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their initialization and lack of global convergence. Depending on
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Abstract—The blind separation of multiple co-channel binary digital and restarts are n_eeded if n_o_t all 'ndependent_ S'Q”a's are _found. If
signals using an antenna array involves finding a factorization of a data successful, ILSE is a conditional maximum likelihood estimator.
matrix X into X = AS, where all entries of S are +1 or —1. Itis shown ILSP is suboptimal but much cheaper to compute and can be
that this problem can be solved exactly and noniteratively, via a certain | sed to initialize ILSE. Later, an unconditional maximum likelihood

generalized eigenvalue decomposition. As indicated by simulations, the . . . .
algorithm is robust in the presence of noise. An interesting implication is technique for the estimation offt was derived [4], here called

that certain cluster segmentation problems can be solved using eigenvalue the UML. The algorithm consists of a fixed-point iteration as well
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techniques. and requires an accurate initialization. Its performance is similar to
ILSE.
I. INTRODUCTION Several people noted that the problem (1) is essentially a clustering

. . . . .__..problem, as illustrated in Fig. 1 for the casedt= 2, M = 2. In
A core problem in the area of blind signal separation/equalizati e absence of noiseY can contain only2? distinct vectors. To

is the following: Considerl independent sources, transmitting binary . : ' . . :
. . . . ?stlmateA, it suffices to determine a suitable assignment of these
symbols{+1, —1} at equal rates in a wireless scenario. The signals

h L vectors (or cluster centers) to constellation vectors, i.e., the columns
are received by a central antenna array consisting/ofintennas. . . . . X .
Assuming synchronized sources, equal transmission delays negligl‘?{les’ taking symmetry into account. A noniterative combinatorial
' ' rithm based on such ideas, called SD, was presented in [5].

delay spread, and sampling at the bit rate, each antenna rece&?t% . h th tati d h th timati
a linear combination of the transmitted symbol sequences= it noise, however, the segmentation and, hence, the estimation

[5:(T), 5:(2T), -+, ss(NT)] (i = 1,---.d), leading to the well- of th(_e cluster centers is difficult and limits the performance of the
algorithm.

The main point of the present paper is the observation that there
exists a noniterative algorithm that finds the factorization (1) exactly
and algebraically by reducing it to a joint diagonalization problem,
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known data model

X=AS=a151 + -+ aqsa, Si; € {+1,-1}. (D)

1053-587X/97$10.00) 1997 IEEE



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 4, APRIL 1997 1079

Y = [y:;], a scaled stacking of the lower triangular part of the
columns:

rvedY) :=[yi1 y21 V2 ya V2 oo
Ys2V2- - yaa1V2  yaa]” € RUTZ,
This allows us to write (4) as
[rvedvka)]T rve((ww'T) =1 k=1,---,N. (5)

After collecting all rows rvetvz v} )7 into a matrixP, the problem
Fig. 1. A maps a source constellation onto a transformed constellationjs reduced to finding all independent vectgrsatisfying

Py=1, y= rveo(wa)
for complex matricest and S as it is straightforward to restriét to where 1 = [1---1]7. Hence, we have replaced the quadratic

be real as well. Nonetheless, the problem is sufficiently importan uations (4) by a linear systely = 1 subject to a quadratic

to warrant a separate mentioning, especially since it implies tﬁgnstraint that imposes a certain structureyon

interesting observation that some clustering problems can be solveci.he remaining steps are identical to the procedure in [6] and

by eigenvalue techniques. . . . are only summarized here. First, transform the linear system to an
It should be noted that the blind binary source separation problem

e . ivalen m’y = 0. L n orthogonal (H holder
fits into the more general class of source separation based eo%u alent systen’y et ¢ be an orthogonal (Householder)

. ; . ; - transformation such thapl = [VVN 0~x_:]7, and letP be the last
observed linear instantaneous mixtures. Of particular interest here are . a [. N .1] ’ )
' — 1 rows of QP (i.e., the first row is removed); then, up to a

algorithms that use the statistical independence of the souces, WHi%Q“n solvingPy = 1 is equivalent to solvin
has led to “independent component analysis” and related high-oréer 9 y . q 9

statistics techniques, viz., among others [7]-[9]. Rather intriguingly, Py=0 y # 0. (6)
these methods are also based on joint diagonalizations, in this cas

. Fhe general solution of (6) has the form
of cumulant matrices.

y:a1y1+---+aéy5, (alER*Z|O‘/L|¢O)

o Il REAL ACMA _ _ ~where{y,} is a basis of the null space f, ands is defined to be the
The blind binary souce separation problem is to find a factorizatigfimension of this space. In the presence of noise, both the basis and its

X = AS, where 5;; € {*1}. Since S is real-valued, it is dimension are estimated by an SVD Bf Since we know that there
advantageous to write ared linearly independent solutions and since linearly independent
Re(X) Re(A) ) vectorsw lead to linearly independent vectays= rvedww® ), there
X=AS & Lm(X)} = {Im(r’l) } S & Xrp=ArS are at least/ independent solutions to (6):> d. On the other hand,

if sufficient conditions are imposed b, then the dimension of the
with obvious definitions of¥r € R**N and A € R2M*?. This null space ofP will not be larger thani. In particular, if ¥ > 2971,
forces S to be real, and at the same timd,; is usually much then we expect = d with high probability, as is argued later in this
better conditioned thant. Equivalently, the problem is to find all S€ction. For this property to hold, it is essential to have used rvec in
independent vectorez € R*™ such thatwhtXr = s has entries (5), or elseP’ has duplicate columns, and the dimension of the kernel
(s)p € {£1}. Wi|| be too large. (This is p.recisgly the reason why BPSK and MSK

Without noise, X1 is rank-deficient, which leads to ambiguitiesSignals were noted exceptions in the ACMA algorithm [6].)

in wx. To avoid this, the first step in the algorithm is to reduce At this point, we have obtained a basis of solutiofs }, but
the dimension ofw from 2M to d. Thus, let X, = USV be Since the basis is arbitrary, eagh is probably not of the form
an “economy-size” SVD forX ., wherel’: 201 x d has orthogonal Tvedww"). To force the structural property = rveqww" ), write
columnsS: dxd is a diagonal matrix containing the nonzero singulat? = TVec ' (y;), which gives

values ofX z, andV:d x N has orthogonal rows, which form a basis ww’ =Yy 4+ + asYs. )
for the row span ofX . Thus, the problem is equivalent to finding ]
all independent vectorss € R? such that We have to find alld parameter vector$a; - -- as] such that
the resulting linear combination of the matricé®;} is of rank
w'V=s(s)€ {1} (2) 1 and symmetric, in which case, it can be factoreduas’. As
discussed in [6], this is essentially a generalized eigenvalue problem.
The alphabet condition is written as Ford = 2, it is a2 x 2 matrix pencil problem with a closed-form
5 solution. Ford > 2, and with noise, there is, in general, no exact such
se{E} e (-t =0es" =1 (3 decomposition, but we can try to make the linear combination as close
(with possible extensions to other constellations). Denotingkthe to rank 1 as possible. Th,e symn:etry property IS automatic b_e cause
column of V" by vy, substitution of (2) into (3) leads to for real-va_lueda-vectors,} e Vo are syr_nmetrl(_: by _constructlon.
A technique for computing alv-vectors is detailed in [6] for the
w vviw =1, k=1,---,N. (4) general complex case, but a specialization to the present real case is

immediate. For each-vector, the corresponding follows from (7).
Similar equations arose in the solution of the constant modulusSince d is typically small, the computational effort required by
problem [6], where we hatk|> = 1 rather thans® = 1. As in [6], the diagonalization step is negligible in comparison with computing
the conditions can be rewritten in a linear form by using Kronecké¢e SVD of P. This brings the overall computational complexity
products: [v, @ vx]T[w © w] = 1, but in the present case, theof the algorithm to around((M? 4+ d*)N). There are interesting
Kronecker product vectors have duplicate entries that can (and hgessibilities for updating the null space estimatePofising subspace
to) be removed. Thus, define, ford&ax d real symmetric matrix trackers.
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Fig. 2. (a) BER performance for fixed. (b), (¢) BER performance ford with random signal phase. (d)-(f) Corresponding failure rate (cases where
not all signals are recovered).

A. Rank ofP Il. SIMULATIONS

From the above, it is clear that the dimensiénof the null To test the algorithm, the following scenario is considered.
space ofP plays an important role. Using similar arguments asVe haved = 4 equipowered sources, with directions-of-arrival
in [6], one can show that this dimension is independentdofs —3°,0°,4°, 8° with respect to the array broadside. The sensor array
long as 4 has full rank. Furthermore§ = d iff P has rank is a uniform linear array consisting o/ = 6 omnidirectional
;—d(d +1)—-d= %d(d — 1), i.e., iff P has rank‘gd(d — 1)+ 1. antennas spaced at/2. An arbitrary initial phase of each signal
For this, it issufficientthat S contains all2‘~' essentially distinct is incorporated ind. The condition number of the complex-valued
constellation vectors (“essentially” meaning beyond a fadtoy. A A is about 300 so that the problem looks quite ill-conditioned.
conjecture that any subset éfd(d — 1) + 1 constellation vectors However, since we try to recoveeal signals, the true conditioning
out of these2?~" would already be sufficient turns out not to beof the problem is determined bylz = [Re(4)" Im(4)"]".
true because of linear dependencies. For exampledfets 5, it Unlike the complex case, the conditioning dfz is very much
was found that some subsets of 11 constellation vectors only gidependent on the initial (random) phases of the signals: It
rank P) = 10 rather than 11 and that at least 13 constellatiocan be as low as 3 or as high as 200. The median of the
vectors are needed to guarantee (dhk= 11. An experiment for distribution was found to be 9.5, with a standard deviation of
d = 10 shows that 380 vectors out of 512 is still not sufficient irB.4, so that the problem is medium-conditioned in the majority
all cases. of cases.

For N > 297! and assuming equal probabilities on the occur- The signal-to-noise ratio (SNR) is defined with respect to signal
rence of any constellation vector, a lower bound on the probability We took N = 100 shapshots and a total of 2000—8000 Monte
p that S contains all 27~ constellation vectors is given in [1, Carlo runs. The bit-error rate (BER) is the total BER over all
Sec. A2] asp > 1 — 29711 — 27N This also gives d signals. The percentage of cases where notdallignals are
a lower bound on the probability that = d, which is rather recovered is defined as the recovery failure rate (RFR) and is

pessimistic because there are many subsets that are sufficientistsd separately. These cases are omitted from the BER statis-
well. tics.
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RACMA is compared with ILSP [1], ILSE [1], UML [4], and SD
[5]. Of the latter algorithms, only SD does not require an explicit
initial guess forA. ILSP is initialized with Aq = I xq«. ILSE and
UML require a more accurate initialization, and we use the result
of the ILSP algorithm for that. It is also possible to use the result
of RACMA to initialize ILSP, ILSE, and UML, which can improve
results because RACMA is not statistically optimal (in fact, it is
biased). UML requires an estimate of the noise power.

We first test the case where the random initial signal phase is
selected once and held fixed during the simulation. Fig. 2(a) shows
the resulting bit error rates as a function of SNR; Fig. 2(d) shows the
corresponding recovery failure rates. In this simulation, ¢ang) =
5.3. In accordance to theory [1], it is seen that the performance
of ILSP is limited in comparison with ILSE. For high SNR’s, the
initialization by Ao = I is not effective to recover all signals, and
very often, the algorithm gets stuck in a local minimum. The ILSE
algorithm, when initialized by ILSP (“ILSIRE”"), improves on ILSP
but is not able to recover from the local minima at high SNR'’s either.
For reference, the figure also lists the performance of ILSP and ILSE 2 3 12 3
when initialized with the trued (“ILSP(A)” and “ILSE(A)"). Note index index
that ILSE(A) is expected to converge almost surely to the optimal (b) (d)

(conditional) ML estimator. Itis seen that RACMA has a performancggg. 3. Example of cluster segmentation using RACMA. (a), (b) Low noise.
close to ILSP(A). If the estimate afi produced by RACMA is (c), (d) high noise.

used for initialization of ILSE (“RACMA}ILSE”), we come close to

ILSE(A), except for very low SNR. It is natural that the performance o . )

of RACMA is limited at low SNR because of the inherent squarinynere £ signifies the additive noise. Hence, we can get 2

of the data in the construction d?, which increases the effective SOUrces,” alzhc;ugh the first source is, in fact, constant). Since
noise power. we receive2“” " essentially different constellation vectors, this is

Fig. 2(b) and (c) shows the performance for the case where t<1‘11(13]“ﬁcient for the jacto_rizaFion tq be unique. Eig. 3(b) shows the
initial phases of the signals are selected randomly for every Mortigular values of?, which is anV' — 1 by 3 matrix. Clearly, there
Carlo run. Fig. 2(e) and (f) shows the corresponding RFR. It is se8ff® = 2 small singular values (they would be zero in the noise-free
that SD is effective at high SNR's, but as a noniterative combinatorig®Se). With more noise, the small singular values’aire increased
method, it is easily confused at low SNR’s, where it fails to recover aff 9- 3(d)], and it becomes hard to detect from the singular values
sources in a majority of cases. The performance of UML is virtuall&hat_ there are really two clusters ra_Lther than one. Nonethele;s, ifitis
the same as that of ILSE, except that its capture performanced%C'ded that = 2, th_en_the resulting cluster_ centers are still close
slightly better at low SNR’s. RACMA has a BER performance similai© the true centers (Ind_lcated by &) Th_e singular values could
to ILSP(A), although for low SNR, it is less successful in recoverinBe used for a hypothesis test to distinguish between the presence of
all d signals. By itself, it is suboptimal but provides a good initiaP"€ Versus two clusters.
point for ILSE or UML. It does not reach the performance of ILSE(A) A Similar example is a case were we have two clusters but only one
anymore because the low-SNR discrepancy observed in Fig. 2(af§91so(M = 1), e.g., if we receive a single binary source distorted
now spread out over all SNR’s aé assumes a range of condition®y @n arbitrary offset, scalingk, and additive zero mean white noise:
numbers.

Finally, Fig. 2(c) also shows the effect of overestimatifign
RACMA: “RACMA(6)" lists the case wherel = 6 is used in the vi=k-sitete, i=1- N
SVD of X and the construction dP. The BER performance is almost
the same as RACMA, but it becomes 3 dB less effective in capturing
all signals. To fit this to anX = AS model, whereM > d, we can consider

an augmented data matrix

Xo 0.+

X1

(©)

0.2

p
o
)

o
-
[6,]

0.15) ,

o °
-
+

o S,
+
+

o

0.05 +

singular values of
singular values of P
o
+

—_

IV. APPLICATION TO CLUSTERING

As remarked in the introduction, for discrete signals, ¥he= AS ; 1 1 - 1
factorization problem is essentially a cluster segmentation problem. Xe= {m Ty e r\}
This implies that certain cluster segmentation problems can be solved 1 olr1 1 1
using eigenvalue techniques, which might provide an interesting = L k} L’l o g]\,}
alternative to the usual iterative algorithms. Although the present -

algorithm expects the cluster centers to lie on the vertices of a paral- + {0 0 -0 }
lelepiped, some generalizations to other configurations are possible.
To illustrate this, consider Fig. 3, which shows two clusters ar-
bitrarily located in a 2-D space. This is a special case of our data
model: We havel = 2 real-valued sensors, and the received data It is instructive to partially work out the expressions for the

can be written as estimation ofw (and hence ok andc sincew = [—ck™' k~']%).
In the model Py = 1, we here define for conveniencg =

X =[a as Ll:ll :l:ll } +E @) [wiwiw: w3]" and the rows of” by [1 2z «%]. The transformation
. by Q maps the conditio’y = 1 to (17 Py = n, Py = 0). Using
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the simple structure of), we then find

o 1
R :PTP:PT<I—V1 1T>P
P
0 0 0
0 4 zrizz 2 Eg—i&EQ
~ Nt TN
0 2<23—i2122> &—ijg
N N
0 0 0

0 %E1E2 E, — %Erj + %ZgEz

where n = XVa" B, := TVe, and ~’ denotes equality in
mean. In the absence of noisB, has two zero eigenvalues, with [1]
eigenvectorgy, = [1 0 0]” andy, = [0 « b]", say. The joint
diagonalization step collapses: It directly follows that= afa b]"
for some scalinge, which can be estimated from the condition
1" Py n. This example shows that the algorithm is in fact ag
square-root method based on fourth-order moments of the data.

With noise, it is clear that the nonzero blodk of R is biased, |
which is an effect that so far has not been taken into accoun{.
A correction is possible if the moments of the noise are known.
For example, for Gaussian noise with variance we haveE; ~
No?, By ~ 3No* so that the the bias term is asymptotically given by

2 4N 421
4%, 4%, — 2No2 |

(2]

EF =0
[7]
If we neglect the term-2No*, then the noise variance can be
readily estimated as the (smallest) eigenvalue of the péRciR ;)
since this is the value that will mak®B — AR, singular again.
Some simulation results are given in Fig. 4. In this simulation,rg
k =0.3,c = 1.2, N = 15, and the results are averaged over 5000

(8]
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Monte Carlo runs. It is observed that the bias correction has little
influence on the variance of the estimates, which quickly converge to
(1/N)a?: the variance of the ML estimators éfand ¢ for known

s and sufficiently smalEs,. The ‘simple estimator’ is

1+ o1
¢ = A—,Z;zri, kIA—,Z|w,‘—E|
1

which assumes that there is an equal numberband—1 in the data
0 4B 4 . E, batch. For smallV or otherwise asymmetric sources, this estimator
is not very good.
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