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Abstract

Model-based fault diagnosis methodologies rely on an accurate mathematical representation
of a system’s dynamics to effectively detect and localize faults. However, creating such mod-
els can be challenging, particularly for complex systems operating under diverse conditions.
Furthermore, faults affecting the system can also modify its dynamics.

Given the limitations of model-based fault diagnosis, this study introduces a data-driven
approach within the Blind System Identification framework. This approach can identify both
the fault and the linear-time invariant model simultaneously. The mathematical formulation
of this problem is expressed as a constrained least squares problem involving rank and sparsity
constraints. To illustrate the application of this methodology, we demonstrate its effectiveness
in diagnosing structured faults in Air Data Sensors using actual flight data obtained from the
Cessna Citation II aircraft.
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Chapter 1

Introduction

This preliminary chapter puts forth the main motivation and factors directing the chosen re-
search trajectory. A comprehensive overview of the subsequent document structure is provided,
followed by the introduction of the notational framework utilised throughout the remainder of
this thesis.

1-1 Research background

Technological advancements in the aircraft industry are often shaped by catastrophic accidents
that necessitate crucial safety improvements. A case in point is the Boeing 737 Max crash,
attributed to inaccurately high readings from the Angle-Of-Attack (AOA) sensor, and the
Airbus A330 accident linked to improper airspeed measurements caused by ice obstruction in
the pitot tubes [6][5]. These incidents are currently propelling significant progress in the field
of Air Data Sensor (ADS) fault detection, a sensor suite that provides True Airspeed (TAS)
and AOA, among other measurements, to the aircraft (or Unmanned Aerial Vehicle (UAV))
control unit.

Fault Detection and Isolation (FDI) forms a crucial component of active Fault Tolerant Con-
trol (FTC) relying on accurate fault information for reconfiguring control strategies. FDI
encompasses fault detection, isolation and estimation. Currently, aircraft FDI systems rely
on the operational divergence between the aircraft and its mathematical model, also known
as the digital twin, to detect and diagnose faults. However, dependence on digital twins
severely stunts fault diagnosis capabilities due to the complexity of accurately representing
such systems under dynamic operating conditions [1]. Conversely, data-driven fault diagnosis
leans on pattern recognition, necessitating vast amounts of labelled data.

These motivations have brought forth the formulation of the research question:

Master of Science Thesis Nirupama Sai Ramesh



2 Introduction

Research Question

‘Can Air Data Sensor(ADS) faults be identified using a computationally simple, model-
free, data-driven approach based solely on input-output data and knowledge of the
temporal behaviour of the fault without the need for extensive historical training data
for specific operating conditions?’

In light of the shortcomings of model-based and knowledge-based fault diagnosis schemes,
fault identification in the Blind System Identification (BSI) framework, requiring only input-
output data and exploiting fault behaviour knowledge, shows promise as a fault identification
tool [25].
Employing this framework for ADS fault identification forms the primary theme of this thesis.
This report presents thorough validation results for the algorithm and emphasises its validity
and effectiveness through a comparison with model-based fault diagnosis schemes.

1-2 Thesis Outline

The document is structured as follows.
Chapter 2 and Chapter 3 intend to introduce the necessary topics about the thesis. The
modelling of ADS faults, along with an overview and limitation of model-based fault diag-
nosis schemes, are presented in Chapter 2. Chapter 3 lays the foundation for the proposed
algorithm. It also introduces the concept of sparsity-constrained optimisation, facilitating its
use as a fault diagnostic framework.
Chapter 4 elaborates on the Blind Fault Identification framework, deriving the mathematical
formulation of the problem statement and presenting an algorithm for the same.
Chapter 5 presents the performance results with actual flight data. Algorithm validation
results and comparison against benchmark FDI schemes are presented. Furthermore, a com-
prehensive description of the computation of fault start time, along with its limitations, is
furnished through illustrative examples.
Finally, Chapter 6 summarises this thesis’s conclusions and presents recommendations for
future work, directing towards challenges that remain to be addressed.

1-3 Notations and Preliminaries

The following notations have been employed throughout. Scalars are denoted by uppercase
and lowercase letters (e.g., C, a, b). Vectors are represented by bold lowercase letters or
Greek symbols (e.g., x, y, θ). The boldface distinguishes sets of vectors, such as x1, x2 from
the elements of a vector, x ∈ Rn, such as x1, x2, .., xn. For a vector v ∈ Rn, ||v||q =
(|v1|q + |v2|q + .. + |vn|q)

1
q denotes its lq norm, for 1 ≤ q ≤ ∞. Additionally, the l0 norm is

given as ||v||0 = #{j; vj ̸= 0}. For two vectors u ∈ Rn and v ∈ Rn, their inner product is
denoted by ⟨u, v⟩ =

∑n
i=1 uivi.

The notations and operations on matrices are introduced next. Matrices are denoted by
bold uppercase letters (e.g., A, B). For a matrix X ∈ Rm×n, Xij denotes the entry at i−th
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1-3 Notations and Preliminaries 3

row and j−th column with Xi,: and X:,j denoting the i−th row and j−th column of X
respectively. The transpose and inverse are represented as XT and X−1 respectively. The
Moore-Penrose inverse is denoted by X†. The operation ‘vec’ transforms a matrix into a
vector by vertically stacking its columns. Ir denotes the identity matrix of dimensions r × r.
The Frobenius norm of a matrix is denoted by ||X||F =

√∑p
i=1 σ2

i (X), where p = min(m, n)
and σi(X) are the singular values of the matrix. The nuclear norm of a matrix is defined
as ||X||∗ =

∑p
i=1 σi(X). The singular value decomposition decomposition is computed as∑p

i=1 σi(X)uiv
T
i , with σ1(X) ≥ σ2(X) ≥ .. ≥ σp(X). The condition number of a matrix is

computed as the ratio between the largest and smallest singular value, σmax
σmin

.

The Kronecker product of two matrices, A ∈ Rm1×m2 and B ∈ Rn1×n2 is represented as
A ⊗ B ∈ Rm1n1×m2n2 .

Additional notations specific to the topic are introduced in their corresponding sections.

Master of Science Thesis Nirupama Sai Ramesh
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Chapter 2

Air Data Sensor Fault Modelling and
Diagnosis

This chapter derives from the Literature Survey conducted as a preliminary to this thesis. It
briefly presents the main concepts of fault diagnosis of Air Data Sensors. In particular, the
modelling of the various fault modes that the sensor can encounter and its effect on the model
are presented. An overview of the model-based diagnosis of ADS faults is presented, focusing
on its limitations and challenges.

2-1 Fault Modelling

Faults in sensors manifest as additive or multiplicative deviations from the nominal parameter
being measured. The temporal behaviour of the deviation characterises the nature of the fault.
The Air Data Sensor (ADS) consists of a pitot-static tube that measures the differential
pressure between the static port and the stagnation(pitot) inlet, as illustrated in Figure 2-
1. In addition to the pitot inlet and the static pressure port, it also provides a drain hole
to prevent moisture accumulation from the air stream entering the pitot. This differential
pressure measurement is used to compute the True Airspeed (TAS), which gives the velocity
of the aircraft (VT AS).

The total pressure at the stagnation inlet, pt and the pressure at the static port, ps are related
by the dynamic pressure, pd as below:

pd = pt − ps . (2-1)

The physical relationship between the TAS, VT AS and the pressure measurement is expressed
using the compressible form of Bernoulli’s equation [31] [14]:

VT AS =

√√√√ 2γ

γ − 1RgTs

(
pd

ps
+ 1

) γ−1
γ

− 1, (2-2)

Master of Science Thesis Nirupama Sai Ramesh



6 Air Data Sensor Fault Modelling and Diagnosis

Air Data
Computer

Sta�c pressure
sensor/Transducer

Total pressure
sensor/Transducer

Ps

PT Mach
Number

True Airspeed

Sta�c Pressure Port

Pitot Inlet Drain Hole

Fuselage

Temperature
Probe

Figure 2-1: Schematic diagram of a Pitot Tube Air Data System

where, γ is the specific heat ratio of air, Rg is the ideal gas constant and Ts is the static
temperature.

To comprehend the effect of pressure variations on the computed VT AS , Equation 2-2 is
reduced to obtain the expression of VT AS solely in terms of the measured pressure.

Substituting the specific heat ratio of air, γ = 1.4, and the expression for the speed of sound,
Ao =

√
RgTsγ in Equation 2-2, the airspeed formula is expressed as

VT AS = Ao

√√√√5
(

pd

ps
+ 1

) 2
7

− 1 . (2-3)

Let the air data equation be expressed as a function of total and static pressure,

f(ps, pt) = Ao

√√√√5
(

pt − ps

ps
+ 1

) 2
7

− 1 . (2-4)

Equation 2-4 is linearised around specific trim conditions aiming to express the variation
in the monitored variable, VT ASm , as an additive deviation. Let p̄ = (p̄s, p̄t) be the trim
conditions. Subsequently, anomalies introduced in the pressure measurements can be treated
as deviations from the equilibrium(represented by ∆) and the resulting change in VT AS can
be expressed as an additive disturbance as follows [8]:

∆VT AS =
[
a11 a12

] [∆ps

∆pt

]
,

where a11 = ∂f(ps, pt)
∂ps

∣∣∣∣
ps=p̄s,pt=p̄t

,

a12 = ∂f(ps, pt)
∂pt

∣∣∣∣
ps=p̄s,pt=p̄t

(2-5)

and ∂f(ps,pt)
∂p∗

∣∣∣∣
p̄

is the partial derivative with respect to p∗, evaluated at p̄.

Thus,
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2-2 Air Data Sensor Fault modes 7

Fault Mathematical Representation
Abrupt blockage Bias
Gradual blockage Drift

Partial water blockage Sinusoidal

Table 2-1: Mathematical Modelling of Pitot Probe fault scenarios

VT ASm = VT AS + ∆VT AS ,

VT ASm = VT AS +
[
a11 a12

] [∆ps

∆pt

]
,

(2-6)

where VT ASm is the faulty measurement and VT AS is the nominal parameter.

2-2 Air Data Sensor Fault modes

The temporal dynamics of the perturbations observed in pressure measurements depend on
the specific fault in the pitot tube. The pitot tube extending from the aircraft fuselage is
vulnerable to blockage by insects, water, and, particularly, ice formation at high altitudes.
Although commercial pitot tubes incorporate heating mechanisms to guarantee the proper
functioning of the instrument, two main issues emerge. Firstly, there is a vulnerability to
malfunctions, and secondly, the rapid heating risks diminishing the instrument’s longevity
[13].
Precise mathematical formulation and impact of heater faults on VT AS remain unclear in the
literature; hence, the scope of this study is limited to blockage faults. Experimental analysis of
ice accretion on pitot tube inlet in tubes without drain holes shows that the gradual blocking
of the pitot inlet leads to a drop in the measured total pressure. However, in the presence
of drain holes, the area of the drain hole plays a significant role in the pressure decrease [30]
[22]. The reader is directed to the Literature Survey for a detailed summary of the effects of
blockage on each of the ports and their impact on the measured pressure variable [28].
Wind tunnel experiments have shown that increased noise, signal spikes, and false increase/de-
crease characterise blockages of pitot inlet, static port inlet and drain hole[30] [22] [8]. Addi-
tionally, the first comprehensive investigation of ice accretion effects in realistic atmospheric
icing conditions confirmed an abrupt decrease in the airspeed [11]. Nonetheless, the scope
of this thesis is confined to structured faults. The mathematical modelling of the considered
faults is presented in Table 2-1 [10].
Rewriting Equation 2-4 in terms of the fault, f(k), at time instance, k, and the fault matrix
specific to the linearisation, F,

VT ASm(k) = VT AS(k) +
[
a11 a12

] [∆ps(k)
∆pt(k)

]
,

VT ASm(k) = VT AS(k) + Ff(k)

where F =
[
a11 a12

]
, f(k) =

[
∆ps(k)
∆pt(k)

]
.

(2-7)
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8 Air Data Sensor Fault Modelling and Diagnosis

The fault signals, f(k), i.e. the perturbation in the pressure parameters, are expressed as the
basis signals (or a scaled sum of thereof) as

f(k) = Θ(k)z, (2-8)

where Θ(k) ∈ Rnf ×nz is the dictionary of fault basis functions, mentioned in Table 2-1 and
z ∈ Rnz contains the magnitude of each basis function.

2-3 Model-based Fault Diagnosis

The body of academic literature about the fault diagnosis of aircraft sensors is extensive. The
majority of ADS fault diagnosis methods can be subsumed into model-based fault diagnosis.
In recent times, Neural Network(NN)-based methods have gained traction, primarily because
they prevent the need for an accurate mathematical model [15] [39]. However, it is worth
noting that the methods rely on an NN model trained extensively on historical data at multiple
operating points and can suffer from being system-specific.

Since NN-based methods are still developing, this discussion focuses on model-based tech-
niques relying on established mathematical models.

Model-based fault diagnosis has evolved from the General Observer Scheme(GOS), wherein
a fault is detected by evaluating the residual between the actual system measurement and
predicted measurements. In such a scenario, the mathematical model of the system assumes
a central role. The most commonly employed model is the linearised longitudinal model of
the aircraft characterised by the states, TAS, VT AS , Angle-Of-Attack (AOA), α, pitch angle,
θ and rotational rate, q. The linearization of the aerodynamic equations of an aircraft around
specific trim velocity and altitude provides the linear system of equations, represented as

V̇
α̇

θ̇
q̇

 =


xV xα xθ 0
zV zα zθ zq

0 0 0 1
mV mα mθ mq




V̇
α̇

θ̇
q̇

+


xδe xδt

zδe zδt

0 0
mδe mδt


[

δe

δth

]
, (2-9)

where δe and δth are the system’s elevator and engine thrust inputs. The system parameters
denoted as xV,α,θ, zV,α,θ,q, mV,α,θ,q are known as the stability derivatives. Meanwhile, the input
matrix contains the dimensionless control derivatives denoted by xδe,δt , zδe,δt , mδe,δt .

These models are used in constructing observers, commonly the Kalman Filter (KF), or a
modification such as the extended or unscented KF, to detect a deviation from the nominal
performance. Fault diagnosis is accomplished by constructing ‘elemental’ filters, each specif-
ically designed to model distinct faults. The overarching principle guiding this methodology
asserts that the filter with the minimum residual error best captures the system dynamics
and is thus deemed the system representative. This is known as the Multiple-Model Adaptive
Estimation (MMAE)[7] [37] [23] [16].

However, MMAE suffers from being computationally complex as K + 1 filters need to run
online parallelly to detect K distinct faults. The modelling of partial faults entails the addition
of elemental filters to the existing set. This is combatted by the Double-Model Adaptive
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2-4 Concluding Remarks 9

Estimation Filter:
Based on no-Fault

Estimation Filter: 
Based on fault

Hypothesis Conditional
Probability Evaluator

Selective
Reinitialization

Figure 2-2: Double Model Adaptive Estimator Block Diagram [17] [18]

Estimation (DMAE), which uses only two filters, one for no-fault and the other incorporating
all faults [17][20]. The states of each of the respective filters are given as follows:

xnf (k) =
[
x1(k) x2(k), ..., xnx(k)

]T
,

xaf (k) =
[
x1(k) x2(k), ..., xnx(k), f1(k), f1(k), ..., fnf

(k)
]T

,
(2-10)

where the subscripts ‘nf ’ and ‘af ’ denote no-fault and augmented fault respectively. nx

represents the state dimension and nf , the number of faults acting on the system. The
estimates from the filters are processed through a hypothesis conditional probability module
as shown in Figure 2-2.

The DMAE algorithm, Algorithm 1, requires the state-space model, A ∈ Rnx×nx , B ∈ Rnx×nu

for the Kalman Filter. While the no-fault filter uses the model as is, the augmented fault
system extends these models to accommodate the fault estimation in the augmented fault
filter.

The DMAE boasts lower false alarms than MMAE and unbiased estimates of faults and states.
This attribute has positioned it as the established benchmark against which the outcomes of
the proposed solution are juxtaposed in Chapter 5. Details about the benchmark code utilised
for the comparison are also provided in Chapter 5.

2-4 Concluding Remarks

This chapter examined the principles and derivations behind the mathematical modelling of
fault as additive disturbances on measured quantities. The temporal behaviour of deviations
in the presence of blockage faults was reviewed and summarised. However, the literature
is deficient in investigating the deviations introduced due to heater faults. Consequently,
the main model-based fault diagnosis methods were explained, their shortcomings described,
and the state-of-the-art DMAE was selected as the benchmark for evaluating fault diagnosis
schemes proposed in this thesis.
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10 Air Data Sensor Fault Modelling and Diagnosis

Algorithm 1 Double Model Adaptive Estimator(DMAE) Pseudo Code
Inputs:

u(k) ∈ Rnu , y(k) ∈ Rny , A ∈ Rnx×nx , B ∈ Rnx×nu , C ∈ Rny×nx

Initialisation:
Qk ∈ Rnx×nx , Rk ∈ Rny×ny , x0

af ∈ Rnx+nf

x0
ff ∈ Rnx , P0

af ∈ R(nx+nf )×(nx+nf ), P0
ff ∈ Rnx×nx

1: for k = 1, 2, ..., N do
2: Update x̂k

af ,P̂k

af using fault-augmented KF
3: Update x̂k

ff ,P̂k

ff using fault-free KF
4: Compute conditional probabilities paf ,pff using

Yk−1 = {y(0), y(1), ..., y(k − 1)}

5: Find index of the filter with maximal probability

imax ∈ {Pk = max(paf , pff )}

6: Re-initialization of fault and no-fault filter
7: if imax = 1 then
8: Reinitialise fault filter.
9: else if imax = 2 then

10: Reinitialize fault-free filter.
11: end if
12: end for
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Chapter 3

Blind System Identification for Fault
Diagnosis

This chapter lays the groundwork for the proposed algorithm by introducing the concept of
Blind System Identification (BSI) and elaborating on its use as a fault diagnostic framework.
Using a Finite Impulse Response (FIR) model, the problem of identifying model parameters
and input signal is presented as a rank-constrained optimisation problem. A rank-constrained
least squares framework based on algebraic sketching is reviewed, and the notion of sparsity
constraints is discussed regarding determining the active fault.
The preceding chapter provided a concise overview of model-based fault diagnosis approaches,
emphasising the critical role of precise mathematical models in these methods. Data-driven
fault diagnosis methods essentially derive the model parameters from vast amounts of data
from various operating conditions and use these models to diagnose faults. Identifying model
parameters and diagnosing the fault simultaneously motivate the employment of BSI for fault
diagnosis.
Where System Identification refers to the procedure of deducing the mathematical model of
a system through an analysis of the correlation between the input and output of the system,
BSI is the process of extracting the model parameters and the input signal from the output
measurement alone. It is particularly sought in specific domains like seismic signal processing
and celestial body imaging, where the input signal and system model are unknown.
A few areas of applications of BSI include but are not limited to, wireless communication,
adaptive optics, speech recognition, and medical imaging [2] [33].
In the case of fault diagnosis, the fault is treated as an additional unknown input acting on
the system output for sensor faults or input for actuator faults.

3-1 Formulation as Rank Constrained Optimisation Problem

The concept and formulation of BSI as a rank-constrained least squares problem is explained
using a simplistic FIR model. Doing so provides the reader with fundamental principles upon

Master of Science Thesis Nirupama Sai Ramesh



12 Blind System Identification for Fault Diagnosis

which the foundation of the fault diagnostic framework in Chapter 4 is constructed.

Consider the output of an FIR model of order p1, characterised by unknown model parameters,
b1, b2, .., bp1 , for a single-input single-output process given by

ŷ(k) = (b1q−1 + b2q−2 + ...bp1q−p1)u(k), (3-1)

where ŷ(k) ∈ R is the estimated output and u(k) ∈ R is the unknown input at time instance
k. q−i represents the shift parameter. Rewriting in terms of past inputs,

ŷ(k) = b1u(k − 1) + b2u(k − 2) + ... + bp1u(k − p1). (3-2)

Given a set of N observations, {y(k)}N
k=1, the objective of BSI is to find the system parameters,

b1, b2, ..., bp1 , and the unknown input u(k) from the output, y(k). It is easy to see that without
further assumptions, the problem is rather ill-posed. To this end, the input signal is assumed
to be drawn from a known subspace of signals, called the data dictionary, composed of m
basis signals, θ(k) ∈ Rm and expressed as

u(k) =
[
θ1(k) θ2(k) .. θm(k)

]
︸ ︷︷ ︸

θ(k)


z1
z2
.
.

zm


︸ ︷︷ ︸

z

,

u(k) = θ(k)z.

(3-3)

In Equation 3-3, the vector, θ(k) ∈ Rm represents the values of each of the m basis signals,
at time instance k. z ∈ Rm contains the magnitude of each basis signal and is unknown.

For simplicity of representation, let the model order p1 = 3, i.e. the model parameters,

represented by B =

b1
b2
b3

 then Equation 3-2 can then be written in terms of the data dictionary

and its corresponding magnitude as:

ŷ(k) = b1θ(k − 1)z + b2θ(k − 2)z + b3θ(k − 3)z, (3-4)

ŷ(k) = θ(k − 1)b1z + θ(k − 2)b2z + θ(k − 3)b3z. (3-5)

With the introduction of the Kronecker product between the model parameters, B and the
input magnitudes, z, denoted by B ⊗ z ∈ Rp1nz , the observed output is expressed as

ŷ(k) =
[
θ(k − 1) θ(k − 2) θ(k − 3)

]
B ⊗ z, (3-6)

where θ(k) ∈ Rnz and z ∈ Rnz .
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3-1 Formulation as Rank Constrained Optimisation Problem 13

The data equation can now be expressed as:

ŷ(k)
ŷ(k + 1)
ŷ(k + 2)

.

.

.
ŷ(k + n)


︸ ︷︷ ︸

Ŷ

=



θ(k − 1) θ(k − 2) θ(k − 3)
θ(k) θ(k − 1) θ(k − 2)

θ(k + 1) θ(k) θ(k − 1)
. . .
. . .
. . .

θ(k + n − 1) θ(k + n − 2) θ(k + n − 3)


︸ ︷︷ ︸

Tθ

B ⊗ z, (3-7)

Ŷ = TθB ⊗ z. (3-8)

The estimation of B and z gives rise to the bilinear least squares problem,

min
B,z

||Y − Tθ(B ⊗ z)||22. (3-9)

The bilinearity is characterised by the presence of the Kronecker product of the optimisation
variables, B and z. However, it is apparent that the vector product of B and zT is rank
deficient by construction,

rank
(b1z1 b1z2 ... b1zm

b2z1 b2z2 ... b2zm

b3z1 b3z2 ... b3zm

) = 1. (3-10)

Therefore, the bilinear least squares optimisation problem in Equation 3-9 can be recast as a
rank-constrained least squares problem as in Equation 3-11,

min
B,z

||Y − Tθ(B ⊗ z)||22

s.t. rank(BzT ) = 1.
(3-11)

The blind identification of models has been extended to state-space systems with a variation
of objective functions that are non-convex [35]. However, the solutions can often get stuck in
local minima owing to the non-convex nature of the optimisation problem [12] [32].

The cost function Equation 3-11 is convex; however, the rank constraint introduces non-
convexity to the optimisation problem. An m × n matrix is characterised by its column
and row space. A frequently utilized convex relaxation technique for the rank constraint
involves computing the nuclear norm of a variable. Minimizing the nuclear norm promotes
rank deficiency in the variable while concurrently ensuring the satisfaction of the objective
function and adherence to other constraints [12] [29].

Advances in the area of low-rank approximation include the imposition of rank constraints
by sketching the optimisation variable to low-rank subspaces [34] [21]. An initial research
investigation aimed at assessing the applicability of Recursive Importance Sketching for Rank-
Constrained Optimisation (RISRO) for BSI, in comparison to the convex relaxation strategy
of nuclear norm minimisation, confirmed the superior performance of RISRO [27]. This
superiority is evident in terms of estimation accuracy and computational execution time.
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14 Blind System Identification for Fault Diagnosis

This superiority is evident in terms of estimation accuracy and computational execution time.
It is noteworthy that convergence to the true solution is assured as long as the initialisation
falls within a specific threshold of the true value and the regressor adheres to the Restricted
Isometry Property (RIP) [27] [21]. Notably, the convergence towards the true solution is
significantly influenced by the condition number of the regressor, perhaps due to the reliance
on a linear least squares solution. A brief explanation of RISRO is presented here as it is the
choice of a rank-constrained optimisation framework for the fault identification framework
presented subsequently in Chapter 4.

RISRO: Solution of Rank-Constrained Least Square Problems

Recursive Importance Sketching for Rank-Constrained Optimisation (RISRO) is a technique
to solve rank-constrained optimisation problems by sketching the regressor to lower-rank sub-
spaces of the optimisation variable and performing a linear least squares regression on the up-
dated regressor and regressand. Its core sketching techniques have been derived from ISLET:
Importance Sketching for Low-Rank Estimation for Tensors [34]. The sketched matrices are
updated recursively to satisfy the rank constraint and the objective function.

This section elucidates the application of RISRO by considering the following optimisation
problem:

min
X∈Rp1×p2

||y − A(X)||22,

s.t. rank(X) = r
(3-12)

where y ∈ Rn is the measured data and A ∈ Rp1×p2 is a linear mapping given as

A(X) = [⟨A1, X⟩, ..., ⟨An, X⟩]T , Ai ∈ Rp1×p2 , i = 1, 2, ..., n

with the inner product, ⟨Ai, X⟩ =
∑

1≤j≤p1,1≤k≤p2

Aij,k
Xj,k.

The algorithm admits an initial estimate, X0 ∈ Rp1×p2 with the singular value decomposi-
tion(SVD) defined as X = U0Σ0V0T , with U0 ∈ Rp1×r, Σ0 ∈ Rr×r, V0 ∈ Rp2×r.

Step 1: Importance Sketching
The singular subspace approximations of X are characterised by the subspaces spanned by
U0 and V0 and their orthonormal complements, U0

⊥ and V0
⊥, onto which each Ai is sketched

as
(AB)i = UtT AiVt,

(AD1)i = UtT
⊥ AiVt,

(AD2)i = UtT AiVt
⊥,

(3-13)

where AB : Rr×r → Rn, AD1 : R(p1−r)×r → Rn and AD2 : Rr×(p2−r) → Rn.

Step 2: Dimension-reduced Least Squares
Next, the dimension-reduced unconstrained least squares problem, expressed below, is solved:

arg min
B∈Rr×r,Di∈R(pi−r)×r,i=1,2

||y − AB(B) − AD1(D1) − AD2(DT
2 )||22 (3-14)

Nirupama Sai Ramesh Master of Science Thesis



3-2 Blind System Identification for Fault Diagnosis 15

Step 3: Inverse Projection and Update of sketching matrices
From the computed γ in Step 2, X̂ has to be estimated by inverting the projection carried
out in Step 1, similar to Equation 2.4 of ISLET [34]. The estimate is retrieved using the
following formula:

Xt+1
U = UtB + Ut

⊥D1,

Xt+1
V = VtBT + Vt

⊥D2,

X̂t+1 = Xt+1
U (B)†Xt+1

V ,

(3-15)

The sketching projection matrices Ut+1 and Vt+1 are obtained by QR orthogonalization of
Xt+1

U and Xt+1
V .

Ut+1 = QR(Xt+1
U ),

Vt+1 = QR(Xt+1
V ).

(3-16)

The steps are repeated for each iteration for n iterations or till a satisfactory error value is
reached as defined by the user.

3-2 Blind System Identification for Fault Diagnosis

In the context of fault identification, the objective of BSI is to identify the presence of faults
and construct the model concurrently. Blind deconvolution methods have been extensively
studied and applied to diagnose faults in rotating machinery [24]. The accurate represen-
tation using transfer function for complex rotating machinery in industrial settings poses
a formidable challenge. Consequently, the process of extracting fault-related features from
measured signals without a transfer function is called Blind Deconvolution. In the same vein,
albeit independently, and more recently, the blind identification of actuator faults has been
developed in a rank and sparsity-constrained framework [25]. It employs a state-space Vector
Auto-Regressive with eXogenous inputs (VARX) representation of inputs and outputs alone.
The objective function in the formulated optimisation problem seeks to minimise the Frobe-
nius norm of the error between the predicted and available measurements while enforcing
rank and sparsity conditions on the optimisation variable.

Sparsity is utilised to restrict the concurrent activation of multiple faults. The data dictionary
is structured to represent various potential fault scenarios. Nevertheless, assuming that all
faults could be simultaneously active is not practical. Achieving precise isolation of solely
active faults necessitates the imposition of a sparsity constraint, which forces the majority of
entries of the fault magnitude vector to be zero [36].

Sparse Estimation using Constrained Kalman Filter

The concept of sparse signal representation originated within Compressed Sensing(CS). This
signal-processing technique leverages the sparsity inherent in signals to efficiently capture and
reconstruct them using a limited set of measurements or samples. The same algorithms used
for sparse representation of signals can be utilised for sparse estimation [36].
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16 Blind System Identification for Fault Diagnosis

Sparsity is generally studied from the viewpoint of a norm minimisation scheme. Typically,
enforcing sparsity translates to l0, lp(0 ≤ p ≤ 1) or l1 norm minimisation [38]. The p-norm of
a vector, v =

[
v1 v2 ... vn

]
, for 1 ≤ p ≤ ∞, is computed as

||v||p =
( n∑

i=1
|vi|p

) 1
p

. (3-17)

The sparsity of a vector is related to its l0-norm as it gives the number of non-zero elements
in the vector, computed as in Equation 3-17, with limp→0,

||v||0 = lim
p→0

n∑
i=1

|vi|p. (3-18)

However, the l0-norm is non-convex; hence, the convex non-smooth minimisation of the l1norm
is preferred.

The Kalman Filter (KF) is a simple yet powerful estimation algorithm which can be ex-
tended to the estimation of sparse signals for dynamic compressed sensing utilising a Pseudo-
Measurement (PM) technique [4].

To understand the PM technique, let us consider the following optimisation problem:

min
ẑ(k)

E
[
||z(k) − ẑ(k)||22

]
s.t.||ẑ(k)||1 ≤ ϵ′

(3-19)

where E[.] represents the expectation operator, ẑ(k) ∈ Rn is the vector to be estimated at
time instance k, and ϵ is the noise. The unconstrained optimisation problem can be solved
using the traditional KF. To deal with the inequality constraint, the PM technique considers
a fictitious measurement and translates the inequality constraint to

0 = H̄z(k) − ϵ′,

where H̄ =
[
sign(z1(k)) sign(z2(k)) ... sign(zn(k))

]
.

(3-20)

The newly defined state-dependent H̄ is used in the PM stage in a KF framework as explained
in Algorithm 2.

Algorithm 2 Pseudo-Measurement Stage
Initialisation:

P1 ∈ Rn×n, ẑ1 ∈ Rn, R ∈ R
1: for m = 0, 1, ..., M do
2: H̄m =

[
sign(z1(k)) sign(z2(k)) ... sign(zn(k))

]
3: Km = PmH̄m(H̄mPmH̄mT + R)−1

4: ẑm+1(k) = (I − KmH̄m)ẑm(k)
5: Pm+1 = (I − KmH̄m)Pm

6: end for
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3-3 Chapter Summary 17

The estimation is carried out using the traditional unconstrained KF framework wherein the
state covariance matrix, P(k + 1|k + 1) and the updated state, ẑ(k + 1|k + 1) are obtained.
These, along with the tunable parameter, R, form the inputs to the PM Stage. The PM stage
builds on the KF framework and drives the elements of the state estimate to zero to enforce
sparsity.

In place of l1-norm minimisation, the PM technique can also accommodate the quasi-norm,
i.e. lp-norm(0 ≤ p ≤ 1) and approximating the l0-norm using an exponential function. The
l0-norm can be approximated as [4]

||z(k)||0 = n −
n∑

i=1
exp(−α|zj(k)|), (3-21)

where α is a tunable parameter.

In this case, the steps 2 and 4 in the PM stage in Algorithm 2 are modified as below:

H̄m
j =

{
−α exp(−αzm

j , if zm
j > 0

α exp(αzm
j , if zm

j ≤ 0
,

ẑm+1 = ẑm − Km
[
n −

n∑
j=1

exp(−α|zm
j |)
]
.

(3-22)

where j = 1, 2, ..n represents the index of the state ẑm. H̄j is the jth element of the fictiotious
measurement matrix on the mth iteration of the PM stage. α is a tunable parameter.

3-3 Chapter Summary

This chapter presents concepts relevant to applying BSI as a framework for data-driven fault
diagnosis. The formulation of BSI as a rank-constrained least squares problem is presented
for the case of an FIR model. Notably, incorporating the rank constraint introduces non-
convexity into the optimisation problem. A recursive sketching-based algorithm tailored for
rank-constrained least squares optimisation is reviewed, demonstrating its suitability for solv-
ing the BSI rank-constrained problem.

The essence of applying BSI for fault diagnosis hinges on constructing an exhaustive fault
data dictionary that encompasses all possible fault scenarios. The optimisation algorithm
then identifies the active fault and estimates its magnitude. In this context, the imposition of
sparsity constraints on the magnitude vector emerges as a crucial consideration, allowing only
select faults to be concurrently active, mirroring real-world fault scenarios. Sparse estimation
within a constrained KF framework leveraging norm minimisation techniques is reviewed in
that regard.

This chapter presents specific concepts and algorithms, forming the foundation for the com-
prehensive data-driven fault diagnosis within the BSI framework.
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Chapter 4

Additive Sensor Fault Diagnosis for
Linear Stochastic Systems

In this chapter, we introduce the primary innovations of this thesis, which include a novel
approach for identifying faults in Air Data Sensor (ADS). This method eliminates the require-
ment for precise system information and prior training data. The task of fault identification
is framed as an optimisation problem characterised by constraints related to rank and spar-
sity. The rank-constrained optimisation is achieved using Recursive Importance Sketching for
Rank-Constrained Optimisation (RISRO), and the sparsity constraint is satisfied by incorpo-
rating an exponential approximation of l0-norm.

4-1 Air Data Sensor Blind Fault Identification

Consider a discrete linear stochastic system representing the longitudinal dynamics of the
aircraft given as

x(k + 1) = A(µ)x(k) + B(µ)u(k) + w1(k)),
y(k) = C(µ)x(k) + w2(k)),

ym(k) = y(k) + f(k),
(4-1)

where A(µ), B(µ) and C(µ) represent the state, input and output matrices of an aircraft as a
function of aerodynamic parameters. The process noise w1(k) and measurement noise w2(k)
are statistically independent, with zero mean white noise. The true output, y(k) is perturbed
by a fault, f(k) forming the measured output available from the sensor, ym(k).

Given the pair (A(µ), C(µ)) is observable, the state-space observer model with observer gain
K, is represented as

x̂(k + 1) = A(µ)x̂(k) + B(µ)u(k) + K(µ)(ym(k) − ŷ(k)),
ŷ(k) = C(µ)x̂(k),

(4-2)
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20 Additive Sensor Fault Diagnosis for Linear Stochastic Systems

The state vector x̂(k) ∈ Rnx provides information on the longitudinal states of the system,
and the observer output is represented as ŷ(k) ∈ Rny . Elevator deflection, δe is the input to
the system, u(k). Let the ADS measurements of True Airspeed (TAS), VT ASm and Angle-
Of-Attack (AOA), αm, be represented as ym(k). They are contaminated by an additive
disturbance, acting on the nominal parameter, and the measured variable at a time instance,
k, is expressed as

VT ASm(k) = VT AS(k) +
[
a11 a12

] [∆p1(k)
∆p2(k)

]
︸ ︷︷ ︸

d(k)

, (4-3)

where a11 and a12 are constants and ∆p1(k) and ∆p2(k) are the deviations in pressure mea-
surements of the ADS. The fault is expressed as an unknown disturbance, d(k). In the case
of the longitudinal aircraft model, the effect of the disturbance, d(k) ∈ Rnd , on the measured
variables are determined by a fault distribution matrix, F ∈ Rny×nd , and the relation is given
by [

VT ASm(k)
αm(k)

]
=
[
VT AS

α

]
+
[
F11 F12
F21 F22

]
︸ ︷︷ ︸

F

d(k). (4-4)

The fault distribution matrix, along with the disturbance, together express the fault in the
variables,

f(k) = Fd(k). (4-5)

Employing the Blind System Identification (BSI) framework for the identification of these
unknown disturbances necessitates an assumption on the subspace in which the fault sequences
exist [25] [29] [32].

Consequently, they are characterized as a scaled sum of basis functions derived from a fault
data dictionary,

d(k) = θ(k)z(k), (4-6)

where θ(k) ∈ Rnd×nz represents the fault data dictionary and z ∈ Rnz , the corresponding
magnitudes. Let the state-space matrices A(µ), B(µ) and C(µ) be denoted by A,B and C,
respectively, for concision in representation.

Incorporating the effect of the additive fault in the observer output, ŷ(k), to model the
deviation from nominal behaviour in ym(k),

x̂(k + 1) = Ax̂(k) + Bu(k) + K(ym(k) − ŷ(k)), (4-7)

ŷ(k) = Cx̂(k) + Fd(k). (4-8)

The output equation, Equation 4-8 can be expressed in terms of the previous state by replacing
x̂(k) by the corresponding state equation, Equation 4-7 at time step k, yielding

ŷ(k) = C(Ax̂(k − 1) + Bu(k − 1) + K(ym(k − 1) − ŷ(k − 1))) + Fd(k),
ŷ(k) = C((A − KC)x̂(k − 1) + Bu(k − 1) + Kym(k − 1)) + Fd(k).

(4-9)
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4-1 Air Data Sensor Blind Fault Identification 21

Extending the output equation and writing it in terms of past s time steps, the following
expression is obtained

ŷ(k) = C(A − KC)sx̂(k − s) +
s∑

i=1
C(A − KC)i−1Bu(k − i)+

s∑
i=1

C(A − KC)i−1Kym(k − i) +
s∑

i=1
C(A − KC)i−1KFd(k − i) + Fd(k).

(4-10)

For s ≥ nx, the state estimate error will converge to zero if A − KC is asymptotically stable
and K is a deadbeat observer gain. Consequently, the current output in Equation 4-10 can
be written only in terms of its past inputs and outputs as [26]

ŷ(k) ≈
s∑

i=1
C(A − KC)i−1Bu(k − i) +

s∑
i=1

C(A − KC)i−1Kym(k − i)

+
s∑

i=1
C(A − KC)i−1KFd(k − i) + Fd(k).

(4-11)

Representing C(A − KC)i−1B = Bi and C(A − KC)i−1K = Ki, the output equation is
written as:

ŷ(k) ≈
s∑

i=1
Biu(k − i) +

s∑
i=1

Kiym(k − i) +
s∑

i=1
KiFd(k − i) + Fd(k). (4-12)

Expressing the disturbance as derived from the fault dictionary and segregating the knowns
from the unknowns, the fault signal can be rewritten as

f(k) = (F ⊗ zT )vec(θT (k)). (4-13)

For ease of representation, the following notation will be followed:

F(z) = F ⊗ zT . (4-14)

Substituting Equation 4-13 in Equation 4-12,

ŷ(k) ≈
s∑

i=1
Biu(k−i)+

s∑
i=1

Kiym(k−i)+
s∑

i=1
KiF(z)vec(θT (k−i))+F(z)vec(θT (k)). (4-15)

Taking Mi = KiF(z),

ŷ(k) ≈
s∑

i=1
Biu(k − i) +

s∑
i=1

Kiym(k − i) +
s∑

i=1
Mivec(θT (k − i)) + F(z)vec(θT (k)). (4-16)

Given N observations, y(k)N
k=1, the past inputs, outputs and the data dictionary signals can be

written in terms of their Toepltiz matrices, Tu, Tym and Tθ respectively. The measurements
and fault dictionary at the current time step are arranged as

Ym =


yT

m(k + s)
yT

m(k + s + 1)
...

yT
m(k + N)

 and Θ =


vec(θT (k + s))T

vec(θT (k + s + 1))T

...
vec(θT (k + s + 1))T

 , (4-17)
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and the unknown parameters B, K and M defined respectively as

B =


BT

1
BT

2
...

BT
s

 , K =


KT

1
KT

2
...

KT
s

 , and M =


MT

1
MT

2
...

MT
s

 ; (4-18)

the output observer equation is given by

Ŷ ≈
[
Tu Tym Tθ Θ

] 
B
K
M

(F(z))T

 . (4-19)

The objective is to find system parameters B,K and M, and fault magnitudes, F ⊗ zT such
that the error between the observer output, Ŷ, and the measured output, Ym is minimised.

Mathematically, it is expressed using the following optimisation scheme,

min
B,K,M,F⊗zT

∥∥∥∥∥∥∥∥∥Ym −
[
Tu Tym Tθ Θ

] 
B
K
M

(F(z))T


∥∥∥∥∥∥∥∥∥

2

2

s.t. rank(vec(FT )zT ) = 1,

rank
(


M1 K1
M2 K2

...
...

Ms Ks

(F(z))T I


)

= ny.

(4-20)

Additionally, a sparsity constraint is imposed on the fault magnitude vector, z, as only a few
faults would be active simultaneously from all the possible faults expressed in the dictionary.
The sparsity constraint is represented as the minimisation of the l0-norm and is expressed in
the optimisation framework as

min
B,K,M,F⊗zT

∥∥∥∥∥∥∥∥∥Ym −
[
Tu Tym Tθ Θ

] 
B
K
M

(F(z))T


∥∥∥∥∥∥∥∥∥

2

2

+ ∥F ⊗ zT ∥0

s.t. rank(vec(FT )zT ) = 1,

rank
(


M1 K1
M2 K2

...
...

Ms Ks

(F(z))T I


)

= ny.

(4-21)
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4-2 Achieving Rank and Sparsity Constraints

The implementation of RISRO is achieved by considering a Single-Input Single-Output(SISO)
system, characterised by the elevator deflection, δe as the input and the TAS measurement
from the ADS, VT ASm as the system output.
Recall Equation 4-1 for SISO case,

ŷ(k) ≈
[
u(k − 1) ... u(k − s)

] 
BT

1
...

BT
s

+
[
ym(k − 1) ... ym(k − s)

] 
KT

1
...

KT
s



+
[
vec(θT (k − 1))T ... vec(θT (k − s))T

] 
MT

1
...

MT
s

+ vec(θT (k))T (F(z))T ,

(4-22)

where ym(k) ∈ R, u(k) ∈ R, θ(k) ∈ Rnd×nz , F ∈ R1×nd , z ∈ Rnz , Bi ∈ Rny×nu , Ki ∈ Rny×ny

and Mi ∈ Rny×nyndnz .
Recollect that in Equation 4-22, the system parameters characterised by Bi, Ki and Mi and
the fault parameter, F(z) are the unknowns and the input signal(u(k)), output signal(ym(k))
and dictionary subspace(θ(k)) are known.

Restructuring for RISRO(rank-constraint)

The estimated output can be expressed as an inner-product, as in Equation 3-12 such that,
at each time step, k,

ŷ(k) ≈
[
u(k − 1) ... u(k − s)

] 
BT

1
...

BT
s

+ Ak(X), (4-23)

where rank(X) = 1,

A(X) = [⟨A1, X⟩, ..., ⟨AN , X⟩]T , Ak ∈ Rp1×p2 , k = 1, 2, ..., N

and
Ak(X) = ⟨Ak, X⟩,

where p1 = ndnz + 1 and p2 = s + 1. Equation 4-22 can be restructured as

ŷ(k) ≈
[
u(k − 1) ... u(k − s)

] 
BT

1
...

BT
s

+

〈[
vec(θT (k − 1))T ... vec(θT (k − s))T vec(θT (k))T

ym(k − 1) ... ym(k − s) 0

]
︸ ︷︷ ︸

Ak

.

[
MT

1 ... MT
s (F(z))T

KT
1 ... KT

s 1

]
︸ ︷︷ ︸

X

〉
,

(4-24)
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where rank
([

MT
1 ... MT

s (F(z))T

KT
1 ... KT

s 1

])
= 1.

The workhorse of RISRO is a linear least squares formulation; hence, Equation 4-24 is split
into a linear least squares and a rank-constrained least squares problem as in Equation 3-12
and facilitates the application of RISRO for solving it.

The implementation is described in Algorithm 3.

Sparsity Constraint

Sparsity in z is attained by treating it as a Pseudo-Measurement (PM) which exploits the well-
known Kalman Filter (KF) framework [4]. The l0-norm is approximated using an exponential
function, and Algorithm 2 with accordingly modified PM stage is utilised.

Recalling the exponential approximation of l0-norm, as in Equation 3-21, at time instance, k,
for z(k) ∈ Rn

||z(k)||0 = n −
n∑

i=1
exp(−α|zi(k)|).

The fictitious measurement matrix, H̄ in Equation 3-22, for the mth iteration of constrained
KF is constructed using the fault magnitude matrix, (F(z))T ∈ Rndnz as

H̄m
j =

{
−α exp(−α(F(z)T )m

j ), if (F(z)T )m
j > 0

α exp(α(F(z)T )m
j ), if (F(z)T )m

j ≤ 0
, for j = 1, 2, ...ndnz. (4-25)

In the equation above, H̄m
j represents the jth element of the matrix on the mth PM iteration.

The rank constraint is achieved using RISRO and sparsity using the constrained KF setup.
The l0-norm minimisation can be expressed as a Constrained KF if the regression matrix fol-
lows the Restricted Isometry Property(RIP). This condition is also a pre-requisite for RISRO.
The combination of the algorithms is designed such that after each iteration of RISRO, spar-
sity is enforced.

The BFI algorithm output,

X̂ =

K̂T F̂(z)T F̂(z)T

K̂T 1

 ,

provides the bilinear variable F̂(z)T , and the parameters, K̂1, ...K̂s. Additionally, the least

squares output in Step 4 of Algorithm 3 produces B̂ =


B̂1
...

B̂s

 simultaneously.
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Algorithm 3 Blind Fault Identification Pseudo-Code
Inputs:

s ∈ N, p1, p2, u ∈ RN , y ∈ RN , θ ∈ Rnd×nz , α ∈ R, P ∈ Rnz×nz , R ∈ R
Initialisation:

X1 = U1Σ1V1T

1: Compute Tu, A1, ..., AN

2: for i=1,...,Niter do
3: Perform Importance Sketching on A to obtain covariates AB, AD1 ,AD2

4: Solve linear least squares problem

(Bi, Bi, Di
1, Di

2) = arg min
B,B,D1,D2

∥y − TuB − AB(B) − AD1(D1) − AD2(DT
2 )∥2

2

5: Compute
Xi+1

U = UiB + Ui
⊥D1

Xi+1
V = ViBT + Vi

⊥D2

X̂i+1 = Xi+1
U (B)†Xi+1

V

6: Compute F(z)T , KT

F(z)T = X̂i+1
1:ndnz ,end

KT = X̂i+1
end,1:s

7: if i ̸= Niter then ▷ To enforce sparsity constraint
8: for m = 0, 1, ..., M do

9: H̄m
j =

{
−α exp(−αF(z)T m

j ), if F(z)T m

j > 0
α exp(αF(z)T m

j ), if F(z)T m

j ≤ 0
, j = 1, 2, ..ndnz

10: Km = H̄mPm(H̄mPmH̄mT + R)−1

11: F(z)T m+1 = F(z)T m + Km

[
ndnz −

∑ndnz
j=1 exp(−α|F(z)T m

j |)
]

12: Pm+1 = (I − KmH̄m)Pm

13: end for
14: end if
15: Update

X̂i+1 =
[
KT F(z)T M F(z)T M

KT 1

]

16: Update Ui+1,Vi+1 using QR orthogonalisation:

Ui+1 = QR(Xi+1
U ), Vi+1 = QR(Xi+1

V )

17: end for
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Chapter 5

Application to Air Data Sensor faults

This chapter succinctly encapsulates the primary findings of this thesis. It presents results
about the robustness and accuracy of Blind Fault Identification (BFI) in detecting and isolat-
ing additive Air Data Sensor (ADS) faults using real flight data. The proposed scheme has
been compared against the state-of-the-art model-based fault diagnosis method, Double-Model
Adaptive Estimation (DMAE), explained in Chapter 2. Additionally, a scheme to detect the
start time of a fault is presented and evaluated.

Fault identification encompasses detection, diagnosis and isolation of faults. Distinctly, detec-
tion pertains to identifying the presence of a fault within a system, diagnosis entails estimating
the nature and magnitude of the fault, and isolation typically involves specifying the fault
location. In the context of BFI, detection, diagnosis, and isolation are achieved by estimating
the magnitude of the active fault(s) from an extensive dictionary comprising all possible fault
scenarios. The objectives of the experiments focus on the fault identification aspect rather
than system identification and hence, have been designed accordingly.

5-1 Validation Objectives and Metrics

The validation objective is to evaluate the robustness and accuracy of fault detection capabil-
ities offered by the BFI in comparison to DMAE(as elaborated in Chapter 2) when utilising
real flight data. The validation approach involves introducing an artificial fault into the mea-
sured parameter and applying both BFI and DMAE to identify this fault. A fundamental
distinction between these two methodologies is that BFI relies on an extensive and meticu-
lously designed fault data dictionary. The DMAE benchmark code is explained in Section 5-2.
To facilitate the analysis, we have considered the following scenarios:

Case 1: Injected fault is precisely represented in the data dictionary. The average fault
detection performance is determined by conducting Monte Carlo simulations of 100
different fault magnitudes for varying numbers of active faults. The magnitude error
convergence and fault isolation rate are analysed for the same.
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Case 2: The injected fault is a perturbed variation of the fault present in the data dictio-
nary (the perturbation is not accounted for in the dictionary). The fault detection
performance for increasing perturbation magnitude has been compared with DMAE.

Case 3: The injected fault is a time-shifted version of the fault represented in the data
dictionary.

Validation Metrics

1. Frobenius norm of fault magnitude estimation error is calculated on the bilinear variable,
F(z) = F ⊗ zT as

= ||F̂(z) − F(z)||F
||F(z)||F

, (5-1)

where F(z) and F(ẑ) are the true and estimated variables respectively.

2. Fault and output reconstruction are validated by analysing the Variance Accounted For
(VAF), calculated as

VAF =
[
1 − ||y − ŷ||22

||y||22

]
100%, (5-2)

where y and ŷ represent the true and estimated signal vector respectively. The experi-
ments below use VAF to analyse the measurement and fault reconstruction using BFI
and DMAE. For BFI the fault is estimated as the product of the estimated magnitudes
and the fault subspace, knowledge of which is assumed.

3. Fault isolation success rate is quantified by determining how often, out of 100 trials,
the faults are accurately detected. Detection is considered accurate when the non-
zero components of |ẑ| > ϵ, with ϵ = 10−3 correspond to non-zero fault magnitudes
in z respectively. This corresponds to zero false alarms and zero missed detections.
In this analysis, ẑ is the normalised vector obtained by performing an Singular Value
Decomposition (SVD) on the bilinear optimisation variable, F (z).

5-2 Experiment Framework

Flight Data

The flight test data was obtained during Aerodynamic Model Identification(AMI) experiments
on the Cessna Citation II aircraft housed at the Faculty of Aerospace Engineering at the
Delft University of Technology. The dataset used in the experiments for this thesis has been
obtained under cruise flight conditions, without turbulence.

The signal of interest for fault identification of ADS sensors is the True Airspeed (TAS),
denoted by VT ASm , a longitudinal parameter. To this end, the data used consists of persis-
tently exciting control input, ‘3-2-1-1’, on the elevators to excite the longitudinal modes of
the aircraft. The use of this data in BFI can identify the longitudinal dynamics alone. The
dataset characteristics have been summarised in Table 5-1 and shown in Figure 5-1.
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Figure 5-1: Flight Data: Control Input and Air Data Sensor Measurement

Parameter Value Unit Notation
Input Elevator Deflection rad δe

Output True Airspeed m/s VT AS

Altitude ≈ 5200 m h

Data Length(Samples) 3172 - N
Sampling Interval 0.01 s dt

Operation Condition Cruise - -

Table 5-1: Flight Data Characteristics
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It is essential to emphasise that handling sensor biases and anomalies through Flight Path Re-
construction(FPR) techniques when utilising raw data is imperative. Nevertheless, using ADS
measurements exclusively obviates the need for flight path reconstruction, as they are inher-
ently not as prone to sensor biases and anomalies as the Inertial Measurement Units(IMUs).

Semi-real fault data has been created by artificially injecting faults in the otherwise ‘clean’
measurements obtained during AMI experiments. The nature of induced faults and their
representation in the dictionary have been detailed next.

Fault Signals and Data Dictionary

The fault signal, f(k), acts additively on the true measurement, VT AS(k) and is represented
as a scaled sum of known basis functions which constitute the fault dictionary(subspace),
θ(k) ∈ Rnz . Using the fault magnitude vector, z ∈ Rnz , the fault at time step k is expressed
as

VT ASm(k) = VT AS(k) + f(k),

VT ASm(k) = VT AS(k) + [F1]︸︷︷︸
F

[
θ1(k) θ2(k) .. θnz (k)

]
︸ ︷︷ ︸

Θ(k)


z1
z2
:

znz

 .

︸ ︷︷ ︸
z

(5-3)

The choice of fault subspace signals is based on laboratory experiments studying the deviations
introduced in TAS measurements upon blockage of pitot probes [9] [11] [30] [22]. In line with
the findings, different faults are represented as biases, drifts and sinusoidal signals, tabulated
in Table 2-1.

The BFI method of fault diagnosis requires the design of a fault dictionary encompassing all
possible fault scenarios. For the experiments in this chapter, the dictionary comprises seven
signals, tabulated in Table 5-2 and depicted in Figure 5-2.

Caution should be exercised while constructing the fault dictionary, as the workhorse of the
BFI framework is the Recursive Importance Sketching for Rank-Constrained Optimisation
(RISRO) algorithm. Since it uses an unconstrained least squares solution at its core, the
condition number of the Toeplitz matrices of the fault dictionary is a crucial factor in ensuring
the successful reconstruction of the fault signal and estimation of system parameters.

Longitudinal Aircraft Model for diagnosis using Double Model Adaptive Estimation

DMAE is a model-based fault diagnosis approach that has two Kalman Filter (KF)s running
in parallel to detect and diagnose the presence of a fault. The DMAE software used for the
analysis has been obtained from the author’s online repository [19]. The software available
online implements DMAE for a toy second-order system mentioned in [20]. In this study, the
second-order model has been replaced by the fourth-order longitudinal model of the aircraft
and supplied with actual flight data(δe, VT AS) from the Cessna Citation II. It is to be noted
that certain modifications were introduced to remove the estimation of disturbances and have
only one augmented fault(on the VT AS measurement) in the augmented filter.
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Dictionary Signal Fault Type Start Time Expression
θ1(t) Sine 0.2 s sin(4.5πt)
θ2(t) Bias 13.8 s 1
θ3(t) Sine 6.35 s sin(2.3πt)
θ4(t) Sine 10.58 s cos(2.25πt)
θ5(t) Sine 5.3 s sin(0.7πt)
θ6(t) Drift 7.93 s 0.23t

θ7(t) Bias 6.35 s 1

Table 5-2: Fault Subspace Signals as a function of time, t

Figure 5-2: Fault Data Dictionary Signals
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The dataset under consideration for this study comprises the elevator deflection input signal
and the corresponding airspeed measurement obtained from ADS. These signals pertain to
the longitudinal aspects of an aircraft; hence, the aerodynamic longitudinal model of the
aircraft is the appropriate model to characterise the dynamics.

The continuous-time linearised longitudinal model, at trim conditions of airspeed VT AS =
100m/s and altitude, h = 5000 m, is as below:

˙VT AS

α̇

θ̇
q̇

 =


−0.0179 3.4177 −9.7911 −0.2036
−0.0020 −1.1443 0 0.9777

0 0 0 1
0.0017 −7.1848 0 −1.6400




VT AS

α
θ
q

+


−0.4525
−0.1186

0
−11.4642

 [δe

]
. (5-4)

The model has been discretised using sampling interval, dt = 0.01s, to obtain the following
model:

Alin =


0.9834 0.0000 −0.0708 −0.0000

−0.0023 0.9998 0.0341 −0.0979
0.0096 −0.0000 0.9883 0.0000
0.0099 0.0000 −0.0004 1.0000

 , Blin =


−0.1136
−0.0044
−0.0017
−0.0006

 . (5-5)

5-3 Fault Diagnosis Performance Comparison

In the experiments detailed below, the parameters for BFI as in Algorithm 3 are s = 4, α = 1,
M = 1, P = Inz×nz and R = 10, unless mentioned otherwise.

5-3-1 Case 1: Precise Representation of Fault in Dictionary

This section first demonstrates the performance of magnitude estimation error and fault
isolation rate of BFI algorithm using Monte-Carlo simulations of different fault magnitudes.
The estimated fault magnitude vector, ẑ appears in the bilinear optimisation variable, F̂(z);
hence it can be estimated only upto a scalar multiple. Therefore, to facilitate estimation error
analysis, the bilinear term, F̂(z) is considered against the ground truth.

The mean estimation error has been averaged over 100 simulations with a randomly chosen
magnitude vector for varying numbers of active faults.

The mean estimation error is significantly lower for one active fault than for a higher number of
active faults due to the regularisation achieved by the sparsity constraint. With an increasing
number of active faults, the sparsity constraint pushes elements of the magnitude vector
towards zero, increasing the error. However, this increase in estimation error does not lead
to missed detections or false alarms, as seen in Figure 5-4.

The normalised ẑ is obtained through the SVD of F(z). The criteria for successful fault
isolation is as mentioned previously in the Validation Metrics.
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Figure 5-3: Magnitude Estimation Error against the number of active faults(out of 7), averaged
over 100 simulations of randomly chosen entries of the fault magnitude vector.

Figure 5-4: Fault Isolation rate per 100 simulations for each number of active fault
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Figure 5-5: Reconstruction of faulty measurement and fault using BFI(yellow) and DMAE(green).
The fault reconstruction by BFI enjoys a higher VAF due to its exact representation in the
dictionary.

Comparison of BFI fault detection with DMAE

To compare fault detection performance, the fault reconstruction performance for a sinusoidal
fault, expressed in Equation 5-6, is analysed in terms of the fault and measurement VAF. The
fault signal and the faulty measurement are given as

f(k) = 5 sin(2.3πt(k)),

VT ASm(k) = VT AS(k) +
[
0 0 5 0 0 0 0

]
︸ ︷︷ ︸

F(z)

θT (k), (5-6)

with fault start instance, k = 635, i.e. fault start time tf = 6.35s.
The DMAE fault and measurement estimation is obtained using the (un)augmented longi-
tudinal aerodynamic model with process and measurement noise covariance matrices tuned
at

Qk = 10−5diag
[
0.4 0.4 0.4 0.4

]
, Rk = 0.01,

where diag[.] represents a diagonal matrix with its principal diagonal elements. The fault
reconstruction VAF for BFI and DMAE are 99% and 98% respectively, whereas the measure-
ment estimation VAF for BFI and DMAE are at 100% and 97% respectively. The performance
of both algorithms was compared for a slow-moving fault,

f(k) = 4 sin(0.7πt(k)), (5-7)

with fault start time, tf = 5.3s. In the case of DMAE, the fault dynamics were absorbed in
the state estimate, and the fault is mis-detected as a negative bias of the same magnitude.
Nonetheless, the availability of a fault dictionary facilitates the identification of a slow-moving
sinusoidal signal using BFI, provided that said signal is included in the dictionary.
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Figure 5-6: Reconstruction of fault measurement and fault by BFI(yellow) and DMAE(green).
DMAE detects the abrupt start of fault; however, the slow dynamics of the fault are not captured,
leading to correct detection of the fault but incorrect diagnosis.

5-3-2 Case 2: Actual Fault is a perturbed version of the dictionary signal

The fault detection and diagnosis are studied for a case where the actual fault affecting the
measurement is a perturbed version of the fault signal present in the dictionary. The following
fault signal is considered:

f(k) = 4 + κ cos(4.5πt(k)), (5-8)

where κ is a perturbation constant, the cosine perturbation is chosen to be orthogonal to the
fault subspace. The faulty measurement is shown in Figure 5-7, and can be expressed as

VT ASm(k) = VT AS(k) +
[
0 4 0 0 0 0 0

]
︸ ︷︷ ︸

F(z)

θT (k) + κ cos(4.5πt(k)). (5-9)

It is observed that the fault reconstruction using BFI suffers as κ increases. However, the
measurement estimation enjoys a high VAF against increasing κ. This could imply the exis-
tence of multiple solutions; however, the high VAF of the estimated output with the faulty
measurement hints at a tendency to absorb the characteristics of the perturbations by over-
fitting.

The specific case of κ = 0.2 is studied in detail by analysing the fault detection, diagnosis
and isolation performance with ‘s’, ranging from s = 3 to s = 80, shown in Figure 5-9.
It is observed that at s = 5, the fault magnitude estimation error decreases significantly,
increasing the fault reconstruction VAF; however, the fault is not accurately identified as per
Equation 5-9, which has only one active fault, i.e. the bias fault. Increasing ’s’ improves the
isolation performance and the fault diagnosis, achieving its best performance at s = 45, after
which the VAF, estimation error and isolation deteriorate.
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Figure 5-7: Representation of faulty airspeed measurement perturbed by cosine signal Equation 5-
9 with κ = 0.2. The perturbation starts before the fault at t = 12s.

Figure 5-8: Fault Identification performance and measurement estimation in terms of VAF,
against perturbation constant, κ, for s = 4
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Figure 5-9: Fault Identification performance of BFI against ‘s’, in terms of fault VAF, magnitude
estimation and isolation (no.of faults detected). The actual fault is a bias signal perturbed by a
cosine signal of magnitude κ = 0.2.

In the VARX input-output formulation, in the absence of noise,

(A − KC)s ≈ 0, s ≥ nx (5-10)

where nx is the model order and the input-output relationship defined by Equation 4-12 is ex-
act. However, a sufficiently large s is required in the presence of perturbations. Theoretically,
s >> nx for Equation 5-10 to hold true [26].

5-3-3 Case 3: Actual Fault is a time-shifted version of dictionary signal

The third case investigates the fault scenarios where the fault is represented in the dictionary
but shifted in time. Let the fault, f(k) be a sinusoidal signal, with start time, tf = 15.86s
expressed as

f(k) = sin(2.3πt(k)). (5-11)

The dictionary includes a sinusoidal signal with the same frequency, but the start time is
6.35s. The fault reconstruction performance of BFI and DMAE are shown in Figure 5-11.
The DMAE enjoys superior performance(fault VAF = 98%) compared to DMAE in fault
detection and diagnosis as it relies only on residuals and does not assume fault information.
BFI detects the presence of the sinusoidal component but also gives a false alarm for drift
fault with 0% fault VAF. However, the output estimation using BFI has a VAF of 100%,
implying the existence of multiple solutions.
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Figure 5-10: Fault Reconstruction performance of BFI with s = 45, against DMAE with
Qk = 10−4diag

[
0.24 0.24 0.24 0.24

]
, Rk = 0.005. Increasing ‘s’ allows BFI to detect

and isolate perturbed faults. It is important to factor in that while BFI is detecting an imprecisely
represented fault, DMAE is provided with a true representation of the system dynamics around
the trim condition.

Figure 5-11: Fault Reconstruction performance of BFI with s = 4, against DMAE with Qk =
10−6diag

[
0.4 0.4 0.4 0.4

]
, Rk = 10−3 for a time-shifted sinusoidal fault.
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Figure 5-12: Fault Reconstruction performance of BFI with s = 45 for a time-shifted drift signal.

Detecting time-shifted drift signals provides an interesting case wherein a fault is not detected,
leading to a missed detection, as shown in Figure 5-12. It implies that unless the true fault
matches the fault start-time of the dictionary, no detection is raised. Based on this, the fault
start-time detection framework is built, explained next.

5-4 Fault Start-Time Detection

The fault data dictionary in the experiments above assumes knowledge of the start time of the
fault, as shown in Figure 5-2; however, the fault start time is a parameter to be ascertained
and can not be predetermined.
The findings from Subsection 5-3-3 provide insights into how the fault-start time can be com-
puted. It was observed that the measurement VAF maintained high accuracy even when the
faults were imprecise or shifted in time. Consequently, the VAF does not provide information
regarding a fault’s presence or absence. In contrast, the magnitude estimates denoted as ˆF(z)
displayed variations and can be harnessed for detecting the initiation times of faults.
The case of complete blockage resulting in bias and drift faults is considered here. Let the
fault dictionary comprise only one step signal, starting at the time, tf = 15s, and affecting
the output, VT AS , shown in Figure 5-13.

f(k) = 5,

VT ASm(k) = VT AS(k) + f(k),
(5-12)

The fault data dictionary does not assume knowledge of the fault start-time and has an
arbitrary start time. Let us assume that the dictionary comprises a step signal with a start
time = 1s. θ(k) ∈ Rnz , with nz = 1.
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Figure 5-13: Real Flight Elevator input along with true(green) and faulty(maroon) measurement
with a bias fault injected at tf = 15s.

Instead of executing the BFI algorithm once for a batch of data, it is run ‘N ’ times, iteratively,
each time using a different data dictionary. In each iteration, the data dictionary assumes a
different start time of the fault, expressed as

θ(k) =
{

0, if k < kf

1, if k ≥ kf

, (5-13)

where kf is the fault start time, varied from kf = 1 to N . The batch optimisation is conducted
using the dictionary of time-shifted bias signals. The fault magnitude estimate, F̂(z) is
computed for each iteration, and its peak represents the fault start time as shown in Figure 5-
14.
The same has been conducted for a drift fault using a time-shifted drift signal, shown in
Figure 5-15.
In both cases, the fault dictionary consisted of only one signal, nz = 1, with the exact nature
of fault as was injected. In the experiment below, the reverse is investigated. The magnitude
is estimated for a bias-injected fault measurement by shifting the drift dictionary in time and
vice versa, shown in Figure 5-16.

Ideally, we would like the F̂(z) estimate to ≈ 0 when using switched dictionaries. However,
as observed from Figure 5-16a, using a time-shifted drift dictionary in the presence of a bias
leads to false alarms, often erroneously high in magnitude. The estimation of drift fault using
time-shifted bias dictionaries displays ideal behaviour with F̂(z)(k) ≈ 0, for all k. In practice,
the methodology that can be adopted to ensure accurate fault detection is first performing
BFI with time-shifted bias dictionaries and then consecutively following it with time-shifted
drift dictionaries.
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Figure 5-14: (Above)Plot of the true Bias fault(pink) starting at 15 sec.(Below)Fault magnitude
estimate, F̂(z) against time, as a function of tf , where tf represents the fault-start time incorpo-
rated in the fault dictionary.

Figure 5-15: (Above)Plot of the actual Drift fault(pink) starting at 16 sec.(Below)Fault mag-
nitude estimate, F̂(z) against time, as a function of tf , where tf represents the fault-start time
incorporated in the fault dictionary.
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(a) (Above) Injected true Bias fault. ((Be-
low)Fault magnitude estimate, F̂(z) against
time, as a function of tf , where tf represents
the fault-start time incorporated in the drift
fault dictionary.

(b) (Above) Injected true drift fault. ((Be-
low)Fault magnitude estimate, F̂(z) against
time, as a function of tf , where tf represents
the fault-start time incorporated in the bias
fault dictionary.

Figure 5-16: Fault Magnitude Estimation using switched drift and bias time-shifted dictionaries.

5-5 Results Summary

In this chapter, the BFI framework developed earlier was validated using real flight data
and its performance, analysed for different cases. The first case examined is where the fault
data dictionary exactly represents the actual fault. To assess the robustness, the algorithm
performance was analysed in the face of uncertainties in accurately modelling the fault in
the dictionary – first as perturbations and second as time-shifted versions of the dictionary
signals.

The analysis has led to interesting results; specifically, in the case of perturbed signals, the
model order denoted as ‘s’ emerged as a critical factor influencing the accuracy of fault
estimation and isolation. Additionally, it is noteworthy that employing this framework when
the fault signal does not precisely match the dictionary can lead to missed detections and false
alarms. Nevertheless, the framework maintains a consistently high measurement Variance
Accounted For (VAF) of approximately 100%, indicating multiple optimisation solutions.

In the context of time-shifted bias and drift signals of the fault dictionary, high missed detec-
tions and low false alarms were observed. This observation allows for determining the fault
start-time, presented and evaluated in this chapter. Similar to the previous scenario, the
high measurement VAF across all cases prompts an exploration of fault magnitude estima-
tion peaks as a parameter for computing the fault start time. It is important to note that
this method, still in its rudimentary stages, is applicable solely to step and drift faults, as its
use with sinusoidal faults can result in false alarms.
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Chapter 6

Conclusions

The concluding chapter offers an overview of the thesis work and its alignment with addressing
the research question. Moreover, it outlines suggestions for future research while underlining
the challenges and constraints inherent in the proposed methodology.

6-1 Thesis Summary

The research objective of this thesis was to develop and investigate a fault diagnosis method-
ology for detecting Air Data Sensor (ADS) sensor faults that neither suffered from model
dependency nor necessitated intensive training with vast historical data. In a preliminary in-
vestigation, the innovative Blind Fault Identification (BFI) framework emerged as a promising
candidate for fault diagnosis where the fault and system parameters can be identified simul-
taneously. This thesis formulates the fault identification problem in the BFI framework for
sensor fault diagnosis. The BFI approach inherently relies on a priori knowledge of the sub-
space encompassing all potential fault scenarios, thus necessitating the imposition of sparsity
constraints to limit the simultaneous occurrence of specific faults. Upon verification, BFI
successfully detects and isolates the fault even under unaccounted perturbations.
The central focus of this thesis lies in providing an alternate reliable method of fault diag-
nosis in sensors. Nevertheless, it also contributes by expanding the sketching-based rank-
constrained framework by incorporating l0 norm approximations to enforce sparsity. The
empirical findings validate the efficacy of the BFI framework and the algorithm in detecting
the presence of faults and estimating their magnitude.
It is crucial to differentiate between the concept of BFI and the impact of the chosen optimiza-
tion algorithm on the outcomes. For instance, the reliance of the selected algorithm, Recursive
Importance Sketching for Rank-Constrained Optimisation (RISRO), on linear least squares
regression necessitates well-conditioned Toeplitz matrices, which is otherwise not essential for
convex approaches.
The framework is still in its early stages and offers opportunities for improvement. Recom-
mendations for future research in this direction are elaborated in the next section.
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6-2 Recommendations for Future Work

Currently, the BFI strategy primarily applies to structured faults where prior knowledge of
the fault dictionary subspace is assumed. Attempts were made to extend fault diagnosis
to unknown faults using a fault dictionary composed of Rectified Linear Unit (RelU) basis
functions, which can approximate functions [3]. However, it was observed that a sufficiently
rich set of RelU functions could potentially model the fault and the system’s output, leading to
trivial solutions for the system parameters. This also brings to the fore an essential discussion
about ascertaining additional conditions required for the fault to be diagnosed, apart from
the linear independence of the columns.

Another critical aspect is determining the fault start time without assuming prior knowledge
within the fault dictionary. Some faults may also cease to exist during operation, necessitating
their detection to prevent false alarms. The solution proposed in this thesis is limited to bias
and drift faults. Extending the computation of a fault’s start and end time when combining
various signals in the dictionary, such as sinusoidal signals with varying frequencies, remains
an open research area.

Lastly, the RISRO algorithm relies on an inner-product formulation between the Toeplitz
matrices and the regressor, which confines the implementation in this thesis to scalar output
signals. Extending this framework to multi-output systems and considering multiple rank
constraints on the optimization variable is a necessary avenue for further research.
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Appendix A

Additional Results

A-1 Impact of Sparsity Constraint in Magnitude Estimation

This section highlights supplementary results that emphasize the contrast in estimation error
and fault isolation rate with and without the incorporation of sparsity in the Blind Fault
Identification (BFI) algorithm.

The fault magnitude estimation error analysis has been averaged over 100 simulations of
varying fault magnitudes and for different numbers of active faults.

The fault dictionary comprising nz = 7 fault signals is tabulated in Table 5-2 and represented
graphically in Figure 5-2. The input and output parameters considered are real flight data in
Chapter 5, detailed in Table 5-1. In the experiments below, the model order is s = 4.
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Figure A-1: Magnitude Estimation error with only rank-constrained least squares, RISRO. As
the count of active faults decreases, the estimation error tends to be relatively greater compared
to situations with a higher number of active faults.

Figure A-2: Magnitude Estimation error with rank and sparsity constrained least squares. Spar-
sity constraint is imposed using the Pseudo-Measurement (PM) stage of a constrained Kalman
Filter (KF) with M = 1, α = 1, P = Inz×nz

and R = 10 in Algorithm 3. In contrast to
the previous graph, with fewer active faults, the accuracy of magnitude estimation is higher and
decreases with an increase in active fault count.

Nirupama Sai Ramesh Master of Science Thesis



A-1 Impact of Sparsity Constraint in Magnitude Estimation 47

Figure A-3: In line with the magnitude estimation error, the fault isolation improves with an
increase in the number of faults. This is directly attributed to the non-sparse solution presented
without sparsity constraints.

Figure A-4: The Fault Isolation Rate enhances compared to the preceding plot, supporting the
notion that sparsity is necessary for a reduced number of active faults.
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Appendix B

Software Implementation

The scripts employed in the experiments have been documented in this section. The codes
have been written using MATLAB 2021a and do not employ any additional toolboxes.

Filename Description

BFI_DataGen.m
Loads Models(for simulated data), real data and
defines Fault Dictionary based on user inputs.

BFI_FaultIdent_MC.m

Conducts Monte Carlo Simulations of 100
different fault magnitudes for varying numbers of active

faults and reports average performance for
chosen model and dictionary.

BFI_FaultIdent_Spec.m
Reports the analysis carried out on a specific

fault with perturbations for varying values of s.

BFI_SOF_Det.m
Time of Start of Fault Detection using time-shifted

dictionary signals for a bias fault and dictionary

risro_fd_sparse2.m
Algorithm based on RISRO and constrained KF

sparsity norm, as detailed in Algorithm 3

Table B-1: Summary of included files and their descriptions

B-1 Script BFI_DataGen.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Title : BFI_DataGen.m
3 % Description : Load Models , Data and define Data Dictionary
4 % Author : Nirupama Sai Ramesh(5320402)
5 % Date Created : 7th August , 2023
6 % Mentors : Prof. Michel Verhaegen , Jacques Noom
7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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8
9 %% Cleaning Environment

10
11 close all ;
12 clear all ;
13 clc ;
14
15 %% Sample Discrete System and Data Generation:
16
17 prompt0 = " Enter"+newline+"#1 for Simulated Longitudinal Data"+newline

+"#2 for FCR " . . .
18 +newline+"#3 for Short−Period Simulated Data"+newline ;
19 load_data = input ( prompt0 ) ;
20
21 dt = 0 . 0 1 ;
22
23 if load_data ==1
24
25 load ( ’Cessna_ct_V100.mat’ ) ;
26 t_end = 20 ; % in seconds
27 t = 0 : dt : t_end ;
28 N = length ( t ) ;
29
30 A = Cessna_ct . A ;
31 B = Cessna_ct . B ;
32 C = [ 0 , 1 , 0 , 0 ] ;
33 D = 0 ;
34 Cessna_sys = ss (A , B , C , D ) ;
35 Cessna_dt = c2d ( Cessna_sys , dt , ’tustin’ ) ;
36
37 obs = rank ( [ Cessna_dt . C ;
38 Cessna_dt . C∗Cessna_dt . A ;
39 Cessna_dt . C ∗( Cessna_dt . A^2) ;
40 Cessna_dt . C ∗( Cessna_dt . A^3) ] ) ;
41
42 Amp = . 5 ;
43 u_3211 = [ zeros (1 , 20 ) , Amp∗ones (1 ,300) ,−Amp∗ones (1 ,200) , Amp∗ones

(1 ,100) ,−Amp∗ones (1 ,100) , zeros (1 ,100) ] ;
44 inp_u = [ u_3211 , zeros (1 , N−length ( u_3211 ) ) ] ;
45
46 [ y , ~ , x ] = lsim ( Cessna_dt , inp_u , t ) ;
47 fn_dt_add = ’_Sim’ ;
48 nx = 4 ;
49
50 elseif load_data ==2
51
52 load ( ’FCRData/r1.mat’ ) ;
53 t = tsim ’−tsim (1 ) ;
54 N = length ( t ) ;
55 t = t ( 1 : N ) ;
56 inp_u = delE ( 1 : N ) ;
57 y = VTAS ( 1 : N ) ;
58 fn_dt_add = ’_FCR’ ;
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59 nx = 4 ;
60
61 elseif load_data ==3
62
63 load ( ’Cessna_sp_V100.mat’ ) ;
64 t_end = 100 ; % in seconds
65 t = 0 : dt : t_end ;
66 N = length ( t ) ;
67
68 A = Cessna_sp . A ;
69 B = Cessna_sp . B ;
70 C = [ 0 , 1 ] ;
71 D = 0 ;
72 Cessna_sys = ss (A , B , C , D ) ;
73 Cessna_dt = c2d ( Cessna_sys , dt , ’tustin’ ) ;
74
75 obs = rank ( [ Cessna_dt . C ;
76 Cessna_dt . C∗Cessna_dt . A ;
77 Cessna_dt . C ∗( Cessna_dt . A^2) ;
78 Cessna_dt . C ∗( Cessna_dt . A^3) ] ) ;
79
80 Amp = . 5 ;
81 u_3211 = [ zeros (1 , 20 ) , Amp∗ones (1 ,300) ,−Amp∗ones (1 ,200) , Amp∗ones

(1 ,100) ,−Amp∗ones (1 ,100) , zeros (1 ,100) ] ;
82 inp_u = [ u_3211 , zeros (1 , N−length ( u_3211 ) ) ] ;
83
84 [ y , ~ , x ] = lsim ( Cessna_dt , inp_u , t ) ;
85 fn_dt_add = ’_Sim’ ;
86 nx = 2 ;
87
88 end
89
90 ny = 1 ;
91 nu = 1 ;
92
93 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
94
95 %% Fault Dictionary Definition
96
97 prompt1 = " What should the fault dictionary comprise of ? " ;
98 prompt1 = prompt1 + newline + " 4 . Mixed Structured − 7 signals"+ newline

+ . . .
99 " 5 . Mixed Structured − 3 signals"+newline ;

100 f_dict = input ( prompt1 ) ;
101
102 if f_dict == 4
103 theta1 = [ zeros (1 , 20 ) , sin ( 4 . 5∗ pi∗t ( 2 1 : end ) ) ] ;
104 theta2 = [ zeros (1 , ceil ( N /2 . 3 ) ) , ones (1 , N−ceil ( N /2 . 3 ) ) ] ;
105 theta3 = [ zeros (1 , ceil ( N /5) ) , sin ( 2 . 3∗ pi∗t ( ceil ( N /5) +1:

end ) ) ] ;
106 theta4 = [ zeros (1 , ceil ( N /3) ) , cos (2 . 25∗ pi∗t ( ceil ( N /3) +1:

end ) ) ] ;
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107 theta5 = [ zeros (1 , ceil ( N /6) ) , sin ( 0 . 7∗ pi∗t ( ceil ( N /6) +1:
end ) ) ] ;

108 theta6 = [ zeros (1 , ceil ( N /4) ) , 0 . 23∗ t ( 1 : N−floor ( N /4) ) ] ;
109 theta7 = [ zeros (1 , ceil ( N /5) ) , ones (1 , N−ceil ( N /5) ) ] ;
110
111 nz = 7 ;
112
113 elseif f_dict == 5
114 theta1 = [ zeros (1 ,500) , ones (1 , N−500) ] ;
115 theta2 = [ zeros (1 ,200) , 0 . 05∗ t ( 1 : N−200) ] ;
116 theta3 = [ zeros (1 ,150) , sin ( 4 . 5∗ pi∗t ( 151 : end ) ) ] ;
117
118 nz = 3 ;
119 Dict = ’5_ThreeDict’ ;
120
121 end
122
123 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

B-2 Script BFI_FaultIdent_MC.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Title : BFI_FaultIdent_MC.m
3 % Description : Average Performance of BFI using Monte Carlo

Simulations
4 % Author : Nirupama Sai Ramesh(5320402)
5 % Date Created : 7th August , 2023
6 % Mentors : Prof. Michel Verhaegen , Jacques Noom
7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
8
9 %%

10 % 1. Use BFI_FSimDataGen.m to create simulated data or load real flight
data.

11 % 2. Change the number of theta and value of ’s’ in the next section to
12 % match the laoded data dictionary and model order.
13 % 3. Run BFI_FaultIdent_MC.m to produce plots for Monte -Carlo Simulations

.
14
15 %%
16 clear theta_k ;
17 clear T_th_i T_u
18 clear T_th_k T_yf ;
19
20 s = 4 ;
21
22 % Comment out theta not in the dictionary or add more if required.
23 for itr =1:1: length ( y )
24 theta_temp = [ theta1 ( itr ) , . . .
25 theta2 ( itr ) , . . .
26 theta3 ( itr ) , . . .
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27 % theta4(itr),...
28 % theta5(itr),...
29 % theta6(itr),...
30 % theta7(itr),...
31 ] ;
32
33 theta_k ( itr , : ) = theta_temp ;
34 end
35
36 T_th_k = theta_k ( s+1:end , : ) ;
37
38 for itr = 1 : 1 : ( N−s )
39 temp = flip ( ( theta_k ( itr : itr+s −1 , : ) ) ’ , 2 ) ;
40 T_th_i ( itr , : ) = temp ( : ) ’ ;
41 end
42
43 for itr = 1 : 1 : ( N−s )
44 T_u ( itr , : ) = flip ( inp_u ( itr : itr+s−1) ) ;
45 end
46
47 %% Fault Diagnosis
48
49 col_list = [ ’#0072BD’ , ’#D95319’ , ’#EDB120’ , ’#7E2F8E’ , ’#77AC30’ , . . .
50 ’#4DBEEE’ , ’#A2142F’ , ’#C71585’ , ’#48CCCD’ , ’#D296BA’ ] ;
51
52 % % % Parameter Setting % % %
53
54 acf_iter = nz−1;
55 num_iter = 100 ;
56 f_mag_max = 10 ;
57 Z_err = zeros ( num_iter , acf_iter ) ;
58 Z_isol = zeros ( num_iter , acf_iter ) ;
59 VAF_fault = zeros ( num_iter , acf_iter ) ;
60 RMSE_fault = zeros ( num_iter , acf_iter ) ;
61
62
63 nf_max = nz ;
64
65 for acf = 1 : 1 : acf_iter
66
67 nd = [ ones (1 , acf ) , zeros (1 , nf_max−acf ) ] ;
68
69 for nr = 1 : 1 : num_iter
70
71 % % % Fault Magnitudes % % %
72
73 z = randi ( f_mag_max , [ nz , 1 ] ) ;
74 nf = nd ( randperm ( nz ) ) ;
75 z = z . ∗ nf ’ ;
76
77
78 % % % Fault Induction % % %
79 for itr =1:1: length ( y )
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80 fault_tru ( itr , : ) = theta_k ( itr , : ) ∗z ;
81 yf ( itr , : ) = y ( itr , : ) + fault_tru ( itr , : ) ;
82 end
83
84 yfm = yf ;
85
86
87 %% Construction of Toeplitz matrices of input and output:
88
89 for itr = 1 : 1 : ( N−s )
90 temp = flip ( ( yfm ( itr : itr+s −1 , : ) ) ’ , 2 ) ;
91 T_yf ( itr , : ) = temp ( : ) ’ ;
92 end
93
94 Yf = yfm ( s+1:end , : ) ;
95 T_th_k = theta_k ( s+1:end , : ) ;
96
97 %% RISRO for solving the rank constrained least squares
98
99 p1 = nz+1;

100 p2 = s+1;
101 A_T = zeros ( p1 , p2 , ( N−s ) ) ;
102
103 for itr = 1 : 1 : ( N−s )
104 temp_th_i = −flip ( ( theta_k ( itr : itr+s −1 , : ) ) ’ , 2 ) ;
105 temp_y = flip ( ( yf ( itr : itr+s −1 , : ) ) ’ , 2 ) ;
106 temp_th = flip ( ( theta_k ( itr+s , : ) ) ’ , 2 ) ;
107 A_T ( : , : , itr ) = [ temp_th_i , temp_th ;
108 temp_y , 0 ] ;
109 end
110
111 % % % RISRO Initialisation % % %
112 r_app = 1 ;
113 [ X0 , U0 , S0 , V0 ] = X0_init ( r_app , [ T_yf −T_th_i T_th_k ] , yf ( s+1:end

) , p1 , p2 ) ;
114
115 % % % RISRO ALgorithm Call % % %
116 n_iter = 50 ;
117 Xt = zeros ( p1 , p2 , n_iter ) ;
118 dimB = nu∗s ;
119 [ TB , Xt1 ] = risro_fd_sparse2 ( n_iter , U0 , V0 , A_T , Yf , r_app , p1 ,

p2 , Xt , T_u , dimB , nf_max ) ;
120 fn_algo_add = ’_Sp’ ;
121
122 err_val = zeros ( n_iter +1 ,1) ;
123 X_str = z ;
124
125 for iter = 1 : 1 : n_iter+1
126 if iter == 1
127 err_val ( iter , 1 ) = norm ( X0 ( 1 : end−1,end )−X_str , ’fro’ ) /norm (

X_str , ’fro’ ) ;
128 else
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129 err_val ( iter , 1 ) = norm ( Xt1 ( 1 : end−1,end , iter−1)−X_str , ’fro
’ ) /norm ( X_str , ’fro’ ) ;

130 end
131 end
132
133 %% Error and Fault Isolation Analysis
134 Xhat = Xt1 ( : , : , end ) ;
135 Zhat = Xt1 ( 1 : end−1,end , end ) ;
136
137
138 [ U , S , V ] = svd ( Zhat ’ , ’econ’ ) ;

% normalised value of z
139 zabs = abs ( V ) >0.001;

% 0.001= tunable
threshold for FIR

140 Zhat_i = zabs . ∗ Zhat ;
141
142 if ( logical ( Zhat_i )==logical ( z ) )
143 Z_isol ( nr , acf ) = 1 ;
144 else
145 Z_isol ( nr , acf ) = 0 ;
146 end
147
148 fault_hat = T_th_k∗Zhat_i ;
149 fault_gt = T_th_k∗z ;
150
151 Z_err ( nr , acf ) = norm ( Zhat_i−z , ’fro’ ) /norm (z , ’fro’ ) ;
152 [ VAF_fault ( nr , acf ) , RMSE_fault ( nr , acf ) ] = VAF_RMSE ( fault_hat ,

fault_gt ) ;
153 end
154 end
155
156 %% Plot: Norm of Magnitude Estimation Error
157 figure (1 ) ;
158 for acf = 1 : 1 : acf_iter
159 semilogy ( acf , Z_err ( : , acf ) , ’.’ , ’Color’ , [ 0 . 5 , 0 . 5 , 0 . 5 ] , ’MarkerSize’ , 5 ) ;

grid on ;
160 hold on ;
161 boxplot ( Z_err , ’symbol’ , ’’ ) ;
162 hold on ;
163 hline = findobj ( gca , ’Type’ , ’line’ ) ;
164 set ( hline , ’LineWidth’ , 1) ;
165 end
166
167 ylabel ( ’$\frac{||\widehat{F(z)}-{F(z)}||_F}{||F(z)||_F}$’ , ’Interpreter’ , ’

Latex’ , ’FontSize’ , 24) ;
168 xlabel ( ’No.of Active Faults’ , ’FontSize’ , 16) ;
169 title ( ’Norm of Fault Estimation Error: Without sparsity’ , ’FontSize’ , 16) ;
170
171 hfig = figure (1 ) ;
172 picturewidth = 20 ;
173 hw_ratio = 0 . 6 5 ; % height -width ratio
174 set ( findobj ( gca , ’type’ , ’line’ ) , ’linew’ , 1 . 2 )
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175 set ( findall ( hfig , ’-property’ , ’FontSize’ ) , ’FontSize’ , 12) ;
176 set ( findall ( hfig , ’-property’ , ’Interpreter’ ) , ’Interpreter’ , ’Latex’ ) ;
177 set ( findall ( hfig , ’-property’ , ’TickLabelInterpreter’ ) , ’

TickLabelInterpreter’ , ’Latex’ ) ;
178 set ( hfig , ’Units’ , ’centimeters’ , ’Position’ , [ 3 3 picturewidth hw_ratio∗

picturewidth ] ) ;
179 pos = get ( hfig , ’Position’ ) ;
180 set ( hfig , ’PaperPositionMode’ , ’Auto’ , ’PaperUnits’ , ’centimeters’ , ’PaperSize

’ , [ pos (3 ) pos (4 ) ] ) ;
181
182 %% Plot: Fault Isolation Rate
183 Z_isol_sum = sum ( Z_isol , 1 ) ;
184 figure (2 ) ;
185 hold on ;
186 grid on ;
187 bar ( Z_isol_sum , ’EdgeColor’ , ’#EDB120’ , ’FaceColor’ , [ 0 . 7 5 . 75 . 7 5 ] , ’

LineWidth’ , 1 )
188 xticks ( [ 1 2 3 4 5 ] ) ;
189 xlabel ( ’No of Active Faults’ ) ;
190 ylabel ( ’Fault Isolation $\%$’ ) ;
191 title ( ’Fault Isolation Rate: Without sparsity’ ) ;
192
193 hfig = figure (2 ) ;
194 picturewidth = 15 ;
195 hw_ratio = 0 . 6 5 ; % height -width ratio
196 set ( findobj ( gca , ’type’ , ’line’ ) , ’linew’ , 1 . 2 )
197 set ( findall ( hfig , ’-property’ , ’FontSize’ ) , ’FontSize’ , 12) ;
198 set ( findall ( hfig , ’-property’ , ’Interpreter’ ) , ’Interpreter’ , ’Latex’ ) ;
199 set ( findall ( hfig , ’-property’ , ’TickLabelInterpreter’ ) , ’

TickLabelInterpreter’ , ’Latex’ ) ;
200 set ( hfig , ’Units’ , ’centimeters’ , ’Position’ , [ 3 3 picturewidth hw_ratio∗

picturewidth ] ) ;
201 pos = get ( hfig , ’Position’ ) ;
202 set ( hfig , ’PaperPositionMode’ , ’Auto’ , ’PaperUnits’ , ’centimeters’ , ’PaperSize

’ , [ pos (3 ) pos (4 ) ] ) ;
203 %%
204 %%%%%%%%%%%%%%%%%%%%%%% Definition of Functions %%%%%%%%%%%%%%%%%%%%%%%
205
206 % % % % % % % % % % Risro Initialisation Function % % % % % % % % % % % %

%
207 % Desc : Initialisation using truncated spectral initialisation
208 % r_app : Rank Approximation
209 % A : Subspace of regressor
210 % y : Observation signal/ measurement
211 % n : Signal length
212 % p1,p2 : Dimension of X (model order , number of disturbance vectors)
213
214 function [ X0 , U0 , S0 , V0 ] = X0_init ( r_app , A , y , p1 , p2 )
215
216 n = length ( y ) ;
217 temp = [ y ’ ∗ A , n ] ;
218 X0 = reshape ( temp , [ p1 , p2 ] ) /n ; % A’ for adjoint of A
219
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220 [ U0 , S0 , V0 ] = svd ( X0 ) ;
221 U0 = U0 ( : , 1 : r_app ) ;
222 V0 = V0 ( : , 1 : r_app ) ;
223 S0 = S0 ( 1 : r_app , 1 : r_app ) ;
224
225 end
226 % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
227
228 % % % % % % % % VAF and RMSE Calculation Function % % % % % % % % % % %
229 % Desc : VAF Calculation for comparing estimated output with true output
230 % y_hat : estimated output from the model
231 % y_gt : actual ground truth output
232 function [ VAF , N_rms ] = VAF_RMSE ( y_hat , y_gt )
233 N = size ( y_gt , 1 ) ;
234 err = y_hat − y_gt ;
235 ey_per = 1 − ( ( norm ( err , 2 ) ^2) /( norm ( y_gt , 2 ) ^2) ) ;
236 VAF = max (0 , ey_per ∗100) ;
237 RMSE = sqrt ( ( norm ( err , 2 ) ^2)/N ) ;
238 GT_RMS = sqrt ( norm ( y_gt , 2 ) /N ) ;
239 N_rms = RMSE /( GT_RMS ) ;
240 end
241 % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %

B-3 Script BFI_FaultIdent_Spec.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Title : BFI_FaultIdent_Spec.m
3 % Description : To generate data for identification and validation
4 % Author : Nirupama Sai Ramesh(5320402)
5 % Date Created : 3rd April , 2023
6 % Mentors : Prof. Michel Verhaegen , Jacques Noom
7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
8
9 %%

10 % 1. Use BFI_FSimDataGen.m to create simulated data or load real flight
data.

11 % 2. Change the number of theta and value of magnitude vector , z in the
12 % next section to match loaded dictionary.
13 % 3. Run BFI_SpecFault.m
14
15 % ** To run for precise sepicific fault , specific ’s’, comment lines

65,67
16 % ** 155-165. Set value of parameter ’s’ in line 67
17 %% Faul Magnitude Setting
18 % % % Parameter Setting % % %
19 % % % Fault Magnitudes % % %
20 z = [ 0 ;
21 4 ;
22 0 ;
23 0 ;
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24 0 ;
25 0 ;
26 0 ;
27 ] ;
28 nz = length ( z ) ;
29 % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
30
31 %% Fault Injection to True Measurement
32
33 % Change the number of theta based on chosen dictionary
34 for itr =1:1: length ( y )
35
36 theta_temp = [ theta1 ( itr ) , . . .
37 theta2 ( itr ) , . . .
38 theta3 ( itr ) , . . .
39 theta4 ( itr ) , . . .
40 theta5 ( itr ) , . . .
41 theta6 ( itr ) , . . .
42 theta7 ( itr ) , . . .
43 ] ;
44 theta_k_2 = theta_temp ’ ;
45 theta_k ( itr , : ) = theta_k_2 ( : ) ’ ;
46 fault_tru ( itr , : ) = theta_temp∗z ;
47 yf ( itr , : ) = y ( itr , : ) + 1∗fault_tru ( itr , : ) ;
48 end
49
50 % Introduce Perturbations for Imprecise Fault
51 amp_dist = 0 . 2 ;
52 fault_pert = ( amp_dist ∗ [ zeros (1 ,1200) , cos ( 4 . 5∗ pi∗t (1201 : end ) ) ] ) ;
53 fault_mod = fault_tru + fault_pert ’ ;
54 yf = yf+fault_pert ’ ;
55 yfm = yf ;
56
57 %% Plot for Real and fault -induced Data
58
59 hfig = figure (3 ) ;
60 subplot (211) ;
61 plot (t , delE , ’LineWidth’ , 1 . 5 ) ;
62 grid on ;
63 ylabel ( ’Elevator Input , $\delta_e$ [rad]’ , ’Interpreter’ , ’Latex’ , ’FontSize

’ , 14) ;
64 xlabel ( ’Time [s]’ ) ;
65 xlim ( [ 0 t ( end ) ] ) ;
66 ylim ( [ min ( delE ) −0.01 max ( delE ) +0.01 ] ) ;
67 ax = gca ;
68 ax . XAxis . LineWidth = 0 . 7 5 ;
69 ax . YAxis . LineWidth = 0 . 7 5 ;
70 subplot (212) ;
71 plot (t , VTAS , ’Color’ , ’#77AC30’ , ’LineWidth’ , 1 . 2 5 , ’DisplayName’ , ’true output

, $y_{true}$’ ) ;
72 xlim ( [ 0 t ( end ) ] ) ;
73 % ylim([70 95]);
74 grid on ; hold on ;
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75 plot (t , yf , ’Color’ , ’#A2142F’ , ’LineWidth’ , 1 . 2 5 , ’DisplayName’ , ’faulty
measurement , $y_{m}$’ ) ;

76 ylabel ( ’True Airspeed , $V_{TAS}$ [m/s]’ ) ;
77 xlabel ( ’Time [s]’ , ’Interpreter’ , ’Latex’ , ’FontSize’ , 13) ;
78 % legend(’true output , $y_{true}$’,’faulty measurement , $y_{m}$’,’

Interpreter ’,...
79 % ’Latex ’,’FontSize ’,13,’Location ’,’Best ’);
80 sgtitle ( ’Cessna Citation II Real Data’ ) ;
81 % legend(’Location ’,’best’,’Box’,’off’);
82 ax = gca ;
83 ax . XAxis . LineWidth = 0 . 7 5 ;
84 ax . YAxis . LineWidth = 0 . 7 5 ;
85
86 picturewidth = 20 ;
87 hw_ratio = 0 . 6 5 ; % height -width ratio
88 set ( findall ( hfig , ’-property’ , ’FontSize’ ) , ’FontSize’ , 14) ;
89 set ( findall ( hfig , ’-property’ , ’Interpreter’ ) , ’Interpreter’ , ’Latex’ ) ;
90 set ( findall ( hfig , ’-property’ , ’TickLabelInterpreter’ ) , ’

TickLabelInterpreter’ , ’Latex’ ) ;
91 set ( hfig , ’Units’ , ’centimeters’ , ’Position’ , [ 3 3 picturewidth hw_ratio∗

picturewidth ] ) ;
92 pos = get ( hfig , ’Position’ ) ;
93 set ( hfig , ’PaperPositionMode’ , ’Auto’ , ’PaperUnits’ , ’centimeters’ , ’PaperSize

’ , [ pos (3 ) pos (4 ) ] ) ;
94
95 %% Construction of Toeplitz matrices of input and output:
96
97 % close all;
98 % For loop for performance for varying ’s’ for imprecise fault
99 clear s_arr , nr= 0 ;

100
101 for i = 3 : 1 : 8 0
102
103 clear T_u T_yf T_y T_th_i A_T
104 s = i ;
105
106 for itr = 1 : 1 : ( N−s )
107 T_u ( itr , : ) = flip ( inp_u ( itr : itr+s−1) ) ;
108 end
109
110 for itr = 1 : 1 : ( N−s )
111 temp = flip ( ( yfm ( itr : itr+s −1 , : ) ) ’ , 2 ) ;
112 T_yf ( itr , : ) = temp ( : ) ’ ;
113 end
114
115 for itr = 1 : 1 : ( N−s )
116 temp = flip ( ( y ( itr : itr+s −1 , : ) ) ’ , 2 ) ;
117 T_y ( itr , : ) = temp ( : ) ’ ;
118 end
119
120 for itr = 1 : 1 : ( N−s )
121 temp = flip ( ( theta_k ( itr : itr+s −1 , : ) ) ’ , 2 ) ;
122 T_th_i ( itr , : ) = temp ( : ) ’ ;
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123 end
124
125 Yf = yfm ( s+1:end , : ) ;
126 Y = y ( s+1:end , : ) ;
127 T_th_k = theta_k ( s+1:end , : ) ;
128
129 %% RISRO for solving the rank constrained least squares
130
131 p1 = nz+1;
132 p2 = s+1;
133 A_T = zeros ( p1 , p2 , ( N−s ) ) ;
134
135 for itr = 1 : 1 : ( N−s )
136 temp_th_i = −flip ( ( theta_k ( itr : itr+s −1 , : ) ) ’ , 2 ) ;
137 temp_y = flip ( ( yfm ( itr : itr+s −1 , : ) ) ’ , 2 ) ;
138 temp_th = flip ( ( theta_k ( itr+s , : ) ) ’ , 2 ) ;
139 A_T ( : , : , itr ) = [ temp_th_i , temp_th ;
140 temp_y , 0 ] ;
141 end
142
143 % % % RISRO Initialisation % % %
144 r_app = 1 ;
145 [ X0 , U0 , S0 , V0 ] = X0_init ( r_app , [ T_yf −T_th_i T_th_k ] , yfm ( s+1:end ) ,

p1 , p2 ) ;
146
147 % % % RISRO ALgorithm Call % % %
148 n_iter = 50 ;
149 Xt = zeros ( p1 , p2 , n_iter ) ;
150 dimB = nu∗s ;
151 nf_max = nz ;
152 [ TB , Xt1 ] = risro_fd_sparse2 ( n_iter , U0 , V0 , A_T , Yf , r_app , p1 , p2 , Xt

, T_u , dimB , nf_max ) ;
153 fn_algo_add = ’_Sp’ ;
154
155 err_val = zeros ( n_iter +1 ,1) ;
156 X_str = z ;
157 for iter = 1 : 1 : n_iter+1
158 if iter == 1
159 err_val ( iter , 1 ) = norm ( X0 ( 1 : end−1,end )−X_str , ’fro’ ) /norm (

X_str , ’fro’ ) ;
160 else
161 err_val ( iter , 1 ) = norm ( Xt1 ( 1 : end−1,end , iter−1)−X_str , ’fro’ ) /

norm ( X_str , ’fro’ ) ;
162 end
163 end
164
165 %% Estimates of Fault Magnitude
166 Zhat = Xt1 ( 1 : end−1,end , end ) ;
167 err_val ( end ) ;
168 Xhat = Xt1 ( : , : , end ) ;
169 Zhat = Xt1 ( 1 : end−1,end , end ) ;
170
171 %% Computing Estimate of measurement
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172 clear yhat ;
173 for ir = 1 : 1 : length ( A_T )
174 yhat ( ir ) = T_u ( ir , : ) ∗TB+sum ( A_T ( : , : , ir ) . ∗ Xhat , ’all’ ) ;
175 end
176
177 %% Computing normalised ’z’ using SVD for Fault Isolation
178 fault_hat = T_th_k∗Zhat ;
179 fault_gt = fault_mod ( s+1:end ) ;
180
181 [ U , S , V ] = svd ( Zhat ’ , ’econ’ ) ;
182 zabs = abs ( V ) >0.01;
183 Zhat_i = zabs . ∗ Zhat ;
184
185 %% Fault and Measurement VAF Computation
186 [ VAF_fault , ~ ] = VAF_RMSE ( fault_hat , fault_gt ) ;
187 [ VAF_y , ~ ] = VAF_RMSE ( yhat , Yf ’ ) ;
188
189 %% Populating Analysis Metrics for different ’s’
190 nr = nr+1;
191 s_arr ( nr , 1 )=s ;
192 s_arr ( nr , 2 )=VAF_fault ;
193 s_arr ( nr , 3 )=err_val ( end ) ;
194 s_arr ( nr , 4 )=sum ( zabs ) ;
195 s_arr ( nr , 5 )=VAF_y ;
196
197 end
198 %% Plots for analysis against ’s’
199 hfig = figure (7 ) ;
200
201 subplot (311)
202 grid on ; hold on ;
203 plot ( s_arr ( : , 1 ) , s_arr ( : , 2 ) , ’.-’ , ’Color’ , ’#0072BD’ , ’LineWidth’ , 0 . 7 5 , ’

MarkerSize’ , 10) ;
204 ylabel ( ’$VAF_{fault}\; [\%]$’ ) ;
205 ax = gca ;
206 ax . XAxis . LineWidth = 0 . 7 5 ;
207 ax . YAxis . LineWidth = 0 . 7 5 ;
208 ylim ( [ 0 102 ] ) ;
209
210 subplot (312)
211 semilogy ( s_arr ( : , 1 ) , s_arr ( : , 3 ) , ’.-’ , ’Color’ , ’#0072BD’ , ’LineWidth’ , 0 . 7 5 , ’

MarkerSize’ , 10) ;
212 grid on ; hold on ; grid minor ;
213 ylabel ( ’$\frac{||\hat{F(z)}-{F(z)}||_F}{||F(z)||_F}$’ ) ;
214 yticks ([10^ −2 10^−1 10^0 ] ) ;
215 ax = gca ;
216 ax . XAxis . LineWidth = 0 . 7 5 ;
217 ax . YAxis . LineWidth = 0 . 7 5 ;
218
219 subplot (313)
220 grid on ; hold on ;
221 stem ( s_arr ( : , 1 ) , s_arr ( : , 4 ) , ’.-’ , ’Color’ , ’#0072BD’ , ’LineWidth’ , 0 . 5 , ’

MarkerSize’ , 15) ;
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222 ylabel ( ’ No. of faults det’ ) ;
223 xlabel ( ’$s$ [-]’ ) ;
224 sgtitle ( ’Bias Fault perturbed with $\kappa = 0.2$ detection performance’ )

;
225
226 picturewidth = 20 ;
227 hw_ratio = 0 . 7 5 ; % height -width ratio
228 set ( findall ( hfig , ’-property’ , ’FontSize’ ) , ’FontSize’ , 14) ;
229 set ( findall ( hfig , ’-property’ , ’Interpreter’ ) , ’Interpreter’ , ’Latex’ ) ;
230 set ( findall ( hfig , ’-property’ , ’TickLabelInterpreter’ ) , ’

TickLabelInterpreter’ , ’Latex’ ) ;
231 set ( hfig , ’Units’ , ’centimeters’ , ’Position’ , [ 3 3 picturewidth hw_ratio∗

picturewidth ] ) ;
232 pos = get ( hfig , ’Position’ ) ;
233 set ( hfig , ’PaperPositionMode’ , ’Auto’ , ’PaperUnits’ , ’centimeters’ , ’PaperSize

’ , [ pos (3 ) pos (4 ) ] ) ;
234
235 %%
236 %%%%%%%%%%%%%%%%%%%%%%% Definition of Functions %%%%%%%%%%%%%%%%%%%%%%%
237
238 % % % % % % % % % % Risro Initialisation Function % % % % % % % % % % %
239
240 % Desc : Initialisation using truncated spectral initialisation
241 % r_app : Rank Approximation
242 % A : Subspace of regressor
243 % y : Observation signal/ measurement
244 % n : Signal length
245 % p1,p2 : Dimension of X (model order , number of disturbance vectors)
246 function [ X0 , U0 , S0 , V0 ] = X0_init ( r_app , A , y , p1 , p2 )
247 n = length ( y ) ;
248 temp = [ y ’ ∗ A , n ] ;
249 X0 = reshape ( temp , [ p1 , p2 ] ) /n ; % A’ for adjoint of A
250 % X0 = randn(p1,p2);
251 [ U0 , S0 , V0 ] = svd ( X0 ) ;
252 U0 = U0 ( : , 1 : r_app ) ;
253 V0 = V0 ( : , 1 : r_app ) ;
254 S0 = S0 ( 1 : r_app , 1 : r_app ) ;
255 end
256 % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
257
258
259 % % % % % % % % VAF and RMSE Calculation Function % % % % % % % % % % %
260
261 % Desc : VAF Calculation for comparing estimated output with true output
262 % y_hat : estimated output from the model
263 % y_gt : actual ground truth output
264 function [ VAF , N_rms ] = VAF_RMSE ( y_hat , y_gt )
265 N = size ( y_gt , 1 ) ;
266 err = y_hat − y_gt ;
267 ey_per = 1 − ( ( norm ( err , 2 ) ^2) /( norm ( y_gt , 2 ) ^2) ) ;
268 VAF = max (0 , ey_per ∗100) ;
269 RMSE = sqrt ( ( norm ( err , 2 ) ^2)/N ) ;
270 GT_RMS = sqrt ( norm ( y_gt , 2 ) /N ) ;
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271 N_rms = RMSE /( GT_RMS ) ;
272 end
273 % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %

B-4 Script BFI_SOF_Det.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Title : SOF_Det.m
3 % Description : Start of Fault Detection using time shifted signals
4 % Author : Nirupama Sai Ramesh(5320402)
5 % Date Created : 28th August , 2023
6 % Mentors : Prof. Michel Verhaegen , Jacques Noom
7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
8 %% Fault Magnitude Settin
9

10
11 z = [ 5 ] ; % Set Fault Magnitude
12 nz = length ( z ) ;
13
14 theta1 = [ zeros (1 ,1500) , ones (1 , N−1500) ] ;
15 % theta2 = [zeros(1,1600) ,0.05*t(1:N-1600)];
16
17 %%
18
19 index_st = 1400 ;
20 index_fn = 1800 ;
21 t_batch = t ( index_st : index_fn ) ;
22 N_batch = length ( t_batch ) ;
23 inp_u_batch = inp_u ( index_st : index_fn ) ;
24 y_batch = y ( index_st : index_fn ) ;
25
26 %% Fault Injection
27 clear theta_k ;
28
29 for itr =1:1: length ( y )
30 theta_temp = [ theta1 ( itr ) ] ;
31
32 theta_k ( itr , : ) = theta_temp ;
33 fault_tru ( itr , : ) = theta_temp∗z ;
34 yf ( itr , : ) = y ( itr , : ) + fault_tru ( itr , : ) ;
35 end
36
37 yf_batch = yf ( index_st : index_fn ) ;
38 yfm = yf ;
39 %%
40 yfm_batch = yfm ( index_st : index_fn ) ;
41
42 %%
43 clear z_hat_nt
44 clear theta_k_batch
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45 nt = 5 0 : 1 : N_batch −50;
46
47 % Change Dictionary for every j_ind iteration , shifted by j_ind
48 for j_ind = 5 : 1 : length ( nt )
49
50 theta_k_batch ( : , 1 ) = [ zeros (1 , nt ( j_ind ) ) , ones (1 , N_batch−nt ( j_ind

) ) ] ;
51 % theta_k_batch(:,1) = [zeros(1,nt(jj)) ,0.05*t(1:N_batch -nt(

jj))];
52
53 %% Construction of Toeplitz matrices of input and output:
54 clear T_u T_yf T_y T_th_i
55 s = 4 ;
56
57 for itr = 1 : 1 : ( N_batch−s )
58 T_u ( itr , : ) = flip ( inp_u_batch ( itr : itr+s−1) ) ;
59 end
60
61 for itr = 1 : 1 : ( N_batch−s )
62 temp = flip ( ( yfm_batch ( itr : itr+s −1 , : ) ) ’ , 2 ) ;
63 T_yf ( itr , : ) = temp ( : ) ’ ;
64 end
65
66 for itr = 1 : 1 : ( N_batch−s )
67 temp = flip ( ( y_batch ( itr : itr+s −1 , : ) ) ’ , 2 ) ;
68 T_y ( itr , : ) = temp ( : ) ’ ;
69 end
70
71 for itr = 1 : 1 : ( N_batch−s )
72 temp = flip ( ( theta_k_batch ( itr : itr+s −1 , : ) ) ’ , 2 ) ;
73 T_th_i ( itr , : ) = temp ( : ) ’ ;
74 end
75
76 Yf = yfm_batch ( s+1:end , : ) ;
77 T_th_k = theta_k_batch ( s+1:end , : ) ;
78
79 %% RISRO for solving the rank constrained least squares
80
81 p1 = nz+1;
82 p2 = s+1;
83 A_T = zeros ( p1 , p2 , ( N_batch−s ) ) ;
84
85 for itr = 1 : 1 : ( N_batch−s )
86 temp_th_i = −flip ( ( theta_k_batch ( itr : itr+s −1 , : ) ) ’ , 2 ) ;
87 temp_y = flip ( ( yf_batch ( itr : itr+s −1 , : ) ) ’ , 2 ) ;
88 temp_th = flip ( ( theta_k_batch ( itr+s , : ) ) ’ , 2 ) ;
89 A_T ( : , : , itr ) = [ temp_th_i , temp_th ;
90 temp_y , 0 ] ;
91 end
92
93 % % % RISRO Initialisation % % %
94 r_app = 1 ;
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95 [ X0 , U0 , S0 , V0 ] = X0_init ( r_app , [ T_yf −T_th_i T_th_k ] , yf_batch ( s+1:
end ) , p1 , p2 ) ;

96
97 % % % RISRO ALgorithm Call % % %
98 n_iter = 50 ;
99 Xt = zeros ( p1 , p2 , n_iter ) ;

100 dimB = nu∗s ;
101 nf_max = nz ;
102
103 [ TB , Xt1 ] = risro_fd_sparse2 ( n_iter , U0 , V0 , A_T , Yf , r_app , p1 , p2 , Xt

, T_u , dimB , nf_max ) ;
104 fn_algo_add = ’_Sp’ ;
105
106 err_val = zeros ( n_iter +1 ,1) ;
107 X_str = z ;
108 for iter = 1 : 1 : n_iter+1
109 if iter == 1
110 err_val ( iter , 1 ) = norm ( X0 ( 1 : end−1,end )−X_str , ’fro’ ) /norm (

X_str , ’fro’ ) ;
111 else
112 err_val ( iter , 1 ) = norm ( Xt1 ( 1 : end−1,end , iter−1)−X_str , ’fro’ ) /

norm ( X_str , ’fro’ ) ;
113 end
114 end
115
116 % semilogy(err_val);
117
118 Xhat = Xt1 ( : , : , end ) ;
119 K1r = Xhat ( nz+1 ,1) ;
120 K2r = Xhat ( nz+1 ,2) ;
121 K3r = Xhat ( nz+1 ,3) ;
122 K4r = Xhat ( nz+1 ,4) ;
123 zr = Xhat ( 1 : nz , end ) ;
124 K1z = Xhat ( 1 : nz , 1 ) ;
125 K2z = Xhat ( 1 : nz , 2 ) ;
126 K3z = Xhat ( 1 : nz , 3 ) ;
127 K4z = Xhat ( 1 : nz , 4 ) ;
128
129 Zhat = Xt1 ( 1 : end−1,end , end ) ;
130
131 for ir =1:1: length ( A_T )
132
133 yhat ( ir )=T_u ( ir , : ) ∗TB+sum ( A_T ( : , : , ir ) . ∗ Xhat , ’all’ ) ;
134
135 end
136 z_hat_nt ( j_ind , : ) = Zhat ;
137 [ VAF ( j_ind , : ) , ~ ] = VAF_RMSE ( yhat , Yf ’ ) ;
138 TBB ( : , j_ind ) = TB ;
139 end
140 %%
141
142 hfig=figure (3 ) ;
143 subplot (211) ;
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144 plot ( t_batch , yf_batch−y_batch , ’LineWidth’ , 1 . 7 5 , ’Color’ , ’#C71585’ ) ; hold on
;

145 xlim ( [ 1 4 . 5 1 7 ] ) ;
146 grid on ;
147 ylabel ( ’Fault Signal [m/s]’ ) ;
148
149 subplot (212) ;
150 stem ( t_batch (1 )+nt∗dt , z_hat_nt ( : , 1 ) , ’LineWidth’ , 1 . 0 , ’Marker’ , ’.’ , . . .
151 ’MarkerSize’ , 10 , ’Color’ , ’#EDB120’ ) ; hold on ;
152 ylabel ( ’$\widehat{F(z)}$ [-]’ ) ;
153 xlabel ( ’Time [s]’ ) ;
154 xlim ( [ 1 4 . 5 1 7 ] ) ;
155 legend ( ’Est using $\theta_1 =$ Bias Signal’ ) ;
156 grid on ;
157
158 hfig = figure (3 ) ;
159 picturewidth = 15 ;
160 xlabel ( ’Time [s]’ ) ;
161 hw_ratio = 0 . 6 5 ; % height -width ratio
162 set ( findobj ( gca , ’type’ , ’line’ ) , ’linew’ , 1 . 2 )
163 set ( findall ( hfig , ’-property’ , ’FontSize’ ) , ’FontSize’ , 12) ;
164 set ( findall ( hfig , ’-property’ , ’Interpreter’ ) , ’Interpreter’ , ’Latex’ ) ;
165 set ( findall ( hfig , ’-property’ , ’TickLabelInterpreter’ ) , ’

TickLabelInterpreter’ , ’Latex’ ) ;
166 set ( hfig , ’Units’ , ’centimeters’ , ’Position’ , [ 3 3 picturewidth hw_ratio∗

picturewidth ] ) ;
167 pos = get ( hfig , ’Position’ ) ;
168 set ( hfig , ’PaperPositionMode’ , ’Auto’ , ’PaperUnits’ , ’centimeters’ , ’PaperSize

’ , [ pos (3 ) pos (4 ) ] ) ;
169 %%
170 % % % % % % % % % % Risro Initialisation Function % % % % % % % % % % %
171
172 % Desc : Initialisation using truncated spectral initialisation
173 % r_app : Rank Approximation
174 % A : Subspace of regressor
175 % y : Observation signal/ measurement
176 % n : Signal length
177 % p1,p2 : Dimension of X (model order , number of disturbance vectors)
178 function [ X0 , U0 , S0 , V0 ] = X0_init ( r_app , A , y , p1 , p2 )
179 n = length ( y ) ;
180 temp = [ y ’ ∗ A , n ] ;
181 X0 = reshape ( temp , [ p1 , p2 ] ) /n ; % A’ for adjoint of A
182 % X0 = randn(p1,p2);
183 [ U0 , S0 , V0 ] = svd ( X0 ) ;
184 U0 = U0 ( : , 1 : r_app ) ;
185 V0 = V0 ( : , 1 : r_app ) ;
186 S0 = S0 ( 1 : r_app , 1 : r_app ) ;
187 end
188 % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
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1 %% RISRO and Sparsity Function for Blind Fault Identification
2
3 function [ TB , Xt1 ] = risro_fd_sparse2 ( n_iter , U0 , V0 , A , y , r_app , p1 , p2 , Xt1 , T_u

, dimB , nf_fmax )
4
5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
6 % Returns the estimated X and B from sparse least squares solution
7 % n_iter : No. Of RISRO Iterations
8 % U0,V0 : Initialised SVD of X0
9 % A : Regressor ; Known subspace of Signals

10 % y : Measured Output
11 % r_app : rank constraint
12 % p1,p2 : Dimensions of X; Model Order , No.of Dist Signals
13 % T_u : Toeplitz Matrix of Input Signal
14 % dimB : dimensions of B matrix , input dim times model ord
15 % nf_fmax : total number of fault (nz)
16 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17
18 n = length ( y ) ;
19 r = r_app ;
20 Ut = U0 ;
21 Vt = V0 ;
22
23 for t =1:1: n_iter
24
25
26 Ut_perp = null ( Ut ’ ) ;
27 Vt_perp = null ( Vt ’ ) ;
28
29 tempAB1 = pagemtimes ( Ut ’ , A ) ;
30 tempAB2 = pagemtimes ( tempAB1 , Vt ) ;
31 AB = reshape ( tempAB2 , [ r∗r , n ] ) ’ ;
32
33 tempAD11 = pagemtimes ( Ut_perp ’ , A ) ;
34 tempAD12 = pagemtimes ( tempAD11 , Vt ) ;
35 AD1 = reshape ( tempAD12 , [ ( p1−r ) ∗r , n ] ) ’ ;
36
37 tempAD21 = pagemtimes ( Ut ’ , A ) ;
38 tempAD22 = pagemtimes ( tempAD21 , Vt_perp ) ;
39 AD2 = reshape ( tempAD22 , [ ( p2−r ) ∗r , n ] ) ’ ;
40
41 A_tot = [ T_u , AB , AD1 , AD2 ] ;

% Changed to include T_u to get B
42
43 % Solve Dimension Reduced Least square
44 opt_var = ( A_tot ’ ∗ A_tot ) \( A_tot ’ ∗ y ) ;
45
46 TB = opt_var ( 1 : dimB ) ;

% Changed the access points
to get B
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47 gamma = opt_var ( dimB+1:end ) ;
48 B = gamma ( 1 : r∗r ) ;
49 D1 = gamma ( ( r∗r ) +1:(r∗r )+(p1−r ) ∗r ) ;
50 D2 = gamma ( ( ( r∗r )+(p1−r ) ∗r ) +1:end ) ;
51
52 Bt1 = reshape (B , [ r , r ] ) ;
53 D1t1 = reshape ( D1 , [ p1−r , r ] ) ;
54 D2t1 = reshape ( D2 , [ r , p2−r ] ) ;
55 D2t1 = D2t1 ’ ;
56
57 X_ut1 = Ut∗Bt1 + Ut_perp∗D1t1 ;
58 X_vt1 = Vt∗Bt1 ’ + Vt_perp∗D2t1 ;
59
60 % QR Orthogonalisation to compute U,V
61 [ Ut , ~ ] = qr ( X_ut1 , 0 ) ;
62 Ut = Ut ( : , 1 : r_app ) ;
63 [ Vt , ~ ] = qr ( X_vt1 , 0 ) ;
64 Vt = Vt ( : , 1 : r_app ) ;
65
66 % Update step
67 Xt1 ( : , : , t ) = X_ut1 / Bt1 ∗ X_vt1 ’ ;
68
69 if t == n_iter
70 break
71 else
72
73 xhat = Xt1 ( : , : , t ) ;
74 Kobs = xhat ( end , 1 : end−1) ;
75 z = xhat ( 1 : end−1,end ) ;
76 P = eye ( nf_fmax , nf_fmax ) ;
77 R = 10 ;
78 z_k = zeros ( nf_fmax , 1 ) ;
79 z_k ( : , 1 ) = z ;
80 n_itr = 1 ;
81 z_opt = Approx_l0 (P , R , z_k , nf_fmax , n_itr ) ;
82
83 xhat_sp = [ kron ( Kobs , z_opt ) , z_opt ;
84 Kobs , 1 ] ;
85 end
86 Xt1 ( : , : , t ) = xhat_sp ;
87 [ Ut , ~ , Vt ] = svd ( xhat_sp ) ;
88 Ut = Ut ( : , 1 ) ;
89 Vt = Vt ( : , 1 ) ;
90 end
91
92 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
93 % Choice of sparsity framework - l1, lp and l0 approximation
94 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
95 % Desc : Function to calculate the CSKF-l1 norm
96
97 function z_sparse = CSKF_l1 (P , R , z_k , nf_fmax , n_itr )
98 for itr = 1 : 1 : n_itr−1
99
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100 H_bar = sign ( z_k ( : , itr ) ) ’ ;
101 K = P∗H_bar ’ ∗ inv ( H_bar∗P∗H_bar ’ + R ) ;
102 z_k ( : , itr+1) = ( eye ( nf_fmax , nf_fmax )−K∗H_bar ) ∗z_k ( : , itr ) ;
103 P = ( eye ( nf_fmax , nf_fmax )−K∗H_bar ) ∗P ;
104
105 end
106 z_sparse = z_k ( : , end ) ;
107 end
108
109 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
110 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
111 % Desc : Function to calculate the CSKF-lp norm
112
113 function z_sparse = CSKF_lp (P , R , z_k , nf_fmax , n_itr )
114 p =0.7;
115 for itr = 1 : 1 : n_itr−1
116 z_str = z_k ( : , itr ) ;
117
118 for jtr = 1 : 1 : nf_fmax
119
120 if z_str ( jtr )>0
121 H_bar (1 , jtr ) = ( sum ( abs ( z_str ) .^ p ) ) ^(1/p−1)∗( abs (

z_str ( jtr ) ) ^(p−1) ) ;
122 else
123 H_bar (1 , jtr ) = −(sum ( abs ( z_str ) .^ p ) ^(1/p−1) ) ∗( abs (

z_str ( jtr ) ) ^(p−1) ) ;
124 end
125
126 end
127
128 K = P∗H_bar ’ ∗ inv ( H_bar∗P∗H_bar ’ + R ) ;
129 z_k ( : , itr+1)= z_str − K∗norm ( z_str , p ) ;
130 P = ( eye ( nf_fmax , nf_fmax )−K∗H_bar ) ∗P ;
131
132 end
133 z_sparse = z_k ( : , end ) ;
134
135 end
136
137 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
138 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
139 % Desc : Function to calculate the exponential Approximation of L0 norm
140
141 function z_sparse = Approx_l0 (P , R , z_k , nf_fmax , n_itr )
142
143 alpha = 1 ;
144 for itr = 1 : 1 : n_itr−1
145
146 z_str = z_k ( : , itr ) ;
147
148 for jtr = 1 : 1 : nf_fmax
149
150 if z_str ( jtr )>0
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151 H_bar (1 , jtr ) = −alpha∗exp(−alpha∗z_str ( jtr ) ) ;
152 else
153 H_bar (1 , jtr ) = alpha∗exp ( alpha∗z_str ( jtr ) ) ;
154 end
155
156 end
157
158 K = P∗H_bar ’ ∗ inv ( H_bar∗P∗H_bar ’ + R ) ;
159 z_k ( : , itr+1)= z_str + K ∗( nf_fmax−sum ( exp(−alpha . ∗ abs ( z_str ) ) )

) ;
160 P = ( eye ( nf_fmax , nf_fmax )−K∗H_bar ) ∗P ;
161 end
162 z_sparse = z_k ( : , end ) ;
163 end
164
165 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
166 end
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