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Introduction 
 
Concrete is a multiphase granular material consisting of aggregate particles of various sizes 
and irregular shape, embedded in hardened cement paste. The physicochemical processes 
during the hardening of the cement cause air voids, micro cracks and interfacial bond micro 
cracks. As a consequence of this heterogeneous structure, concrete displays a non-linear and 
time-dependent deformation response under sustained loading.  
 
A challenging topic was and still is the failure behaviour of concrete beams without shear 
reinforcement. The behaviour of cracked reinforced concrete panels can now be satisfactorily 
predicted for monotonic short-term shear loading conditions. In spite of substantial 
experimental and theoretical efforts in the past, the shear transfer mechanism in concrete in 
the case of sustained shear loads is not well known.  
 
When a concrete beam is under sustained high loads, a flexural cracking pattern appears along 
the span. Here, various shear-carrying mechanisms may be developed by a beam, e.g. 
aggregate-interlock and dowel action. These mechanisms induce tensile stresses in concrete 
near the crack tip and at the level of the reinforcement. Once the tensile strength of the 
concrete in these regions is reached, the existing flexural cracks progress in a diagonal 
direction or new ones are created. The development of the critical shear crack, however, does 
not necessarily imply the collapse of the member but in case of sustained high loads, the crack 
width and therefore the crack length will be increased. 
 
The aim of this research is to predict the time-dependent mechanical behaviour of cracked 
concrete beams subjected to sustained shear loads. The results should enable the designer to 
quantify the failure load (ULS) and deformations and the propagation of the cracks (SLS) of 
beams under sustained shear loads. 
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Chapter 1: Short-Term Shear Failure 
 
The behaviour of a slender beam subject to a gradually increasing load and its failure in 
flexure is well known. The first cracks will appear long before the failure load is reached. The 
cracks are narrow and unimportant provided the reinforcing steel tensile strain is less than 
about 0.1 percent in a crack. Due to bond, the steel and concrete attain the same mean strain 
so that with a value of 0.1 percent the stress in steel would be about 210 MPa (Es = 210 GPa). 
Under further loading, the cracks increase both in width and length indicating that the area of 
the compressive zone decreases. In the concrete, the increase of the internal lever arm 
contributes to carrying the increased load. This effect is combined with the gradual increase of 
internal forces (steel tensile force and concrete compressive force). This effect is especially 
visible when the stress in the steel reaches and exceeds the yield point stress. The force 
resisted by the steel and concrete now remains almost constant. An increase in the load is to 
be resisted by an increase of the internal lever arm only. As a result, strains increase 
considerably. 
 
When the bending process is continued, the strain in the outer fibres of the compressive zone 
increases rapidly. This increase is mainly due to the decrease in the area of the compressive 
zone as a result of cracking due to the increase in the load. Thus the strain in the compressive 
zone eventually reaches the failure strain of concrete and destruction of the compressive zone 
brings about the flexural failure of the beam. 
 
There is no disagreement on what constitutes flexural failure, but there is a strong 
disagreement on what shear failure is, even as far as the meaning of that term itself is 
concerned. Some researchers think, for instance, that failure of the bond between steel and 
concrete represents a typical shear failure, while others consider it as a third type of failure 
(after flexural failure and shear failure). Because shear failure appears to be an unsuitable 
term for a failure in which shear has little or no influence and also because a diagonal crack is 
a visible feature of all failures which are not flexural failures, some research workers, e.g. 
Kani  [18], classify these two main groups of failures of reinforced concrete beams under 
‘flexural failure’ and ‘diagonal failure’. Of course, there is still the possibility that more than 
one type of diagonal failure exists. 
 
Most researchers state that there are three principle methods in which a reinforced concrete 
beam can fail in shear. The first type of shear failure is a web crushing failure. For a web 
crushing failure, the concrete compressive strength is exceeded and the web crushes typically 
at the top flange of an I-shaped section near the applied load. For a web crushing failure, the 
cracking is initiated in the web and then extends out in both directions. The second type of 
shear failure is called a flexural shear failure. For this type of failure, the initial cracks form 
due to flexure at a 90-degree angle with respect to the longitudinal axis of the beam (τ = 0 at 
the outer fibres). As the externally applied load increases, shear forces and principal tensile 
stresses dominate the flexural effects causing the cracks to change direction (close to a 45 
degree angle from the longitudinal axis) and continue until the principal stresses produce 
enough dilation of the crack to cause failure. The third type of failure occurs in the 
discontinuity regions of the beam where plane sections don’t remain plane due to the load 
being applied so close to the support. Typical failure mechanisms occur due to arching action 
between the applied load and the support. The Eurocode 2, the AASHTO LRFD and the ACI 
318-08 design codes account for these three types of failure. 
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Shear failure of reinforced concrete beams without web reinforcement is usually caused by 
inclined diagonal tension cracking (Fig. 1). Once the diagonal tension cracks develop in the 
web of the beam, the beam without web reinforcement becomes unstable. ASCE-ACI 
Committee 426  [1] reported that for cracked beams the shear resistance is developed by 
several shear transfer mechanisms (Fig. 2). First, the intact uncracked concrete in the 
compression zone is capable of transferring the shear force (Vcc). However, in a slender beam, 
the contribution of the shear force at the compression zone does not account for the major part 
of the total shear resistance.  
 

 
Fig. 1: Shear failure mechanism of reinforced test beams without shear reinforcement  [23] 
 

 
Fig. 2: Several components of shear resistance 
 
According to test results by Walraven  [3], a large amount of the shear force is transferred 
along the cracked surface via aggregate interlocking (Va). Usually, this shear transfer 
mechanism is known to be dependent on the aggregate size [2], the compressive strength of 
the concrete  [7] and the fracture mode of concrete (in the aggregate or the concrete transition 
zone; Loov and Peng  [8]). The contribution of the dowel action of the longitudinal 
reinforcement (Vd) to shear strength has been researched by Vintzeleou and Tassios  [9]. The 
first researches on shear failure were conducted by Teller and Sutherland  [10] and 
Timoshenko et al.  [11].  
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Fig. 3: Variations of shear strength of beams according to primary design parameters: (a) compressive 
strength of concrete; (b) reinforcement ratio; (c) effective depth; and (d) shear span to depth ratio  [33] 
 
When shear deformations occur in cracked concrete, the tension reinforcement designed to 
resist the bending moment, is subjected to a certain amount of shear stress. However, it is 
known that in case of concrete beams without shear reinforcement, dowel action of this 
reinforcement becomes insignificant because the maximum shear developed in the 
longitudinal reinforcement is limited by the tensile strength of the concrete cover supporting 
this reinforcement (ASCE-ACI Committee 445  [12]). According to existing test results, the 
shear resisting mechanism is affected mainly by concrete strength, tension reinforcement 
ratio, effective depth, and shear span to depth ratio as shown in Fig. 3.  
 
Talbot  [13] suggested that the shear strength of slender beams varies with the amount of 
tension reinforcement ratio as well as the compressive strength of the concrete (Fig. 3 (a) and 
(b)). The experimental studies by Kani  [14] and Shioya et al.  [16] showed that the shear 
strength of concrete beams decreases as the size of the beam increases, in spite of keeping 
cross-section geometry, material properties, and reinforcement ratios of the beams constant 
(Fig. 3 (c)). Bažant  [17] showed that to satisfy the condition of energy balance, the size effect 
must be addressed in the evaluation of shear strengths of brittle materials like concrete. Kani 
 [18] showed that for deep beams and relatively short beams (a/d <2.5), the shear resistance 
may be affected by the shear span to depth ratio (a/d) because part of the applied shear force 
may be transmitted directly to the supports by arch action (compressive struts) of the concrete. 
Slender beams were therefore defined to be those beams with a/d > 2.5 as shown in Fig. 3(d). 
 
However, the shear failure mechanism of reinforced concrete beams without web 
reinforcement is a complex phenomenon that is difficult to analyze accurately. The shear 
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failure may be suddenly developed by various local failures including crushing of concrete in 
the web or at the supports or the loaded area, anchorage failure (Zararis  [22]), and splitting 
between the longitudinal reinforcement and the concrete in the cracked section (Tureyen and 
Frosch  [23]). The shear strength may be also affected by various parameters (which are 
considered as minor parameters) such as maximum aggregate size, diameter of longitudinal 
bars, and spacing between the cracks  [24].  
 

 
Fig. 4: Schematic view of the shear failure of concrete beam 

1.1. Shear flexure capacity 
 
Most shear failures occur in the region of the member cracked in flexure. It is necessary to 
make a distinction between shear flexure and shear tension. The recommendations for the 
determination of the shear flexure capacity of members not reinforced in shear are given 
chapter 6.2.2 of prENV 1992-1-1  [28]. 
 
VRd1 = [τRd · k (1.2 + 40 ρl) + 0.15σcp] · bw · d  (1) 
 
where 
τRd  basic shear strength, which follows from τRd = 0.25fctk,0.05/γc. 
k factor allowing for the size effect, equal to k = 1.6 – d (m) > 1 
ρl  flexural tensile reinforcement ratio, As/bw d < 0.02 
σcp  design axial stress (if any) = NEd/Ac 
bw minimum web section 
 
This equation has been derived in the following way. The basic equation adopted, which was 
believed to take appropriate account of the most important influencing factors like concrete 
strength, longitudinal reinforcement ratio and cross-sectional height was 
 
Vu = C · k (100 · ρl · fc)

1/3 · bw · d  (2) 
 
where 
k = size factor = 1 + (200/d)1/2 
ρl  = longitudinal reinforcement ratio 
fc  = concrete cylinder strength (N/mm2) 
C = coefficient to be determined 
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A selection was made of a representative number of shear tests, considering a parameter 
variation as wide as possible and as well as possible distributed within practical limits. This 
was already done by König and Fischer  [47]. An overview of the test parameters is given in 
Fig. 5. Then for every test result the optimum value C was determined. If the distribution is 
normal, Fig. 6, a lower bound value for C was determined according to the level 2 method 
described by Taerwe  [64] with the equation: 
 
Clower bond = Cmean · (1 – α · β · ν)  (3) 
 
where 
α  sensitivity factor, equal to 0.8 for the case of one dominating variable (concrete 

strength) 
β reliability index, taken equal to 3.8 according to [Eurocode, Basis of Structural design, 

Draft version 2001] 
ν  standard deviation 
 
If the distribution turns out to be log-normal, Fig. 6, the equation is 
 
Clower bond = Cmean · exp(α · β · ν – 0.5 ν2)  (4) 
 
In these equations a reliability index β = 3.8 means a probability of occurrence of 0.0072%. 
König and Fischer  [47] carried out this procedure for 176 shear tests. As a result of their 
analysis they found that a coefficient C = 0.12 would be a good lower bound. In Fig. 7 it is 
shown that the prediction accuracy of this equation is substantially better than that of the old 
EC-1992-1-1 formula (Eq. 1). 
 



 9

 
Fig. 5: Relative frequency of parameters in test data bank used by König and Fischer  [47] in order to find 
a reliable lower bound equation for the shear capacity of members without shear reinforcement 
 

 
Fig. 6: Normal and log-normal distribution 
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Fig. 7: Left) Shear capacity according to Eq. 2 (MC 90): relative frequency for NSC and HSC. Right) 
Shear capacity according to Eq. 1 (ENV 1992-1-1): relative frequency for NSC and HSC  [47] 
 
It was however argued, that the equation 
 
VRd,c = 0.12 k (100 ρl · fck)

1/3 · bw · d  (5) 
 
has two disadvantages; The first is that it does not distinguish between persistent & transient 
loading combinations and accidental loading combinations, for which different safety levels 
apply (prEN 1992- 1-1:2001 chapter 2.4.1.4 gives γc = 1.5 for persistent and transient and γc = 
1.2 for accidental situations). Therefore the equation was modified by introducing the 
concrete safety factor explicitly. 
 
VRd,c = (0.18/ γc) k (100 ρl · fck)

1/3 · bw · d  (6) 
 
The second is that the shear capacity goes to 0 when ρl = 0. Furthermore it was wished to have 
a simple conservative value for VRd,c for a first check of the bearing capacity. In many 
countries simple formulations have been used on the basis of  
 
VRd,c = C · fctd · bw · d  (7) 
 
where fctd is the design tensile strength of the concrete and C is a coefficient. Practice in the 
various countries however is quite different because C varies in the range from 0.3 to 0.75. 
 
Considering the value of C it should be noted that this equation is a simplification of the 
rigorous one. To have general validity, even for rare but still possible cases, C should be 
based on the most unfavourable combination of parameters. That means that the governing 
case is a slab with a large cross-sectional depth d and a low longitudinal reinforcement ratio. 
In his paper “Basic facts concerning shear failure”, Kani  [20] showed that shear failures are 
unlikely to occur for longitudinal reinforcement ratio’s smaller than 0.6%. However, his 
“shear valley” was based on beams with a cross-sectional effective depth of only d = 270 mm. 
For larger depths the critical value of ρ0 decreases. Therefore a number of shear failures 
reported by Aster, Koch  [2], Walraven  [4] and Mathey, Watstein  [5] have been selected with 
large d and small ρ0 values, see Table 1. 
 
The most unfavourable values for C are 0,34, found for Aster and Koch’s tests Nr.11 and 16, 
with d = 500 and 750 mm and ρ0 = 0,46 and 0,42% respectively. 
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Table 1: Determination of C on the basis of selected tests 
Aster, Koch (1974)  [2]         
Beam d 

[mm] 
b 
[mm] 

a/d ρ0 

[%] 
fcm 

[MPa] 
Vu, exp 

[MPa] 
fck 

[MPa] 
fctm 

[MPa] 
fctk 

[MPa] 
C 

2 250 1000 3.7 0.64 27.5 0.88 19.5 2.17 1.52 0.58 
3 250 1000 3.7 0.91 27.6 0.90 19.6 2.18 1.52 0.59 
11 500 1000 3.7 0.46 28.4 0.53 20.4 2.24 1.56 0.34 
12 500 1000 3.7 0.65 27.6 0.66 19.6 2.18 1.52 0.43 
16 750 1000 3.7 0.42 28.3 0.53 20.3 2.23 1.56 0.34 
Walraven (1978)  [4]         
A1 125 200 3 0.83 27.5 1.19 19.5 2.17 1.52 0.78 
A2 420 200 3 0.74 27.5 0.84 19.5 2.17 1.52 0.55 
A3 720 200 3 0.79 27.5 0.70 19.5 2.17 1.52 0.46 
Mathey, Watstein (1963)  [5]        
Via24 403 203 3.8 0.47 26.3 0.67 18.3 2.09 1.46 0.46 
Via25 403 203 3.8 0.47 25.8 0.61 17.8 2.05 1.43 0.43 

 
So, with some rounding off a value C = 0.35 would be appropriate for the simplified design 
equation. In prEN 1992-1-1:2001 a value 0.40 is used. An argument might be that the utmost 
part of the practical cases consists of slabs with smaller depths, subjected to uniform loading, 
where the maximum shear force does not coincide with the maximum moment, and the 
reinforcement ratio’s are small enough to ensure failure by bending. The specific case of a 
slab spanning in one direction, with a high cross-section, a critically low reinforcement ratio 
and a line load just at the most critical position from the support would then have a slightly 
lower safety. On the other hand formula’s should always be safe enough to take account of 
any possible (not likely) case, which would be an argument in favour of the use of 0.35. 
 
Some questions may be raised with regard to the definition of bw being “the smallest width of 
the cross-section in the tensile area”. Tests on tapered cross-sections showed that there is 
certainly an influence of the definition of the web width, as shown in Fig. 8, left (tests by 
Leung, Chew and Regan  [6]). Fig. 8, right, shows that a definition of bw as the average width 
of the beam would be appropriate for this case. 
 

 
Fig. 8: Shear resistance of beams with tapered cross-section (Leung, Chew and Regan  [6]) 
 
In a more recent publication (Regan  [46]) the author opts for a definition of bw = ⅔bmin + 
⅓bmax, but admits at the same time that the available evidence is rather scarce. A possible 
compromise could be to define bw as the average width of the part of the cross-section in 
tension, with a maximum of 1.25 of the minimum width. 
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The equations in prEN 1991-1-1:2001 contain as well a term 0.15σcp regarding the influence 
of an axial force on the shear capacity, for instance by prestressing. Basically the influence of 
prestressing can be taken into account as proposed by Hedman & Losberg  [34]. It was argued 
that, with regard to the behaviour in shear, a prestressed beam can be regarded as a reinforced 
beam after the decompression moment has been reached. On the basis of this argument the 
shear resistance was formulated as 
 
VRd,c = Vc + Vp 

 (8) 
 
where Vc is the shear resistance of a similar non-prestressed beam and Vp is the contribution of 
the prestressing force to the shear capacity, which can be formulated as Vp = M0/a, where M0 
is the decompression moment and a is the distance from the load to the support, Fig. 9. 
 

 
Fig. 9: Calculation of contribution Vp from prestressing to the shear resistance according to Hedman and 
Losberg  [34] 
 
However, this method works well for the evaluation of laboratory tests but is less suitable for 
real members mostly subjected to uniformly distributed loading. A solution is to replace M0/a 
by M0/(Mx/Vx), where Mx and Vx are the bending moment and the shear force in the section 
considered. However, this would complicate the shear design because then Vp would be 
different in any cross-section. Another disadvantage is that Vp would go to infinity in a 
moment inflexion point, where Mx = 0. 
 
It can simply be derived that for a rectangular cross-section with a width b, a height h and an 
eccentricity of the prestressing force ep, the contribution Vp to the shear resistance is 
 
Vp = Fp (1/6 + ep/h)/(a/h) (9) 
 
Assuming d = 0.85h this would result in; 
 
Vp = 1.18 Fp (1/6 + ep/h)/(a/d) (10) 
 
In most tests on shear critical beams the ratio ep/h is about 0.35. With a/d varying between 2.5 
and 4.0, like in most shear tests, this would mean that Vp would vary between 0.15σcp·b·d and 
0.25σcp·b·d. When evaluating test results it is therefore not amazing that the coefficient 0.15 
turns out to be a safe lower bound in shear critical regions. Nielsen  [49] compared the shear 
equation in ENV 1992-1-1 which gives about the same results as Eq. 6.2a in prEN 1992-1-
1:2001 for moderate concrete strengths, with 287 test results and found that it was at the safe 
side. 
 
The effect of longitudinal compression should, of course, not be mixed up with the effect of 
the cable curvature, which exerts a favourable transverse load on the member. This effect, 
known as the load balancing effect, is introduced as a load (load balancing principle). 
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For axial tension in prEN 1992-1-1 the same formula is used, with a different sign for 0.15σcp, 
so that an axial tensile force gives rise to a slight reduction of the shear capacity. It should be 
noted that in continuous beams there is tension in both top and bottom and excessive 
curtailment at sections of contra flexure may lead to diagonal cracking and shear failure in 
such a region. This was the main cause of failure in an actual structure (Hognestadt and 
Elstner  [50]). If a structural member is well designed for axial tension the shear capacity of 
the members is hardly reduced. This was for instance shown by Regan  [52] and  [53], who 
carried out a systematic investigation into the effect of an axial tensile force on the shear 
capacity of both members unreinforced and reinforced for shear. Tests have been carried out 
according to the principle shown in Fig. 10. Beams with a rectangular cross-section were 
provided with nibs, enabling the transmission of an axial tensile force in the middle part. The 
axial tensile force varied between 0 and 130 kN. The force could be applied in two ways: 
before subjecting the member to transverse loading, or in proportion to the transverse loading. 
In both cases the shear capacity was hardly influenced, although the member sometimes 
showed wide open cracks across the total cross section in the moment inflexion region. 
 

 
Fig. 10: Results of tests on beams subjected to axial tension, bending and shear, and failing in shear  [53] 
 

1.2. Shear tension capacity 
 
In special cases, like for instance when pretensioned strands are used in members with 
reduced web widths, such as in prestressed hollow core slabs, shear tension failures can occur, 
Fig. 11. 
 

 
Fig. 11: Shear tension failure 
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Fig. 12: Calculation of shear tension capacity with Mohr’s circle 
 
In this case failure occurs due to the fact that the principal tensile stress in the web reaches the 
tensile strength of the concrete in the region uncracked in flexure. The principal tensile 
strength in the web calculated using Mohr’s circle, Fig. 12, is equal to 
 

2 21 1
2 4I N Nσ σ ( σ )     (11) 

 
Substituting τ=VRd,ct · S/bw I and σN=α1·σcp in above equation, the code’s expression EC-2, Eq. 
6.3 
 

2w
Rd,ct ctd 1 cp ctdV ( ) σ

S

I b
f f

   (12) 

 
is obtained. 
 

1.3. Loads near to supports 
 
The Eq. (5) or in prENV 1992-1-1:2001 the Equation 6.2.a, is extended with a factor (2d/x) in 
order to cope with the increased shear capacity in the case of loads applied near to supports. 
According to this formulation, at a distance 0.5d < x < 2d the shear capacity may be increased 
to  
 
VRd,ct = 0.12 k (100 ρ fck)

1/3(2d/x)bw d
 (13) 

 
This may need some explanation, since it might be argued that loads near to supports may be 
treated with the rules given in EC-2, 2001 version, chapter 6.5 “Design of discontinuity 
regions with strut and tie models”. However, there are many arguments in favour of the 
formulation according to Eq. 13; 
 
- According to the formulations for the strut and tie model the capacity of the concrete struts 
only depends on the strength of the concrete, see e.g. Fig. 13. Consequently, the maximum 
capacity is a function of the concrete strength, the inclination of the strut and the width of the 
support area. 
 
It can easily be seen that this is a very simplified representation of reality, since the capacity 
of such a member results to be independent of the slenderness ratio a/d, which is known to 
have a strong influence. Furthermore short members are prone to significant size effects. It 
was shown (Walraven and Lehwalter  [79]), that the size effect in short members is the same 
for short and slender members, so that here also the factor k = 1 + √(200/d) applies. 
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Fig. 13: Bearing capacity of short member according to strut and tie model with defined maximum 
concrete stress in the struts 
 
Walraven and Lehwalter carried out tests on short members with various sizes, a/d ratio’s and 
support widths, and compared the equivalent maximum stress in the concrete struts, Fig. 14. 
The dotted plane is valid for a maximum stress 0.6fc. It is seen that for lower a/d ratio’s the 
capacity is considerably higher than the one obtained with the strut and tie model. It is seen 
furthermore that the limit 0.55fc for struts with transverse tension is appropriate for a/d < 2.0, 
members with depths until 1 m and a support width (k) up to about 0.20d. 
 
For a number of practical members, like in the case of corbels and pile caps, it is important to 
reduce the size as much as possible. A more accurate formulation than the strut and tie model 
is therefore useful in those cases. 
 

 
Fig. 14: Maximum stress in concrete struts as calculated on the basis of test results  [79] 
 
- Another case is shown in Fig. 15. It is a part of a foundation caisson in the Storebaelt 
Bridge, with a slab of about 1 m and wall distances of about 5 m. A substantial part of the 
counter pressure of the soil is transmitted directly to the walls, so that the governing shear 
load is small. Without a provision like the one given in Eq. 13, unnecessary shear 
reinforcement would be required. 
 
By introducing the distance x and determining the shear capacity in every cross section, also 
combinations of loads (like two concentrated loads, or a uniformly distributed load and a 
concentrated load) can be handled. An important question is whether the multiplication factor 
should be (3d/a , 2.5d/a or 2d/a). Regan  [32], on the basis of the analysis of many 
experiments, concluded that  [30]: 
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a. For simply supported beams subjected to concentrated loads a factor (2.5d/a) is appropriate. 
This is confirmed in Fig. 16: 
b. For continuous beams with concentrated loads even (3d/a) gives safe results. 
c. For simply supported beams subjected to distributed loading only (2d/a) gives safe results. 
 

 
Fig. 15: Foundation slab in Storebaelt caisson 
 

 
Fig. 16: Results of tests on simply supported beams without shear reinforcement subjected to 
concentrated loads  [32] 
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Chapter 2: Shear transfer mechanisms and influencing 
parameters 
 
Shear transfer mechanisms in concrete beams are complex and difficult to identify clearly due 
to the complex stress redistributions that occur after cracking. Shear transfer mechanisms 
have been shown to be influenced by various factors. Fig. 17 describes the basic mechanisms 
of shear transfer in accordance with the findings of the state-of-the-art reports by joint ASCE-
ACI Committee 426  [1] and joint ASCE-ACI Committee 445  [12], which are now generally 
accepted in the research community. The important shear transfer mechanisms are shear in the 
uncracked compression zone of the beam, interface shear transfer due to aggregate interlock 
or surface roughness of the cracks, dowel action of the longitudinal reinforcement, and 
residual tensile stresses across the crack. However, it should be noted that different 
researchers impose different levels of relative importance to these basic mechanisms of shear 
transfer. 
 

 
Fig. 17: Shear transfer/actions contributing to shear resistance 
 
Several parameters have been identified as having a significant influence on the contributions 
of the shear resistance mechanisms and, as a result, on the shear capacity. The influences of 
the most dominant mechanisms are known as concrete strength, size effect, span to depth 
ratio, longitudinal reinforcement ratio, axial force. There are other less dominant influencing 
parameters such as support conditions, loading points, etc. All these parameters are included 
in three important factors; 

a) shear transfer in the compression zone (area of concrete in compression) 
b) dowel action of longitudinal reinforcing bars crossing the crack in concrete  
c) aggregate interlock across the crack face 

 
It is assumed that the shear resistance, VRd is derived from a shear capacity (stress), τc acting 
uniformly over the effective area of the section. Rafla  [45] presented an empirical formula for 
the shear capacity or average shear stress τc of a section;  
 
τc = 0.29 αu αh (fcm)1/2 (ρ)1/3 
 
where, 
αu = 0.795 + 0.293 (3.5 – a/d)2.5    for 2.0 ≤ a/d ≤ 3.5 
αh = 1/(d/100)1/4  
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fcm is the cube strength of concrete [MPa] 
a is shear span [mm] 
d is effective depth [mm] 
and ρ is ratio of tensile reinforcement in %. 
 

2.1. Shear transfer in compression zone 
 
The uncracked portion of a cracked concrete beam is subjected to both compressive and 
shearing stresses. Thus, this portion of the concrete beam contributes to shear resistance. The 
magnitude of the resistance depends on the depth of the uncracked concrete. 
 
Fig. 17 indicates that uncracked concrete (i.e. the compressive zone of the beam cross section) 
is subjected not only to an axial compressive force (due to bending moment) but also to the 
shear force. Although the magnitude of the nominal shear stress (i.e. the ratio of the shear 
force to the area of the compressive zone of the cross section) exceeds (in the region where 
the depth of the uncracked concrete is small) the concrete shear capacity (as defined in current 
codes), the mechanism of shear resistance enables uncracked concrete to sustain the applied 
shear force. In compliance with this mechanism, the presence of biaxial stress conditions (in a 
localized region of the compressive zone where the depth is small) delays the development of 
tensile stresses (caused by the shear force). Therefore, the value of the shear force required to 
cause failure of the compressive zone becomes larger than the force expected to cause failure 
in compliance with the concepts underlying current design methods  [66]. For less slender 
beams, at the location of the maximum moment, much of the shear is resisted in the 
compression zone, particularly after significant yielding of the longitudinal reinforcement 
 [67]. However, because the depth of the compression zone is relatively small for slender 
members without axial compression, most of the codes neglect the effect of the compression 
zone on the shear capacity of the beam. 
 

 
Fig. 18: Failure criterion “crushing of the concrete” shown on Mohr’s circle  

2.2. Dowel action 
 
The phenomenon of dowel action as a shear transfer mechanism across cracks has long been 
recognized as an important component of the overall shear resistance capacity of reinforced 
concrete beams. The dowel action of reinforcing bars can play an important role if other 
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contributions to shear transfer are relatively small as in the case of a beam with a small 
amount of web reinforcement or in case of a post-peak stage of the loading process. It may 
contribute significantly to the post-peak resistance and hence contribute to the shear ductility 
of concrete members. In experimental tests, the shear force transferred by the dowel action is 
quite difficult to measure because it is embedded with other shear transfer components. Even 
in finite element analysis, the mechanism of the dowel action is complicated. To analyze the 
details of dowel action, the steel bars need to be individually modelled by finite elements and 
a very fine mesh has to be used for the concrete to account for the influence of, for instance 
the concrete cover. As a result, the number of elements required would be very large. 
Furthermore, such individual modelling of the steel bars and concrete is not compatible with 
the common practice of modelling the concrete and the steel together (perfect bond) in the 
analysis of reinforced concrete structures. 
 

2.3. Aggregate interlock 
 
Aggregate interlock is highly dependent on the crack opening and the shearing and frictional 
properties of the aggregate particles along the crack surface. The shear load transfer through 
aggregate interlock further depends on aggregate type and size, crack tortuosity, concrete 
strength and stiffness, size of the cracked cross-sectional area, boundary conditions, load 
magnitude and load repetitions. Leonhardt  [38] presents the relation of aggregate size to the 
size of the beam and explains that the aggregate interlock mainly depends on this relation and 
the amount of large size aggregates. Based on his research, the interlock of usual aggregates 
up to 30 mm size is more effective in beams with small depth (about 200 mm), than in deeper 
beams. Many researchers have found that the shear strength of beams without shear 
reinforcement decreases considerably with increasing depth, if the aggregate size is kept 
constant  [39]. 
 

 
Fig. 19: Influence of absolute depth on shear strength of beams without shear reinforcement  [39] 
 

 

scatter
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2.4. Concrete strength 
 
The shear strength increases as the concrete strength increases. In many design codes, the 
shear strength of a member is usually taken as directly proportional to fc

1/3 to fc
1/2, which 

indicates that the concrete ultimate tensile strength is being used as the governing parameter. 
However in case of allowable stresses, Kani  [21] reported a totally opposite conclusion. Based 
on results derived from his experimental tests, the influence of the concrete strength (fc) on the 
shear strength of R.C. beams is so small that, within a tolerance of ±10%, this parameter can 
be omitted from the strength analysis and in formulas for allowable stresses. 
 
The shear strength of members without stirrups, traditionally correlated to the square root of 
the concrete compressive strength (after the works of Moody et al.  [82]), is strongly 
dependent on the critical shear crack width and on shear crack plane roughness. The critical 
shear crack theory reflects this dependency as; 
 

( , )R
c g

V
f f w d

bd
   (14) 

 
where fc is the concrete compressive strength, w is the critical shear crack width, and dg is the 
maximum aggregate size  [83]. 
 

2.5. Shear span to depth ratio 
 
There is one more important parameter for the shear strength of slabs or rectangular beams; 
this is the moment/shear-ratio in relation to the depth M/Vs d which for concentrated loads is 
equals to a/d, see Fig. 20, (the max M of the span has to be related to max V at support). It 
was found that the bending moment at shear failure is lowest for a/d ≈ 3. It increases steeply 
for a/d < 3, concentrated loads are closer to the bearing. It increases also for loads having 
larger distances than a/d = 3 and it reaches the full bending failure moment at a/d ≈ 7 for high 
percentages of reinforcement. 
 
Kani  [20] called this diagram the “valley of diagonal failure” and presented it for different 
reinforcement ratios (Fig. 21). He found that the depth of the valley decreases with decreasing 
percentages of reinforcement and practically disappears for percentages below 0.6%, referring 
to reinforcing steel with a yield strength of 400 MPa. 
 
Many empirical formulas for calculating the shear strength include the a/d ratio to account for 
the influence of this parameter. This phenomenon is quite significant in members with the a/d 
ratio less than about 2.5, because a portion of shear may be transmitted directly to the support 
by an inclined strut. For those deep members, therefore, it is more appropriate to use strut-
and-tie models than sectional design approaches. 
 
For the same magnitude of loading, as the longitudinal reinforcement ratio decreases, flexural 
stresses and strains increase (reduction of relative concrete compression zone height x/d). 
Thus, the crack widths increase and the shear strength is reduced. Further, as the longitudinal 
reinforcement ratio decreases, dowel action also decreases. 
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Fig. 20: Influence of load distance from support on shear strength for ρ=1.88 %  [20] 
 

 
Fig. 21: Kani’s shear failure valley. Shear strength dependent on a/d and ρL = reinforcement ratio  [20] 
 

2.6. Axial force 
 
When the members are subjected to axial tension, the shear strength of such members 
decreases. By contrast, axial compression increases the depth of the uncracked compression 
zone, decreases the width of the shear cracks, and thus the compression zone and the interface 
shear transfer is increased. The equations in prEN 1991-1-1:2001 contain as well a term 
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0.15σcp regarding the influence of an axial force on the shear capacity, for instance by 
prestressing. The influence of axial force is briefly discussed in section 1.1. 

2.7. Influence of bond 
 
A well-known fact about bond refers to the spacing of cracks. Good bond creates closely 
spaced cracks, while poor or nonexistent bond results in only a few cracks or no cracks at all 
in the end section of the beam, i.e., in the part where a shear force exists. That means that 
under conditions of poor bond the crack distances Δx will be relatively large, see Fig. 22. 
Considering the distance between parallel cracks as one concrete tooth, the load-carrying 
capacity of concrete tooth at failure is given by 
 
MCR = (7/8) (ft

'/6) · (Δx/s) · b · a · d  (15) 
 
where, s is vertical crack length  
 
For two beams, identical in every respect except bond resistance, the one with poor bond, and 
therefore large Δx, will have a higher load-carrying capacity than the beam with good bond 
 [18]. The surprising result is:  the better the bond, the lower the diagonal load-carrying 
capacity. 
 

 
Fig. 22: Concrete teeth in cracked beam 
 
The influence of bond on shear capacity of R.C. beams is investigated by Leonhardt and 
Walther  [54]. Their test series consisted of eight beams, all having the same cross section (190 
× 320 mm), same percentage of longitudinal reinforcement (1.90 percent), same concrete (21 
MPa) and same span (2000 mm). Half of them were reinforced with deformed bars, the other 
half with very smooth bars. To investigate the influence of bar diameter on load-carrying 
capacity, two arrangements of steel at the same steel percentage were used. In all cases, 
poorer bond resulted in an increase of the load-carrying capacity as Eq. (15) predicted. The 
beams with poor bond carried at least 31 percent more load than the corresponding beams 
with deformed bars. The beams with poor bond reached their flexural failure, while the beams 
with deformed bars stayed far below their full flexural capacity.  
 

2.8. Design equations for shear capacity 

2.8.1. Historical development 

 
Prior to cracking, the maximum shear stress at the web can be calculated by using the 
traditional theory for homogenous, elastic and uncracked beams, developed by Russian 
engineer Jourawski in 1856  [18]: 

s 

Δx 

Ns–ΔNs Ns 

dowel force 

F 
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VQ

I b
    (16) 

 
where I is the moment of inertia of the cross section, Q is the first moment about the 
centroidal axis of the part of the cross sectional area lying farther from the centroidal axis than 
the point where the shear stresses are being calculated, and b is the width of the member 
where the stresses are being calculated. 

 
Fig. 23: Principal compressive stress trajectories in an uncracked beam and photograph of a cracked 
reinforced concrete beam 
 
Fig. 23 shows the principal compressive stress trajectories in an uncracked beam and a 
photograph of a cracked reinforced concrete beam. Although there is similarity between the 
planes of maximum principal tensile stress and the cracking pattern, they are by no means 
exactly alike. The flexural cracking which precedes the inclined cracking, disrupts the elastic 
stress filed to such an extent that inclined cracking occurs at a principal tensile stress, based 
on the uncracked section, of roughly a third of the tensile strength of the concrete  [37]. 
 

 
Fig. 24: shear stress distribution in a reinforced concrete beam with flexural cracks  
 
In 1902 Mörsch derived the shear stress distribution for a reinforced concrete beam containing 
flexural cracks. Mörsch predicted that the shear stress would reach its maximum value at the 
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neutral axis and would then remain constant from the neutral axis down to the flexural steel 
(Fig. 24). The value of this maximum shear stress would be; 
 

w

V

b z
    (17) 

 
Where bw is the web width and z is the flexural lever arm. 
 
Mörsch recognised that this was a simplification, as some of the transverse force could be 
resisted by an inclination in the main compression, which would cause the ribs of the concrete 
between flexural cracks to bend, producing dowel forces in the main steel. 
 

 
Fig. 25: Kani’s comb model for cracked beam subjected to shear 
 
In 1964, Kani attempted a more realistic approach by addressing the problem of the bending 
the “teeth of the concrete” between flexural cracks  [19]. The concrete between two adjacent 
flexural cracks was considered to be analogous to a tooth in a comb (Fig. 25). The concrete 
teeth were assumed to be free cantilevers fixed in the compression zone of the beams and 
loaded by the horizontal shear from bonded reinforcement. Although this theory did not cover 
most of the shear transfer mechanisms, it was probably the start of more rational approaches. 
 
Fenwick and Paulay  [36], working with “tooth model”, pointed out the significance of the 
forces transferred across cracks in normal beams by crack friction. Taylor  [40], also 
evaluating Kani’s model, found that for normal test beams the components of shear resistance 
were: compression zone shear (20-40%), crack friction (35-50%) and dowel action (15-25%). 
 
Hamadi and Regan  [41] based on extensive experimental work on interface shear, published 
an analysis of a tooth model. It was assumed that the cracks were vertical and that their 
spacing was equal to half the effective depth of a particular beam.  
 
Empirically derived equations have been very important in the development of procedures 
used for designing members without transverse reinforcement. The simplest lower-bound 
average shear stress at diagonal cracking is given in an ACI expression: 
 

6
cc

fV

bd
    (18) 

 
This equation is a reasonable lower bound for smaller slender beams that are not subjected to 
axial load and have at least 1% longitudinal reinforcement  [42]. However, it may be 
unconservative for lowly-reinforced members and high-strength concrete members. 
 
The CEB-FIP Model Code  [57] suggests a more sophisticated empirical formula and adds an 
extra term to account for the size effect. 
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where, σcd equals to Nd/Ac, Nd is the factored axial force that includes the prestress (tensile 
positive) force and Ac is the cross sectional area of the concrete. 
 
It should be noted that the formula implicitly includes the concrete safety factor. To disregard 
this factor, the constant 0.12 should be replaced by 0.15. 
 
The MC-90 equation takes the influences of compression force as a factor. However, 
members without shear reinforcement subjected to large axial compression and shear may fail 
in a very brittle manner at the first instance of diagonal cracking  [67]. Other different fracture 
mechanics models have been proposed to account for the fact that a peak tensile stress is near 
the tip of a crack and a reduced tensile stress (softening) is located in the crack zone. This 
approach offers a possible explanation for the size effect in shear. Two well-known models 
are the Fictitious Crack Model  [43] and Crack Band Model  [44]. 
 
The Modified Compression Field Theory (MCFT) is a general model for the load-deformation 
behaviour of two dimensional cracked reinforced concrete subjected to shear  [7]. The MCFT 
is formulated in terms of average stresses and requires an additional check to ensure that the 
loads resisted by the average stresses can be transmitted across the crack. For members 
without transverse reinforcement, the local stresses at a crack always control the capacity of 
the member, and the average stress calculation is used only for estimating the inclination of 
the critical diagonal crack. 
 

2.8.2. Code Review 

 
Most analytical models, such as the modified compression field theory  [9], strut and tie  [25], 
and truss models  [26], include important semi-empirical expressions such as the expressions 
for concrete softening in the stress-strain relationship  [27] or the concrete cracking angle for 
truss models  [26]. In design practice, complex theoretical models, are usually abandoned and 
replaced by simple design methods such as those used by European code EC2  [28], the 
American code ACI 318-05  [29] and the Canadian code CSA- 04  [31] listed in Table 2. 
 
Table 2. Existing design codes for beams without web reinforcement 
Investigator Shear strength models (MPa) 
EC2  [28] υRd,c = 0.18k (100 ρ fck)

1/3   , fc in MPa 
 k = 1 + (200/d)1/2 ≤ 2.0    , d in mm 
 ρ ≤ 0.02 
ACI 318-05  [29] υc = 0.158 (fc)

1/2 + 17.2 ρw Vu d/Mu, fc in MPa 
 or υc = 0.167 (fc)

1/2, fc in MPa 
 Vu =  shear force, Mu =  flexural moment 
CSA  [31] υc = λt β (fc)

1/2 (dυ/d) 
 λt =  factor to account for low-density concrete (= 1) 
 β=[0.4/(1+1500εx)].[1300/(1000+Sze)] 
 εx=[Mf/dv+Vf]/(2EsAs)≥ 0,εx ≤ 0.003 
 Vf =  shear force, Mf =  flexural moment 
 Sze=35Sz/(15+da) ≥ 0.85Sz 
 Sz = dυ [= max (0.9d , 0.72h)]  
 fc

' in MPa. d and dv in mm 
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 da = maximum aggregate size (mm) 
AASHTO LRFD 
2000 
 

Va = β (fc)
1/2 bv dv 

The values β and dv depends on the equivalent crack spacing parameter and bv is 
the web thickness 

  
 
I. Eurocode 2 
 
There are two possibilities to look at the formula in EC2. The first possibility, one can say a 
more academic view, is to take into account the history of the formula. This means to interpret 
the formula as it is meant. The second possibility is to interpret the formula as it is, without 
consideration of its history  [47]. Each possibility leads to different equations which enable the 
comparison with test results. In the present case, both possibilities are investigated 
 
Interpretation with consideration of history 
 
A short report is given about the history of the design equation to get a formula for the shear 
capacity which enables the comparison with the results. In CEB-Bulletin 126  [48] the factor c 
in the below equation was determined with the help of a regression analysis. 
 
v = c · (1 + 50 · ρ1) · (fcm)1/2 (20) 
 
This analysis provided a mean value of  
 
cm = 0.09 (21) 
 
which gives a 5%-fractile value of  
 
c5% = 0.068 (22) 
 
For an assumption for the coefficient of variation of δc = 0.15. Then the relation below for the 
concrete tensile strength was used. 
fctm = 0.375 (fcm)1/2 (23) 
 
With an assumption for the coefficient of variation of the tensile strength of δfct = 0.15 the 
characteristic value followed: 
 
fctk = 0.375 (1 – 1.645 · 0.15) · (fcm)1/2 = 0.282 (fcm)1/2  (24) 
 
When substituting this result in equation (20) yielded the characteristic value for the shear 
capacity: 
 
vk = c5% · (1 + 50 ρ1) · (fcm)1/2 = 0.068 (1 + 50 ρ1) · fctk / 0.282 ≈ 0.25 (1 + 50 ρ1) · fctk

 (25) 
 
To consider the influence of the effective depth d, the size effect factor k was introduced, so 
that the final equation became 
 
vk = 0.25 · k · (1 + 50 ρ1) · fctk

 (26) 
 
To obtain a formula based on the compressive strength of concrete, EC2 states the following 
two equations; 
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fctk;0.05 = 0.7 fctm 

fctm = 0.3 (fck)
2/3 (27) 

 
By dividing through the safety factor γc = 1.5 and changing of the term in brackets (by the 
way no explanation could be found for this changing) the design value for the shear capacity 
becomes 
 
vk = 0.25 · 0.7 · 0.3 · (fck)

2/3 · k · (1.2 + 40 ρ1) / γc = 0.035 · k · (1.2 + 40 ρ1) · (fck)
2/3 (28) 

 
The characteristic value for the shear capacity respectively (γc =1.0) becomes  
 
vk = 0.0525 · (1.2 + 40 ρ1) · (fck)

2/3 (29) 
 
Within the scope of model uncertainties equation (29) has to be judged. For that purpose it is 
necessary to convert this equation to get a comparison with test results. This is possible by 
replacing equation (22) with equation (21) and setting γc =1.0. All other relations are only 
equivalent replacements for (fcm)1/2 and can be maintained. So for the comparison of test 
results the following relation has to be used. 
 
vm = 0.09 · 0.7 · 0.3 · (fck)

2/3 · k · (1.2 + 40 ρ1) / 0.282 = 0.067 · k · (1.2 + 40 ρ1) · (fck)
2/3 (30) 

 
(fck)

2/3 implies no safety elements because it is an equivalent substitute for the expression 
(fcm)1/2. Thus the real value for fck has to be inserted. Distinction has to be made between two 
cases; 
I. The way of determining of compressive strength of concrete is known 

If all information about the determining of fc is available (number of samples and 
individual results), fck can be determined by common statistical methods. 

II. The way of determining the compressive strength of concrete in unknown 
If no information is available a useful assumption has to be made. In all probability the 
given values for fc in literature are mean values. So the relation fck = fcm – 8 N/mm2 (EC2, 
table 4.3) can be used for normal strength concrete up to 60 MPa.  

 
Interpretation without consideration of history 
 
This procedure is shown because some authors prefer to come from the following equation; 
 
vRd1 = τrd · k · (1.2 + 40 ρ1)

 (31) 
 
The shear resistance of concrete members without shear reinforcement in EC2-April 2002 
final draft, is given as; 
 
VRd,c = [(0.18/γc) · k · (100 ρl · fck)

1/3 + 0.15 σcp] bw · d  (32) 
With a minimum of  
 
VRd,min = [(0.035) · k3/2 · fck

1/2] bw · d  (33) 
 
where, 
γc = 1.5 
fck is in MPa and fck ≤ 100 MPa. 
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σcp = Nsd / Ac 

Nsd is the design value of the normal force (external) 
Ac is the concrete area (b·h) 
and factor k is equal to 1.0 for sections where more than 50% of the tensile reinforcement is 
curtailed and is equal to 1.6 – d ≥ 1.0 in other cases. 
 
II. Modelcode 1990 (MC 1990) 
 
The formula for the design value of the shear capacity in MC90 was derived from 
 
v = c · ξ · (100 · ρ · fc)

1/3 (34) 
 
III. Dutch Code NEN 6720 
 
The shear capacity of concrete beams can be calculated from: 
 
τ1 = 0.4 fb kλ kh (ωo)

1/3 > 0.4 fb
 (35) 

 
where; 
kλ = 12/gλ (Ao/bd)1/3 > 1.0 for consuls and cantilever girders  
gλ = 1+ λv

2 for λv ≥ 0.6 and gλ = 2.5 – 3λv > 1.36 for λv < 0.6 
kλ = 1.0 for other cases 
λv is the shear slenderness of a console or a beam section with a free end which the considered 
section is located = Mdmax/(d·Vdmax) 
Mdmax is the maximum absolute value of Md in the girder section, 
Vdmax is the maximum absolute value of Vd in the girder section, 
d is the effective height, 
Ao is the smallest value of the area of the loading plate or the support. The maximum value 
should be considered b·d. If there are multiple loading plates and supports, Ao is the sum of all 
areas. 
kh = 1.6 – h > 1.0 where h is in meters, 
ωo = 100(As+Ap)/(b·d) < 2.0 and > 0.7 – 0.5 λv 
b is the web thickness 
fb is design value of long-term characteristic concrete direct tensile strength = mean value of 
short-term strength/(1.4)3 
 
IV. Rafla 1974 
 
The nominal shear stress τ0U as 5%-fractile of test results is given by the following formula 
 [45]. 
 
τ0U = VU / (0.875 · b · d) = 0.29 · αu · αh · (fcm)1/2 · (ρ)1/3 (36) 
 
where, VU is shear resistance and the constants αu and αh are given as; 
 
αu = 0.6 – 2.2 (a/d) for a/d ≤ 2.0 
αu = 0.795 + 0.293 (3.5 – a/d)2.5    for 2.0 ≤ a/d ≤ 3.5 
αu = 0.9 – 0.03 (a/d)    for 3.5 ≤ a/d (37) 
 
αh = 1/(d/100)1/4 (38) 
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2.9. Fracture mechanics 
 
When a notched or cracked specimen of a linear elastic material becomes subjected to load, 
the region in front of the notch tip (crack) will be highly stressed. A real material cannot stand 
these high stresses and a damage zone will develop in front of the notch tip.  For concrete the 
damage zone is caused by the development of micro-cracks. The material in this micro-
cracked material volume of ‘fracture zone’ is partly destroyed but is still able to transfer 
stress. The stress transferring capability normally decreases when the local deformation of the 
zone increases, i.e. when the number of micro-cracks increases.  
 
The fracture of non-yielding materials is always caused by crack propagation and therefore it 
was logical when Kaplan  [92], started to study the fracture process of concrete by means of 
fracture mechanics. Since then numerous reports have been published about crack stability, 
crack propagation and fracture mechanical test methods for concrete and similar materials. 
Almost all of these publications have one thing in common; concrete is treated as a linear 
elastic material and the well known K- and G- approaches, more or less modified are used. A 
few researches have used other methods such as the J-integral approach and R-curve analysis.  
 

 
Fig. 26: The stress distributions close to a circular hole, an elliptical hole and a crack in an infinity large 
plate subjected to the uniform stress σ0. 
 
Fig. 26 illustrates an infinitely large plate of linear elastic material. The plate is subjected to a 
uniform tensile stress σ0. The stress distribution will be disturbed if there is a circular hole in 
the plate. At the most critical point of the boundary of the hole, the stress will, independently 
of the size of the hole, reach three times the applied stress. This means that holes or other 
irregularities will considerably reduce the strength of a material. 
 
If the circular hole is replaced by an elliptical hole, the stress at the tip of the elliptical hole 
becomes 1+2a/b times the applied stress, where a and b are the major and minor axes of the 
ellipse respectively. If the minor axis is much smaller than the major axis, i.e. b << a, then an 
elliptical hole is a crack and the stress at the crack tip grows unlimitedly as the ratio a/b 
approaches infinity. This means that ordinary stress criterions cannot be used in this case as 
the material would then fail as soon as it became subjected to load  [93]. 
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A material always contains irregularities. However, a real material is never perfectly linear 
elastic, at least not at high stresses, and crack tips are never infinitely sharp. These are the 
reasons why materials can exist at all. 
 
2.9.1. Linear elastic fracture mechanics 
 
Energy criterion 
 
Even if materials never behave perfectly linear elastic it is sometimes possible to approximate 
the material behaviour with a linear elastic model. As stress criterion cannot be used, one has 
to use so called fracture mechanics approaches. The first approach of this type was proposed 
by Griffith  [94].  
 
Fig. 27 shows an infinitely large plate subjected to a uniform tensile stress σ0. The plate 
contains a 2a long crack, which is oriented perpendicular to the applied stress. By equating 
the elastic strain energy that is released when the crack advances a small distance Δa at each 
crack tip and the energy necessary to create the new crack surfaces, Griffith found an 
expression for the critical stress (σc) at which the crack propagates: 
 

2
c

E

a

 


  (39) 

 
where E is he Young’s modulus and γ is the surface energy per unit area. α is 1 for plane 
stress and [1/(1-υ2)]0.5 for plane strain, where υ is Poisson’s ratio. For concrete, υ is normally 
less than 0.2, which means that 1 < α < 1.02. The discrepancy between plane stress and plane 
strain is so small for concrete that it can be neglected and below all the relations are relevant 
for plane stress, i.e. α = 1. 
 

 
Fig. 27: An infinity large plate with a 2a long crack oriented perpendicular to the applied stress σ0. 
 
By introducing the critical strain energy release rate (Gc), Eq. 39 can be extended to be 
relevant also for materials where small, irreversible deformations take place close to the crack 
tip: 
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Gc includes not only 2γ but also the energy consumption due to deformations close to the 
crack. The above equation for strain energy is valid for an infinitely large plate. For other 
specimen geometries and different loading cases it should be multiplied by a correction factor. 
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Stress intensity criterion 
 
The stress distribution in front of a crack tip, perpendicular to the crack and on a line parallel 
with the crack, can be expressed as: 
 

...
2

K

x



   (41) 

 
Where x is the distance from the crack tip and K is the stress intensity factor  [93]. The points 
represent terms that are small compared with the main term for small values of x and therefore 
the main term itself describes the stress distribution close to the crack tip. As seen in Eq. 41, 
the stress distribution is unaffected by the geometry of the specimen and the intensity of the  
stress is only dependent on K. For this reason a stress intensity criterion for initiation of crack 
growth can be used: 
 
K = Kc (42) 
 
Where, Kc is the critical stress intensity factor. For the infinitely large plate according to Fig. 

27, 0K a   and thus: 

 

c
c

K
a




  (43) 

 
By comparing Eq. 43 and 39 it becomes obvious that a connection between Kc and Gc (or K 
and G) for the infinitely large plate exists: 
 

c cK G E  (44) 

 
Normally, Kc is expressed as: 
 

c cK a f   (45) 

 

where f is a correction factor dependent on geometry and type of loading. f   for the 
infinitely large plate in Fig. 27. 
 
Cohesive zones 
 
In linear elastic fracture mechanics one neglects the fact that the stress at the crack tip 
theoretically approaches infinity, while the stress in reality can never exceed the cohesive 
strength of the material. Barenblatt  [95] found that a small cohesive zone must exist in a 
region close to the crack tip, i.e. a zone where closing stresses act between the crack surfaces. 
Barenblatt assumed the zone to be very small (the length of the zone << length of the crack). 
Therefore the linear elastic approaches previously discussed can be used for calculation 
purposes. The existence of cohesive zones explains why linear elastic fracture mechanics can 
be used at all. 
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2.9.2. Elastic plastic fracture mechanics 
 
A perfectly linear elastic material follows a straight-lined stress-strain curve all the way to 
fracture. Even though concrete is a brittle material, the behaviour is not linear elastic. A more 
realistic stress-strain curve is shown in Fig. 28. The tensile test of concrete shows that the post 
failure behaviour of the concrete is not totally brittle, but with increasing the strain, there is 
still some capacity left in a cracked region which could resist small stresses. Hence, the plastic 
deformation continues with considerably decreasing stress. The material in front of a 
propagating crack will be highly strained and all the points of the σ-ε curve will be present in 
the specimen. Three different zones can be separated around the crack tip, see Fig. 29. 
 
1. The linear elastic zone: Far from the crack tip the stress is so low that the material still 
behaves in a linear elastic way. 
2. The plastic zone: In this zone the stress-strain relation is non-linear and the stress 
increases or at least remains constant as strain increases 
3. The fracture zone (process zone): in this zone the stress decreases as the strain 
increases. 
 
If the plastic zone and the fracture zone are small compared with the specimen dimensions 
and the crack depth, then linear elastic fracture mechanics can be used. Otherwise, other 
methods have to be used. 

Fig. 28: A schematic illustration of a σ-ε curve. 
Three parts of the curve can be separated; (1) 
linear elastic deformations, 2(2) plastic 
deformations and increasing stress, (3) plastic 
deformations and decreasing stress. 

Fig. 29: In front of the crack in a stressed 
material there is a plastic zone (2) and a fracture 
zone (3). Far from the crack tip the material 
behaves in a linear elastic way (1). 
 

 
2.9.3. The fictitious crack model 
 
By using a very stiff tensile testing machine and a small specimen it is possible to determine 
the complete tensile stress-strain curve of concrete. An example of such a curve is shown in 
Fig. 30. At first the material behaves almost linear elastic but when the stress increases, the 
curve becomes non-linear due to micro-cracks, which are distributed over the entire specimen. 
When the maximum stress is reached, one cross section is unable to carry more loads. It is fair 
to assume that the development of micro-cracks will be concentrated in a small material 
volume close to this cross section when the specimen becomes more deformed. This means 
that, after the maximum load is reached, additional deformations will take place in the micro-
cracked material volume, or fracture zone, while the material outside the fracture zone will be 
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elastically unloaded. The load decreases when the first fracture zone develops and 
consequently only a single zone develops.  
 

 
Fig. 30: an example of the complete tensile stress-strain curve for concrete 
 
During the tensile test of a concrete specimen, after the maximum stress is reached, the 
deformation of the fracture zone affects the mean strain and consequently the stress-strain 
curve of concrete is dependent on the specimen length. This means that it is unsuitable to use 
the stress-strain curve as a material property in modelling. A better way of describing the 
deformation properties of a material therefore is to use two relations; one relation between the 
stress and the relative strain for the material outside the fracture zone (Fig. 31a) and one 
relation between the stress and the absolute deformation of the fracture zone (Fig. 31b). 
 

 
Fig. 31: a) The deformation properties of the material outside the fracture zone are given by a relation 
between the stress and the relative strain, i.e. a σ-ε curve. b) The deformation properties of the fracture 
zone are given by a relation between the stress and the absolute widening of the zone in the stressed 
direction, i.e. a σ-w curve 
 
When a notched concrete specimen is subjected to a load, a zone of micro-cracks develops in 
front of the notch. This fracture zone considerably reduces the stress concentration which 
 [93]results in a much more realistic description of the stress distribution than the linear elastic 
solution, see Fig. 32. 
 
The fracture zone in front of a notch or a crack normally develops in a tensile stress field and 
consequently the properties of this zone are similar to those of the fracture zone in a direct 
tensile test. This means that it should be possible to approximate the fracture zone in front of a 
notch or crack. The stress transferring capability depends on the width of the slit in the 
stressed direction. In Fig. 33, the load is represented by a point load but of course this 
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description is relevant for all types of loads, including volume stresses due to shrinkage or 
temperature gradients. 
 
The stress transferring crack is not a real crack but can be considered as a fictitious crack and 
therefore the model described above is called the Fictitious Crack Model. When using the 
Fictitious Crack Model the following assumptions are made: 
 

 The fracture zone starts developing at one point when the first principal stress reaches 
the tensile strength of concrete. Of course other more complicated fracture criteria can 
be used but often the simple tensile strength criteria is sufficient. 

 The fracture zone develops perpendicular to the first principal stress. 
 The material in the fracture zone is partly destroyed but is still able to transfer stress. 

The stress transferring capability depends on the local deformation of the fracture zone 
in the direction of the first principal stress. In the calculations the fracture zone is 
normally replaced by a stress transferring crack and the stress transferring capability 
depends on the width of the crack in the stressed direction according to a σ-w curve, 
see Fig. 31b. 

 The width of the fracture zone in the stressed direction is assumed to be equal to the 
widening of the zone, i.e. the width of the zone is zero when it starts developing. For 
non-yielding materials like concrete this should be a fair assumption.  

 The properties of the material outside the fracture zone are given in a σ-ε curve, see 
Fig. 31a. 

 
The fracture zone starts developing in one point when the first principal stress reaches the 
tensile strength even if the high stress is due to other reasons than a stress concentration in 
front of a notch tip or a crack. This means that the Fictitious Crack Model is not a pure 
fracture mechanics model but initially un-notched structures can also be analyzed. This is one 
thing that makes the Fictitious Crack Model differ from most approaches. Another advantage 
is that, by using the Fictitious Crack Model, it is possible to study the development of the 
fracture zone, the initiation of crack growth and the propagation of the crack though the 
material. When other models are used, normally only the initiation of crack growth is 
analyzed [93].  
 
The description of the Fictitious Crack Model above is relevant for a homogeneous material, 
i.e. a material that has the same properties in all points. In reality no materials are perfectly 
homogenous, at least not in the atomic scale. However, if the analyzed structure is a few times 
greater than the largest irregularities in the material, then the material in the structure can be 
assumed to be approximately homogenous. The σ-w curve is then a function of the fraction 
and the properties of the components of the material.  
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Fig. 32: Probable stress distribution in front of a crack/notch for: a) a linear elastic material b) a non-
yielding material with a micro-cracked zone in front of the notch tip  [93]. 
 

 
Fig. 33: When using the Fictitious Crack Model, the fracture zone in front of a crack tip (a) is replaced by 
a crack that is able to transfer stress (b). The stress transferring capability depends on the width of the 
crack according to a σ-w curve, see also Fig. 31b. 
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Chapter 3: Time Dependency  
 
Time dependent effects are caused by for example, superimposed restrained creep, shrinkage, 
or temperature strains. These additional strains induce a change in the distribution of stresses 
in the concrete and the steel, resulting in changes in the criteria for a particular structural 
element at the same external load. 
 

3.1. Development of Strength and modulus of elasticity with time 
 
I. Compressive Strength: 
The rate at which concrete strength increases with time depends on a variety of parameters, in 
particular type strength class of cement, type and amount of admixtures and additions, 
water/cement ratio and environmental conditions. The development of compressive strength 
with time may be estimated from Eq. 46  [56]. 
 
fcm(t) = βcc(t) . fcm (46) 
 
where fcm(t) is mean compressive strength [MPa] at a concrete age t [days], fcm is mean 
compressive strength [MPa] at a concrete age of 28 days and βcc(t) is a function to describe 
the development of the compressive strength with time and can be calculated from Eq. 47. 
 
βcc(t) = exp{s . [1 – (28t1/ t)

1/2]} (47) 
 
where t is the concrete age [days], t1 is 1 day, s is a coefficient which depends on the strength 
class of cement. With reference to ENV 197-1 (1992)  [58], which specifies the CEM cements, 
the values for the coefficient s may be taken from Table 3.  
 
Table 3: Coefficient s for different strength classes of cement, CEB-FIP MC90  [57]  

Type of cement Slowly hardening 
cements 

SL 

Normal and rapid 
hardening cements 

N, R 

Rapid hardening high 
strength cements 

RS 
Strength class of cement 32.5 32.5R 

42.5 
425.5R 

52.5 
s 0.38 0.25 0.20 

 
Eqs. (46, 47) are valid for a concrete temperature of 20°C. For a temperature deviating from 
20°C a temperature adjusted concrete age should be used. 
 
An Evaluation of Eqs. (46, 47) is shown in Fig. 34 where the ratio fcm(t)/fcm is given as a 
function of concrete age. 
 



 37

 
Fig. 34: Development of concrete compressive strength with time at a temperature of 20°C (Eq. 46) 
 
II. Tensile strength 
The development of tensile strength with time is much more difficult to predict, because it is 
influenced significantly by the development of shrinkage stresses which in turn depend on 
member size and curing conditions. Therefore, only for a concrete age larger than 28 days it 
may be assumed that the development of the tensile strength with time is similar to that of the 
compressive strength  [59]. 
 
III. Modulus of elasticity 
The modulus of elasticity of concrete develops more rapidly than does the compressive 
strength because Ec(t) is to a large extent controlled by the modulus of elasticity of the 
aggregates which is independent of concrete age. This is taken into account in the following 
equations  [57]; 
 
Eci(t) = βE(t) . Eci (48) 
 
βE(t) = [βcc(t)]

0.5 (49) 
 
where, Eci(t) is the tangent modulus of elasticity [MPa] at a concrete age t [days], Eci is the 
tangent modulus of elasticity [MPa] at a concrete age of 28 days, βE(t) is a function to 
describe the development of the modulus of elasticity with time, βcc(t) is a coefficient acc. to 
Eq. (47) and t is the concrete age [days] 
 

3.2. Strength and deformation under sustained high loads 
 
I. Compressive Strength 
 
The concrete compressive strength also depends on the duration of loading which it is 
exposed to a constant stress. This is of practical significance because for many concrete 
structures the variable load is small compared to the total load, so that the stresses acting on a 
structural element may vary little with time. A sustained stress in the range of working stress 
may lead to a slight increase of the compressive strength, found when the concrete is 
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afterwards loaded to failure in a short-term test  [60]. If, however, high sustained stresses act 
on the concrete, the process of micro-cracking continues and may eventually lead to failure. 
As the sustained stress decreases, the time to failure increases. The maximum stress, which 
the concrete can sustain without failure, is referred to as the sustained load strength. For a 
concrete loaded at an age of 28 days it corresponds to approx. 80 percent of its strength under 
short-term loading. 
 
The sustained load strength depends on the age of concrete at the time of loading, because two 
effects counteract each other: a high sustained stress causes a strength reduction due to 
continued micro-cracking, but at the same time the concrete continues to hydrate if a 
sufficient amount of water is available, resulting in a strength increase. If the rate of strength 
increase due to continued hydration is more pronounced than the loss of strength due to 
continued micro-cracking, then failure under the sustained load will no longer occur. This 
state will be reached sooner, the younger the concrete at the time the sustained stress is 
applied, because young concrete has a higher potential for continued hydration than older 
concrete for which hydration may have come to an end at the time of load application. 
 
The period of time during which a concrete may fail under the action of a sustained stress is 
referred to as the critical period  [62]. In CEB-FIP MC90 analytical expressions are given to 
estimate the strength of concrete under the action of a sustained load depending on the age at 
loading, the duration of loading and the type of cement; 
 
fcm,sus(t, t0) = fcm βcc(t) βc,sus(t, t0) (50) 
 
βc,sus(t,t0) = 0.96 – 0.12 {ln [72 (t – t0)/t1 ]}

1/4 (51) 
 
where, 
fcm is the mean compressive strength of concrete at 28 days, 
fcm,sus(t, t0) is the mean compressive strength of concrete at time t when subjected to a high 
sustained compressive stress at an age at loading t0 < t 
βcc(t) is a coefficient according to Eq. 47 
βc,sus(t, t0) is a coefficient which depends on the time under high sustained loads t – t0 (days). 

The coefficient describes the decrease of strength with time under load and is defined for 
(t – t0) > 0.015 days (= 20 min) 

t0 is the age of concrete at loading 
t – t0 is the time under high sustained loads (days) 
t1 = 1 day 
 
II. Tensile Strength 
 
These shear-carrying mechanisms induce tensile stresses in concrete (Fig. 35) near the crack 
tip (Zone A) and at the level of the reinforcement (Zone B). In a long-term loading, once the 
tensile strength of the concrete in Zones A and B is reached, the existing flexural cracks 
progress in a diagonal direction (Zone A) or new ones are created (Zone B). As a 
consequence, the capacity of the previous shear-carrying mechanisms (i.e. aggregate interlock 
and dowel action) is reduced or even cancelled  [83]. 
 
Tensile strength under sustained loading fctk,sus in [MPa] can be estimated from: 
  
fctk,sus = α · fctk (52) 
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where, fctk is the short-term strength in [MPa] and is α equal to 0.6 for normal strength 
concrete and 0.75 for high strength concrete. 

 
Fig. 35: Shear crack pattern  
 

3.3. Definitions of Time-Dependent Deformations 
 
The time-dependent deformation of concrete, including shrinkage and creep, may cause 
cracks and has much to do with the durability performance of structural concrete. Creep and 
shrinkage of concrete are complicated phenomena and it is difficult to formulate a constitutive 
equation which is both generally applicable and realistic. Before the era of large finite element 
analysis, this task was not an issue because no structural analysis problems could be solved 
with a sophisticated constitutive model. Now that finite element analysis can provide the 
means of solving these problems, there is a need for the development of realistic constitutive 
relations for long-term loading. 
 
Time-dependent deformations may be stress-dependent or stress-independent. The stress 
independent strains or volume changes are mainly shrinkage and swelling. The time- and 
stress-dependent strains are referred to as creep. Such strains are defined as the difference 
between the increase of strains with time of a specimen subjected to a constant sustained 
stress and the load independent strain observed on an unloaded companion specimen.  
 
The total strain εc(t) of a uniaxially loaded concrete specimen at age t may be subdivided as; 
 
εc(t) = εE(t) + εc(t) + εs(t) + εT(t) = εE(t) + εc(t) + εo(t) = εσ(t) + εo(t) (53) 
 
where, 
εE(t) is the instantaneous strain, which is elastic (reversible) if the stress is small, 
εc(t) is the creep strain at concrete age t, 
εs(t) is the shrinkage (or swelling) at concrete age t, 
εT(t) is the thermal expansion (or dilatation), 
εo(t) is the stress-independent inelastic strain, 
εσ(t) is the stress-produced strain, also called the mechanical strain.  
 
The strain εE(t) is irreversible due to aging caused by hydration, as well as by other time-
dependent changes in the microstructure. It should be kept in mind that the distinction 
between creep as a stress-dependent strain and shrinkage or swelling as stress independent 
strains is conventional and in times useful to facilitate analysis and design.  
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Shrinkage 
 
Concrete undergoes volume changes during hardening. As concrete continues to dry, water 
evaporates and the volume of the restrained cement paste changes, causing concrete to shrink, 
probably due to the capillary tension that develops in the water remaining in concrete. 
Emptying of the capillaries causes a loss of water without shrinkage, but once the absorbed 
water is removed, shrinkage occurs. This deformation occurs when ordinary hardened 
concrete is exposed to air with a relative humidity of less than 100 percent.  However, there 
exist several other types of shrinkage deformations, such as plastic shrinkage, autogenous 
shrinkage and carbonation shrinkage which may occur simultaneously and which are added 
up as total shrinkage. 
 
Plastic shrinkage occurs when water is lost from concrete while it is still in plastic state. 
Autogenous shrinkage, also called self-desiccation shrinkage or chemical shrinkage, is 
associated with the ongoing hydration reaction of cement. Carbonation shrinkage is caused 
by the reaction of hydrated cement paste with carbon dioxide in the air in the presence of 
moisture. Among the different types of shrinkage, drying shrinkage is the most important type 
of shrinkage in concrete practice.  
 
Total shrinkage after long duration of drying ranges from about 0.0001 to 0.001. For normal 
strength concrete the most important parameter influencing the magnitude of shrinkage is the 
water loss after a given duration of drying.  
 
The model presented below predicts the mean time-dependent shrinkage behaviour of a plain 
structural concrete member which is exposed to a dry or to a moist environment after curing. 
It is valid for normal and for high-performance concrete up to a strength of 120 MPa, moist 
cured at normal temperatures not exceeding 14 days and exposed to a mean relative humidity 
in the range of 40 to 100 percent. 
 

 
Fig. 36: Time development of autogenous shrinkage and of drying shrinkage in normal strength concrete 

and in high-performance concrete  
 
It should be pointed out that the prediction models for shrinkage as well as for creep given in 
CEB-FIP MC90 and Bažant  [65] include compressive strength as a major parameter to be 
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taken into account when estimating concrete deformation properties. In reality, shrinkage and 
creep strains per se do not depend on concrete compressive strength but rather on parameters 
related to the microstructure and concrete composition such as water/cement ratio, degree of 
hydration, properties of the aggregates, etc. 
 
The total shrinkage may be calculated from; 
 
εs(t, ts) = εas(t) + εds(t, ts) (54) 
 
εas(t) = εaso(fcm) . βas(t) (55) 
 
εds(t, ts) = εdso(fcm) . βRH(RH) . βds(t – ts) (56) 
 
εaso(fcm) = – αas [(fcm/fcm0) / (6 + fcm/fcm0)]

2.5 . 10–6 (57) 
 
βas(t) = 1 – exp[– 0.2 (t/t1)

0.5 ] (58) 
 
εdso(fcm) = [(220 + 110 αds1 ) . exp(–αds2 . fcm / fcmo )

 ] . 10–6 (59) 
 
βRH(RH) = – 1.55 [ 1 – (RH / RHo)

3 ]      for RH < 99% . βs1 (60) 
βRH(RH) = 0.25                                        for RH < 99% . βs1 
 
βds(t – ts) = [(t – ts)/t1]

0.5 / [350 (h / ho)
2 + (t – ts)/t1 ]

0.5 (61) 
 
βs1 = (3.5 fcm0 / fcm)0.1 (62) 
 
where, 
εs(t, ts) total shrinkage at time t 
εas(t) autogenous shrinkage at time t 
εds(t, ts) drying shrinkage at time t 
εaso(fcm) national autogenous shrinkage coefficient 
εdso(fcm) national drying shrinkage coefficient 
βas(t) function to describe the time development of autogenous shrinkage 
βRH(RH) coefficient to take into account the effect if rel. humidity on drying shrinkage 
βds(t – ts) function to describe the time development of drying shrinkage 
βs1 coefficient to take into account self-desiccation in high-performance concretes 
fcm mean compressive strength [MPa] 
fcm0 = 10 MPa 
αas coefficient which depends of the type of cement: 
  αas = 800 for slowly hardening cements 
  αas = 700 for normal or rapid hardening cements 
  αas = 600 for rapid hardening high-strength cements 
αds1 coefficient which depends of the type of cement: 
  αds1 = 3 for slowly hardening cements 
  αds1 = 4 for normal or rapid hardening cements 
  αds1 = 6 for rapid hardening high-strength cements 
αds2 coefficient which depends of the type of cement: 
  αds2 = 0.13 for slowly hardening cements 
  αds2 = 0.11 for normal or rapid hardening cements 
  αds2 = 0.12 for rapid hardening high-strength cements 
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RH ambient relative humidity [%] 
RHo = 100 % 
t concrete age [days] 
t1 = 1 day 
ts concrete age at the onset of drying [days] 
t – ts duration of drying [days] 
h = 2 Ac/u national size of member [mm], where Ac is the cross-section [mm2] and u 

is the perimeter of the member in contact with atmosphere [mm] 
ho = 100 mm 
 
Creep 
 
Creep is quantified in terms of the strain that occurs in addition to the elastic strain due to the 
applied loads. If the applied loads are close to the service loads, the creep strain increases at a 
decreasing rate with time. The ultimate creep strain is found to be proportional to the elastic 
strain. The ratio of the ultimate creep strain to the elastic strain is called the creep coefficient. 
 
Creep of concrete is very much dependent on stress level. Beginning with small stresses, 
plastic strains in concrete develop in addition to elastic ones. Under sustained load, plastic 
deformation continues to develop over a period that may last for years. Such deformation 
increases at high rate during the first four months after application of the load. This slow 
plastic deformation under constant stress is called creep.  
 
In the range of service stresses, i.e. σc ≤  0.4 fcm, concrete may be considered as an ageing 
linear viscoelastic material. Hence, creep strains are linearly related to stress and can be 
calculated from; 
 
εc(t, t0) = (t, t0) . σc (t0) / Eci (63) 
 
where, 
εc(t, t0) creep strain at time t of a concrete loaded at an age t0 
(t, t0) creep coefficient 
σc (t0) creep inducing stress, i.e. stress applied at time t0 
Eci modulus of elasticity at concrete age of 28 days which can be calculated from; 
 
Eci = αE . Eco (fcm / fcmo)

1/3 (64) 
 
where,  
Eci tangent modulus of elasticity at σc = 0 [MPa] and at a concrete age of 28 days 
Eco  = 2.15 × 104 MPa 
fcm mean compressive strength [MPa] 
fcmo = 10 MPa 
αE coefficient from Table 4 
 
Table 4. Effect of type of aggregate on modulus of elasticity of concrete  [57] 
Type of aggregate αE 
Basalt, Dense limestone 1.2 
Quartzitic aggregates 1.0 
Limestone 0.9 
Sandstone 0.7 
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Creep of concrete may affect the long-term behaviour of concrete structures both in 
favourable and unfavourable way. When subjected to sustained load, the deformations of a 
concrete structure will continue to increase due to the effects of creep. According to Rüsch et 
al.  [68], the deflection of a reinforced concrete member subjected to flexure, d(t), increases 
with time; 
 
d(t) ≈ di [ 1 + 0.3 (t, t0) ] (65) 
 
where di is the initial deflection. In reinforced concrete sections subjected to compression, 
creep of concrete causes a redistribution of stresses from the concrete to the reinforcing steel 
which may lead even to yielding of the steel  [59].  
 
The creep coefficient (t, t0) of a concrete at age t which has been subjected to a constant 
sustained load at an age t0 follows from; 
 
Uniaxial elastic creep (stresses less than about 0.4 of the strength) is defined as; 
 
ε(t) = σ J(t,t') + εo(t) (66) 
 
in which σ represents the uniaxial stress, ε is axial strain, t is time, normally chosen to 
represent the age of concrete, and J(t,t') is the compliance function (often also called the creep 
function); this function represents the strain (elastic plus creep) and the time t caused by a unit 
constant uniaxial stress that has been acting since time t'. Within the linear range, the creep at 
uniaxial stress is completely characterized by function J(t,t'). 
 
The creep of concrete is profoundly influenced by the process of cement hydration. This 
influence is called aging and causes the creep at constant stress to decrease 
significantly as the age at loading increases. Modeling of the aging aspect of creep has proven 
to be a major complicating factor. Although integral as well as differential formulations that 
take the aging into account are available and used in practice, they have several serious 
shortcomings. The objective of this theory is to eliminate these shortcomings with a basic 
model proposed by Baźant and Parasannan  [55]. The theory has a physical basis in the 
micromechanics of the aging process. The formulation has several important advantages: It 
involves a Kelvin chain whose elastic modulus and viscosities are age-independent, which 
greatly simplifies numerical analysis. All the free material parameters can be identified from 
the given test data by linear regression. All the viscoelastic behaviour of concrete, including 
aging, can be closely described with only four free material parameters. The model always 
satisfies the condition of non-divergence of the creep curves for different ages at loading. 
Thermodynamic restrictions for the elastic module and viscosities associated with the rate-
type form are always satisfied. The non-linearity of creep consisting in deviations from the 
principle of superposition is capable of describing the phenomenon of adaptation and agrees 
with test data for the service stress range as well as higher stresses. 
 
The creep-time curve may include three ranges: primary creep, secondary creep and tertiary 
creep (Fig. 37). In the secondary creep range, the creep rate is approximately constant. This it 
is also called stationary creep or steady state creep. The tertiary creep may arise under high 
applied stresses.  
 
The creep-time curve is dependent on the stress-strength ratio. Below a stress-strength ratio of 
about 0.4 it is proportional to the applied stress. It appears that the initial rate of creep in 
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tension is higher than that in compression under the same stress; at longer time the reverse 
may be true according to Illston  [102]. The effect of the stress-strength ratio seems similar to 
the effect in case of compressive creep: creep is proportional to the applied stress up to 0.5, 
even higher. 
 

 
Fig. 37: Schematic creep-time curve  [100] 
 
Stress Relaxation 
 
Although the term creep is often used to denote both the phenomenon of creep deformation 
and that of relaxation of stress, they are of course not the same, but different manifestations of 
the same fundamental viscoelastic properties. If a structural concrete member can freely 
deform under a permanent constant stress, its deformation increases due to creep. If free 
development of creep deformation is prevented, then the original stress is reduced over time, 
i.e. relaxation takes place  [97]. 
 
The relaxation in concrete specimens subjected to equal initial strains at different ages of 
concrete is illustrated in Fig. 38. It shows that the stress decreases at a higher rate in younger 
concrete analogous to the creep behaviour. The difference in relaxation of the initial stresses 
has a relation to the increase of the modulus of elasticity with time. Comparing the stress 
relaxation magnitudes Δσ1, Δσ2 and Δσ3 after a time increment Δt from the loading time ti it is 
clear that the relaxation is very high at early ages and it reduces with time, just as creep 
reduces with age at loading. 
 

 
Fig. 38: Effect of loading age on relaxation in concrete specimens subjected to equal initial strains  [97]. 
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The development of the relaxation process at different levels of the initial stress is plotted in 
Fig. 39. Compared to creep, the process of relaxation develops more rapidly at the beginning 
and approaches its final value asymptotically. It shows also that the relative increase of 
relaxation is higher than the relative increase of stresses above 11.8 MPa, i.e nonlinearity of 
relaxation appears. Due to the lack of data on stress relaxation at early ages, the findings 
concerning the development of creep are used in most of the theoretical studies of stress 
analysis for the modelling. The linear viscoelastic theories allow calculation of relaxation 
based on creep data. 
 

 
Fig. 39: Effect of magnitude of the initial stress on the relaxation process  [98]. 
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Chapter 4: Modelling 
 
The theoretical researches before 1990 focused on the development and formulation of 
suitable and realistic constitutive laws, describing the observed mechanical behaviour of 
concrete [2,3,24,25,26]. The primary purpose of these efforts was the implementation of the 
numerical models in finite element programs aimed at simulating and computing the 
behaviour of complicated reinforced concrete structures. The finite element method offers a 
model of the structure consisting of an assemblage of simple elements for the in-plane shear 
transfer in cracked concrete. The displacement response of the crack is complex and highly 
non-linear: analytical expressions approximating the test data can often be formulated by 
means of statistical methods. 
 
Two extreme crack response curves can be distinguished for the case of a displacement-
controlled shear loading  [23], namely retaining a constant crack width, related to an infinite 
normal stiffness of the crack plane, or a constant normal stress which can be achieved by a 
constant external normal force together with a zero normal stiffness, see Fig. 40. 
In actual structures the crack plane is often partially constrained by means of reinforcing bars 
crossing the crack. Apart from a certain normal stiffness dσc/dδn, the dowel and aggregate 
interlock mechanisms provide a shear stiffness dτ/dδt. In Fig. 40 δt is slip or parallel 
displacement of two sides of the crack and δn is separation or crack width. 
 

 
Fig. 40: Shear stress-displacement behaviour of a crack for (a) constant crack width and (b) constant 
normal stress 
 
One empirical shear stress-displacement relation was found for the variable crack width tests 
(constant stress-crack width ratio) by Paulay and Loeber  [63]:  
 
τa = 0.51 + 7.07(δt)

1/2 (67) 
 
where, τa is shear stress and δt is slip or parallel displacement of two sides of the crack. 
 
Paulay and Loeber carried out displacement-controlled (with respect to δt) static shear loading 
tests, see Fig. 27a. The crack width, slip and restraining stress perpendicular to the crack plane 
were recorded. Three types of gravel aggregate (rounded: 9.5 mm and 19 mm max. size and 
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crushed: 19 mm), as well as three different constant crack widths were chosen as experimental 
variables. The 102 mm cube concrete strength ranged between 36 and 40 N/mm2. 
 
This formula resembles well with the predicted curve as derived from the constant crack 
width tests, see Fig. 27b. Houde and Mirza [50] performed similar push-off tests and found 
that τa is almost proportional to fcyl

1/2 and δno
1.5. 

 

 
Fig. 41: Test set-up by Paulay and Loeber and (b) relations for concrete (D = 19mm). 
 
A theoretical model should consider the interaction between the stresses and displacements (σ, 
τ, δn, δt). In this section, a few theoretical models will be reviewed: 
 

4.1. Rough-crack model of Baźant and Gambarova  
 
This model gives a mathematical description of the observed crack behaviour [64-66]. The 
interface stresses are assumed to depend on the displacement ratio R = δt/δn. Free sliding can 
occur (σa = 0) until both crack faces make contact. The maximum shear stress is stipulated by 
the crushing of mortar material (Fig. 42). The aggregate particles have a Fuller grading curve. 
The formulae presented are based on shear tests of Paulay et al.  [63]: 
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3 4
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
 (69) 

 
where a1, a2, a3 and a4 are constant values related to fcyl. Note that τa has a boundary value of 
0.25fcyl. The crack-opening curves are restricted to δt = c·δn

a (a > 1). The model does not 
describe shear transfer in reinforced cracks due to lack of reliable test data. Later, the model 
was used to determine the contribution of aggregate interlock to the shear transfer of cracked 
reinforced concrete beams  [73]. 
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Fig. 42: Calculated response according to Eq. 69 
 

4.2. Two-phase model of Walraven 

 
Walraven et al.  [74],  [75] used 32 push-off type specimens as shown in Fig. 43a. By means of 
nuts the external restraint rods were fastened to stiff steel plates fixed on the small sides of the 
specimens. Dowel action of these bars was negligible. The shear loading was applied in a 
displacement-controlled manner. The variables of the tests were: initial crack width (0.01, 0.2 
and 0.4 mm), 150 mm cube strength and type of aggregate (Fuller grading curve, gravel: 
fcc=19.9-56.1 N/mm2, Korlin light-weight aggregates: fcc = 38.2 N/mm2) and the maximum 
size (16mm but Dmax=32 mm for the high-strength type of concrete). The change of the rod 
diameter enabled variation of the normal stiffness to the crack plane. The test results of six 
specimens are presented in Fig. 43b; δn had a considerable influence, but there was a rather 
slight effect on τa-δt relations of Dmax in the range tested. Empirical bilinear stress-
displacement relations were found which accurately fit to the data recorded: 
 

0.80 0.707[1.80 (0.234 0.20) ]
30

cc
a n n cc t

f
f            [N/mm2] (70) 

0.63 0.552[1.35 (0.191 0.15) ]
20

cc
a n n cc t

f
f            [N/mm2] (71) 

 
Similar equations were obtained for the light-weight concrete which exhibited a less steep 
crack-opening curve indicating a relatively smooth crack surface, probably caused by cracks 
that run mainly through the aggregate particles which are weaker than the matrix material. 
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Fig. 43: Tests of Walraven et al.  [74], [75]; (a) specimen with external restraint rods and (b) shear stress-
displacement relations and measured crack-opening curves for normal-weight concrete. 
 
Based on these tests, Walraven presents a model which suggests that concrete is a two-phase 
material consisting of stiff aggregate particles embedded in an ideally-plastic cement matrix 
(Fig. 44a-b). In gravel concrete the low bond strength between the matrix and these particles 
may usually lead to crack initiation. The particles are idealized as spheres. The shear plane 
consists of a distribution of rigid spheres of a range of sizes embedded to various depths in the 
matrix material. The model does not consider interaction between spheres from opposite crack 
faces. An expression is derived to predict the chances of finding a particular sized aggregate 
particle at a certain embedment depth. Equilibrium is related to frictional sliding and crushing 
of matrix along the contact areas ax and ay (Fig. 44c), which depend on δt, δn and the mix 
proportions (Dmax and the volumetric percentage of aggregate). A Fuller grading curve is used 
for the particle distribution. The constitutive relations of the crack are unique - i.e. there is 
path-independency - ace. to: 
 
σa = σpu · (Ax – μ·Ay)    and    τa = σpu · (Ay + μ·Ax) [N/mm2] (72) 
 
where,  
μ = τpu/σpu = coefficient of friction = 0.40 
σpu = matrix yield strength = 6.39 fcc

0.56 [N/mm2] 
Ax = Σax , Ay = Σay = contact areas per unit area of crack plane. 
 
The model closely agrees with Walraven's static shear tests (Fig. 43b) and with the 
experiments of Paulay et al.  [63] for a given normal restraint 'stiffness' of the crack plane. 
From Eq. 72, Fig. 44d can be drawn. It can be seen that the 'free slip' at σa =0 increases as the 
initial crack-opening is enlarged. Simple bilinear expressions have been derived according to 
Eqs. (70-71). A further analysis revealed that the path-dependency of the interlock mechanism 
can almost be neglected if δt < ⅔ δn  [76]. Note that Walraven combined the aggregate 
interlock and the dowel mechanisms in order to simulate the response of cracked reinforced 
push-off specimens. 
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Fig. 44: Model of Walraven  [75]; (a)-(b) assumed matrix deformation;(c) contact areas and (d) stresses for 
a single crack. 
 

4.3. Model of Wittmann and Zaitsev  
 
Wittmann and Zaitsev  [80] modelled theoretically the opening of the crack under short-term 
and long-term compressive loads, see Fig. 45.  
 

 
Fig. 45: a) Crack propagation in porous material under compression. b) Stress distribution in a 
homogeneous material around a circular hole under uniaxial compression. c) Schematic representation of 
the stress σ between two particles of a solid body as a function of your distance. d) Theoretical model for 
stress between two particles. e) Schematic representation of a crack in a solid body, when the crack width 
is more than δ* the tensile forces between two faces of the crack is gone  [80] 

(a) 

(b) 

(c) 

(d) 

(e) 
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Based on their model, the simplest element to in an idealized structure of a porous material is 
a circular hole in a homogeneous and isotropic plate. In Fig. 45 the well known stress 
distribution around a circular hole is shown. As soon as the tensile strength of the material at 
the lines of maximum tensile stress is reached a crack will propagate into the material. It can 
be shown that the related crack length λ is dependent on the applied load q by the following 
expression: 
 

7

2

(1 )

2 (1 ) 1

E
q

r

  




 

  (73) 

 
where λ is equal to the crack length l divided by the radius of the pore r. All other symbols in 
equation (1) have their usual meaning. 
 
Equation (73) can be applied when the crack length l is small compared to the distance of 
individual pores. That means, when the interaction between two mutual approaching cracks is 
negligible. This is, of course, a severe limitation of the mathematical description. Zaitsev and 
Wittman, therefore, studied the crack propagation of two interfering cracks and finally the 
crack propagation in a material with pores distributed at random. In this model which is fairly 
close to a realistic porous structure, the sum of the length of all individual micro-cracks has 
been calculated. Each time two pores become connected by the merging of two increasing 
cracks there is a sudden increase in the total crack until a critical value is reached. Then the 
cracks propagate without any increase in load. 
 
If the material is viscoelastic cracks can propagate due to the fact that creep occurs in the 
immediate vicinity of the crack tips. Čerepanov  [104] has shown that formulas which are 
derived under the assumption that a material reacts in an ideal way can be extended so that 
they can be applied to describe the behaviour of a viscoelastic material as well. In this case 
the elastic modulus E has to be replaced by a time dependent operator Ĕ where: 
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where K(t, τ) has the following meaning: 
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K t E c t

E
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     
  (75) 

Now it is possible to calculate the time t when a specimen fails under a high sustained load, 
the load being applied at time τ. The basic assumption here is that the specimen will fail as 
soon as the total crack length increases due to creep of the material in the crack tips and 
reaches a value that equals the critical crack length of the short time experiment. The related 
strength under sustained load is then given by the following expression: 
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  (76) 
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βK(t) and βK(t) being the short time strength of a companion specimen at time t when the 
sample fails and at time τ when the load has been applied respectively. E(t) and E(τ) represent 
the elastic modulus at the indicated age.  
 
Creep in the material near the crack tips not only increases the crack length but reduces the 
stress concentration at the same time which leads to an increase in strength, m(t, τ) takes this 
effect into consideration. Further theoretical and experimental investigations are needed to 
understand the m-effect in full detail. 
  

4.4. Dugdale model  
 
Dugdale  [96] presented a crack model for an elastic-ideal plastic material. Even though the 
concrete is a brittle material, many approaches to crack analysis based on a single crack 
concept are based on Dugdale model or Barenblatt model  [95]. 
 
For an elastic-ideal plastic material the stress can never exceed the yield stress. In the model 
according to Dugdale it is assumed that a narrow yield zone develops in front of the crack tip 
along the line of the crack, see Fig. 46. The stresses in the yield zone never exceed the yield 
stress and consequently load-case (a) in Fig. 46 equals the sum of the load-cases (b) and (c). 
 

 
Fig. 46: Dugdale model of a single crack for elastic-ideal plastic material 

4.5. FE Model of Petersson, Hillerberg and Modéer  
 
Petersson, Hillerberg and Modéer  [93] developed the Fictitious Crack Model based on 
Dugdale  [96] and Barnblatt  [95] models. The basic idea of their model is demonstrated in Fig. 
47a. When using Finite Element Method (FEM), they modelled the fracture zone by ‘nodal 
forces’. The closing stresses acting across the fracture zone (Fig. 47a) are replaced by nodal 
forces (Fig. 47b). The intensity of these forces of course depends on the width of the 
Fictitious Crack according to the σ-w curve of the material. When the tensile strength or 
another fracture criterion is reached in the top node (Fig. 47b), this node is “opened” and 
forces start acting on the crack at this point. In this way it is possible to follow the crack 
growth through the material. 
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Fig. 47: When using FEM, the stresses acting the Fictitious Crack (a) are replaced by nodal forces (b) 
 
In Fig. 48 a schematic illustration of a deeply cracked structure that is subjected to load is 
shown. This type of structure is used as the basis in Petersson’s calculation method  [93]. The 
dots on the boundaries of the crack represent finite element nodes. The position of the two 
nodes in each node pair (a node pair is two nodes on the opposite crack surfaces at the same 
distance from the crack tip) will coincide when the structure is unloaded. The node pairs are 
numbered from 1 at the base of the crack to n+1 at the crack tip. The distance between two 
pairs of nodes i and i+1 is denoted ai. 
 

 
Fig. 48: A schematic illustration of the finite element nodes along the crack boundaries in a deeply 
cracked specimen  [93] 
 
By introducing closing forces over the crack it is possible to make the structure in Fig. 48 
relevant for an arbitrary notch depth. If the material is linear elastic and if the deformations 
are small, the widening of the crack at each node point from node 1 to node n can be 
expressed by n equations:  
 

1

( , ) ( ) ( ) ( )
n

i V
j

w K i j P j C i F w i


     (77) 

 
where, 
 
w(i) is the width of the crack at node i  
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wV(i) represents the separation of the nodes in the node pair i,  
F is the load applied to the structure,  
P(j) is the closing force acting at node j,  
K(i,j) is widening of the crack at node i of the structure in Fig. 48 when unity load is acting at 
node j  
C(i) is the widening of the crack at node i of the structure when the applied load equals unity 
load.  
 
If the crack propagation path is known in advance, then the values of constants K(i,j), C(i), 
D(i) and DF are known as well by means of finite element calculations. When determining the 
constants a number of different load cases are solved but the same global stiffness matrix can 
be used for all the load cases and consequently it is only necessary to carry out a single 
invertation of the stiffness matrix.  
 

 
Fig. 49: a) The simplest approximation of the σ-w is a single, descending, straight line. b) The σ-w curve 
approximated with two straight lines  [93]. 
 
Sometimes it is impossible to predict the crack propagation path in advance, so a super 
position principle should be used. Here the first step is to apply the load F1 to the linear elastic 
structure which gives the stress σ(1, i) in each node i. The load F1 is chosen so that the tensile 
strength is reached at the crack tip i.e. σ(1, 1) = ft. The second step is to “open” node 1 and to 
introduce opening forces across the crack at this mode. The intensity of the forces must 
depend on the width of the Fictitious Crack according to the σ-w curve and the area which is 
represented by the forces. For the simple straight-lined σ-w curve in Fig. 49a, the intensity of 
the forces increases linearly from 0 to a1·b·ft/2 when w increases from 0 to wc. The forces are 0 
when w>wc. b is the width of the structure perpendicular to the plane and a1 is the distance 
between nodes 1 and 2 (Fig. 48). The load F2 is chosen so that σ(1, 2)+ σ(2, 2)= ft which 
means that, when load-case 1 and 2 are combined, the tensile strength is reached at node 2. 
The total load is then F1+F2 and the stresses at the different nodes are given as σ(1, i)+ σ(2, i). 
The stresses at node 1 due to load F2 is negative (the forces at this node want to widen the 
crack) and consequently the total stress at node 1 decreases according to the σ-w curve. 
 
By using this method it is possible to choose the propagation direction of the fracture zone 
after each calculation step. Then the first principal stress is calculated at the tip of the fracture 
zone and propagation takes place along a path perpendicular to the first principal stress or, as 
the possible directions of propagation are limited to the directions of the element sides, along 
the element side which deviates less from the theoretical propagation direction. 
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4.6. Model of Zhou and Hillerborg 
 
Zou and Hillerborg  [101] proposed a time-dependent fracture model for concrete based on 
material tests. Under long-term loading, creep in the high stress zone around the fictitious 
crack tip may be high enough to reach the tensile strain capacity, so that crack formation can 
occur below the static tensile strength. Therefore the criterion should be adjusted for a time 
effect. Zou  [100] used the static tensile strength as a criterion in all the models instead of 
using a stress-failure lifetime relation or stress-strain criterion. 
 
Time dependent problems are often solved in increments by dividing time into small steps. 
Under sustained loading it is usual to evaluate incremental creep stains from stresses at the 
beginning of the time step and structural responses in the time increment can be obtained by 
imposing a pseudo load from the creep strains. Since this approach cannot be used in fracture 
zone Zhou performed a series of deformation-controlled tests on fracture zone. At the 
beginning of each time step, stress relaxations are computed instead, and consequently a 
pseudo load can be evaluated from the relaxation stresses. The time dependent σ-w relation is 
expressed in the following form: 
 
dσ = dσR + dσI   (78) 
  
where dσR and dσI are stress changes due to relaxation and the deformation increment dw 
respectively during the time increment dt. 
 
Since it is quite difficult to perform relaxation tests during a long period of time, accurate 
stress-time functions in relaxation cannot be obtained from the tests. Therefore simple 
functions based on experimental evidences are proposed in the model to illustrate the main 
features of time effect in the fracture zone.  
 
Fig. 50 illustrates the proposed model. During the time increment dt = ti+1-ti, the deformation 
is first held at wi and the stress decrease dσR due to relaxation is σA

 – σi. Then, when the 
deformation increases from wi to wi+1, the stress can increase until it reaches the envelop of 
the static σ-w curve at Point B along the path A-B and follow the curve until Point i+1. The 
stress change dσI is σi+1 – σA. Of course, if the deformation increment dw is small, then Point 
i+1 may not reach Point B and will instead locate at a point somewhere between A and B. The 
relaxation function of a modified Maxwell model is chosen.  
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Fig. 50: Illustration of the model of Zhou  [100] 
 

 
Fig. 51: Rheological model  [103]. 
 
Zou and Hillerborg used a simple rheological element to illustrate the main features of the 
problems concerned. Rheology is concerned with time-dependent deformation of solids. In 
the simplest rheological model of the linear standard viscoelastic solid (Fig. 51), the springs 
are characterized by linear stress–displacement relationships: 
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The stress relaxation within time increment dt is assumed to be given by: 
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where α is constant, σ0 is the stress corresponding to wi in the static σ-w relation and τ is 
relaxation time. The relaxation tests in tension show that stress relaxation seems to reach a 
limit value which is proposed to equal α σ0. Therefore, in the equation above the term α σ0 has 
been introduced as a relaxation limit. Stress relaxation below the limit is assumed to be zero. 
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The stress change dσI is proposed as: 
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where, 
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and σ0(w) represents the static σ-w curve. 
 
The experimental loading-reloading curve is complicated (Fig. 52), thus in the model a linear 
stiffness is proposed in the model to make a simple and proper description of the curve 
possible. 
 

 
Fig. 52: Simulated tensile σ-w curves at different rates according to the model α=0.7, τ=25 second 
 
In Fig. 52 the model is applied to simulate stress-deformation curves in different deformation 
rates. If the rate is high (close to static loading rate), the stress-deformation curve is near the 
static one. Meanwhile, the curve deviates more from the static one for slow rate, and the 
transmitting stress in the fracture zone becomes lower than the static one for the same 
deformation. 
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