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Preface
“Do not go gentle into that good night. Old age should burn and rave at close of day.
Rage, Rage against the dying light.”

—— Dylan Thomas

“We’ve always defined ourselves by the ability to overcome the impossible. And we count
these moments. These moments when we dare to aim higher, to break barriers, to reach
for the stars, to make the unknown known. We count these moments as our proudest
achievements. But we lost all that. Or perhaps we’ve just forgotten that we are still
pioneers. And we’ve barely begun. And that our greatest accomplishments cannot be
behind us, because our destiny lies above us”

—— Interstellar

Beiyang Yu

Delft, September 2022
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Abstract
The need of shear strength measurements of soil in the design phase of geotechnical engi-
neering is almost indispensable. Many methods have been applied to estimate the shear
strength of soil, including various laboratory test, in-situ test and analytical methods.
As an in-situ test method, cone penetration test (CPT) is a powerful and cost-effective
tool for the investigation of subsoil conditions. CPT data is usually complemented by the
laboratory test data for verification. The laboratory-based studies of subsoil, however,
can be not only a complex but also tedious and expensive task for large projects involving
large amount of data. Therefore, new approaches for estimating the soil shear strength are
demanded. Having demonstrated superior predictive ability for many material properties
compared to traditional methods, machine learning methods have been increasingly pop-
ular and widely used. This thesis focus on the prediction of soil undrained shear strength
through cone penetration test data. The major objectives of this master thesis include
testing how machine learning could help us lower the need for laboratory test data.

At first, the research starts with a literature review of various methods used to evaluate
the soil shear strength. Comparing to the machine learning methods, the laboratory
and in-situ test methods are relatively more time-consuming, costly and labour-intensive.
And the analytical methods are considered lacking in precision.

Then the training dataset which consists of 526 samples is introduced. In each sample,
there are four input variables obtained from cone penetration test, namely the effective
stress (σ′

v), cone tip resistance (qt − σv), effective cone tip resistance (qt − u2) and the
excess pore pressure (u2 − u0). The undrained shear strength obtained from laboratory
test is taken as the output variable.

Next, the training dataset is fed to five machine learning techniques, namely the artificial
neural network, support vector machine, Gaussian process regression, random forest and
XGBoost, to train models. The hyperparameters are tuned with k-fold and group k-fold
cross-validation strategies in the validation process.

After that, the testing dataset which consists of 20 samples is established. Cone pene-
tration test data that are in close vicinity to the location of the samples are processed
by Gaussian process regression to obtain representative cone penetration test data at
the sample location, which is taken as the inputs in the testing dataset. The undrained
shear strengths of the samples are measured by Consolidated-Undrained shear test and
are taken as the outputs of the testing dataset.

Finally, the five machine learning models are tested on the testing dataset. The cross-
validation results, together with the prediction results of the models on the training and
testing dataset are evaluated, gathered and compared by various statistic metrics to show
the relative performance of the models. XGBoost appears to be the most accurate of all
the tested algorithms on this dataset. And Gaussian process regression is chosen as
the second option due to its ability to capture uncertainties. The robustness of these
two models are then validated from a statistical point of view by applying Monte Carlo
analysis. The importance of the input parameters in this study is evaluated by applying
random forest for the sensitivity analysis. The results from random forest indicate that
the excess pore pressure and the cone tip resistance - total vertical stress are the most
influential inputs to the undrained shear strength.
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Chapter 1

Introduction

1.1 Background
As a broad field of engineering covering many specialities, civil engineering deals with
numerous aspects of our life, including buildings that offer human beings comfortable
places to work and live in, bridges providing passage over obstacles, roads providing the
infrastructure for the transport of people and goods, etc.

The study of underground problems led to geotechnical engineering, a sub-discipline of
civil engineering. For geotechnical engineers, the soil has always been playing an essential
role in the construction projects, such as foundations, earthen dams, embankments, exca-
vations, retaining walls, etc. Foundations are able to transfer the load that the structure
bears to the ground. Earthen dams withstand the pressure from the water, preventing
flooding of the adjacent area. And embankments raise structures above flooding level.
Retaining walls are solid walls supporting lateral soil thus keeping the soil behind it from
sliding. In all those examples, soil mechanics plays a key role in site construction and
avoiding failures. However, unlike steel or concrete, whose material properties are rel-
atively clear and determined, the material properties and behaviour of soil are hard to
predict due to its variability and limitation of the investigation. Moreover, the strength
of the soil is nonlinear, that is to say, it is stress-dependent. The volume of soil also
changes with the application of shear stress, which is called dilatancy, making studying
soil mechanics more challenging (Mitchell et al., 2005). Being a branch of soil physics and
applied mechanics, soil mechanics is concerned with the investigation of the behaviour
and application of soil as materials for construction (Ly and Pham, 2020). Different from
fluid mechanics and solid mechanics, soils consist of a heterogeneous mixture of air, water
and particles, organic solids and other matter. The particles are usually clay, silt, sand,
and gravel. This multi-phase composition of soil makes the engineering properties of soil
unique and hard to predict (Terzaghi et al., 1996).

Shear strength has always been one of the most important parameters in soil mechanics
studies. It is defined as the capability of soils to withstand internal movement or slippage
when subjected to an imposed load. This shearing resistance induced in a soil mass is
composed of two types of friction, namely the sliding friction, also called the angle of
shearing resistance and glue friction, which is provided by the property of soil named

1
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cohesion. The angle of internal friction is affected by many factors such as dry den-
sity, water content, particle size distribution, the shape of particles, and surface texture.
Cohesion also depends upon the types of clay minerals, the proportion of the clay, the
size of clayey particles, and the valence bond between the particles (Kiran et al., 2016).
Shear strength is widely employed in the design phase of many large-scale infrastructure
projects including foundations, embankments, earthen dams, roads, pavements, excava-
tions, slopes and retaining walls, etc (Vanapalli et al., 1996). For instance, in the design
of foundations, the evaluation of bearing capacity is dependent on the shear strength. As
for the design of embankments for dams, roads, pavements, excavations, levees etc., the
analysis of the stability of the slope is done using shear strength. In the design of earth
retaining structures like retaining walls, sheet piles, coffer dams, bulks heads, and other
underground structures etc., shear strength also plays a crucial role.

In general, shear strength parameters can be estimated, both in the field as well as in
the laboratory. The in-situ tests include standard penetration test, cone penetration test,
piezo-cone, field vane shear test and pressure meter reading test. They all have their
own strengths and weaknesses (Kiran et al., 2016). In the laboratory, the parameters
of soil shear strength are generally determined through three experiments: direct shear
test, triaxial shear test, and unconfined compression test with three other experimental
diagrams according to the working conditions of the soil unconsolidated undrained triaxial
tests (UU), consolidated undrained triaxial tests (CU) and consolidated drained triaxial
tests (CD) (Craig, 2004).

As machine learning (ML) techniques have become increasingly popular, there have been
an increasing number of applications of ML in diverse areas of science, especially in the
last decade. In the context of soil research, notably in pedometrics, statistical models
have been used to infer how soil is distributed both in space and time and try to grasp
the theory behind it (McBratney et al., 2019). The availability of an increasing number
of large datasets of soil together with the open-sources ML techniques have contributed
to the increasing use of ML techniques in soil studies, such as inferring the classification
of soil types or prediction of soil properties via soil data using ML techniques (Padarian
et al., 2020). It is worth mentioning that it is large for the soil mechanics community.
For the ML community, it is still considered a very small dataset.

1.2 Research objectives
cone penetration test (CPT) is a powerful and cost-effective tool for the investigation of
subsoil conditions, and various empirical correlations are available for interpreting CPT
data. However, these correlations are not universally applicable to all soils and subsurface
conditions. Therefore, CPT test data are usually complemented by laboratory test data
to verify the applicability of the correlations. For large projects involving large amounts of
data, however, laboratory-based studies of the subsoil can be not only more complex and
tedious but also a more expensive task, compared with CPT. Instead, ML models based
on, for example, random forest (RF) or artificial neural network (ANN) algorithms can
be used, which makes the task much more efficient and economical. Thus, the motivation
of this thesis is to review and investigate the relative performance of a range of ML
algorithms for predicting the undrained shear strength through CPT data. The outcome
of this thesis can provide a reference for selecting an effective ML algorithm to predict
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soil undrained shear strength through CPT data. In order to fulfil this motivation, seven
detailed objectives are as follows:

• Analyzing and preprocessing a worldwide CPT dataset, which will be used for
training and validation of the ML models;

• Training the ML models on the worldwide CPT dataset, choosing an appropriate
cross-validation (CV) strategy for tuning the hyperparameters of the ML models in
the validation process;

• Processing another CPT dataset together with the corresponding laboratory results
given by de Gast (2020), which will be used as a testing set;

• Evaluating and comparing the prediction results in the training and testing dataset
and the CV results in the training dataset with statistical metrics to select an
effective ML algorithm to predict the soil undrained shear strength through CPT;

• Conducting Monte Carlo analysis for further validation of the chosen algorithms;

• Conducting sensitivity analysis to investigate the relative importance of the input
parameters on the output undrained shear strength;

• Discussing the limitations of the study, proposing an improvement plan and making
recommendations for future studies.

1.3 Thesis outline
This thesis consists of 9 chapters in total, constructed in a logical order of how the models
are trained, validated and tested.

Chapter 1 introduces the background of the topic of the thesis, starting with the impor-
tance of civil engineering and geotechnical engineering. Followed by an introduction of
one of the most important parameters in soil mechanics studies, the shear strength, in
terms of the definitions, significance and measuring methods. Lastly, the applications of
ML techniques to soil research are briefly put forward.

Chapter 2 reviews the previous research about undrained shear strength. Conventional
methods are firstly presented, including experimental studies using direct shear tests,
triaxial tests and in-situ tests, etc. Followed by some analytical analysis. Next, various
ML methods for predictions of material properties are presented and summarized. Lastly,
novel ML technique applications are briefly introduced.

Chapter 3 firstly presents the training dataset. Then the input variables from CPT and
the output variable from the laboratory test are illustrated. After that, the dataset is
preprocessed. Lastly, the dataset is analyzed using descriptive statistics and a pairplot.

Chapter 4 renders a brief but comprehensive introduction of the machine learning tech-
niques implemented in this study. The basic machine learning background is presented
at the beginning in order to clarify all the terms related to machine learning in the study.
Then five machine learning algorithms implemented in this research, namely the artifi-
cial neural network (ANN), support vector machine (SVM), Gaussian process regression
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(GPR), random forest (RF) and XGBoost, are illustrated. To get an intuition of how
they work, some simple examples are provided in the Appendix B.

Chapter 5 applies five machine learning models with five different algorithms to the
training dataset. Then the hyperparameters in each model are calibrated with various
cross-validation techniques using grid search CV or random search CV. After constructing
the machine learning models, the Monte Carlo analysis is conducted for further validation.

Chapter 6 compiles the CPT and laboratory test data provided by de Gast (2020) to form
the testing dataset. CPT data is interpreted and processed using GPR to form the input
variables in the testing dataset. Laboratory test data is processed to form the output
variable in the testing dataset.

Chapter 7 displays the calibrated machine learning models, the training and testing results
for the machine learning methods, the Monte Carlo Analysis results and the sensitivity
analysis results.

Chapter 8 summarizes the final conclusions.

Chapter 9 discusses the limitations of this study. Correspondingly, possible improvements
are then given. Finally, recommendations for future investigation are brought out.



Chapter 2

Literature review

2.1 Introduction
This chapter first provides an overview of the previous related research on soil shear
strength using conventional methods, including the direct shear test methods, triaxial
shear test methods, in-situ test methods and analytical methods. Then a detailed review
of previous research about applying various machine learning techniques, such as RF,
ANN, SVM, GPR, etc. for the prediction of soil properties is provided. Lastly, a concise
review of the recent development of the applications of novel machine learning techniques
in soil research is presented.

2.2 Conventional methods
2.2.1 Direct shear test methods
Gan et al. (1988) modified a conventional direct shear apparatus so that the axis-translation
technique for direct shear tests can be implemented on unsaturated soil, which makes it
possible for the soil to be subjected to a wide range of matric suctions. Multistage direct
shear tests were performed on both saturated and unsaturated specimens of a compacted
glacial till in the study. Nonlinearity in the failure envelope was then discovered concern-
ing different matric suctions. Accordingly, instructions on how to handle nonlinearity
properly from a practical engineering standpoint were made. To study the shear strength
of unsaturated loess, which is of great importance to the stability analysis of soil slope
and foundation and calculation of earth pressure, Tian et al. (2021) carried out extensive
direct shear tests of unsaturated loess. The intact and remoulded loess, together with
sandy silt, quartz flour, and quartz sand for comparison were applied to direct shear tests
in undrained conditions under different water content, dry density, and clay content. The
test results indicate that both cohesion and the internal friction angle of loess piecewise
functionally decrease with the increase of water content. The shear strength shows pos-
itive linear correlations with the dry density and the internal friction angle shows an
upward quadratic function relation with the increase of clay content. Accordingly, the
equation of shear strength of unsaturated loess was proposed for practical engineering
uses. Being progressively applied in geotechnical engineering, geosynthetics are capable
of conducting multiple tasks due to their excellent material properties. Possessing rather

5
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high tensile strength, leading to an increase in the shear strength of soil, geotextiles are a
particular type of geosynthetics. Shear box tests were carried out by Zhu and Anderson
(1998) on samples containing various types of geotextiles to evaluate the variation in sand
shear strength properties.

2.2.2 Triaxial test methods
The triaxial tests (Fig. 2.1) have always been one of the most commonly used experimen-
tal methods for the determination of soil shear strength. Sridharan et al. (1971) conducted
isotropically consolidated undrained tests with pore water pressure measurements to in-
vestigate the shear strength characteristics of saturated, remoulded, montmorillonite and
Kaolinite clays. it is discussed in the study that the shear strength is influenced by the
soil structure, whose changes are generally associated with the changes in initial moulding
water content, stress history and type of cation and its concentration in the electrolyte
system. The test results indicate that a definite cohesion intercept exists even for sat-
urated normally consolidated clays, under certain conditions. Markou and Droudakis
(2013) implemented both single and multi-stage unconsolidated–undrained triaxial com-
pression tests to investigate the shear strength of microfine cement grouted sands. Three
different kinds of microfine cement were obtained by pulverising ordinary cement pro-
duced in Greece. It was observed that the character of the grouted sands conformed
to the Mohr-Coulomb failure criterion and grouting with microfine cement suspensions
proved to be able to increase the shear strength dramatically by adding cohesion.

Figure 2.1. Schematic diagram of the triaxial testing system (Omar and Sadrekarimi,
2014).
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Conventional triaxial tests, however, when applied on peats, have been strongly criticised
for obtaining excessive-high shear strength parameters from standard data elaboration.
The exaggerated shear strength parameters will lead to unrealistic factors of safety when
applied in geotechnical design and evaluation which can raise a serious problem. To
overcome this difficulty, numerous operational approaches have been given in many pieces
of literature, nonetheless, they show a lack of consistency in mechanical background. For
instance, the non-uniform stress and strain states developing in the samples resulting from
end restraint effects, well before failure is reached, is one of the known issues related to the
evaluation of peats from triaxial tests. Muraro and Jommi (2021) implemented undrained
triaxial compression tests on reconstituted peat to examine the end restraint effects on
the deviatoric stress, excess pore pressure and deviatoric strain response. In the study,
the samples were tested both with the standard rough end platens and modified platens
so that the friction between the samples and bottom and top caps could be reduced. They
implemented four different initial height-to-diameter ratios to reduce the effects of rough
end platens on the sample response. The testing results demonstrated that end restraint
drastically contributes to the overestimation of the undrained shear strength of peat, as
a result of the increase in both the calculated deviatoric stress and the measured excess
pore pressure at the bottom of the sample. In this way, suggestions were then given to
evaluate the impact that the end restraint effects have on the interpretation of laboratory
results.

In addition, adequate approaches to obtain the undrained shear strength parameters with
higher reliability were also proposed. In general, the shear strength of soils can be deter-
mined through laboratory direct shear tests and triaxial tests. Different testing methods,
however, may probably result in large sets of scattered shear strength data, which makes
it difficult to select the appropriate design parameters. Xu et al. (2018) carried out exten-
sive laboratory tests to investigate the shear strength parameters of the compacted clay,
which is needed for the safety design and stability analyses in the McArthur River Mine.
Single-stage and multi-stage direct shear tests were accomplished under both dry and
wet conditions under several different normal stresses. Different shearing rates were also
applied to investigate the impact they have on the shear strength result. Additionally,
several unconsolidated compression tests (UC), unconsolidated undrained triaxial tests
(UU) and consolidated undrained triaxial tests (CU) were implemented under different
equivalent effective confining pressure. A more reliable approach to the determination of
peak and ultimate shear strength parameters of compacted clay in the design phase was
given at length.

2.2.3 In-situ test methods
Moreover, shear strength parameters can also be estimated from in-situ tests, for instance,
the cone penetration test (Fig. 2.2). Penetrometers are not only able to measure the tip
resistance, but also the induced pore pressure. This enabled a new approach for the
interpretation of soft soil undrained shear strength proposed by Konrad and Law (1987),
considering the measured pore pressure. In this research, being one of the components of
the tip resistance, the shear strength is assumed to be purely associated with the ultimate
cavity expansion pressure. And the other component is calculated assuming that the
effective friction is developed at the cone-soil interface. To validate the proposed model,
tests were conducted at three different sites where the characteristics of soft sensitive
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clay, stiff sensitive clay, and clayey silt. The outcome of the proposed model was in
accordance with the known soil behaviours at those three sites. Młynarek et al. (2012)
investigated the geotechnical parameters of alluvial soil represented by silts found near
Poznań and Elbląg by applying the Piezo Cone Penetration Test (CPT), seismic diameter
(SDMT) method and the vane test (VT). An analysis of the overconsolidation process
was provided together with an equation reflecting the relationships between the undrained
shear strength, the plasticity of the silts analyzed and the over-consolidation ratio (OCR)
value, establishing a solid foundation for engineering projects on the grounds tested.
Based on various tests, a conclusion was drawn that the most appropriate shear strength
parameters can be achieved when the silt is compacted below the optimum water content.

Figure 2.2. (a) Scheme of the CPT probe, which is pushed into the subsoil (Wang
et al., 2021) (b) Example of measured data from the cone penetration test (cone
resistance qc, sleeve friction fs and the friction ratio Rf ) (Rauter and Tschuchnigg,
2021).

2.2.4 Analytical methods
Various analytical analysis has also been applied in soil shear strength research. Tradi-
tionally, the determination of shear strength parameters through CPT data is based on
bearing capacity and cavity expansion theories. Motaghedi and Eslami (2014) proposed
a new analytical approach Eq. (2.1) for shear strength prediction using quantities, qc, u2,
and fs from CPT taking into account the bearing capacity mechanism of failure at cone
tip and direct shear failure along the penetrometer sleeve. Using all three outputs from
CPTu, this new approach is considered more accurate in the case of erroneous data. To
validate the advancement of this new approach, two sets of nonlinear equations proposed
by this approach together with the existing correlations of C and ϕ angle parameters were
applied to a database compiled from six sources. The results were compared with the
corresponding laboratory tests. The internal friction angle obtained by existing correla-
tions was comparably higher than the value measured by the laboratory test. Also, the
predicted C and ϕ angle parameters from the proposed approach were in accordance with
the measured values, indicating the effectiveness of the proposed approach for optimizing
the design for geotechnical engineering issues.
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where u2 is the pore pressure; γ is the effective soil unit weight; B is the penetrometer
diameter (35.7mm in this study); ϕ is the friction angle; q is the effective stress; Nq is
the bearing capacity factor; C is the cohesion; qt is the total cone tip resistance; σv and
σ′
v are the total vertical stress and effective vertical stress respectively; σh and σ′

h are the
total horizontal stress and effective horizontal stress respectively; fs is the sleeve friction.

Dirgėlienė et al. (2017) conducted experimental and numerical analysis on the direct shear
test. In different laboratory tests, the soil was loaded in a different way under constant
vertical stress and constant sample volume. This had an impact on the stress-strain dis-
tribution and was validated by the finite-element method, in which the stress and strain
in the sample during the direct shear test exhibited non-uniformity. Knowing a more
accurate distribution of stress and strain in the sample, the soil shear strength parame-
ters can be determined more precisely. Ahmadi Naghadeh and Toker (2019) proposed an
exponential equation to predict the nonlinear variation of shear strength with matric suc-
tion for unsaturated soils. The proposed equation involved two shear strength parameters
and the maximum capillary cohesion. It was validated with a series of constant-suction
consolidated drained triaxial tests on samples reconstituted by isotropic consolidation
from the slurry state. In addition, the proposed equation was applied to the test results
of five other soils of low-suction range, and it ended up with a better prediction than the
other six proposed shear strength equations, further proving the validity of the equation.
Analytical approaches have also been applied to conduct uncertainty analysis related to
soil shear strength. Knuuti and Länsivaara (2019) studied uncertainty originating from
three different transformation models used for the evaluation of undrained shear strength
of Finnish clays from CPTu borings. The results showed that the uncertainty for the
net cone resistance and pore pressure transformation model was the lowest, indicating
a promising practical use. Tian and Sheng (2020) developed Bayesian approaches for
characterizing the probabilistic of undrained shear strength using CPT data and prior in-
formation. Illustrated using CPT data at a clay site in Shanghai, the Bayesian approach
proved to be an effective tool for selecting a proper random field model for probabilis-
tic characterization. D’Ignazio et al. (2021) combined the stress history and normalized
soil engineering properties (SHANSEP) model and critical state soil mechanics (CSSM)
model in order to investigate the uncertainties in modelling the undrained shear strength
of clays. SHANSEP is an empirical model that describes the undrained shear strength
of clays with normalized properties. The soil shear strength is considered a function of
the OCR and two material coefficients that require empirical calibration. And the CSSM
model is able to provide analytical solutions to define the undrained shear strength as a
function of preconsolidation stress and the friction angle at the critical state. The effec-
tiveness of this proposed hybrid model was then validated by comparing the prediction
result of undrained shear strength with an existing multivariate database of field vane
data points from Finland.
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2.3 Machine learning methods
Having gone through imprecise physical processes during the formation process, geotech-
nical material has always exhibited diverse and uncertain behaviours. Modelling the
behaviour of such materials is so complicated that conventional physical methods are
usually incompetent in finishing such tasks. Having demonstrated superior predictive
ability compared to traditional methods in soil mechanics, machine learning methods
have been more and more popular and they have been widely used for predictions of ma-
terial properties in the past decade for regression problems (Shahin, 2013; Shahin et al.,
2009).

Starting with the soil shear strength related studies, Kanungo et al. (2014) assessed
the effectiveness of ANN and regression tree (classification and regression trees (CART))
techniques in predicting the shear strength parameters. Using four different combinations
of the six inputs, namely, gravel %, sand %, silt %, clay %, dry density, and plasticity
index, four models were constructed and applied to predict the undrained shear strength
in order to estimate the degree of effects that the inputs have on the output. Correlation
coefficient and root mean squared error (RMSE) were used as the evaluation metrics. The
results of four models using ANN are presented in Fig. 2.3. Comparing the results of all
of these four models for the prediction of c and ϕ, it is easy to conclude that Model II,
considering 5 input parameters such as gravel %, sand %, silt %, clay % and dry density,
has given the highest accuracies with a 5/16/2 neural network. However, in the case of
Model IV which considers all of the six input parameters, the difference between training
and testing correlation coefficient (R) values obtained with a 6/2/2 neural network is the
lowest compared with the other three models. The training and testing R values for this
6/2/6 neural network in Model IV are illustrated in Fig. 2.4. Taking into account the idea
put forward by Sietsma and Dow (1991) that when faced with several neural networks
with almost identical performance, the simplest one (i.e., the one that has the smallest
number of weights and biases) will, on average, generalize best, Model IV is considered as
the most appropriate model for the prediction of both two shear strength parameters in
undrained conditions. As for the result for the regression tree, the most appropriate trees
were also achieved with Model IV, using all 6 input parameters as inputs. These two
regression trees for the prediction of cohesion and internal friction angle are presented in
Fig. 2.5. To conclude, the effectiveness of both techniques on the prediction of friction
angle turned out to be almost identical, while for the prediction of cohesion, ANN was
superior to CART. In addition, in order to acquire the optimum weights and bias for
the best neural network, Garson, and proposed Weight-bias approaches were carried out
which were able to evaluate the influence of input variables on the output variables, and
the shear strength parameters.
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Figure 2.3. Combined accuracies in terms of R and RMSE’s for both the shear
parameters (c and f ) for all 4 models for some selected neural networks (Kanungo
et al., 2014).

Figure 2.4. Correlation coefficients as obtained for Model IV for the 6/2/2 neural
network: (a) training and (b) testing (Kanungo et al., 2014).
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Figure 2.5. Most appropriate regression tree in the case of Model IV for predicting
(a) cohesion and (b) angle of internal friction (Kanungo et al., 2014).

Using functional networks (FN), Khan et al. (2016) investigated the prediction of the
residual strength of clay, which is one of the most important parameters considering the
stability of slopes or landslides. The effectiveness of FN was compared with ANN and
SVM through various statistical metrics, namely, the R, Nash–Sutcliffe coefficient of ef-
ficiency (E), absolute average error (AAE), maximum average error and RMSE. FN is
superior to ANN, but inferior to SVM in terms of R and E. Iyeke et al. (2016) devel-
oped ANN model for the prediction of strength parameters of lateritic soils in central and
southern areas of Delta State in order to save both time and money needed for acquir-
ing geotechnical data during both design and construction phase. 83 soil samples were
collected from various locations in the Delta State of Nigeria. The optimum ANN archi-
tecture for predicting the cohesion and friction angle turned out to be 3/9/1 and 3/11/1
respectively. Comparing the prediction results with that of some existing empirical cor-
relations using the coefficient of determination and root mean square, the proposed ANN
model proved to be the preferable one. Pham et al. (2020a) investigated the prediction
of shear strength of soil under a different selection of input variables using the extreme
learning machine (ELM) algorithm, which is an advanced ML technique. To evaluate
the importance of the input variables to the prediction, feature backward elimination
supported by Monte Carlo simulations was applied. 538 samples collected from the Long
Phu 1 power plant project constituted the database and the R, RMSE, and MAE was
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adopted as the statistical metrics. To find out the most relevant input variable, 30,000
simulations were conducted using an elimination process to select the most relevant vari-
ables. The result indicates that the performance of ELM is promising but it is sensitive to
the input variable. The moisture content, liquid limit, and plastic limit were recognized
as the most crucial inputs. Ly and Pham (2020) studied the prediction of shear strength
of soil by applying SVM based on 6 input parameters, namely clay content, moisture
content, specific gravity, void ratio, liquid limit and plastic limit. More than 500 sam-
ples were collected from the Long Phu 1 power plant project’s technical reports and the
performance of the proposed SVM model was evaluated using statistical metrics such
as R, RMSE and MAE. The validation results were promising with the R ranging from
0.90 to 0.95. In addition, the most appropriate SVM model was used to investigate the
shear strength prediction result by adopting partial dependence plot (PDP), as shown in
Fig. 2.6, indicating that the moisture content, liquid limit and plastic limit were the three
most important inputs to the prediction of soil shear strength. Kiran et al. (2016) also did
similar studies but used probabilistic neural network (PNN) instead. By applying both
statistical methods and ANN methods, Goktepe et al. (2008) compared the performance
of these two methods in establishing correlations between index properties and soil shear
strength parameters and the results indicated that ANN was the superior one. Das et al.
(2011) described the prediction of the residual strength of soil based on index properties
using ANN and SVM.

Figure 2.6. Partial dependence plots of the input variables used in this study (Ly
and Pham, 2020).
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Apart from the prediction of soil shear strength, many other material properties have
also been investigated by applying ML techniques. Samui and Sitharam (2011) applied
ANN and SVM to predict the liquefaction susceptibility of soil based on the standard
penetration test (SPT) data from the 1999 Chi-Chi, Taiwan earthquake. An illustration
of the support vectors is shown in Fig. 2.7. Samui (2008) explored the potential of SVM
on the prediction of the friction capacity of driven piles in clay. Rigidly depending on the
statistical learning theory, the SVM performed the regression technique by introducing
an accuracy (ϵ) insensitive loss function, which defines an ϵ tube (Fig. 2.8). In this way,
if the predicted point lies within the tube, the loss is zero, and nothing is added to the
loss function; if the predicted point is outside the tube, the loss equals the absolute value
of deviation minus the ϵ. More details of the SVM are illustrated in the Chapter 4. Com-
paring the results of SVM with ANN, SVM demonstrated an overall better performance
than ANN, showing the potential of being a practical algorithm for the prediction of
friction capacity of driven piles in clay.

Figure 2.7. Support vectors with maximum margin (Samui and Sitharam, 2011).

Figure 2.8. Prespecified accuracy ϵ and slack variable ξ in support vector regression
(Schölkopf, 1997).
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Ly and Thai Pham (2020) investigated the possibility of application of the RF algorithm
to predict the soil’s unconfined compressive strength (UCS), which is one of the most
important mechanical properties of soils. Hoang et al. (2016) employed the GPR for
modelling the compressive strength of high-performance concrete (HPC). Nonlinear func-
tional mapping was established between the compressive strength and HPC ingredients
with GPR. 239 HPC experimental tests were collected from an overpass construction
project in Danang City (Vietnam) to build the dataset for the training and validation of
the GPR model. Having the advantage of providing the uncertainty with respect to each
predicted output, the GPR results are presented in Fig. 2.9 with an interval with a 95%
level of confidence and were proved to be superior to those of the Least Squares SVM
and the ANN. Similarly, Dao et al. (2020a) analyzed the performance of GPR, with five
different kernels(Matern32, Matern52, Exponential, Squared Exponential, and Rational
Quadratic) and ANN on the prediction of compressive strength of HPC by using Monte
Carlo Simulation. As a result, Matern32 was chosen as the most appropriate kernel func-
tion. Dao et al. (2020b) optimized the structure of ANN in the prediction of compressive
strength of foamed concrete, which is a promising material in civil engineering applica-
tions. Tsiaousi et al. (2018) adopted ANN techniques for the prediction of soil shear wave
velocity based on approximately 300 raw CPTs and 11 seismic CPTs, from a large levees
design project in the Netherlands. Puri et al. (2018) studied the prediction of several
geotechnical parameters, such as the prediction of in-place density using SPT N-value,
the prediction of compression index (Cc) using the liquid limit (LL) and void ratio (e),
and the prediction of shear strength parameters cohesion (c) and angle of internal friction
(ϕ) using SPT N-value, by applying ML techniques. Pham et al. (2020c) predicted the
pile axial bearing capacity using ANN and RF. The results showed that RF outperformed
ANN and the sensitivity analysis indicated that the average SPT value and the pile tip
elevation were the most influential factors for the prediction of the axial bearing capacity
of piles.

Figure 2.9. GPR prediction result with prediction interval (Hoang et al., 2016).
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The articles mentioned in this section are summarized in Table 2.1. The summary consists
of the source, the machine learning methods used, the inputs and the output(s) variables.

Source Methodology Inputs Output(s)

Kanungo
et al.
(2014)

ANN; CART
gravel %; sand %; silt %; clay %;

dry density; plasticity index

Undrained

shear strength

of soil

Khan
et al.
(2016)

FN

Liquid limit; plastic index; deviation

from A-line; residual friction angle;

clay friction

Residual strength

of clay

Iyeke
et al.
(2016)

ANN

Plasticity index; percentage of particles

passing sieve No.200; specific gravity;

liquid limit; plastic limit

Shear strength

of lateritic

soils

Pham
et al.
(2020a)

ELM

Moisture content %; clay content %;

void ratio; plastic limit %;

liquid limit %; specific gravity

Undrained

shear strength

of soil

Ly and
Pham
(2020)

SVM

Clay content; moisture content;

specific gravity; void ratio;

liquid limit; plastic limit

Shear

strength

of soil

Kiran
et al.
(2016)

PNN

Water content; plastic index;

dry density; gravel %;

sand %; silt %; clay %

Shear

strength

of soil

Goktepe
et al.
(2008)

Statistical

methods;

ANN

Water content; plastic index
Shear strength

of plastic clays

Das et al.
(2011)

ANN;

SVM

Liquid limit; plastic index;

deviation from A-line; clay fraction

Residual

strength

of clay

Samui
and
Sitharam
(2011)

ANN;

SVM

corrected SPT value [(N1)60];

cyclic shear stress ratio (CSR)

Soil

liquefaction

susceptibility
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Samui
(2008) SVM

Pile length; pile diameter;

effective vertical overburden stress;

undrained shear strength

Friction

capacity

of driven piles

in clay

Ly and
Thai Pham
(2020)

RF

Clay content; moisture content;

specific gravity; void ratio;

liquid limit; plastic limit

Soil

unconfined

compressive

strength

Hoang
et al.
(2016)

GPR

Cement; fine aggregate;

small coarse aggregate;

medium coarse aggregate;

water; superplasticizer; concrete age

Compressive

strength of

high-performance

concrete

Dao et al.
(2020a)

GPR;

ANN

Contents of cement; blast furnace slag;

fly ash; water; superplasticizer;

coarse aggregates; fine aggregates;

concrete age

Compressive

strength of

high-performance

concrete

Dao et al.
(2020b) ANN

Dry density; water/cement ratio;

sand/cement ratio

Compressive

strength of

foamed concrete

Tsiaousi
et al.
(2018)

ANN
Cone tip resistance; sleeve friction;

friction ratio versus elevation

Soil shear

wave velocity

Puri et al.
(2018)

Linear

regression;

ANN; SVM; RF;

M5 model trees

SPT N-value; liquid limit;

void ratio;

Inplace density;

compression index;

shear strength

parameters

Pham
et al.
(2020c)

ANN;

RF

Pile diameter; pile segments length;

ground elevation; pile top elevation;

pile tip elevation; average standard

penetration test; etc.

Pile axial

bearing capacity

Table 2.1. Summary of representative studies of predictions of material properties
applying machine learning methods.
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2.4 Recent development
The recent development of machine learning and optimization has resulted in some new promis-
ing soft computing methods i.e. particle swarm optimization - adaptive network-based fuzzy
inference system (PANFIS), genetic algorithm - genetic adaptive neuro-fuzzy inference system
(GANFIS). PANFIS and GANFIS are state-of-the-art methods that were formed by integrating
meta-heuristic optimization algorithms and neural fuzzy models (Pham et al., 2018). In essence,
the objective of using these optimization algorithms is to calibrate the hyperparameters in the
machine learning models. Related recent research is briefly introduced in this section in consid-
eration of the fact that this study addresses a relatively small dataset for which optimization
algorithms are unnecessary.

Ding et al. (2021) innovatively combined an adaptive neuro-fuzzy inference system (ANFIS)
model with an optimization technique i.e., Henry gas solubility optimization (HGSO) for solving
a nonlinear and complex problem related to soil shear strength prediction. The new hybrid
model is thus called HGSO-ANFIS. The HGSO optimization algorithm is based on the huddling
behaviour of gas for the purpose of finding the global minima of the loss function in machine
learning techniques and avoiding being trapped in the local minima. Taking the liquid limit,
specific gravity, clay content, moisture content, void ratio, and plastic limit as the inputs for the
prediction of shear strength, the proposed model was tested with real data and the result was
compared with results of other ANFIS-based models. The comparison results showed that the
new hybrid HGSO-ANFIS model outperformed the other ANFIS-based models, thus it can be
applied for various prediction and optimization problems. Pham et al. (2020b) developed a novel
hybrid soft computing model RF-PSO and used it to estimate the undrained shear strength of
soil based on 6 inputs. Validation of the models indicated that the RF-PSO model is superior
to the single RF model without optimization. Pham et al. (2018) investigated and compared
the performance of four machine learning methods, PANFIS, GANFIS, support vector regression
(SVR), and ANN, for predicting the strength of soft soils. And concluded that out of four models
the PANFIS indicated a promising technique for the prediction of the strength of soft soils.
Moayedi et al. (2020) combined four novel optimization algorithms, namely the elephant herding
optimization (EHO), shuffled frog leaping algorithm (SFLA), salp swarm algorithm (SSA), and
wind-driven optimization (WDO) with ANN to create four hybrid wise neural-metaheuristic
paradigms in predicting soil shear strength. The results indicated that the proposed SSA-MLP
model had the best performance out of the four models, and thus can be used as a replacement
for traditional methods.

2.5 Conclusion
This chapter reviews the research of conventional methods, including laboratory tests, in-situ
tests and analytical methods for the estimation of soil shear strength and the applications of
both ordinary and novel machine learning methods on geotechnical problems.

For the prediction of soil shear strength, the disadvantages of conducting laboratory tests and
in-situ tests are that they are more time-consuming, costly, and labour-intensive compared to
applying machine learning methods. And the disadvantage of using analytical methods is that
they might lack accuracy.

To develop a machine learning model for the prediction of soil shear strength, variables that
are possibly highly correlated with soil shear strength should first be selected as the inputs for
the model carefully, which will be discussed in the Chapter 3. Then different machine learning
models should be trained and tested. Next, the performance of the proposed models on the
prediction of soil shear strength should be evaluated with statistical metrics. After that, the
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most adequate model is constructed and tested on an unseen dataset for further verification.
There is no guarantee of the most appropriate machine learning model for a specific problem
before applying the above process since it depends on a case-by-case analysis. In addition,
novel optimization algorithms can be adopted for more accurate and effective calibration of the
hyperparameters of the machine learning model when the training dataset is large.



Chapter 3

Training dataset

3.1 Introduction
To train the proposed machine learning models, establishing a training dataset is a prerequisite.
The training dataset is fed to the machine learning algorithms so that the models are taught
how to perform a certain task, in this study, which is making predictions of undrained shear
strength.

The Clay/6/535 database is chosen to be the preliminary dataset in this study. It comprises
535 data points of lightly overconsolidated clay data from 40 sites with complete measurement
of 6 parameters of interest in Ching et al. (2014)’s study, namely the normalized undrained
shear strength ( Su

sigv′ ), overconsolidation ratio (OCR), normalized cone tip resistance ( qt−sigv
sigv′ ),

normalized effective cone tip resistance ( qt−u2

sigv′ ), normalized excess pore pressure (u2−u0
sigv′ ) and

the pore pressure ratio ( u2−u0
qt−sigv ), together with the effective stress (sigv′) and the depth of each

measured point. These 40 sites are located in the following geographical regions: Brazil, Canada,
Hong Kong, Italy, Malaysia, Norway, Singapore, Sweden, UK, USA, and Venezuela.

This chapter first selects the appropriate input variables in the training dataset for the machine
learning models. Then the CPT test methods for obtaining these input variables are briefly
introduced. Next, the output undrained shear strength is put forward, together with a short
explanation of the laboratory tests used to obtain the undrained shear strengths in the training
dataset. After that, several data preprocessing methods in terms of the machine learning appli-
cation are illustrated, including handling null values, feature scaling, the spilt of data. Finally,
the established training dataset is analyzed with descriptive statistics and a pairplot which is
able to visualize the correlations between each variable in this study.

3.2 Input variables
To predict the undrained shear strength of soil, the input variables related to the undrained
shear strength of soil should be selected and validated (Ly and Pham, 2020). To start with, the
overconsolidation ratio (OCR) is not taken into consideration since it cannot be obtained with
CPT while the objective of this study is to predict the undrained shear strength through CPT
data. The pore pressure ratio (u2−u0

qt−σv
) is also discarded since it simply is the normalized excess

pore pressure over the normalized cone tip resistance. In addition, the depth is not considered
as the effect of depth on undrained shear strength is already captured by the features effective
stress and pore pressure. Moreover, the inputs are not normalized by the effective stress since

20



Chapter 3. Training dataset 21

there could be a risk of missing out on some important information, for instance, when there are
higher-order relationships between the variables. Therefore, a total of four input variables are
chosen in the prediction of the shear strength of soil, including: the effective stress (σ′

v), cone tip
resistance (qt−σv), effective cone tip resistance (qt−u2) and the excess pore pressure (u2−u0).
They are obtained from cone penetration test.

In a CPT, a standard probe with a conic tip is pushed vertically into the ground at a constant
rate while the resistances are registered. Starting to be used in the 1930s in Denmark (Lunne
et al., 2002), the test was initially performed using mechanical cones and only two parameters
were able to be registered, which were the tip resistance qc and sleeve friction fs. Based on
the measured data, various soil behaviour charts could then be developed to identify the soil
strata and soil behaviour types (Robertson, 2009, 2010, 2016, 1990; Robertson et al., 1986). The
intervals of the survey profile at the beginning, however, were relatively large, being up to tens of
centimetres long owing to the design of mechanical cones (Stacul et al., 2020). Nowadays, with
the advent of electrical cones, the intervals of the survey profile have been much smaller, typically
around 0.5− 2cm. Inside the electric cone, various measurement and transmission systems have
been adopted, i.e., measuring elements equipped with strain gauges or piezoelectric crystals
and transmission systems equipped with electrical cables, radio waves, or even acoustic waves
transmitted through the rods (Pieczyńska-Kozłowska et al., 2021). Among all these types of
electric cones, the most frequently used type is the piezocone. Having the ability to quasi-
continuously register three quantities, it is not only capable of registering the sleeve friction
and tip resistance mentioned above, but also the pore pressure. A typical piezocone with a
36.0mm diameter, a 10cm2 base and 150cm2 external surface at the tube shape is presented
in Fig. 3.1. The tests performed with piezocone probes are referred to as CPTu tests and the
figure clearly shows the locations of the sensors for the three quantities. Furthermore, there are
actually three locations to install the pore pressure sensor. The pore pressure filter presented in
Fig. 3.1 is placed between the tip and the friction sleeve, and the pore pressure measured here is
denoted as u2. The other two possible locations for the pore pressure sensors have been shown
in Fig. 2.2, one is in the middle of the tip height and the other is above the friction sleeve. The
measurements are denoted as u1 and u3 respectively.

Figure 3.1. Schematic view of CPTu piezocone probe (Pieczyńska-Kozłowska et al.,
2021).
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In the Clay/6/535 database, all the qc values measured in the CPTu tests have been converted
into the corrected cone tip resistance qt using Eq. (3.1) in consideration of the effect of pore
pressure generated behind the cone.

qt = qc + u2(1− a) (3.1)

where a is the net area ratio tip, usually ranging from 0.55 to 0.9 Lunne et al. (2002) depending
on the probe design. Ideally, only data sources with complete documentation should be used.
Nonetheless, perfect data sources are rare and all current statistical characterization studies in
the literature involve making appropriate assumptions to ensure that the sample size is large
enough to produce reasonably robust statistics. Therefore, for the 15 sites where the net area
ratio tip a was not recorded, an assumption that a = 0.7 had been made. And for another 2
sites where the pore pressure u2 was not recorded, the correlation equations given by Mayne
et al. (1990) had been adopted to estimate u2 based on qc. All measured water pressures had
been converted into u2 in consideration that u1 and u3 are often damaged in practical. For the
9 sites where u1 rather than u2 was measured, the correlation equations given by Mayne et al.
(1990) had been adopted to convert u1 into u2 (Ching et al., 2014). These can be regarded as
data preprocessing for the raw CPT data in essence. The data preprocessing for the Clay/6/535
in this study will be described in Section 3.4.

3.3 Output variable
The shear strength of soil is considered an output variable. In geotechnical practice, the Mohr-
Coulomb failure criterion is commonly used for determining soil shear strength. Generally, the
failure criterion is based on the Eq. ((3.2)):

τf = c + σf tanϕ (3.2)

where c is the cohesion; ϕ is the angle of internal friction; σf is the normal stress on the failure
plane; τf is the shear strength.

In saturated soils, however, the stress that soil particles receive is called effective stress while
the stress that water receives is called pore water pressure. The shear stress in the soil can only
be resisted by the skeleton of soil particles. Therefore, the shear strength of the soil must be
expressed as a function of effective stress at the failure σ′

f and the shear strength parameters in
the effective state (c′ and ϕ′) as shown in the Eq. (3.3) (Craig, 2004).

τf = c′ + σ′
f tanϕ

′ (3.3)

To calculate the shear strength of soil (Su), the parameters such as c and φ are often deter-
mined in the laboratory through the experiments mentioned in the introduction, then the shear
strength of soil can be calculated using Eq. 3.2 or Eq. 3.3 with unit normal stress on the failure
plane. In the Clay/6/535 database, the laboratory tests for obtaining the shear strength include
unconsolidated undrained compression test, unconfined compression test, triaxial isotropically
consolidated undrained compression test, triaxial K0 consolidated undrained compression test,
and field vane test (Ching et al., 2014). These Su values obtained from different laboratory tests,
however, cannot be compared directly since the Su values are usually affected by a variety of
factors, e.g., strain rate, stress state, sampling disturbance, etc. Therefore, they had all been
converted into the equivalent CIUC values based on various empirical correlations (Ching et al.,
2014; Kulhawy and Mayne, 1990; Chen and Kulhawy, 1993; Bjerrum, 1972).
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3.4 Data preprocessing
After selecting the input variables for the machine learning model, the training dataset used
for this research can be established. In order to generate the datasets for modelling, the shear
strength of soil is considered as an output variable (Y) whereas the other four features namely
the effective stress, cone tip resistance, effective cone tip resistance and excess pore pressure are
considered as input variables X1, X2, X3 and X4 respectively. For each data sample, these 4
variables are used to predict the undrained shear strengths Y measured by the laboratory tests
as stated above.

Data preprocessing is an integral step in ML as the quality of data and the useful information
that can be derived from it directly affects the ability of our model to learn; therefore, it is
extremely important that we preprocess our data before feeding it into our model (Kumar,
2018). In the preprocessing step, the dataset is evaluated with regard to its completeness and
amount of data (Rauter and Tschuchnigg, 2021).

3.4.1 Handling Null Values
In any real-world dataset, there are always a few null values. No matter it is a regression or
classification or any other kind of problem, no model can handle these null values on its own
so we need to intervene. There are various ways to handle this problem. The easiest way to
solve this problem is by dropping the rows or columns that contain null values. However, it can
result in significant information loss. If there are thousands of data points then removing 2–3
rows won’t affect the dataset much but if there are only 100 data points and out of which 20
have null values for a particular field then you can’t simply drop those rows. In this case, rather
than dropping these values, we need to somehow substitute the missing values with the help of
imputation, which is simply the process of substituting the missing values of our dataset.

In this study, there are in total 529 rows left in the training dataset left after moving out 6 rows
with null values.

3.4.2 Feature scaling
Some datasets have multiple features spanning varying degrees of magnitude, range, and units.
This is a significant obstacle as a few machine learning algorithms are highly sensitive to these
features (Bhandari, 2020). Machine learning algorithms have been divided into the following
three broad categories so as to address this issue:

1. Machine learning algorithms like linear regression, logistic regression, neural network, etc.
are gradient descent based algorithms (Except for linear regression in its simplest form
which uses least-squares). They use gradient descent as an optimization technique that
requires data to be scaled. As an example, the formula of the gradient descent algorithm
for linear regression is presented in the Eq. (3.4):

θj := θj − α
1

m

m∑
i=1

(
hθ

(
x(i)

)
− y(i)

)
x
(i)
j (3.4)

where θj is the parameter in the cost function of the linear regression model that needs to
be calibrated; α is the learning rate; m is the size of the training set; hθ is a hypothesis;
x is the model input; y is the true value.
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The presence of feature value x in the formula will affect the step size of the gradient
descent. The difference in ranges of features will cause different step sizes for each feature.
To ensure that the gradient descent moves smoothly towards the minima and that the
steps for gradient descent are updated at the same rate for all the features, we need to
scale the data before feeding it to the model.

2. Algorithms like K-Nearest Neighbor (KNN), K-means, and SVM are distance-based algo-
rithms. They are most affected by the range of features. This is because behind the scenes
they are using distances between data points to determine their similarity. For example, if
both the features have different scales, there is a chance that higher weightage is given to
features with higher magnitude. This will impact the performance of the machine learning
algorithm and obviously, we do not want our algorithm to be biased towards one feature.
Therefore, we scale our data before employing a distance-based algorithm so that all the
features contribute equally to the result.

3. Tree-based algorithms, on the other hand, are fairly insensitive to the scale of the features.
A decision tree is only splitting a node based on a single feature. The decision tree splits
a node on a feature that increases the homogeneity of the node (see Section 4.4.1). This
split on a feature is not influenced by other features. So, there is virtually no effect of
the remaining features on the split and this is why they are invariant to the scale of the
features.

The followings are two feature scaling techniques, normalization and standardization.

3.4.2.1 Standardization

Standardization is a scaling technique where the values are centred around the mean with a unit
standard deviation. This means that the mean of the attribute becomes zero and the resultant
distribution has a unit standard deviation. Eq. (3.5) is the formula for normalization:

X ′ =
X − µ

σ
(3.5)

Here, µ is the mean of the feature values and σ is the standard deviation of the feature values.

Standardization, on the other hand, can be helpful in cases where the data follows a Gaussian
distribution. However, this does not have to be necessarily true. Also, unlike normalization,
standardization does not have a bounding range. So, even if there are outliers in the dataset,
they will not be affected by standardization (Bhandari, 2020).

3.4.2.2 Normalization

Normalization is another scaling technique in which values are shifted and rescaled so that they
end up ranging between the given range on the training set, i.e. between 0 and 1. It is also
known as Min-Max scaling. Eq. (3.6) is the basic formula for normalization:

X ′ = m+ (n−m) ∗ X −Xmin

Xmax −Xmin
(3.6)

Here, the data is rescaled to between m and n, Xmax and Xmin are the maximum and the
minimum values of the feature respectively.

Normalization is good to use when it is known that the distribution of the data does not follow
a Gaussian distribution. This can be useful in algorithms that do not assume any distribution
of the data like KNN and neural networks (Bhandari, 2020).
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In this study, the values in the training dataset are scaled to between -1 and 1 for the ANN,
SVM and GPR algorithms since they are sensitive to feature scaling. While for the other two
tree-based algorithms, RF and XGBoost, which are insensitive to feature scaling, the values in
the training dataset are not scaled.

3.4.3 Split of the data
Splitting the dataset is essential for an unbiased evaluation of prediction performance. In most
cases, it’s enough to split the dataset randomly into three subsets (Pedregosa et al., 2011):

1. The training set is applied to train, or fit, the model. For example, the training set can be
used to find the optimal weights, or coefficients, for linear regression, logistic regression,
or neural networks.

2. The validation set is used for unbiased model evaluation during hyperparameter tuning.
For example, to find out the optimal number of neurons in a neural network or the best
kernel for a support vector machine, different values should experiment with. For each
considered setting of hyperparameters, the model is fitted with the training set and its
performance is assessed with the validation set.

3. The testing set is needed for an unbiased evaluation of the final model. The test datasets
should never be used for training.

As the training dataset is too small in a machine learning context in this study, cross-validation
strategies are applied to the training dataset (see Section 5.2). The ratio of training and vali-
dation of data is defined as 90/10. The testing dataset for this study is introduced in Chapter
6.

3.5 Analysis
After removing the 3 outliers in which the Y is too high, over 200 kPa, there are in total 526
data points left. These data points are compiled into the training dataset used in this research,
as presented in the Appendix A.1. Descriptive statistics of this training dataset are shown in
the form of Table 3.1.

As stated above, for the ANN, SVM and GPR algorithms in this study, the training dataset
is normalized by the normalization transformation. With this estimator, each feature is scaled
and translated individually such that they are all in the given range, between -1 and 1 in this
research (see Section 3.4.2.2).

The correlation between input variables and output after feature scaling is then displayed in Fig.
3.2. According to this figure, the correlation between the variables can be discovered. It can be
seen that the trends are fairly linear, showing good positive correlations.
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Properties(kPa) Symbol Coding Lowest Highest Mean Median

Effective stress σ′
v X1 7.27 319.35 80.55 63.00

Cone tip resistance -

total vertical stress
qt − σv X2 116.70 3707.05 623.39 476.74

Cone tip resistance -

pore pressure behind cone
qt − u2 X3 13.92 1960.00 329.62 246.88

Excess pore pressure u2 − u0 X4 9.71 2330.43 341.86 259.03

Undrained shear strength Su Y 5.83 184.88 44.09 35.57

Table 3.1. Descriptive statistics of the data used in this study.

Figure 3.2. Correlation analysis between inputs and the output variables in this
study.
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3.6 Conclusion
Starting with the preliminary dataset Clay/6/535, the input variables for the training dataset
are selected based on the following criteria: being able to be obtained through the CPT test and
being correlated to the output undrained shear strength. Then the CPT test is briefly explained.
Next, some transformations of raw CPT data through empirical correlations are described. Next,
the output undrained shear strength is put forward together with a description of the laboratory
tests used for obtaining it.

After that, the established training dataset is preprocessed considering the machine learning
technique requirements. To start with, the null values in the training dataset need to be handled.
6 rows with null values were dropped out since it is comparably a small amount of data compared
to in total 535 data samples. Then 3 outliers in which the shear strength is over 200 kPa are
moved away and there are in total 526 data points left in the training dataset. Next, feature
scaling is conducted with the training dataset to prepare for those machine learning algorithms
that are sensitive to feature scaling. Next, cross-validation strategies are applied in the training
dataset with the ratio of training and validation defined as 90/10. An unseen dataset will be
the testing dataset will be presented in Chapter 6.

Finally, the training dataset is analyzed with descriptive statistics and a pairplot which shows
good positive correlations between the inputs and output. In fact, this training dataset consisting
of 526 data samples is considered as a relatively small dataset in a machine learning context. It
is fed to the machine learning methods that will be introduced in Chapter 4.
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Methodology

4.1 Introduction
machine learning (ML) is a subset of artificial intelligence. With the help of historical data, which
is also known as training data, ML algorithms construct a mathematical model to help make
predictions or decisions without being explicitly programmed (Samuel, 1967). The performance
of ML algorithms can be improved by providing more training data.

In this chapter, the ML techniques applied in this study are briefly introduced. Starting with the
basic concepts in ML, supervised learning is put forward, which is a typical type of ML model
approach. Then the validation metrics together with the gradient descent algorithm which is
one of the optimization methods used for optimizing the validation metrics is shortly discussed.
Next, the bias and variance trade-off which is an important property of ML models is presented.

Five machine learning algorithms used in this research are then introduced together with some
simple examples for illustration as presented in the Appendix B. Using linear regression as a
starter, three nonlinear regression models are presented, which are the artificial neural network
(ANN), support vector machine (SVM) and Gaussian process regression (GPR). Among them,
ANN can be regarded as a combination of linear regressions to obtain a more general-purpose re-
gression. SVM and GPR are both kernel-function (a.k.a. covariance function)-based algorithms
that are capable of dealing with nonlinear regression. GPR differs from SVM that it is also able
to provide uncertainty estimates for its predictions. Finally, two tree-based algorithms, random
forest (RF) and XGBoost, together with the ensemble methods are presented.

4.2 Basic concepts
4.2.1 Supervised learning
ML problems can generally be assigned to two main categories: supervised learning and unsu-
pervised learning. In supervised learning, models are trained using a “labelled” dataset, which
means that the input data in the training dataset is already tagged with the correct output.
On the basis of this, a supervised machine learning algorithm aims to find a mapping function
to transform the input variable into the output. After learning the information given in the
training dataset, the model can then be tested on the testing dataset to give a prediction of the
output. The process of supervised learning is illustrated with a simple example as presented in
Fig. 4.1. In this example, the training dataset consists of different shapes, which have already
been correctly labelled with square, triangle or hexagon. After the training of the model, it is
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then tested on the testing dataset with the task of identifying the shape. The model is able to
classify the new data it encounters in the testing dataset since it has already “learnt” how to do
so in the training dataset.

Figure 4.1. An example of supervised learning (Roy, 2019).

In a mathematical form, a typical training dataset of supervised learning can be presented as
shown in Fig. 4.2. The training dataset is the collection of labelled examples. Each example
contains several features, for instance, feature x(1) contains height (cm), feature x(2) contains
weight (kg), feature x(3) contains gender and so on. These features together form a vector having
m dimensions, which is called a feature vector and it is denoted as x(j). The term label is used
to denote the output yi which can be either an element belonging to a finite set of classes or a
real number. In this way, supervised learning can deal with both classification and regression
problems. This study applies supervised learning to solve a regression problem.

Figure 4.2. A typical training dataset of supervised learning (Roy, 2019).
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In unsupervised learning, the model is trained on raw and unlabelled training data. Different
from the supervised learning model, the unsupervised model has to find the hidden pattern and
insights from the given data itself. As unsupervised learning is not adopted in this research, it’s
not further discussed.

4.2.2 Validation metrics and gradient descent
The validation metrics are able to quantify the difference between the predicted values of a ML
model and the actual values, thus measuring how good the predictions are. They are used for
two purposes: measuring the error for tuning the hyperparameters and evaluating the accuracy
of the prediction. Hyperparameters refer to the parameters in the ML models that need to be set
before the learning process begins. Three commonly used basic validation metrics for regression
problems are introduced as follows:

The equation for the mean absolute error (MAE) is presented in (4.1). The smaller MAE is, the
better the prediction is. It is the simplest validation metric which literally calculates the absolute
difference (discards the sign) between the actual and predicted values and takes its mean. The
advantage of MAE is that it is computationally inexpensive due to its simplicity. However,
there are two main drawbacks of it. One of them is that it calculates all the errors on the same
scale, making the alternation of the weights in the back-propagation algorithm (introduced in
4.3.1.2) difficult. The other is that its linearity may lead to a convergence problem in finding
the minimum in the back-propagation algorithm (Hirekerur, 2020).

MAE =
1

N

N∑
I=1

∣∣Yiobserved − Yipredicted

∣∣ (4.1)

where N is the number of samples; Yiobserved is the observed actual value; Yipredicted is the prediction
given by the ML models.

The equation for the root mean squared error (RMSE) is presented in (4.2). The smaller RMSE
is, the better the prediction is. Being the square root of mean squared error (MSE), it is still a
linear scoring method. Compared with MAE, it gives comparatively more penalization to larger
errors since the errors are squared at the beginning, and therefore being more sensitive to the
outliers (Hirekerur, 2020).

RMSE =

√√√√ 1

N

N∑
i=1

[(
Yiobserved − Yipredicted

)]2 (4.2)

The equation for the coefficient of determination (R2) is presented in (4.3). It ranges between 0
and 1. The closer it is to 1, the better the prediction is.

R2 = 1−
∑N

i=1

(
Yipredicted − Yiobserved

)2∑N
i=1

(
Yiobserved − Ȳobserved

)2 (4.3)

In this study, for the minimization of the validation metrics, only R2 is applied. For the evalu-
ation of the final prediction performance of the ML models, all these three validation metricss
are used.

As discussed above, the values of the validation metrics reflect the performance of a ML model.
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Taking RMSE as an example, the lower the RMSE is, the better the performance is. So ML
model try to minimize the RMSE. This is achieved by applying various optimization algorithms.
Gradient descent is one of the optimization algorithms to identify the optimal set of hyperpa-
rameters for optimizing the validation metrics. An illustration of the algorithm is presented in
Fig. 4.3. It is an iterative optimization algorithm for finding the local minimum of a function,
in this case, that is the validation metric in the ML. To find the local minimum of a function
using gradient descent, two steps are taken iteratively. First, the gradient, which is the first
order derivative of the validation metric at that point is computed. Second, move a step in the
direction opposite to the gradient from the current point. The length of the step equals alpha
times the gradient at that point. Alpha is called the learning rate, which is a hyperparameter in
the optimization process that decides the length of the steps. If the learning rate is too high, we
might overshoot the minima and keep bouncing, without reaching the minima. If the learning
rate is too small, the training might turn out to be too long. Therefore it is crucial to choose
an adequate learning rate is crucial. It is also worth noticing that the validation metric might
consist of several minimum points. The optimization using the gradient descent algorithm may
settle on any one of the minima, which depends on the initial point and the learning rate (M,
2020).

Figure 4.3. An illustration of the gradient descent algorithm (M, 2020).

4.2.3 Bias and variance trade-off
The bias and variance trade-off is the property of a ML model that the variance of the parameter
estimated across samples can be reduced by increasing the bias in the estimated parameters
(Kohavi et al., 1996). Bias is the difference between the average prediction of our model and the
correct value that we are trying to predict. Variance is the variability of model prediction for
a given data point. When tuning the hyperparameter, the conflict in trying to simultaneously
minimize these two sources of error that prevent supervised learning algorithms from generalizing
beyond their training set has to be properly dealt with (Von Luxburg and Schölkopf, 2011). An
illustration of the bias and variance trade-off is shown in Fig. 4.4. It can be observed that the
more complex a model is, the higher the variance becomes, the lower the bias is and the more the
model is prone to overfitting. Conversely, the simpler a model is, the higher the bias becomes,
the lower the variance is and the more the model is prone to underfitting.
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Figure 4.4. The bias and variance trade-off (Chakraborty, 2021).

4.3 Nonlinear regression
To start with, linear regression is the process of finding a line (in 2D cases) that best fits the
data points available on the plot, so that we can use it to predict output values for inputs that
are not present in the data set we have, with the belief that those outputs would fall on the line
(Al-Masri, 2021). To introduce nonlinearity, different models apply various techniques. This sec-
tion introduces three nonlinear regression algorithms, namely the ANN, SVM and GPR. Among
them, ANN can be regarded as introducing nonlinearity through a combination of linear regres-
sions. SVM and GPR are both kernel-function (a.k.a. covariance function)-based algorithms.
GPR differs from SVM that it is also able to provide uncertainty estimates for its predictions.

4.3.1 Artificial Neural Network
In the following subsections, the architecture of ANN will first be briefly introduced. Then the
detailed process of a feed-forward ANN using back-propagation algorithms is introduced and
illustrated with a simple example as presented in the Appendix B.1.

4.3.1.1 Architecture of ANN

Artificial neural network (ANN) refers to a biologically inspired approach of ML modelled after
the brain (Bhardwaj, 2022). Fig. 4.5 illustrates the typical diagram of a biological neural network
(BNN). Similar to the human brain which has neurons interconnected to one another, artificial
neural networks also have neurons that are interconnected to one another in various layers of
the networks. The first type of ANN historically, namely the perceptron is shown in Fig. 4.6.
These neurons are known as nodes. Correspondingly, dendrites from BNN represent inputs in
ANN, cell nucleus represents nodes, synapse represents weights, and axon represents output.
The interconnected artificial neural elements work in unison, sharing information to develop an
awareness of the relationship between different parameters in order to learn or emulate how a
system functions (Reale et al., 2018). Due to the adaptability and learning capabilities, ANN
is able to learn how complex non-linear systems perform when supplied with sufficient data. It
can be used to perform both regression and classification analysis.
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Figure 4.5. Typical diagram of a Biological Neural Network (Baillot, 2018).

Figure 4.6. Typical diagram of an Artificial neural network (A perceptron using step
function as activation function) (Qamar, 2020).

To get an overview of the architecture of an ANN, by far the most extensively used particular
type of ANN namely multi-layer perceptron (MLP) is shown in the figure 4.7. Neural networks
are typically arranged into an input layer, a hidden layer(s), and an output layer. The number of
input and output nodes is the engineering problem in question. The number of hidden neurons
is one of the hyperparameters that needs to be tuned on a problem-by-problem basis. To find
the output of the neuron in ANN, firstly we take the weighted sum of all the inputs, weighted
by the weights of the connections from the inputs to the neuron. Then, we add a bias term
to this sum. This weighted sum is then passed through an activation function which is usually
nonlinear to produce the output. More details will be explained in the following section. In this
study, a feed-forward MLP using the back-propagation learning algorithm is applied.
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Figure 4.7. Typical architecture of an Artificial neural network (Multi-Layer
Perceptron) (Mohanty, 2019).

4.3.1.2 Feed-forward MLP using back-propagation algorithms

Feed-forward Neural Networks are ANNs where the node connections do not form a cycle (Edgell,
2021). In this way, each layer’s outputs serve as the input to the next layer. This allows using the
back-propagation algorithm to efficiently train the neural network. Here, the output values are
compared with the correct answer to compute the value of some predefined error function. By
applying the automatic differentiation technique, the error is then fed back through the network.
Using this information, the algorithm is able to adjust the weights of each connection in order
to reduce the value of the error function by some small amount. After repeating this process for
a sufficiently large number of training cycles, the network will usually converge to some state
where the error of the calculations is small.

4.3.2 Support Vector Machine
Support Vector Machine (Figure. 4.8) originated from the concept of statistical learning the-
ory pioneered by Boser et al. (1992). In this study, we use the SVM as a regression technique
by introducing an error (ε) ε-insensitive loss function. There are three distinct characteristics
when SVM is used to estimate the regression function: the type of kernel function, the opti-
mum capacity factor C, and the optimum error insensitive zone ε. Consider a set of training
data {(x1, y1) , . . . , (x1, y1)} , x ∈ Rn, y ∈ r1, where x is the input, y is the output, RN is the
N-dimensional vector space and r is the one-dimensional vector space. The ε-insensitive loss
function can be described as Eq. (4.4):

Lε(y) = 0 for |f(x)− y| < ε otherwise Lε(y) = |f(x)− y| − ε (4.4)

This defines an ε tube such that if the predicted value is within the tube, the loss is zero, while
if the predicted point is outside the tube, the loss is equal to the absolute value of the deviation
minus ε. The main aim of SVM is to find a function f(x) that gives a deviation of ε from the
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Figure 4.8. An example of a Support Vector Classifier using a linear kernel in 2D
space (Pedregosa et al., 2011).

actual output and at the same time is as flat as possible. Assume a linear function f as Eq. (4.5):

f(x) = (w · x) + b, w ∈ Rn, b ∈ r (4.5)

where, w = an adjustable weight vector and b = the scalar threshold.
Flatness in Eq. (4.5) means a small value of w. One way of obtaining this is by minimizing the
Euclidean norm ∥w∥2. This is equivalent to the following convex optimization problem:

Minimize: 1
2∥w∥

2

Subjected to:
yi − (⟨w · xi⟩+ b) ≤ ε, i = 1, 2, . . . , l
(⟨w · xi⟩+ b)− yi ≤ ε, i = 1, 2, . . . , l

The above convex optimization problem is feasible, sometimes, however, this may not be the
case, we may also want to allow for some errors. The parameters ξi, ζ

∗
i are slack variables that

determine the degree to which samples with errors more than ε be penalized. In other words,
any error smaller than ε does not require ξi or ξ∗i and hence does not enter the objective function
because these data points have a value of zero for the loss function. The slack variables (ξi, ξ

∗
i )

have been introduced to avoid infeasible constraints in the optimization problem below:
Minimize:
1
2∥w∥

2 + C
∑1

i=1 (ξi + ξ∗i )
Subjected to:
yi − (⟨w · xi⟩+ b) ≤ ε+ ξi, i = 1, 2, . . . , l
(⟨w · xi⟩+ b)− yi ≤ ε+ ξ∗i , i = 1, 2, . . . , l
ξi ≥ 0 and ξ∗i ≥ 0, i = 1, 2, . . . , l

The constant C(0 < C < ∞) determines the trade-off between the flatness of f and the amount
up to which deviations larger than ε are tolerated (Smola and Schölkopf, 2004).

When linear regression is not appropriate, then input data have to be mapped into a high
dimensional feature space through some nonlinear mapping technique (Boser et al., 1992). This
process is illustrated in Fig. 4.9. The two steps in this exercise are, firstly, carrying out a
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fixed nonlinear mapping of the data onto the feature space and, secondly, carrying out a linear
regression in the high dimensional space. The input data are mapped onto the feature space by
a map Φ. The dot product given by Φ (xi) · Φ(x) is computed as a linear combination of the
training points. The concept of a kernel function [K (xi, x) = Φ (xi) · Φ(x)] has been introduced
to reduce the computational demand.

Figure 4.9. An illustration of mapping the input data from 2d to 3d through a kernel
function (Saxena, 2020).

Some common kernels, such as homogeneous polynomial expressions, non-homogeneous poly-
nomial expressions, radial basis functions, Gaussian functions and sigmoid functions, and their
combinations, have been used for nonlinear cases (Das et al., 2011).

4.3.3 Gaussian Process Regression
Being a probabilistic supervised ML model, the Gaussian process model has been widely used
for both regression and classification tasks. A Gaussian process regression (GPR) model can
make predictions incorporating prior knowledge through kernel functions and provide uncertainty
measures over predictions (Wang, 2020). Different from the traditional nonlinear regression
methods that typically give one function that is considered to fit the dataset best, a Gaussian
process model is able to describe a probability distribution over possible functions that fit a set
of points. Through this probability distribution over all possible functions, the mean function
can be calculated and it is taken as the prediction. The prediction is updated as the number
of observation points increases. And the variance can also be used to indicate how confident
the predictions are. The process of conducting regressions by the Gaussian processes model is
illustrated in Fig. 4.10: given the observed data (red points) and a mean function f (blue line)
estimated by these observed data points, we make predictions at new points X∗ as f (X∗) (Wang,
2020). See Section 6.2 for an application of GPR.
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Figure 4.10. An illustrative process of conducting regressions by Gaussian processes.
The red points are observed data, the blue line represents the mean function estimated
by the observed data points, and the predictions will be made at new blue points
(Wang, 2020).

4.4 Tree-based algorithms and ensemble methods
In the following subsections, the decision tree learning algorithm will first be explained. Then
the ensemble learning methods will be introduced. Lastly, a brief introduction to RF and
XGBoost algorithms will be provided. The detailed processes of RF and XGBoost algorithms
are illustrated with simple examples in the Appendix B.2 and B.3 respectively.

4.4.1 Decision tree
Decision trees are a supervised learning approach, which can be applied to both regression and
classification problems. In keeping with the tree analogy, decision trees implement a sequential
decision process. Starting from the root node, a feature is evaluated and one of the two nodes
(branches) is selected, each node in the tree is basically a decision rule. This procedure is
repeated until a final leaf is reached, which normally represents the target (R, 2021). If a leaf
node contains multiple samples from the training set, the average of the target variables of this
leaf node is the output for any test sample that follows this decision path. Decision trees are
also attractive models if we care about interpretability.

CART is one of the algorithms for creating decision trees. In this study, the Scikit-learn machine
learning toolkit (Pedregosa et al., 2011) uses an optimised version of the CART algorithm.
For classification problems, at each node, CART constructs binary trees using the feature and
threshold that yield the largest information gain, which is a metric used to choose the attribute
on which the data has to be split at the node. As for regression problems, the standard deviation
is used as the metric. In other words, while the attribute with the highest information gain is
chosen as the attribute to split the data in the case of classification, the attribute with the
highest decrease in standard deviation is used in the case of regression (R, 2021). To get an
intuition of the decision tree, a simple example is provided together with RF in the Appendix
B.2.
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4.4.2 Ensemble learning methods
Ensemble methods are techniques that create multiple base models and then combine them
to improve the results. The underlying idea is that combining multiple models together often
produces a much more powerful model. The term “model” here describes the output of the
algorithm that is trained with data. And this model is then used for making predictions. This
algorithm can be any machine learning algorithm such as logistic regression, decision tree, etc.
These models, when used as inputs of ensemble methods, are called ”base models”. After the base
models are selected, they need to be aggregated, for which, there are in general two main kinds
of methods, namely bagging and boosting. Bagging often considers homogeneous base models,
learns them independently from each other in parallel and combines them following some kind of
deterministic averaging process. Boosting, however, often considers homogeneous base models,
and learns them sequentially in an adaptative way, which means that one base model depends
on the previous ones, and then combines them following a deterministic strategy (Demir, 2016).

The evolution of decision-tree-based algorithms is shown in Figure 4.11. To begin with, the
decision tree is a graphical representation of possible solutions. Then, RF is based on a bagging
algorithm which consists of bootstrapping and aggregating, but only a subset of features are
selected at random to build a forest. Next, gradient boosting is established by employing a
gradient descent algorithm to minimize errors in sequential models. Finally, XGBoost is one
step further, it is based on gradient boosting together with some advanced optimizations, for
instance, adding regularization terms in the loss function to avoid overfitting. The details of
these techniques will be illustrated in the examples.

Figure 4.11. The evolution of decision-tree-based algorithms (Morde, 2019).

4.4.3 Random Forest
RF consists of a committee of decision trees (also known as classification trees or "CART"
regression trees). Each individual tree is a fairly simple model that has branches, nodes and
leaves. The purpose of building a decision tree is to create a model that predicts the value of
the target variable depending on several input variables. The flowchart of RF for regression is
shown in Figure 4.12.
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Figure 4.12. The flowchart of random forest for regression.

First of all, subsamples are generated from original samples by drawing with replacement. This
is called bootstrap sampling. This random sampling with replacement ensures that we are not
using the same data for every tree, so it helps our model to be less sensitive to the original
training data. On average, 63.2% of the original data are presented in an average bootstrap
sample. This result can be derived using elementary probability. Suppose the original data
contains n observations. A bootstrap sample is generated by sampling with replacement from
the data. The probability that a particular observation is not chosen from a set of n observations
is 1 − 1/n, so the probability that the observation is not chosen n times is (1 − 1/n)n. This is
the probability that the observation does not appear in a bootstrap sample. Therefore, when
n is large, the probability that an observation is not chosen is approximately 1/e ≈ 0.368 since
the limit as limn→∞(1− 1/n)n = 1/e. So the answer would be 1− 0.368 = 63.2%.

Next, the models are built by constructing a decision tree for each subsample based on a random
set of features. This random selection of features is important since, if every feature is used then
most of the trees will have the same decision nodes and will act very similar which increases
variance. Further illustrations are presented with a simple example in the Appendix B.2.

4.4.4 XGBoost
As mentioned above, XGBoost is based on gradient boosting together with some advanced
optimizations. Gradient boosting is an iterative optimization algorithm used in ML to minimize
the loss function, which is a measure of how good the prediction model does in terms of being
able to predict the expected outcome. XGBoost, however, is an optimized gradient boosting
ML library. It is a more regularized form of gradient boosting using advanced regularization as
the loss function in XGBoost includes two basic components, training loss and regularization.
Training loss measures how well the model fits into the training data. Regularization measures
the complexity of the model. The L1 and L2 regularization terms are added into the loss
function to give penalization to complex models in order to avoid overfitting, improving the
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model generalization capabilities. The key difference between these two regularization terms
is the penalty term. L1 and L2 add “absolute value of magnitude” of coefficient and “squared
magnitude” of coefficient as penalty terms to the loss function, respectively. In addition, the
developers of XGBoost have made a number of important performance enhancements to different
parts of the implementation which make a big difference in speed and memory utilization. An
example is provided in the Appendix B.3 to give an intuition of how XGBoost works.

4.5 Conclusion
This chapter gives a brief introduction to the ML techniques used in this study. Some basic
ML concepts are first discussed. Starting with a typical type of ML, supervised learning. Then
some validation metrics in ML is explained, together with a typical optimization algorithm,
the gradient descent algorithm which is used for optimizing the validation metrics. Next, an
important property of ML models, the bias and variance trade-off is put forward, which is the
key to the hyperparameter tuning process.

After that, using linear regression as a starter, three nonlinear regression algorithms, namely the
ANN, SVM and GPR are offered. Among them, ANN can be regarded as a generalized-linear
model. SVM and GPR are both kernel-function based algorithms. SVM is able to transfer the
data onto a higher dimensional feature space through a kernel-function, and then carry out a
linear regression in the high dimensional space. While GPR can make predictions incorporating
prior knowledge through kernel-functions and provide uncertainty measures over predictions. In
addition, some simple examples are provided for the algorithms in the Appendix B to get an
intuition of how they work.



Chapter 5

Model implementation

5.1 Introduction
In this section, the machine learning techniques introduced in the Chapter 4 are implemented
on the training dataset (A.1). Starting with the cross-validation (CV) strategies, two types of
CV strategies are introduced, namely the k-fold CV and group k-fold CV. Next, two methods
for tuning the hyperparameters, which is the key step in training a machine learning model,
are introduced, namely the grid search CV and random search CV. They are capable of finding
the best set of hyperparameters. After that, the machine learning models are constructed. The
Monte Carlo simulation is performed for the machine learning models in order to take into
account the random splitting effect in the dataset. Lastly, a sensitivity analysis is carried out to
evaluate the importance of input parameters for modelling using partial dependence plots and
feature importance functions.

5.2 Cross-validation Strategies
Cross-validation is one of the techniques used to test the effectiveness of a machine learning
model, by testing the model on some unseen data. It is also a resampling procedure used to
evaluate a model if only a limited amount of data is available, which is the case in this study.
Therefore, it is necessary to consider selecting proper CV strategies at the beginning of the
study.

There are various kinds of CV strategies. Here, which strategy we choose actually depends on
what kind of scenario we want to simulate for the future application of the model. Starting
with the most commonly used k-fold CV, a visualization example of which is shown in Fig. 5.1,
the dataset is split into k consecutive folds, each fold is used once as validation while the k − 1
remaining folds form the training set. Subsequently, the model is fitted to the training set and
evaluated on the validation set in each iteration using statistic metrics which in this study is the
coefficient of determination (R2). Finally, take the average of the scores in all the iterations and
that will be the performance metric for the model. This strategy reproduces a scenario where
new samples are added to sites where we already have data, whereas group k-fold reproduces a
scenario where we add a new site.

41
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Figure 5.1. Visualization of a k-fold CV with 3 classes and 4 iterations (Pedregosa
et al., 2011).

Choosing an appropriate value for k is fairly crucial since a poor selection may result in a
misrepresentative idea of the performance of the model. For instance, if the value of k is too
small, then the error estimation will probably end up with a score with a high bias, which means
that the result may change a lot based on the data used to fit the model. Conversely, if the k is
too large, e.g. to the extreme, being equal to the number of samples, the error estimation will
be high in bias, showing an overestimation of the skill of the model.

Three common tactics for choosing a value for k are as follows (Brownlee, 2018):

• Representative: The value for k is chosen such that each train/test group of data samples
is large enough to be statistically representative of the broader dataset;

• k = 10: The value for k is fixed to 10, a value that has been found through experimentation
to generally result in a model skill estimate with low bias and a modest variance;

• k = n: The value for k is fixed to n, where n is the size of the dataset to give each test sam-
ple an opportunity to be used in the hold-out dataset. This approach is computationally
expensive and it is called leave-one-out cross-validation;

To summarize, there is no formal rule for which one to choose and the choice of k is usually
5 or 10. Typically, given the considerations of the bias-variance trade-off, it is chosen as 5 or
10 since these values have been shown empirically to yield test error rate estimates that suffer
neither from excessively high bias nor from very high variance (James et al., 2013). Thus in this
research, the value of k is chosen as 10.
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Figure 5.2. Visualization of a group k-fold CV with 3 classes and 4 iterations
(Pedregosa et al., 2011).

Group k-fold CV is a variation of k-fold CV which ensures that the same group is not represented
in both testing and training sets. A visualization example of it is shown in Fig. 5.2. This strategy
best simulates the scenarios where the model will be tested on completely unseen data, which in
this study is the data from new countries. This would be an invaluable application for machine
learning, allowing us to start the exploration of a site even before gathering any data.

To sum up, k-fold CV is a typical CV strategy. It can be regarded as an ideal CV strategy in a
machine learning context because training and testing population share the same distribution,
which in essence means the scenario it is simulating tends to be milder, thus leading to a
relatively good result. On the contrary, the group k-fold CV simulates a more complex scenario,
in which testing distribution can be very different from the training distribution, bringing a
tougher challenge to the machine learning algorithms, thus usually leading to a relatively poor
result. Implementing both of these two CV strategies for training the models, we end up with
two sets of models for the testing dataset, one is relatively conservative and the other is more
radical. This assures a more objective and comprehensive evaluation of the performance of the
machine learning models.

5.3 Hyperparameter tuning
In the training of the machine learning models, the hyperparameters discussed in Chapter 4 need
to be calibrated based on their performance on the validation set. A grid search is a powerful
tool to use. It is able to exhaustively search over specified parameter values for an estimator.
An example of using grid search CV (k-fold CV) is given in Fig. 5.3. Using grid search CV, five
hyperparameters in the Random Forest model are tuned based on their given ranges. The result
shows that the R2 value of the best combination of these five hyperparameters is 0.749.

However, the grid search CV is truly a computationally expensive method due to its exhaus-
tiveness. It takes so long to train some models with many hyperparameters that a new method
is required. That’s where random search comes into play. In contrast to grid search, not all
parameter values are tried out, but rather a fixed number of parameter settings is sampled from
the specified distributions. It has been proven to be able to find models that are as good or even
better within a small fraction of the computation time (Bergstra and Bengio, 2012). Fig. 5.4
provides a simple illustration of the superiority of applying random search. In this illustration,
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Figure 5.3. Using a grid search CV for tuning the hyperparameters of Random
Forest.

a grid of points distribute evenly in the original 2-d space, but their projections onto either
the unimportant or the important parameter subspace produce an inefficient coverage of the
subspace. Conversely, the random points are slightly less evenly distributed in the original 2-d
space, however, much more evenly distributed in the two subspaces. It can be concluded that
random search, in essence, trades a small reduction in efficiency in low-dimensional spaces for a
large improvement in efficiency in high-dimensional search spaces.

Figure 5.4. Grid and random search of nine trials for optimizing a function
f(x, y) = g(x) + h(y) ≈ g(x) with low effective dimensionality. Above each square g(x)
is shown in green, and on the left of each square h(y) is shown in yellow. With grid
search, nine trials only test g(x) in three distinct places. With random search, all nine
trials explore distinct values of g. This failure of grid search is the rule rather than the
exception in high dimensional hyper-parameter optimization (Bergstra and Bengio,
2012).

In this research, grid search CV is applied to SVM and GPR since there are only 3 or 4 hyper-
parameters that require tuning. While random search CV has been applied to RF, XGBoost
and ANN since they have a lot more hyperparameters to tune.

5.4 Monte Carlo analysis
The robustness of the algorithms can also be evaluated from a statistical point of view. As stated
in the section 5.2, in the k-fold CV, the value of k is chosen as 10, which means that in each
iteration, 90% of the experimental data were randomly selected in order to train and construct
the machine learning model. Then in each iteration, the performance of the model is evaluated
on the validation set which contains 10% of the experimental data. Lastly, the performance of the
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model in each iteration is averaged to give a final performance score. This performance score of
a model, however, can inevitably be influenced by the choice of the sample indexes. Therefore,
a total number of 1000 numerical simulations are next carried out, taking into account the
random splitting effect in the dataset. To be more specific, the constructed model is tested
on 1000 subsets generated with 1000 different random seeds in the train_test_split process in
Pedregosa et al. (2011). This repetition of a simulation taking into account the random effect
of input could also be called the Monte Carlo simulation (Ly et al., 2019). The results of the
Monte Carlo analysis are presented in the section 7.4.

5.5 Sensitivity Analysis
In order to evaluate the importance of input parameters for modelling, a sensitivity analysis is
carried out using partial dependence plots (PDP), which is an efficient way to investigate the
relationship between inputs and output. Partial dependence plots show the dependence between
the target response and a set of input features of interest, marginalizing the values of all other
input features. The partial dependence function for regression is defined as Molnar (2020):

f̂S (xS) =
1

n

n∑
i=1

f̂
(
xS , x

(i)
C

)
(5.1)

where Xs are the features that we are interested in and for which the partial dependence function
should be plotted; Xc are the other features used in the machine learning model (using their
actual values); n is the number of instances in the training dataset.

The function shows the relationship between the features in set S we are interested in and
the predicted outcome. It is also worth mentioning that an assumption of the PDP is that the
features in C are not correlated with the features in S. If this assumption is violated, the averages
calculated for the partial dependence plot will include data points that are very unlikely or even
impossible.

Another way of evaluating the importance of input parameters is by implementing a feature
importance function in Pedregosa et al. (2011) on RF. As discussed in section 4.4.3, many
individual decision trees are constructed in the training process of RF. Then the prediction of all
the trees is averaged to make the final prediction. RF is referred to as the ensemble technique
since it uses a collection of results to make a final decision. In essence, the feature importance in
RF is calculated as the decrease in node impurity weighted by the probability of samples reaching
that node. As this study deals with a regression problem, the node impurity here refers to the
variance reduction after the split of a node evaluated by the MSE (or MAE as an alternative).
And the node probability is calculated by dividing the number of samples reaching the node by
the total number of samples. The higher the obtained final value is, the more important the
feature is. To be specific, assuming there are only two child nodes for one node (binary tree) in
RF, scikit-learn calculates the importance of a node using Gini importance (Ronaghan, 2019):

nij = wjCj − wleft(j)Cleft(j) − wright(j)Cright (j) (5.2)

where nij is the importance of node j; wj is the weighted number of samples reaching node j;
Cj is the impurity value of node j; left(j) is the child node from left split on node j; right(j) is
the child node from right split on node j.

The importance of each feature on a decision tree is then calculated as (Ronaghan, 2019):



Chapter 5. Model implementation 46

fii =

∑
j: node j splits on feature i nij∑

k∈ all nodes nik
(5.3)

where fii is the importance of feature i; nij is the importance of node j.

These can then be normalized to a value between 0 and 1 by dividing by the sum of all feature
importance values (Ronaghan, 2019):

normf ii =
fii∑

j∈allfeatures fij
(5.4)

The final feature importance, at the Random Forest level, is its average over all the trees. The
sum of the feature’s importance value on each tree is calculated and divided by the total number
of trees (Ronaghan, 2019):

RFfii =

∑
j∈ all trees norm fiij

T
(5.5)

where RFfii is the importance of feature i calculated from all trees in the RF model; normfiij
is the normalized feature importance for i in tree j; T is the total number of trees.

The result of the PDP and feature importance values will be presented in the section 7.5.

5.6 Conclusion
This chapter presents the methods that have been adopted in the implementation of the machine
learning models on the training dataset. In the first place, as the training dataset applied in
this study is small, the cross-validation strategies are introduced in order to divide the dataset
multiple times, and then average the results of multiple evaluations, so as to eliminate the adverse
effects caused by the randomness in a single dataset division. Two types of CV strategies are
proposed, namely the k-fold CV and the group k-fold CV. Comparably speaking, the k-fold CV
simulates a more mild scenario, thus leading to a more optimistic estimation of the performance
of the machine learning models. Contrarily, group k-fold CV simulates a more complex scenario,
thus leading to a relatively more conservative estimation of the performance of the models.
Utilizing both of these two CV strategies together enables us to provide a more comprehensive
estimation of the performance of the machine learning models. Next, two methods for the
hyperparameter tuning are put forward, namely the grid search CV and random search CV.
Grid search is able to exhaustively search over the specified parameter values for an estimator,
suitable for tuning a relatively small number of hyperparameters. In contrast, random search
tries out a fixed number of parameter settings sampled from the specified distribution, applicable
for tuning a large number of hyperparameters. After that, the Monte Carlo analysis is carried
out to evaluate the robustness of the model on the validation set using 1000 different random
seeds. After all, a sensitivity analysis is proposed by utilizing the partial dependence plots and
the feature importance function to estimate the importance of input parameters for modelling.
Above is all the training and constructing process of the machine learning models in the training
and validation set. The testing dataset used in this study will be introduced in Chapter 6.



Chapter 6

Testing dataset

6.1 Introduction
After applying the machine learning models to the training dataset as presented in Chapter
5, the performance of the models is further tested with an unseen testing dataset, which is
introduced in this chapter. 20 laboratory test samples obtained in a location, provided by
de Gast (2020) are taken as the 20 data samples in the testing dataset in this research. These
20 samples were collected from 11 semi-continuous boreholes at different depths. This chapter
starts with introducing input variables in the testing dataset, which are identical to the ones
stated in Chapter 3, namely the effective stress, cone tip resistance, effective cone tip resistance
and excess pore pressure. The data of the CPTs (provided by de Gast (2020)) that are in the
vicinity of the 11 boreholes of the 20 laboratory samples is interpreted and then processed using
GPR in order to obtain representative values of the input variables at the location of those
laboratory samples. Then a brief introduction to achieving the output variable, the undrained
shear strength of soil through laboratory tests is provided.

6.2 Input variables
In de Gast (2020)’s research, a site investigation was completed at Leendert de Boerspolder (Fig.
6.1), a polder located close to Leiden in the Netherlands. This place is typical of the western
Netherlands, with a dyke founded on soft material in order to defend the land from water. This
particular dyke has been on the maps since 1611, and it has been maintained first by the local
farmers and then by the local water authority named ‘Hoogheemraadschap van Rijnland’. The
dyke is made of sand, silt, clay and rubble. Having been constructed and maintained over the
years, this man-made embankment has caused the soft layers to compress (de Gast, 2020).

100 CPTs, class 1 accuracy according to NEN-EN-ISO 22476-1, were conducted in location C
in Fig. 6.1. The data was collected over a period of two weeks in a location where the original
ground surface had been partly compressed by an old dyke. The site investigation was performed
in a grid as shown in Fig. 6.2. The grid of CPTs was parallel to the dyke, with CPT indexes
34-44 and 69-86 located on the crest of the dyke (Zone 1, Line 7), CPT indexes 45-54, 92-94, 97
and 98 on the slope of the dyke (Zone 2, Line 6), and CPT indexes 23-33 and 95-96 located at
the toe of the dyke (Zone 2, Line 5). The remaining CPTs were located in the polder next to
the dyke (Zone 3, Lines 1-4).
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Figure 6.1. An aerial photograph of Leendert de Boerspolder, taken in 2015,
indicated are: (A) and (B) locations not related to this study, (C) location of where
the 100 CPTs were conducted and where 20 samples were collected for laboratory tests
(de Gast, 2020).

As stated in the introduction of this chapter, there were also 20 samples for the laboratory tests
collected from 11 semi-continuous boreholes in location C. The locations of these 11 boreholes
are shown in Fig. 6.3 and their locations in relation to the CPTs are presented in Fig. 6.4. With
this figure, the CPTs that are in the vicinity of the 11 boreholes of the 20 laboratory samples can
be selected. Then the data of the selected CPTs are automatically interpreted using a script.
The interpreted results are then fed to GPR to obtain the representative input at the location
of the laboratory samples, that is, the final input in the testing dataset.
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Figure 6.2. CPT grid (50m x 15m): (a) main testing zones, cross section (A-A)
illustrated; (b) plan view of CPT locations (de Gast, 2020).
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Figure 6.3. The location of 11 boreholes for the laboratory tests in the location C
using Global RD (Dutch reference) XYZ-coordinates (de Gast, 2020).

Figure 6.4. The location of 11 boreholes for the laboratory tests and 100 CPTs in
the location C using Global RD (Dutch reference) XYZ-coordinates.

In addition, an illustration of the application of GPR on the prediction of representative CPT
data at the location of the laboratory borehole through several CPTs that are in close vicinity
is provided in Fig. 6.5 (The confidence interval is not included since multiple inputs with
uncertainties is not considered). To obtain the representative CPT data at the location of
borehole B1009 which is for the laboratory tests, CPT index 66, 88 and 99 are selected since
they are in close vicinity. The raw CPT data of these three boreholes are first interpreted with
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a script. After the interpretation, the corrected cone tip resistances (qt) of the three boreholes
are plotted with dotted lines in the figure. Then GPR, which applies a Matern kernel-function,
is applied to these three sets of data to figure out the final prediction which is plotted with a
black solid line in the figure. Lastly, the representative corrected cone tip resistance value of the
laboratory sample B1009-4, which is located at a depth of 3.92 m, can be evaluated through the
prediction line.
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Figure 6.5. An illustration of the application of Gaussian process regression on
processing CPT data.

Table 6.1 shows the 20 laboratory samples and the corresponding selected CPTs.

Laboratory samples
B1007-8

B1007-11

B1006-3

B1006-7

B1010-4

B1010-6

B1010-9

B1009-4

B1009-5

B1009-8

CPT boreholes 75 85, 40, 51, 97 6, 87 66, 88, 99

Laboratory samples
B1008-4

B1008-6

B1005-3

B1005-7

B1001-5

B1001-6

B1011-5

B1011-7

B1011-10

B1011-11

CPT boreholes 59, 91, 95, 28 50, 94, 83, 39 93, 94, 73, 49, 82 37

Table 6.1. 20 laboratory samples and the corresponding selected CPTs.
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Table 6.2 shows the selected CPTs together with the corresponding representative CPT data after
processing using GPR. The final inputs in the testing dataset can be found in the Appendix A.2

CPT

boreholes

Depth

(m)

sigv’

(kPa)

qt

(kPa)

sigv

(kPa)

u2

(kPa)

u0

(kPa)

75
4.76 35.00 272.00 78.00 5.93 44.00

6.31 41.00 181.00 100.00 26.56 59.00

85, 40,

51, 97

2.17 18.00 246.25 35.50 22.24 18.00

4.37 30.75 224.50 70.25 36.82 40.00

6, 87

4.06 24.00 174.50 61.00 56.60 37.00

5.06 28.50 176.50 75.00 88.46 47.00

6.66 35.00 235.00 98.00 134.96 63.00

66, 88,

99

3.92 24.33 178.33 59.67 49.65 35.00

5.02 29.00 205.75 75.33 84.67 46.00

6.12 33.67 224.00 91.33 118.20 57.00

59, 91,

95, 28

3.88 24.50 154.50 59.50 69.09 35.00

4.68 28.25 225.13 71.50 98.60 43.00

50, 94,

83, 39

2.39 18.75 261.33 38.50 13.91 20.00

4.54 31.25 218.00 72.25 40.80 42.00

93, 94, 73,

49, 82

3.23 24.20 250.20 52.80 31.01 28.00

4.13 29.60 204.80 66.60 61.85 37.00

37

3.15 24.00 358.25 52.00 -2.92 28.00

4.25 31.00 225.00 70.00 18.25 39.00

5.85 39.00 164.25 94.00 49.87 55.00

6.45 42.00 182.25 102.25 70.17 61.00

Table 6.2. 20 laboratory samples with their selected CPTs, together with the
corresponding representative CPT data after processing.
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6.3 Output
The Mohr-Coulomb failure criterion is generally applied to estimate the shear strength of soil.
Based on the presence of soil failure on any plane when the resolved shear strength (3.2) reaches
the critical state, it is essentially concerned with the stress state on the potential rupture planes
in soil (Goktepe et al., 2008).

To illustrate, the stress state at a point in the soil can be graphically presented using Mohr’s
circle, as presented in Fig. 6.6. In a Cartesian coordinate system of normal stress and shear
stress, the Mohr’s circle can be plotted taking σ1+σ3

2 as the centre and σ1−σ3
2 as the radius,

where σ1 and σ3 are the maximum and minimum principal stress respectively. Demonstrably,
the coordinates of each point on the Mohr’s circle represent normal stress and shear stress of
the point in the corresponding plane, which means that Mohr’s circle can represent the stress
state of a point in the soil. If the soil shear strength parameters c and ϕ are given, the shear
strength envelope can be plotted together with Mohr’s circle. Then, if the whole circle is below
the failure envelope, the shear stress at this point in any plane is less than the shear strength,
thus there is no shear failure. If Mohr’s circle is tangent to the shear strength envelope, then the
shear stress is equal to the shear strength in the plane represented by the tangent point. This
point is considered to be at the critical state and this Mohr’s circle is called the limiting stress
circle.

Figure 6.6. Geometrical view of Mohr-Coulomb failure criterion (Goktepe et al.,
2008).

Consolidated undrained (CU) tests were carried out on the 20 laboratory samples in de Gast
(2020)’s study. In a CU-test, water is filled into the pressure chamber where the sample is placed.
Then the sample is subjected to a constant confining pressure σ3. Meanwhile, the drain valve
is opened, allowing the drainage consolidation of the sample. After the sample is consolidated
and stable, the drain valve is closed and vertical compressive stress σ1 is applied to the sample
through a load ram. In such a manner, the vertical principal stress gradually increases while
the horizontal principal stress stays constant. The sample is subjected to shear failure in the
undrained condition in the end. The undrained shear strength and effective stress obtained from
the CU tests for the 20 samples are presented in Table 6.3. This effective stress will be compared
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with the effective stress obtained through the CPT test to ensure safety. And the undrained
shear strength is taken as the output of the testing dataset.

Laboratory

boreholes

B1007

-8

B1007

-11

B1006

-3

B1006

-7

B1010

-4

B1010

-6

B1010

-9

B1009

-4

B1009

-5

B1009

-8

Su 16.02 19.59 26.95 15.68 11.34 9.93 17.67 11.49 10.90 18.82

σ′
v 32.26 44.19 62.91 30.56 20.67 18.00 42.35 21.98 19.60 43.65

Laboratory

boreholes

B1008

-4

B1008

-6

B1005

-3

B1005

-7

B1001

-5

B1001

-6

B1011

-5

B1011

-7

B1011

-10

B1011

-11

Su 9.61 14.11 19.70 13.16 20.47 25.80 24.97 13.30 20.61 20.61

σ′
v 17.90 36.21 47.40 26.24 45.46 53.60 58.83 28.13 45.21 45.21

Table 6.3. The undrained shear strength and effective stress obtained from the CU
tests for the 20 samples.

6.4 Conclusion
This chapter introduces the testing dataset applied in this study. To start with, the location of
the site investigation in de Gast (2020) is presented. In this site investigation, 100 CPT tests
were conducted, together with 11 boreholes for the sampling of 20 samples for the laboratory
tests. Then the CPT grid and the locations of the laboratory boreholes are provided. Plotting
the locations of the CPT and laboratory boreholes together, the CPTs around the laboratory
boreholes are then selected for generating representative CPT data at the location of the labo-
ratory boreholes. The CPT data of the selected boreholes are then interpreted and applied to
GPR. This representative CPT data at the location of the laboratory boreholes are taken as
the inputs of the testing dataset. After that, the undrained shear strengths of the 20 samples
collected from the 11 laboratory boreholes are determined through CU tests, which are taken
as the output of the testing dataset. Finally, combining the data in Table 6.2 and Table 6.3,
the testing dataset is displayed in the Appendix A.2. The results of the ML techniques on the
testing dataset will be presented in Chapter 7.
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Results and discussion

7.1 Introduction
This chapter presents all the results obtained in this study. Starting with the hyperparameter
tuning results of the five algorithms used, two models are constructed for each algorithm. One
of them is obtained by adopting k-fold CV and the other is obtained by adopting group k-fold
CV. Then the predicted values in the training and testing dataset together with their relative
error and error distributions using each model are presented. The results are then compared
and discussed in order to select the most appropriate model for the prediction of undrained
shear strength from CPT data. Next, the results of the Monte Carlo analysis are provided for
the evaluation of the robustness of the model on the validation set. Finally, the results of the
sensitivity analysis are shown for the analysis of the importance of the input variables.

7.2 Hyperparameter tuning results
The hyperparameter tuning results of the ANN are presented in Table 7.1. During the calibration
of the hyperparameters, 25 architectures of the neural network have been experimented with.
The number of the hidden layers ranges from 1 to 5 and the number of neurons in each hidden
layer is tried with 2, 4, 8, 16, and 32. The options for the activation function include the tanh
function, relu function and logistic function. Two optimization solvers are tried, namely the
adam and lbfgs. 8 alphas are sampled log-uniformly distributed between 10−8 and 0.1. 7 initial
learning rates are sampled log-uniformly distributed between 10−6 and 1.0. The size of the
mini-batches that have been experimented with is 16, 32, 64, 128 and 256.

The tuned hyperparameters of SVM are presented in Table 7.2. Possible kernel-functions to use
include: linear function, polynomial function, radial basis function, sigmoid function and pre-
computed function. 50 kernel coefficients are evenly sampled from 0.01 to 30. 20 regularization
parameters are evenly sampled from -10 to 20. 5 epsilon values are evenly sampled from 0.1 to
0.5.

For the hyperparameter tuning of GPR, two kernel-functions, namely the radial basis function
(RBF) and the Matern have been experimented with. They are both multiplied by a constant
kernel and then added with a white kernel function before being fitting to the training data.
The tuning results for k-fold CV and group k-fold CV are identical: the Matern kernel-function
is chosen and the alpha which is the value added to the diagonal of the kernel matrix during
fitting equals 1.0.
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Parameters Description
Value

(k-fold)

Value

(group k-fold)

hidden_layer

_sizes

The ith element represents the number

of neurons in the ith hidden layer
(8,8)

(16,16,

16,16)

activation Activation function for the hidden layer relu tanh

solver The solver for weight optimization lbfgs adam

alpha Strength of the L2 regularization term 10−7 10−7

learning_

rate_init
The initial learning rate used / 0.01

batch_size Size of minibatches for stochastic optimizers / 16

Table 7.1. ANN parameters tuned with k-fold CV and group k-fold CV.

Parameters Description
Value

(k-fold)

Value

(group k-fold)

kernel Specify the kernel type to be used rbf rbf

C Kernel coefficient 1.60 30.00

gamma Regularization parameter 3.06 0.06

epsilon

Specify the ϵ-tube within which

no penalty is associated

in the training loss function

0.10 0.10

Table 7.2. SVM parameters tuned with k-fold CV and group k-fold CV.
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The tuned hyperparameters of RF are presented in Table 7.3. The number of trees has ex-
perimented from 1 to 100. The number of features to use is tried from 2 to 4. The minimum
number of samples required to split an internal node has been experimented with from 2 to 20.
The minimum number of samples required to be at a leaf node is experimented with from 1 to
10. The maximum number of leaf nodes a decision tree can have is tried with 25 to 50. The
maximum depth of the tree is sampled from 1 to 20. The function to measure the quality of a
split is chosen from RMSE and MAE.

Parameters Description
Value

(k-fold)

Value

(group k-fold)

n_estimators Number of trees in the forest 92 90

max_features
Number of features to consider

when looking for the best split
4 4

min_samples_split
Minimum number of samples required

to split an internal node
4 13

min_samples_leaf
Minimum number of samples

required to be at a leaf node
2 6

max_leaf_nodes
Maximum number of leaf nodes

a decision tree can have
48 47

max_depth Maximum depth of the tree. 9 2

criterion
The function to measure

the quality of a split

squared

_error

squared

_error

Table 7.3. RF parameters tuned with k-fold CV and group k-fold CV.

The tuned hyperparameters of XGBoost are presented in Table 7.4. The number of trees has
experimented from 1 to 100. 6 ratios of the subsample are evenly sampled from 0.6 to 1.0. 25
learning rates are evenly sampled from 0.01 to 0.25. The maximum depth of a tree that has been
experimented with is from 2 to 10. 20 L1 and 50 L2 regularization terms on weights are evenly
sampled from 0 to 0.2 and from 0 to 5 respectively. 50 values of gamma are evenly sampled from
0 to 5. The boosters to choose from include gbtree and dart.
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Parameters Description
Value

(k-fold)

Value

(group k-fold)

n_estimators Number of trees in the forest 47 14

subsample Subsample ratio of the training instances 0.50 0.60

learning_rate
Step size shrinkage used in update

to prevent overfitting
0.11 0.11

max_depth Maximum depth of a tree 6 2

reg_alpha L1 regularization term on weights 2.60 1.00

reg_lambda L2 regularization term on weights 0.10 1.60

gamma

Minimum loss reduction required to

make a further partition

on a leaf node of the tree

4.80 3.90

booster Which booster to use gbtree gbtree

Table 7.4. XGBoost parameters tuned with k-fold CV and group k-fold CV.

7.3 Results in the training and testing dataset
The results of ANN in the training and testing dataset are presented in Fig. 7.1 and Fig. 7.2
respectively.

The results of SVM in the training and testing dataset are presented in Fig. 7.3 and Fig. 7.4
respectively.

The results of GPR in the training and testing dataset are both presented in Fig. 7.5 since the
tuning results from the k-fold and group k-fold CV are identical. In addition, the uncertainty
quantification of the prediction using GPR is provided in Fig. 7.6. The blue area shows the 95%
confidence interval which is obtained by adding and subtracting 1.96σ from the prediction. The
σ is provided together with the prediction in GPR.

The results of RF in the training and testing dataset are presented in Fig. 7.7 and Fig. 7.8
respectively.

The results of XGBoost in the training and testing dataset are presented in Fig. 7.9 and Fig.
7.10 respectively.
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(a) ANN regression (k-fold)

0 50 100 150 200 250
Lab results of Undrained Shear Strength (kPa)

0

50

100

150

200

250

Pr
ed

ict
io
n 
of
 U
nd

ra
in
ed

 S
he

ar
 S
tre

ng
th
 (k

Pa
)

1:1
Linear fit (Y=0.80*X+ 13.25)
data

(b) ANN regression (group k-fold)

0 100 200 300 400 500
Sample index

 1

0

1

2

3

4

Re
la
tiv
e 
er
ro
r

Relative error = (Predicted - Measured) / Measured
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(d) Relative Error of ANN (group k-fold)
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(e) Relative Error Distribution of ANN (k-fold)
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(f) Relative Error Distribution of ANN (group k-fold)

Figure 7.1. Best ANN models from k-fold and group k-fold CV on the training set.
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(a) ANN regression (k-fold)
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(b) ANN regression (group k-fold)
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(e) Relative Error Distribution of ANN (k-fold)
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(f) Relative Error Distribution of ANN (group k-fold)

Figure 7.2. Best ANN models from k-fold and group k-fold CV on the testing set.
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(a) SVM regression (k-fold)
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(b) SVM regression (group k-fold)
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(c) Relative Error of SVM (k-fold)
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(d) Relative Error of SVM (group k-fold)
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(e) Relative Error Distribution of SVM (k-fold)
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(f) Relative Error Distribution of SVM (group k-fold)

Figure 7.3. Best SVM models from k-fold and group k-fold CV on the training set.
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(a) SVM regression (k-fold)
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(b) SVM regression (group k-fold)
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(f) Relative Error Distribution of SVM (group k-fold)

Figure 7.4. Best SVM models from k-fold and group k-fold CV on the testing set.
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(a) GPR regression in the training dataset
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(b) GPR regression in the testing dataset
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(e) Relative Error Distribution of GPR in the training dataset
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(f) Relative Error Distribution of GPR in the testing dataset

Figure 7.5. Best GPR model from k-fold and group k-fold CV on the training and
testing set (the best models are identical from both CV strategies).

Figure 7.6. The uncertainty quantification on the testing set using GPR.
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(a) RF regression (k-fold)
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(b) RF regression (group k-fold)
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(c) Relative Error of RF (k-fold)
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(d) Relative Error of RF (group k-fold)
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(e) Relative Error Distribution of RF (k-fold)
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(f) Relative Error Distribution of RF (group k-fold)

Figure 7.7. Best RF models from k-fold and group k-fold CV on the training set.
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(a) RF regression (k-fold)
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(b) RF regression (group k-fold)

(c) Relative Error of RF (k-fold)
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(e) Relative Error Distribution of RF (k-fold)
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(f) Relative Error Distribution of RF (group k-fold)

Figure 7.8. Best RF models from k-fold and group k-fold CV on the testing set.
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(a) XGBoost regression (k-fold)
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(b) XGBoost regression (group k-fold)
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(c) Relative Error of XGBoost (k-fold)

0 100 200 300 400 500
Sample inde 

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Re
la
tiv

e 
er
ro
r

Relative error = (Predicted - Measured) / Measured

(d) Relative Error of XGBoost (group k-fold)
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(e) Relative Error Distribution of XGBoost (k-fold)
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(f) Relative Error Distribution of XGBoost (group k-fold)

Figure 7.9. Best XGBoost models from k-fold and group k-fold CV on the training
set.
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(a) XGBoost regression (k-fold)
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(b) XGBoost regression (group k-fold)
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(d) Relative Error of XGBoost (group k-fold)
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(e) Relative Error Distribution of XGBoost (k-fold)
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(f) Relative Error Distribution of XGBoost (group k-fold)

Figure 7.10. Best XGBoost models from k-fold and group k-fold CV on the testing
set.
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A summary of the prediction capabilities of the algorithms using k-fold CV and group k-fold
are presented in Table 7.5 and Table 7.6 respectively. The GPR results in the two tables are
identical since the result of hyperparameter tuning of k-fold CV and group k-fold CV are the
same.

Part Method R2 MAE RMSE merror(%) StDerror

Training

ANN 0.79 10.69 14.96 13.37% 0.43

SVM 0.83 9.85 13.38 14.42% 0.42

GPR 0.76 11.30 15.81 14.51% 0.43

RF 0.91 6.92 9.69 8.65% 0.30

XGBoost 0.96 5.17 6.67 5.87% 0.23

Testing

ANN -1.85 7.30 8.77 33.00% 0.58

SVM -0.31 5.09 5.94 16.68% 0.41

GPR -0.38 4.43 6.09 17.55% 0.21

RF 0.13 3.75 4.85 10.98% 0.21

XGBoost 0.23 3.73 4.55 7.78% 0.34

Table 7.5. Summary of the prediction capabilities of the algorithms using k-fold CV.

Part Method R2 MAE RMSE merror(%) StDerror

Training

ANN 0.76 11.87 15.88 28.72% 0.50

SVM 0.76 11.14 15.82 14.02% 0.44

GPR 0.76 11.30 15.81 14.51% 0.43

RF 0.71 12.49 17.60 20.46% 0.51

XGBoost 0.62 13.06 20.04 5.48% 0.37

Testing

ANN -1.36 6.78 7.98 36.08% 0.54

SVM -2.28 7.87 9.40 29.02% 0.61

GPR -0.38 4.43 6.09 17.55% 0.21

RF -0.53 5.31 6.42 35.02% 0.42

XGBoost 0.03 4.22 5.11 0.25% 0.29

Table 7.6. Summary of the prediction capabilities of the algorithms using group
k-fold CV.

The CV results in the training dataset are presented in Table 7.7.
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CV Method R2 StDR2 MAE StDMAE RMSE StDRMSE

k-fold

ANN 0.76 0.06 10.87 1.64 15.49 2.96

SVM 0.76 0.06 11.13 1.93 15.32 3.10

GPR 0.73 0.07 11.74 1.61 16.34 2.84

RF 0.75 0.08 10.89 1.97 15.70 3.32

XGBoost 0.76 0.06 10.79 1.58 15.45 2.69

group k-fold

ANN 0.13 0.79 16.44 7.39 21.21 8.29

SVM -0.29 1.57 17.76 6.12 22.76 7.88

GPR -0.41 1.75 15.89 7.71 20.21 8.95

RF -0.95 2.90 17.27 5.27 22.45 7.58

XGBoost -0.12 0.78 16.61 6.97 22.03 9.75

Table 7.7. The CV results in the training dataset.

To start with, it is not surprising to see that the result of group k-fold CV is poorer both in
the training dataset compared with that of the k-fold CV. However, in the testing dataset, the
result of group k-fold CV is also poorer. Therefore, group k-fold CV is not chosen as the CV
strategy in this research.

Then, the results can be visualized intuitively with the plots. It is also not surprising to see that
the prediction results in the training dataset are overall good. However, it doesn’t mean anything
since the model is fitted to the training dataset. These results can only be used to determine
whether the model is overfitting or not. The results of the testing dataset show how the models
perform on unseen data, which has always been crucial information to consider. However, as
the testing dataset only consists of 20 samples, which is way too small for the ML problem, the
results in the testing dataset can only be considered as a reference. The prediction of RF and
XGBoost is better than the others, which can also be verified with the tables.

With the information in the tables, the results can be analyzed more objectively. The statistic
metrics need to be considered comprehensively since one statistic metric is more representative
than the others. For instance, if the R2 of an algorithm is relatively low but the MAE is
completely within the acceptable margin of error, then the algorithm is still practical to use.
Table 7.7 contains important information about this research. The CV results in the training
dataset show the average capabilities of the algorithms to learn from 90% of the training dataset
and then predict on the rest of 10%. The CV results of ANN, SVM and XGBoost are fairly
close, showing overall good performance.

Combining the above information, XGBoost is chosen as the most appropriate algorithm for
the prediction of undrained shear strength from CPT due to its high accuracy. It is worth
mentioning that this is only true with the specific testing dataset used in this study and it cannot
be generalized to other datasets. Being a Bayesian method, GPR is chosen as the second option
due to its capability of uncertainty quantification and also due to its adaptability to dealing
with a small dataset (Lora, 2019). The robustness of these two models is further validated in
the validation set in the next section.
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7.4 Monte Carlo analysis results
The robustness of the selected two models needs to be validated from a statistical point of view.
As mentioned already in the section 5.4, in each iteration, 90% of the experimental data are
randomly selected in order to train and construct the machine learning model. Then the model
is tested on the validation set which contains 10% of the experimental data. Therefore a total
number of 1000 numerical simulations are carried out for XGBoost and GPR on the validation
set, taking into account the random splitting effect in the dataset. This is also called the Monte
Carlo simulation.

The R2 values of these simulations in the validation datasets are plotted in Fig. 7.11(a) and
7.11(c), and the corresponding histograms are plotted in Fig. 7.11(b) and 7.11(d). It is observed
that the proposed XGBoost model gives R2 values within the range of 0.06 to 0.90. The most
frequent R2 obtained over 1000 simulations is R2 = 0.778 with a frequency of 313. Besides,
the accuracy R2 values of GPR ranges from 0.20 to 0.90 with the most frequent values of R2 =
0.73 with a frequency of 351. Monte Carlo analysis is also carried out for the ANN, SVM and
RF. The performances of the five models for the validation part are summarized together and
presented in Table 7.8.
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(a) R2 for 1000 simulations for XGBoost
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(b) Histograms of R2 for XGBoost
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(c) R2 for 1000 simulations for GPR
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(d) Histograms of R2 for GPR

Figure 7.11. Scatter plots and the corresponding histograms of R2 values for 1000
simulations for XGBoost and GPR.
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Part Method Mode Median Avr. R2 StD. R2

Validation

ANN 0.723 0.759 0.738 0.105

SVM 0.496 0.518 0.521 0.093

GPR 0.728 0.732 0.719 0.087

RF 0.779 0.742 0.717 0.110

XGBoost 0.778 0.719 0.701 0.113

Table 7.8. Summary of the Monte Carlo simulations.

It can thus be concluded that XGBoost and GPR algorithms have the potential to predict the
undrained shear strength of the soil. And they yielded close results with median R2 = 0.719
and 0.732 respectively. ANN and RF are also fairly robust, but it turns out that SVM lacks
robustness.

7.5 Sensitivity analysis results
A sensitivity analysis is carried out to evaluate the importance of the input parameters for
modelling using partial dependence plots, which is an efficient way to investigate the relationship
between inputs and output. Partial dependence plots show the dependence between the target
response and a set of input features of interest, marginalizing the values of all other input
features. Fig. 7.12 and Fig. 7.13 illustrate the partial dependence of the output on the inputs
using RF and XGBoost respectively (The y-axes show the undrained shear strength (kPa)). As
shown, the undrained shear strength had an overall positive correlation with the input variables.
The variation of shear strength is significant with the cone tip resistance and the excess pore
pressure.
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Figure 7.12. Partial dependence plots of the input variables used in this study using
RF.
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Figure 7.13. Partial dependence plots of the input variables used in this study using
XGBoost.

Using RF, the relative importance scores of the inputs to the output are presented in Fig. 7.14.
It can be seen that the excess pore pressure is the most significant variable for the shear strength
of soil, which achieved an average importance score of 0.433. The cone tip resistance ranked
second with an average importance score of 0.387, followed by the effective stress (0.099) and
the effective cone tip resistance (0.080). This result agrees well with Fig. 7.12 and Fig. 7.13.

qt-u2 (kPa) sig'v (kPa) qt-sigv (kPa) u2-u0 (kPa)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fe
at
ur
e 
im

po
rta

nc
e 
sc
or
e

Feature importances

Figure 7.14. Variable importance analysis using random forest.

7.6 Conclusion
This chapter first presents the hyperparameter tuning results of the five algorithms. Each algo-
rithm has been tuned with k-fold CV and group k-fold CV, resulting in two models with different
sets of hyperparameters.

Then the results in the training and testing dataset are provided using figures and tables. For
each algorithm, the figures first present the prediction results in the training dataset, together
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with the corresponding relative error and relative error distribution, with two CV strategies.
Next, the same is done in the testing dataset. The prediction capabilities of the algorithms
using k-fold CV and group k-fold CV are then summarized in the Table 7.5 and Table 7.6.
Finally, the CV results in the training dataset are summarized in Table 7.7. XGBoost is chosen
as the most appropriate algorithm for the prediction of undrained shear strength from CPT. GPR
as a Bayesian method is chosen as the second option due to its unique ability of uncertainty
analysis and its adaptability to dealing with a small dataset.

Next, the robustness of the selected two models is validated from a statistical point of view by
applying Monte Carlo analysis. The performance of the XGBoost and GPR is relatively stable,
with most of the R2 values ranging between 0.7 to 0.8, further validating the potential of these
two algorithms to predict the undrained shear strength.

At last, a sensitivity analysis is carried out to evaluate the importance of the input parameters
for modelling in this study using RF. The partial dependence plots and the variable relative
importance score both indicate that the excess pore pressure and the cone tip resistance are the
most influential inputs to the undrained shear strength.
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Conclusions

This thesis evaluates the relative performance of five machine learning algorithms, namely the
ANN, SVM, GPR, RF and XGBoost to the prediction of undrained shear strength through CPT.
The conclusions are summarized as follows:

• The training dataset used in this study consists of 526 data points from 40 different sites
in 13 countries. There are four inputs in each sample, namely the effective stress (σ′

v),
cone tip resistance (qt − σv), effective cone tip resistance (qt − u2) and the excess pore
pressure (u2 − u0). The inputs are all obtained from CPT. The output is the undrained
shear strength obtained through laboratory tests. The pair plot shows an overall good
positive correlation between the inputs and the output. For ANN, SVM and GPR which
are sensitive to the scale of the inputs, feature scaling is conducted to the training dataset
to scale the training data from -1 to 1. The training dataset is used for training and
validation with the ratio of training and validation defined as 90/10.

• The CV strategy is chosen based on how the algorithms will be used in practice. The
validation should be able to mimic how the algorithms will be applied. The group k-fold
CV best suits the situation when the sample generation process is known to have a group
structure, which means that the assumption that the random variables are independent
and identically distributed in ML is broken. The poor performance of models tuned with
group k-fold CV on the testing datasets indicates that the data is site-specific in this study.
More data is required for a more robust conclusion. In addition, for the hyperparameter
tuning, RandomizedSearchCV is chosen to replace grid search CV when tuning more than
3 hyperparameters at the same time for efficiency.

• GPR is a reliable algorithm to use for processing the CPT data that are in close vicinity
to the boreholes in order to predict the representative CPT data at the location of the
laboratory boreholes. The representative CPT data is used as the input of the testing
dataset. The output in the testing dataset is acquired by conducting a CU test on the
samples from the boreholes.

• The performance of the algorithm in the training dataset indicates how much the model
has learned from the training dataset. If the performance is too poor, then the model is
underfitting, which means that the model has not learned enough information from the
training dataset. Conversely, if the performance of the model in the training dataset is too
good, then the model might be overfitting, which means that it has probably learned too
much information from the training dataset. In this case, the model may fail to generalize

74
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in the testing dataset. The performance of models in the testing dataset shows their
generalization abilities. However, considering that the testing dataset consists of only 20
samples in this study, which is simply too few, the result in the testing dataset is taken
as a reference. The CV results nicely reflect the learning and generalizing abilities of the
models in the training dataset, thus being very valuable for reference. It is worth noticing
that the statistic metrics need to be taken into account as a whole when evaluating the
performance of the models since only one statistic sometimes does not tell the whole story.
For instance, when an algorithm has a relatively poor R2 but with a MAE that is within
the margin of error, it is sometimes still practical to use.

• Not surprisingly, the performance of the five algorithms is overall pretty good in the
training dataset. This shows that the models have all learned enough information from
the training dataset. And as expected, the models obtained with group k-fold CV exhibit
a poorer prediction compared with the models obtained with k-fold CV since the models
face a much more severe learning task when using group k-fold CV as discussed before.
In the testing dataset, the results of the models using group k-fold CV are still relatively
poor, thus group k-fold CV is not considered in this study. Nevertheless, this doesn’t mean
that these models are meaningless considering that the testing dataset consists of only 20
samples, which is simply too few. The models tuned with group k-fold CV might be able
to show their strength in another testing dataset in a future study. The results of XGBoost
and RF in the testing dataset are relatively better than the others. And the CV results
of ANN, SVM and XGBoost are considerably the best. Combining the information in the
plots and tables, the results of XGBoost is chosen as the best out of the five algorithms.
Being a Bayesian method, GPR involves constructing a prior distribution over functions
rather than over parameters and updating this distribution by conditioning on the data.
And Lora (2019)’s study suggests that the Bayesian method is adept at dealing with a
small dataset. Therefore GPR is chosen as the second option due to its unique ability of
uncertainty analysis and its adaptability to dealing with small datasets. The result of RF
is slightly worse compared with that of the XGBoost. The CV results of ANN and SVM
are pretty good, but they fail to generalize in the testing dataset, thus they are not chosen
either. It is worth mentioning that the result of ANN in the testing dataset is in line with
the expectations since the ANN has been considered not suitable for learning information
from a relatively small dataset.

• The robustness of the XGBoost and GPR is validated by applying Monte Carlo analysis.
ANN and RF are also proved to be robust but it turns out that SVM lack robustness. The
Monte Carlo resampling method makes it possible to build the distribution of R2 values
on the validation set. This is then used to generate confidence intervals on the parameter
estimates, further validating the proposed model.

• In the sensitivity analysis, it is observed that the undrained shear strength increases
slowly with the increase of the effective stress and the effective cone tip resistance. The
undrained shear strength first increases slowly with the growth of the cone tip resistance,
then increases rapidly when the cone tip resistance is around 750kPa, and finally, it levelled
off. The undrained shear strength first stabilizes with the growth of excess pore pressure,
then increases rapidly when the excess pore pressure is around 300kPa, and finally increases
slowly. The relative importance scores can be obtained by applying RF. The ranking of
the scores is as follows: the excess pore pressure (0.433), the cone tip resistance (0.387),
the effective stress (0.099), and the effective cone tip resistance (0.080). The results are
in accordance with the observations from the partial dependence plots.
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Limitations and recommendations

9.1 Limitations
This thesis contributes to the prediction of undrained shear strength using ML techniques. Re-
viewing the whole research process, there are still many limitations in this study. The limitations
are summarized as follows:

• The prediction results should be compared to the results obtained with empirical correla-
tions to reflect the superiority of ML techniques to the empirical analytical methods. The
reason why this is not achieved is that it is difficult to find a complete training set that
contains all the parameters in the empirical formula.

• Being an important parameter that can be gained from CPT, the friction ratio (Rf ),
defined as the ratio between sleeve friction and cone resistance, is not included as the
input variable in the training dataset as there is no suitable training dataset.

• Even with 526 samples, the training dataset is still too small in a ML context. The
fewer samples for training, the more models can fit our data. For instance, in an extreme
example which contains only one training example, any model will be able to “explain” it,
however simple or complex the model may be. As more samples are added to the training
dataset, fewer models will be able to explain them. That way, for a dataset with only 526
samples, we need to be very careful not to be fooled by overfitting. Common measures for
dealing with a small dataset include: using simple models, removing the outliers, deleting
features that do not contribute to the prediction, etc.

• Containing only 20 samples, the testing dataset is apparently also way too small in a ML
context. This makes it more difficult to assess the generalizability of the ML models.
Moreover, there are errors both in the inputs and the output of the testing dataset. As
for the inputs, the positions of the CPTs are not taken as the inputs for generating the
representative CPT data at the location of the boreholes when applying GPR, thus there
is still room for improvement in the accuracy of the prediction for the representative
CPT data. As for the output, there are certainly errors in the undrained shear strength
obtained by the laboratory tests. To be more specific, Table 9.1 shows the effective stresses
of the samples obtained by the laboratory tests, the representative effective stresses at the
location of the samples and their ratios. For the samples with ratios that are too high
(greater than 1.5), the errors between the parameters measured by the laboratory tests
and CPTs are considered too high, which requires further analysis. In addition, the soil
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heterogeneity of the borehole samples in the testing dataset which has been discussed in
de Gast (2020)’s research is not taken into account in this study.

Laboratory

boreholes

B1007

-8

B1007

-11

B1006

-3

B1006

-7

B1010

-4

B1010

-6

B1010

-9

B1009

-4

B1009

-5

B1009

-8

σ′
v(lab) 32.26 44.19 62.91 30.56 20.67 18.00 42.35 21.98 19.60 43.65

σ′
v(CPT ) 35.00 41.00 18.00 30.75 24.00 28.50 35.00 24.33 29.00 33.67

σ′
v(lab)

σ′
v(CPT )

0.92 1.08 3.50 0.99 0.86 0.63 1.21 0.90 0.68 1.30

Laboratory

boreholes

B1008

-4

B1008

-6

B1005

-3

B1005

-7

B1001

-5

B1001

-6

B1011

-5

B1011

-7

B1011

-10

B1011

-11

σ′
v(lab) 17.90 36.21 47.40 26.24 45.46 53.60 58.83 28.13 45.21 45.21

σ′
v(CPT ) 24.50 28.25 18.75 31.25 24.20 29.60 24.00 31.00 39.00 42.00

σ′
v(lab)

σ′
v(CPT )

0.73 1.28 2.53 0.84 1.88 1.81 2.45 0.91 1.16 1.08

Table 9.1. The effective stresses of the samples obtained by the laboratory tests and
the representative effective stresses at the location of the samples.

9.2 Recommendations
The work of this master thesis promotes the research in the prediction of undrained shear strength
through CPT data using various ML techniques. With the advancement of ML techniques and
more available datasets, better ML models for the prediction or classification of all kinds of soil
properties will be developed. The following recommendations are drawn for future research:

• According to Section 2.4, novel optimization techniques can be applied for the calibration
of the hyperparameters in the ML models when dealing with large datasets.

• As the training dataset consists of worldwide data while the data in the testing dataset is
from the Netherlands only, a relatively large prediction error is inevitable in this research.
In the future study, site-specific training datasets can be established to train and construct
ML models belonging to different regions in order to provide more accurate site-specific
information.

• Considering the errors in both the inputs and the output of the ML models, it is more
convincing to analyze the variables in terms of the confidence intervals rather than specific
estimates of the values. Therefore, multivariable error analysis is recommended for future
studies. In addition, it is suggested to apply the statistical analysis for more effective
analysis and comparison of the ML model performance results.

• Combining the results from multiple models is recommended in future studies in order
to get much more accurate predictions. For instance, a final prediction calculated as a
weighted average of predictions from various individual models will have significantly lower
variance and improved generalizability compared to the predictions from each individual
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model. Similarly, combining the predictions from the same model using different values of
hyperparameters is also recommended (Koidan, 2019).

• In this research, the CPT data is considered less labour-intensive and more cost-effective
to obtain than the laboratory data. In future research, a wider range of data sources that
are less labour-intensive and more cost-effective than CPT can be used. For instance,
train the ML models on the geophysical data to develop ML models that are capable of
characterizing the site conditions.
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Dataset

A.1 Training dataset

Country σ′
v (kPa) qt − σv (kPa) qt − u2 (kPa) u2 − u0 (kPa) Su (kPa)

Canada 36.75 667.3065 565.95 138.1065 56.154

Canada 36.75 376.32 248.724 164.346 55.6395

Canada 45.07 409.8215 169.4181 285.4734 16.72097

Canada 47.16 422.7894 169.4459 300.5035 36.87912

Canada 51.32 405.1714 162.2225 294.3202 31.20256

Canada 53.4 383.145 155.0202 281.5248 29.2098

Canada 53.4 380.0478 144.18 289.2678 40.1034

Canada 59.64 367.621 136.9931 290.2679 38.28888

Canada 61.73 396.0597 144.2013 313.5884 41.9764

Canada 67.97 410.063 140.562 337.4031 41.12185

Canada 72.13 414.3147 151.4009 335.0439 24.66846

Canada 74.21 417.2086 144.19 347.2286 35.6208

Canada 80.46 511.5647 212.6558 379.3689 67.34502

Canada 82.54 503.6591 205.4421 380.757 27.2382

Canada 95.03 495.3914 180.2719 410.2445 54.07207

Canada 97.11 523.6171 183.8292 436.8979 39.42666

Canada 103.35 557.5733 223.4427 437.4806 59.63295
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Country σ′
v (kPa) qt − σv (kPa) qt − u2 (kPa) u2 − u0 (kPa) Su (kPa)

Canada 105.43 610.9669 241.5401 474.9622 47.97065

Canada 111.68 648.6374 241.5638 518.7536 50.92608

Canada 120 580.2 299.16 401.04 51.6

Canada 132.49 659.4027 255.9707 536.0545 69.95472

Canada 31.38 823.2857 841.9568 12.7089 20.30286

Canada 32.76 401.2772 416.4779 17.55936 19.0008

Canada 36.21 228.5575 159.6137 105.1538 20.56728

Canada 36.9 216.972 148.707 105.1281 19.9998

Canada 40.69 208.5363 144.0833 105.143 18.51395

Canada 45.52 208.4361 139.1091 114.8925 21.98616

Canada 48.97 210.0813 149.0157 109.9866 24.63191

Canada 49.66 208.4727 148.1358 109.9969 25.3266

Canada 53.45 190.9769 129.5628 114.8641 22.8766

Canada 54.48 208.0591 147.6408 114.8438 31.76184

North Sea 31 279 120.001 189.999 17.763

UK 30 266.01 174 111.81 24.3

UK 30.02 264.9865 167.9919 115.607 21.25416

UK 34.01 267.9648 169.982 115.8041 26.69785

UK 34.96 302.0544 189.0287 129.5618 29.12168

UK 41.03 375.9579 238.015 151.6469 35.40889

UK 41.96 381.0807 243.0323 151.2658 31.30216

UK 47 401.004 250.98 160.787 29.845

UK 47.02 404.9833 247.9835 166.7329 32.86698

UK 50 420.95 267 162.5 23.25

UK 58.99 496.9908 341.965 157.5033 41.17502

UK 59 497.016 342.023 157.412 33.099

UK 74.04 583.9535 414.9942 163.3322 46.34904

UK 74.99 587.9966 341.9544 238.6932 45.59392
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Country σ′
v (kPa) qt − σv (kPa) qt − u2 (kPa) u2 − u0 (kPa) Su (kPa)

UK 77.03 597.9069 351.9501 238.6389 43.21383

UK 96.95 733.039 378.0081 335.7379 52.9347

UK 97.98 740.0429 390.0584 330.4865 57.3183

UK 97.98 740.0429 389.9604 330.3886 59.96376

UK 100.03 760.0279 434.0302 305.7917 61.61848

UK 99.96 764.0942 408.0367 334.2662 62.37504

UK 116.02 893.9341 484.0354 380.4296 70.7722

UK 116.02 893.9341 484.0354 380.4296 71.58434

UK 116.02 893.9341 484.0354 380.1975 69.72802

UK 117.98 903.0189 478.9988 393.2273 67.60254

UK 233 2017.081 1959.996 290.085 137.47

UK 315 2060.1 1809.99 565.11 141.12

Norway 42.24 229.7856 193.1635 78.86208 5.82912

Norway 45.11 273.2313 232.4518 85.88944 10.96173

Norway 50.84 276.9255 221.6116 106.1031 13.42176

Norway 58 319.638 226.142 151.496 13.224

Norway 60.86 327.5485 221.287 167.1216 18.07542

Norway 64.44 362.7328 245.3231 181.8497 13.2102

Norway 68.02 299.9682 181.2733 186.7149 14.14816

Norway 72.32 468.3443 348.4378 192.2266 11.86048

Norway 75.9 369.0258 246.2955 198.6303 15.8631

Norway 80.91 399.129 264.8184 215.2206 14.88744

Norway 82.34 390.5386 370.283 102.678 20.9967

Norway 84.49 359.2515 234.4598 209.2817 18.67229

Norway 85.92 411.8146 322.9733 174.8472 21.99552

Norway 90.21 286.958 211.2718 165.806 34.09938

Norway 98.81 339.5112 245.5429 192.7783 11.65958

Norway 103.82 311.3562 214.0768 201.0993 10.9011
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Country σ′
v (kPa) qt − σv (kPa) qt − u2 (kPa) u2 − u0 (kPa) Su (kPa)

Norway 117.42 483.3007 398.2886 202.4321 22.19238

Norway 122.43 476.7424 337.1722 262.0002 18.60936

Norway 126.73 427.2068 314.6706 239.2662 19.13623

Norway 40 297 170 167 24.76

USA 24.86 324.1247 176.6303 172.3544 32.21856

USA 127.15 587.0516 563.1474 151.0542 63.8293

USA 132.88 372.8613 235.5962 270.0122 56.07536

USA 138.62 502.9134 320.0736 321.3212 54.47766

USA 140.53 519.1178 333.1966 326.4512 51.01239

USA 146.27 536.3721 345.7823 336.8598 60.11697

USA 150.09 460.7763 280.218 330.6483 57.18429

USA 152 456 286.216 321.784 60.648

USA 158.7 432.1401 277.4076 313.4325 61.4169

USA 165.39 484.7581 308.7831 341.365 62.68281

USA 167.3 520.1357 319.543 367.8927 63.9086

USA 175.9 472.2915 296.2156 351.9759 62.6204

USA 182.6 465.63 316.4458 331.7842 70.8488

USA 184.51 472.3456 307.2092 349.4619 65.31654

USA 192.16 550.7306 369.3315 373.559 53.42048

USA 199.8 1002.796 726.4728 476.1234 102.4974

USA 208.41 888.035 577.2957 519.1493 105.2471

Canada 133.42 904.1873 397.5916 639.8823 98.33054

Canada 138.38 830.5568 398.8112 570.1256 96.1741

Canada 173.36 761.0504 434.2668 500.1436 71.42432

Canada 177.87 978.4629 424.7536 731.5793 130.3787

Canada 230.67 908.8398 377.6068 761.903 132.4046

Canada 40.09 272.171 126.3637 185.8973 14.95357

Canada 40.09 279.6678 125.1209 194.5969 16.75762
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Country σ′
v (kPa) qt − σv (kPa) qt − u2 (kPa) u2 − u0 (kPa) Su (kPa)

Canada 40.95 274.6107 127.6412 187.9196 26.33085

Canada 41.82 244.187 103.8809 182.1679 25.59384

Canada 45.27 249.5735 118.879 175.9645 21.36744

Canada 47 296.57 143.914 199.656 19.317

Canada 49.6 361.8816 167.6976 243.784 27.8752

Canada 56.51 293.5695 102.6222 247.4573 34.35808

Canada 57.37 313.0107 101.3728 269.0079 30.46347

Canada 59.1 337.3428 125.1147 271.3281 42.4929

Canada 65.15 407.7087 165.1553 307.7035 39.41575

Canada 66.88 417.7994 171.4134 313.199 25.68192

Canada 67.74 420.0557 183.9141 303.8816 40.44078

Canada 76.38 433.151 147.6425 361.8884 57.36138

Canada 78.11 450.6947 168.9519 359.8528 32.33754

Canada 86.75 579.4033 231.449 434.6175 54.73925

Canada 87.62 624.2925 263.9991 447.9134 41.88236

Canada 98.85 575.7024 212.7252 461.8272 56.04795

UK 16.18 351.2354 268.41 99.00542 17.0699

UK 21.9 344.5089 235.7097 130.6992 20.1042

UK 27.82 275.1676 173.0682 129.9194 22.36728

UK 31.54 276.2589 175.4255 132.3734 24.9166

UK 37.95 315.3266 189.4844 163.7922 27.28605

UK 48.22 358.1782 216.3631 190.035 33.07892

UK 52.35 395.3996 249.1337 198.6683 34.8651

UK 70.23 459.6554 288.2942 241.5912 42.48915

UK 75.9 474.6027 285.9912 264.5115 44.7051

UK 80.88 528.2273 319.3142 289.793 47.55744

UK 90.77 566.6771 338.5721 318.875 55.73278

Sweden 20.48 284.2624 119.4598 164.7821 13.53728
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Country σ′
v (kPa) qt − σv (kPa) qt − u2 (kPa) u2 − u0 (kPa) Su (kPa)

Sweden 23.14 314.0792 133.5872 180.492 15.22612

Sweden 26.1 316.4103 135.9027 180.5076 15.6861

Sweden 28.17 311.7856 126.0608 185.7248 15.2118

Sweden 32.02 307.2319 121.4839 185.748 16.26616

Sweden 34.38 304.8818 113.9009 190.9465 15.05844

Sweden 37.34 311.789 115.5673 196.2217 14.41324

Sweden 39.41 309.4867 108.0228 201.4639 14.38465

Sweden 46.22 320.9979 106.4447 214.5532 16.08456

Sweden 51.84 348.5722 113.0112 235.5091 17.72928

Sweden 56.87 392.2324 122.6117 269.6207 19.3358

Haga 70 737.03 266 541.03 60.83

Haga 88 957 382.976 662.024 55.44

Haga 118 767 231.044 653.956 67.496

Haga 135 788.94 189 734.94 64.395

Haga 24 736.008 430.008 330 33.336

Haga 65 1094.99 689.975 470.015 72.085

Haga 109 1669.989 1180.034 598.955 116.303

China 61.6 1214.444 1106.706 169.3384 41.1488

China 66.43 1250.279 828.3157 488.3934 66.82858

China 71.26 1964.353 1374.178 661.4353 71.33126

China 76.09 1356.837 848.0991 584.8277 44.51265

China 80.92 1150.925 631.4188 600.4264 111.0222

China 84.78 1376.912 810.6664 651.0256 48.7485

China 88.65 787.6553 360.5396 515.7657 40.4244

China 91.54 779.4631 373.117 497.8861 43.84766

China 94.44 757.6921 359.1553 492.9768 46.08672

China 99.27 782.3469 358.3647 523.2522 63.23499

China 103.14 829.9676 393.4791 539.7316 93.75426
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Country σ′
v (kPa) qt − σv (kPa) qt − u2 (kPa) u2 − u0 (kPa) Su (kPa)

China 106.04 901.5521 422.9936 584.5985 51.4294

China 109.9 1095.593 598.7352 606.7579 65.6103

China 112.8 1830.067 1221.737 721.1304 73.32

China 116.66 1948.222 1142.218 922.6639 51.56372

China 120.53 1245.798 632.7825 733.5456 87.50478

China 123.43 1400.437 721.8186 802.0481 60.60413

China 126.32 1701.53 1107.321 720.5293 87.41344

China 130.19 1932.54 1090.862 971.8684 62.4912

China 134.05 1632.863 822.6649 944.2482 71.3146

China 136.95 1792.949 966.0453 963.8541 77.92455

China 151.44 824.8937 419.3374 556.9963 76.78008

China 156.27 867.2985 410.9901 612.5784 101.1067

China 158.2 944.9286 434.8918 668.2368 105.203

China 175.59 1015.788 462.3285 729.0497 102.7202

USA 82.85 2943.329 1113.67 1799.502 139.0223

USA 94.66 3336.292 1262.575 2039.26 126.3711

USA 100.3 3431.965 1299.888 2095.568 143.0278

UK 152 2632.944 1024.936 1672.152 139.232

UK 172 2744.948 1073.452 1735.48 156.004

UK 192 3206.016 1250.496 2019.456 170.304

UK 213 3707.052 1442.649 2330.433 184.884

Canada 12.53 357.4057 136.1385 9.71075 16.77767

Canada 20.48 164.4339 68.05504 19.41504 23.87968

Canada 24.87 214.7027 89.55687 53.39589 25.31766

Canada 28.32 274.6757 114.611 150.4925 28.26336

Canada 35.65 354.7175 150.443 228.1957 33.5823

Canada 39.43 345.6828 150.386 247.5415 37.41907

Canada 42.97 386.0425 168.3135 252.4058 40.77853
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Country σ′
v (kPa) qt − σv (kPa) qt − u2 (kPa) u2 − u0 (kPa) Su (kPa)

Canada 46.68 406.5361 179.0645 267.0096 43.08564

Canada 49.88 418.4433 186.2519 271.846 43.8944

Canada 53.58 399.9211 182.6542 281.5629 45.75732

Canada 57.29 400.9154 186.2498 276.7107 47.95173

Canada 60.74 441.3976 204.1471 291.2483 48.04534

Canada 64.28 452.5312 211.2884 300.959 48.8528

Malaysia 13.5 212.895 136.053 73.6965 32.886

Malaysia 18.89 201.0841 122.105 68.53292 33.22751

Malaysia 22.75 219.2873 113.7728 86.177 51.324

Malaysia 26.61 224.9077 108.0632 95.02431 35.57757

Malaysia 31.62 257.6081 111.6186 116.4565 36.6792

Malaysia 35.48 275.786 122.2641 118.2903 49.06884

Malaysia 40.1 305.7224 130.2849 135.2974 52.13

Malaysia 42.03 319.5121 142.2295 135.925 50.436

Malaysia 50.9 376.7109 158.9607 172.551 60.2147

Malaysia 56.68 405.4887 166.9793 186.3638 60.02412

Malaysia 62.08 425.248 157.9936 214.176 56.86528

Canada 64.72 751.1403 342.4335 473.4268 68.53848

Canada 67.15 699.0987 320.977 445.3388 84.3404

Canada 72.84 767.1509 406.8114 433.1795 79.7598

Canada 82.17 603.0456 307.8088 377.4068 72.22743

Canada 93.54 558.9015 248.3487 404.0928 65.29092

Singapore 44.82 224.8171 179.5937 49.302 16.00074

Singapore 49.39 220.2794 140.6133 69.6399 19.16332

Singapore 69.67 211.2394 99.83711 110.9146 25.42955

Singapore 87.56 316.8796 223.3656 105.5974 41.76612

Singapore 110.24 327.964 231.063 115.5315 34.39488

Singapore 115.03 345.6652 247.0844 111.349 38.42002
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Country σ′
v (kPa) qt − σv (kPa) qt − u2 (kPa) u2 − u0 (kPa) Su (kPa)

Singapore 135.31 347.882 269.5375 100.5353 50.0647

Singapore 152.63 656.309 439.4218 235.2028 52.50472

Singapore 170.52 728.2909 438.2364 320.9186 53.88432

Singapore 188.42 687.9214 389.6526 341.6055 50.11972

Singapore 193.2 694.3608 348.9192 382.7292 49.4592

Singapore 205.74 726.8794 380.8247 385.1453 53.4924

Singapore 197.41 746.4072 353.1665 408.0465 76.9899

Sweden 27.54 254.8827 126.3811 128.5016 14.76144

Sweden 29.87 268.8599 135.9981 132.8618 13.17267

Sweden 31.2 286.2912 146.9208 139.3704 12.0432

Sweden 32.52 293.1678 147.3156 145.8197 12.12996

Sweden 33.85 296.6614 144.3364 152.325 12.62605

Sweden 35.18 317.5699 158.697 158.8377 13.12214

Sweden 37.5 359.2875 187.4625 171.825 14.4375

Sweden 38.83 387.1351 202.3043 184.8308 15.68732

Sweden 40.16 383.6886 188.0291 195.6595 16.50576

Sweden 41.82 373.2435 173.2184 200.0251 17.60622

Sweden 43.15 373.2475 168.9323 204.3584 18.42505

Sweden 44.48 373.2762 168.935 204.3411 19.61568

Sweden 45.8 423.0088 195.6576 227.3512 20.4268

Sweden 48.13 449.7267 204.3119 245.4149 20.16647

Sweden 49.46 476.7449 220.6905 256.0544 21.0205

Sweden 51.12 487.1736 220.8384 266.3352 21.726

Sweden 52.44 494.3519 219.4614 274.8905 22.65408

Sweden 53.77 470.595 193.6258 276.9693 23.06733

Sweden 55.1 468.1296 190.7011 277.4285 23.5828

Sweden 57.76 492.4618 206.0299 286.4318 23.104

Sweden 59.08 504.6614 208.3752 296.3453 23.0412
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Country σ′
v (kPa) qt − σv (kPa) qt − u2 (kPa) u2 − u0 (kPa) Su (kPa)

Sweden 61.74 534.8536 223.931 310.9226 23.58468

Sweden 64.06 540.0258 217.804 322.2218 22.99754

Sweden 66.39 538.954 217.3609 321.5932 21.11202

Sweden 69.04 531.608 210.572 321.036 19.40024

Sweden 71.7 523.41 209.5074 313.9026 17.925

Sweden 74.69 508.7883 202.0365 306.8265 16.87994

Sweden 77.34 527.3815 217.016 310.2881 16.93746

Sweden 80.33 560.0608 225.4863 334.6548 17.51194

Sweden 83.32 582.0735 241.7946 340.1956 18.16376

Norway 45.9 152.0208 67.2894 130.6314 12.9438

Norway 48.57 163.778 70.32936 142.0187 15.00813

Norway 51.58 191.7744 101.0452 142.3092 17.58878

Norway 78.61 327.1748 173.5709 232.2139 17.37281

Norway 114.32 470.7698 233.3271 351.877 26.8652

Venezuela 209.25 1492.999 485.46 631.7258 57.54375

Venezuela 219.17 1528.272 488.9683 657.7292 58.51839

Venezuela 231.66 1583.628 504.5555 691.0418 62.5482

Venezuela 250.4 1647.882 514.3216 735.9256 69.1104

Venezuela 260.32 1699.89 529.2306 760.9154 66.3816

Venezuela 164.57 1374.489 556.5757 458.8212 47.06702

Venezuela 188.98 1486.517 600.3895 515.1595 52.9144

Venezuela 200.9 1542.711 616.1603 547.2516 58.261

Venezuela 217.93 1619.438 625.4591 603.6661 62.32798

Venezuela 228.72 1671.486 639.9586 635.8416 60.38208

Brazil 11.36 139.9098 64.3544 77.816 11.97344

Brazil 21.21 244.0423 103.823 137.5681 17.56188

Brazil 31.39 232.6313 72.60507 149.3536 14.37662

Brazil 79.19 501.827 428.2595 152.7575 42.04989
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Country σ′
v (kPa) qt − σv (kPa) qt − u2 (kPa) u2 − u0 (kPa) Su (kPa)

Brazil 81.89 490.2754 356.5491 215.6983 40.86311

Brazil 89.99 577.1059 427.3625 239.7334 47.42473

Brazil 92.68 538.3781 401.0264 230.0318 32.25264

Brazil 105.28 505.7651 377.7446 233.3005 42.6384

Brazil 115.17 582.1844 453.885 243.4694 35.24202

Brazil 131.36 467.6416 368.0707 230.7995 34.8104

Brazil 139.46 544.3124 429.9552 253.8172 45.74288

Brazil 144.86 555.1035 432.8417 267.1218 50.12156

Brazil 159.25 728.8873 850.5543 37.42375 49.686

Brazil 20.35 270.8178 183.1907 107.9771 21.978

Brazil 22.27 228.2675 146.158 104.3795 20.08754

Brazil 25.16 203.8966 150.9348 78.1218 16.63076

Brazil 29.01 191.2339 126.9768 93.26715 12.38727

Brazil 30.94 189.3528 136.2598 84.03304 8.75602

Brazil 33.82 189.1891 110.4561 112.553 7.30512

Brazil 36.71 188.8362 114.1681 111.3781 15.12452

Brazil 42.97 224.7761 142.1018 125.6443 22.12955

Brazil 45.86 159.5469 57.04984 148.3571 21.04974

Brazil 53.07 260.043 134.957 178.2091 24.67755

Brazil 59.81 272.2551 160.8889 171.1762 17.58414

Brazil 67.03 326.6372 198.0737 195.5935 30.23053

Brazil 73.28 351.8906 201.8864 223.2842 32.38976

Brazil 79.06 440.6014 266.8275 252.7548 42.05992

Singapore 13.9 233.8119 215.8114 31.9144 10.7725

Singapore 25.48 521.8814 395.0674 152.294 17.27544

Singapore 120.49 1001.272 723.6629 398.099 72.41449

Singapore 142.11 966.9164 655.2692 453.7572 81.71325

Singapore 163.38 1114.578 702.8608 575.0976 90.18576
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Country σ′
v (kPa) qt − σv (kPa) qt − u2 (kPa) u2 − u0 (kPa) Su (kPa)

Singapore 19.94 224.5643 109.331 135.1733 13.4595

Singapore 31.32 339.5714 159.7007 211.1594 21.17232

Singapore 42.7 370.0382 183.0549 229.6833 14.091

Singapore 62.34 300.6658 149.1173 213.9509 43.45098

Singapore 123.24 570.2315 297.1316 396.3398 77.14824

Singapore 13.84 254.393 232.941 35.292 10.33848

Singapore 27.99 521.3417 437.9875 111.3442 42.51681

Singapore 40.57 599.0566 464.8105 174.8161 30.79263

Singapore 59.76 647.2606 471.5064 235.5739 35.01936

Singapore 78.63 726.4626 510.8591 294.2335 52.76073

Singapore 97.49 772.2183 522.4489 347.2594 61.4187

Singapore 118.72 873.5418 685.608 306.6538 53.424

Singapore 17.39 222.4181 146.6673 93.12345 20.64193

Singapore 29.44 387.4304 282.0058 134.8941 25.64224

Singapore 49.51 350.4318 302.6051 97.33666 39.95457

Singapore 69.58 471.2653 395.4231 145.4222 29.2236

Singapore 88.64 1098.25 941.3568 245.5328 61.78208

Singapore 109.72 850.6592 563.1928 397.1864 61.11404

Singapore 129.79 791.3296 578.9932 342.1264 73.85051

Singapore 149.86 1054.265 687.7075 516.4176 104.902

Singapore 169.93 910.8248 635.0284 445.7264 130.8461

Singapore 190 1186.74 722.76 653.79 112.67

Singapore 13.42 450.496 366.7283 97.18764 24.19626

Singapore 24.6 623.61 486.9078 161.3268 26.1006

Singapore 35.78 707.3706 547.0762 196.0744 34.56348

Singapore 45.84 707.2195 543.3874 209.6263 24.2952

Singapore 152.23 962.2458 600.2429 514.0807 105.9521

Singapore 174.83 994.0834 545.1199 623.7934 122.9055
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Country σ′
v (kPa) qt − σv (kPa) qt − u2 (kPa) u2 − u0 (kPa) Su (kPa)

Singapore 195.97 1148.972 664.5343 680.2119 146.9775

Singapore 218.2 1228.466 696.9308 749.7352 135.0658

Singapore 239.71 1322.72 749.8129 812.6169 181.7002

Singapore 13.9 403.9757 327.9288 89.9469 16.1101

Singapore 25.48 627.9036 488.0694 165.3397 18.93164

Singapore 37.06 679.8286 558.0865 158.8392 44.73142

Singapore 48.64 692.3418 569.2339 171.6992 39.73888

Singapore 60.22 724.0251 590.2764 193.9686 40.88938

Singapore 133.7 1010.505 699.9195 444.2851 101.8794

Singapore 156.77 1120.278 724.1206 552.9278 93.12138

Singapore 180.84 1188.3 732.402 636.5568 98.5578

Singapore 211.41 960.2242 513.7263 657.9079 145.0273

Singapore 14.14 252.1869 160.8425 105.4844 12.88154

Singapore 25.92 422.1072 285.2755 162.7517 26.8272

Singapore 37.7 477.6213 308.4614 206.8599 37.0968

Singapore 49.48 497.5709 307.3203 239.7306 57.99056

Singapore 63.49 719.0243 589.1237 193.3905 68.37873

Singapore 14.51 306.9445 190.3277 131.1414 28.97647

Singapore 25.04 483.5725 349.333 159.2544 28.24512

Singapore 36.42 501.7583 351.6715 186.5068 36.34716

Singapore 47.8 501.5654 424.3684 124.997 36.6626

Singapore 14.53 386.5125 289.147 111.8955 26.11041

Singapore 32.65 406.6231 302.0452 137.228 21.05925

Singapore 50.62 507.7186 429.9663 128.4229 31.58688

Singapore 20.97 246.6282 128.9865 138.6117 12.47715

Singapore 40.15 428.3202 246.6816 221.7886 25.3748

Singapore 60.91 1033.947 618.1147 476.7426 84.17762

Singapore 93.95 758.0826 347.5211 504.5115 68.0198
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Country σ′
v (kPa) qt − σv (kPa) qt − u2 (kPa) u2 − u0 (kPa) Su (kPa)

Singapore 16.42 190.0451 152.8538 53.6113 6.86356

Singapore 46.71 756.6553 474.5736 328.7917 53.20269

Singapore 71.28 790.2101 455.9069 405.5832 53.88768

Singapore 95.85 1321.196 778.302 638.6486 66.42405

Singapore 120.01 1432.679 921.0768 631.6126 73.92616

Singapore 144.99 1574.736 808.0293 911.6971 82.49931

Singapore 12.72 140.874 106.5936 47.0004 7.19952

Singapore 28.29 537.1705 334.1049 231.3556 15.50292

Singapore 86.09 981.7704 571.4654 496.3949 80.40806

Singapore 13.94 154.957 84.95036 83.94668 10.77562

Singapore 31.01 464.6538 245.5372 250.1267 27.66092

Singapore 48.08 544.9387 286.076 306.9427 28.94416

Singapore 19.35 535.7822 273.1833 281.9489 17.8407

Singapore 44.23 496.526 209.8714 330.8404 32.50905

Singapore 70.43 902.8422 400.7467 572.5255 67.19022

Singapore 23.75 732.8538 417.5963 339.0075 29.165

Singapore 8.67 322.8708 158.3662 173.1746 13.19574

Singapore 27.24 468.3373 213.7523 281.825 39.47076

Singapore 79.98 1092.927 632.4019 540.4249 58.86528

Singapore 7.27 132.9029 109.6607 30.51219 8.74581

Singapore 21.8 240.9336 153.4502 109.2834 11.0526

Singapore 70.59 633.2629 323.3022 380.4801 46.30704

Singapore 94.75 794.0998 427.3225 461.5273 87.928

Singapore 8.25 228.03 134.1203 102.1598 15.96375

Singapore 19.63 244.3346 139.5497 124.4149 19.13925

Singapore 31.01 257.7551 149.5922 139.1729 21.0868

Singapore 42.39 274.9839 153.4518 163.9221 29.58822

Singapore 55.8 361.1376 206.3484 210.5892 28.3464
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Country σ′
v (kPa) qt − σv (kPa) qt − u2 (kPa) u2 − u0 (kPa) Su (kPa)

Singapore 8.69 305.4796 253.8436 60.32598 11.96613

Singapore 21.56 432.7308 360.7204 93.5704 21.64624

Singapore 44.63 510.835 422.78 132.685 26.86726

Singapore 56.31 522.782 435.5015 143.5905 29.67537

Singapore 61.7 570.9718 457.3204 175.3514 32.6393

Singapore 8.25 239.8275 155.9168 92.16075 17.6055

Singapore 19.63 289.0518 189.881 118.8008 19.55148

Singapore 31.01 319.527 213.2558 137.3123 24.37386

Singapore 42.39 349.2936 237.7655 153.9181 19.75374

Singapore 87.56 698.4661 421.8641 364.162 57.00156

Singapore 7.97 469.2577 348.2412 128.9785 11.7956

Singapore 19.35 588.5303 432.279 175.5819 21.53655

Singapore 30.73 639.1533 463.9001 205.9525 30.88365

Singapore 42.11 700.8367 518.5004 224.4463 32.0036

Singapore 53.49 822.8367 598.3926 277.934 35.57085

Singapore 64.87 907.8557 656.2898 316.4359 38.72739

Singapore 76.25 905.3925 651.0988 330.62 41.9375

Singapore 87.91 938.1755 669.3467 356.7388 53.80092

Singapore 7.27 238.9213 155.0546 91.13672 16.1394

Singapore 17.13 292.7174 185.5008 124.3467 26.32881

Singapore 29.64 465.348 220.492 274.5257 90.13524

Singapore 46.02 1044.01 658.2701 431.7596 48.5511

Singapore 62.4 534.456 197.184 399.672 55.4112

Canada 90.71 1369.812 564.4883 896.0334 112.6618

Canada 94.67 1333.427 450.8185 977.2784 152.1347

Canada 101.73 1548.229 231.2323 1418.625 117.3964

Canada 105.86 1491.462 599.6969 997.6246 120.0452

Canada 114.65 1703.355 795.7857 1022.219 147.7839
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Country σ′
v (kPa) qt − σv (kPa) qt − u2 (kPa) u2 − u0 (kPa) Su (kPa)

Canada 119.3 1631.07 689.9119 1060.338 151.511

Canada 122.05 1603.737 631.1206 1094.666 151.22

Canada 124.98 1627.615 611.5271 1141.067 145.6017

Canada 15.57 266.3404 138.5419 117.6158 21.36204

Canada 24.37 344.08 168.9572 155.6756 21.6893

Canada 38.05 376.1243 184.6947 174.269 24.5042

Canada 54.67 489.0778 233.9876 225.4044 28.64708

Canada 58.58 506.3069 239.5922 237.7176 30.52018

Canada 77.16 582.095 280.7081 267.2051 36.11088

Canada 81.07 584.1094 279.8536 272.9627 37.53541

Canada 98.66 791.2532 368.1991 379.7423 44.19968

Canada 119.19 843.746 394.7573 405.1268 50.77494

Canada 141.67 1018.041 487.0615 479.553 58.22637

USA 60.02 700.3134 257.8459 440.1267 55.15838

USA 84.08 807.4202 273.5963 527.0134 52.55

USA 95.18 838.3454 272.8811 556.0416 52.15864

USA 95.18 838.3454 272.8811 556.0416 52.15864

USA 114.62 858.733 248.4962 599.1187 51.46438

USA 118.32 873.0833 245.2774 614.1991 50.40432

USA 122.02 887.9395 250.8731 622.7901 50.0282

USA 131.28 893.4917 235.7789 642.2218 49.23

USA 155.34 907.9623 253.0489 633.0105 48.46608

USA 178.48 950.049 266.8276 655.7355 48.90352

USA 190.51 993.8907 292.8139 673.0718 49.5326

USA 196.98 1017.993 289.3636 695.7334 50.62386

USA 227.52 1195.618 369.265 786.9917 55.05984

USA 227.52 1195.618 369.265 785.8541 55.05984

USA 247.88 1265.427 373.803 846.2623 58.00392
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Country σ′
v (kPa) qt − σv (kPa) qt − u2 (kPa) u2 − u0 (kPa) Su (kPa)

USA 52.61 310.5042 152.2007 210.9135 35.40653

USA 57.5 326.5425 146.855 237.1875 35.305

USA 61.58 338.6284 152.5337 247.7363 33.5611

USA 64.84 365.957 146.279 284.5179 31.18804

USA 68.92 397.6684 171.5419 294.9776 25.63824

USA 79.52 516.9595 259.3942 337.0853 37.93104

USA 85.23 556.6371 283.8159 358.0512 44.57529

USA 90.13 570.9736 260.9264 400.1772 46.59721

USA 100.73 607.0997 260.3871 447.4427 42.10514

USA 107.26 670.2677 293.2488 484.2789 52.12836

USA 121.94 748.8335 423.3757 447.3979 45.23974

USA 126.83 783.0484 462.4222 447.4562 50.09785

USA 130.91 805.0965 488.5561 447.4504 56.02948

USA 141.52 855.913 497.4428 499.9902 72.31672

USA 148.04 862.185 489.1242 521.1008 75.79648

USA 150.49 906.7023 509.8601 547.3321 76.14794

USA 161.09 969.4396 577.8298 552.5387 68.46325

USA 167.62 1047.625 662.6019 552.6431 51.1241

USA 183.12 1104.946 688.165 599.9011 69.5856

USA 188.01 1106.627 694.697 599.9399 78.02415

Sweden 13.97 174.3875 102.5258 85.84565 8.13054

Sweden 16.18 146.8011 81.91934 81.0618 8.72102

Sweden 18.38 139.7431 71.33278 86.79036 9.17162

Sweden 22.06 139.4192 71.12144 90.3357 10.01524

Sweden 25 151.55 81.225 95.35 10.3

Sweden 28.31 149.7316 71.39782 106.6438 10.95597

Sweden 31.99 150.481 67.65885 114.8121 12.70003

Sweden 36.03 167.0351 75.87918 127.2219 13.51125
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Country σ′
v (kPa) qt − σv (kPa) qt − u2 (kPa) u2 − u0 (kPa) Su (kPa)

Sweden 37.87 184.7299 85.01815 137.5817 14.3906

Sweden 40.07 204.2368 96.76905 147.5778 15.42695

Sweden 43.38 213.82 104.2855 152.9579 16.65792

Sweden 46.32 241.4662 119.274 168.5122 18.25008

Sweden 50.37 257.6929 127.5368 180.5765 19.24134

Sweden 54.41 266.1737 131.509 189.0748 20.24052

Sweden 58.09 293.0641 143.0176 208.1365 21.55139

Sweden 62.5 310.375 157.3125 215.5625 22.8125

Sweden 10.43 270.9818 189.68 81.29142 7.46788

Sweden 11.28 266.4787 162.6125 103.8662 7.7832

Sweden 11.91 261.8294 158.0338 103.7957 7.64622

Sweden 14.04 250.7404 139.3891 111.3372 7.28676

Sweden 16.38 261.8834 140.524 121.3758 6.8796

Sweden 19.57 277.483 138.5752 138.9274 9.88285

Sweden 22.77 304.3894 150.3503 154.0391 12.20472

North Sea 29 136.996 107.996 58 22.852

North Sea 62 264.988 157.976 169.012 28.892

North Sea 96 465.024 263.04 297.984 44.736

North Sea 136 1167.968 680.952 623.016 40.528

North Sea 237 1112.952 678.057 671.895 71.574

Norway 14.72 116.7002 54.93504 76.48512 9.58272

Norway 20.38 142.7823 76.91412 86.24816 11.12748

Norway 26.04 142.2305 60.43884 107.8316 8.463

Norway 33.97 161.969 60.43263 135.5063 10.83643

Norway 40.76 226.8294 93.42192 174.1675 12.0242

Norway 46.42 219.0096 82.3955 182.9876 15.87564

Norway 56.61 269.0673 87.91533 237.762 20.71926

Norway 71.32 333.8489 115.3958 289.8445 23.96352
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Country σ′
v (kPa) qt − σv (kPa) qt − u2 (kPa) u2 − u0 (kPa) Su (kPa)

Norway 78.11 385.9415 159.3444 304.7852 21.24592

Norway 86.04 427.7048 109.8731 403.8718 24.00516

Norway 95.09 497.5109 148.3404 444.2605 26.53011

Norway 101.89 547.1493 153.8539 495.2873 38.00497

Norway 113.21 649.9386 236.2693 526.8793 39.84992

Norway 117.73 571.3437 225.2175 463.8562 34.1417

Norway 126.79 934.4423 362.6194 698.6129 44.50329

Norway 136.98 1112.689 472.444 777.2245 85.74948

Norway 155.09 836.4004 335.1495 656.3409 61.72582

Norway 165.28 900.776 406.5888 659.4672 81.8136

Norway 174.33 961.7786 395.5548 740.5538 81.06345

Norway 213.95 1114.68 439.4533 888.9623 73.81275

Norway 319.35 1211.933 478.067 1053.216 112.7306

Sweden 14.91 153.2897 17.23596 150.9638 8.3496

Sweden 18.36 158.2816 13.91688 162.7247 8.55576

Sweden 21.8 172.4816 25.506 168.7756 8.7854

Sweden 24.67 174.5649 17.46636 181.7686 9.71998

Sweden 28.3 178.9692 17.1215 190.1477 11.1502

Sweden 31.93 206.0443 28.76893 209.2054 12.00568

Sweden 35.18 211.7836 30.74732 216.2163 12.34818

Sweden 39.2 205.9176 24.4216 220.696 13.8768

Sweden 43.4 233.926 38.7128 238.6132 15.7108

Sweden 47.04 259.3315 57.05952 249.312 16.98144

Sweden 50.48 255.4793 50.7324 255.2269 18.57664

Sweden 55.26 279.9472 69.40656 265.8006 21.38562

Sweden 61.19 308.7647 88.7255 281.2292 23.19101

Sweden 67.5 363.8925 130.0725 301.32 22.815

Sweden 74.79 321.6718 98.64801 297.8138 22.96053
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Country σ′
v (kPa) qt − σv (kPa) qt − u2 (kPa) u2 − u0 (kPa) Su (kPa)

Italy 38.28 734.8994 283.004 490.2137 72.19608

Italy 42.37 825.1134 317.4784 549.9626 82.02832

Italy 54.18 553.9363 222.5714 385.5449 126.6728

Italy 85.99 2124.813 930.7558 1264.311 35.85783

Canada 221 708.968 474.929 455.039 85.306
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A.2 Testing dataset

Laboratory samples σ′
v(kPa) qt − σv(kPa) qt − u2(kPa) u2 − u0(kPa) Su(kPa)

B1007-8 35.00 194.00 266.07 -38.07 16.02

B1007-11 41.00 81.00 154.44 -32.44 19.59

B1006-3 18.00 210.75 224.01 4.24 26.95

B1006-7 30.75 154.25 187.68 -3.18 15.68

B1010-4 24.00 113.50 117.90 19.60 11.34

B1010-6 28.50 101.50 88.04 41.46 9.93

B1010-9 35.00 137.00 100.04 71.96 17.67

B1009-4 24.33 118.66 128.68 14.65 11.49

B1009-5 29.00 130.42 121.08 38.67 10.90

B1009-8 33.67 132.67 105.80 61.20 18.82

B1008-4 24.50 95.00 85.41 34.09 9.61

B1008-6 28.25 153.63 126.53 55.60 14.11

B1005-3 18.75 222.83 247.42 -6.09 19.70

B1005-7 31.25 145.75 177.20 -1.20 13.16

B1001-5 24.20 197.40 219.19 3.01 20.47

B1001-6 29.60 138.20 142.95 24.85 25.80

B1011-5 24.00 306.25 361.17 -30.92 24.97

B1011-7 31.00 155.00 206.75 -20.75 13.30

B1011-10 39.00 70.25 114.38 -5.13 20.61

B1011-11 42.00 80.00 112.08 9.17 20.61



Appendix B

Simple Examples for Machine Learning
Algorithms
B.1 Artificial Neural Network
In this simple example (Mazur, 2022), we’re going to use a neural network with two inputs,
one hidden layer with two hidden neurons, two output neurons. Additionally, the hidden and
output neurons will include a bias. Here, the bias can be thought of as analogous to the role of
a constant in a linear function, whereby the line is effectively transposed by the constant value.
The basic structure of this neural network is presented in Fig. B.1.

Figure B.1. Basic structure of a MLP with two inputs, one hidden layer and two
outputs.

The initial weights, the biases, and training inputs/outputs are given randomly as presented in
Fig. B.2. We start with a single training set: given inputs 0.05 and 0.10, we need the neural
network to come up with output 0.01 and 0.99.

100
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Figure B.2. Initial settings of the MLP.

B.1.1 The Forward Pass
To begin with, the inputs 0.05 and 0.10 are fed forward through the network to see the current
prediction with the given initial weights and biases. Then, we figure out the total net input to
each hidden layer neuron. Next, we squash it using an activation function. Finally, we repeat
the process with the output layer neurons. As mentioned above, the purpose of the activation
function is to introduce non-linearity into the network as a neuron network without an activation
function is just a linear combination of inputs and a bias, no matter how many layers it had.
The activation function used here is logistic function as presented in Fig. B.3 where input values
over the entire real number range are transformed to values in the range [0, 1].

Figure B.3. Logistic function.

The computation of total net input for h1 are as follow:

neth1 = w1 ∗ i1 + w2 ∗ i2 + b1 ∗ 1

neth1 = 0.15 ∗ 0.05 + 0.2 ∗ 0.1 + 0.35 ∗ 1 = 0.3775

We then squash it using the logistic function to get the output of h1:

outh1 =
1

1 + e−neth1
=

1

1 + e−0.3775
= 0.593269992
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Carrying out the same process for h2 and then for the output layer neurons, using the output
from the hidden layer neurons as inputs:

outh2 = 0.596884378, outo1 = 0.75136507, outo2 = 0.772928465

Now the error for each output neuron can be calculated using the squared error function and
then summed up to get the total error:

Etotal =
∑ 1

2
(target − output)2

Since the target output for o1 is 0.01 but the neural network’s output is 0.75136507:

Eo1 =
1

2
(targeto1 − outo1)2 =

1

2
(0.010− 0.75136507)2 = 0.274811083

The same is done with o2: Eo2 = 0.023560026 The total error for the neural network is the sum
of these two errors:

Etotal = Eo1 + Eo2 = 0.274811083 + 0.023560026 = 0.298371109

B.1.2 The Backwards Pass
After the calculation of the total error in this first iteration, back-propagation algorithm is then
applied to adjust the weights of neural network, so that they cause the actual output to be closer
the target output, thereby minimizing the error for each output neuron and the network as a
whole.

Starting with w5, in order to know how much a change in w5 affects the total error, ∂Etotal
∂w5

is
calculated by applying the following chain rule. And a visualization of the chain rule is given in
Fig. B.4.

∂Etotal

∂w5
=

∂Etotal

∂outo1
∗ ∂outo1
∂neto1

∗ ∂neto1
∂w5

Figure B.4. Visualization of updating the weights in the output layer.

Then, each piece in this equation is figured out step by step as follow, starting with ∂Etotal
∂outo1

:
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Etotal =
1

2
(targeto1 − outo1)2 +

1

2
(targeto2 − outo2)2

∂Etotal

∂outo1
= 2 ∗ 1

2
(targeto1 − outo1)2−1 ∗ (−1) + 0

∂Etotal

∂outo1
= − (targeto1 − outo1) = −(0.010− 0.75136507) = 0.74136507

Next ∂neto1
∂w5

:

outo1 =
1

1 + e−neto1

∂outoo1
neto1

= outo1 (1− outo1) = 0.75136507(1− 0.75136507) = 0.186815602

Finally ∂neto1
∂w5

:

neto1 = w5 ∗ outh1 + w6 ∗ outh2 + b2 ∗ 1
∂neto1
∂w5

= 1 ∗ outh1 ∗ w
(1−1)
5 + 0 + 0 = outh1 = 0.593269992

Putting them all together:

∂Etotal

∂w5
=

∂Etotal

∂outo1
∗ ∂ outo1

∂neto1
∗ ∂neto1

∂w5

∂Etotal

∂w5
= 0.74136507 ∗ 0.186815602 ∗ 0.593269992 = 0.082167041

To decrease the error, gradient descent is then applied by subtracting this value from the current
weight (optionally multiplied by some learning rate, eta, which is set to 0.5 in this example):

w+
5 = w5 − η ∗ ∂Etotal

∂w5
= 0.4− 0.5 ∗ 0.082167041 = 0.35891648

This process is repeated to get the new weights w6, w7, and w8:

w+
6 = 0.408666186, w+

7 = 0.511301270, w+
8 = 0.561370121

The actual updates in the neural network are performed after we have the new weights leading
into the hidden layer neurons. That is to say, we use the original weights, not the updated
weights, when we continue the back-propagation algorithm below.

Next, we’ll continue the backwards pass by calculating new values for w1, w2, w3, and w4.

We’re going to use a similar process as we did for the output layer, but slightly different to
account for the fact that the output of each hidden layer neuron contributes to the output (and
therefore error) of multiple output neurons. We know that outh1 affects both outo1 and outo2
therefore when calculating ∂Etotal

∂outh1
, we need to take into consideration the effect of w1 on the

both output neurons:
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∂Etotal

∂w1
=

∂Etotal

∂outh1
∗ ∂outh1
∂neth1

∗ ∂neth1
∂w1

in which,
∂Etotal

∂outh1
=

∂Eo1

∂outh1
+

∂Eo2

∂outh1

Visually:

Figure B.5. Visualization of updating the weights in the hidden layer.

Starting with ∂Eo1
∂outh1

:

∂Eo1

∂outh1
=

∂Eo1

∂neto1
∗ ∂neto1
∂outh1

We can then calculate ∂Eo1
∂neto1

using values we calculated earlier:

∂Eo1

∂outh1
=

∂Eo1

∂outo1
∗ ∂outo1
∂neth1

= 0.74136507 ∗ 0.186815602 = 0.138498562

And ∂neto1
∂outh1

is equal to w5:

neto1 = w5 ∗ outh1 + w6 ∗ outh2 + b2 ∗ 1
∂neto1
∂outh1

= w5 = 0.40

Plugging them in:

∂Eo1

∂outh1
=

∂Eo1

∂neto1
∗ ∂neto1

outh1
= 0.138498562 ∗ 0.40 = 0.055399425

Following the same process for ∂Eo2
∂outh1

, we get:

∂Eo2

∂outh1
= −0.019049119
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Therefore:

∂Etotal

∂outh1
=

∂Eo1

∂outh1
+

∂Eo2

∂outh1
= 0.055399425 + (−0.019049119) = 0.036350306

Now that we have ∂Etotal
∂outh1

, we need to figure out ∂outh1
∂neth1

and then ∂neth1
∂w for each weight:

outh1 =
1

1 + e−neth1

outh1
∂neth1

= outh1 (1− outh1) = 0.59326999(1− 0.59326999) = 0.241300709

We calculate the partial derivative of the total net input to h1 with respect to w1 the same as
we did for the output neuron:

neth1 = w1 ∗ i1 + w3 ∗ i2 + b1 ∗ 1
∂neth1
∂w1

= i1 = 0.05

Putting it all together:
∂Etotal

∂w1
=

∂Etotal

∂outh1
∗ ∂outh1
∂neth1

∗ ∂neth1
∂w1

∂Etotal

∂w1
= 0.036350306 ∗ 0.241300709 ∗ 0.05 = 0.000438568

We can now update w1:

w+
1 = w1 − η ∗ ∂Etotal

∂w1
= 0.15− 0.5 ∗ 0.000438568 = 0.149780716

Repeating this for w2, w3, and w4

w+
2 = 0.19956143

w+
3 = 0.24975114

w+
4 = 0.29950229

Finally, all the weights have been updated. The original error on the network was 0.299, When
we fed forward the 0.05 and 0.1 inputs. After this first round of back-propagation, the total
error is now down to 0.291. It might not seem like much, but after repeating this process 10,000
times, for example, the error plummets to 0.0000351085. At this point, when we feed forward
0.05 and 0.1, the two outputs neurons generate 0.015912196 (vs 0.01 target) and 0.984065734
(vs 0.99 target).
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B.2 Random Forest
A simple example of how a decision tree is built is firstly given below (R, 2021). It shows
how CART works in regression with one input feature. CART in regression cases uses least
squares as the optimization method. Intuitively, splits are chosen to minimize the residual sum
of squares (RSS) between the observation and the mean in each node. Mathematically, we can
write residual as follow:

εi = yi − ŷi (B.1)

Mathematically, we can write RSS as follow:

RSS =

n∑
i=1

(yi − ŷi)
2 (B.2)

RSS = ε21 + ε22 + ..+ ε2n (B.3)

In order to find out the “best” split, we must minimize the RSS. In this simple example, a
simulation using a “dummy” dataset is given as follows.

Figure B.6. The flowchart of random forest for regression (R, 2021).

First, we calculate RSS by split into two regions, starting with index 0.

Figure B.7. Split the data within index 0 (R, 2021).
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The data is already split into two regions. We use Eq. B.2 to calculate the RSS by adding up
the squared residual for every data in both regions.

RSS = (10− 10)2 + (10− 58.9)2 + (10− 58.9)2 . . . (10− 58.9)2 = 21139.78

Then, the same is done with all the other splits within each index. This process continues until
the calculation of RSS in the last index ends. The final result is shown below in Fig. B.8. It’s
clear to see that price with a threshold of 19 has the smallest RSS, in R1 there are 10 data
within prices less than 19, so we’ll split the data in R1.

Figure B.8. RSS with respect to the different split of prices (R, 2021).

Next, the same is done on all the other branches. Finally, the end result of a tree, in this case,
is shown in Fig. B.9.

In the case of splitting the dataset with multiple input features, the process remains the same
as above. That is, we start by calculating the minimum RSS for every input feature as is done
above. Then compare them to find the lowest RSS. Finally, the input feature with the lowest
RSS is chosen to split the data, using the threshold that has the minimum RSS among all the
splits.

Figure B.9. The final result of the decision tree (R, 2021).

After all the trained trees are constructed, they are combined in the aggregating process to give
a final prediction by averaging the results from all constructed trees whenever a test sample
enters this RF. The effectiveness of bootstrapping and bagging lies in that the decision trees
are trained on various random samples and their results can vary greatly, while their errors,
the MSE, for example, are mutually compensated in the aggregating process. In this way, the
variance of the trained regressor is decreased, making the model less overfitted.
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B.3 XGBoost
In this example, we are building gradient boosting regression trees step by step using the sample
shown in Fig. B.10, which has a nonlinear relationship between x and y to intuitively understand
how it works.

Figure B.10. Sample for a regression problem (Masui, 2022).

The first step is making a very naive prediction on the target y (see Fig. B.11 for example),
followed by adding more weak models to it to improve our predictions. The resulting residual,
i.e. prediction residuals (shown as the vertical blue lines in Fig. B.12), are minimised using the
procedure below to make an improved prediction.

Figure B.11. Initial prediction: F0 = mean(y) (Masui, 2022).
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Figure B.12. The residuals of the initial prediction r1 (Masui, 2022).

To minimize these residuals, we are building a regression tree model with x as its feature and
the residuals r1 = y - mean(y) as its target. The reasoning behind that is if we can find some
patterns between x and r1 by building the additional weak model, we can reduce the residuals
by utilizing it. To simplify the demonstration, we are building very simple trees each that only
has one split and two terminal nodes. Note that gradient boosting trees usually have a little
deeper trees such as ones with 8 to 32 terminal nodes. As shown in Fig. B.13, we are creating
the first tree predicting the residuals with two different values γ1 = {6.0,−5.9}(γ denotes the
prediction).

Figure B.13. Fitting the first tree to residuals r1 (Masui, 2022).

This prediction γ1 is added to our initial prediction F0 to reduce the residuals. In fact, the
gradient boosting algorithm does not simply add γ to F as it makes the model overfit the
training data. Instead, γ is scaled down by learning rate ν which ranges between 0 and 1, and
then added to F.

F1 = F0 + v · γ1 (B.4)

In this example, we use a relatively big learning rate ν = 0.9 to make the optimization process
easier to understand, but it is usually supposed to be a much smaller value such as 0.1. After
the update, our combined prediction F1 becomes:
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F1 =

{
F0 + v · 6.0 if x ≤ 49.5

F0 − v · 5.9 otherwise
(B.5)

Figure B.14. Predictions(F0) updated to F1 (Masui, 2022).

Now, the updated residuals r2 look like this:

Figure B.15. The updated residuals r2 (Masui, 2022).

In the next step, we are creating a regression tree again using the same x as the feature and the
updated residuals r2 as its target. Here is the created tree:
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Figure B.16. Fitting the second tree to residuals r2 (Masui, 2022).

Then, we are updating our previous combined prediction F1 with the new tree prediction F2.

Figure B.17. Predictions(F1) updated to F2 (Masui, 2022).

We iterate these steps until the model prediction stops improving. The figures below show the
optimization process from 0 to 6 iterations.
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Figure B.18. Fitting trees to the residuals (the learning rate “v” is missing in the
legends: Fn = Fn−1 + Yn ∗ v) (Masui, 2022).



Appendix B. Simple Examples for Machine Learning Algorithms 113

We can see the combined prediction Fm is getting closer to our target y as we add more trees
into the combined model. This is how gradient boosting works to predict complex targets by
combining multiple weak models.

To sum up, we initially take a giant step by creating a decision tree for the raw dataset. This
is followed by several steps of tuning and boosting by creating decision trees that are based on
the errors of the previous tree.
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