, xnew)};

7 return G = (V,E);

The Rapidly Exploring Random Tree (RRT) algorithm starts by initializing two sets: one for vertices (V )
and one for edges (E). The vertex set begins with only the initial point xinit, while the edge set is empty
initially. The algorithm then enters a loop that runs for a specified number of iterations (n). During each
iteration:

1. A random point xrand is selected within the free space.
2. The nearest existing vertex xnearest in the tree to xrand is identified.
3. A new point xnew is generated by moving from xnearest towards xrand by a fixed step size.
4. A collision check is performed to ensure the path from xnearest to xnew is clear of obstacles, without

obstacle inflation considered.
5. If the path is obstacle-free, the new point xnew is added to the set of vertices (V ), and the edge

connecting xnearest to xnew is added to the set of edges (E).

Traditionally, collision check is performed on inflated obstacles, which represent the configuration space,
to ensure a safe distance from all the obstacle. However, because of the comparison to SVG samples
are also allowed to be close to the border as the modified algorithm also allows passage nodes to be
as close to obstacle borders. This modification is within the obstacleFree method, colored blue in the
Algorithm 7.

After completing the loop, the algorithm returns the tree structure (G = (V,E)), representing the ex-
plored space. The RRT algorithm is particularly valuable in navigating complex and high-dimensional
environments where traditional grid-based methods are impractical. Its ability to quickly explore the
search space in a random manner makes it highly effective in robot motion planning and related appli-
cations.
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C. Hardware Setup
In this section, we provide the detailed specifications for the experimental framework used in our study.
Table 3 summarizes the key parameters of the hardware and simulation setup. This table includes in-
formation on the robot dimensions, weight, maximum push mass, and various settings for the path plan-
ning and control algorithms employed during the experiments. The parameters listed are important for
understanding the operational limits and configurations under which the experiments were conducted.

Table 3: Experimental Framework Parameters Specifications

Parameter Value Unit

Robot Dimensions 686 x 517 x 114 mm

Robot Weight 9.1 kg

Maximum Push Mass 30 kg

Safety Inflation 0.3 meters

Mass Threshold 30 kg

Path Inflation 0.3 meters

Spline Interval 0.5 meters

Replan Timing 30 seconds

Simulation Time Step (dt) 0.08 seconds

MPPI Mode ”halton-spline” -

Sampling Method ”halton” -

Number of Samples 1000 -

Horizon 25 -

Lambda 0.05 -

Control Input Min [ -0.2, -0.2, -0.4 ] m/s, m/s, rad/s

Control Input Max [ 0.4, 0.4, 0.4 ] m/s, m/s, rad/s

Noise Sigma


1.0 0.0 0.0

0.0 1.0 0.0

0.0 0.0 1.0

 -

Update Covariance True -

Rollout Variance Discount 1.0 -

Filter Control Input True -
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D. Experiment Graphs and Paths
This section provides additional visual insights into the robot’s navigation performance in both real-
world and simulated experiments. The following figures illustrate the robot’s interaction with obstacles
and its path-planning strategies, helping to understand how the robot navigates different environments.

Real-World Qualitative Experiment
The real-world qualitative experiment demonstrates the robot’s ability to navigate around obstacles and
select paths in a practical setting. The figures below show the weighted graph of obstacles and the
path calculated by the robot during the real-world experiment.

(a) Graph showing the obstacles and possible edges in the
real-world environment. The layout includes obstacle positions

and the path selected by the robot.

(b) Path visualization of the robot in the real-world scenario. It
highlights the shortest path calculated by the algorithm.

Figure 1: Visualizations of the robot’s navigation in the real-world experiment: (a) Weighted graph of obstacles and edges; (b)
The calculated path taken by the robot.
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Quantitative Experiments
The quantitative experiments provide a comparative analysis of different planners (VG, RRT, and SVG)
in two different setups. The figures below illustrate the weighted graphs and shortest paths computed
by each planner in an example of Setup 1 and Setup 2.

(a)Weighted graphs for different planners (VG, RRT, and SVG) in Setup 1. The graph displays
obstacles and the edges considered by each planner to determine the shortest path.

(b) Shortest paths computed by different
planners in Setup 1.

Figure 2: Visualizations for Setup 1: (a) Weighted graphs showing obstacles and edges for each planner; (b) Shortest paths
computed by the planners.

(a)Weighted graphs for different planners (VG, RRT, and SVG) in Setup 2. The graph displays
obstacles and the edges considered by each planner to determine the shortest path in a new

obstacle configuration.

(b) Shortest paths computed by
different planners in Setup 2.

Figure 3: Visualizations for Setup 2: (a) Weighted graphs showing obstacles and edges for each planner; (b) Shortest paths
computed by the planners.
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