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Figure 1: A designer in the experimental group is interacting with DesignMinds.

Abstract
Ideation is a critical component of video-based design (VBD), where
videos serve as the primary medium for design exploration and
inspiration. The emergence of generative AI offers considerable
potential to enhance this process by streamlining video analysis and
facilitating idea generation. In this paper, we presentDesignMinds, a
prototype that integrates a state-of-the-art Vision-Language Model
(VLM) with a context-enhanced Large Language Model (LLM) to
support ideation in VBD. To evaluate DesignMinds, we conducted a
between-subject study with 35 design practitioners, comparing its
performance to a baseline condition. Our results demonstrate that
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DesignMinds significantly enhances the flexibility and originality
of ideation, while also increasing task engagement. Importantly,
the introduction of this technology did not negatively impact user
experience, technology acceptance, or usability.
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1 Introduction
Idea generation is the cornerstone of innovation and serves as the
foundation for new designs [14, 51]. Video-Based Design (VBD)
enables designers to utilize video content as a key tool for gener-
ating knowledge, inspiring new ideas, and identifying potential
challenges [26, 82, 84, 90]. The ideation of VBD plays a crucial
role in brainstorming to produce a wide range of ideas, which are
then filtered and refined to develop optimal solutions [20, 52, 53].
However, generating novel design ideas from videos is challenging
for a large group of practitioners. It requires not only a significant
investment of time and effort but also extensive design experience
to generate a substantial number of related ideas for practice [20].
Consolidating design problems and generating feasible solutions
from videos using traditional VBD methods typically requires ex-
tensive video review and the application of professional divergent
thinking [90]. This process is often labor-intensive and heavily
dependent on the practitioner’s design experience and knowledge,
which can be particularly challenging for novice designers with lim-
ited expertise and resources [96]. Additionally, previous research
indicated that advanced video tools can potentially enhance the
design work with videos to improve the quality outcomes, and to
facilitate interactions [92].

With the recent surge in Generative AI (GenAI), technologies
such as the Large Language Model (LLM) GPT-4 [58] demonstrate
significant potential to enhance creative tasks across various de-
sign domains. A base LLM model can generate ideas across diverse
scopes. Its capabilities can be further refined by incorporating con-
textual material through a process known as Retrieval-Augmented
Generation (RAG) to make it adaptable in current circumstances
[46]. Additionally, Vision-Language Models (VLMs) possess the
ability to interpret videos with high detail, reducing the need for
extensive human effort [8]. These advancements have the potential
to assist designers in overcoming challenges associated with gen-
erating efficient and effective ideas, particularly when faced with
prolonged video viewing and limited design experience [43, 66]. As
such, this paper explores an approach that combines a customized
VLM and LLM (DesignMinds) to enhance the "watch-summarize-
ideate" process in VBD tasks through designer-AI co-ideation. We
then evaluate the quality of the generated ideas, cognitive processes,
user experience (UX) and technology acceptance and use from VBD
ideation. Our work makes the following contributions:

• We introduce a novel GenAI-powered chatbot that features
video understanding and design-context-based idea recom-
mendations to enhance the ideation capabilities of new VBD
practitioners.

• We investigate the impact of our prototype in terms of ideation
quality, cognitive processing during ideation, and subsequent
UX and technology acceptance.

• Ultimately, we propose a potential tool (DesignMinds) involv-
ing the use of a customized VLM and LLM to scale up the
VBD ideation process for new designers.

Our findings indicate that DesignMinds improves the flexibility
and originality of design ideas and boost design task engagement.
The adoption of this technology also did not adversely affect the
established patterns of UX, technology acceptance and usability.

2 Background
2.1 Ideation in Design
In the design process, ideation is a key aspect of experience that
influences both the initiation and progression in the early stage
of creative activities. Eckert and Stacey articulated that ideation is
not merely a catalyst for creativity but also a critical component
in developing design ideas [25]. They claimed that ideation in de-
sign provides a contextual framework that enables designers to
effectively communicate and position their work. It sparks design
creativity, offering new perspectives and triggering the genera-
tion of original ideas [25]. Similarly, Setchi and Bouchard define
ideation as a multifaceted phenomenon where designers absorb and
reinterpret existing ideas, forms, and concepts [73]. This process
is influenced by designers’ individual experiences, cultural back-
grounds, and personal interests and serves as a guiding principle
for creativity. The subjectivity of ideation accelerates designers to
explore a broader array of possibilities. Gonçalves et al. extended
the understanding of ideation into later stages, asserting that de-
signers maintain a limited range of external stimuli preferences.
Both design students and professionals often favor visual stimuli
such as images, objects, and video sources to encourage creativity
[27].

However, relying on specific stimuli and designers’ own knowl-
edge may cause the risk of design fixation [38]. This phenomenon
occurs when designers over-rely on specific knowledge directly
associated with a problem or themselves during ideation, even-
tually inhibiting the design outcome [50, 91]. Viswanathan and
Linsey claimed that the problem of fixation is pervasive and varies
inversely with the level of design expertise. They suggested that
it is especially prominent among novice designers, who tend to
rely heavily on their predominant knowledge during ideation [85].
In addition, novice designers often struggle to analyze problems
comprehensively and have difficulty seeking helpful information
during ideation [18, 24]. This phenomenon often leads to failures
in framing problems and directing the search for solutions, ulti-
mately diminishing the design outcome. Gonçalves pointed out that
the lack of reflection in ideation could be addressed by developing
computational tools to help designers efficiently find relevant stim-
uli. Such tools could assist inexperienced designers in exploring
ideas that are semantically distant from the problem domain and
expand space for ideation [27]. Similarly, the study by Dazkir et al.
showed that while self-selected contexts in designers led to greater
interest in the topic, they often failed to develop effective design
solutions. This indicates that, although some autonomy is bene-
ficial for developing design ideas, many inexperienced designers
still need external intervention in the early stages to aid in ideation
[21]. As such, designers, especially those with limited experience,
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often need additional help and guidance from outside sources to
enhance ideation.

2.2 Videos for Design Ideation
The use of video as a central tool for ideation, known as VBD, in-
volves capturing information and analyzing solutions in design
process. This technique is particularly prevalent in fields such as
user experience (UX) design, interaction design, and ethnographic
research [90]. By recording user interactions with products or envi-
ronments, videos provide a dynamic and context-rich data source
for designers. Design videotapes are informative for practitioners
to deepen context understandings and generate follow-up inter-
ventions [89, 90]. Unlike textual descriptions from interviews or
surveys, videos preserve temporal and sequential nuances and allow
designers to revisit specific moments repeatedly for deeper analysis
[82]. Designers at Apple Inc., for example, utilized videos to envi-
sion new user interfaces (UIs) for their future computers [84]. They
utilized videos to benchmark new UIs and study user behavioral
reactions through videotapes. Similarly, Tatar from PARC explored
learning from repeated video observations of user behavior through
stationary camera recordings and aimed to minimize erroneous
assumptions in software development [82]. Tatar also emphasized
the important role of using videos for ideation to pinpoint design
solutions. Ylirisku and Buur further conceptualized this practice
and highlighted that using videos for design ideation is instrumen-
tal for practitioners. Videos are an effective tool for learning from
target users’ daily experiences and augment designers generate an
abundance of ideas for design artifacts [89]. Moreover, designers
can ideate from the "thick descriptions" that videos capture about
users’ movements, interactions, and emotional transitions, which
help in constructing design narratives and encapsulating individual
thoughts.

Other media and methods have been explored for supporting
design ideation, yet each shows limitations compared to videos.
Visual imagery, such as photographs or example collections, is com-
monly used in graphic design practice to inspire creativity [56, 78].
However, empirical studies show that while imagery exposure may
aid in personal development and idea communication, its impact
on creative quality and novelty is limited, and risks inducing design
fixation [38, 45]. Similarly, AI-generated imagery can potentially
open fresh avenues for artistic expression, but tends to produce
outcomes that are often disconnected from the designer’s original
intent and require considerable reinterpretation and adaptation
[12]. Additionally, research by Delle Monache et al. has explored
how sonic stimuli can stimulate ideation by focusing on emotional
and semantic sound attributes [22]. While their methods promote
group iteration and diverse thinking, they rely heavily on subjective
interpretation through verbal and vocal expressions. This reliance
limits designers’ ability to capture temporal and environmental
context in a broader context [90]. Beyond sound-based methods,
text-driven composition often relies on abstract representations
rather than embodied experiences and thus lacks the immediacy
and contextual dynamics crucial for user-centered design [17, 19].
This reliance tends to reinforce familiar thinking patterns [38] and
limits exploration of the broader solution space. In contrast, videos

capture the temporal progression of real-world interactions, emo-
tional expressions, and environmental dynamics [82, 89, 90] which
helps designers to repeatedly reengage with authentic user behav-
iors.

While video-based design idea generation presents significant
opportunities, videos often contain complex content and frequent
events [89, 90]. The process of watching these videos can be labor-
intensive and time-consuming. Videos with rich details and rapid
sequences require from viewers substantial information processing
effort to analyze perceived information. As a result, designers may
suffer risks of diminishing decision-making capability and result in
a decline in ideation effectiveness [9, 60]. Therefore, it is essential
to develop strategies to mitigate fatigue and reduce the information
processing effort for designers who use videos for inspiration, while
ensuring that they retain the valuable information presented in
videos.

2.3 GenAI for Design Ideation
Recent advancements in GenAI are driving significant changes
across multiple disciplines. Large Language Models (LLMs), such
as GPT-4 [58], have shown remarkable capabilities in assisting
creative tasks for design purposes [94]. Xu et al. proposed an LLM-
augmented framework that uses LLM prompts to generate unified
cognition for practitioners and optimize the creative design process
in a professional product design [87]. Another group of researchers
proposed Jamplate, a protocol that leverages formatted prompts
in LLMs to guide novice designers in real-time. This approach en-
hances their critical thinking and improves idea generation more
effectively [88]. Makatura et al. explored the use of GPT-4 to gen-
erate textual design language and spatial coordinates for product
design and adaptation in industry [55]. They highlighted that GPT-
4’s reasoning capabilities offer significant value in novel design do-
mains. When designers are inexperienced with a particular domain
or working on a novel problem, GPT-4 can synthesize information
from related areas to provide suitable advice.

Beyond purely text-based ideation, researchers have started to ex-
plore multimodal models that combine language and vision. VLMs,
which extend LLMs by incorporating visual input capabilities, offer
new possibilities for grounding ideation in visual contexts [47]. For
example, Zhou et al. introduced NavGPT, an LLM-based navigation
agent that uses visual cues detected by a VLM to provide indoor nav-
igation suggestions [95]. They demonstrated that their system can
generate high-level navigational suggestions from automatic obser-
vations and moving histories. Moreover, Picard et al. explored the
use of GPT-4V(ison) [58], a version of GPT-4 with vision-language
capabilities, in product design. They investigated its application in
design tasks, such as analyzing handwritten sketches and providing
follow-up suggestions for material selection, drawing analysis, and
spatial optimization. Their findings demonstrated that this LVM
model can handle complex design idea generation with proficiency
[63].

Recent studies show that integrating VLMs and LLMs is a more
complete solution for high-level creative tasks [36, 59, 62]. VLMs are
better at extracting salient information and contextual hints from
visual data such as images or video frames [47], whereas LLMs pos-
sess superior ability in abstract reasoning, conceptual generation,
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Figure 2: DesignMinds consists of two primary components:
the backend and the front-end. The backend includes a VLM
and a LLM integrated with a design knowledge repository.
The front-end features a video playback region alongside
a conversational window. The videos are first processed to
extract key terms (highlighted in pink in video description)
and are then connected into a comprehensive description
(blue in video description) using in-built language linking
functions. These complete descriptions are then passed to
the LLM, along with a knowledge repository enriched by se-
lected design books from a committee vote. Designers can
then use the features in front-end to watch the video play-
back to enhance trust and grounding for the design context,
and engage in ideation through conversations in the conver-
sational window.

and storytelling generation [11, 57]. However, each model class
in itself is restricted: VLMs are challenged to generate extended
abstract ideation from non-visual content, and LLMs without visual
anchoring are capable of generating bland or context-mismatched
responses [58]. The merging of LLMs and VLMs presents an oppor-
tunity to enhance design, prompting us to explore this integration
in the refined field of VBD. Motivated by these insights, we explore
whether combining LLMs and VLMs can benefit VBD practitioners
in generating design ideas. To investigate, we prototyped Design-
Minds that integrates a state-of-the-art (SOTA) VLM and LLM
model with a context-injection technique. We conducted a
user study involving two video-based design tasks to assess
the impact on design ideation, focusing on ideation quality,
cognitive processes, UX, and technology acceptance.

3 Our DesignMinds Prototype
The development of our prototype followed the natural process of
the idealization of VBD, consisting of two main parts: video compre-
hension and idea reflection and refinement [89]. As shown in Fig. 2,
DesignMinds consists of two primary components: the backend and
the front-end. The backend includes a VLM and a LLM integrated
with a design knowledge repository for reference. The front-end

features corresponding a video playback region alongside a conver-
sational window. We adopted blip2-opt-6.7b1, a SOTA VLM, to
interpret videos into textual descriptions. When processing a video,
the VLM first extracts perceived objects from the video and utilizes
built-in language connection functions to generate comprehen-
sive textual descriptions of the entire video. These complete video
descriptions then were processed by an LLM through GPT-4 API
(gpt-4-0125-preview)2. To generate more design-grounded sug-
gestions, we implemented a RAG function using a text embedding
model text-embedding-ada-0023 on a framework of LlamaIndex4
as our DesignMinds’s professional knowledge repository for conver-
sations. To ensure that the knowledge repository provided designer-
relevant information for our LLM, we conducted a discussion on
VBD literature within an independent community of designers (N
= 30). This discussion led to a vote that selected six authoritative
books (1,966 pages total) with high-level methodological rigor and
practical design cases for the VBD training. We then utilized the
RAG function and tokenize the selected design books to feed into
the knowledge repository of the LLM. We then built our front-end
interface using Gradio5 as illustrated in Fig. 3. The interface in-
cludes a video player and an chatbot conversation window. To test
performance and enhance convenience for test users in the later
study, we allocated the right portion of the screen to included a
text box where users could record their ideas and inspirations. This
setup allows users to review and revisit the design context using
the video player, generate additional insights and ideas through the
chatbot, and record their comprehensive thoughts in the text box
for later use.

4 Study
We evaluate how our proposed DesignMinds influences ideation in
VBD tasks with a between-subject study design. Specifically, we ex-
amine whether and how the tool influences designers’ effectiveness
and ability to generate ideas from video content. Our assessment is
structured around three key perspectives: the quality of ideas gener-
ated by designers, the cognitive processes they undergo during the
ideation tasks, and their overall user experience and acceptance of
the new prototype. Additionally, we analyze how designers interact
with DesignMinds from their conversation logs to better understand
the ideation process. We also explore DesignMinds’ potential cog-
nitive effects, perceived usefulness and likelihood of adoption by
designers. Finally, we investigate areas for improvement and sug-
gest ways to enhance DesignMinds’ usability and other concerns.
Our study addresses the following Research Questions (RQs):
RQ1 How does DesignMinds influence the quality of ideas generated

in the VBD process?
Divergent thinking, a concept introduced byGuilford [30, 31]
acts as a foundational idea in creativity research. In design,
it also allows VBD practitioners to identify innovative solu-
tions based on available resources [1, 6, 30, 90]. Building on
this foundation, we investigate how ourDesignMinds impacts

1https://huggingface.co/Salesforce/blip2-opt-6.7b (last accessed: May 25, 2025).
2https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4 (last accessed: May
25, 2025).
3https://platform.openai.com/docs/guides/embeddings (last accessed: May 25, 2025).
4https://docs.llamaindex.ai/en/stable/ (last accessed: May 25, 2025).
5https://www.gradio.app/ (last accessed: May 25, 2025)

https://huggingface.co/Salesforce/blip2-opt-6.7b
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Video Playback Conversation Window
Note- taking Space
(Divergent Thinking)

Figure 3: The interface of DesignMinds primarily features a
video player on the left and an LLM conversation window in
the center. To facilitate organized ideation recording in the
later study, we additionally included a note-taking space bel-
low a description of VBD tasks for recording participants’ di-
vergent thinking during the study tasks (see Supplementary
Text 1) for detailed text. When designers use DesignMinds,
the system initially performs a background pre-analysis of
the video content on the left, and transitions video content
to the chat interface in the center. Designers subsequently
interact via chatting and generate inspiration as Divergent
Thinking notes on the right.

the outcomes of divergent thinking by asking participants
in two conditions (experimental group and control group) to
generate creative ideas during the task. We hypothesize that
designers with AI co-ideation will exhibit higher Di-
vergent Thinking scores compared to ideation without
AI.

RQ2 How does DesignMinds influence the way designers practice
ideation in VBD?
Examining user behaviors is another critical aspect of eval-
uating the VBD ideation process, in addition to assessing
the final deliverables. The behaviors exhibited during tasks
reflect participants’ approaches to completing the assigned
tasks [4, 5, 32]. We record their eye movements to evaluate
the level of engagement and cognitive load experienced by
designers in both conditions. Additionally, we conduct an
in-depth analysis of the chat log history from the experimen-
tal group to understand how participants interacted with
DesignMinds. We hypothesize that designers will experi-
ence greater engagement and, consequently, a slightly
higher cognitive load in the AI-prototype-assisted con-
dition.

RQ3 What impact does DesignMinds have on the User Experience
(UX) and Technology Acceptance and Use in the VBD ideation
process?
The introduction of new technologies or tools to a traditional
methodology can sometimes cause discomfort and decreases
in UX [80]. Understanding and evaluating technology ac-
ceptance and use also provides insights into how well users

adapt to new technology, which may potentially impact the
original practice. We further compare the UX and the level
of acceptance and use of technology between our prototype
condition and the control condition during the VBD ideation
process. We hypothesize that the newly introduced pro-
totype will not have additional negative influence on
UX and technology acceptance and use compared to
traditional practices.

4.1 Participants

Table 1: The demographics of participants’ design experience,
including possible responses and their values, are presented
as answer frequencies (f), followed by the corresponding
percentages (%).

Variable Answer f %

Current design educational
level

Bachelor 12 34.29%
Master 22 62.86%

PhD (ongoing) 1 2.86%

Experience of designing
with videos (VBD)

Definitely not 15 42.86%
Probably not 7 20.00%

Might or might not 9 25.71%
Probably yes 2 5.71%
Definitely yes 2 5.71%

Experience of practicing
design divergent thinking
(ideation)

Definitely not 2 42.86%
Probably not 2 5.71%

Might or might not 9 25.71%
Probably yes 17 48.57%
Definitely yes 5 14.29%

Proficiency in using chatbot

Never used before 2 5.71%
Beginner 7 20.00%

Intermediate 13 37.14%
Expert 13 37.14%

We enlisted 35 design graduates (17 females and 18 males) from
the design faculty at our university, following approval from the
ethics board and confirming that none had any cognitive impair-
ments. The participants, who are either university students (BSc
& MSc) or PhD candidates, had an average age of 25.4 years (SD =
2.31) and an average of 2.4 years of design experience (SD = 1.14).
Table 1 presents the demographics of participants involved in the
study, including their educational levels, self-assessed familiarity
with VBD experience and ideation, as well as their proficiency in us-
ing chatbots such as ChatGPT. In addition, participants with visual
acuity below 20/20 were instructed to wear contact lenses before
participating. All participants were fully informed and provided
consent before the experiment began.

4.2 Apparatus
In our experiment, we evaluated our system in an office setting with
consistent lighting. The systemwas set up to operate as localhost on
a desktop computer within the lab environment. Fig. 1 illustrates the
lab setup where participants engaged with the system. Alongside



CUI ’25, July 08–10, 2025, Waterloo, ON, Canada He et al.

standard office equipment such as a keyboard, mouse, and speaker,
participants were asked to wear eye-tracking glasses (Pupil Labs6).
These glasses were connected to a phone record eye movement
data. Additionally, we placed four AprilTags7 on each corner of
the monitor (see Fig. 1) to allow eye-tracking glasses to detect the
screen’s edges and define areas of interest (AOI).

4.3 Measures
4.3.1 Subjective Measures.

• Evaluation of Divergent Thinking (RQ1): we employ an
established protocol of divergent thinking [30, 31] and assess
it through the following three dimensions:

- Fluency: the quantity of comprehensive ideas with suf-
ficiently details generated [6].
- Flexibility: the range of different domains and subdo-

mains covered by the ideas [1, 67, 70].
- Originality: the statistical infrequency of ideas [68, 70].

• Chat Log history (RQ2): the intermediate conversation
history made by participants in the experimental group with
AI co-ideation using the chatbot of DesignMinds.

• Unified theory of acceptance and use of technology
(UTAUT) (RQ3): a widely recognized model for assessing
how users accept and adopt information technology consid-
ers the perceived likelihood of adoption [3, 83, 86].

• User Experience Questionnaire (UEQ) (RQ3)8: a ques-
tionnaire designed to measure UX in interactive products
uses a benchmarking method that organizes raw UEQ scores
into categories such as efficiency, perspicuity, dependability,
originality, and stimulation [71, 72].

4.3.2 Objective Measures (RQ2).

• Pupil dilation: variation in pupil diameter as an indicator
of cognitive load and decision-making engagement [7, 23]

• Fixation: stationary periods of the eyes over a particular
point, associated with focused attention and information
processing [35]

• Blink rate: the frequency of blinks, reflecting emotional
interest and cognitive engagement [54, 77]

• Saccade: rapid, synchronized movements of the eyes be-
tween fixation points, with saccade velocity reflecting visual
search and engagement [65]

4.4 Procedure
Participants were first assigned to either the control or experimental
group using de-identified IDs. They were then individually invited
to the lab and took their designated positions in front of the monitor
(see Fig. 1). They were introduced to the study apparatus, includ-
ing the user interface (shown in Fig. 3) relevant to their assigned
group, how to wear the eye-tracking glasses, and briefed on the
study procedure. After this introduction, participants were asked
to complete a consent form and provide demographic information,
including their experience with design ideation from videos, gen-
eral design experience, and familiarity with using chatbots. Then

6https://pupil-labs.com/products/neon/ (last accessed: May 25, 2025).
7https://april.eecs.umich.edu/software/apriltag (last accessed: May 25, 2025).
8https://www.ueq-online.org/ (last accessed: May 25, 2025).
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Figure 4: During the study, participants were initially asked
to familiarize themselves with both the environment and
DesignMinds (Testing). They received instructions on the
components of the prototype and how to interact with it.
After completing consent and demographic forms, partici-
pants were provided with preparation instructions for tasks.
First, participants were randomly divided into two groups:
the experimental group, which interacted with the chatbot
DesignMinds, and the control group, where participants con-
tinued their usual practice for design inspiration. Each partic-
ipant group was assigned two tasks with different design con-
texts, presented in a counterbalanced order. After finished
with main experiment, participants were asked to complete
the UEQ and UTAUT questionnaires. They were then inter-
viewed on three topics: overall experience, typical ideation
process, and their attitudes towards AI.

they received instructions (see Supplementary Text 1) on the tasks
they were required to complete. Following the preparatory phase,
participants in each group were shown two video tasks depicting
contexts of cooking and construction, with the order of presenta-
tion counterbalanced. These videos were sourced from Ego4D9, a
large-scale video dataset frequently employed for benchmark and
HCI research [28]. Considering the total length of the study, each
video was approximately 3 minutes in duration. In the experimental
group, participants were instructed to use the defined UI shown
in Fig. 3 to watch video playback, interact with the chatbot, and
make notes in the designated note-taking space to record divergent
thinking. In contrast, for the control group, the chatbot was hid-
den, and participants were asked to proceed with design ideation
on the note-taking space from the videos as they normally would.
Participants were notified at the 12-minute mark of each task that
they had 3 minutes remaining. The process was repeated for both
videos. Upon completion, participants were then asked to evaluate
9https://ego4d-data.org/ (last accessed: May 25, 2025).

https://pupil-labs.com/products/neon/
https://april.eecs.umich.edu/software/apriltag
https://www.ueq-online.org/
https://ego4d-data.org/
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their experience using UEQ and UTAUT questionnaires. Follow-
ing the questionnaires, a 5-minute interview asked participants
insights toward three topics: their overall experience during the
two video tasks, their performance in the ideation process, and
attitudes toward AI after having the experiment.

5 Results
5.1 Divergent Thinking Analysis (RQ1)

Fluency

Flexibility* Originality**

2.5

5.0

7.5

Experimental Group
Control Group

Figure 5: Radar chart depicting the evaluation scores of de-
sign thinking across raters for the experimental and control
groups. Errors are indicated by shaded regions. Attributes
marked with asterisks (* or **) represent significant differ-
ences. * denotes 0.01 < p < .05, and ** denotes p < .001.

To address the quality of ideas generated in the VBD process as
proposed in RQ1, we collected the divergent thinking texts from
both groups. We then recruited three independent raters to evalu-
ate the ideation results based on fluency, flexibility, and originality,
using a predetermined set of criteria (See supplementary text 2)
[30]. We then performed a quantitative analysis of the rating scores
for both the experimental and control groups. As shown in Fig. 5,
we observed a significant main effect on the average ratings for flex-
ibility and originality (independent t-test 𝑡 (33)𝑡 = 2.304, 𝑝 = .014;
𝑡 (33)𝑡 = 4.674, 𝑝 < .001). The average scores for both flexibil-
ity (7.17 ± 3.511 points) and originality (4.74 ± 1.018 points) in
the experimental group were significantly higher than those
in the control group (flexibility: 5.12 ± 1.074 points; originality:
3.35 ± 0.583 points). However, there was no significant main effect
on the rating for fluency between the two groups (independent
t-test 𝑡 (33)𝑡 = 1.885, 𝑝 = .068). Additionally, Krippendorff’s Al-
pha was calculated to assess the internal consistency of the three
raters’ judgments on the categories of divergent thinking. We ob-
served a moderate agreement among the raters, with an average
Krippendorff’s Alpha of 𝛼 = .702 (95% CI, .245 to 1), p < .001.

5.2 Design Ideation Process (RQ2)
5.2.1 Eye-tracking measures. We first analyzed the eye-tracking re-
sults from both groups. As shown in Fig. 6c, a significant main effect
was observed in the average pupil dilation between the experimen-
tal and control groups (independent t-test 𝑡 (33)𝑡 = 2.933, 𝑝 = .021).

The dashed line in the subplot represents 0 millimeters which indi-
cates therewas no change from participant’s baseline pupil diameter
during non-tasked time. Compared to the baseline, participants
in the experimental group exhibited an average dilation of
0.15 mm more than those in the control group during the
ideation task (experimental 𝑠𝑡𝑑 = 0.206; control 𝑠𝑡𝑑 = 0.152).
We then examined the gaze fixation rate per minute and the av-
erage fixation duration across the two groups. As shown in Fig.
6b, no significant main effect (independent t-test 𝑡 (33)𝑡 = 0.795,
𝑝 = .986) was observed in the average fixation rate (see subplot
(a)). Interestingly, participants in the experimental group ex-
hibited an average fixation duration that was significantly
120.31 milliseconds (𝑠𝑡𝑑 = 135.053) longer than that of the
control group within the AOI (𝑠𝑡𝑑 = 193.366; independent t-test
𝑡 (33)𝑡 = 1.567, 𝑝 = .039). Additionally, as shown in subplot (a) of
Fig. 6c, we observed a significant main effect in the average blink
rate (independent t-test 𝑡 (33)𝑡 = 0.557, 𝑝 = .004). Participants in
the experimental group on average blinked 5.23 (experimental
𝑠𝑡𝑑 = 4.459; control 𝑠𝑡𝑑 = 5.400) less times per minute than
those in the control group. However, no significant difference
was found in the average blink duration between the two groups
(independent t-test 𝑡 (33)𝑡 = 0.226, 𝑝 = .340). No significant main
effect was observed in the average saccade rate between the two
groups shown in Fig. 6d(independent t-test 𝑡 (33)𝑡 = 0.252, 𝑝 = .249).
However, there was a significant increase in saccade velocity in
the experimental group compared to the control group (indepen-
dent t-test 𝑡 (33)𝑡 = 3.171, 𝑝 < .001). On average, participants in
the experimental group performed 662.45 pixels per second
faster saccades than those in the control group within the
AOI (experimental 𝑠𝑡𝑑 = 477.332; control 𝑠𝑡𝑑 = 351.452).

5.2.2 Chat log analysis. In addition to eye-tracking measurements,
we conducted an in-depth analysis of the conversation logs from the
experimental group. We utilized both qualitative and quantitative
methods to better understand what occurred during the augmented
design ideation processes with DesignMinds. We categorized the
questions that participants asked as follows:

(a) Questions about design opportunities (N=16): The majority
of questions posed by participants (P1-3, P5, P7-17, and P19)
focused on suggestions or ideas for improving the processes
depicted in the videos. These inquiries typically emerged
after participants had gained an understanding of the video’s
content and identified key areas of interest for potential
design opportunities. For instance, some designers, such as
P2 and P8, sought initial inspiration to begin their designs
by asking, "How can the processes shown in the video be
improved?" (P2) and "What can be improved?" (P8). Others
(P3, P9, P12, and P19) aimed to build upon existing ideas and
leveraged the LLM to further extend their concepts. These
participants asked questions such as, "What do you suggest
to avoid using hands directly when handling food during
cooking?" (P9), "Can you recommend structures that allow a
construction worker to lift heavy objects without carrying
them?" (P12), and "What are the consequences of not using
fitted kitchen tools for the task?" (P19).
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(b) General video content understanding (N=13): Many partici-
pants (P2-4, P6-8, P10, P11, P13, P15, P16, P17 and P19) uti-
lized the video comprehension capabilities of DesignMinds
to gain a comprehensive understanding of the content pre-
sented in the videos. Participants frequently inquired about
the events occurring in the video or sought clarification on
specific actions or objects they found unclear. Some partici-
pants employed a DesignMinds-first strategy, initiating their
ideation processes by querying the LLM about the video’s
content. For example, common inquiries included, "What
is this video about?" (P2), "List the steps of the activities."
(P6), "What dish is he making?" (P11), and "Can you tell me
what’s happening in the video?" (P15). Others used Design-
Minds to validate their observations, asking questions such
as, "Are they cutting the edge in a straighter line?" (P10)
and "This video was about how to cut an avocado, right?"
(P17). Additionally, a subset of participants posed higher-
level, reflective questions about the video’s content, such as
P19, who asked, "What is the goal of what they are doing
during the construction work?"

(c) Understanding and Ideation from Specific Scene Settings
(N=10): A subset of participants (P3, P6, P7, P9, P12-14, P16,
P17 and P19) sought to utilize DesignMinds to gain a deeper
understanding of specific scene settings depicted in the videos.
Unlike the broader inquiries in category (b), these partici-
pants focused on more narrowly defined actions within a
given context. For example, when viewing a scene where
an individual attempts to retrieve food from a sealed jar,
P6 asked the LLM, "What are some ways to lock a jar au-
tomatically?" Similarly, P9 used the prototype as a tool for
identifying specific items, asking, "What is the tool called
that slices cheese in this video?" P14 inquired about strategies
for organizing kitchen utensils, asking, "Can you combine
the relocation ideas for kitchen tools?" In the context of con-
struction, P16 sought detailed advice by asking, "How can I
make sure that the men operate heavy machinery safely?"
while P17 questioned, "Which is more efficient: adding an
extra step in the process or using two different tools?"

(d) Combining Impressions with Opinion-Based Queries (N=4):
Some participants (P6, P11, P16, P19) went a step further by
integrating their own impressions with their questions and
aksed for pinion-based suggestions. For instance, P11, while
observing a scene involving three workers in a construction
setting, asked, "Don’t you think the space is crowded for 3
people?" The participant here showcased a critical evalua-
tion of the scene. Similarly, other participants framed their
questions in a way that encouraged critical thinking. For
example, P19 asked, "What happens if you don’t use fitted
kitchen tools for the job?"

Additionally, we conducted correlation tests to explore the rela-
tionship between traits from the chat logs during ideation and the
quality of the final ideation outcomes, measured by three attributes:
fluency, flexibility, and originality (see Fig. 5). We analyzed the con-
versation history and computed the average number of chat turns
participants made with the prototype, the average number of words
in each question asked and response generated, and the number of

follow-up ideas generated for each participant in the experimental
group. As shown in Table 2, Pearson product-moment correlation
tests were conducted to measure the relationship between chat
log variables and ideation quality. There was a strong, positive
correlation between the average number ofwords in each par-
ticipant’s question and the originality of the ideas ultimately
generated, which was statistically significant (𝜌 = .500, 𝑛 = 18, 𝑝 =
.034). Similarly, a strong and significantly positive correlation
was found between the average number of words in each
generated answer and the fluency (𝜌 = .636, 𝑛 = 18, 𝑝 = .005),
flexibility (𝜌 = .743, 𝑛 = 18, 𝑝 < .001), and originality (𝜌 = .652,
𝑛 = 18, 𝑝 = .003) of the ideation quality. In addition, a strong and
significantly positive correlation was also observed between
the average number of ideas generated from the prototype
and both the fluency and flexibility of the ideation quality (𝜌 =
.749, 𝑛 = 18, 𝑝 < .001; 𝜌 = .782, 𝑛 = 18, 𝑝 < .001).

5.3 UX, Technology Acceptance and Use (RQ3)
To determine if the introduction of a new technology affected the
ideation process from VBD, we analyzed self-reported data on par-
ticipants’ UX and technology acceptance from both the experimen-
tal and control groups, as shown in Fig. 7. We conducted one-way
ANOVA and Kruskal-Wallis H tests for each attribute pair. The
null hypothesis (H0) for these statistical tests assumed that there
was no significant main effect between the two groups regarding
attributes from UX and technology acceptance and use, meaning
that the self-reported perceptions in both groups were the same.
For the UEQ which measures UX (see Fig. 7a), the analysis revealed
no significant difference in the attractiveness attribute between the
experimental group that used DesignMinds and the control group as
a baseline (ANOVA 𝐹1,33 = .386, 𝑝 = .538). Similarly, comparisons
of the other UEQ attributes—perspicuity (ANOVA 𝐹1,33 = 1.208,
𝑝 = .332), efficiency (ANOVA 𝐹1,33 = .008, 𝑝 = .944), depend-
ability (ANOVA 𝐹1,33 = 0.200, 𝑝 = .665), stimulation (ANOVA
𝐹1,33 = 0.376, 𝑝 = .553), and novelty (ANOVA 𝐹1,33 = 1.639,
𝑝 = .345)—between the experimental and control groups also re-
tained the null hypothesis (H0). Thus, all six UEQ attributes
collected from the experimental group using DesignMinds
measured UX has the same results as in the control group.

Additionally, as shown in Fig. 7b, the non-parametric Kruskal-
Wallis test revealed that the PE attribute (performance expectancy)
from UTAUT failed to reject the null hypothesis (𝑥2 (1) = .003,
𝑝 = .960), indicating no significant difference in performance ex-
pectancy between the groups. The mean rank scores were 17.92 for
the experimental group, 18.09 for the control group. Similarly, the at-
tributes of EE (effort expectancy) (ANOVA 𝐹1,33 = 1.413, 𝑝 = .081),
ATT (attitude toward using technology) (ANOVA 𝐹1,33 = .699,
𝑝 = .287), ANX (anxiety) (ANOVA 𝐹1,33 = .391, 𝑝 = .442), and
BI (behavioral intention) (ANOVA 𝐹1,33 = .004, 𝑝 = .938) also re-
tained the null hypothesis. As such, all attributes for measuring
technology acceptance and use retained the null hypothesis
between the two groups. These findings indicate that our
experimental DesignMinds did not introduce any negative
effects on UX or technology acceptance and use compared to
the normal ideation process in VBD (control).
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Table 2: Table of Pearson’s correlation coefficients (𝜌) and their p-values for four test variables from the analysis of the
intermediate chat log and three ideation quality variables (see Fig. 5). Significant correlations are indicated by ** or * based on
the p-values (see notes).

Chat Log Variable Ideation Pearson’s correlation P-valueQuality coefficient

Avg. Nr. of Chat Turns
Fluency 0.261 0.296
Flexibility 0.126 0.619
Originality -0.313 0.206

Avg. Nr. of Words in Each
Question Asked

Fluency 0.218 0.385
Flexibility 0.318 0.198
Originality .500* 0.034

Avg. Nr. of Words in Each
Answer Generated

Fluency .636** 0.005
Flexibility .743** <.001
Originality .652** 0.003

Avg. Nr. of Ideas Generated
Fluency .794** <.001
Flexibility .782** <.001
Originality 0.398 0.102

Notes: Pearson’s correlation test (two-tailed) is significant at **p < 0.01 and *p < 0.05.

6 Discussion
In this study, we conducted an A/B test to evaluate the impact of
our DesignMinds on the ideation process for VBD. Participants were
assigned two sub-tasks and asked to generate as many design ideas
as possible related to the provided contexts. Our findings indicate
that DesignMinds significantly enhanced participants’ performance
in terms of the flexibility and originality of their final ideation
outputs compared to the baseline. Additionally, participants using
DesignMinds demonstrated greater engagement in decision-making,
as evidenced by eye-tracking data, and there was a strong positive
correlation between the number of ideas and words generated with
DesignMinds and the overall quality of their ideation. Furthermore,
our findings suggest that the introduction of DesignMinds did not
negatively impact user experience or technology acceptance.

6.1 Increased Flexibility and Originality in
Divergent Thinking

Divergent Thinking is a well-established method, supported by
both theory and practice, in measuring creativity during ideation
[67–69]. Because our prototype aims to support the generation
of diverse and novel ideas through conversational assistance, Di-
vergent Thinking offers a theoretically grounded lens to capture
these creative outcomes. In this study, we adopted this approach to
investigate how DesignMinds incorporating emerging technologies
can enhance ideation within a design context involving videos. Our
first research question (RQ1) explores the impact of DesignMinds on
ideation outcomes. To address this, we collected Divergent Think-
ing data from our study and had three independent graders with
an "internal consistency" check to evaluate the quality of ideation,
following principles outlined in well-established literature [30]. At
the outset, we reviewed how ideation is understood and measured
in the literature. For instance, fluency is used to assess the produc-
tivity of ideation, while flexibility indicates diverse ideas across
different conceptual categories. Originality is defined by the novelty

or rarity of ideas within a given task [30]. Our results show that
participants in the experimental group, supported by DesignMinds,
received higher ratings in flexibility and originality compared to
the control group. This suggests that with DesignMinds’ assis-
tance, the ideation process generated more multifaceted and
novel ideas [68]. Specifically, the trait of flexibility could improve
professional practitioners’ understanding of tasks (e.g., the usability
of an artifact) and decision-making in design projects (e.g., plans
for improvement) [2]. Whereas originality, on the other hand, not
only strongly correlates with innovation but also reflects the qual-
ity of authenticity and integrity of creative tasks [29]. Similarly,
other studies concluded that ideation from industrial design tasks
should consider three key aspects: "functional value", "aesthetic
value" (e.g., visual form), and "originality value" [13]. Our study
showed that the prototype notably improved outcomes in two of
these aspects—flexibility and originality. As such, the use of Design-
Minds enhanced the variety and novelty of ideas in creative VBD
tasks.

6.2 Greater Engagement in Ideation and
Positive Correlation Between Interaction
History and Performance

We found that the final outcome of ideation (i.e., Divergent Think-
ing) was partially enhanced by the prototype. To explore further,
we sought to understand how our prototyped DesignMinds influ-
enced the ideation processes in design tasks (RQ2). We began by
measuring participants’ eye movements during the tasks and ob-
served an increased in pupil dilation in the experimental group
compared to the control group. Previous studies have shown that
dynamic changes in pupil dilation are associated with high-level
cognitive processing [33]. Since the study was conducted in a stable
lighting environment, the observed increase in pupil dilation in-
dicates that participants voluntarily engaged in deeper, high-level
decision-making prompted by the recommendations generated by
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(a) Participants in the experimental group exhibited significantly
greater pupil dilation compared to the control group. The dashed
line at 0 millimeter on y axis represents no change in pupil diam-
eter relative to the baseline, when participants were not engaged
in ideation tasks.
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(b) In subplot (b-a), no significant difference was observed in the
averaged fixation rate between the groups. In subplot (b-b) indi-
cated by an asterisks(*), participants in the experimental group
exhibited a significantly higher fixation duration compared by
control group.
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(c) In subplot (c-a), participants in the experimental group exhibited
a significantly lower blink rate, as indicated by an asterisks(*). In
contrast, (c-b) shows no significant difference was observed in blink
duration between the groups.
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(d) In subplot (d-a), no significant difference found compared aver-
aged saccade rate across the two groups. In subplot (d-b) with aster-
isks(**), participants in the experimental group exhibited a signifi-
cantly lower number of average velocity in saccade.

Figure 6: Plots displaying the average pupil dilation (6a), fixation rate and duration (6b), average blink rate and duration (6c),
and average saccade rate and velocity (6d) for the experimental and control groups. Accompanying histograms with error bars
are also provided for each measure. Attributes and subplots marked with asterisks (* or **) represent significant differences. *
denotes 0.01 < p < .05, and ** denotes p < .001.

DesignMinds [40]. Furthermore, the observed increase in gaze fixa-
tion duration and faster saccade speed in the experimental group
suggests that participants were more engaged in the tasks compared
to the control group [16, 34, 76]. Supported by existing literature,
longer gaze fixation duration and quicker saccadic movements typ-
ically indicate higher levels of focus and cognitive engagement
[37, 93]. This may also suggest that our DesignMinds captured par-
ticipants’ attention more effectively within the design task context
compared to the traditional practice without additional helps in

the control group. Similarly, the observed lower blink rate in the
experimental group suggests that participants showed greater emo-
tional interest in the generated content, which in turn increased
their focus and engagement with the provided design use case [54].
A high level of work engagement has also been shown to lead to
more positive and improved work performance [15, 44]. In this way,
participants from the experimental group took the design-
specialized advice and engaged in more iterative reflection
in the ideation processing.
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(a) Scaled average values for measuring UX (UEQ) which include at-
tributes—Attractiveness, Perspicuity, Efficiency, Dependability, Stim-
ulation, and Novelty—compared between the experimental and con-
trol groups.
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(b) Scaled average values for measuring technology acceptance and
use (UTAUT) across attributes: PE (Performance Expectancy), EE
(Effort Expectancy), ATT (Attitude Toward using Technology), ANX
(Anxiety), and BI (Behavioral Intention to use the system).

Figure 7: Histograms showcase UX and technology accep-
tance and use, measured using UEQ and UTAUT question-
naires, respectively. Standard deviations are represented as
error bars. No significant main effect was found between the
experimental and control groups regarding the introduction
of a new type of technology (i.e., DesignMinds).

Following the eye-trackingmeasurements, we conducted a follow-
up analysis of the chat logs. We examined how the DesignMinds’
responses influenced the interactions and how these exchanges cor-
related with the quality of ideas produced during human divergent
thinking. As noted in Section 5.2.2, many participants engaged with
DesignMinds to seek inspiration and guidance for potential design
improvements based on the video context. The video comprehen-
sion function from DesignMinds augmented the case debriefing
process to allow participants to bypass the need to introduce the
design case from scratch. Instead, participants could directly pro-
pose questions about both general and specific contents from the
videos. The conversational interface from DesignMinds facilitated
ideation through a turn-based flow among design practitioners,
domain-specific knowledge base, and video content. This pattern
of back-and-forth interaction may have supported reflection dur-
ing the VBD ideation process. In particular, the interface not only

responded to video-derived content but also appeared to encour-
age some participants to revisit or clarify earlier observations and
decisions, as evidenced in parts (b) and (c) in Section 5.2.2. These
patterns are broadly consistent with insights from Shaer et al. [74],
who found that dialectic interaction with LLMs supported not only
idea generation but also the iterative reframing and development
of those ideas. While our context and methods differ, we similarly
observed (part (d) in Section 5.2.2) that conversational engagement
with DesignMinds enabled some participants to build incrementally
on prior thoughts. In this way, DesignMinds may have played a
modest role in structuring how ideation unfolded during interac-
tion.

Interestingly, from what we observed in parts (c) and (d) in Sec-
tion 5.2.2, participants treated DesignMinds not merely as a tool
but as a collaborator whose responses could validate assumptions
based on the knowledge base, introduce novel perspectives, and,
in some cases, provoke critical re-evaluation of their ideas. This
aligns with Kim et al. [42], who found that overlap-capable chat-
bots often foster more responsive interactions that enhance users’
sense of shared agency in ideation. In our study, some designers
utilized DesignMinds’ contextual understanding from emulating
domain expertise to seek confirmation about the use cases or video
contents (part (d) in Section 5.2.2). Upon receiving positive feed-
back, designers became more intrigued and confident which lead to
deeper insights during the Divergent Thinking phase. Additionally,
some participants incorporated their personal perspectives into the
questions and findings they sought to confirm (part (d) in Section
5.2.2). This reflects the nature of design work as emotionally and
personally driven [90], and it also aligns with findings by Qin et
al. [64], who observed that users engaging with LLMs after form-
ing initial ideas demonstrated higher creative self-efficacy and a
stronger sense of ownership over their contributions.

In addition, subsequent correlation tests reveal several strong
and positive relationships between the words and ideas generated
in chat logs and the quality of ideation in Divergent Thinking tasks.
This indicates that ideation outcomes were closely linked to the rich-
ness of participants’ exchanges with DesignMinds. Consequently,
the ideation phase is likely to be enhanced by richer contents
from generative answers in DesignMinds. Similarly, prior re-
search has demonstrated that well-structured instructions in design
tasks can play a significant role in eliciting higher levels of original-
ity and fostering a broader range of ideation among practitioners
[70]. Consistent with this, we observed a positive correlation be-
tween the length of participants’ questions and the originality of
their responses. This suggests that the quality and quantity of the
generated answers may be influenced by the level of detail in the
query input. This finding emphasizes that it is important to ensure
design practitioners to clearly explain their needs in the context of
the current circumstances in future studies.

6.3 No Decline in UX or Technology Acceptance
and Use with the Introduction of New
Technology

When introducing new technology into existing practices, practi-
tioners may struggle with the adaptation process. Technostress, for
example, is a phenomenon where individuals are unable to work
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with new information and communication technologies (ICT) in
their work [80]. This difficulty can lead to a decrease in productivity
and creativity [10]. Previous literature has shown that discomfort
with newly introduced tools often manifests as a decline in UX
and in the ratings of technology acceptance and usage [41, 79, 81].
Such a decline can potentially lead to ineffective use of the new
technology and mismeasurement of its actual functionality. Given
that the DesignMinds integrates emerging ICT components, we
are particularly interested in understanding whether the prototype
affects UX and technology acceptance and use scores compared
to the baseline (RQ3). In Section 5.3, the analysis of self-reported
scores from two separate questionnaires revealed no significant
differences between the experimental and control groups. This sug-
gests that participants in both groups exhibited similar levels of
task satisfaction and willingness to accept and use the prototype.
As such, the proposed DesignMinds did not negatively im-
pact the normal design ideation experience and did not alter
the original use and acceptance of the technology. Addition-
ally, while we observed lower ratings for certain attributes, such as
perceived dependability, stimulation, and novelty within the user
experience, these variations do not impact our overall findings of no
significant difference in attribute scores. This may be attributable
to individual attitudes towards the selected design scenarios, as
design is inherently influenced by sentiments and emotions. We
anticipate that future studies involving different VBD use cases
may yield higher scores, though the pattern of results is expected
to remain consistent.

6.4 Limitations and Future Work
WhileDesignMinds shows significant potential for enhancing ideation
in VBD, several limitations warrant further investigation. In infor-
mal post-experiment discussions, some participants expressed con-
cerns around transparency and trust when using LLMs in creative
processes. One of the primary challenges identified is the risk of
"hallucinations," a common issue in AI-driven tools where models
provide convincing yet incorrect information [39, 49]. This may
increase confidence in creative tasks but can also lead to biased or
flawed outcomes [61]. To mitigate this risk, we integrated the RAG
mechanism [46] into DesignMinds. According to prior literature,
RAG helps address the issue of generating inaccurate information
by enabling the system to retrieve and incorporate task-centric,
contextual-relevant, and factual-grounded content [75]. In the fu-
ture work, we aim to further enhanceDesignMinds ’ transparency by
integrating more interpretable outputs, such as providing citation
links to credible literature in answers [48] which allow designers
to trace the rationale behind generated suggestions.

Another limitation is the need to test DesignMinds across a
broader range of VBD use cases. While DesignMinds proved ef-
fective in assisting design ideation within the two specific contexts
of cooking and construction, real-world applications involve amuch
wider diversity of design tasks that may demand more flexible tools
and an expanded knowledge base. In this study, we predefined the
design books for DesignMinds ’s knowledge repository based on
selections made by an independent committee to align with the
study’s tasks. However, future work could allow designers to per-
sonalize the knowledge base by selecting and uploading their own

domain-specific resources through a non-programmer-friendly in-
terface. For example, platforms such as AnythingLLM10 enable
users to choose their own LLM models and indexed documents
which could potentially offer a more tailored and flexible approach
to ideation assistance. Furthermore, our current implementation
of ideation assistance offers a fixed level of support to all users.
However, design ideation is a highly individualized process, with
varying needs for inspiration and suggestions based on the de-
signer’s experience [89, 90]. To address this variability, we allowed
participants in the study to critically consider their dependability of
the assistance according to their own preferences, giving them the
freedom to choose which aspects of ideation assistance to utilize
and what to record in the Divergent Thinking process. The consis-
tent level of support was maintained to ensure a fair comparison
and to isolate DesignMinds’ impact on ideation. In future iterations,
we could consider DesignMinds as a product and implement a tun-
able feature that allows users to adjust the level of "helpfulness" in
guiding the design ideation process. We expect this would enable
designers to control the amount of information provided according
to their needs and makes the tool more responsive to individual
preferences.

7 Conclusion
The advancement of generative AI has substantially transformed hu-
man work in recent years. In VBD design, there remains an urgent
need to reduce the burden of manual video analysis and acceler-
ate professional ideation. Prior research across multiple disciplines
has demonstrated efforts to harness the power of generative AI to
augment design ideation. In this paper, we present DesignMinds, a
prototype that elevates ideation assistance for VBD to a higher level.
Utilizing advanced techniques from generative AI, our DesignMinds
can automatically extract information from videos, integrate with
professional design guidelines from indexed literature, and provide
design- and case-centric recommendations to inspire designers.
Our findings demonstrate that DesignMinds significantly improves
ideation outcomes in terms of flexibility and originality in Diver-
gent Thinking. Through cognitive monitoring via eye-tracking and
chat log analysis, we observed increased engagement in design
ideation when using DesignMinds. Furthermore, assessments of UX
and technology acceptance and use indicated that the introduction
of this tool did not contribute to increased stress and ensures there
will be a smooth integration into the existing VBD workflow in
future.
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You will be shown two videos. Your task is to analyze the videos
and pinpoint processes or methods that could be enhanced. Focus
on the activities and consider alternative tools, interactions, or
contextual improvements. Generate and write out as many ideas
as possible. You are encouraged to think out loud.

(Please use the provided chatbot to assist you. This tool
offers insights and suggests improvements based on the video
content. Type your questions or thoughts into the chatbot and
use its responses to enhance your ideation. For example, ask,
"How can the process shown in the video be improved?")

You will have 15 minutes to engage with each video.
Please use your time effectively and document as many ideas as
possible. Please note that videos do not have sound. You will be
notified after 12 minutes of the time.

When you are ready to proceed press the "Start" button
and the arrow "→" on the bottom right side of the screen.

Supplementary Text 1: Instructional text displayed in the
Note-taking Space in Fig. 3. Text within parentheses (the
second paragraph) was shown only to participants in the
experimental group with access to DesignMinds.

• Flexibility: Each comprehensive idea which portraying the pur-
pose and functionality in sufficient detail to be understandable
gives a +1 point.
• Flexibility: Give a +1 point for each new domain/subdomain is
spotted based on the ideation context across all participants.
• Originality: A grade based on the statistical infrequency of
ideas measured on a 7-point Likert scale.

Supplementary Text 2: Predetermined criteria based on Guil-
ford’s study [30] for evaluating fluency, flexibility, and origi-
nality in divergent thinking texts by independent raters.
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