
1

Design of a conversational assistant
for standardized issue description in

manufacturing

Industrial Design Engineering
Master s̓ Thesis by Boris Hadzisejdic

2

Design of a conversational assistant for standardized
issue description in manufacturing

November, 2021

MSc Integrated Product Design
Faculty of Industrial Design Engineering
Delft University of Technology

Author
Boris Hadžisejdić

Supervisory team
Chair: Dr. Z. Rusák
Assistant professor Computer Aided Design Engineering
Industrial Design Engineering
Delft University of Technology

Mentor: Ir. S. Kernan Freire
PhD candidate Sustainable Design Engineering
Industrial Design Engineering
Delft University of Technology

Company mentor: B. Kiss
Director OpEx, EMEA & APAC
Diversey BV

mailto:borishadzisejdic@gmail.com

3

I. Acknowledgements
First of all, I want to express my gratitude for the supervision and guidance by Dr. Zoltan Rusák
and Ir. Samuel Kernan Freire. Zoltan, I am grateful for the opportunities and the time you have
given me. Thank you for the thoughtful insights and moral support. Samuel, I am thankful for
your availability and the insightful feedback you were able to consistently provide to me. I hope
I could have contributed to your PhD at least a fraction of what you have contributed to my
project. Thank you for the free rides to Enschede and I wish you all the best with your PhD and
after.
Thank you both for your enthusiasm, energy and banter. It was more than appreciated.

I want to thank Barnabas Kiss for the discussions and ideas on the prototype that moved my
project forward. I want to specially thank you for convincing maintenance staff to participate
in the tests when they initially were reluctant to participate.

Thank you to the entire COALA team with assisting me in my journey. For taking the time to
talk and brainstorm with me, for helping with testing and providing me with valuable insights
in the development of the project. Special shoutouts to Jasper, Santiago, Soude, Sarath, Pim,
and Jeroen!

Thank you to Stefan and Mina from BIBA. Your guys’ tendency to share insightful knowledge
is something to admire.

Thank you to Felix and Ronne for the assistance in my project. Felix, I still owe you a beer.
Ronne too, but I know you do not drink beer. Maybe some wine? Thanks go out to all my
friends for having to put up with me in the past years.

I want to thank my parents, Bosa and Dalibor, for the unconditional love and for their part in
making me the man I am now. Thank you for moving me out and back in again and moving
me out again and back in again. The seemingly limitless supply of great food whether living in
Rotterdam or Delft is very much appreciated. Soon, I think it will be time to move out again.
Eliza, although not officially family, this section is dedicated to family. This is my way of saying
you are family to me. Thank you very much for your support. I want to thank my brother, Nino.
Although I wished you were here during the last months of this journey, your moral support
was felt all the way from America. Looking forward to seeing you again in December.

A very special thank you is reserved for my girlfriend, Evy. Your love and support was crucial in
achieving all this. You keep pushing me forward and continuously elevate me. Somehow, you
have this skill of always putting a smile on my face, no matter the circumstances. I am very
lucky to have you by my side.

Boris Hadzisejdic
Rotterdam, November 2021

4

II. Abstract
This thesis describes the design and development of a conversational assistant (CA) for stand-
ardized issue descriptions in manufacturing. The CA was specifically targeted at the acquisition
of data on standardized issue descriptions and at the same time reduce operator friction with
the system. CAs can be used to handle and process repetitive data, such as gathering data at
scale. For Diversey specifically, the conversational assistant can gather data on issues and in
the future on root causes, solutions and best practices. At Diversey, agile manufacturing is
applied to the production process. Due to the complexity of this approach, the production
process has many stoppages. Context analysis at Diversey showed that operators primarily re-
sort to their own intuition and experience to resolve stoppages. Evaluations with operators
showed that the system for data acquisition on stoppages currently in place, is an inconven-
ience and a time sink. The data that was captured with the system was often ambiguous, in-
complete and non-descriptive. However, such data can be of significant value to the company
as it can be used for process improvement of the production line.

A Wizard-of-Oz-like experiment was conducted with the operators where the researcher
roleplayed a CA for acquiring issue description, which resulted in 71 issue capturing dialogues.
Even though these dialogues were filled with implicit and explicit knowledge, without proper
understanding of the context, the dialogues were too chaotic and unstructured for a machine
learning (ML) algorithm to understand and process.
For a complete issue description, that a ML algorithm can process, several key entities were
identified: machine location, machine component, machine component state, product compo-
nent and product component state. Furthermore, several challenges were found related to the
speech patterns of the operators. Two of these were tackled in the prototype: Usage of syno-
nyms and pronouns.

With the open-source framework Rasa, a prototype was developed for a CA that would capture
product related issues through a form structure into a database. The form requires the follow-
ing entities: machine location, product component and product component state. The form is
used to guide the user to capture good, structured data, while allowing some flexibility in the
input. With the synonym and pronoun handling features, some of this flexibility is realised.

A conversational flow test was conducted to test and improve the CA prototype. Although
failing the accuracy requirements set for intents by 7.4% and for entities by 2%, it provided an
indication that with some information on the functionality of the CA, the participants were able
to correctly capture the set issue. With some training of the operators, it would be feasible to
implement such a CA in a manufacturing environment.

Through contextual filtering, the model can filter towards the input of the user, allowing for
only context-specific issue to be captured. With a qualitative test it was concluded that this
feature decreased the duration of issue capturing. The contextual filtering and issue description
control provide feedback to the user whether correct information is captured.

5

Finally, a form for capturing unknown issue is proposed to expand upon the training data of
the CA and to be able to properly acquire data. With this form, operators themselves can cap-
ture unknown issues and expand the knowledge base of the CA. Although some supervision
will probably be needed to improve the quality of the data captured from this form.

6

III. Glossary
This glossary contains definitions of the terms used in this report to elaborate on the meaning
and context of these otherwise generic terms:

- Cognitive advisor = a conversational AI which can assist a user in their actions and
provide recommendations to the user

- Conversational AI = refers to technologies, such as chatbots or conversational assistants
which users can talk to

- Conversational assistant (CA) = a conversational AI for assisting a user in their actions
- Conversation-driven development (CDD) = the process of listening to your users and

using those insights to improve your AI assistant.
- Cyber-physical-system (CPS) =
- Dialog manager / Dialog management = is a component of a CA responsible for the

responses and the flow of the conversation
- Hybrid team = a team of multiple agents, which can be either humans or machines,

that work together interdependently
- Industry 4.0 = A revolution in manufacturing where interconnectivity, machine learning

and real-time data are key factors.
- Machine Learning (ML) = a sub-field of artificial intelligence, made up of a set of algo-

rithms, features, and data sets that continuously improve themselves with experience.
As the input grows, the AI platform machine gets better at recognizing patterns and
uses it to make predictions.

- Natural Language Processing (NLP) model = a model that can process human language
and interact with the user

- Natural Language Understanding (NLU) model = a model that can understand human
language and extract the context and intent

- Pipeline = document in Rasa where components of the NLU and dialog management
can be configured

- Rasa = platform for developing conversational assistants and chatbots
- Rasa X = an API tool for Conversation-driven development
- SKU = Stock keeping unit, unique number to identify a certain product
- Training data = the NLU, rules and stories used to train Rasa chatbots and conversa-

tional assistants

7

Contents

I. ACKNOWLEDGEMENTS ... 3

II. ABSTRACT ... 4

III. GLOSSARY .. 6

1. INTRODUCTION ... 11

1.1 BACKGROUND ... 12
1.2 PROBLEM DEFINITION ... 13

2. ASSIGNMENT & PROJECT SCOPE .. 14

2.1 APPROACH ... 14

3. CONVERSATIONAL ASSISTANT ... 16

3.1 WHAT IS A CONVERSATIONAL ASSISTANT? ... 17
3.2 TYPES OF CONVERSATIONAL AI ... 17
3.2.1 COGNITIVE ADVISOR VS. CONVERSATIONAL ASSISTANT .. 19
3.3 WHY USE CONVERSATIONAL ASSISTANTS? ... 19
3.4 HOW WILL IT WORK? .. 20
3.4.1 HOW WILL THE COGNITIVE ADVISOR WORK? ... 20
3.4.2. HOW WILL THE CONVERSATIONAL ASSISTANT WORK? ... 21
3.5 OPERATOR ACCEPTANCE .. 21
3.6 STANDARDIZED TERMINOLOGY .. 21

4. COALA & DIVERSEY .. 23

4.1 COALA PROJECT .. 24
4.2 DIVERSEY ... 24
4.3 COGNITIVE ADVISOR ... 24
4.3.1 KNOWLEDGE ACQUISITION .. 25
4.4 STAKEHOLDERS CA ... 27
4.5 VALUE CREATION FOR STAKEHOLDERS ... 28
4.4 DIVERSEY ENSCHEDE FACTORY .. 29
4.4.1 5/10 LITRE OPERATING LINE.. 29
4.4.2 OPERATORS ... 33
4.4.3 CHANGE-OVERS .. 35
4.4.4 ISSUES AND ISSUE HANDLING ... 35
4.4.5 COMMUNICATIONS AND ISSUE REPORTING .. 38
4.4.6 ISSUES WITH ISSUE REPORTING .. 39

8

5. RASA ... 40

5.1 RASA TERMINOLOGY ... 41
5.2 HOW DOES RASA WORK? .. 41
5.3 NLU ... 43
5.3.1 TOKENIZER ... 43
5.3.2 FEATURIZER .. 43
5.3.3 INTENT & ENTITY CLASSIFIERS .. 44
5.4 DIALOG MANAGER ... 44
5.5 INTENTS & ENTITIES .. 44
5.5.1 ENTITY ROLES AND GROUPS ... 45
5.6 ACTIONS .. 45
5.6.1 FORMS .. 46
5.7 STORIES AND RULES .. 46
5.7.1 RULES ... 46
5.7.2 STORIES ... 46
5.8 CONVERSATION DRIVEN DEVELOPMENT... 47

6. SPRINT 1: CONVERSATIONAL DATA ... 48

6.1 RISKIEST ASSUMPTION .. 49
6.2 DATA COLLECTION FOR ISSUE DESCRIPTION .. 49
6.2.1 GOALS DATA COLLECTION ... 49
6.2.2 DATA COLLECTION METHOD .. 50
6.2.3 DATA RESULTS .. 51
6.3 RESTRUCTURING DATA ENTITIES .. 51
6.4 CHALLENGES CA .. 53
6.5 CONCLUSIONS SPRINT 1 ... 55
6.6 LIST OF REQUIREMENTS SPRINT 1 ... 55

7. SPRINT 2: MVP PROTOTYPE ... 57

7.1 RISKIEST ASSUMPTION SPRINT 2 .. 58
7.2 SETTING UP THE MODEL ... 58
7.2.1 PIPELINE .. 58
7.3 ISSUE FORM .. 59
7.3.1 BUTTONS IN THE PROTOTYPE ... 60
7.4 CUSTOM ACTION EXPLORATION ... 61
7.4.1 ACTION SHOW TIME .. 62
7.4.2 VALIDATE ISSUE FORM ... 62
7.5 CONVERSATIONAL FLOW TEST ... 63
7.6 CONCLUSION SPRINT 2 .. 64
7.7 LIST OF REQUIREMENTS SPRINT 2 ... 64

8. SPRINT 3: PROTOTYPE FEATURES ... 65

9

8.1 RISKIEST ASSUMPTION .. 66
8.2 SYNONYM HANDLING .. 66
8.2.1 INITIAL SYNONYM HANDLING IDEATION ... 67
8.3 PRONOUN USAGE ... 67
8.3.1 INITIAL PRONOUN USAGE IDEATION .. 68
8.4 WRITING ISSUE DESCRIPTION TO A DATABASE ... 69
8.5 CONTEXTUAL FILTERING ... 70
8.5.1 LIMITATIONS WITH CURRENT CONTEXTUAL FILTERING .. 74
8.6 ISSUE DESCRIPTION CHECK .. 75
8.7 UNKNOWN ISSUE FORM .. 76
8.8 PROTOTYPE FEATURE TEST ... 78

9. CONCLUSIONS & RECOMMENDATIONS ... 79

9.1 CONCLUSIONS ... 80
9.1.1 CONTEXT ANALYSIS .. 80
9.1.2 CONVERSATIONAL DATA ... 81
9.1.3 MVP PROTOTYPE .. 81
9.1.4 PROTOTYPE FEATURES .. 81
9.2 RECOMMENDATIONS .. 83
9.2.1 SETUP AT DIVERSEY ... 83
9.2.2 ONBOARDING OF COALA INTO THE DIVERSEY PROCESS ... 83
9.2.3 ADDITIONAL FEATURES ... 83
9.3 PROPOSAL OF MACHINE TO MACHINE LEARNING WITH HUMAN POST-PROCESSING .. 84

10.0 REFERENCES .. 85

APPENDIX A1 ANNOTATION EXAMPLES FOR DATA COLLECTION .. 88

APPENDIX A2 CONSENT FORMS DATA COLLECTION ... 91

APPENDIX B1 CONVERSATIONAL FLOW TEST ... 93

B1.1 GOAL .. 93
B1.2 APPROACH ... 93
B1.3 SETUP ... 94
B1.3.1 LIMITATIONS .. 95
B1.4 RESULTS ... 96
B1.5 FINDINGS ... 98
B1.6 PROPOSED CHANGES .. 98

APPENDIX B2: TEST DESCRIPTION (DUTCH) .. 100

APPENDIX B3: FULL CONVERSATIONS WITH RASA X FOR CONVERSATIONAL FLOW TEST 101

APPENDIX B4: OBSERVATIONS PROTOTYPE TEST ... 111

10

B4.1 TESTING PROTOTYPE RAZA ... 111

APPENDIX C: PROTOTYPE CODE ... 114

APPENDIX D1: PROTOTYPE FEATURE TEST ... 115

D1.1 GOAL .. 115
D1.2 SETUP ... 115
D1.3 RESULT .. 115
D1.4 FINDINGS ... 115

APPENDIX D2: PROTOTYPE FEATURE TEST DESCRIPTION (DUTCH) ... 116

APPENDIX D3: FULL CONVERSATIONS PROTOTYPE FEATURE TEST ... 118

APPENDIX D4: OBSERVATIONS AND FEEDBACK PROTOTYPE FEATURES TEST 126

APPENDIX E: PROJECT BRIEF .. 129

11

1. Introduction

This is a design project for developing a conversational assistant (CA) for standardized issue
description in manufacturing, which belongs to the overarching COALA project. The solution
is designed specifically for the Diversey context of an operating line where 5 and 10 litre can-
isters are labelled, filled and packaged and the findings will be used as a basis for other man-
ufacturing contexts. In chapter 1.1 the background of the project is provided and in 1.2 the
problem is defined.

12

1.1 Background
In manufacturing, efficiency is a key motivator for development of new technologies as it pro-
vides a competitive advantage in the market. In Industry 3.0 (I3.0) automation of production
processes was central to this competitive advantage. However, in the advancements of pro-
duction, Industry 4.0 (I4.0) is introduced in which continuous development is taking place. Alt-
hough I4.0 builds on the developments of I3.0 technology-wise, the transition is a gradual
development that has taken place over the last few decades (Torn & Vaneker 2019). Where
automation was key, autonomous decision making is becoming central. Predictive measures
such as demand forecasting are replaced for on-demand manufacturing. I4.0 combines physi-
cal manufacturing and operations with smart digital technologies, machine learning and big
data to create a comprehensive, integrated and connected habitat for companies that focus
on manufacturing and supply chain management (Epicor, n.d.).

This focus on interconnectivity, real-time data and machine learning is only pushed further with
the developments of artificial intelligence (AI). The European Union is pushing for Europe to
become a world leader in AI by increasing public and private investments. With the research
and innovation funding programme H2020, the EU is enabling AI development and implemen-
tation on both a technological and societal level. The European Commission (2020, October 2)
claims that the application of AI has the potential to significantly enhance society and help
humans achieve climate and sustainability goals by bringing high-impact innovations.

One such H2020 EU project is COALA, a project with 17 partners including TU Delft and three
business partners: Whirlpool, Diversey and Piacenza. TU Delft and the COALA partners work
together to develop a human-centered voice-enabled Cognitive Advisor that provides support
to operators in manufacturing for situations characterized by cognitive load, time pressure and
little or zero tolerance for quality incidents. The COALA Cognitive Advisor will be a form of
conversational AI, which can communicate with the operators and assist them on the produc-
tion line with cognitive tasks. Conversational AI use natural language understanding (NLU) and
processing (NLP) to understand and respond to the input provided by the user.

Diversey is a company in the transition from I3.0 to I4.0. It applies agile manufacturing in most
of its facilities in Europe. Due to agile manufacturing, Diversey was able to provide on-demand
supply of a variety of items to its customers, as well as make them in relatively small batches
(5-10 tons). However, this method requires change-overs of the production line to switch be-
tween different products on the line. Furthermore, due to the sheer complexity of the line,
many stoppages take place. The change-overs in combination with the downtime due to stop-
pages takes currently up 40-45% of the total production time on average (COALA, personal
communication, 2021).

It is mostly up to the operators to resolve such stoppages as quickly as possible. Current ap-
proaches for solutions are reliant on the operator’s explicit and implicit knowledge which have
to be applied directly. As one can imagine, such practices are difficult to capture. Operators
have to report on the issues in between maintaining the production line. It is often done after
the fact but not directly, and often times it is either filled in rather hastily, ignored for longer
periods of time or not filled in at all. For the operators, data collection on issues and solutions
is low on the list of importance. Why would they have to capture something that the operators

13

already know and apply? No wonder that the current system in place for data collection on
issues at Diversey provides data that is often than not ambiguous, incomplete and non-de-
scriptive.
However such information is required by Diversey for process improvement. Furthermore, it is
desired to be of good quality. Next to that, the COALA Cognitive Advisor will need training
data on conversations to improve the Advisor, and it needs a lot of data. To harmonize these
datasets and improve the data, standardized terminology will be needed.

The solution for this thesis is designed specifically for the Diversey context of an operating line
where 5 and 10 litre canisters are labelled, filled and packaged. Through a human-centred de-
sign approach it is looked at what the operators need, while simultaneously improving upon
the data quality for Diversey and delivering conversational data for the Cognitive Advisor.

1.2 Problem definition
The duration of the downtime due to a stoppage mentioned in the previous section, is partly
dependent on operator’s explicit and implicit knowledge and response time of resolving the
issue. With the introduction of COALA’s Cognitive Advisor this responsibility can be split be-
tween operator and COALA. Through recommendations, COALA could provide operators with
best practices for resolving issues.

However, in order to be able to communicate such recommendations, COALA needs to learn.
It needs to learn and collect data on issues that can arise, what the root of the cause is, how to
solve the issues and it needs to learn the operator’s explicit and implicit knowledge.

Furthermore, the system in place at Diversey for data collection on issue description leaves
room for improvement. The system allows operators to collect machine specific issues and
provide descriptions. However, this system is often times ignored by the operators, and when
data is captured, it is often lacking information or confusing as terminology is not aligned
amongst different Diversey teams. This information however is crucial for reducing downtime
and increasing production efficiency.

For this thesis, a human-centred conversational assistant was proposed which can collect issue
descriptions on the Diversey production line from operators through dialogue. The data that
is created through these dialogues should contain standardized terminology for the descrip-
tion of the issue. The contributions to the COALA project provided with this thesis were firstly
a collection of conversational data that can be used for further development of the assistant, a
minimum viable product of a conversational assistant and features meant to improve the as-
sistant.

14

2. Assignment & Project Scope
The goal of this project is to develop a human-centred conversational assistant for acquiring
standardized issue descriptions from operators on the high-priority Diversey production line.
To achieve this goal, the following elements are considered: Human-Centred Design, Natural
Language Understanding (NLU), Data Acquisition, Domain specific terminology and User ac-
ceptance.

The following research questions should be answered in order to achieve the project goal:

- Why use a conversational assistant for data acquisition in manufacturing?
- What is the added benefit of a conversational assistant for data acquisition in manu-

facturing?
- How can a conversational assistant be designed for data acquisition of standardized

issue descriptions?

The expected outcome of the project is a service prototype which is able to collect issue de-
scriptions from operators during issue handling; it will be optimized for efficient data collection.
When the information is missing, the prototype should be able to have a dialog with the op-
erators to further clarify and complete the information.

2.1 Approach
To answer the research questions and have a service prototype, the Lean Startup Method (LSM)
in combination with the Riskiest Assumption Test (RAT) was utilized. With this combinational
approach uncertain assumptions can be quickly tested in sprints and allow for a flexible ap-
proach towards learning what kind of conversational assistant is needed for implementing into
the context of Diversey and how it can be implemented.

The full process is shown in figure 2.1. The process is divided into four phases (table 2.1):

Phase Riskiest assumption(s)
Design thinking

-

Sprint 1: Conversational
data

By having human-like conversations, it is possible for a
CA to extract high quality issue descriptions while
ensuring positive user experience.

Sprint 2: MVP prototype

Having a frame-based strict pattern for capturing data
will provide structured data while allowing for flexible
user input.

Sprint 3: Prototype
features

It’s possible to create a CA that uses and presents
standardized terminology while reducing friction
between user and CA.

Table 2.1: Phases in the process with riskiest assumptions per sprint

15

Figure 2.1: LSM with RAT-sprints for developing a conversational assistant for manufacturing

CA* = Conversational assistant
MVP** = Minimal viable product
The Design Thinking phase encompassed the necessary theory and context to go into the
sprints. Research into conversational assistants and the specific context domain for the use
case of the prototype was analysed. The Design Thinking phase mainly focused on answering
the first two research questions. With the sprints, the riskiest assumptions were tested which
were used to answer the third research questions.

In sprint 1, it was tested whether human-like conversations are needed between CA and oper-
ator to extract high quality issue descriptions. Human-like conversations can be achieved with
an agent-based dialogue management, section 3.2 describes the characteristics of conversa-
tional AI such as frame-based/agent-based dialogue management.
Noteworthy here is that the riskiest assumption failed and was adjusted for sprint 2 to a system
that would provide more structure in the output but maintain some flexibility in the input. The
system should allow for the operators to present the issues that would come from natural
human-like conversations in the input

Sprint 2 tested whether a frame-based CA prototype would allow for capturing issue descrip-
tions in such a way where the output is structured, while the input is allowed to be flexible.
Agile development was applied to create quick iterations on the prototype.

In sprint 3 prototype features were explored which could improve the data acquisition. During
the first sprint, possible challenges for the CA were discovered. In sprint 3, attempts were made
to resolve two of these challenges: synonym usage and pronoun usage. Other features ex-
plored were: Writing issue descriptions to a database, contextual filtering, control description
input and an extra form for capturing unknown issues.

16

3. Conversational assistant
This chapter introduces the concept of a conversational assistant, discusses the types of con-
versational AI and the terminology used for this report, discusses why we should use conver-
sational assistants in manufacturing and how it should work.

17

3.1 What is a conversational assistant?
A conversational assistant is a type of conversational AI that is designed to complement, not
replace, the abilities and functions of the person it is assisting. The assistant does not substitute
the person’s job, rather it optimizes the individual’s performance in the task (Parayno, 2020).
Common applications of conversational AI are customer support chatbots (frequently-asked-
questions [FAQ] bots) or virtual assistants such as Apple’s Siri, Amazon Alexa, Samsung’s Bixby
or Google Home. With various machine learning components, such as Automatic Speech
Recognition (ASR), Natural Language Understanding (NLU), Dialog manager and Natural Lan-
guage Generation (NLG), the conversational assistants are able to understand and respond to
the user.

The level of complexity of conversational AI can differ drastically. Customer support chatbots
are there to answer simple frequently asked questions to the user while a virtual assistant such
as Amazon Alexa needs to be able, for instance, to play a requested song on demand and be
able to set a timer for 6 minutes. While the first can have a pre-determined strict path it guides
the user (up to a point where it possibly cannot assist the user anymore and, if implemented,
forwards the user to contact a human), the second needs to be flexible and be able to do a
wide range of capabilities.

3.2 Types of conversational AI
This section is dedicated to clarifying the types of conversational AI. Table 3.1 provides an
overview of the characterizations of conversational AI.

Characteristic Types Description
Dialogue
management

Finite-state The user is taken through a series of pre-determined steps and
the user’s input is limited to single predefined words or phrases

Frame-based The user is asked questions that enable the system to fill slots in
a template in order to perform a task

Agent-based Natural, dynamic dialogue that draws on preceding context as
well as both sides' actions and beliefs

Goal-orientation Goal-oriented Goal-oriented (or task-oriented, closed-domain) conversational
AI assist users in completing a specific task

Non-goal oriented Non-goal-oriented (open-domain) systems interact with users to
provide reasonable responses and entertainment

Dialogue initiative User The dialog is led by the user
Assistant The dialog is led by the assistant
Mixed Both the user and the assistant can lead the conversation

Input modality Voice-based The user uses spoken language to interact with the assistant
Text-based The user uses written language to interact with the assistant
Button input The user uses buttons to interact with the assistant
Mixed The user uses a combination of spoken language, written

language and buttons to interact with the assistant
Output modality Voice-based The assistant interacts with the user by voice

Text-based The assistant interacts with the user with text
Visual The assistant uses non-verbal communication like images,

graphics, facial expressions or body movements
Mixed A combination of the above

Table 3.1: Characterization of conversational AI (adapted from Kernan Freire (2020), and Laranjo (2018))

18

Amazon’s Alexa is a form of conversational AI that is a voice-based, frame-based non-goal-
oriented assistant with user dialogue initiative. A FAQ chatbot as described in section 3.1 is a
finite-state goal-oriented assistant.

Finite-state assistants are simple chatbots that allow the user to have only single predefined
words or phrases as input. An example of such an assistant is a simple travel inquiry system.
An example below (Böhm, 2002):

 System: What is your destination?
 User: London.
 System: What is your origin?
 User: Amsterdam.
 System: What day do you want to travel?
 User: Thursday.
 System: What is the departure time?
 User: …

Figure 3.1: Start of a conversation of a travel inquiry system with finite-state system

Limiting the user to predefined inputs is both an advantage and disadvantage of the system.
The advantages of structured dialogues are that it is suitable for well-structured tasks, the
chance of the conversation failing is lowered and the output is expected to be more structured
than for the other types of conversational assistants. The disadvantage is that it is not flexible
in its conversation as it is unable to cope with more complex dialogues where the user does
not follow the strict path.

With a frame-based systems the user is not limited to predefined inputs, however the output
is. Certain information should be extracted from the user’s input to fill slots in a template in
order to perform a task. Below in figure 3.2, is the start of a conversation of a travel inquiry
system with frame-based dialogue management:

 System: What is your destination?
 User: London if possible.
 System: What is your origin?
 User: Somewhere in the Netherlands.
 System: The following airports are available for travel to London:

 - Amsterdam
 - Rotterdam
 - Eindhoven

 What airport do you prefer?
 User: Eindhoven.
 System: What day do you want to travel?
 User: …

Figure 3.2: Start of a conversation of a travel inquiry system with frame-based system

In the example the system is aware of the user input and is even able to store some information;
the system stores London as a destination and recognizes that the user wants to departure
somewhere from the Netherlands and therefore provides airports in the Netherlands from
which one can travel to London. As shown, the input is flexible however the user is still guided
towards finishing the assistant’s task.

19

An agent-based system has natural and dynamic dialogues that draw on preceding context as
well as both sides' actions and beliefs. In simpler words, it converses as a human would. An
example of a travel inquiry system with an agent-based dialogue system is shown in figure 3.3.

System: What is your destination?
 User: I don’t know.
 System: I can help you decide! But I will need some more information. Want to proceed?
 User: Sure.
 System: When would you like to travel?
 User: This spring.
 System: Great. I have heard Spain is lovely in this time of year.
 User: I would prefer to travel somewhere in Asia.
 System: …

Figure 3.3: Start of conversation of a travel inquiry system with agent-based system

As you can imagine, the dialogue can go in many directions from this point. The system can
keep providing destinations, or it can ask more questions to get more specific information.
Maybe the user changes their preference mid conversation and opts to travel to America. An
agent-based system must be flexible to handle such conversations. The input can have a wide
variety of user utterances while the output can have many different outcomes.

For sprint 1 the riskiest assumption was made that the conversational assistant had to com-
municate human-like and the initial characterization was assumed to be an agent-based goal-
oriented assistant with mixed dialogue initiative. The assumption failed as the desired result of
the conversation needed to be structured output for issue descriptions and was therefore ad-
justed for sprint 2. However, through context analysis it became clear that a finite-state dia-
logue management was also not desired. The system currently in place for issue descriptions
(as discussed in section 4.4.6) was too restrictive on the operators. So I have opted for a frame-
based dialogue management which allows for a mix of strictness in the information that needs
to be gathered (with forms, sections 5.6.1 and 7.3), but also allows for flexibility in the language
and words that is used in the user’s input (by using NLU section 5.3, 8.2 and 8.3).

3.2.1 Cognitive Advisor vs. Conversational assistant
COALA’s Cognitive Advisor is intended as a frame-based goal-oriented system with a voice-
based input and output modality where both the user and the Advisor can lead the conversa-
tion. Furthermore, the goal is to build the Advisor up from a frame-based dialog management
system to an agent-based dialog management system.

The conversational assistant for this report however, was a frame-based goal-oriented system
with a text-based input and output modality where the user leads the conversation. Buttons
were also implemented to be able to quicken the interaction when the user’s information can
be structured.

3.3 Why use conversational assistants?
Why would it make sense to implement a conversational assistant into the Diversey use case?
The benefit of conversational assistants is with handling and processing repetitive data, such
as addressing customer inquiries or gathering data at scale. Current methods of data gathering
at Diversey still leave a lot of room for improvement (section 4.4.6) Issues are often either not

20

captured at all or incorrectly captured, a conversational assistant can improve such practices.
Furthermore, an assistant can provide recommendations to an operator for best practices on
the production line. Chacón et al. advocate this:

Currently, Industry 4.0 signifies a great opportunity for operators to become a part of
the new manufacturing systems. On the one hand, operators generate information and
data to programme machines and robots and optimise process flows; on the other
hand, they receive useful support for their work as well as effective cooperation with
intelligent systems. This bidirectional dialogue allows new types of powerful interac-
tions between operators and machines. Hence, a new kind of workforce should be
trained in order to obtain a significant impact on the development of the industry.
(Chacón et al., 2020)

The information and data the operators generate, the conversational assistant can use as train-
ing data and when it has learnt all this information, it can provide support to them through
recommendations on best practices.

3.4 How will it work?
The use case of the conversational assistant is to capture issue descriptions during issue han-
dling of a stoppage on the production line. The operators have to describe the stoppage to
the assistant and the assistant has to understand and process what the operator conveys to
the assistant. Current methods of issue reporting still leave room for improvement. The system
in place at Diversey uses a desktop computer in the middle of the operating line. Chapter 4
dives deeper into the context of the use case for this report.

3.4.1 How will the Cognitive Advisor work?
For the Cognitive Advisor, it is more than just capturing the issue descriptions. It will also cap-
ture the root cause analysis (RCA), the solution and the implicit knowledge such as know-hows
(section 4.3.1). Furthermore, it will provide recommendations on best practices (section 4.3).
Communication with the assistant will be through a headset with a microphone that the oper-
ator will be wearing. That way, the necessary information can be collected hands-free by voice
and the operator can continue working normally on their tasks.

A schematic of the components needed to communicate by voice with the operator is shown
in figure 3.4. A voice interface will capture the voice input from the operator. This voice input
is converted to audio input and the speech-to-text (STT) component converts it to text. After
which the NLU component dissects the text and compares it to its training data, resulting into
intents & entities. The dialog manager uses machine learning to create responses to these
intents and entities, which by this point were still user input. The responses are converted from
text to audio in the text-to-speech (TTS) component whereafter the voice interface provides a
response to the user by voice.

21

Figure 3.4: A schematic of a cognitive Advisor with voice interface

3.4.2. How will the conversational assistant work?
The conversational assistant however, is text-based. The schematic is shown in figure 3.5. The
choice was made to be able to make quicker iterations and improvements on the NLU and
dialog managers by removing the need of a voice interface, STT and TTS component combi-
nation. Furthermore the variability of the STT system incorrectly registering words is taken out
of the system. Next to that, Rasa provides their own open-source API interface named Rasa X,
which was utilized for the prototyping throughout the project. The disadvantage of this ap-
proach is that text input from a user will differ from voice input and needs to be taken into
account during development of the CA.

Figure 3.5: A schematic of a conversational assistant using text as input and output

3.5 Operator acceptance
The system in place at Diversey for capturing data on issues is called the ODCE-system. It does
not work correctly as intended for the operators as described in section 4.4.6, and operators
prefer to ignore the system. The operators are discontent with the system as it brings them
annoyance and extra labour. The system is not used correctly because of it. This discontent-
ment should be considered when developing the conversational assistant. “Numerous CAs
were discontinued because of inadequate responses to user requests or making errors because
of limited functionalities and knowledge of a CA, which can lead to frustration” (Brendel et al.,
2020). Therefore, it was important to reduce possible frictions between operator and CA. Ac-
curacy requirements were set in sprint 1 to prevent this.

3.6 Standardized terminology
Operators and AI should collaborate in a coordinated manner and form a heterogenous team
(van den Bosch et al., 2019). This heterogenous team is also referred to as a “hybrid team”
where multiple agents, either humans or machines, work together interdependently. One im-
portant factor in making a hybrid team work is that the agents of a hybrid team have a shared
vocabulary which they can develop and refine.

Here I suggest a method of co-learning for both operators and CA. The operators learn to
operate with the CA while the CA is able to gather information on issue descriptions. The con-

22

versational assistant must share the operator’s vocabulary to understand them, but the opera-
tors should also move towards terminology that is standardized so that the co-learning process
runs more smoothly.

Some of the speech related challenges presented in section 4.4.6 are explored in sprint 3 to
move towards standardized terminology.

23

4. COALA & Diversey
The next chapters are used to give the context of the conversational assistant. Section 4.1 is
specifically used for the context of the COALA project, section 4.2 is dedicated to Diversey and
its role in COALA, section 4.3 is for the high-level Cognitive Advisor that encompasses the
conversational assistant, section 4.4 discusses the stakeholders of this project and 4.5 goes into
the value creation for the stakeholders. Section 4.6 goes in depth into the context of the factory.

24

4.1 COALA project
As mentioned in the introduction, COALA is a H2020 EU project with 17 partners. TU Delft and
the COALA partners work together to develop a human-centered voice-enabled Cognitive Ad-
visor that provides support to operators in manufacturing for situations characterized by cog-
nitive load, time pressure and little or zero tolerance for quality incidents. Furthermore, the
assistant should aid in reducing the time needed for on-the-job training of workers.

The introduction of COALA into these manufacturing facilities was divided into four key objec-
tives:

- Reduce the number of quality incidents in manufacturing
- Reduce the time needed for on-the-job training of workers in manufacturing
- Overcome barriers and reduce scepticism regarding the use of a voice-enabled Cogni-

tive Advisor in manufacturing environments
- Improve the competencies of blue-collar workers in managing AI opportunities, chal-

lenges, and risks in the shop floor

These high level objectives are not direct objectives to this project, but elements are applicable
here. Through the use of the CA, for instance, workers competencies with AI will improve simply
through having experience with the use of such systems. With the training data the COALA
Cognitive Advisor will be able to provide the necessary support.

4.2 Diversey
Diversey BV is a global producer of professional hygiene products. It’s a company that makes
cleaning, sanitation and maintenance products. In 2016, the global market for food safety and
professional hygiene was valued 36 billion euros of which 8 billion is approximated to be the
total EU market. The global market is predicted to increase at a compound annual growth rate
of 4% from 2019 to 2024. Diversey’s market share is estimated to be 12% of the total market
(COALA, personal communication, 2021).

Diversey applies agile manufacturing in most of its facilities in Europe. Due to agile manufac-
turing, Diversey is able to provide on-demand supply of a variety of items to its customers, as
well as make them in relatively small batches (5-10 tons). However, this method requires
change-overs of the production line to switch between different products on the line. Further-
more, due to the sheer complexity of the line, many stoppages take place. The change-overs
in combination with the downtime due to stoppages takes currently up 40-45% of the total
production time on average (COALA, personal communication, 2021).

With COALA, Diversey aims to tackle the change-over time and downtime, but also reduce
workers’ cognitive effort in handling unanticipated complex production line tasks.

4.3 Cognitive Advisor
The COALA Cognitive Advisor will be integrated into the IT infrastructure of several companies
in order to be applied in the production facilities for problem identification, root cause analysis
(RCA) and solution delivery, figure 4.1 provides an overview. It will utilize posture tracking for
contextual awareness and voice communication for interacting with operators in the facilities.

25

The posture tracking system makes use of a stereo camera and will be utilized for ethical loca-
tion tracking of operators (Surendranadha Panicker, 2021). Plans are also made to include sen-
sor data and machine data of production lines as input for the Cognitive Advisor to make it
even more context aware. The COALA team will focus on four core components of the Cogni-
tive Advisor shown in table 4.1. This thesis falls into the in yellow highlighted component; the
knowledge acquisition. This component is for gathering explicit and tacit knowledge on the
operating line through dialogs and feed the knowledge into the other components.

Cognitive advisor
components

Purpose

Knowledge acquisition The knowledge acquisition component is targeted at gathering explicit and
tacit knowledge on the operating line through dialogues with the operators.

Knowledge representation The knowledge representation component carries out two tasks: Validate the
captured knowledge by the knowledge acquisition component and provide
support in decision-making processes in manufacturing (i.e. through means of
a graphical presentation of the knowledge).

User profile The user profile component will support the recommender engine with the
required user data to adapt the recommendations to the specific user.

Recommender engine The recommender engine component of the cognitive advisor will provide
recommendations on best practices to the operators.

Table 4.1: The four components of the cognitive advisor and its purpose

4.3.1 Knowledge acquisition
Operating a manufacturing line at target speeds while also resolving stoppages in a timely
manner is a cognitively demanding activity. The goal of the knowledge acquisition component
is to elicit this knowledge through dialogues with the operator while minimising the impact on
their work and cognitive load. Downtime and production target figures reveal significant dif-
ferences between different operator shifts. Existing documentation of the machines is limited,
outdated and slow to access as it is paper based. Therefore, operators rely heavily on their own
explicit and tacit knowledge.

The knowledge acquisition schematic is shown in figure 4.1. Non-verbal data such as the pos-
ture tracking and sensor data can be used as input for the dialogs and will influence the con-
versation between the Cognitive Advisor and operators. The verbal data is split into Issue de-
scriptions, Root cause analysis and Solutions. The issue descriptions are for collecting the ob-
servable issues on the production line, root cause analysis is for capturing the root of the cause
and with solutions capture the fix to the issue is collected. These elements should feed into the
tacit knowledge of know-hows for the specific production line.

As mentioned in the previous section, the knowledge acquisition component is targeted at
collecting both explicit and tacit knowledge. However, for this thesis, the focus is only on ex-
plicit knowledge; more specifically explicit knowledge of issue descriptions. The issue descrip-
tions provide a good starting point for creating a conversational assistant from scratch. Adding
tacit knowledge such as intuition and know-hows increase complexity and is currently not de-
sired. Furthermore, providing explicit knowledge on issue reporting is a direct benefit for Di-
versey as it emphasizes improving data quality.

26

Figure 4.1: An overview of what knowledge will be collected with the Cognitive Advisor

Figure 4.2 provides an overview of all the data that can be captured at the 5/10L production
line of Diversey.

Data from Types Description
Conversation Issue descriptions Description of the issue

Machine location The high level machine location of the issue
Product component The product component related to the issue
Product component
state

The state of the product component related to the
issue

Machine component The component of the machine related to the issue
Machine component
state

The state of the component of the machine related to
the issue

Solutions Solution for the issue
ZED 2 camera Operator position The operator position is tracked on the production line

Stoppage location Location of the stoppage
Production
line sensors

Canister sensor Checks whether canisters are on the assembly line
Label sensor Controls whether the label is correctly placed onto the

canister
Cap sensor Controls whether the cap is correctly placed onto the

canister
Box label sensor Controls whether the label is correctly placed onto the

box
Position sensor Controls whether the canister is correctly placed onto

the pallet
Production
line machines

Speed production line The user uses spoken language to interact with the
assistant

Speed filler The user uses written language to interact with the
assistant

Pressure filler The user uses buttons to interact with the assistant
Weight canisters The user uses a combination of spoken language,

written language and buttons to interact with the
assistant

27

Other SKU Stock keeping unit, unique number to identify a certain
product

Batch Unique number for the batch of the product
Date Date of the issue
Time Time of the issue

Figure 4.2: Table of data types with where they can be captured from and its description

4.4 Stakeholders CA
The relevant stakeholders for this project have been mapped out in a stakeholder map in figure
4.3. The arrows between parties indicate a form of influence on the other party, (e.g. business
management expecting a certain batch size per hour for the operators to produce).

Figure 4.3: Stakeholders divided into core, direct and indirect stakeholders. Arrows signify influence on an-
other party.

At the core are the production line operators who are the end-users of the CA. The direct
stakeholders are the parties that are taken into account for the development of the CA. Both

28

the core stakeholders and the direct stakeholders are the beneficiaries of a working conversa-
tional AI system on the production line. For instance, an improvement in data quality would
directly benefit all parties in the core and of the direct stakeholders. Knowledge can be trans-
ferred from expert operator to a novice operator through knowledge acquired with the CA,
while technical services and quality management can use the data to pinpoint what the issue
is with a certain machine or the quality of a certain product respectively.

The indirect stakeholders have an influence on the direct stakeholders. To give an example, the
customers expect a certain quality of the product coming from Diversey and quality manage-
ment has to assure this level of quality is reached. These influences from the indirect stake-
holders impact the behaviours of the direct stakeholders. However, for this work the indirect
stakeholders are left as out-of-scope for the development of the CA.

Depending on the stakeholder’s group’s availability, they either had an advisory role, were in-
terviewees or user participants for data collection or testing of the prototype. The COALA re-
search team and Business management of Diversey had an advisory role, input from quality
management was gathered through interviews and user tests, operators were interviewees and
participated with the data collection and technical service took part in user tests.

4.5 Value creation for stakeholders
The reason to implement a conversational assistant is to create value for the stakeholders in-
volved. For this section, the Diversey parties, aside from the production line operators, are
generalized into one stakeholder; technical service, quality staff and business management are
generalized into: Diversey. Similarly, COALA research team, TU Delft and COALA partners are
generalized into: COALA. The benefits and disadvantages of the conversational assistant to the
different stakeholders is provided in table 4.2.

By using a voice user interface, the operators are able to capture issues hands-free and are
able to continue working on the production line. The introduction of the conversational assis-
tant will however increase the cognitive load for the operators as it is expected more issues will
be captured. This increases the chance that the operators have to handle the issue and report
on it simultaneously.

Section 4.4.6 describes the issues with the issue reporting. There is potential here to be gained
with introducing a conversational assistant into the operations for Diversey. For one, more data
can be reported on issues for all levels of severity. Secondly, the quality of the data can be
improved. By creating a structure of issue description with the conversational assistant where
the output is structured, the operators are guided to correctly capture the issue descriptions.

Noteworthy here, is that with the introduction of the knowledge acquisition component, the
cognitive load on the operators is expected to increase. The operators have to learn how to
communicate with the assistant next to the increase of the amount of issue reporting. However,
the introduction of the recommender system is expected to reduce the cognitive load as some
cognition will be done by the assistant.

29

One use for the data provided to Diversey is for process improvement. Patterns in issues could
provide the necessary information to, for instance, find what machine should be repaired or
replaced.

Stakeholder(s) Benefits Possible disadvantages
Operators Hands-free issue reporting through voice-

enabled conversations
Increase of cognitive load as downtime is
reduced and more issues are captured

Operators can work continuously on the
operating line

Increase of cognitive load due to
simultaneous issue handling and reporting

Diversey Reduction of downtime
Operator burnout More data reporting on issue

Better quality of data reported on issues
COALA Findings and improvements can be used for

implementation into the Cognitive Advisor
-

Issue descriptions can be used as training
data to relearn the model and improve

Added complexity and training data can
reduce accuracy (can also improve)

Table 4.2: The benefits and possible disadvantages of introduction of a conversational assistant for different
stakeholders.

4.4 Diversey Enschede Factory
The use case of this thesis is the Diversey factory in Enschede in the Netherlands. Diversey
allowed, although Covid restrictions made it more difficult, for the COALA team to visit the
factory. During the visits, we were able to check the shop floor, interview business manage-
ment, quality management and interview and observe operators on the production line.

At the factory in Enschede, the full process from raw material to finished goods is done. This
includes processes such as mixing the detergents and other liquids to fully packaging the prod-
uct on operating lines. Several operating lines can run simultaneously for different kinds of
packaging. This project focuses on one specific operating line, the 5/10 litre operating line.

A context analysis was conducted to understand the environment the operators are working
in. Methods applied during the context analysis were observations of the operating line and
the operators working on it and unstructured interviews with operators and two employees of
quality control department.

4.4.1 5/10 litre operating line
The 5/10 litre operating line (5/10L line) (figure 4.4) is considered a priority line that must al-
ways be running.

30

Figure 4.4: The 5/10L operating line with on the left the filler, in the middle the box unfolder and box turner,
in the foreground to the right of these the box printer and in between the two machines in the back the box
packer.

On this operating line agile manufacturing is applied, a method of producing several different
products on the same operating line. Depending on the client’s needs, the operating line allows
for different labels per product, different canisters, different caps, and several different liquids
can be pumped into the filler to fill the canisters. As the name of the operating line indicates,
there are also two sizes of packaging that are produced on the line, 5 and 10 litre canisters.
Switching between products can create substantial downtime where no products are created,
but a change-over is taking place. These reconfigurations can take approximately 20-25
minutes for simple changeovers and up to 2 hours for complex changeovers (COALA, personal
communication, 2021). This can include high pressure cleaning of the filler, cleaning the piping
system that delivers the product to the filler, swapping the labels needed or even changing the
entire line to fit another canister size, (e.g. swapping from 5 litre canisters to 10 litre canisters
or vice versa).

During the interviews, an operator mentioned that during one single shift up to 80 stoppages
took place. Depending on the severity of the issue, the duration of solving stoppages has a
wide range of taking just a few seconds up to taking several hours to solve. This downtime in
combination with the change-overs currently takes up 40-45% of the total production time on
average (COALA, personal communication, 2021).

4.4.1.1 Layout 5/10L line
To be able to create a finished product of a correctly labelled, filled, and closed canister with a
cap which is boxed, machines are needed. For the entire process from empty canister to a
plastic wrapped pallet full with boxed canisters 15 large machines are needed, this is excluding
the conveyor belts, buffer areas and sensors.

31

Figure 4.5 shows a simplified top view of the line and figure 4.6 gives a schematic overview of
the canister journey and the cardboard package journey and where both journeys connect at
the box packer and continue as one.

Figure 4.5: Simplified top view of the 5/10 litre operating line

32

Figure 4.6: Product journey on 5/10 litre production line. In red the canister journey, in blue the cardboard
package journey and in purple the two combined

The journey of the canisters starts with the supply of the canisters at the depalletiser, where
rows of 6 canisters are taken off the pallet and placed onto the assembly line. The canisters are
transported towards the sleeve labeller. Just in front of the sleeve labeller, a canister sensor
checks whether canisters are coming from the depalletiser and whether these are upright. If
not, the line is stopped. At the sleeve labeller a sleeve label can be placed on the can, depend-
ing on the product (liquid) and client’s desire whether the canister is required to have a sleeve
label. If not, the sleeve labeller acts as part of the assembly line. Afterwards the canister is
transported towards the filler where the canister can be filled with the product. Again, a canister

33

sensor is placed just in front of the filler to check whether canisters are on the assembly line
and if these are upright. At the filler several products can be filled in the canister such as de-
tergent and alcohol. Within the filler, the cap turner places a cap on the filled canister. The caps
are supplied from the cap supply. A sensor in the cap turner checks whether caps are placed
incorrectly. Whenever this happens, the canister is pushed onto the buffer lane, otherwise the
canisters continue towards the weight checker where the canisters are checked whether their
weight falls in the predefined range set by the operator. If not, the line is stopped and the
operator is tasked to manually check the weight of the can. If the weight of the can is incorrect
after manual check, the operator has to examine whether the filler is filling the canisters incor-
rectly and adjust accordingly. The next station after the weight checker is the canister labeller.
Here a label can be placed on the canister. Similar to the sleeve label, not every canister has a
label placed. The label sensor controls whether the label of the canister labeller is placed cor-
rectly. If everything is alright, the canister is transported further towards the box packer where
the canister is placed inside a box.

The journey of the cardboard package starts at the area for pallets with flat cardboard pack-
ages. The flat carton is manually placed by the operator onto the buffer for the box unfolder.
The flat cardboard packages are opened on one side in the box unfolder. The box turner is
there to set the boxes upright. The upright boxes with the opening aiming upwards can be
printed if needed at the box printer. Afterwards they are transported to the box packer where
the cardboard packages are filled with the finished canisters. One box is used for two 5 litre
canisters and for one 10 litre canister.

After the box packer, the packages move onto the box closer where the one open side is closed.
At the box labeller two labels are placed onto the side of the box. The spiral is used to transport
the boxes upwards towards the palletiser where they are to be ordered and placed onto pallets.
The Tweety machine is a mobile assembly line utilized for several operating lines. For the 5/10
litre operating line, Tweety transports the full pallets towards the pallet wrapper where the
pallets are wrapped. At this point the full pallets are ready to be shipped to the client.

4.4.2 Operators
The operators (figure 4.7) working on the 5/10L line have 8-hour shifts where 2 or 3 operators
work at the same time. The line works 24/7 and the day is divided into 3 shifts. Most often, two
operators work on the 5/10L line, sometimes only one and sometimes three. In the case of two
operators, usually an experienced operator is paired with a novice. There are many different
experience levels amongst operators, some experienced operators with up to 20 years of ex-
perience and novices who are just starting. These differences in shifts and different experience
levels amongst operators influence the shift’s production capacity and could also influence
how the CA will have to operate.

34

Figure 4.7: An operator in the process of fixing a stoppage at the filler/cap turner.

As shown in the previous section (section 4.4.1), there are several machines running and as will
be shown in the next sections (sections 4.4.3 and 4.4.4), many factors can influence whether
the production runs smoothly or whether issues arise and the line stops. It is up to the operator
to keep the operating line running smoothly and reduce downtime. There are several regular
tasks the operators have. The most prevalent ones from the visit are listed below:

- Solve stoppages at the operating line
- Adjust speed of machines and assembly line
- Supplying the sleeve-, canister- and box labeller with enough labels
- Supply the cap supply with enough caps
- Prepare change-overs
- Manual placement of 10 litre canisters on assembly line
- Final check of pallet and adding sticker before sending it off to the pallet wrapper
- Capturing issues with ODCE-system
- End of shift summary on computer
- Report complex issues with ALIS-system

Some of the qualifications observed which would be assigned to an “expert” operator are:

- The quick responsiveness to issues and fast recognition of the issue

- Assurance that paperwork is done correctly and checked doubly.

- Preparation of change-over while production line is running

- Knowing how to conduct the change-over in a timely manner without mistakes

35

4.4.3 Change-overs
As change-overs are set as out of scope for this project, they will not be discussed in detail,
however for the context, it is good to be aware of the practices during change-overs and the
operator’s task within change-overs.

For change-overs, operators have to prepare the operating line for the next product. Depend-
ing on the next product, tasks like starting a cleaning process for the filler and setting the
correct range for the weight checker are to be done. Some of the tasks during change-over are
listed below:

- Prepare the operating line for next product with paperwork (check batch and stock
keeping unit (SKU))

- Set correct range of weight of next product for the weight checker
- Set speed and pressure of filling at the filler
- Start cleaning process for the filler
- Start cleaning process of pipe system
- Control Paperwork for new batch (SKU, amount etc)
- Prepare new labels
- Prepare new canisters if needed
- Prepare new caps if needed
- 4-eye check of paperwork (is everything correct?)

4.4.4 Issues and issue handling
Operators regularly face many issues in one shift which need to be resolved timely to reduce
downtime of the production line. Responding to the stoppages and figuring out where it orig-
inated on a high-paced production line while doing this as quick as possible can be taxing on
the operators. Optimizing the operators’ responses to stoppages is in the benefit of the com-
pany. To take over some of the cognitive load while simultaneously increasing the response
time to stoppages would be beneficial for both company and operator.

One of the operators has mentioned during an interview that an operator experienced up to
80 stoppages in one single shift. Stoppages can take a few seconds, a few minutes and some-
times even several hours. The operators use sensory cues to recognize a stoppage. The line is
constantly producing sound and some of the experienced operators can recognize by sound
whenever something is jamming and find the issue of the stoppage. Some can recognize sound
is not being produced in a particular area of the operating line and pinpoint where the stop-
page is. Also, visual cues are used. An operator can see where the line is not running and use
these indications to find the cause of the issue. Also, lights are used to indicate whether a
machine is running (green), a machine has stopped (orange) and whether the machine has a
major issue (red).

There are many variables that influence issues. All the machines can have several causes for an
issue to happen, the components of the final product can also have several flaws for an issue
to arise and an operator could have set a certain setting (e.g. filling speed of the filler) wrong
for a specific product. Capturing all issues and causes can be a difficult task. However, some
common issues have been captured during observations and from interviews, table 4.3 gives

36

an overview of the captured common issues. In the table, the consequence, severity and solu-
tion of the issue and the machine related to the issue are given. Table 4.4 gives an overview of
the severity levels of the issues observed. The system for issue capturing (ODCE-system) used
at the factory can recognize a stoppage (more on this in section 4.4.6). Whenever the stoppage
takes more than 3 minutes, the system pops up on the desktop computer at the operating line
and asks the operators to fill in the issue. Therefore, the severity of “high” has been set to 3
minutes of stoppage or higher.

An example of a medium to high range issue which have been observed is of issues related to
the weight checker. In different shifts there were several instances observed for the issue of the
weight checker where the severity was ranging from medium to high. In the first shift, the
experienced operator was next to the weight checker when the line stopped. The operator
could directly respond and solve the issue. However, in a different shift a similar situation hap-
pened where a canister had the “wrong” weight, but the operators were puzzled as the weight
of the canister was correct and fit in the range set by the operators. They had to reset the
weight checker and adjust some settings to make it run correctly, this process took over 3
minutes to solve.

37

Common issues Consequence(s) Severity* Observed
solution(s)

Related
machine(s)

Canisters wrongly
placed on production
line

Canister is not registered by
the can sensor in front of
the sleeve labeller and the
line stops.

Low to
medium

Set canister upright
before passing the
canister sensor.

Depalletiser

Sleeve incorrectly
placed onto the
canister

The sleeves on the canisters
either are not placed on the
canisters at all, are wrinkled
or torn apart. The machine
can also stop.

Medium Stop the sleeve
labeller, enter
machine, tear off
faulty sleeves and
correctly connect
sleeve roll with the
sleeve grippers.

Sleeve labeller

Foaming of product in
the canisters

The weight of the canisters
can be too low, the product
can flow out of the canister
into the filler. The assembly
line can become slippery.

Medium to
high

Adjust filling speed
and pressure.

Filler

Cap incorrectly placed
onto the canister

The canister is pushed onto
the canister buffer lane.

Low Manually remove the
cap from the canister
in the buffer lane and
manually place cap
correctly onto the
canister.

Cap turner

Weight of the canister
not in weight range

The weight checker stops
the production line.

Medium to
high

Set the canister aside
and check manually
the weight of the can.
Adjust filler
accordingly.

Weight
checker

Canister label
incorrectly placed onto
the canister

The line stops as the
canister label sensor
recognizes an incorrectly
placed label.

Medium Remove canisters with
wrongly placed label,
re-adjust the canister
labeller so that labels
are placed correctly.

Canister
labeller

Box label incorrectly
placed onto the
cardboard package

The line stops as the box
label sensor recognizes an
incorrectly placed label.

Medium Remove boxes with
wrongly placed labels,
re-adjust the box
labeller.

Box labeller

Cardboard pallet
plates bended
(concave)

The cardboard pallet plates
are not grabbed by the
palletiser pallet grippers
and not placed onto the
pallet.

Medium Flip the pallet plates
pile so that the plates
are convex and the
gripper can grip onto
the plates.

Palletiser

Pallet with boxes
dropped

The boxes fell onto sensors
at the pallet transport and
the direction the sensor
were targeting was
incorrect.

High Stop the palletiser,
manually remove
pallet and the boxes
with canisters and
manually adjut the
direction the sensors
are pointing.

Palletiser

Table 4.3: Common issues captured during observations and interviews, with consequence, severity and
solution of the issue and the related machine(s).

* = see table 4.4 for explanation of the severity.

38

Severity Explanation
Low The line does not have to stop
Low to medium Depending on the operator’s response, the line either does not

have to stop or there is a stoppage less than 3 minutes
Medium The line has a stoppage less than 3 minutes
Medium to high Depending on the operator’s response, the line has a stoppage less

than 3 minutes or more than 3 minutes
High The line has a stoppage more than 3 minutes

Table 4.4: Overview of severity levels

4.4.5 Communications and issue reporting
Several tools are used for communication and issue reporting by the operators: ALIS, ODCE,
Word and Whatsapp. For each tool there are clear benefits but also disadvantages. Table 4.5
gives an overview.

Tool Explanation Benefits Disadvantages Noteworthy
observations

ALIS ALIS is a factory wide
system used for reporting
major issues and a way of
communication between
teams at Diversey, (e.g.,
between business
management and
operators, technical service
and operators or quality
staff and business
management).

ALIS allows for
factory wide
communication
between teams. A
message between
operator and
technical service can
also be accessed by
quality staff for
instance.

Communications
are not always
processed.

Some operators claim
that ALIS works
perfectly fine, while
quality management
indicated that
sometimes their
communications in
ALIS are not processed
and have to
communicate the
matter in person.

ODCE ODCE is used to report
issues on the production
line. This is used for all
operating packaging lines
at the Diversey factory.
Notably, it is used the least
on the 5/10 liter line and in
addition it is also used
incorrectly producing
incomplete data.

Capturing data on
issues gives other
teams and shifts a
better insight in what
goes well and what
wrong. Furthermore
it allows for process
improvement.

Data quality is
lacking. A lot of
missing
information.
Often ignored by
operators even
when the
warning for a 3+
min stoppage
pops up on the
screen.

Two stoppages of 3+
minutes happened in
same shift, because
first ODCE pop-up was
ignored, the second
stoppage was
captured for the first
issue. Result: ODCE
data filled in for wrong
issue (2nd for 1st).
Second issue not
reported (skipped by
operator)

Windows
Word

Communicating the shift
and issues between different
shifts is done quick and dirty
through the Windows Word
application on the desktop
computer of the 5/10L line.
Short summaries of the
shift are written at the end of
the shift with some small
mentions of issues.

Allows for quick and
dirty summary of the
shift.

The summaries
are not
processed
company wide,
only between
shifts.
A report such as:
“shift went well”
do not provide a
lot of
information for
the new shift.

Some interviewed
operators mentioned
they preferred using
Word over ODCE as an
issue reporting tool.

39

Whatsapp Whatsapp is used to
communicate quickly with the
mixing staff, mostly for
change-overs to check
whether the next mixture of
the liquid is ready to be used.

Allows for quick
communication.

Communication
not processed
company wide,
only between
two persons (or
a group if a
group chat is
used)

Not all operators use
Whatsapp, only a
handful.

Paperwork Paper sheets are used for
product control on the
operating line. The batch and
stock keeping unit (SKU)
numbers are checked during
change-over.

The paperwork
allows for quick 4-
eye checks with 2
operators. 4-eye
checks are used to
reduce operator
mistakes at the line.

Process is
relatively slow
and increases
downtime during
change-over.
Furthermore,
paperwork needs
to be physically
transported.

Currently, operators
prefer it over digital
systems.

Table 4.5: Overview of issue reporting tools with explanation of the tool, benefits, disadvantages and note-
worthy observations during context analysis

ALIS is mostly used for communicating larger issues between teams. Operators for instance
can report on a breakdown of a machine or machine component, while quality management
could communicate on contaminations or quality of a product. ODCE is used or should be used
for reporting of issues on the operating line. Here the choice is with the operators whether
they report an issue or not. Only after a stoppage of 3 minutes or higher a message pops up
on the desktop screen at the operating line and the operators have to report the issue with
ODCE. However, during observations this pop-up was ignored often.

4.4.6 Issues with issue reporting
The operators prioritize issue handling, while often issue description is done poorly or ignored
entirely. Current methods used at the Diversey shop floor for issue description leave much
room for improvement. Evaluations with operators showed that the system is an inconvenience
and a time sink. Simpler and quicker tools such as Word are used to communicate in between
shifts. The data that was captured with the ODCE system was often ambiguous, incomplete
and non-descriptive. The operator’s main task is to maintain the line and keep it running, so
the operators prefer not to waste time and energy on issue reporting. However, such data can
be of significant value to the company as it can be used for process improvement of the pro-
duction line, maintenance can make use of the data to identify and locate the root of the cause
of a major stoppage and the knowledge that is acquired can be carried over to other operators.

40

5. Rasa
During the entire process, what is possible with Rasa was analysed and is provided in this chap-
ter. Section 5.1 provides the Rasa terminology, section 5.2 goes into how Rasa works, chapters
5.3 and 5.4 go in-depth into the NLU and dialog manager respectively, of a natural language
processing system. Sections 5.5, 5.6 and 5.7 discuss elements that can be implemented into
the model. These are the intents & entities, CA actions and stories & rules respectively. Chapter
5.8 discusses conversation driven development.

41

5.1 Rasa terminology
Table 5.1 provides the terminology used within the Rasa framework which will also be used in
throughout the report.

Table 5.1: Terminology used within Rasa framework

5.2 How does Rasa work?
Rasa is an open-source machine learning framework to create conversational assistants that
automate text and voice-based conversations with users. In these conversations, an assistant
has, simply put, two tasks: Understanding the user and providing correct responses. Rasa takes
care of these tasks with the natural language understanding (NLU) and the dialog manager.

To create such an assistant, Rasa has provided 3 tools for development (table 5.2):

Tools for
development

Description

Rasa Open Source Rasa Open Source is the core tool for developing a CA
Rasa SDK Rasa SDK is the “software development kit” provided by Rasa for writing custom

actions for the CA which are not included in Rasa Open Source
Rasa X Rasa X is an API tool for conversation-driven development (CDD)

Table 5.2: Tools for development of a CA provided by Rasa

Rasa Open Source is the core tool for developing a CA. Most of the development of a Rasa CA
can be done in the YAML language, the files of a default Rasa Open Source model are shown
in table 5.3:

File Function
config.yml The pipeline and policies are defined in the config file
domain.yml The domain defines the universe in which your assistant operates. It specifies the

intents, entities, slots, responses, forms, and actions your bot should know about
nlu.yml In the nlu-file the training data is provided for intents, entities, synonyms and lookups

tables
rule.yml This file is used for defining rules; rules describe short pieces of conversations that

should always follow the same path

Terminology Definition
Domain The domain defines the universe in which your assistant operates. It specifies the

intents, entities, slots, responses, forms, and actions your bot should know about
Intents Something the user tries to convey or accomplish with their input (e.g. greeting,

mentioning issue)
Entities Keywords that can be extracted from user input (notation for entities: [lid]{“entity“

= “p_comp“}, lid = product component entity)
Slots A slot is used to store information the user provided as well as other information

gathered (e.g. results of a database query)
Forms A type of custom action that asks the user for multiple pieces of information. Forms

are used to set slots.
Utterance Responses are messages that the assistant can send to the user. Utterances are also

used in this document to refer to responses.
Actions After each user input, the model will predict an action that the assistant should

perform next. Respones are actions. Custom actions are actions that can run custom
code (e.g. validate the user input)

Rules Rules describe short pieces of conversations that should always follow the same path.
Stories Stories can be used to train models that are able to generalize to unseen conversation

paths (unhappy paths).
Happy path Happy path is when the user behaves as expected.
Unhappy path Unhappy paths are paths when the user diverges from the happy path. Stories can

be used to train the model to handle unhappy paths.

42

stories.yml This file is used for defining rules; stories can be used to train models that are able to
generalize to unseen conversation paths (unhappy paths)

actions.py This file is used for writing custom python code for custom actions the bot can do
credentials.yml With this document one can connect the model to websites or applications
endpoints.yml This file is used to define the different endpoints the bot can use (namely used for

actions server)
Table 5.3: Files in default Rasa model

For custom actions however, the Rasa SDK has to be installed and python is used to code. The
“actions.py” file is the base file used for adding custom actions to the CA but can be extended
with other code.

Rasa X is an API tool in which conversations are stored and can be analysed and used for
conversation-driven development (CDD). CDD is the process of capturing conversations with
real users and implementing their feedback in the development of the CA. Figure 5.1 shows a
conversation in Rasa X.

Figure 5.1: An example conversation within Rasa X interactive learning.

43

5.3 NLU
Training data is provided to the NLU, such that it can recognize and assign (with a certain
confidence) user input to intents and entities. An intent is something the user tries to convey
in their message. Entities are keywords that can be extracted from user’s input. More on this in
sections 5.3.3 and 5.5. The NLU of a Rasa model can be configured in a pipeline. The pipeline
allows the developer to configure how the model processes input text. Most NLU pipelines
consist of a tokenizer, a featurizer and intent- and entity classifier(s) (figure 5.2). Within the
pipeline, the developer can tweak the components, for instance, an intent & entity classifier
can be tuned so that it only classifies intents. Another classifier can then be used for entity
recognition.

Figure 5.2: A tokenizer/featurizer/I&E Classifier system for two different user inputs.

5.3.1 Tokenizer
A tokenizer breaks up a sequence of strings into pieces called tokens (Techopedia, 2021). A
tokenizer commonly used by Rasa is the Whitespace Tokenizer. This tokenizer breaks up a user
sentence into words whenever a whitespace is recognized. Tokens can be words, phrases or
even entire sentences.

5.3.2 Featurizer
A featurizer transforms the tokens as well as some of their properties into features or word
embeddings that can be used by machine learning algorithms (Ricadat, 2018). Through featur-
ization words are transformed into vectors where words with similar meaning create similar
vector representations.

Word embeddings are in fact a class of techniques where individual words are repre-
sented as real-valued vectors in a predefined vector space. Each word is mapped to one

44

vector and the vector values are learned in a way that resembles a neural network
(Brownlee, 2019).

5.3.3 Intent & entity classifiers
Intent classifiers assign one of the intents defined in the domain file to incoming user mes-
sages. Similarly it assigns entities defined in the training data whenever one is mentioned in a
user message.

5.4 Dialog manager
In Rasa, the components of the dialog manager are defined in the config file under policies.
These policies allow the model to decide what the next action should be in a conversation. For
the default Rasa model three policies are used (table 5.4):

Policy Function
MemoizationPolicy Checks whether the conversation matches any stories in the training data and

predicts the next action if any stories apply
TEDPolicy Is a complex machine learning policy that tries to predict the next best action
RulePolicy Takes care of conversations that follow set rules and makes predictions based on

these rules if any rule applies
Table 5.4: Default Rasa policies used for prediction next action.

Rules and stories can be used to specify what utterance of the CA should follow after a certain
intent or entity has been mentioned by the user. For instance, whenever the user greets the
CA, a rule can be set for the CA to respond with a greet. Rules are used for small chunks of
conversation that should always follow the same path and are handled by RulePolicy. Stories
are used to train a machine learning model to recognize patterns in conversations which have
been predefined in the training data in the stories.yml file; stories are handled by the Mem-
oizationPolicy. Stories can also be used to train the machine learning model to handle unhappy
paths in the conversation of the user with the CA. Whenever the user interacts with the CA as
intended, this is called a happy path. An unhappy path is where the user diverges from the
happy path.

The Transformer Embedding Dialogue Policy (TED Policy) is a different beast. When creating
predictions, the TED policy utilizes a transformer architecture to determine which dialogue
turns to pay attention to and which to disregard. It takes three pieces of information as input
at each dialogue turn: the user's message, the previously predicted system action, and any
values saved to the assistant's memory as slots. Before being put into the transformer, each of
them is featurized and concatenated (White, 2021, August 19).

5.5 Intents & entities
Whenever the conversational assistant recognizes a user’s intent, the CA can respond with an
action, such as an utterance. For instance, whenever the user greets the CA, most likely the user
is expecting a “greet” back, therefore the CA can be programmed such that it utters a greeting
back at the user. Here, one such exchange of words is called a single turn interaction. To have
such interactions, the CA has to have been trained on training data. Intents are specified in the
NLU file (figure 5.3). Where per each intent, several examples of user input should be provided
for the Rasa model to be trained on. Below, an example of a greet intent with two example
data is provided.

45

- intent: greet
 examples: |
 - hey
 - hello

Figure 5.3: An intent “greet” with 2 training examples

Within the examples, entities can be specified. Entities are keywords which can be extracted
from user input. Below an example (figure 5.4):

- intent: mention_issue
 examples: |
 - There is a stoppage
 - The [filler](m_location) has stopped
 - The location is the [filler](m_location)
 - the [filler](m_location) has a stoppage

Figure 5.4: An intent “mention_issue” with training examples and entities for m_location

5.5.1 Entity roles and groups
Entities could be further specified with roles and groups to further specify the training data
and with it attempt to improve the NLU model, below are two examples (table 5.5.) with roles
and groups for the following sentence: “The cap is not on the canister”. In the first a distinction
between two product component entities is made through roles, where one is an object and
the other the subject, while in the second example the role and entity for both are the same
but group is used to make the distinction in the entities:

Training data example Entities with roles and groups
The [cap]{"entity": "p_comp", "role": "object"} is not on
the [canister]{"entity": "p_comp", "role": "subject"}

Cap: Entity = product component, role = object
Canister: Entity = product component, role = subject

The [cap]{"entity": "p_comp", "role": "issue", "group":
"1"} is not on the [canister]{"entity": "p_comp", "role":
"issue", "group": "2"}

Cap: Entity = product component, role = issue,
group = 1
Canister: Entity = product component, role = issue,
group = 2

Table 5.5: Training data examples with roles and groups.

However, during development Rasa X version 0.39.3 was used and this version had no support
yet for roles and groups. Therefore, I opted out of using roles and groups as I believe that the
benefit of a clean user interface for testing through Rasa X overpowered the added benefit of
roles and groups.

5.6 Actions
A response (or an utterance) is the simplest of actions a CA can respond with. Other actions
are forms or custom actions. Forms are used to set predefined slots and follow a strict path for
the user. Both forms and slots are specified in the domain file. Forms can be useful to collect
specific data. A custom action is a specific action the CA can do that has been coded in Python
in the actions.py file. For instance, whenever the user wants to get the current date and time,
the CA can have a custom action where it provides this. Other examples of custom actions are
to query a database or make an API call. Rasa SDK is a software development kit in python for
running custom actions on a Rasa chatbot.

46

Responses, forms, slots and actions are specified in the domain, alongside the intents and en-
tities.

5.6.1 Forms
With a form pieces of information can be captured in slots and a form can guide the user into
filling these slots with questions. It allows for relatively “strict” information to be gathered. The
flexibility comes from how good the model can fill the slots from user’s input, this is dependent
on the NLU training data. In figure 5.5, a form for capturing issues is given. The form is required
to set the slot for ‘m_location’ when a machine location entity is provided. The same approach
is sued for product component state and the product component. It will only go into the next
required slot when the first one has been set.

forms:
 issue_form:
 required_slots:
 m_location:
 - entity: m_location
 type: from_entity
 p_comp_state:
 - entity: p_comp_state
 type: from_entity
 p_comp_z:
 - entity: p_comp_z
 type: from_entity

Figure 5.5: A form for capturing issues at Diversey

5.7 Stories and rules
Stories and rules are a part of the training data for the NLU system. Stories and rules are closely
related, but there is a slight difference between the two.

5.7.1 Rules
Rules are strict conversation patterns that model should follow. Rules are mostly used for short
pieces of conversation that should always take place. For instance, whenever the user greets
the CA, with a rule can be set that the CA responds with a greet back (figure 5.6).

- rule: Greet anytime the user greets
 steps:
 - intent: greet
 - action: utter_greet

Figure 5.6: A rule for greeting the user whenever the user utters a greet

5.7.2 Stories
With stories, one can train the model to recognize patterns in conversations and have re-
sponses according to this training data. A story is a representation of a dialog between a user
and the CA. Stories can be used to train a ML-model to be able to generalize to unseen dialog
paths. An example of the story code is provided in figure 5.7.

47

- story: greet and explain purpose_COALA
 steps:
 - intent: greet
 - action: utter_greet
 - intent: purpose_COALA
 - action: utter_purpose_COALA

 Figure 5.7: A story for greeting the user and explaining the purpose of COALA

Stories can be used to handle expected unhappy paths. For instance, with the issue form setup
in sprint 2 (section 7.4) it could possibly happen that the operator would like to stop the issue
form. This is such an unhappy path that can be implemented into the model to reduce friction
and prevent annoyance for the operator. In figure 5.8 is the code of such a story to stop the
issue form. When the issue form is active and the user provides an intent “stop”, the CA asks
whether the user wants to stop. When the user affirms, the issue form is deactivated.

- story: issue form stop stop
 steps:
 - intent: mention_issue
 - action: issue_form
 - active_loop: issue_form
 - intent: stop
 - action: utter_ask_stop
 - intent: affirm
 - action: action_deactivate_loop
 - active_loop: null

Figure 5.8: A story for stopping the issue form

5.8 Conversation driven development
Rasa (2021, July 12) suggests the best method for building a great NLU model is to use con-
versation driven-development (CDD). This means letting real user-conversations guide the de-
velopment of the model. So using real data from real users for training data. Real user mes-
sages can be chaotic, full of errors and typos, and far from 'perfect' representations of the
predefined intents. However, the model has to be able to predict these messages and have a
correct response to them.

Rasa X is an API interface which can also be used for CDD. With Rasa X a developer can review
conversations, annotate data, share & test the assistant.

48

6. SPRINT 1: Conversational data
This sprint focuses on the data collection where the researcher roleplayed the CA and its im-
plications. It tests the riskiest assumption of a CA which provides human-like conversations.

49

6.1 Riskiest assumption
The riskiest assumption tested in this sprint is highlighted in table 6.1.

Riskiest assumption
By having human-like conversations, it is possible for a CA to extract high quality issue
descriptions while ensuring positive user experience.

Table 6.1: Riskiest assumption sprint 1.

Humanlike conversation is something that is often strived for with conversational assistants.
Especially with the push towards contextual assistants and adaptative CAs. Here the assump-
tion is made to test whether it is desired for the Diversey use case. To test this assumption, a
data collection on issue descriptions was organised where the assistant was roleplayed by me.
By roleplaying, the humanlike conversations can be imitated.

6.2 Data collection for issue description
A data collection was conducted at the Enschede Diversey factory. The data collection has an
important role in the development of the COALA conversational AI. Not only does this data
have a role in training the model for knowledge acquisition, it will also be used to guide the
development of the assistant and the design of the dialogs. Furthermore it provides a direction
in what should be collected with the CA, what kind of data is needed for process improvement.

6.2.1 Goals data collection
As mentioned in section 4.4, the first visit in April was for context analysis of the Enschede
factory, the second visit at the Diversey factory had several goals in mind: (1) a preliminary
operator speech pattern analysis, (2) identifying possibilities and restrictions for a conversa-
tional assistant, (3) gathering more contextual knowledge and (4) testing of audio quality in a
noisy (shop floor) environment. Table 6.2 provides an overview of prioritisation in weight per
goal which was applied during the data collection.

Goal Weight (total 1.0)
1. Preliminary operator speech pattern analysis 0.5
2. Identifying possibilities and restrictions for a conversational assistant 0.3
3. Gathering contextual knowledge 0.1
4. Testing of audio quality in a noisy environment 0.1

Table 6.2: Overview of prioritisation in weight per goal

6.2.1.1 Preliminary operator speech pattern analysis
The goal here is to explore how the operators communicate, specifically how they convey an
issue that has recently happened. Questions such as “How do they convey the issue?” “How do
they speak naturally?” are relevant.

6.2.1.2 Identify possibilities and limitations for conversational AI and operator interaction
The conversational assistant has technical limitations but also opportunities. The goal here has
been set to find an effective and efficient way to communicate with the operators to gather
good quality data. Do the operators need to change the way they communicate or should the
CA be trained in such a way that it can process the operator’s communication as is? Is there a
middle ground for both parties? These are the questions relevant for identifying possibilities
and restrictions for conversational AI and operator interaction.

50

6.2.1.3 Gather contextual knowledge
In the first visit for context analysis, general contextual knowledge was gathered of the factory
and how it functions. The goal here is to gather contextual knowledge and an understanding
of the operators during issue handling.

6.2.1.4 Testing of audio quality in a noisy environment
The operating line consists of several machines and multiple assembly line pieces that connect
these machines. All these instruments utilize energy of which some is converted into sounds
or noises. The conversational assistant will need to process audio into speech (speech-to-text),
the quality of the audio should suffice for the conversational assistant to be able to process it.
The goal here is to test how good the audio would be to recognize the operators voice in a
noisy environment. Note, the test was not specifically for testing the microphone, but whether
this could result in an issue or not.

6.2.2 Data collection method
The method used to collect the dialogues was a researcher roleplaying a COALA Cognitive
Advisor. The researcher would play the role of the Cognitive Advisor while the operators would
continue their operating work but also wear a mono-headset which recorded audio. During
issue handling, the researcher asked the operators questions related to the issue and recorded
these dialogs. Data entities were used to check whether a full descriptive issue was given, these
entities were: Subject, object, type of issue, symptom, location, current task, SKU, RCA and
solution. Also, the timestamp, SKU and batch number were noted. Furthermore, a brief descrip-
tion of the issue or context of the issue was written down. Section 6.3 clarifies these entities
and mentions the iteration steps done during annotation. During the roleplay, pen and paper
were used to mark whether the operator mentioned these entities or whether these were
missed during the dialogues. The researcher would try to ask for entities which were not men-
tioned, while simultaneously trying not to disrupt their work. The recorded audio was to be
transcribed and this transcribed data was to be structured in an Excel sheet for annotation.

Although this project is focused on the issue description, during the data collection change-
overs and RCA were captured, this is in regard to the contextual knowledge gathering goal in
section 6.2.1.3. Capturing these elements of the process allowed for me to better understand
the process of the operating line.

6.2.2.1 Annotations of issue descriptions
Due to time constraints a selection of dialogues for two machines were selected for annotation
out of the 101 recordings: The filler and the cap supply machine. These two machines were
chosen specifically because one machine (the filler) had the most issues, while the other ma-
chine (cap supply machine) had many similar issues (e.g., issues regarding the caps getting
stuck while being transported to the filler to be placed on the liquid-filled canisters). The idea
was that these similar issues which were described several times could give us insights into
how the operators describe issues differently. The dialogues were manually transcribed and
annotated by two researchers and later compared to maximise accuracy and consistency. In
appendix C1 an overview of a view annotation examples is given.

51

6.2.3 Data results
The data collection resulted into a set of 101 audio recordings of which 71 were verbal issue
descriptions, 7 were issue description recordings during changeover and 22 were changeover
descriptions. Figure 6.1 shows a histogram of the recorded case per machine.

Figure 6.1: Histogram of recorded cases per machine

6.3 Restructuring data entities
Data entities were used to capture information from operators on the issues. During collection
the entities used to validate whether enough information was given were: Subject, object, type
of issue, symptom, location, current task, solution, and RCA (table 6.4).

During the annotation process however, these were updated iteratively, and some modifica-
tions were made to the coding scheme of the entities aiming for a more robust entity system
which makes a clearer distinction between the entities.

Two researchers were annotating independently and confusion arose during the process, es-
pecially for the entities: subject/object and type of issue/symptom. One researcher would as-
sign a specific word as subject while the other as object. Furthermore, it became clear that the
subject and object were almost always assigned as part of the symptom, therefore these were
changed to symptom component and symptom. The way the operators communicated the
descriptions, it was difficult to distinguish symptom from type of issue; therefore type of issue
was removed. The SKU was never collected through dialog, but from the production batch
paperwork; therefore it was also removed from the dialog collections. The operators would
often provide happily and enthusiastically a solution to the issue; consequently solution and

1

1

1

2

2

2

2

3

3

6

7

9

11

12

28

0 5 10 15 20 25 30

Can label controller

Assembly line

Carousel

Weight checker

Box packer

IBC barrel

Multiple machines

Label controller

Can hall

Sleeve labeler

Depalletizer (DEPA)

Can checker

Palletizer

Cap supply machine

Filler

Total recorded cases per machine (May 26-28)

52

solution component were added for annotations. Similarly, but only in some cases of the dia-
logs, the operators provided the intended behaviour of a certain machine; hence the addition
of intended behaviour to the annotation entities. Table 6.5 provides the entities used for an-
notation with its description.

Another iteration was done on the data/annotation entities to make it fit the scope of the
project and transform the data entities into entities which Rasa can recognise. Firstly, the solu-
tion, solution component, RCA and Intended behaviour were removed due to the scope of the
project. Secondly, the remainder was changed to the entities in table 6.6.

A similar issue arose as with the first iteration with the subject and object. In some cases parts
of the sentence could be assigned to symptom AND cause and confusion amongst the re-
searchers arose. Instead of using symptoms and causes, the focus was set on the machines and
products and the states of them to remove this issue.

Rasa can recognize intents and also entities. However, when a symptom component and a
cause component are provided in the same utterance, it is expected that Rasa will have diffi-
culties distinguishing which component is which, unless there is a lot of specific training data
that provides examples where for instance, in the first part of the sentence always a symptom
component is provided and in the second part the cause component. An example from the
data collection session provided in figure 6.2, follows this logic. In green the symptom, in yellow
the symptom component, in blue the cause and in red the cause component (table 6.3). How-
ever, this sentence can easily be rewritten to the example in figure 6.3. It is unsure whether the
model will correctly recognize the entities as it is dependent on the training data of the model.

The combination of the form as mentioned in section 5.1.4.1, with the entities set in table 6.6
is expected to solve this difficulty. This is incorporated into the riskiest assumption explored in
sprint 2.

O: The cap turner has now malfunctioned, I think cap turner got overloaded.

Figure 6.2: Example dialog taken from data collection of symptom plus component and cause plus compo-
nent are present in the same sentence

O: The cap turner got overloaded and therefore the cap turner has now malfunctioned.

Figure 6.3: Rewritten example dialog from figure 5.3.2 where the sentence starts with the cause and cause
component

Annotation entities Colour
Symptom component(s) Yellow
Symptom(s) Green
Cause(s) Blue
Cause component(s) Red

Table 6.3: Colour coding of annotation entities

Entities for data collection Definition
Subject The thing that is performing the action
Object The thing that is the receiver of the action
Type of issue The type of the issue

53

Symptom The consequence of the issue
Location The place of the issue
Current task The current task of the operator
SKU Stock keeping unit, unique number to identify a certain product

RCA The root cause analysis of the issue
Solution The solution of the issue

Table 6.4: Entities used for data collection and their definition

↓
Annotation entities Description
Symptom component(s) The main component related to the symptom
Symptom(s) Observable indication(s) of the issue
Cause(s) The direct reason behind the issue
Solution(s) The description on how to solve/deal with issue
Location The high-level location (in the factory) of the issue
Solution component(s) Component that is part of the solution
Cause component(s) Component that is part of the cause
Related part product(s) The part of the product that is related to the issue
RCA OPTIONAL – Root cause analysis
Intended behaviour OPTIONAL – Intended behaviour of machine

Table 6.5: Annotation entities and the definitions used for annotation

↓
Entities for Rasa Description
Machine location The high level machine location of the issue
Machine component The component of the machine related to the issue
Machine component state The state of the component of the machine related to the issue
Product component The product component related to the issue
Product component state The state of the product component related to the issue

Table 6.6: Entities used for conversational assistant prototype in Rasa

6.4 Challenges CA
The issue description dialogs collected in May 2021 provided an indication of how operators
naturally describe issue descriptions. These dialogs were used to inform the design of the con-
versational assistant prototype and as training material for the NLU models that COALA will
rely on for interpreting what the operators say.

Table 6.7 was created with goals 6.2.1.1 and 6.2.1.2 in mind. It gives an overview of the chal-
lenges with an example, explanation of the challenge for the CA and a possible solution. Eight
challenges were found. Seven out of the 8 can be both text-based and voice-based challenges,
while the last one is recognized as an only voice-based issue. The examples in the table are
dialogs that are either taken directly from the data collection or simplified versions of the dia-
logs.

Challenges Example Challenge for CA Possible solution CA

54

1. Missing
information
due to context

Operator: “Look
there, it is stuck.”
While operator is
explaining what is
going on with a
certain machine, he
is pointing towards
this machine.

During the interviews, both
interviewer and operator were in
the same environment and
experience a similar “context”. The
CA can currently not experience a
similar context as the operator. For
the CA, there is information missing
in the form of visual indications
provided by the operator.

The assistant lets the
operator know it cannot
follow, they should use
words to describe the
situation.

2. Pronoun
usage as
reference to an
object

Operator: “He is
stuck.”

When the operators use “he/she/it”
to reference an object such as a
machine or a product, the CA
cannot interpret what object the
operator is referencing.

The assistant lets the
operator know it does not
know what they mean by
“he” and should use
standardized terminology.

3. Multiple
entity handling

Operator: “The cap
supply machine and
the filler have
stopped.”

It will be difficult for the CA to
recognize that both machines have
stopped as the CA does not have
the cognitive capacity to assign a
machine state to two machines at
the same time (Stopped for both
cap supply machine and filler).

Handle issues separately in
isolation or use one state per
one component (The cap
supply machine has stopped,
and the filler has stopped).
Entities with roles could
provide a solution.

4. Using
synonyms or
incorrect
terminology
for objects

Operator: “The filling
machine has
stopped.”

If the CA is unaware of this
terminology (filling machine is a
synonym for filler), it cannot
recognize the entity and therefore
has issues with processing the
description of the issue.

Develop the CA such that it
is aware of synonyms used
by the operators for objects
such as machines, machine
components or products or
product components.

5. Reference to
unknown entity
or component

Operator: “The
wrapper has
stopped working
and therefor the
entire 5/10L line has
a stoppage.”

In this example, the wrapper is a
machine that wraps the filled pallets
with a plastic wrap. Let’s say this is
an unknown entity as it is not
directly on the 5/10L operating line.
Without knowing the entity, it
cannot fully understand what the
cause is of the stoppage.

Let the CA be aware or be
able to learn of a bigger
context than just the 5/10L
operating line. Or use out-
of-scope intents/entities.

6. Response
looping

Operator: “Yeah, it
had no cap.”
Interviewer: “Could
you elaborate?”
Operator: “A cap
was put on wrongly.”

Response looping refers to when
the CA would want the operator to
give more information about an
issue, but the operator responds
with a similar response. In this
example the interviewer is looking
for what “it” is and what the cause
was for “it” not having a cap.

Let the CA be specific in
what it wants to know from
the operator, instead of
“Could you elaborate?” ask
“Could you elaborate what
the cause was for this?” or
“What do you mean by ‘it’”?

7. Multiple
issue handling

Operator: “The
product is foaming
at the filler and the
capper has stopped
because a cap is
stuck in the cap
supply.”

In its current form it is not able to
handle multiple issues at the same
time, while stoppages can arise
simultaneously.

The CA needs to know what
problem belongs to what
machine. In the example, it
needs to know that ‘the
product foaming’ only
happens at the filler and a
cap being stuck only
happens at the cap supply.

8. Starting new
sentence mid-
sentence (voice
related issue)

Operator: “He has to
use the first uhhh...
On the pallet he
places a pallet
plate...“

The CA can get confused when the
operator starts a new sentence in
the middle of another sentence.
There is a possibility that the CA
cannot process the information as it
would be unclear for the CA (not a
text-based issue as it is expected

Let the assistant ask the
operator to be clearer and
simpler in their explanation.

55

that the operator thinks before
sending a text-based reply).

Table 6.7: Challenges recognized during the data collection session, included with an example, explanation
why it would be a challenge for the CA and a possible solution for the challenge

All these challenges are taken into account during development of the prototype. Furthermore,
in sprint 3 two challenges from this data collection are tackled: Synonyms and pronoun usage.
The choice was made to focus on these two challenges on the following bases:

- It is expected that resolving these two would improve data structure.
- Challenge 1 is being tackled by the implementation of ethical posture tracking.
- Challenge 3 would quickly and greatly increase the complexity of training data.
- Challenge 5 could be implemented through an out-of-scope mechanism where the CA

tells the user what they are referring to is out of scope and the implementation of this
feature is expected to have less benefits for the contribution to the COALA project.

- Challenge 6 is something that will most likely take place during development anyway.
Expected is that when training data increases, response looping decreases.

- Challenge 7 complicates the training data and complicates the capture of structured
data on issue descriptions. For now, it is better to split the issues into separate issue
descriptions.

- Challenge 8 could be resolved by telling the user to repeat their utterance more clearly
again.

The audio captured with the mono-headset provided audio with sound cracks and the opera-
tors were often times difficult to understand due to clipping. Due to the varying amount of
noise at the production line the operators sometimes could speak and communicate in a nor-
mal tone of voice while other times they had to shout to make themselves understandable.
When shouting, the audio picked up with the microphone of the headset would be distorted.
These audio issues could prove to be difficult for a STT system to understand the operators.

6.5 Conclusions sprint 1
With sprint 1, the riskiest assumption of a conversational assistant that can have humanlike
conversations has been tested with the data collection and has failed the test due to the un-
desired chaotic results of humanlike conversations. The resulted dialogs provided an indication
of how operators naturally describe issue descriptions. Several challenges were found that
would possibly be a predicament for a machine learning algorithm such as an NLU model of a
conversational assistant. What became clear is that the output from the issue descriptions
should remain structured while the input should be flexible. Therefore for the second sprint
the riskiest assumption was to test a frame-based CA.

The restructured data entities were expected to reduce the difficulty in distinguishing the data
but had to be validated. This was done in sprint 2.

6.6 List of requirements sprint 1
The following programme of requirements is based on the design thinking phase and on the
findings from the first sprint. This list is used to guide the development of the service prototype
of the conversational assistant and of future iterations.

56

Requirements:

1. The prototype communicates through a text-based user interface with the user.

(Chapter 3.4.2) This requirement was set to be able to make quick iterations on the prototype
and remove a dependency of STT and TTS systems.

2. The prototype is able to temporarily store user’s text-based input.

Being able to temporarily store input, allows for some intellegince

3. The product should collect an issue description within 1 to 5 user utterances.

The lower the amount of user utterances, the lower the possibility of user friction arising.

4. The product is able to correctly recognize intents in 95% of the cases.

(Chapter 3.5) The higher the accuracy, the lower the chances of friction between operator and
the prototype.

5. The product is able to correctly recognize entities in 75% of the cases.

(Chapter 3.5) The higher this accuracy, the lower the chances of friction between operator and
the prototype.

6. The prototype is able to handle chitchat of the user outside and during collection of
the issue description.

7. The product allows the user to stop the gathering of issue description.

Wishes

The product captures issue descriptions with as little as possible user utterances.

The product does not induce user annoyance.

57

7. SPRINT 2: MVP prototype
This sprint was dedicated to building a prototype CA with a strict output in the form of struc-
tured data. In this sprint it was explored what structured data was and what Rasa capabilities
could be used to test the riskiest assumption.

58

7.1 Riskiest assumption sprint 2
In sprint 1 the riskiest assumption of a humanlike conversation with the conversational assistant
was explored. The result of sprint 1 indicated that this was not desired. Humanlike conversa-
tions can be unstructured and chaotic, while the desired result of a conversation about issue
descriptions is a clearly structured dataset, readable by both humans and algorithms. There-
fore, the following riskiest assumption for sprint 2 was explored:

Riskiest assumption
Having a frame-based strict pattern for capturing data will provide structured data while
allowing for flexible user input.

Table 7.1: Riskiest assumption for sprint 2

The assumption was made here that a strict capturing pattern was needed to provide more
structure to the data. However, to maintain the compatibility and user experience as good and
high as possible, this dialogue management should still allow for flexibility in the input.

7.2 Setting up the model
To be able to test the riskiest assumption, a model had to be developed. In this chapter the
necessary elements are described for setting up the model; pipeline, elements in the domain,
training data in the NLU and rules & stories.

7.2.1 Pipeline
In figure 7.2 an adjusted version of the default pipeline is provided. Additions that are not
previously mentioned are: SpaCy NLP, EntitiSynonymMapper, ResponseSelector and Fallback-
Classifier.

The SpaCy NLP is a pre-trained embedding. Pre-trained embeddings are useful when training
data is still limited. However, when training data increases, it is advised to switch to a supervised
embedding when domain specific terminology is relevant.

EntitySynonymMapper is used for defining synonyms for entities. Figure 7.1 shows code for
synonym mapping. Whenever a user utters “filling machine” the value of the entity is set to
“filler”.

- synonym: filler
 examples: |
 - fillermachine
 - filling machine
 - fillingmachine

Figure 7.1: Training examples for filler synonym

ResponseSelector is used to utter the responses to the user.

With the FallbackClassifier the developer can set a threshold, where, when the highest confi-
dence of a certain action is lower than the threshold, the system falls back to a previous state.

language: nl

pipeline:

59

 - name: "SpacyNLP"
 # language model to load
 # Dutch large model: nl_core_news_lg
 # Dutch small model: nl_core_news_sm
 model: "nl_core_news_sm"
 case_sensitive: false
 - name: WhitespaceTokenizer
 - name: RegexFeaturizer
 # - name: RegexEntityExtractor
 - name: LexicalSyntacticFeaturizer
 - name: CountVectorsFeaturizer
 - name: CountVectorsFeaturizer
 analyzer: char_wb
 min_ngram: 1
 max_ngram: 4
 - name: DIETClassifier
 entity_recognition: true
 model_confidence: softmax
 constrain_similarities: true
 epochs: 150
 - name: EntitySynonymMapper
 - name: ResponseSelector
 epochs: 150
 - name: FallbackClassifier
 threshold: 0.3
 ambiguity_threshold: 0.1
policies:
 - name: MemoizationPolicy
 - name: TEDPolicy
 model_confidence: softmax
 constrain_similarities: true
 max_history: 10
 epochs: 200
 - name: RulePolicy

Figure 7.2: Pipeline used for MVP prototype

7.3 Issue form
With Rasa, information can be captured in slots and a form can be used to guide the user into
filling these slots. A form called “issue form” (figure 7.3) was used to capture the issue descrip-
tion and the slots to fill are the following:

- machine location from entity (m_location)

- product component from entity (p_comp)

- product component state from entity (p_comp_state)

60

forms:
 issue_form:
 required_slots:
 m_location:
 - entity: m_location
 type: from_entity
 p_comp_z:
 - entity: p_comp_z
 type: from_entity
 p_comp_state:
 - entity: p_comp_state
 type: from_entity

Figure 7.3: Form specification in domain file.

Due to lack of information and training data for machine component (m_comp) and machine
component state (m_comp_state), these were for the time being left out of the model. Further-
more, adding more slots to be filled would increase the complexity of the form and possibly
the amount of user utterances needed to capture the full issue description. In figure 7.4 a
schematic of a happy path of the issue form is provided.

Figure 7.4: Schematic of a happy path conversation with slot filling for issue form.

NOTE: In sprint 3, the form has slightly been adjusted. The order of slots has been changed to
provide a simple solution to pronoun usage. More on this in section 8.3.

7.3.1 Buttons in the prototype
The ODCE system uses buttons, figure 7.5, which the operators can press to capture the issue.
The CA has been developed to implement such buttons and use them as an intermediate step
for the operators with a familiar approach of capturing issues. In figure 7.6 buttons are used to
specify the machine location.

61

Figure 7.5: ODCE options

Figure 7.6: Buttons implemented in the issue form for m_location.

7.4 Custom action exploration
This chapter describes explorations done for two custom actions: action_show_time and vali-
date_issue_form.

The first was for understanding implementation of custom actions into the Rasa model. The
second was to figure out if it is desired to validate individual input per slot over filling the form
and how this could be implemented. Next to that, it was also explored what would be the
consequences of these implementations through manually testing the conversation.

62

7.4.1 Action show time
Firstly, an action was written that would utter the time whenever it was asked for. But to trigger
this action a rule needs to be set. Figure 7.7 shows the simple rule. When the user provides the
intent “give_time” the action_show_time is always triggered. Figure 7.8 shows the dialog in Rasa
X. The model provides the exact date and time.

- rule: give time
 steps:
 - intent: give_time
 - action: action_show_time

Figure 7.7: Rule for providing the time to the user

Figure 7.8: Conversation with rule ‘give time’

7.4.2 Validate issue form
Figure 7.9 provides an example where a slot is validated and the message is dispatched by the
CA to the user that the machine has been captured. Such validations can be used to provide
feedback back to the user. But was left out of implementation in sprint 2 and 3. Reasoning
behind this was not to overload the user with messages. However, from the prototype test in
sprint 3 (appendix D), it became clear that such feedback is actually good for the user to know
whether the system understands their input.

63

Figure 7.9: Validation of the machine location

7.5 Conversational flow test
With the MVP prototype, a conversational flow test was conducted to test the prototype and
improve it. For the full setup, goals, results and findings see appendix B.

The results were 8 conversations with 7 participants. In the conversational flow test, all partici-
pants but one failed the first time to perform the task with the prototype without any research-
ers input. The second round of issue capturing everybody managed to capture the issue. The
intent and entity recognition accuracies were 87.6% and 73% respectively.

64

7.6 Conclusion sprint 2
After testing the prototype, it failed the accuracy requirements. It reached an 87.6% accuracy
on intents and 73% accuracy on entities, while 95% and 75% were the requirements for intents
and entities respectively. On the one hand, it is expected that through conversation driven
development this accuracy will improve, while on the other hand increasing the complexity of
the model could possibly result in a reduction of the accuracy, up until there is enough training
data after which it is expected that the accuracy should increase again.

From the conversational test it followed that after some clarification on the workings of the CA,
the participants managed to succeed with capturing the issue. It is therefore concluded that it
would be feasible to implement a CA into manufacturing environments with some training on
the functionalities of the CA.

7.7 List of requirements sprint 2
From sprint 1, a list of requirements was set for the development of the CA. In this section, this
list is updated.

Requirements from sprint 1:

1. The prototype communicates through a text-based user interface with the user.

2. The prototype is able to temporarily store user’s text-based input.

3. The product should collect known issue description within 1 to 5 user utterances.

4. The product is able to correctly recognize intents in 95% of the cases.

5. The product is able to correctly recognize entities in 75% of the cases.

6. The prototype is able to handle chitchat of the user outside and during collection of the
issue description.

7. The product allows the user to stop the gathering of issue description.

New requirements:

8. The prototype is able to upload the captured issue description to a database.

Although the form allows for the slots to be set and temporarily store the information it cannot
do this permanently. Such information needs to be exported to a database.

9. The prototype is able to extract intents and entities from a database and use as input.

By being able to query from a database, the system can utilize external information not specif-
ically specified in the training data.

10. The prototype is able to filter the issues to machine specific issues from user input.

With this implementation some intelligence is added for a context aware system.

Wishes

1. The product captures issue descriptions with as little as possible user utterances.

65

8. SPRINT 3: Prototype features
In this sprint several domain specific challenges were tackled and 6 features were explored,
tested and implemented in the prototype.

66

8.1 Riskiest assumption
Because this sprint had a development driven structure the following riskiest assumption was
set for sprint 3:

Riskiest assumptions
It’s possible to create a CA that uses and presents standardized terminology while
reducing friction between user and CA.

Table 8.1: Riskiest assumption for sprint 3.

With this riskiest assumption, it was explored what features should be implemented to find a
balance between using and presenting standardized terminology and at the same time reduc-
ing friction between user and CA.

8.2 Synonym handling
Rasa has an architecture that can handle synonyms, EntitySynonymMapper. When included in
the pipeline, the model can assign a certain value to a specific user input when correctly trained.
For instance, when the user wants to specify the filler (in Dutch: vuller) as input but instead uses
a synonym “fillingmachine”, the model can assign the value “vuller” to the input (figure 8.1).

To make this work however, the synonyms need to be included both in the synonym list and
in the examples of the training data, as shown in figure 8.2.

Figure 8.1: Conversation example where a synonym is used and the correct value is assigned to it. “Filling-
machine” is changed to “vuller”.

- intent: mention_issue
 examples: |

- ik heb een probleem met de [vuller](m_location)
 - probleem met de [fillingmachine](m_location)

- synonym: vuller
 examples: |
 - vul machine
 - vulmachine
 - vullermachine
 - filler
 - filling machine
 - fillingmachine

Figure 8.2: Code in the domain file with intent mention_issue with training examples for both the “vuller”
and “filling machine”

67

8.2.1 Initial synonym handling ideation
Initial ideation of synonym handling was to correct the operators on their terminology as
shown in figure 8.3. However, it was expected such a correction would add an element of fric-
tion and frustration. Next to that, it slows down the process of capturing issues. Therefor it was
not implemented in the system and opted for a more flexible approach presented in 8.2.

Operator: The filling machine has a stoppage.
CA: I believe you mean filler by ‘filling machine’, correct? If so, can you use standardized terminology
next time?

Figure 8.3: Correction of the operator during the process of issue capture

8.3 Pronoun usage
During the data collection in sprint 1, operators have used pronouns to mention a certain ma-
chine or product instead of using the correct term. Words such as “he”, “she”, “it” or “there”
were used to denote machines and product components.

The order of the required slots as presented in figure 7.3 in chapter 7.3 was restructured to the
order in figure 8.3. Instead of capturing the issue in the order of machine location -> product
component -> product component state, the issue was captured with the following order: ma-
chine location -> product component state-> product component.
Product component states cannot be referred to with pronouns. So when that slot is filled after
the question “What is the issue?” and the user does not use terms the CA needs to set the
product component slot it will ask to specify the product.

68

Figure 8.3: Restructured issue form. Handling pronouns is built in the form itself.

8.3.1 Initial pronoun usage ideation
The initial ideation for handling pronouns was similar to the initial ideation for synonym han-
dling in 8.2.1. Whenever the user would use a pronoun, the system would correct them on it
(figure 8.4).

Operator: It has stopped.
CA: What is the location?
Operator: Cap turner.
CA: What is the issue?
Operator: It is stuck.
CA: What do you mean by “it”?
Operator: The cap.

Figure 8.4: Initial ideation of pronoun correction

- intent: mention_symptom
 examples: |
 - [Het](pronoun) vloeit over
 - Het [product](p_comp) vloeit over

Figure 8.5: Training examples which could complicate the training data for the model and possibly de-
crease the accuracy

69

To implement such a mechanism, either pronouns have to be specified as entities in the train-
ing data (figure 8.5) or a custom action needs to be created to process pronouns. This would
significantly increase the complexity of the model which will slow down the training process of
the model and the response time of the CA. Also, a high probability is that the accuracy would
reduce due to the increase complexity, which is not desired. Therefor it was opted for the sim-
pler solution presented in 8.3.

8.4 Writing issue description to a database
With the issue form, the CA can temporarily store the slots while the conversation is running.
If this process is halted, the information is lost. Therefor, an action has been developed which
stores the slots set during the conversations to a database. The Google Drive API is used for
exporting the issue descriptions to a sheet. The logic for the action is shown in figure 8.6.

The slots are collected from the issue form and the date and time is included. These values are
put into a list and this list is exported to a google drive google sheet (table 8.2). After uploading,
the CA utters the message “utter_submit_issue_form” and clears all slots, so that a new issue
can be captured.

Table 8.2: Google sheet with captured entities, date and time of issue.

70

Upload to Google Drive
class ActionSubmitIssueForm(Action):
 def name(self) -> Text:
 return "action_submit_issue_form"

 def run(
 self,
 dispatcher: CollectingDispatcher,
 tracker: Tracker,
 domain: DomainDict,
) -> List[EventType]:
 """Once we have all the information, attempt to add it to the
 Google Drive database"""

 import datetime
 # collect slots from form
 m_loc = tracker.get_slot("m_location")
 p_comp = tracker.get_slot("p_comp_z")
 p_state = tracker.get_slot("p_comp_state")
 # get date and time
 date = datetime.datetime.now().strftime("%d/%m/%Y")
 time = datetime.datetime.now().strftime("%H:%M:%S")

 # Create a list of all the slots
 issue_info = [m_loc, p_comp, p_state, date, time]
 # try to upload to google drive
 try:
 gdrive = GDriveService()
 gdrive.append_row(
 gdrive.ISSUE_SPREADSHEET_NAME,
 gdrive.ISSUE_WORKSHEET_NAME,
 issue_info
)
 dispatcher.utter_message(template="utter_submit_issue")
 return [AllSlotsReset()]
 except Exception as e:
 logger.error(
 f"Failed to write data to gdocs. Error: {e.message}",
 exc_info=True,
)
 dispatcher.utter_message(template="utter_issue_submit_failed")
 return []

Figure 8.6: Code for sending the slots to the google drive sheet.

8.5 Contextual filtering
With contextual filtering it was explored whether it would be feasible for the CA to filter towards
user input. The idea was set to, depending on what machine location was mentioned by the

71

user, the top 3 issues for that specific machine would be presented to the user in the form of
buttons.

issue_description m_loc p_comp p_state
1 vloeistof schuimen vuller product schuimen
2 vloeistof schuimen vuller vloeistof schuimen
3 vloeistof schuimen vuller vloeistof schuimt
4 vloeistof schuimen vuller product schuimt
5 overvloeien vloeistof vuller product loopt eruit
6 overvloeien vloeistof vuller vloeistof loopt eruit
7 overvloeien vloeistof vuller vloeistof overgestroomt
8 plaatsing cans verkeerd vuller cans verkeerd geplaatst
9 geen flacon bij flacon sensor vuller can missend
10 geen flacon bij flacon sensor vuller can ontbreekt
11 vuller asynchroon met transportband vuller
12 vuller asynchroon met transportband vuller
13 dop blokkeert aanvoer doppendraaier dop vast
14 dop verkeerd geplaatst op flacon doppendraaier dop verkeerd geplaatst
15 sleeve gekreukeld geplaatst sleeve etiketteerder sleeve gekreukeld
16 sleeve gescheurd sleeve etiketteerder sleeve gescheurd
17 sleeve rol is op sleeve etiketteerder sleeve rol is op

Table 8.3: A comma-separated values file (csv-file) was used for development of contextual filtering. In-
cluded in the dataset, are the index, the issue description, the machine location, the product component
and product component state.

In table 8.3 is the dataset used for testing contextual filtering and in figure 8.7 the code used
in for contextual filtering. The Pandas library is used for reading and interpreting the csv-file in
the action.

In the code, the class was specified with the name: “action_ask_p_comp_state” and is specified
in the domain so that when the form is looking for the product component state, this action is
executed. This is due to a built-in mechanism in Rasa where when the model is looking for a
specific slot, it will firstly do a certain action. The simplest action is a response/utterance, how-
ever custom actions are also a possibility. If the action is named as follows: “ac-
tion_ask_{slot_name}” and the slot name is set, in this case, as “p_comp_state” it will do this
action whenever the model is looking for this slot.

The logic is as follows:

If the machine location input from the user is a value under the “m_loc” column in the csv-file,
it will give a list of the issue descriptions (duplicates are included) for that specific machine.
After that it will count all values and list them from the highest duplicate value to lowest. The
next step is removing the duplicate values but keeping the order from highest to lowest. To
get the top 3 issues with highest duplicates this final list is sorted to the indexes and out come
the top 3 issues. In figure 8.8 you can see the lists/dictionaries that form after each step in the
logic. The top 3 list can now be printed to the buttons.

72

import pandas as pd
from typing import Dict, Text, List, Optional, Any
from rasa_sdk import Action, Tracker
from rasa_sdk.executor import CollectingDispatcher

class AskForProductComponentStateAction(Action):

 def name(self) -> Text:
 return "action_ask_p_comp_state"

 def run(
 self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict
) -> List[EventType]:
 m_location = tracker.get_slot('m_location')
 found = df[df['m_loc'].str.contains(m_location)]
 if len(found) > 0:

"""If user input is in database value, attempt to provide buttons
for issue description related to p_comp_state and p_comp"""

 df_issue = df.loc[df['m_loc'] == m_location, 'issue_description']

 # Counts how many duplicates per instance
 counts = dict()
 for i in df_issue:
 counts[i] = counts.get(i, 0) + 1
 # Sorts the values with highest duplicates from highest to lowest
 sort = sorted(counts, key=counts.get, reverse=True)
 # Create a list of of top 3 values by index
 top3 = []
 for idx, x in enumerate(sort):
 if(idx > 2):

 break
 top3.append(x)
 # Utters a message and provides the buttons for top 3 issues

dispatcher.utter_message(text=f"Wat is het voornaamste probleem
dat je kan observeren? Hierbij de top 3 problemen. Als het een
ander probleem is kan je het ook typen.", buttons=[{"title": x,
"payload": x} for x in top3])

 else:
dispatcher.utter_message(text=f"Dit is onbekend voor mij, wil je
het toch vastleggen?")
Here comes the code to go into unknown product issue form.

 return []

Figure 8.7: Code snippet for the contextual filtering action.

73

df_issue:

0 vloeistof schuimen
1 vloeistof schuimen
2 vloeistof schuimen
3 vloeistof schuimen
4 overvloeien vloeistof
5 overvloeien vloeistof
6 overvloeien vloeistof
7 plaatsing cans verkeerd
8 geen flacon bij flacon sensor
9 geen flacon bij flacon sensor
10 vuller asynchroon met transportband
11 vuller asynchroon met transportband
Name: issue_description, dtype: object

counts: {'vloeistof schuimen': 4, 'overvloeien vloeistof': 3, 'plaatsing cans verkeerd': 1, 'geen flacon
bij flacon sensor': 2, 'vuller asynchroon met transportband': 2}

sorted: ['vloeistof schuimen', 'overvloeien vloeistof', 'geen flacon bij flacon sensor', 'vuller
asynchroon met transportband', 'plaatsing cans verkeerd']

top3: ['vloeistof schuimen', 'overvloeien vloeistof', 'geen flacon bij flacon sensor']

Figure 8.8: Terminal print for machine location = filler of the df_issue list, counts dictionary, sorted list and
top3 list in the code snippet from figure 8.7

In figure 8.9 we can see the code in action in a Rasa X conversation. The user put in “filler” (in
Dutch: vuller) for machine location and the buttons contain the top 3 issues for the filler:
'vloeistof schuimen', 'overvloeien vloeistof', 'geen flacon bij flacon sensor'.

Figure 8.9: Rasa X conversation snippet where the contextual filtering provides the top 3 issues related to
the filler (in Dutch: vuller)

74

In figure 8.10 another example where the sleeve labeler (in Dutch: sleeve etiketteerder) is men-
tioned by the user and the contextual filtering provides its top 3 issue descriptions.

Figure 8.10: Contextual filtering for sleeve labeler

A benefit of the contextual filtering is that no extra stories or rules are needed to implement
the feature. It has been integrated into the form handling function. Furthermore, if the database
of writing issue description and the database used for contextual filtering are connected, the
entire system is scalable for all issues at the Diversey production line.

In the prototype features test it was found that it directly provides feedback to the user whether
it understood them.

8.5.1 Limitations with current contextual filtering
As the input from the buttons is taken from the issue descriptions in the csv-file, the words in
the issue descriptions have to be also present in the NLU training data to recognize the input.
An easy fix would be to gather the slots for product component and product component state
from text instead of from entities. However, anything can then be set for the slot while with
entities it can be controlled what is recognized as correct input and what is not. However, this
solution is currently not desired as the system needs to check what is being put in by the user.

Another solution would be to use the product component and its states listed in the csv-file.
However, due to several entities could give the same description of the issue (e.g. product
foaming / liquid foaming), the system would provide such similar responses back to the user if
they are in the top 3 issues, which is undesired. The system should provide unique issue de-
scriptions per button.

75

Next to that, due to taking the top 3 indices for the top 3 issues from the sorted list, the 'geen
flacon by flacon sensor' issue description is in the top 3 list while 'vuller asynchroon met
transportband' has the same number of duplicates as 'geen flacon by flacon sensor' (both have
2). This could create a bias towards certain issues based on the index number and should be
taken into account in future work.

Furthermore, the action of writing to a dataset mentioned in 8.4 and reading from a dataset
discussed in this section are not yet operating with the same dataset. These two actions have
to be connected in future implementations by using the same dataset.

8.6 Issue description check
During the development in sprint 3, an extra control step was added to the prototype to add
a check whether the issue is correctly described which also provides feedback back to the user.

Good practice at Diversey always includes a controlling check of an act of one party by another
party. One example is the “double check” (in Dutch: vier-ogen check), where one operator con-
trols whether everything has been correctly set for the change-over by the operator responsi-
ble for the change-over.
For the CA, the idea is similar where the operators are the controlling party that checks whether
the CA captured the issue correctly.

In figure 8.11 a conversation is shown where the user captures a filler issue. At the end of the
issue description, the CA utters a check. The check reads as follows: “Is the location “filler”, the
product component “liquid” and the status of the product component “foaming?”” After which
the user can either respond with an affirm or deny. If everything went correctly the user can
affirm and the issue will be captured, if the user denies, the CA will exit the form and start over
with the issue capturing.

76

Figure 8.11: Check in a conversation where the user captures an issue at the filler. The check reads as fol-
lows: “ Is the location “ filler” , the product component “ liquid” and the status of the product component
“ foaming?””

8.7 Unknown issue form
Although previous steps were focused on implementations of a system with the assumption
that it had already the right knowledge of issues/stoppages at the production line. That way it
could be tested whether the system would work for capturing issues and filtering towards the
context of the conversation. However to get to this stage, the system needs the data on all
issues at the production line. The unknown issue form was implemented to allow operators to
capture these issue descriptions and expand the knowledge base of the CA.

77

The unknown issue form requires the same slots to be set as the issue form, namely: the ma-
chine location, product component, product component state. However, instead of extracting
it from entities, it will use text to fill the slots. Whatever text is given, is captured for required
slot. This way, new unknown issue to the CA can be captured and added to the database. In
figure 8.12 the code in the domain file is given for the unknown issue form and its responses.

Forms:
 unknown_product_issue_form:
 required_slots:
 m_location:
 - type: from_text
 p_comp_state:
 - type: from_text
 p_comp_z:
 - type: from_text
Responses:
 utter_start_unknown_product_issue_form:

- text: Oke, we starten nu met het vastleggen van een onbekend product
probleem, het is belangrijk dat de input die je geeft correct geschreven
is.
- text: We starten nu met het vastleggen van een onbekend product
probleem, het is belangrijk dat de input die je geeft correct geschreven
is.

 utter_ask_unknown_product_issue_form_m_location:
 - text: Wat is de machine locatie van het probleem?
 utter_ask_unknown_product_issue_form_p_comp_z:

- text: Oke, probleem is bij {m_location}, en wat is het product
component gerelateerd aan het probleem?
- text: Oke, probleem is bij {m_location}, en wat is het product
onderdeel gerelateerd aan het probleem?

 utter_ask_unknown_product_issue_form_p_comp_state:
- text: '{p_comp_z}, duidelijk. Wat is de status van het product
component?'
- text: '{p_comp_z}, duidelijk. Wat is de status van het product
onderdeel?'

Figure 8.12: The unknown issue form specified in the domain file where the slots are captured from text
and its responses for the required slots.

Figure 8.14 shows a conversation in Dutch for capturing an issue at the palletiser machine
where the canisters are incorrectly placed. Translated to English the conversation is as follows
(figure 8.13):

Operator: I want to capture an unknown issue.
CA: Ok, let’s start capturing the unknown issue. It is important that you write your input correctly.
What is the machine location of the issue?
Operator: Palletiser
CA: Issue with the palletiser, what is the product component related to the issue?
Operator: Canister
CA: Canister. What is the status of the product component?

78

Operator: Wrongly positioned
CA: Is the location “palletiser”, the product component “canister” and the status of the product
component “wrongly positioned?” (Buttons = [Affirm, deny])
Operator: Yes
CA: Great, the issue has been stored to the database.

Figure 8.13: Translated conversation from figure 8.14

Figure 8.14: A snippet of the terminal in which the conversation is tested for capturing unknown issues

8.8 Prototype feature test
A test was conducted with two design students with knowledge on the production line to val-
idate the implemented features. Two versions were tested of the prototype. One had buttons
present and the other had none. The one with buttons had the contextual filtering included,
while the other had not. For the full setup and results see appendices D1 through D4.

Two important findings followed from this test.
Firstly, in the version with no buttons, feedback during the process of data capture was missing.
The users were not aware what was captured while this was desired. Secondly, with the buttons,
the participants mentioned having a bias towards the buttons. They would try to describe the
issue with a button that would correspond the most with what they observed.

79

9. Conclusions & Recommendations
This chapter discusses the final outcome of this graduation project as well as recommendations
for future development.

80

9.1 Conclusions
The goal of this project is to develop a human-centred conversational assistant for collecting
standardized issue descriptions from operators on the high-priority Diversey production line.

To reach this goal the following research questions:

- Why use a conversational assistant for data acquisition in manufacturing?
- What is the added benefit of a conversational assistant for data acquisition in manu-

facturing?
- How can a conversational assistant be designed for data acquisition of standardized

issue descriptions?

The first two research questions were explored and answered in the Design Thinking phase
(chapter 3.3 and 3.4). Conversational assistants can be used to handle and process repetitive
data, such as addressing customer inquiries or gathering data at scale. For Diversey specifically
the conversational assistant can gather data on issues, root causes, solutions and best practices.
Current methods of data acquisition at Diversey have only focused on reporting stoppages,
with a conversational assistant a rigorous structure can be developed to expand the data ac-
quired and create value for the company.
An extra benefit of a voice-enabled assistant is that the user can do the cognitive tasks hands-
free with the assistant. Hence, the operators can both maintain the line and do the cognitive
tasks simultaneously.
When the assistant has the necessary knowledge, it can provide support to the operators
through recommendations on best practices.

The last research question was used as a guideline for the development of the conversational
assistant. The result is the prototype of the CA which can acquire data on product related issue
descriptions, which is one of the steps towards an operable Cognitive Advisor on the shopfloor.
The prototype includes a system to process issue descriptions that are known to the system. It
includes features such as synonym understanding, contextual filtering and a check for the issue
descriptions that improve upon useability of the assistant and move towards standardized and
structured data. Next to that, a feature was implemented to capture unknown issues to the
model. With this, operators are able to expand the knowledge base of the CA through conver-
sations.

The prototype and its features are reliant on the training data to improve accuracy. The devel-
opment of the prototype should remain an iterative process to keep improving the NLU model
while expanding the dataset on issue descriptions.

9.1.1 Context analysis
The context analysis conducted at the production line at Diversey showed that the operators
primarily resort to their own intuition and experience to resolve issues. It showed that the sys-
tem in place of capturing such implicit and explicit knowledge is not utilized optimally. Evalu-
ations with operators showed that the system is an inconvenience and a time sink. Simpler and
quicker tools were used to communicate information between shifts. The data that was cap-
tured with the system was often ambiguous, incomplete and non-descriptive. However, such
data can be of significant value to the company as it can be used for process improvement of

81

the production line, maintenance can make use of the data to identify and locate the root of
the cause of a major stoppage and the knowledge that is acquired can be carried over to other
operators.

9.1.2 Conversational data
In sprint 1, through a COALA-roleplay experiment, it was explored what kind of dialogue man-
agement was needed for the conversational assistant with the assumption that humanlike con-
versations were needed. The resulted dialogs provided an indication of how operators naturally
describe issue descriptions. Several speech-related challenges were found that would possibly
be a predicament for a machine learning algorithm such as an NLU model of a conversational
assistant. The dialogs were full of information and knowledge on the issues that arose during
the experiment and the fixes to resolve them. However, these conversations were chaotic and
unstructured. So unstructured, it was difficult for two researchers to find common ground with-
out the context of the experiment, let alone for a machine learning algorithm that needs to
make sense out of the data.
A balance should be struck where the operators have some flexibility how they capture the
issue with the CA, while their input can still be understood by the NLU model and processed
into data that can be used for future training data of the CA and be of value to Diversey.

9.1.3 MVP prototype
In sprint 2 a minimum viable product prototype was developed for the task, that simultaneously
allowed flexible input for the user, while, through a strict pattern of gathering issue descrip-
tions, could create structured data. During testing of the prototype, all participants except one,
failed to fully capture the provided issue with the CA. The MVP prototype failed the intent
accuracy requirement by a difference of 7.4% and its entity accuracy requirement by 2%. With
some assistance and knowledge on how the CA functions however, all participants were able
to complete the issue capture.
Although the participants failed to initially capture the issue and the CA failing the accuracy
requirements, it provided an indication that with some information or training on the function-
ality of the CA, it would be feasible to implement such a CA in a manufacturing environment.
To make a proper statement on the feasibility of a CA in such a context however, more user
tests need to be conducted in the future with the operators.

9.1.4 Prototype features
Within sprint 3, several features were added to the prototype focused on standardizing the
data, providing feedback to the user and reducing friction during the process of data acquisi-
tion.

9.1.4.1 Synonym handling and pronoun usage
Firstly, two challenges from sprint 1 were tackled: Synonym handling and pronoun usage.
Synonyms and pronouns were often used by the operators to denote a certain machine, ma-
chine component or product component.
With Rasa, it is possible to implement a mechanism that would assign a value to a certain word.
This allows to change the value of a synonym to a standardized term (i.e., ‘filling machine’ is
changed to ‘filler’). This way, the operators have some flexibility in terminology of the input,
while still providing the correct terms in the data. Furthermore, during capturing of the issue,

82

the operators are presented with this adjusted value. This gives the operator the feedback what
the correct terminology is. Although, in its current state, it is up to the operator whether they
implement such terminology in their vocabulary or remain using the synonyms because the CA
can process it.
For both synonyms and pronouns, it was explored whether the CA would respond with a cor-
rection on user errors. But the choice was made not to implement such a feature, as it would
increase the friction in the interaction with the CA. To ensure a seamless experience and make
users engage more with the CA, such frictions should be either fixed or removed (Ponnusamy
et al, 2020). For pronoun usage a simpler solution was opted for where the order of the form
was adjusted, such that the usage of pronouns would be resolved by the form.

9.1.4.2 Contextual filtering
Contextual filtering compares the user’s input, to a dataset with known issues. If the input of
the user has the same value as a value in the dataset, it will filter towards this input. Creating a
conversation for issue description with context specific information. The contextual filtering
feature present the top 3 issues in buttons (if available), related to the machine location pro-
vided by the user. Although it was concluded from the prototype feature test that the feature
decreased the duration of issue capturing, the participants of the test had a bias towards de-
scribing issues with the buttons. They would use a button that was closest to the description
of the issue as possible, instead of trying to create the best description for the issue.
What is expected, is that if small issues arise often, this feature can be used to quickly capture
such small issues and prevent operators having to type out such problems repeatedly.

9.1.4.3 Issue description check
The issue description check can be used by the operators to control their input and whether
the CA correctly captured it. The benefit of both the check and the contextual filtering is that
it provides feedback back to the user, making the user aware whether the system understood
their input.

9.1.4.4 Unknown issue form
The unknown issue form can be used to capture unknown issues. The knowledge base of the
CA will need to be expanded to be able to properly capture issues. With this, the operators can
capture unknown issues and write to a database.

83

9.2 Recommendations
Recommendations for future work are listed below.

9.2.1 Setup at Diversey
In the conclusion, it has been mentioned already that more data is needed. What would greatly
increase the data, is to make the system for capturing issues operable at Diversey. Two ele-
ments are needed to make it operable for capturing issue descriptions: a server with Rasa that
can continuously run and hardware which can be used to type on and that can open the server,
such as a mobile phone or a tablet. In the prototype feature test (appendix D1) it was already
proven that issues could be captured remotely through a combination of a local server running
on a laptop and an ngrok-server which makes a local server publicly available through an URL.
This way, the participants were able to use the prototype through a link.

9.2.2 Onboarding of COALA into the Diversey process
Although some steps have already been made towards introducing COALA at Diversey, to
make it work on the shop floor the benefits of such a system need to be proven to the opera-
tors. And when it is introduced, I would suggest an onboarding process, where the operators
can familiarize with COALA. In the conversational flow test, all participants but one failed the
first time to perform the task with the prototype without any researchers input. The second
round of performing the task during the test, all succeeded. Having an understanding of what
the assistant needs from the participant, improves the performance of the task.

9.2.3 Additional features
Below, are additional features that could be implemented to the prototype.

9.2.3.1 Connect issue form with unknown issue form
With the current setup of the issue form, whenever a slot is not set, it would utter the previous
response to the user. What could be implemented is a mechanism that after a certain number
of failed attempts of setting a slot, the CA will attempt to move the conversation to the un-
known issue form and start an unknown issue capture. Before starting the unknown issue form
however, the user has to affirm that this is the action they want the CA to take.

9.2.3.2 Tuning the algorithm to also work for machine related issues
Sometimes issues can also just be machine related and no product related. It is important to
capture such issues as well. The question now is how can these be captured?

The capturing of issues could be, for instance, separated by machine and product. A solution
would be to have two forms for issue capturing, one for machine related issues and one for
product related. Whenever the model wants to try to capture an issue, the CA could prompt
an utterance “Is this a machine related issue or a product related issue?” That way the operator
could select what form to use. However, this requires quick observable skill by the operator to
know what kind of issue it is.

9.2.3.3 Add optional information for issue description
The current method of issue description is only focused on the machine location, product com-
ponent and the state of the product component. Nonetheless, more information is needed to
create the data complete. Information about the machine component related to the issue and

84

its state, for instance, are not captured. However, for issues, not all information is relevant all
the time. A product issue can have no related machine component, while a machine issue can
create a stoppage where the product is not at all relevant. By adding optional information to
the issue form, the user is asked whether additional information is relevant and should be cap-
tured.

9.2.3.4 Adjust issue description input
An implementation should be made such that the user can correct the input in the form when
it has been wrongly set. Currently at the check, when the user denies the question whether all
input has been correctly captured, it will clear the slots and restart the form. Instead of fully
clearing the slots, the operator could specify the slot they want to replace and replace it.

9.2.3.5 Connect the two databases into one
Currently, the database from which the contextual filtering feature queries from, is not connect
to the database the system writes to. By connecting the two, information can be queried from
and issue can be capture to the same database.
Another option to consider, is to have two databases: One with all the issues that can possibly
happen at the production line and use the contextual filtering action to read from this data-
base. And a knowledge base that has all the possible unique issues that can arise.

9.2.3.6 Action for training of the model
With the current prototype, whenever changes have been applied to the NLU or NLP model, it
needs to be manually trained to include the changes. What is proposed here, is that an action
is implemented where the operators can actuate the model through the conversation to train
itself on the new data that was stored in the database. This newly trained model can then
process the newly acquired known issues and unknown issues. Iteratively, issues can then be
captured, the model can train and learn and be used to capture issues again.

Although, such a process is not instant and could possibly hinder the operators from capturing
new issue descriptions during the training process of the model, the operators should be care-
ful when they would start this action. A possibility is to automatically train the model during
downtimes which are not caused by stoppages, such as the end of the shift of the operators,
change-overs or during the cleaning process of the filler.

9.3 Proposal of Machine to machine learning with human post-processing
Another approach for increasing the amount of data aside from the one mentioned in section
9.2.1, is to use machine to machine (M2M) learning as proposed by Shah et al. (2018). While
keeping the naturalness of individual utterances, M2M delivers increased diversity and cover-
age of dialogue flows compared to a Wizard-of-Oz approach according to Shah. The approach
is separated into two phases: A simulated user bot and a domain-specific bot converse to gen-
erate large quantities of dialogue templates. In the second phase, people use these dialogue
templates to create more natural contextual rewrites. Thus creating a large dataset of conver-
sations which can be used for training of CAs.

85

10.0 References
Böhm, H. (2002). Dialogue management using Finite State Models [Slides]. Saarland University.
http://www.coli.uni-saarland.de/~korbay/Courses/DM-SS02/DM-slides/hagen-fsm-slides.pdf

Brendel, A. B., Greve, M., Diederich, S., Buehrke, J., & Kolbe, L. M. (2020, August 12). ‘You are an
Idiot!’ - How Conversational Agent Communication Patterns Influence Frustration and Harass-
ment. ResearchGate. Retrieved 11 November 2021, from https://www.researchgate.net/publi-
cation/341381241_%27You_are_an_Idiot%27_-_How_Conversational_Agent_Communica-
tion_Patterns_Influence_Frustration_and_Harassment

Brownlee, J. (2019, August 7). What Are Word Embeddings for Text? Machine Learning Mastery.
Retrieved 6 October 2021, from https://machinelearningmastery.com/what-are-word-embed-
dings/

Chacón, A., Angulo, C., & Ponsa, P. (2020). Developing Cognitive Advisor Agents for Operators
in Industry 4.0. New Trends in the Use of Artificial Intelligence for the Industry 4.0. Published.
https://doi.org/10.5772/intechopen.90211

del Fierro, K. (2021, September 21). Chatbots, Virtual Assistants & Conversational AI. Aisera -
AI Service Management (AISM). Retrieved 27 September 2021, from https://aisera.com/chat-
bots-virtual-assistants-conversational-ai

Epicor. (n.d.). What is Industry 4.0—the Industrial Internet of Things (IIoT)? Epicor Software
Corporation. Retrieved 10 October 2021, from https://www.epicor.com/en/resource-center/ar-
ticles/what-is-industry-4-0/

European Commision. (2020, October 2). Artificial intelligence (AI). European Commission - Eu-
ropean Commission. Retrieved 10 October 2021, from https://ec.europa.eu/info/research-and-
innovation/research-area/industrial-research-and-innovation/key-enabling-technologies/arti-
ficial-intelligence-ai_en

Generating NLU Data. (2021, July 12). Rasa Open Source Documentation. Retrieved 29 Sep-
tember 2021, from https://rasa.com/docs/rasa/generating-nlu-data/

Hadorn, B., Courant, M., & Hirsbrunner, B. (2016). Towards Human-Centered Cyber-Physical
Systems: A Modeling Approach. ResearchGate. Published.
https://doi.org/10.13140/RG.2.2.30788.01928

Hall, B. R. (2019, April 2). What Is the Riskiest Assumption Test and Why Are Startups Embracing
It? Clutch.Co. Retrieved 4 October 2021, from https://clutch.co/app-developers/re-
sources/what-is-riskiest-assumption-test

IBM. (2021, August 17). Conversational AI. Retrieved 22 September 2021, from
https://www.ibm.com/cloud/learn/conversational-ai#toc-conversati-0zW26VEB

Interactions. (2021, April 9). Conversational AI | What is Conversational AI? Retrieved 11 Octo-
ber 2021, from https://www.interactions.com/conversational-ai/

86

Kernan Freire, S. (2020). A conversational ai agent for industrial maintenance reporting (master
thesis). Delft University of Technology. https://repository.tudelft.nl/islandora/ob-
ject/uuid:9012abed-2736-4e7c-85e2-7fff8a309165?collection=education

Laranjo, L., Dunn, A. G., Tong, H. L., Kocaballi, A. B., Chen, J., Bashir, R., Surian, D., Gallego, B.,
Magrabi, F., Lau, A. Y. S., & Coiera, E. (2018). Conversational agents in healthcare: a systematic
review. Journal of the American Medical Informatics Association, 25(9), 1248–1258.
https://doi.org/10.1093/jamia/ocy072

Parayno, R. (2020, May 1). Conversational assistants in the time of Coronavirus. Medium. Re-
trieved 22 September 2021, from https://uxdesign.cc/conversational-assistants-in-the-time-
of-coronavirus-3d5cd1d5bba

Ponnusamy, P., Roshan Ghias, A., Guo, C., & Sarikaya, R. (2020). Feedback-Based Self-Learning
in Large-Scale Conversational AI Agents. Proceedings of the AAAI Conference on Artificial In-
telligence, 34(08), 13180–13187. https://doi.org/10.1609/aaai.v34i08.7022

Ricadat, P. (2018, November 15). Our experience building chatbots with Rasa — Tuning the
NLU pipeline. Medium. Retrieved 6 October 2021, from https://chatbotslife.com/our-experi-
ence-building-chatbots-with-rasa-tuning-the-nlu-pipeline-74a80cd565b8

Riskiest Assumption Test: Why You Need It And When RAT Precedes An MVP. (2020, February
20). Cadabra Studio. Retrieved 4 October 2021, from https://cadabra.studio/blog/riskiest-as-
sumption-test

Shah, P., Hakkani-Tür, D., Tür, G., Rastogi, A., Bapna, A., Nayak, N., & Heck, L. (2018). Building a
Conversational Agent Overnight with Dialogue Self-Play. ArXiv. Published.
https://arxiv.org/abs/1801.04871

Smallcombe, M. (2020, June 17). Structured vs Unstructured Data: 5 Key Differences. Xplenty.
Retrieved 3 November 2021, from https://www.xplenty.com/blog/structured-vs-unstructured-
data-key-differences/

Surendranadha Panicker, S. (2021). Ethical task tracking of operators in agile manufacturing
(master thesis). Delft University of Technology. http://resolver.tudelft.nl/uuid:3408e8c3-809b-
436d-94eb-efb4f0532b17

Techopedia. (2021, June 3). Tokenization. Techopedia.Com. Retrieved 6 October 2021, from
https://www.techopedia.com/definition/13698/tokenization

Torn, I., & Vaneker, T. (2019). Mass Personalization with Industry 4.0 by SMEs: a concept for
collaborative networks. Procedia Manufacturing, 28, 135–141.
https://doi.org/10.1016/j.promfg.2018.12.022

van den Bosch, K., Schoonderwoerd, T., Blankendaal, R., & Neerincx, M. (2019). Six Challenges
for Human-AI Co-learning. Adaptive Instructional Systems, 572–589.
https://doi.org/10.1007/978-3-030-22341-0_45

White, K. (2021, August 19). Unpacking the TED Policy in Rasa Open Source. Rasa. Retrieved 10
October 2021, from https://rasa.com/blog/unpacking-the-ted-policy-in-rasa-open-source/

87

Wochinger, T. (2021, October 5). Rasa NLU in Depth: Intent Classification. Rasa. Retrieved 7
October 2021, from https://rasa.com/blog/rasa-nlu-in-depth-part-1-intent-classification/

Zhou, J., Zhou, Y., Wang, B., & Zang, J. (2019). Human–Cyber–Physical Systems (HCPSs) in the
Context of New-Generation Intelligent Manufacturing. Engineering, 5(4), 624–636.
https://doi.org/10.1016/j.eng.2019.07.015

88

Appendix A1 Annotation examples for data collection
The method used to collect the dialogues was a researcher roleplaying a COALA Cognitive
Advisor. I would play the role of the Cognitive Advisor while the operators would continue their
operating work but also wear a mono headset which recorded audio. During issue handling, I
asked the operators questions related to the issue and recorded these dialogs. Entities were
used to check whether a full descriptive issue was given, these entities were: Subject, object,
type of issue, symptom, location, current task, SKU, RCA and solution. Also, the timestamp, 2/3-
word description of the issue, SKU and batch number were noted. During the roleplay, pen and
paper were used to mark whether the operator mentioned entities or whether entities were
missed during the dialogues. I would try to ask for entities which were not mentioned, while
trying not to disrupt their work. The recorded audio was to be transcribed and this transcribed
data was to be structured in an Excel sheet for annotation.

Due to time constraints a selection of dialogues for two machines were selected for annotation
out of the 101 recordings: The filler and the cap supply machine. These two machines were
chosen specifically because one machine (the filler) had the most issues, while the other ma-
chine (cap supply machine) had many similar issues (issues regarding the caps getting stuck
while being transported to the filler to be placed on the liquid-filled canisters). The idea was
that these similar issues which were described several times could give us insights into how the
operators describe issues differently. The dialogues were manually transcribed and annotated
by two researchers to maximise accuracy and consistency.

This resulted into 29 annotated dialogues of issue descriptions of which 16 were for the filler
and 13 about the cap supply machine.

Below, two examples of annotated dialogs with dialog annotation tables are provided.
“O:” indicates the operator is speaking and “R:” indicates the researcher is speaking. These
dialogs follow natural speaking patterns and as will be highlighted, show some complications.

The dialog in figure C1.2 is an instance where without context, it is difficult to follow. For in-
stance, to what does the operator refer to with “he” in the sentence “he is going to take it so
to speak.” From context we know the operator refers to the palletizer arm which would grab
the cardboard pallet plates and place them correctly on the pallet. This missing information
from the dialogues could provide difficulties for COALA to handle and should be considered
in future developments.

Example dialog 1

R: What's going on here?
O: Yes, you have pallet plates here. He always has to use the first uhhh... On the pallet he places a
pallet plate and at the last layer he places a pallet plate. It is probably a bit too full now, so that it no
longer takes pallet plates. So I'm going to get rid of a few first. If it immediately starts to have
problems with loading, uhh... it will slide. Let’s take a look at what happens from the other side.
R: *inaudible*
O: Here you can see, here he is going to take it so to speak. He hasn't caught yet, see?
R: Yes.
O: It is also possible that the plates are a little too convex. Look, he only takes half.
R: *inaudible*

89

O: Yes, so the plates are too convex anyway. So I have to turn them all around.
R: *inaudible*
O: Yes, if it is too bent it goes down I think, then it won't catch it well. Yes, it's just a sensor so to
speak. And it just grabs the plate at a certain height and then it can’t see the material anymore and
if it is convex, then it might just grab below it.
R: *inaudible*
O: Yes, it is placed on the bottom one (layer) and the last one (layer). He does 2 pallet plates per
pallet. Just for stability.

Figure C1.1: Example of a dialog of an issue at a palletiser

Table C1.1: Entities for annotating the issue description in example dialog 1

Compared to example one, information in example two is more concise and easier to follow.
Yet, in this dialog several symptoms and causes are given and COALA should be able to
distinguish between them.

Example dialog 2

R: What is happening?
O: The cap turner has now malfunctioned. I think he got overloaded. Yes overloaded... Overloaded.
Cap turner 1 overloaded.
R: What is the solution to that?
O: Solution uhh... Reset to zero point and reset. At some point it ends up in a magnetic disk, if it falls
outside of it, then it will say "hey, something is not right here" and it will say it is overloaded. Then
it's just a matter of giving a little tap and then it's back in.

Figure C1.2: Example of a dialog about the cap turner

Annotation entities Definition
Symptom-component(s) He [pallet arm]
Symptom 1. It no longer takes pallet plates.

2. He hasn’t caught yet, see?
3. Look, he only takes half.

Cause 1. It is probably a bit too full now.
2. The plates are a little too convex.
3. So the plates are too convex anyway.

Solution 1. I’m going to get rid of a few first.
2.So I have to turn them all around.

Location -
Solution_component -
Cause_component -
Related_part_product Pallet plates
RCA Yes, if it [...] grab below it.
Intended behaviour 1. He is going to take it so to speak.

2. It is placed... Just for stability.

90

Table C1.2: Entities for annotating the issue description in example dialog 2

As mentioned in the examples, this annotation process provided insights into how operators
naturally describe issues and the potential challenges and opportunities this poses for NLP.

Annotation entities Definition
Symptom-component(s) The cap turner 1
Symptom 1. The cap turner has now malfunctioned.

2. Then it will say “hey, something is not right here” and it will say it is
overloaded

Cause 1. Cap turner 1 is overloaded.
2. At some point it ends up in a magnetic disk, if it falls outside of it.

Solution 1. Reset to zero point and reset
2. Then it’s just a matter of giving a little tap and then it’s back in.

Location -

Solution_component [cap turner]
Cause_component -
Related_part_product Cap
RCA -
Intended behaviour -

91

Appendix A2 Consent forms data collection
Below the consent forms in English and in Dutch.

Consent form

The Technical University of Delft supports the practice of protecting
research participants' rights. Accordingly, this project was reviewed
and approved by the Human Research and Ethics Committee. The in-
formation in this consent form is provided so that you can decide
whether you wish to participate in our study. It is important that you
understand that your participation is considered voluntary. This
means that even if you agree to participate you are free to withdraw
from the data collection at any time, without consequences and with-
out a need to give a valid reason. If you wish to withdraw your consent
after the experiment is completed, we ask that you try to do so within
24 hours, by contacting the researchers.

The aim of this study is to collect data on the issues operators face on the pro-
duction line, how they are diagnosed and solved. Additionally, we will be testing the performance of automatic
audio transcriptions, a core component of the digital assistant we are developing for Diversey; collect dialogues
for training our digital assistant to talk to operators; and informally access the user experience of wearing a
wireless headset during work and reporting on issues by voice. The recorded audio will be transcribed within 5
months and then deleted. The resulting transcriptions will be anonymized and no personal information will be
stored about you. The collected data will NOT be used for evaluating operators in terms of their performance
nor for process improvement in the company. The collected data will only be used by members of this research
project from TU Delft and will not be shared with others without your explicit permission. No videos, images, or
other data that would enable anyone to identify you will be stored. The researchers will adhere to Diversey's
COVID measures. Furthermore, the wireless headset will be cleaned before use. This consent form will be care-
fully and securely stored for at most five years (until March 31, 2026). During the study, you are asked to work
as usual and respond to our questions about production line issues and your experience with the study.

If you have any questions not addressed by this consent form, please do not hesitate to ask.

Declaration of consent (please tick the appropriate boxes)

 YES NO
1. I agree to participate in this study ⃝ ⃝
2. I have read the study information above and understand that my participation is voluntary and
that I am free to withdraw at any time, without giving any reason.

⃝ ⃝

3. I understand that an audio-recording will be made and stored for the duration of the associated
masters graduation project (5 months).

⃝ ⃝

4. I agree for my non-identifiable data to be made available in an anonymized dataset. ⃝ ⃝

____________________ __________________ ________
Name participant Signature participant Date

____________________ __________________ ________
Name researcher Signature researcher Date

92

Consent form

TU Delft ondersteunt de praktijk om de rechten van onderzoeks- deelne-
mers te beschermen. Overeenkomstig is dit project beoordeeld en goed-
gekeurd door de Human Research and Ethics Committee. De informatie
in dit toestemmingsformulier wordt verstrekt zodat u kunt beslissen of u
wilt deelnemen aan ons onderzoek. Het is belangrijk dat u begrijpt dat uw
deelname als vrijwillig wordt beschouwd. Dit betekent dat, zelfs als u er-
mee instemt om deel te nemen, u zich op elk moment kunt terugtrekken
uit de gegevensverzameling, zonder consequenties en zonder dat u een
geldige reden hoeft op te geven. Als u uw toestemming na afloop van het
experiment wilt intrekken, vragen we u dit binnen 24 uur te proberen
door contact op te nemen met de onderzoekers.

Het doel van deze studie is om gegevens te verzamelen over de problemen
waarmee operators op de productielijn worden geconfronteerd, hoe ze

worden gediagnosticeerd en opgelost. Daarnaast zullen we de prestaties testen van automatische audio-
transcripties, een kerncomponent van de digitale assistent die we ontwikkelen voor Diversey; dialogen ver-
zamelen om onze digitale assistent te trainen om met operators te praten; en informeel de gebruikerser-
varing verzamelen van het dragen van een draadloze headset tijdens werk en het melden van problemen
via spraak. De opgenomen audio wordt binnen 5 maanden getranscribeerd en vervolgens verwijderd. De
resulterende transcripties worden geanonimiseerd en er wordt geen persoonlijke informatie over u op-
geslagen. De verzamelde gegevens zullen NIET worden gebruikt voor het evalueren van operators in ter-
men van hun prestaties, noch voor procesverbetering in het bedrijf. De verzamelde gegevens worden
alleen gebruikt door leden van dit onderzoeksproject van de TU Delft en worden niet gedeeld met anderen
zonder jouw uitdrukkelijke toestemming. Er worden geen video's, afbeeldingen of andere gegevens opge-
slagen waarmee iemand u kan identificeren. De onderzoekers zullen zich houden aan de COVID-maatrege-
len van Diversey. Verder wordt de draadloze headset voor gebruik gereinigd.
Dit toestemmingsformulier wordt maximaal vijf jaar (tot 31 maart 2026) zorgvuldig en veilig bewaard. Tij-
dens de studie wordt u gevraagd om te werken zoals u gewend bent en te reageren op onze vragen over
productielijnkwesties en uw ervaring met de studie.
Als u vragen heeft die niet in dit toestemmingsformulier staan, aarzel dan niet om ze te stellen.

Toestemmingsverklaring (kruis de betreffende vakjes aan)

 YES NO
1. Ik ga ermee akkoord om deel te nemen aan deze studie. ⃝ ⃝
2. Ik heb bovenstaande informatie gelezen en begrijp dat mijn deelname vrijwillig is
en dat ik me op elk moment kan terugtrekken, zonder opgave van reden.

⃝ ⃝

3. Ik begrijp dat er een audio-opname wordt gemaakt en bewaard voor de duur van het bijbe-
horende master afstudeerproject (5 maanden).

⃝ ⃝

4. Ik ga ermee akkoord dat mijn niet-identificeerbare gegevens beschikbaar worden gesteld in
een geanonimiseerde dataset.

⃝ ⃝

____________________ __________________ ________
Naam participant Handtekening participant Datum

___________________ __________________ ________
Naam onderzoeker Handtekening onderzoeker Datum

93

Appendix B1 Conversational Flow Test
For the Diversey use case a conversation flow test was conducted on the 16th of September at
the Enschede factory.

COALA is intended to be an intelligent conversational AI that can collect data on issues, root
causes and solutions. Furthermore, it can give recommendations for possible solutions or,
when needed, contact technical services to help on the operating line. To improve COALA, a
chatbot was created with a tool called Rasa. The current version of the chatbot prototype re-
sponds to input through a set of follow-up questions to capture data on issue descriptions and
store it in a data sheet. In the ideal scenario, the Rasa bot stores the following entities: machine
location, product component, product component state. These entities are used to describe
the issue on the production line. With Rasa we can train the natural language understanding
(NLU) core of COALA (basically COALA’s brain) and improve how good the conversational AI is
in collecting correct data and therefore also improve the recommendations it can provide.
However, to train the core, we need to test it with domain specific users. This is the reason of
the visit. We need user input to improve upon the NLU core and user insights into what we
(maybe) have not considered to implement.

B1.1 Goal
The purpose of the conversation flow test is threefold:

- Identify whether unknown flaws are present in the dialogs for collecting issue descrip-
tions

- Test whether identified challenges gathered in the data collection described in appen-
dix C1 will arise

- Gather user insights and feedback on the dialogs and the dialog handling

B1.2 Approach
The approach was to use Rasa X to collect conversations with participants who have knowledge
of the domain: operators, operator team leads, technical service and quality control personnel.
Rasa X allows for the conversations to be stored either on a server or locally, and for the con-
versations to be post-processed. The Rasa prototype will use a form, a method for the chatbot
to remember what has been said/written (fill slots of the form), to capture data on issue de-
scriptions and store it in a data sheet. The slots will be filled with the following entities: machine
location, product component, product component state.

To gather new findings from the conversations, attempts were iteratively made in between
testing to improve the prototype.

The results of the test were evaluated in Rasa X in between testing with participants (post-
processing) to identify errors in the dialogs and to improve the handling of the dialogs by, for
instance, adding features to the prototype to prevent issues happening in the conversations.
Rasa X allows for analysing individual conversations between chatbot and user. During post-
processing, the accuracy for intent and context recognition of the prototype was manually
processed.

94

Figure B1.1: A happy path visualised for capturing an issue description with the issue form.

Figure B1.1 shows a happy path for the conversation flow test where the issue description is
captured with an issue form. Note, the utterances from the chatbot are reliant on what slots
have been filled. For instance, when slot m_location has been filled, the requested slot to be
set is p_comp and the related chatbot utterance to this entity is: “What is the issue?”. Rasa
allows for several slots to be set simultaneously.

B1.3 Setup
Two researchers were involved in the test. One researcher did the introduction and assisted the
participants when they got stuck with the testing, while the other observed the participants
and made notes. The participants were tasked to talk out loud and communicate what they
were doing and their thought process during the actions. Noteworthy actions and thought
processes were captured by the observing researcher, next to the feedback provided by the
participants in the discussions at the end of the testing. Furthermore, the sentiment towards
the prototype was also observed.

A laptop was used to access the prototype and allow to participants to communicate with it by
typing.

A scenario was created which the participants had to capture with the Rasa chatbot. The par-
ticipants had to act as production line operators on the 5/10L line and had to describe the issue
in figure B1.2. Images were used to illustrate the issue and mimic a real life situation the oper-
ators could experience at the operating line while having to describe it to a conversational
assistant. Unfortunately, operators were not available for testing, see section B1.3.1 on the lim-
itations of the setup and why the participants had to ‘act’ as operators. For the first attempt,
the participants were not explained how to capture the issue, this is to test the goals set for
the test. By not explaining the approach of capturing an issue, the participants are also not
influenced in how they would capture it. This way unidentified flaws can be found. Also, it can

95

be tested whether previous challenges have been resolved (section 6.4 and appendix C1). After
a first attempt, the researchers explained the intended way of capturing this specific issue to
the participants. Afterwards they were allowed to test it again, but most importantly the feed-
back from the participants was captured. Due to the short time the participants had, the second
test with knowledge on the intended way was only done by one out of all the participants. The
feedback was either captured with unstructured interviews or with a form as guidance, see
Appendix B2 for the full test setup in Dutch. Reasoning behind this approach is to allow for
open discussion on the prototype and leave room for the participants to give feedback. If this
process got off to a slow start, the form was used to guide the conversation between partici-
pant and researcher on the prototype.

After the tests, the following was captured (see table B1.2):

- the amount of user utterances to capture the issue and fill the issue form
- whether the participants managed to finish the issue form without input from the re-

searcher and whether they were able to do that with input from the researcher
- the number of correct intents that were recognized out of the total amount of intents

in the conversation
- the number of correct entities recognized out of the total amount of entities in the

conversation
- interesting findings taken directly from the conversation
- adjustments that were applied after the participant finished their conversation with the

prototype.

These values provide information on the useability of the prototype and were used to validate
it.

Figure B1.2: An issue to be described by the participants; Foaming of the product (liquid) at the filler.

B1.3.1 Limitations
Logically, operators were desired as user testers for the prototype as the prototype is mainly
meant to be used by operators. However they were unavailable due circumstances with oper-
ations at Diversey. Still, participants with some knowledge on the production line and the spe-
cific terminology were needed. Therefore, staff from technical services and quality manage-
ment were asked to participate. As earlier mentioned, they were tasked to act as operators.
However, at the time of testing the availability of the Diversey staff members was limited, and

96

participants were recruited one-by-one when available. Six participants from technical services
and one from quality management participated in the test.

B1.4 Results
The results are 8 conversations with 7 participants, see Appendix B3 for the full conversations
and Appendix B4 for the observations during conversation and participants’ feedback. Table
B1.1 gives an overview of the results of the conversations.

97

Table B1.1: Results of the conversations, including: the amount of user utterances*, finished issue form**,
correct intent recognition, correct entity recognition, interesting findings and adjustments applied to
chatbot.
* = amount of user utterances to finish issue form
** = first answer indicates the participant was able to finish the task without help from researcher, second
answer indicates the participant was able to finish the task with the help from the researcher.
*** = The numbers between brackets (i.e. (0.77)) indicates the certainty of the chatbot of what the intent is.
**** = adjustment in between brackets ([…]) are future adjustments which should be considered for
implementation. Adjustments are applied after the conversation.

Chat

Amount
of user
utterance*

Finished
issue
form**

Correct
intent
recognition

Correct
entity
recognition

Interesting
finding(s)***

Adjustments****

1 4 No/Yes 4/5, 80% 3/4, 75% “loopt” was recognized as
p_comp_state while “loopt
leeg” should be recognized.

-

2A 5 No/No 4/5, 80% 1/3, 33% “Vulmachine” not
recognized as synonym of
“vuller”. “Niet in verpakking
afgevuld” recognized as
deny intent (1.00).

For test: Added
“Vulmachine” as entity in
mention_issue intent (the
reason why synonym was
not found)

2B 4 Yes 4/4, 100% 3/3, 100% Compared to chat 1, “loopt
eruit” was correctly
recognized as p_comp_state

-

3 7 No/Yes 7/7, 100% 5/6, 83% p_comp_state slot has been
overwritten twice (3
instances with
p_comp_state)

-

4 8 No/Yes 6/7, 86% 3/6, 50% “Geen” recognized as
p_comp_state (0.77). “Vult
boven gewicht” recognized
as deny intent (0.89).
Sleever not recognized as
entity at all, should be
recognized as m_location.
Participant had issues with
finding p_comp_state.

[Sleever not recognized
as an entity indicates that
the lookup table is not
working as intended.]
Added several intent
examples of
mention_symptom intent
with new p_comp_state
entities taken from test.

5 5 No/Yes 4/5, 80% 5/6, 83% “Afvulmachine” not
recognized as m_location
entity. Participant had
issues with finding
p_comp_state.

Added “afvulmachine”
and “afvul machine” as
entity in mention_issue
intent. Swapped order of
slots p_comp and
p_comp_state.
p_comp_state now
connect to the question
“Wat is er gebeurd?” and
p_comp to “Benoem het
product alsjeblieft.”

6 5 Yes 5/5, 100% 4/4, 100% “Het schuimt” is used to
describe the issue, p_comp
missing. Filled in afterwards
after correct question.
“Het” correctly recognized
as pronoun entity, no
execution of pronoun rule
however.

-

7 8 No/Yes 6/8, 75% 3/5, 60% “Le” incorrectly recognized
as affirm intent (0.88).
“Waarc” correctly

[Consider adding “zeep”
as an entity for p_comp]

98

recognized as affirm intent,
although the prototype was
not looking for an affirm
intent. Afterwards, it
deactivated the issue_form
loop.
“Overvullen” recognized as
m_location entity (0.61).
“Zeep” not recognized as
p_comp entity.

[A story of an unhappy
path is present in the
model where the user can
stop the issue_form with
a stop intent and a affirm
intent after an utter_stop
response. As the chatbot
recognized “Waarc” as an
affirm intent, it used this
story to exit the
issue_form active loop.
Consider whether
changes need to be
applied.]

Total 87.6% 73%

B1.5 Findings
Aside from the findings highlighted in table 1 under ‘Interesting finding(s)’, some noteworthy
findings are highlighted below.

- For participants 6 and 7 the issue form was adjusted after the conversation with par-
ticipant 5. The slots for p_comp and p_comp_state were swapped in order and the fi-
nal chatbot utterance had to be adjusted to target the p_comp entity. So, for the ut-
terance “What happened?” (in Dutch: “Wat is er gebeurd?”) the requested slot was
swapped from p_comp to p_comp_state. The utterance for the final slot was changed
from “What is the status of the product?” (in Dutch: “Wat is de status van het pro-
duct?”) to “Could you name the product?” (in Dutch: “Zou u het product kunnen be-
noemen?”). The results from participants 6 and 7 are indicating that the changes ap-
plied after participant 5 were fruitful. Unfortunately, due to no other available partici-
pants, the test was cut short, and the changes could not be tested further.

- Out of the 7 participants, only one managed to fill the issue form without input from
the researcher: participant 6. This might be due to the iterative changes applied dur-
ing the test.

- Two main challenges from data collection arose during the test: synonym handling
and pronoun usage.

- Overall, the participants would like to be “guided” more in the conversations. One
participants suggested more specific questions related to the input from the user.

B1.6 Proposed changes
Below, some proposed changes are listed to be implemented to the chatbot:

- Training examples of synonyms as entities should be added, only using a synonym list
does not work. The same issue applies for lookup tables.

- Use entity AND intent recognition for product component state and use only entity
recognition for product component. Only using entity recognition for product compo-
nent state is too strict and will create frustrations with the user because the chatbot will
start looping with the same questions.

- Consider only adding machine component to issue description, machine component
state might be unnecessary

99

- Consider adding story for issue form without stop intent but with affirm intent and let
the bot continue with the issue form instead of what happened during conversation 7.

- Swap the order of the slots: p_comp_state before p_comp
- Wat is er gebeurd? (What happened?) → p_comp_state
- Kan je het product benoemen? (Can you name the product?) → p_comp
- For filling the issue form, a final confirmation will be needed to let the operators double

check if the bot has captured the issues correctly.

100

Appendix B2: Test description (Dutch)
Chatbot test 16-9-2021

Deze test is bedoeld om het prototype te testen. Er wordt specifiek niet getest op uw kunnen, maar of
de prototype werkt. Het prototype is onvolledig en heeft uw input nodig om verbeterd te worden.

Eerst laten we je het zelf testen, daarna leggen we uit hoe het prototype moet werken en laten we je
het nog een keer testen. En tot slot willen we graag uw input over het prototype en samen nadenken
over hoe we het kunnen verbeteren.

De test zal als volgt gaan:

- We laten u als eerst een bepaalde scenario uittesten met het prototype. Ik vraag u om
hardop na te denken.

- Daarna zal ik u uitleggen hoe het prototype hoort te werken. Indien u het wilt, kunt u het op-
nieuw uitproberen.

- Daarna zullen we met behulp van de hele korte invul enquête onderaan de pagina feedback
vragen over het prototype. Als u nog goeie ideeën en inzichten heeft, hoor ik die graag.

Scenario:

U bent een operator en met behulp van de chatbot wilt u het probleem in de afbeeldingen vastleggen.

U kunt beginnen door de chatbot te groeten.

U kunt aan het eind met de lijst hieronder het prototype beoordelen:

PS: Het prototype representeert niet het eindproduct.

101

Appendix B3: Full conversations with Rasa X for conversa-
tional flow test
Below are the full conversations of the conversational flow test.

Participant #1

102

Participant #2

103

104

Participant #3

105

Participant #4

106

107

Participant #5

108

Participant #6

109

Participant #7

110

111

Appendix B4: Observations prototype test
Here, the observations found during the conversation flow test (Appendix B1) are given.

B4.1 Testing prototype Raza
Overall most people were quite understanding about that it was a prototype and that it still
needed to learn.

Participant #1

• Greeting the bot felt weird, but after a while start with: hoi

• The participant thinks he needs to address the cause right away

• “Er ligt product in de vulmachine”

• Does not recognize the vulmachine but does vuller

• The subject of the sentence is often missing like ‘er’ ‘het’ (pronoun usage).

• The participant thinks in causes and is too detailed with his descriptions.

• “niet afgevuld in de can”  He proposes to set buttons like with the location or give example on
how to react

• Technical people already think in solutions before just describing the problem. So they would like
to solve it instead of ‘wasting’ time filling in what happened.

• They used ~maxibu? But are now using managerplus program where they use dropdown menu’s to
describe what happened and therefore he would like to have that as well with the Raza bot

• Participant assumes that not everybody’s personal description of the problem is in there so he sug-
gests a dropdown where they can choose the most applicable

• There are a lot of internal meanings to a word like ‘product’

• A registration system is obligatory from the government to already log certain activities

• The participant is curious how it will look like and finds it intriguing but perhaps unrealistic, he
says if there are too many mistakes but the service then people won’t use it like ODCE

Participant #2

• Started with greeting again: hoi

• “Een misslag gehad”  Thinks immediately what went wrong

• The greeting of COALA helps to think about what happened instead of going to the solu-
tion/cause

• The bot malfunctions again at the phrasing of the action

• The participant would like there to be solutions as well

• He finds the solution to be recognizable, he sees it a lot with FAQ sites and think immediately to
KPN

• He says that he finds it easy to use but thinks the terminology is very important, the solution
could help up to a point

• Operators usually give too little info about what is happening and then maintenance needs to go
there to get more information about the problem

• Mechanics think that the operators need more knowledge about the problems so they can solve it
as well  He provides an example: crinkle in the label or the distance between bottles

• They have a step-by-step approach to go through the problem

112

• There is a lot of changing people at the moment where knowledge is lost

• There are a lot of variables that have influence on the machines, so they don’t have a set value but
a range. This means changes to values to fit the context, however, the participant describes it as a
“gevoelskwestie”. The operators need to know if they should try the lower or higher part of the
range.

Participant #3 (Marcel)

• The place to type is not that clear for him and he already says that typing is not his
thing. So it is going slowly

• For him the buttons are not clearly clickable and finds typing very annoying so this
could have helped

• “Hij vult te veel” and “vult boven gewicht” are very context induced, so complex to un-
derstand

• The bot does not quite work for him, the question he got from Rasa was also not that
clear

• Participant says there are 1000’s of problems which the bot needs to work with, so the
questions need to be more aimed, otherwise the bot and the user will ‘lose’ each other

• Being guided and making the scope smaller would help, so asking questions related to
the information that he already gave

• The solution is recognizable  He thinks about the Ikea bot and says that you can’t
get a matrass when you look for a chair.

• Operators have a problem on a specific line, then a component and then a part of the
component  Peel the layers until you are at the problem

• Idea: maybe voice recognition because there are a lot of accents and dialects and by
recognizing the operator the bot already knows the line

• He finds it a positive development and is looking forward towards the end result
• He does not find the solution very original but it is new and original in this context.
• “Hopelijk mag het wortels schieten”  “May it grow”
• Filling in the current tool is already a hard task and is very conventional
• There are quite some older people that find it hard to accept change
• The foundation needs to be solid like every good building
• He would like to be involved with the development of this project!

Participant #4 (Anton)

• Is from quality control
• Has difficulty starting and greeting the bot. Eventually says hello
• Notices right away that you can click the buttons, clicks ‘vuller’
• ‘product status’ is hard to guess what the bot expects and needs as input, it is too

broad and this causes the participant to overexplain himself. It asks more than it wants
to receive ‘p_comp’

• If the questions can be more detailed, then he would understand it better
• The bot itself went quite smoothly
• He suggests that the voice would help a lot instead of typing

113

• Operators type too fast so what they type is quite cryptic so it is not clear for the peo-
ple in control what they mean when they read it later on the day

• He says that there are still a lot of challenges along the way before it can really be
used

Participant #5

• Warehouse employee

• OCDE is not being filled in properly

• Is doubting how to greet COALA

• The first question is going well even though he uses a lot of speech related words like ‘probably’
and ‘I’.

• Second question and second try goes well without interfering

• We changed the questions in between and this helped. Only Rasa did not recognize the product
name ‘zeep’. He wanted to write very specialized wordings like ‘hypo’ and ‘acid’ or even specific
liquids

• Easing into it is important and knowing what you ‘can’ say  What is being recognized by Raza

• Operators see the tool ODC now as extra work and don’t do it when there is a malfunction of the
software or a easy fix. The software also only allows all or nothing approach; you can’t skip one
stoppage report

• Participant think there needs to be a re-education in order to work

Because this was not his context, we asked what he searches for in a tool if it was introduced in the ware-
house:

- Ease of use so less steps and integration with the systems we already have

o He is aware of the fact that the more steps you need to take as human, the more mistakes
can slip in the process

114

Appendix C: Prototype code
For the code, you can send an email to borishadzisejdic@gmail.com.

115

Appendix D1: Prototype feature test
A qualitative test was conducted to test the prototype features implemented in sprint 3 (chap-
ter 8) of this project. The test was conducted with two design students who have some
knowledge on the production line at Diversey.

D1.1 Goal
The test was conducted to validate the features qualitatively and gather insights on what ben-
efits are of the features.

D1.2 Setup
Two versions of the CA model were used to test: Version A and B.
Version A had synonym handling, pronoun handling and the check, but no buttons and no
contextual filtering.
Version B had synonym handling, pronoun handling, check and contextual filtering and the
buttons were included.

The participants were provided with the test description (appendix D2), and tasked to capture
the two issues shown in the 4 images in the description. An ngrok server was created to share
the Rasa model through Rasa X to the participants. Unknowingly, they had to capture both
issues twice. Once with version A and once with version B. Participant 1 started with A and then
tested with B, participant 2 did it vice versa.

D1.3 Result
Appendix D3 has the full conversations of the tests and appendix D4 has the observations and
feedback of the test.

D1.4 Findings
- The two most predominant observations were that version A did not provide enough

feedback during capturing while version B did through the buttons. However, both par-
ticipants observed that in version B they had a slight bias towards the proposed issues
presented in the buttons of contextual filtering. They would try to describe the issue
with one of the buttons that would match the most with what they observed.

- Another observation both had was that they could imagine that such a task would be-
come repetitive very quickly.

- Capturing the issue with the buttons was really fast and was therefore appreciated.
However the previously mentioned bias towards the buttons did still bother both par-
ticipants.

116

Appendix D2: Prototype feature test description (Dutch)
Prototype test

Deze test is bedoeld om het prototype te testen. Er wordt specifiek niet getest op uw kunnen, maar of
de prototype werkt. Het prototype is onvolledig en heeft uw input nodig om verbeterd te worden.

Eerst laten we je het zelf testen, daarna leggen we uit hoe het prototype moet werken en laten we je
het nog een keer testen. En tot slot willen we graag uw input over het prototype en samen nadenken
over hoe we het kunnen verbeteren.

De test zal als volgt gaan:

- We laten u als eerst een bepaalde scenario uittesten met het prototype. Ik vraag u om
hardop na te denken.

- Daarna zal ik u uitleggen hoe het prototype hoort te werken. Indien u het wilt, kunt u het op-
nieuw uitproberen.

- Daarna zullen we met behulp van de hele korte invul enquête onderaan de pagina feedback
vragen over het prototype. Als u nog goeie ideeën en inzichten heeft, hoor ik die graag.

Scenario:

U bent een operator en met behulp van de chatbot wilt u de 2 problemen in de afbeeldingen vastleg-
gen.

U kunt beginnen door de chatbot te groeten.

Probleem 1:

Probleem 2:

117

U kunt aan het eind met de lijst hieronder het prototype beoordelen:

PS: Het prototype representeert niet het eindproduct.

118

Appendix D3: Full conversations prototype feature test
Here the full conversations captured in Rasa X for the prototype feature test are provided.

Participant #1, test A:

119

120

Participant #1, test B:

121

122

Participant #2, test B:

123

124

Participant #2, test A:

125

126

Appendix D4: Observations and feedback prototype features
test
Here the observations and feedback during the tests are listed.

Participant 1, test B (with buttons):

The CA started slow when user uttered hello. Had to refresh.

“Cans lopen vast” the CA gets stuck and does not know what to do.

Aside from above mentioned 1st issue capture went rather smoothly.

The user started with issue first and then went into location.

Feedback:

The buttons for m_location gave a hint of what the location was, otherwise for the participant
it was difficult to see in the images what the machine location was. The context was missing
with the 2nd issue.

The user would like to adjust the issue description in the middle of documentation.

After denying the control step, the participant wanted to correct the description and expected
the CA to utter: “Ok, what is wrong then?”

Participant sees the benefit of a voice assisted CA and also sees the difficulties with a text-
based approach.

According to the participant the questions are clear.

When typing it gives a good overview of what is said because you can scroll back and read
what has been said. This is not that easily possible with a voice assisted CA.

Participant 1, test A (without buttons):

During issue capturing, the CA was looping the question for p_comp_state, while p_comp was
already captured. The participant got confused by this. 3 times it asked for the observable issue.
In issue capturing, it replaced filler by machine for m_location.

Feedback:

Participant shared that he could imagine that if he was an experienced operator that he does
not have to always see the buttons because he already knows what the issue is. It depends a
little what people prefer. The participant provides an example where if you are in the car, some
people appreciate if the navigation talks to you and communicates everything while others
prefer to look at the screen themselves.

The issue form is very formal, in stead of: “What is the predominant issue that you can observe?”
replace by “What is the issue/What do you see going wrong?”

And: “Perfect, issue is captured” instead of “Thank you, the issue has been captured and sent
to the database.”

127

It would be nice to scale the CA to the experience of the operator.

Participant 2, test A (without buttons):

Surprisingly could process very accurately the first user input: “De productie lijn staat stil.” (1.00
confidence).

Another surprise: after check the user denies, and corrects the system and it replaced the cor-
rect slot with the correct entity and worked.

First issue capture went surprisingly smoothly. One little hiccup which was not anticipated, was
resolved by the CA itself.

CA does not know the synonym “labeler”. User utters it twice before mentioning the sleever.

“Het etiket blijf hangen in de machine” is recognized as an mention issue intent instead of
mention symptom intent. Machine captured as machine location entity. It erased the previous
sleever input.

Afterwards the participant utters: “label zit vast” and works, even though the “label” was never
specified as entity in the training data.

Feedback:

Participant: The system is very supportive in the fact that it was guiding me. Although I did not
get any feedback when it needed assistance.

To the participant it was straightforward. The participant would have liked it even more if it
would fill out some things automatically for them.

It is difficult to get a grasp on what the easiest way is to capture an issue in the right way.

The feedback in between with second test is appreciated. Would prefer a better visual layout.
Visual queues that the bot has recognized something or is working to process the information.
Participant gives an idea: Some kind of lamp going green when CA has properly recognized
the user.

The “typing” bubble by the CA is exciting because you are not sure what is going to come.

Would most probably find the task boring to do. Especially if you imagine in the timeframe of
the operators.

The issue is related to the sleever or labeler, than the participant is expecting a question about
the specific machine. Only clear with the control step what is being captured. Want more feed-
back.

Shared an insight gathered from an operator: The operator did not feel that capturing issues
with ODCE was of value to her. What was of value, was data on the production line. It gave her
insights into how she was performing and if she needed to adjust her approach if she was
producing worse than she wants.

Partcipant 2, test B (with buttons):

128

It is foaming, but I definitely can see it flowing over, so my choice goes for flowing over.

Capturing issue went smoothly.

Feedback:

With the 2nd issue participant had a bias for the proposed buttons.

I looked at the options of the buttons and picked one that seemed to fit the problem the best.

Provide a 4th option: Else. Then the user can press that button and type. Although in the text it
says you can type another answer, it still is not that clear to the participant.

Capturing the issue was fast. Participant is curious how fast it will be if the issue is not one of
the options and how good it will work.

What will it do then? Can it provide the next top 3? Or do you just have to type the issue then?

Now it was clear directly that the CA understood the participant as you got visual feedback
through the buttons and specific to the machine.

Participant talks about if the top 3 issue are approximately 80% of the issue, then he thinks it
is a great approach. Then only 20% of the issues have to be typed while most can be captured
rather quickly with the buttons.

Maybe an icon that indicates the significance or severity of the issue?

Participant would like to not have to say hi every time.

Is it possible to let the previous issue be repeated by the CA?

The participant feels that if you have to do this over and over, some pain points are there in
the process that can create frustrations.

Some form of external motivation to fill it in, provides an example: “This is the 100th time this
issue has been captured by you! Good job!”

The participant can imagine that the task could be repetitive.

129

Appendix E: Project brief

130

131

132

133

134

135

	I. Acknowledgements
	II. Abstract
	III. Glossary
	1. Introduction
	1.1 Background
	1.2 Problem definition

	2. Assignment & Project Scope
	2.1 Approach

	3. Conversational assistant
	3.1 What is a conversational assistant?
	3.2 Types of conversational AI
	3.2.1 Cognitive Advisor vs. Conversational assistant

	3.3 Why use conversational assistants?
	3.4 How will it work?
	3.4.1 How will the Cognitive Advisor work?
	3.4.2. How will the conversational assistant work?

	3.5 Operator acceptance
	3.6 Standardized terminology

	4. COALA & Diversey
	4.1 COALA project
	4.2 Diversey
	4.3 Cognitive Advisor
	4.3.1 Knowledge acquisition

	4.4 Stakeholders CA
	4.5 Value creation for stakeholders
	4.4 Diversey Enschede Factory
	4.4.1 5/10 litre operating line
	4.4.1.1 Layout 5/10L line

	4.4.2 Operators
	4.4.3 Change-overs
	4.4.4 Issues and issue handling
	4.4.5 Communications and issue reporting
	4.4.6 Issues with issue reporting

	5. Rasa
	5.1 Rasa terminology
	5.2 How does Rasa work?
	5.3 NLU
	5.3.1 Tokenizer
	5.3.2 Featurizer
	5.3.3 Intent & entity classifiers

	5.4 Dialog manager
	5.5 Intents & entities
	5.5.1 Entity roles and groups

	5.6 Actions
	5.6.1 Forms

	5.7 Stories and rules
	5.7.1 Rules
	5.7.2 Stories

	5.8 Conversation driven development

	6. SPRINT 1: Conversational data
	6.1 Riskiest assumption
	6.2 Data collection for issue description
	6.2.1 Goals data collection
	6.2.1.1 Preliminary operator speech pattern analysis
	6.2.1.2 Identify possibilities and limitations for conversational AI and operator interaction
	6.2.1.3 Gather contextual knowledge
	6.2.1.4 Testing of audio quality in a noisy environment

	6.2.2 Data collection method
	6.2.2.1 Annotations of issue descriptions

	6.2.3 Data results

	6.3 Restructuring data entities
	6.4 Challenges CA
	6.5 Conclusions sprint 1
	6.6 List of requirements sprint 1

	7. SPRINT 2: MVP prototype
	7.1 Riskiest assumption sprint 2
	7.2 Setting up the model
	7.2.1 Pipeline

	7.3 Issue form
	7.3.1 Buttons in the prototype

	7.4 Custom action exploration
	7.4.1 Action show time
	7.4.2 Validate issue form

	7.5 Conversational flow test
	7.6 Conclusion sprint 2
	7.7 List of requirements sprint 2

	8. SPRINT 3: Prototype features
	8.1 Riskiest assumption
	8.2 Synonym handling
	8.2.1 Initial synonym handling ideation

	8.3 Pronoun usage
	8.3.1 Initial pronoun usage ideation

	8.4 Writing issue description to a database
	8.5 Contextual filtering
	8.5.1 Limitations with current contextual filtering

	8.6 Issue description check
	8.7 Unknown issue form
	8.8 Prototype feature test

	9. Conclusions & Recommendations
	9.1 Conclusions
	9.1.1 Context analysis
	9.1.2 Conversational data
	9.1.3 MVP prototype
	9.1.4 Prototype features
	9.1.4.1 Synonym handling and pronoun usage
	9.1.4.2 Contextual filtering
	9.1.4.3 Issue description check
	9.1.4.4 Unknown issue form

	9.2 Recommendations
	9.2.1 Setup at Diversey
	9.2.2 Onboarding of COALA into the Diversey process
	9.2.3 Additional features
	9.2.3.1 Connect issue form with unknown issue form
	9.2.3.2 Tuning the algorithm to also work for machine related issues
	9.2.3.3 Add optional information for issue description
	9.2.3.4 Adjust issue description input
	9.2.3.5 Connect the two databases into one
	9.2.3.6 Action for training of the model

	9.3 Proposal of Machine to machine learning with human post-processing

	10.0 References
	Appendix A1 Annotation examples for data collection
	Appendix A2 Consent forms data collection
	Appendix B1 Conversational Flow Test
	B1.1 Goal
	B1.2 Approach
	B1.3 Setup
	B1.3.1 Limitations

	B1.4 Results
	B1.5 Findings
	B1.6 Proposed changes

	Appendix B2: Test description (Dutch)
	Appendix B3: Full conversations with Rasa X for conversational flow test
	Appendix B4: Observations prototype test
	B4.1 Testing prototype Raza

	Appendix C: Prototype code
	Appendix D1: Prototype feature test
	D1.1 Goal
	D1.2 Setup
	D1.3 Result
	D1.4 Findings

	Appendix D2: Prototype feature test description (Dutch)
	Appendix D3: Full conversations prototype feature test
	Appendix D4: Observations and feedback prototype features test
	Appendix E: Project brief

