
 
 

 

Abstract— A cognitive system is presented, which is based on 
coupling a multi-objective evolutionary algorithm with a fuzzy 
information processing system. The aim of the system is to 
identify optimal solutions for multiple criteria that involve 
linguistic concepts, and to systematically identify a most 
suitable solution among the alternatives. The cognitive features 
are formed by the integration of fuzzy information processing 
for knowledge representation and evolutionary multi-objective 
optimization resulting in a decision-making outcome among 
several equally valid options. Cognition is defined as final 
decision-making based not exclusively on optimization 
outcomes but also some higher-order aspects, which do not 
play role in the pure optimization process. By doing so, the 
decisions are not merely subject to rationales of the 
computations but they are the resolutions with the presence of 
environmental considerations integrated into the computations. 
The work describes a novel fuzzy system structure serving for 
this purpose and a novel evolutionary multi-objective 
optimization strategy for effective Pareto-front formation 
serving for the goal. The machine cognition is exemplified by 
means of a design example, where a number of objects are 
optimally placed according to a number of architectural 
criteria. 

Keywords:  soft computing, multi-objective optimization, 
Pareto front, fuzzy neural tree, cognitive design 

I. INTRODUCTION 
he complexity of the modern technological real world 
problems makes it problematic for a decision maker to 
specify the relative importance among criteria a-priori. 

The problem is that it is difficult to foresee the implications 
of such commitment prior to investigating available 
solutions. Therefore multi-objective optimization algorithms 
are needed and being developed. With the advent of 
evolutionary algorithms in the last decades, multi-objective 
evolutionary algorithms (MOEAs) are extensively being 
investigated for solving multi-objective optimization 
problems [1-5]. Evolutionary algorithms are particularly 
suitable for this, since they evolve simultaneously a 
population of potential solutions. These solutions are 
investigated in non-dominated solution space, so that the 
optimized solutions in a multi-objective functions space 
form a front which is known as Pareto surface or front. It is 
emphasized that the multi-objective approach is based on 
postponing the commitment on the relative importance 
among the objectives until the Pareto front is established, 
and let the decision maker select one among the Pareto 
solutions with great awareness. In this respect the multi-

objective optimization is a cognitive approach. Namely 
cognition is understood as the process of bringing second-
order preferences into play based on awareness of the 
options available in an environment [6-8]. This means 
cognition goes beyond a mere optimization process, but it 
involves higher-order considerations. In multi-objective 
optimization these considerations yield the selections among 
the Pareto optimal solutions, which entail specification of 
the relative importance among the objectives. It is to be 
noted that in the existing multi-objective optimization 
approaches the cognitive component is due to the 
considerations by the human decision maker. 

In the present work a novel multi-objective optimization 
system is presented, where the machine identifies suitable 
second-order preferences selecting a most desirable solution 
on the Pareto front. This means machine cognition is 
exercised. This is accomplished by coupling a MOEA with a 
fuzzy information processing system. The fuzzy system is 
used to evaluate the fitness of the solutions with respect to 
the objectives. Due to the special type of fuzzy information 
processing system employed, different objectives are treated 
on a common ground. That is, the objectives are considered 
as complex linguistic concepts, and their fulfilment is 
measured as a membership degree between zero and one. 
This way the machine is able to distinguish the suitability 
among the solutions on the Pareto front, although they are 
equivalently valid in Pareto sense, and determine the 
particular solution having maximal overall suitability for the 
final purpose. It is noted that the diversity of solutions on the 
front is important for effective execution of the machine 
cognition. The strict search of non-dominated regions in the 
multi-objective solution space prematurely excludes some of 
the potential solutions. This is due to very low selection 
pressure towards the Pareto front in Pareto dominance-based 
evolutionary multi-objective (EMO) algorithms [9]. This 
results in aggregated solutions in objective space. In the 
present work a novel method for diversity preservation is 
employed termed as relaxed dominance. It refers to a degree 
of dominance in the terminology of MOEAs. It is noted that 
the present work is an extension of a design system 
presented earlier [10] with cognitive features. 

The cognitive system is exercised in an application 
concerning an architectural design task, which involves a 
number of conflicting, linguistic criteria. 
 The organization of the work is as follows. Section II 
describes the fuzzy information processing system. Section 
III deals with solution diversity in evolutionary multi-
objective optimization. Section IV describes a design 
experiment. This is followed by conclusions. 
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II. FUZZY-NEURAL TREE MODELING DOMAIN KNOWLEDGE 
For human-like information processing the methods of soft 
computing are presumably the most convenient. The salient 
soft computing methods are in the paradigms of neural nets 
and fuzzy logic [11]. In this work a neural tree is considered 
to assess the suitability of a solution in a human-like 
manner. A neural tree is composed of terminal nodes, non-
terminal nodes, and weights of connection links between 
two nodes. The non-terminal nodes represent neural units 
and the neuron type is an attribute introducing a non-
linearity simulating a neuronal activity. In the present case, 
this attribute is established by means of a Gaussian function 
which has several desirable features for the intended goals; 
namely, it is a radial basis function ensuring a solution and 
the smoothness. At the same time it plays the role of a fuzzy 
membership function in the tree structure, which is 
considered to be a fuzzy logic system as its outcome is based 
on fuzzy logic operations and thereby associated reasoning. 
An instance of a neural tree is shown in figure 1. Detailed 
structures of a neural tree are shown in figure 2. Figure 2a 
shows a terminal node connected to an inner node, and 
figure 2b and 2c show the connections among inner nodes.  

leaf node

internal node

root node

level 1node(n)
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...
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...  
Fig. 1.  The structure of a neural tree 

Each terminal node, also called leaf, is labelled with an 
element from the terminal set T={x1, x2, …,xn}, where xi is 
the i-th component of the external input vector x. Each link 
(i,j) represents a directed connection from node i to node j. 
A value wij is associated with each link as seen from figure 
2. In a neural tree, the root node is an output unit and the 
leaf nodes, or terminal nodes, are input units. The node 
outputs are computed in the same way as computed in a 
feed-forward neural network. In this way, neural trees can 
represent a broad class of feed-forward networks that have 
irregular connectivity and non-strictly layered structures. In 
particular, in the present work the nodes are similar to those 
used in a radial basis functions network with the Gaussian 
basis functions. 

In the neural tree considered in this work the output of  i-
th node is denoted xi and it is introduced to another node j. A 
non-terminal node consists of a Gaussian radial basis 
function.  

)||(||)( 2cXwXf −φ=  (1)
where φ(.) is the Gaussian basis function, c is the center of 
the basis function. The Gaussian is of particular interest and 
used in this research due to its relevance to fuzzy-logic. The 
width of the basis function σj at node j is used to measure 
the uncertainty associated with the inputs to this node, 
designated as external input Xj. Xj is related to the output of 
node i denoted as μi  by relation 

j i ijX wμ=  (2)
where wij is the weight connecting node i to node j. The 
centers of the basis functions are the same as the input 
weights of that node. 

 
 (a) (b) (c) 

Fig. 2.  Detailed structures of a neural tree with respect to 
different type of node connections 

The output of node j is given by 
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We can express (4) in the following form 
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This implies that the width of the Gaussian is scaled by the 
input weight wij. In other words, as to the width, the shape of 
Gaussian fuzzy membership function is dependent on the 
input weights wij determined by the domain knowledge. It 
should be noted that this is a novel type of computation at 
each node which is quite different than conventional radial 
basis function (RBF) type computation, where the centers 
are determined by other means, clustering for instance. 
However, a non-terminal node itself can be seen as an RBF 
having different width for each dimension. For such a node, 
there should be at least two inputs with appropriate 
connection weights. The connection weights of a node 
should be normalized, so that the sum of the weights 
becomes equal to 1. 

An example of a neural tree is shown in figure 3. It is to 
be noted that the tree has a hierarchical structure, where the 
root node describes the ultimate goal subject to 
maximization, and the tree branches form the objectives 
constituting this goal. It is noted that in the multi-objective 
optimization case the weights w1620 , w1720 , w1820 , and w1920 
in figure 3 are not specified a-priori, but they are subject to 
identification after the optimization process is accomplished. 

III. MULTI-OBJECTIVE EVOLUTIONARY OPTIMIZATION 

A. System overview 
In this work a cognitive system for design is developed 
using fuzzy information processing and evolutionary 
algorithm. The task of the cognitive system is to generate 
solutions matching the design criteria, which involve soft 
requirements. The design task is an architectural design, 



 
 

 

where design variables are mainly soft in nature, i.e. they are 
given via associations to linguistic concepts. The softness is 
treated by means of fuzzy information processing. This is 
accomplished by means of fuzzy neural tree mentioned in 
the preceding section. 
The neural tree plays the role of a fuzzy information 
processing system, providing feedback to the evolutionary 
algorithm about the effectiveness of the multi-objective 
optimization (MO). 

Figure 4 shows the cognitive system. It is noted that the 
design process is cognitive, involving abundant visual 
information subject to processing. Therefore the 
investigations are carried out in virtual reality. The design 
task is accomplished in the following way. The genetic 
algorithm creates a population of random solutions, which 
are instantiated as scenes. The solutions are then evaluated 
by a virtual observer providing the system with virtual 
measurements of certain design features. The outcomes from 
the measurements are then fed into the neural tree model and 
processed to determine the degree of satisfaction of several 
criteria. It is noted that this information is obtained at the 
outputs of the nodes on the penultimate level of the tree. 
This provides the feedback information to the system. This 
information is used in a novel way in this work to rank the 

solutions in a Pareto sense. The novelty will be explained in 
the next section. Based on the ranking the genetic algorithm 
performs the genetic operations on the solutions as this is 
well known, generating new solutions and the process is 
iterated until a Pareto front is established. It is emphasized 
that the entire operation aims to maximize the outputs at the 
penultimate level of the neural tree in Pareto sense. Due to 
the fuzzy logic concept involved the maximal values at the 
outputs are unity. 

B. Neural tree as fuzzy information processor 
In figure 3 the neural tree nodes play the role of information 
processors that perform fuzzy AND operations. It is 
noteworthy to point-out that the input information to a node 
first is fuzzified by means of a Gaussian membership 
functions, thereafter AND operation is performed, to this 
information. The fuzzification is accomplished being 
directly related to the associated input weight. The weights 
are domain knowledge and they sum up to unity. This means 
the knowledge provided to the neural tree is directly used 
together with the input information, so that the 
commensurate outputs corresponding to all inputs are 
obtained with fuzzy AND operation. This is a novel way of 
performing AND operation in the sense that fuzzy numbers 

 
Fig. 4.   The cognitive system 

 
Fig. 3.   The fuzzy neural tree used in the application example; the weights are subscribed according to the convention wij 



 
 

 

are directly obtained from the fuzzy membership functions 
and they are directly multiplied as an arithmetic operation, 
where directly means the whole process takes place inside 
the node, without explicit fuzzy set operations. This is 
explained schematically in figure 5, referring to figure 2c. 

 
Fig. 5.  Input fuzzification 

In this figure only two inputs are considered without loss 
of generality. The variables w13 and w23 are input weights 
determining the width of the Gaussian membership 
functions. It is noted that in the figure w13<w23. This is clear 
from (5). 

For two inputs, two distinct standard deviations are 
defined. In particular, the inputs can be equal, i.e., μ1= μ2. 
This particular case occurs when the outputs of the two 
nodes delivering the inputs to the node we are considering 
are equal. This case is illustrated in figure 6a. In figure 6b it 
is clear that, if w1 and w2 are equal then the AND operation 
is expressed by means of a single Gaussian denoted by g. 

 
(a)           (b) 

Fig. 6.  Gaussian member as to the respective connection weights, 
where w=w13 = w23 

Since σj is a free parameter, by giving an appropriate width 
via (5), the result of the AND operation is given by  
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This is illustrated in figure 7 where the left part of the 
Gaussian is approximated by a straight line.  

 
Fig. 7.  Linear approximation to Gaussian function 

 In figure 7, optimizing the σj  parameter, we obtain 
jO μ≅  (7)

for the values μ and Oj can take between zero and one. In 
any case, for a node in the neural tree, (7) is satisfied for 
μ=Oj=0 (approximately) and for μ=Oj=1 (exact) inherently, 
while g1 and g2 are increasing function of μ1 and μ2. 
Therefore a linear relationship between Oj and μ in the range 
between 0 and 1 is a first choice from the fuzzy logic 
viewpoint; namely, as to the AND operation at the 

respective node, if inputs are equal, that is μ=μ1=μ2 then the 
output of the node of μ1 AND μ2 is determined by the 
respective triangular membership functions in the 
antecedent space. Triangular fuzzy membership functions 
are the most prominent type of membership functions in 
fuzzy logic applications. For five inputs to a neural tree 
node, these membership functions are represented by the 
data sets given by Table I and Table II. 

  TABLE  I 
 DATASET AT A NEURAL TREE NODE INPUT  

.1 .2 .3 .4   .5 .6 .7 .8 .9 

.1 .2 .3 .4   .5 .6 .7 .8 .9 

.1 .2 .3 .4   .5 .6 .7 .8 .9 

.1 .2 .3 .4   .5 .6 .7 .8 .9 

.1 .2 .3 .4   .5 .6 .7 .8 .9 

TABLE  II 
DATASET AT A NEURAL TREE NODE OUTPUT  

.1 .2 .3 .4 .5 .6 .7 .8 .9 

In general, the data sets given in Table I and Table II are 
named in this work as ‘consistency conditions’. They are 
used to calibrate the membership function parameter σ. This 
is accomplished by optimization. 

At this point a few observations are due, as follows. If a 
weight wij is zero, this means the significance of the input is 
zero, consequently the associated input has no effect on the 
node output and thus also the system output. Conversely, if a 
wij is close to unity, this means the significance of the input 
is highest among the competitive weights directed to the 
same node. This means the value of the associated input is 
extremely important and a small change about this value has 
big impact on the node output Oj. If a weight wij is 
somewhere between zero and one, then the associated input 
value has some possible effect on the node output 
determined by the respective AND operation via (5). In this 
way, the domain knowledge is integrated into the logic 
operations. 

The general properties of the present neural tree structure 
re as follows. 
 If an input of a node is small (i.e., close to zero) and the  

weight wij is high, then, the output of the node is also 
small complying with the AND operation 

 If a weight wij is low the associated input cannot have 
significant effect on the node output. This means, quite 
naturally, such inputs can be ignored. 

 If all input values coming to a node are high (i.e., close 
to unity), the output of the node is also high complying 
with the AND operation 

 If a weight wij is high the associated input xi can have 
significant effect on the node output. 

It might be of value to point out that, the AND operation in a 
neural-tree node is executed in fuzzy logic terms and the 
associated connection weights play an important role on the 
effectiveness of this operation. 

The fuzzy logic interpretation of this process is illustrated 
in figure 8, referring to figure 2c. From the figure it is seen 
that the input x1 and x2 yield membership degrees at several 
membership functions in the antecedent space. After 
multiplication of these membership degrees, the membership 



 
 

 

 
Fig. 8  Illustration of fuzzy logic information processing at an individual neural tree node with two inputs 

degrees in the consequent space are determined at singleton 
membership functions, where every singleton belongs to the 
rule involving the corresponding Gaussian membership 
functions. The fuzzy rules are written in the figure as well. 

C. Multi-objective optimization with a relaxed dominance 
concept 

To deal with multi-objectivity, evolutionary algorithms with 
genetic operators are effective in defining the search 
direction for rapid and effective convergence. Basically, in a 
multi-objective case the search direction is not one but may 
be many, so that during the search a single preferred 
direction cannot be identified and even this is not desirable. 
In the evolutionary computation case a population of 
candidate solutions can easily hint about the desired 
directions of the search and let the candidate solutions 
during the search process be more probable for the ultimate 
goal. Next to the principles of genetic algorithm-directed 
optimization, in multi-objective (MO) algorithms, in many 
cases the use of Pareto ranking is a fundamental selection 
method. Its affectivity is clearly demonstrated for a 
moderate number of objectives, which are subject to 
optimization simultaneously [12]. Pareto ranking refers to a 
solution surface in a multidimensional solution space formed 
by multiple criteria representing the objectives. On this 
surface, the solutions are termed Pareto solutions. They are 
diverse but they are assumed to be equivalently valid as 
there are no other solutions which might surpass the Pareto 
solutions. Selection of one of the solutions among those 
many is based on some higher-order preferences, which 
require more insight into the problem at hand. This is 
necessary in order to make more refined decisions before 
selecting any solution represented along the Pareto surface. 
From the cognitive viewpoint, this means among the 
solutions available for the task, one is selected with 
conscience. The above construction is crucial for a cognitive 
system design. Namely, the problem formulation is not 
purely optimization-based but the final outcome is 
dependent on the availability and the nature of availability of 
the solutions. Even solutions may be sub-optimal as a trade-
off for diversity, when cognition plays important role in 
decision-making. 

The formation of the Pareto front is based on objective 
functions of the weighted N objectives which are of the form  
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where Fi(x) is the new objective function; aij is the 
designated amount of gain in the j-th objective function for a 
loss of one unit in the i-th objective function. Therefore the 
sign of  aij is always negative. The above set of equations 
require fixing the matrix a, which has all ones as diagonal 
elements. For the Pareto front we assume that, a solution 
parameter vector x1 dominates another solution x2 if 
F(x1)≥F(x2) for all objectives, and a contingent equality is 
not valid for at least one objective. Fi(x) functions define the 
contour lines which form a convex hull. 

For the greedy application of the MO algorithm, one uses 
the orthogonal contour lines at the point P as shown in 
figure 9. 

 
Fig. 9  Contour lines defining the search areas  

In this figure the point P denotes one of the individuals 
among the population in the context of genetic algorithm 
(GA) based evolutionary search. In the greedy search many 
potential favourable solutions are prematurely excluded 
from the search process. This is because each solution in the 
population is represented by the point P and the dominance 
is measured in relation to the number of solutions falling 
into the search domain within the angle θ=π/2. To avoid the 
premature elimination of the potential solutions, a relaxed 
dominance concept is implemented where the angle θ  can 
be considered as the angle for tolerance provided θ>π/2. 
The resulting Pareto front corresponds to a non-orthogonal 
search domain as shown in figure 9. The wider the angle 
beyond π/2 the more tolerant the search process and vice 
versa. For θ<π/2, θ becomes the angle for greediness. 



 
 

 

Domains of relaxations are also indicated in figure 9. In the 
greedy case the solutions are expected to be more effective 
but aggregated. In the latter case, the solutions are expected 
to be more diversified but less effective. In both cases, the 
fitness of the solutions can be ranked by the fitness function 

nN +
=

)(
1
θfitR  (9)

where n  is the number of potential solutions falling into the 
search domain. Although N(θ) can be on-line modified 
during the search, it is expectedly constant once θ is 
determined. However, without the analysis of the 
functionality of N(θ) it is difficult to establish such a 
function by experiments. 
 Above considerations and the ad hoc formulation given 
by (8) can be put into more precise mathematical terms 
based on the formulation given by (10), as follows. Let (8) 
be expressed by 
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In matrix equation form, (10) becomes 
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For the sake of simplicity in the description below only two 
objectives are considered while the results are valid for any 
dimension. The objective functions for this case are given by 
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In a two-dimensional coordinate system, the contour lines in 
figure 9 are orthogonal and non-orthogonal respectively. 
The search area in the latter case includes also the domains 
of relaxations, which are added to the search area of the 
orthogonal system as seen in figure 9. In the non-orthogonal 
system, the area of selected solutions is relatively wider 
while some of the solutions are not dominating the solution 
at the point P. However, as a trade-off it provides more 
diversity at the final Pareto front, while the front is not 
totally non-dominated. The solutions at the front are more 
probably non-dominated in the middle part of the front 
where f1 and f2 are close to each other. Conversely, the 
solutions may be more dominated at the regions close to 
edges of the front [13]. This situation occurs since the 
greedy algorithm is applied with respect to the non-
orthogonal system taking the point P as origin. By doing so, 
the search algorithm remains the same, but it uses the 
coordinates of the new non-orthogonal system [14]. 
However, this approach does not address the problem of 
aggregation especially in the higher multi-dimensional 
optimization. This means, the Pareto front is potentially 
wider without resolving the aggregation phenomenon. That 
is. the potentially wider Pareto front is left ineffective.  

As a novel approach, in this work, during the genetic 
search, each member of the population is considered to be 
represented by the point P seen in figure 9, and the solutions 
falling into the relaxation domains are included to the non-
dominated solutions. In other words, some dominated 
solutions are accrued to the non-dominated ones to form the 
next-generation solutions. This means, the orthogonal 
system is not replaced by the non-orthogonal system but the 
greedy non-dominated orthogonal search space is relaxed. 
The relaxed domains simply contribute to the greedy search 
domain with some additional, potentially lucrative solutions. 
Interestingly, this situation is similar to the classical 
gradient-based optimization method, where each iteration 
the step length towards the global maxima or minima 
determined by the gradient. The step length should be small 
enough to ensure the stability of the convergence [15, 16]. If 
the step length is zero, approach to minima or maxima does 
not occur. If it is too big, convergence does not occur. For 
similar reasons, in the evolutionary computation the angle φ 
defining the relaxation domain should be kept small. In this 
way the stability of the algorithm is maintained and the 
effectiveness is enhanced. It should be noted that, although 
the angle φ is small it plays role for each population member 
at each generation making the net effect highly significant. 
The role of angle φ is comparable to that of step length of 
gradient-based optimization. If φ is zero, greedy search in 
orthogonal system occurs. Then the final result in the 
extreme case aggregates to one solution. If it is too big, 
convergence does not occur.  

In (12) the small-enough designation of the parameters aij 
is crucial for the performance of the evolutionary 
computation.  It is characterized by the cosines of the angle 
between respective coordinate axes, i.e., φ  and it is expected 
to be equal to 10o or less, although it is also application 
dependent. The normalization of these cosines yields the 
directive cosines of the coordinate systems. The coordinate 
transformation between orthogonal and non-orthogonal 
systems is determined by these direction cosines. If we 
denote the direction cosines as qij, the transformation matrix 
becomes 
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which transforms the non-orthogonal system to the 
orthogonal system and vice versa via 

'xQx =  (14)

xQx 1' −=  (15)
where x’ denotes the non-orthogonal system  x’=[x1’,x2’, … 
,xn’]T. The directive cosine row vectors of (13) are given by 
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Direction cosine row vector corresponds to column vectors 
in (13) so that for each column in (13) 
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The direction cosines matrix formed by the respective 
direction cosine row vectors is related to Q in (14) by 
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In two-dimensional case the directive cosine row vectors 
with respect to (18) are given by 
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The coordinate transformation of points falling into the 
relaxed search domains as seen in figure 9 is given by 
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and 
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The importance of coordinate transformation becomes 
dramatic especially in higher dimensions. In such cases the 
spatial distribution of domains of relaxation becomes 
complex and thereby difficult to implement. Namely, in 
multidimensional space the volume of a relaxation domain is 
difficult to imagine, and more importantly it is difficult to 
identify the population in such domains. Therefore one 
needs a systematic approach for identification by 
computation and not by inspection or by something else. 
This systematic approach is the coordinate transformation as 
follows. Basically for each solution point, say P in figure 11, 
the point is temporarily considered to be a reference point as 
origin, and all the other solution points in the orthogonal 
coordinate system are converted to the non-orthogonal 
system coordinate by (15). For instance for three objectives, 
we write 
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where three parameters should be designated, namely a12, 
a13, and a23 in advance if the coefficient matrix is taken to be 
symmetrical. They are expectedly around the range 0.1 and 
the coefficients can be modified during the search, if 
necessary. After conversion, all points which have positive 
coordinates in the non-orthogonal system correspond to 
potential solutions contributing to the next generation in the 
evolutionary computation. If any point possesses a negative 

component in the new coordinate system, the respective 
solution is discarded meaning eliminated from the offspring 
possibility. This fundamental process employing (15) is easy 
to implement even in any higher dimensional space. 
However, in higher dimensions the situation is extremely 
complex and relaxation domains are difficult to be taken into 
account by other means. This is one of the essential 
motivations to explore many different methods for effective 
Pareto front formation in literature [17, 18]. The presence of 
the relaxation guarantees the prevention of aggregation as 
the relaxation is meant for. This is exemplified in the 
following section of experimentation, where the 
demonstration example is taken as an architectural design. 

IV. APPLICATION 

A. Fuzzy neural tree as intelligent system for cognition 
In the following implementation the aim is to compare the 
effectiveness of the greedy vs. a relaxed Pareto ranking with 
respect to Pareto optimal front formation in a four-
dimensional objective space. It is emphasized that during the 
search the fuzzy information processing described above is 
used to compute the extent a solution fulfils the objectives. 
The objectives in the present application are modeled by the 
neural tree branches below the nodes 16-19 in figure 3, 
which are the penultimate nodes in the neural tree. During 
evaluation of a design alternative the tree is provided with 
inputs at its leaf nodes and the fuzzification processes are 
carried out. The fuzzification yields the satisfaction of an 
elemental requirement at the terminal nodes of the neural 
tree. These requirements are some desirable features 
expressed by means of fuzzy membership functions at the 
terminal nodes of the tree. An example of a design 
requirement is shown in figure 10. It is a requirement on the 
perception of an object in the design, which is the stairs. The 
requirement is fully satisfied for a degree of perception 
about 0.02, and it diminishes otherwise as seen from figure 
10. The degree of perception of the object is computed using 
a probabilistic perception theory [19]. Using the 
membership function in figure 10 the perception degree is 
converted into a degree of satisfaction for the requirement. 
In the same way other quantities in the design are measured 
and converted into satisfactions using specific membership 
functions at the terminals. The fuzzified information is then 
processed by the inner nodes of the tree. These nodes 
perform the AND operations using Gaussian membership 
functions as described above.  

 
Fig. 10  Membership function at node 12 in figure 3 



 
 

 

Finally the sequence of logic operations starting from the 
model input yield the performance at the penultimate node 
outputs of the model. This means the more satisfied the 
elemental requirements at the terminal level are, the higher 
the outputs will be at the nodes above, finally increasing the 
design performance at the root node of the tree. It is to be 
noted that the design performance in this example depends 
on the performance of the design objects in the scene, which 
are subject to optimal positioning. Clearly, the better every 
design object is, the better the whole scene is. Next to the 
evaluation of the design performance score, due to the fuzzy 
logic operations at the inner nodes of the tree, the 
performance of any sub-aspect is obtained as well. This is a 
desirable feature in design, which is referred to as 
transparency. 

Having established the performance evaluation model, it 
is used for the evolutionary search process aiming to 
identify designs with high design performance. In the 
present case we are interested in a variety of alternative 
solutions that are equivalent in Pareto sense. The design is 
therefore treated as a multi-objective optimization as 
opposed to a single-objective optimization. In single-
objective case exclusively the design performance, i.e. the 
output at the root node of the neural tree, would be subject 
to maximization. In the latter case, the solution would be the 
outcome of a mere convergence and any cognition aspect 
would not be exercised. In the multi-objective 
implementation the outputs of the nodes 16-19, which are 
the penultimate nodes, are subject to maximization. Their 
values are used in the fitness determination procedure of the 
genetic algorithm [20, 21]. Employing the fuzzy neural tree 
in this way the genetic search is equipped with some human-
like reasoning capabilities during the search. The part of the 
tree beyond the penultimate nodes is for the defuzzification 
process, which models cognition, so that ultimately the 
design performance is obtained at the root node. 

B. Analysis of the Pareto front 
The results from the design with multi-objective 
optimization are presented in figures 11 and 12.  

 
Fig. 11  Pareto optimal designs with respect to the four objective 

dimensions using greedy Pareto ranking 

 
Fig. 12  Pareto optimal designs with respect to the four objective 

dimensions using relaxed Pareto ranking 

The figures respectively show the result with and without 
relaxation algorithm. Figure 11 shows the front when the 
greedy Pareto dominance concept is applied. Figure 12 
shows the front after the same amount of generations 
applying the relaxed dominance concept. The angle of 
relaxation is taken as φ =10o. The positive effect of 
relaxation is clearly seen comparing the fronts. In the greedy 
case the front did not establish very distinctly. This is seen 
from figure 11, where some solutions that are inferior in the 
ducts/stairs part of objective space remain in the population, 
while these are not present in the relaxed case. From figure 
11 it is also noted that some solutions exist with a low score 
in the mezzanine/building core part of objective space, while 
in the relaxed case the solutions have a higher score in this 
respect. We can say that the solutions in the relaxed case are 
more ‘motivated’ to come to the front compared to the 
greedy case. This is explained considering that in the four 
dimensional objective space the size of the space is large, so 
that merely few solutions are dominated in a strict, i.e. 
greedy, sense. This results in low pressure towards the 
Pareto front. In the relaxed case some inferior solutions are 
counted as being dominant, due to the expanded angle for 
tolerance, i.e. θ=110º. This way the selection pressure is 
finely adjusted, since the information on a greater portion of 
the population is contributing to the front formation. 

Two resulting Pareto-optimal designs are shown in figures 
13 and 14. The designs belong to different regions on the 
Pareto front as shown by circles in figure 12. The design D1 
has a better evaluated performance of the mezzanine 
compared to D2. As a trade-of D1 has a slightly inferior 
performance of the stairs. This is due to the conflicting 
nature of the requirements for these objects. The relaxed 
dominance approach employs 10o between the respective 
orthogonal and non-orthogonal system axes. Therefore the 
basic computations for this yields the F matrix in (10) as 
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(23)



 
 

 

 
Fig. 13  Pareto optimal design D1 

so that, the cosine direction matrix given by (18) becomes 
.956 .168 .168 .168
.168 .956 .168 .168

.
.168 .168 .956 .168
.168 .168 .168 .956

TD Q

− − −⎡ ⎤
⎢ ⎥− − −⎢ ⎥= =
⎢ ⎥− − −
⎢ ⎥− − −⎣ ⎦

 
(24)

The corresponding weighted objectives F1 and F2 are given 
by (21) as 
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and the inverse of (25) becomes 
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(26)

The results given by (25) and (26) are interesting because 
the Pareto front determination by evolutionary multi-
objective optimization is considerably simplified. The 
selection of aij coefficients is a marginal issue and it remains 
marginal as they are mainly application dependent. 
However, it is clear that the offline aij coefficients in (26) 
should be small compared to unity. For an increasing 
amount of dimensions, they should be diminished 
commensurately for a stable convergence. 

From figure 3, at the root node, the performance score is 
computed by the defuzzification process given by 

1 1 2 2 3 3 4 4w f w f w f w f p+ + + =  (27)

where f1 is the output of the node O2(1); f2 of node O2(2); 
f3 of node O2(3); and f4 of node O2(4). That is, they denote 
the performance values of the design objects forming the 
scene, which are subject to maximization. The variable p 
denotes the design performance which is also requested to 
be maximized. In (27) w1;…; w4 denote the connection 
weights w2(1);…; w2(4) shown in figure 3 respectively.  It is 
noted that w1+w2+w3+w4=1.  

In this design exercise, the cognitive design viewpoint 
plays important role. This means it is initially uncertain what 
values w1,…w4 should have. Namely, the node outputs f1, …, 
f4 can be considered as the design feature vector, and the 
reflection of these features can be best performed if the 
weights w1 ; …; w2 define the same direction as that of the  

 
Fig. 14  Pareto optimal design D4 

feature vector. Hence the components of the unit vector 
along the feature vector are computed as 
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Normalising the components and equating them to the 
weights yields 
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In general, if there are n objectives at the penultimate layer 
of the neural tree, we can write that 
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Above computation implies that, the performance p for each 
genetic solution is given by 
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 (31)

Therefore, (31) is computed for all the design solutions on 
the Pareto front. Then the solution with maximal 
performance is selected among the Pareto solutions. This 
way the particular design is identified as a solution candidate 
with the corresponding w1,w2, …., wn weights. These 
weights form a priority vector w*. In the present application 
(31) becomes 
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+ + +
=
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Where O2(n) is the n-th output on the penultimate level of 
the neural tree. If for any reason this candidate solution is 
not appealing, the next candidate is searched among the 
available design solutions with a desired design feature 
vector and the relational attributes, i.e., w1,w2, …., wn . One 
should note that, although performance does not play role in 
the genetic optimization, Pareto front offers a number of 
design options with fair performance leaving the final choice 
dependent on other environmental preferences. Using (32) 
second-order preferences are identified that are most 
promising for the task at hand, where ultimately maximal 



 
 

 

design performance is pursued. This is the essential 
cognitive component in this particular task being exercised.  

It is emphasized that the entire operation is a form of 
machine cognition, where there is a systematic distinction 
made among solutions that are equally valid in Pareto sense, 
implying that a suitable second-order criterion is identified 
by computation. 

V. CONCLUSIONS 
Integration of cognitive aspects into an evolutionary system 
for design is described. Based on an evolutionary design 
system published earlier [10] the extension of that work with 
some cognitive features is investigated. The investigation is 
accomplished in a virtual reality environment by multi-
objective-optimization-based positioning of objects. The 
novelty of the research is the relaxation of the MO search 
and the integration of fuzzy information processing into the 
search process, where the multi-objective functions are four 
nodal outputs of the fuzzy system, so that machine cognition 
is enabled. That is, due to the special fuzzy logic 
implementation the system is able to identify the most 
suitable vector specifying the relative importance among the 
objectives. That is, a second-order aspect is systematically 
introduced, based on the contingent availability of solutions. 
This makes the system a cognitive system beyond being 
merely an optimization process with fuzzy information 
processing. The search method used to identify a desired 
solution is evolutionary computation with the Pareto front 
based on a novel formulation for fitness gradation, where 
non-dominated search domains are relaxed with some 
dominated search domains. As result of this method the 
analysis revealed that the results from strictly non-
dominated search are inferior to the relaxed counterpart. 
This means the relaxation of the strict non-dominated 
domain search favors the potential solutions, so that they are 
not prematurely excluded in the search process. In other 
words, long term benefits are favored against the short term 
gains with regard to the solutions in Pareto sense. The 
Pareto front expands into complex domains in the 
multidimensional-space, i.e. more diversified positions 
towards to non-dominated regions which are feasible 
regions for solutions. The complexity is dealt with the 
coordinate transformation from orthogonal search space to 
non-orthogonal search space. The fitness function in the 
genetic search makes use of fuzzy information processing in 
the form of a neural tree for soft computation. This way the 
soft information at the tree inputs, which are the design 
requirements, is dealt with. The computations are based on 
fuzzy logical AND operations by means of Gaussians at the 
neural tree nodes ultimately providing rationales for the 
design as well as improving it. The fuzzy neural system is 
able to handle the complexity of criteria as well as their 
fuzzy nature at the same time, equipping the evolutionary 
search with human-like reasoning capabilities during the 
fitness evaluation. 

Combining fuzzy information processing with multi-
objective optimization applying a relaxed dominance 
concept makes the research a unique cognitive system 
implementation in the context of cognitive design. 
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