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Analytical Method for Blind Binary Signal Separation

Alle-Jan van der Veen

Abstract—The blind separation of multiple co-channel binary digital
signals using an antenna array involves finding a factorization of a data
matrix X into X = AS, where all entries ofS are+1 or �1. It is shown
that this problem can be solved exactly and noniteratively, via a certain
generalized eigenvalue decomposition. As indicated by simulations, the
algorithm is robust in the presence of noise. An interesting implication is
that certain cluster segmentation problems can be solved using eigenvalue
techniques.

I. INTRODUCTION

A core problem in the area of blind signal separation/equalization
is the following: Considerd independent sources, transmitting binary
symbolsf+1;�1g at equal rates in a wireless scenario. The signals
are received by a central antenna array consisting ofM antennas.
Assuming synchronized sources, equal transmission delays, negligible
delay spread, and sampling at the bit rate, each antenna receives
a linear combination of the transmitted symbol sequencessssi =

[si(T ); si(2T ); � � � ; si(NT )] (i = 1; � � � ; d), leading to the well-
known data model

X = AS = aaa1sss1 + � � �+ aaadsssd; Sij 2 f+1;�1g: (1)
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Here, X = [xik] with xik = xi(kT ) (i = 1; � � � ;M ; k =

1; � � � ; N) is a complex matrix containing the received data during
N symbol periods.A 2 M�d is the array response matrix, and
S 2 f�1gd�N contains the transmitted bits. In the blind signal
separation scenario, bothA andS are unknown, and the objective
is, givenX, to find the factorizationX = AS such thatS belongs
to the binary alphabet. Alternatively, we try to find a weight matrix
W of full row rank d such thatS = WHX: Uniqueness of this
factorization is important and was established in [1]: IfA is full
rank and the columns ofS exhaust all2d�1 distinct (up to a sign)
possibilities, then this is sufficient for the factorization to be unique
up to trivial permutations and scalings by�1 of the rows ofS and
columns ofA: Hence, once any such factorization ofX is found,S
contains the binary signals that were originally transmitted, or their
negative, but not some ghost signal.

This scenario by itself is perhaps naive, but it is the core prob-
lem in more realistic blind (FIR-MIMO) scenarios [2], where long
delay multipath is allowed, and sources are not synchronized and
are modulated by arbitrary pulse shape functions. This problem is
separable into a blind multiuser equalization stage and a separation
problem, which is precisely of the form (1). Several other binary
modulation schemes such as MSK or biphase (Manchester) codes are
easily converted to fit the model as well [3].

One of the first papers to consider this problem appeared in
full as [1]. In that paper, arbitrary finite alphabets are consid-
ered, although only BPSK was tested extensively. The problem
was cast into an optimization problemmin kX � ASkF subject
to Sij 2 f�1g: Two fixed-point iteration algorithms were pro-
posed: one called ILSE, which is based on clever enumeration
of candidate matricesS, and a second called ILSP, which uses
alternating projections. The main concern with these algorithms is
their initialization and lack of global convergence. Depending on
the initialization, the algorithms can converge to a local minimum,
and restarts are needed if not all independent signals are found. If
successful, ILSE is a conditional maximum likelihood estimator.
ILSP is suboptimal but much cheaper to compute and can be
used to initialize ILSE. Later, an unconditional maximum likelihood
technique for the estimation ofA was derived [4], here called
the UML. The algorithm consists of a fixed-point iteration as well
and requires an accurate initialization. Its performance is similar to
ILSE.

Several people noted that the problem (1) is essentially a clustering
problem, as illustrated in Fig. 1 for the case ofd = 2;M = 2: In
the absence of noise,X can contain only2d distinct vectors. To
estimateA, it suffices to determine a suitable assignment of these
vectors (or cluster centers) to constellation vectors, i.e., the columns
of S, taking symmetry into account. A noniterative combinatorial
algorithm based on such ideas, called SD, was presented in [5].
With noise, however, the segmentation and, hence, the estimation
of the cluster centers is difficult and limits the performance of the
algorithm.

The main point of the present paper is the observation that there
exists a noniterative algorithm that finds the factorization (1) exactly
and algebraically by reducing it to a joint diagonalization problem,
which is a (generalized) eigenvalue problem. The algorithm is robust
in the presence of noise, as demonstrated by simulations. Apart
from certain details, it is in fact an almost trivial specialization
of a recently developed “analytical constant modulus algorithm”
(ACMA) [6], which solves the factorizationX = AS; jSij j = 1
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Fig. 1. A maps a source constellation onto a transformed constellation.

for complex matricesA andS as it is straightforward to restrictS to
be real as well. Nonetheless, the problem is sufficiently important
to warrant a separate mentioning, especially since it implies the
interesting observation that some clustering problems can be solved
by eigenvalue techniques.

It should be noted that the blind binary source separation problem
fits into the more general class of source separation based on
observed linear instantaneous mixtures. Of particular interest here are
algorithms that use the statistical independence of the souces, which
has led to “independent component analysis” and related high-order
statistics techniques, viz., among others [7]–[9]. Rather intriguingly,
these methods are also based on joint diagonalizations, in this case,
of cumulant matrices.

II. REAL ACMA

The blind binary souce separation problem is to find a factorization
X = AS, where Sij 2 f�1g: Since S is real-valued, it is
advantageous to write

X = AS , Re(X)

Im(X)
=

Re(A)
Im(A)

S , XR = ARS

with obvious definitions ofXR 2 2M�N andAR 2 2M�d: This
forces S to be real, and at the same time,AR is usually much
better conditioned thanA: Equivalently, the problem is to find all
independent vectorswwwR 2 2M such thatwwwT

RXR = sss has entries
(sss)k 2 f�1g:

Without noise,XR is rank-deficient, which leads to ambiguities
in wwwR: To avoid this, the first step in the algorithm is to reduce
the dimension ofwwwR from 2M to d: Thus, letXR = Û �̂V̂ be
an “economy-size” SVD forXR, whereÛ : 2M � d has orthogonal
columns,�̂: d�d is a diagonal matrix containing the nonzero singular
values ofXR, andV̂ :d�N has orthogonal rows, which form a basis
for the row span ofXR: Thus, the problem is equivalent to finding
all independent vectorswww 2 d such that

www
T
V̂ = sss; (sss)k 2 f�1g: (2)

The alphabet condition is written as

s 2 f�1g , (s� 1)(s+ 1) = 0, s
2
= 1 (3)

(with possible extensions to other constellations). Denoting thekth
column of V̂ by vvvk, substitution of (2) into (3) leads to

www
T
vvvkvvv

T
kwww = 1; k = 1; � � � ; N: (4)

Similar equations arose in the solution of the constant modulus
problem [6], where we hadjsj2 = 1 rather thans2 = 1: As in [6],
the conditions can be rewritten in a linear form by using Kronecker
products: [vvvk 
 vvvk]

T
[www 
 www] = 1, but in the present case, the

Kronecker product vectors have duplicate entries that can (and have
to) be removed. Thus, define, for ad � d real symmetric matrix

Y = [yij ], a scaled stacking of the lower triangular part of the
columns:

rvec(Y ) := [y11 y21
p
2 � � � yd1

p
2 y22

y32
p
2 � � � yd;d�1

p
2 ydd]

T 2 d(d+1)=2
:

This allows us to write (4) as

[rvec(vvvkvvv
T
k )]

T rvec(wwwwwwT
) = 1 k = 1; � � � ; N: (5)

After collecting all rows rvec(vvvkvvvTk )
T into a matrixP , the problem

is reduced to finding all independent vectorsyyy satisfying

Pyyy = 1; yyy = rvec(wwwwwwT
)

where 1 = [1 � � � 1]T : Hence, we have replaced the quadratic
equations (4) by a linear systemPyyy = 1 subject to a quadratic
constraint that imposes a certain structure onyyy:

The remaining steps are identical to the procedure in [6] and
are only summarized here. First, transform the linear system to an
equivalent system̂Pyyy = 0: Let Q be an orthogonal (Householder)
transformation such thatQ1 = [

p
N 0N�1]

T , and letP̂ be the last
N � 1 rows of QP (i.e., the first row is removed); then, up to a
scaling, solvingPyyy = 1 is equivalent to solving

P̂ yyy = 0 yyy 6= 0: (6)

The general solution of (6) has the form

yyy = �1yyy1 + � � �+ ��yyy�; �i 2 ; j�ij 6= 0

wherefyyyig is a basis of the null space of̂P , and� is defined to be the
dimension of this space. In the presence of noise, both the basis and its
dimension are estimated by an SVD ofP̂ : Since we know that there
ared linearly independent solutionswww and since linearly independent
vectorswww lead to linearly independent vectorsyyy = rvec(wwwwwwT

), there
are at leastd independent solutions to (6):� � d: On the other hand,
if sufficient conditions are imposed bŷP , then the dimension of the
null space ofP̂ will not be larger thand: In particular, ifN � 2

d�1,
then we expect� = d with high probability, as is argued later in this
section. For this property to hold, it is essential to have used rvec in
(5), or elseP̂ has duplicate columns, and the dimension of the kernel
will be too large. (This is precisely the reason why BPSK and MSK
signals were noted exceptions in the ACMA algorithm [6].)

At this point, we have obtained a basis of solutionsfyyyig, but
since the basis is arbitrary, eachyyyi is probably not of the form
rvec(wwwwwwT

): To force the structural propertyyyy = rvec(wwwwwwT
), write

Yi = rvec�1(yyyi), which gives

wwwwww
T
= �1Y1 + � � �+ ��Y�: (7)

We have to find alld parameter vectors[�1 � � ��� ] such that
the resulting linear combination of the matricesfYig is of rank
1 and symmetric, in which case, it can be factored aswwwwwwT : As
discussed in [6], this is essentially a generalized eigenvalue problem.
For d = 2, it is a 2 � 2 matrix pencil problem with a closed-form
solution. Ford> 2, and with noise, there is, in general, no exact such
decomposition, but we can try to make the linear combination as close
to rank 1 as possible. The symmetry property is automatic because
for real-valued�-vectors,Y1; � � � ; Y� are symmetric by construction.

A technique for computing all�-vectors is detailed in [6] for the
general complex case, but a specialization to the present real case is
immediate. For each�-vector, the correspondingwww follows from (7).

Since d is typically small, the computational effort required by
the diagonalization step is negligible in comparison with computing
the SVD of P̂ : This brings the overall computational complexity
of the algorithm to aroundO((M2

+ d4)N): There are interesting
possibilities for updating the null space estimate ofP̂ using subspace
trackers.
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(a) (b) (c)

(d) (e) (f)

Fig. 2. (a) BER performance for fixedA: (b), (c) BER performance forA with random signal phase. (d)–(f) Corresponding failure rate (cases where
not all signals are recovered).

A. Rank ofPPP

From the above, it is clear that the dimension� of the null
space ofP̂ plays an important role. Using similar arguments as
in [6], one can show that this dimension is independent ofA as
long as A has full rank. Furthermore,� = d iff P̂ has rank
1

2
d(d + 1) � d = 1

2
d(d � 1), i.e., iff P has rank1

2
d(d � 1) + 1:

For this, it is sufficientthat S contains all2d�1 essentially distinct
constellation vectors (“essentially” meaning beyond a factor�1): A
conjecture that any subset of1

2
d(d � 1) + 1 constellation vectors

out of these2d�1 would already be sufficient turns out not to be
true because of linear dependencies. For example, ford = 5, it
was found that some subsets of 11 constellation vectors only give
rank(P ) = 10 rather than 11 and that at least 13 constellation
vectors are needed to guarantee rank(P ) = 11: An experiment for
d = 10 shows that 380 vectors out of 512 is still not sufficient in
all cases.

For N � 2
d�1 and assuming equal probabilities on the occur-

rence of any constellation vector, a lower bound on the probability
p that S contains all 2d�1 constellation vectors is given in [1,
Sec. A.2] asp � 1 � 2

d�1
(1 � 2

�(d�1)
)
N : This also gives

a lower bound on the probability that� = d, which is rather
pessimistic because there are many subsets that are sufficient as
well.

III. SIMULATIONS

To test the algorithm, the following scenario is considered.
We have d = 4 equipowered sources, with directions-of-arrival
�3

�; 0�; 4�; 8� with respect to the array broadside. The sensor array
is a uniform linear array consisting ofM = 6 omnidirectional
antennas spaced at�=2: An arbitrary initial phase of each signal
is incorporated inA: The condition number of the complex-valued
A is about 300 so that the problem looks quite ill-conditioned.
However, since we try to recoverreal signals, the true conditioning
of the problem is determined byAR = [Re(A)T Im(A)T ]T :

Unlike the complex case, the conditioning ofAR is very much
dependent on the initial (random) phases of the signals: It
can be as low as 3 or as high as 200. The median of the
distribution was found to be 9.5, with a standard deviation of
8.4, so that the problem is medium-conditioned in the majority
of cases.

The signal-to-noise ratio (SNR) is defined with respect to signal
1. We tookN = 100 snapshots and a total of 2000–8000 Monte
Carlo runs. The bit-error rate (BER) is the total BER over all
d signals. The percentage of cases where not alld signals are
recovered is defined as the recovery failure rate (RFR) and is
listed separately. These cases are omitted from the BER statis-
tics.
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RACMA is compared with ILSP [1], ILSE [1], UML [4], and SD
[5]. Of the latter algorithms, only SD does not require an explicit
initial guess forA: ILSP is initialized withA0 = IM�d: ILSE and
UML require a more accurate initialization, and we use the result
of the ILSP algorithm for that. It is also possible to use the result
of RACMA to initialize ILSP, ILSE, and UML, which can improve
results because RACMA is not statistically optimal (in fact, it is
biased). UML requires an estimate of the noise power.

We first test the case where the random initial signal phase is
selected once and held fixed during the simulation. Fig. 2(a) shows
the resulting bit error rates as a function of SNR; Fig. 2(d) shows the
corresponding recovery failure rates. In this simulation, cond(AR) =

5:3: In accordance to theory [1], it is seen that the performance
of ILSP is limited in comparison with ILSE. For high SNR’s, the
initialization by A0 = I is not effective to recover all signals, and
very often, the algorithm gets stuck in a local minimum. The ILSE
algorithm, when initialized by ILSP (“ILSP+E”), improves on ILSP
but is not able to recover from the local minima at high SNR’s either.
For reference, the figure also lists the performance of ILSP and ILSE
when initialized with the trueA (“ILSP(A)” and “ILSE(A)”). Note
that ILSE(A) is expected to converge almost surely to the optimal
(conditional) ML estimator. It is seen that RACMA has a performance
close to ILSP(A). If the estimate ofA produced by RACMA is
used for initialization of ILSE (“RACMA+ILSE”), we come close to
ILSE(A), except for very low SNR. It is natural that the performance
of RACMA is limited at low SNR because of the inherent squaring
of the data in the construction ofP , which increases the effective
noise power.

Fig. 2(b) and (c) shows the performance for the case where the
initial phases of the signals are selected randomly for every Monte
Carlo run. Fig. 2(e) and (f) shows the corresponding RFR. It is seen
that SD is effective at high SNR’s, but as a noniterative combinatorial
method, it is easily confused at low SNR’s, where it fails to recover all
sources in a majority of cases. The performance of UML is virtually
the same as that of ILSE, except that its capture performance is
slightly better at low SNR’s. RACMA has a BER performance similar
to ILSP(A), although for low SNR, it is less successful in recovering
all d signals. By itself, it is suboptimal but provides a good initial
point for ILSE or UML. It does not reach the performance of ILSE(A)
anymore because the low-SNR discrepancy observed in Fig. 2(a) is
now spread out over all SNR’s asA assumes a range of condition
numbers.

Finally, Fig. 2(c) also shows the effect of overestimatingd in
RACMA: “RACMA(6)” lists the case whered = 6 is used in the
SVD ofX and the construction ofP: The BER performance is almost
the same as RACMA, but it becomes 3 dB less effective in capturing
all signals.

IV. A PPLICATION TO CLUSTERING

As remarked in the introduction, for discrete signals, theX = AS

factorization problem is essentially a cluster segmentation problem.
This implies that certain cluster segmentation problems can be solved
using eigenvalue techniques, which might provide an interesting
alternative to the usual iterative algorithms. Although the present
algorithm expects the cluster centers to lie on the vertices of a paral-
lelepiped, some generalizations to other configurations are possible.

To illustrate this, consider Fig. 3, which shows two clusters ar-
bitrarily located in a 2-D space. This is a special case of our data
model: We haveM = 2 real-valued sensors, and the received data
can be written as

X = [aaa1 aaa2]
1 1 � � �

�1 �1 � � �
+E (8)

(a) (c)

(b) (d)

Fig. 3. Example of cluster segmentation using RACMA. (a), (b) Low noise.
(c), (d) high noise.

where E signifies the additive noise. Hence, we can setd = 2

“sources,” although the first source is, in fact, constant(+1): Since
we receive2d�1 essentially different constellation vectors, this is
sufficient for the factorization to be unique. Fig. 3(b) shows the
singular values of̂P , which is anN � 1 by 3 matrix. Clearly, there
are� = 2 small singular values (they would be zero in the noise-free
case). With more noise, the small singular values ofP̂ are increased
[Fig. 3(d)], and it becomes hard to detect from the singular values
that there are really two clusters rather than one. Nonetheless, if it is
decided that� = 2, then the resulting cluster centers are still close
to the true centers (indicated by a ‘�’). The singular values could
be used for a hypothesis test to distinguish between the presence of
one versus two clusters.

A similar example is a case were we have two clusters but only one
sensor(M = 1), e.g., if we receive a single binary source distorted
by an arbitrary offsetc, scalingk, and additive zero mean white noise:

xi = k � si + c+ ei; i = 1; � � � ; N:

To fit this to anX = AS model, whereM � d, we can consider
an augmented data matrix

Xe =
1 1 � � � 1

x1 x2 � � � xN

=
1 0

c k

1 1 � � � 1

s1 s2 � � � sN

+
0 0 � � � 0

e1 e2 � � � eN
:

It is instructive to partially work out the expressions for the
estimation ofwww (and hence ofk and c sincewww = [�ck�1 k�1]T ).
In the model Pyyy = 1, we here define for convenienceyyy =

[w2

1 w1w2 w
2

2]
T and the rows ofP by [1 2xk x

2

k]: The transformation
by Q maps the conditionPyyy = 1 to (1

TPyyy = n; P̂yyy = 0): Using
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(a) (b)

(c) (d)

Fig. 4. Parameter estimation of a modelxi = ksi + c + ei:

the simple structure ofQ, we then find

R: = P̂
T
P̂ = P

T
I �

1

N
1 � 1

T
P

�

0 0 0

0 4 �2 �
1

N
�2

1 2 �3 �
1

N
�1�2

0 2 �3 �
1

N
�1�2 �4 �

1

N
�2

2

+

0 0 0

0 4E2

4

N
�1E2

0
4

N
�1E2 E4 �

5

N
E2

2 +
4

N
�2E2

where�n := �N1 x
n

i ; En := �N1 e
n

i , and ‘�’ denotes equality in
mean. In the absence of noise,R has two zero eigenvalues, with
eigenvectorsyyy

1
= [1 0 0]T andyyy

2
= [0 a b]T , say. The joint

diagonalization step collapses: It directly follows thatwww = �[a b]T

for some scaling�, which can be estimated from the condition
1
TPyyy = n: This example shows that the algorithm is in fact a

square-root method based on fourth-order moments of the data.
With noise, it is clear that the nonzero blockR of R is biased,

which is an effect that so far has not been taken into account.
A correction is possible if the moments of the noise are known.
For example, for Gaussian noise with variance�2, we haveE2 �

N�2; E4 � 3N�4 so that the the bias term is asymptotically given by

R
E
= �

2 4N 4�1

4�1 4�2 � 2N�2
:

If we neglect the term�2N�4, then the noise variance can be
readily estimated as the (smallest) eigenvalue of the pencil(R;R

E
)

since this is the value that will makeR � �R
E

singular again.
Some simulation results are given in Fig. 4. In this simulation,

k = 0:3; c = 1:2; N = 15, and the results are averaged over 5000

Monte Carlo runs. It is observed that the bias correction has little
influence on the variance of the estimates, which quickly converge to
(1=N)�2: the variance of the ML estimators ofk and c for known
sss and sufficiently small�N1 si: The ‘simple estimator’ is

ĉ =
1

N

N

1

xi; k̂ =
1

N
jxi � ĉj

which assumes that there is an equal number of+1 and�1 in the data
batch. For smallN or otherwise asymmetric sources, this estimator
is not very good.
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