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A B S T R A C T

Fluvial reservoirs are difficult to model due to the high permeability contrast between the
sandstone bodies and the overbank deposits and the complex geometry of the permeable
(sandstone bodies) and impermeable zones (overbank deposits). A set of fluvial meandering
models has been generated using FLUMY R©. The models represent a range of Net-to-Gross
ratios and sandstone body geometries. In order to quantify the effect of sample size on
effective properties, the models are evaluated based on the statistical moments of the prob-
ability distributions of porosity and single-phase permeability as a function of sample size.
The porosity and permeability show a high spread at small sample volumes, but the spread
reduces as the sample size increases. A normalized standard deviation, the coefficient of
variation, has been used as a criterion for the variability of the probability distributions. The
coefficient of variation of the porosity and the horizontal permeability show a monotonic
decline as a function of sample size. The coefficient of variation of the vertical permeability
does not show a monotonic decline. This is caused by a drastic decrease of the mean of
the vertical permeability with increasing sample volume. The mean of the horizontal perme-
ability also decreases with increasing sample size, but to a lesser extent. The mean of the
probability distributions of permeability as a function of sample size converges much earlier
than the standard deviation. This convergence indicates that we can determine the effective
properties at the Representative Elementary Volume (REV), without reaching REV. The con-
vergence of the mean could potentially be used as a criterion for the relevant spatial scale of
upscaling from the fine scale static model to the coarse scale model. Furthermore, if cells are
uncorrelated at a scale where the mean of the permeability is not a function of sample volume
anymore, random attribution of properties can be used to populate dynamic grid cells.
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1 I N T R O D U C T I O N

1.1 reservoir modeling
Subsurface resources such as oil, gas and water are generally recovered from porous and
permeable (either by initial permeability of the rock itself or artificially created permeability)
rock layers. Permeable rock layers contain one or multiple fluids or gasses within the matrix1.
A porous and permeable rock layer that contains a subsurface resource is called a reservoir.
Wells are drilled into the reservoir to extract the fluids or gasses from the surbsurface if it
is not in direct contact with the surface. In order to predict the amount of available and
extractable resources and to determine the response of the reservoir on the extraction of
resources by the wells, a model of the reservoir is built. This model tries to capture the often
complex interaction between the matrix and fluids/gasses. The high uncertainty, between
the actual state of the reservoir and the modelled one makes reservoir modeling a difficult
task. Still, reservoir modeling forms an important tool to evaluate the various stages of field
development. Reservoir models are built and evaluated over the entire life of the reservoir.
According to Howell et al. (2014), they are important during various stages of the field
development:

• Field appraisal and development, for optimizing well location and spacing.

• Production, monitoring and predicting performance and planning infill wells (Labour-
dette, 2008).

• Prior to Enhanced Oil Recovery2, predicting the performance and evaluate economic
viability (Matthews et al., 2008).

• Decommissioning, to demonstrate regulators and stakeholders that the field is ready to
be abandoned (Ruivo et al., 2001).

Reservoir models can generally be divided into two model groups. Geological or static
models, created by geologists and geophysicists (that depict the geology of the reservoir in a
static model) and reservoir simulation models that use the static model to simulate the flow of
fluids through the reservoir over time based on properties such as porosity, permeability and
water saturation. The focus of this research is on the population of the reservoir properties of
the static model and the dynamic model is therefore not further discussed.

1.1.1 The Static Reservoir Model

A static reservoir model depicts the physical space of the reservoir by an array of discrete
(regular or irregular) cells. Static reservoir models aim to integrate data from a broad range

1 The matrix is the solid part of the reservoir and bounds the void space that is able to contain or transmit fluids or
gasses.

2 Enhanced Oil Recovery (EOR) or tertiary oil recovery are methods that are used to obtain more or faster production
of oil from the reservoir by use of gas, thermal or chemical injection into the reservoir. The main goal of EOR is to
increase the mobility of oil in order to enhance extraction.

1



2 introduction

of measurements (Figure 1.1) to capture both a geologically realistic range of measurements
and the spatial variability of in petrophysical properties (Keogh et al., 2007). An important
purpose of a static reservoir model is to serve as a high fidelity scale input for dynamic reser-
voir simulations models, so as to be able to realistically simulate flow through them. Keogh
et al. (2007) state that: ”Reservoirs have potentially measurable, deterministic properties at
all scales that arise from the interaction of many, complex processes and are therefore in-
trinsically deterministic in nature.” This observation is important, because it implies that all
”errors” and uncertainties in static geological models arise either from lack of data or lack
of computational power to represent all details present in the actual reservoir. In particular
the data that we sample from the reservoir is incomplete and of different resolution (vertical
and horizontal) (Keogh et al., 2007). One can generally say that the data that is sampled
increases in resolution with a decrease in data covered as a percentage of the entire reservoir
(Figure 1.1).

Figure 1.1: A chart showing the subsurface data types that are used as input to construct reservoir
models. The reservoir volume sampled is plotted against the vertical resolution of the data
type. Outcrop analogues and Physical-based modeling techniques can be used to link the
different data sources and construct more realistic models (Keogh et al., 2007).

1.1.2 Reservoir Architecture and Spatial Modeling

The geological features of the model can be classified as external and internal geometrical
features. External features include information like trap configuration, seal capacity and the
base of the reservoir. The internal geometry of the reservoir (reservoir architecture) is re-
lated to the 3D (or 2D) distribution of lithofacies in the reservoir. Lithofacies are a mappable
subdivision of a stratigraphic unit that can be distinguished by its properties like texture,
mineralogy, grain size and depositional environment that produced it. The lithofacies can be
translated to petrophysical properties, such as porosity and permeability, that are used as in-
put parameters for the static and dynamic models. Reservoir architecture (internal geometry)
has heterogeneities at multiple scales. Especially fluvial reservoirs, which is the focus of this
study, are often challenging due to the complex nature of the geometry and distribution of
the sandstone bodies (Pettijohn et al., 1973; Nordahl and Ringrose, 2008; Keogh et al., 2014)
and the large contrast between the petrophysical properties of sandstone bodies and over-
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bank deposits. These deposits are unsuited to be modelled with simple trend mapping and
interpolation techniques (Keogh et al., 2007). This is due to the heterogeneity levels of flu-
vial reservoirs. Heterogeneity of fluvial reservoirs can be characterized by hierarchical scales
(Weber, 1986; Haldorsen, 1986; Nordahl and Ringrose, 2008; Ringrose et al., 2008)(Figure 1.2).
Since it is impossible to model every scale of heterogeneity, 3D cell arrays are used to model
the different properties of the reservoir and represent the static and dynamic properties of the
interval averaged over the cell. Properties can be represented as both scalar and tensor fields
in Euclidean space (2D or 3D). Especially spatial distribution of lithological heterogeneity is
of main importance for proper static and dynamic reservoir modeling.

Figure 1.2: A schematic view of different scales and heterogeneities that affect the properties of a reser-
voir in a fluvial depositional system. Pettijohn et al. (1973) proposed this hierarchical se-
quence of heterogeneity types. Figure based on Keogh et al. (2014) after Haldorsen (1986).
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1.2 the continuum approach in porous media
The reservoir can be seen as a complex interaction of static (grains, cement) and dynamic
(water, oil, gas) particles. If we want to model a very simple homogeneous sandstone (solid
phase) with water and black oil below bubble point (liquid phases), it is almost impossible to
describe this in terms of the intermolecular interactions. Even more, if an extensive quantity
of a phase is modeled in terms of the state variables at points inside the domain that is
occupied by the phase where the interphase surfaces act as the boundaries (Bachmat and Bear,
1987), it is still a very cumbersome task to model this in a porous sandstone that generally has
very complex geometries. Simplifications of pore models exist where this can be analytically
solved (e.g., Kozeny-Carman’s equation that models the void space as multiple tubes with
varying diameter (Kozeny, 1927; Carman, 1937), but the formula has empirically tested factors
to correct for tortuosity and geometry of the fluid pathways). Recent developments in micro-
scale pore-structure characterization are promising (e.g. Chen et al., 2013; Jungreuthmayer
et al., 2015; Tsuji et al., 2016), but this is not a generally applied method (yet). A widely
accepted and used method is the continuum approach. In the continuum approach, a passage
is made from the microscopic description to the macroscopic description. In the macroscopic
description, a value is assigned to the state variables of all phases that are present in the
investigated porous medium domain (Bachmat and Bear, 1986). One of the most obvious
variables in the case of a porous medium is the presence of two persistent subdomains: the
solid phase and void space. The volume of the voids devided by the the total volume of
the sample space is expressed as the porosity (φ), a property that inevitably arises from
the continuum approach. The continuum approach is also referred to as the effective medium
approximation and is a widely used method in the oil and gas industry.

1.2.1 The Continuum Approach and Elementary Volumes

The inability to describe the the processes in porous media at the microscopic level leads us to
adopt the continuum approach. The real porous medium is then replaced by a fictitious model,
a continuum that fills up the entire area/volume of the phase. These area’s/volumes are
referred to as elementary area’s/volumes (EA’s/EV’s). One or a set of continua can be averaged
over this EA/EV and assigned to the centroid of the EA/EV. One can select any Arbitrary
Elementary Area/Volume (AEA/AEV) from passing from a microscopic description to a macro-
scopic description of the system. Bachmat and Bear (1986) states that: ’Obviously, different
AEV’s will yield different averaged values for each quantity of interest, and there is no sense
in asking which of them is more ’correct’.’ However, since a value may strongly depend on the
size of the volume over which it was taken, it must be labelled by the size of the AEV/AEA.
In order to avoid this labelling of AEV’s and a find a more generic value for the macroscopic
description, Bear (1972) introduced the concept of a representative elementary volume (REV).
Hubbert (1956) already realized that the length scale of re-scaling in the continuum approach
is essential to obtain a generic value that is meaningful in the macroscopic description of a
porous medium. In order to quantify the representativeness of the re-scaling size using the
continuum approach, Bear (1972) states that a Representative Elementary Volume (REV) is a
re-scaling volume that is both homogeneous (within a prescribed error level) and statistically
stationary (i.e. the joint probability distribution does not change over location) (Nordahl
and Ringrose, 2008) within the investigated domain. Figure 1.3 shows a hypothetical sample
of a porous medium. The red squares are arbitrary elementary area’s (AEA) that sample
a desired property from the domain. If the AEA is small, the measured property is heav-
ily dependent on the location of the elementary area. If the area increases, the chances of
capturing a representative amount of the heterogeneity of the sample increase and could con-
verge to a value that is representative for the sample as a whole. The elementary areas (or
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volumes) within the range that reach a value that does not change with location, within a
prescribed error level, is called the representative elementary area (REA) or in 3 dimensions
representative elementary volume (REV) (Bachmat and Bear, 1986). Although the concept
of REV is quite clear and straightforward, quantification and implications of REV are often
very difficult/impossible to obtain. The main area of interest for REV quantification is the
shift from the microscopic scale (pores and grains) to the macroscopic scale (core plugs, tube
flow experiments). In geology, we generally talk about the porosity, absolute permeability,
kv/kh-ratio3, etc. of a particular type of rock, like they are properties that evidently arise
from a single measurement of the rock. One of the main reasons for this is that we generally
assume a core-plug to be of a fairly homogeneous rock like Bentheim Sandstone4. A Bentheim
Sandstone core plug is indeed at REV at the scale these measurements are taken. This is not
the case for all core plug measurements from rocks. Corbett and Jensen (1992) and Nordahl
et al. (2005) showed that conventional core plugs are often not at an appropriate scale for
determining representativity. A way industry deals with the variability of the measurement
is by using arithmetic/geometric/harmonic averages and probability distribution of a set of
measurements. They populate the model with the statistical properties of the dataset. This
method could be adequate if the cells that are populated are the same size at which the mea-
surement was taken (although more objections exist which are addressed in chapter 4). If we
use larger sized cells, the shape and width of the probability distribution (and possibly the
mean) of the modeled property will differ from the probability distribution of the small scale
measurement (generally σ decreases and the shape will tend to go from a log-normal towards
a normal distribution (Nordahl et al. (2014)). Using the REV of the measurement’s hetero-
geneity scale will (partially) avoid these probability distribution scaling problems, since it is
by definition representative for the scale of that heterogeneity.

1.2.2 The Representative Elementary Volume of Fluvial Reservoirs at the Scale of the
Depositional System

Pettijohn et al.’s (1973) observations about heterogeneity scales are around for decades, but
the re-scaling sizes we use are mainly based on the data that we can obtain from the reservoir
(Figure 1.2). Haldorsen (1986) defines four main scales that are used for re-scaling:

• Microscopic scale, the scale of pores and grains.

• Macroscopic scale, the scale of conventional core plugs.

• Megascopic scale, the scale of large grid blocks in simulation models.

• Gigascopic scale, the scale of the depositional system/reservoir.

These scales can be subdivided into multiple sub-heterogeneity scales. Apart from the
use of REV in the passage from the microscopic scale to the macroscopic scale, the last two
decades much research has been done on multi-scale modeling (Ringrose et al., 2008; Howell
et al., 2014; Nordahl et al., 2014). In the multi-scale modeling approach, the reservoir property
distributions5 are related to the measurement property distributions. REV serves an impor-
tant role in this approach, since it gives better representations of the effective permeability
architecture (Nordahl et al., 2014). The main area of interest for REV determination in multi-
scale modeling is the sub-meter scale. Primary sedimentary structures significantly influence
flow properties (Hartkamp-Bakker and Donselaar, 1993; Weber, 1982; Hurst, 2009), but it is

3 Vetical permeability devided by the horizontal permeability.
4 An Early Cretaceous shallow-marine homogeneous sandstone that forms an important reservoir rock in the

Dutch/German subsurface.
5 Probability distribution of a property of the grid cells in a static/dynamic reservoir model.
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Figure 1.3: Arbitrary elementary area’s (AEA) in the passage from a microscopic description to a macro-
scopic description of the system. The graph shows the relation of an area to the measured
macroscopic property of the AEA. The smallest arbitrary area that approaches any property
that is representative for the system as a whole (i.e., the value does not change significantly
if the sample volume increases) is referred to as the representative elementary area (REA)
for that specific property. The same holds for arbitrary elementary volumes (AEV) and
representative elementary volumes (REV) (After Bachmat and Bear (1986)).

impossible to include them explicitly in a full-field reservoir model due to computational lim-
itations (Nordahl and Ringrose, 2008). Additive properties (porosity) may be up-scaled with
averaging schemes whilst non-additive properties (permeability) have to be represented by
realistic models with heterogeneities included explicitly (Nordahl and Ringrose, 2008). Exact
solutions are available in the case of simple geometries like stratified media, but sedimentary
geometries are generally more complex. Multiple methods have been used for estimation
of effective properties (effective media theory (Dagan, 1979), percolation theory (Begg and
King, 1985) and deterministic modeling of sedimentary structures (Corbett and Jensen, 1992;
Ringrose et al., 1999). Nordahl and Ringrose (2008) showed that it is possible to use tidal
lithofacies models generated in SBEDTM to obtain REV sizes and do statistical analysis of
permeability based on the sample size of a lithofacies model. These results raise questions if
it might be possible to do REV analysis on larger re-scaling sizes such as from the microscopic
scale to the megascopic scale or from the megascopic scale to the gigascopic scale.
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1.3 research goals
The goal of this research is to evaluate if it is possible to determine the Representative Ele-
mentary Volume and the effective properties of fluvial depositional systems. Much research
has been done on relevant spatial scale of fluvial reservoirs (Nordahl and Ringrose, 2008;
Keogh et al., 2014; de Hoop, 2017), but modeling of these reservoirs, with often complex
geometries, is difficult. The use of REV theory has proven to be successful for modeling of
small scale heterogeneities in sedimentary deposits with a high permeability contast (Nor-
dahl and Ringrose, 2008; Keogh et al., 2014). This raises the question if it is possible to use
the same approach for upscaling of the cells at the scale of the reservoir. The fluvial models
are generated using FLUMY R©. Synthetic data is used, because limited real world data exists
with the detail needed for the research. Theoretically, REV is reached when the coefficient of
variation of a property (porosity, permeability) is zero and the mean does not vary with sam-
ple size. The coefficient of variation will always approach zero if the sample size increases
and the sample space is infinitely large. A property value (porosity, permeability) at which
the amount of dispersion is small enough to be considered at REV is therefore disputable. It
is therefore avoided to make statements about the point where the REV is reached. Rather
does this study investigate relations between geometrical properties of the models and the
influence on the statistical moments of the probability distributions at different sample sizes.
Furthermore, it is investigated whether the effective permeability at the size of the REV can
be determined without sampling at the REV scale.

The main research questions are:

• Is it possible to do REV analysis on models of fluvial depositional systems?

• Is it possible to find the effective permeability at REV based on the statistical moments
of probability distributions as a function of sub-sample size?

• Is it possible to relate simple properties such as Net-to-Gross and sandstone body geom-
etry to the effective properties and the size of the REV of a fluvial depositional system?

• Does REV analysis of models of fluvial depositional systems have (potential) applica-
tions for modeling of fluvial reservoirs?





2 M E T H O D O LO GY

2.1 generation of numerical models of fluvial deposi-
tional systems

A REV can be determined based on real sedimentary rock data, numerical data and even qual-
itative data like geological drawings. A REV is desirably determined based on real life data.
The use of real sedimentary data from smaller samples is possible although time consuming,
but it is impossible at reservoir scale, since no such data exists. Process-based and stochastic
models of the subsurface provide a solution to generate physically realistic sedimentary de-
posits and are able to generate a model in three-dimensional space. To determine the REV at
the scale of the fluvial system, a realistic input model is needed. The main attributes needed
to obtain a proper model are:

• A geologically realistic spatial distribution of the channels in three dimensional space.

• A geologically realistic channel development resulting in the deposition of architectural
elements like point bars, levees, abandoned channels, alluvium and crevasse splays.

• A sample space that is large enough to get samples that can be used for the determina-
tion of the REV.

• Grid cells that are small enough to be representative for the heterogeneity and geometry
of the architectural elements, but large enough to run averaging functions and flow-
based upscaling simulations.

• A large variety of models with different systems to be able to compare these systems
and make (more) general conclusions.

These attributes make it impossible to generate data from real world reservoir, since the
amount of detail needed is too small for the resolution of the data gathered from the reservoir.
Analogues can be used to compute the architectural elements of the reservoir using object-
based methods, but this is a cumbersome task for the purpose of this research since a large
amount of models has to be generated. FLUMY R© has been chosen to generate fluvial input
models, as it is able to fulfill most of the requirements stated above.

2.1.1 FLUMY R© Fluvial Systems

FLUMY R© is a process-based and stochastic modeling tool. It models both meandering chan-
nel systems and turbidites at the scale of a reservoir. The Fluvial System Modeling tool is a
based on the temporal evolution of a channel by migration, cut-off and avulsion. It models
the related deposition of point-bars, mud-plugs, crevasse splays, overbank alluvium and or-
ganic matter (Figure 2.1).
The domain is discretized as a rectangular two dimensional grid. The domain has a deepen-
ing reference plane with a given global slope. The general flow direction is parallel to the
plane dip direction. Time is discretized into time steps (iterations) and at every time step
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migration of the channel is performed. The main parameter for the migration of the channel
is erodability that can be either a constant value over the domain or defined as a map or
matrix on the discretized grid.
During overbank flow, alluvium is deposited with grain size and thickness decreasing ex-
ponentially perpendicular to flow direction of the channel. Aggradation or incision may be
constrained by the distance between the profile of the elevation of the domain and an equi-
librium profile parallel to the reference plane. The equilibrium profile can vary in time.
At some time, a levee breach (either during overbank flow or random) can occur inside or
outside the domain. This breach produces a chute cut-off or a crevasse splay. This crevasse
splay can evolve into a local avulsion. In addition to the local avulsions, regional avulsions
can occur caused by an levee breach further upstream that shifts the channels entry point in
the domain. Abandoned channels are filled with a mud plug (FLUMY R©, 2017).

Figure 2.1: FLUMY output and processes related to the deposition of different litho-facies (FLUMY R©
(2017)).

2.1.2 FLUMY R© Model Settings

FLUMY R© enables the user to set a large variety of parameters in order to produce a model.
This is very usefull in a case study, because it enables the user to generate a large variety of
models. This study is a feasibility study and its main purpose is to compare the statistics
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of the models based on well definable properties of a reservoir like net-to-gross and the
geometry of the elements in the reservoir. FLUMY R© has a built-in interface that provides the
user the opportunity to generate a model that meets predefined reservoir characteristics. The
inputs are a maximum channel depth, Sandbodies Extension Index (SEI1) and Net-to-Gross2.
Figure 2.2 shows how the parameters affect the distribution of the sandstone bodies in the
sample space.

Figure 2.2: FLUMY R© preliminary parameter settings and their effect on sandbody distribution and
geometry in the reservoir FLUMY R© (2017).

2.1.3 FLUMY R© Outputs

The output of the simulation in FLUMY R© is a successive deposition with a variable height
on a two dimensional grid, depending on the height of the topography at the node, of the
age, litho-facies and grain size. The final topography causes the output to be of irregular size
in the vertical direction. The two dimensional grid with deposition units can be exported
to a three dimensional grid format done by discretization. The resulting output is a three
dimensional Cartesian grid of the age, litho-facies and grain size. The exported model is
used as the input sample space for the REV evaluation.

1 The Sandbodies Extension Index (SEI) is a measure for the shape of a sandbody. A low SEI results in ribbon shaped
sandstone bodies and a high SEI results in sheet like sandstone bodies.

2 The Net-to-Gross is a measure for the volume percentage of the reservoir where fluids can flow. For fluvial reservoirs,
this comes more or less down to the volume percentage of the reservoir that is occupied by sandstone bodies



12 methodology

2.1.4 FLUMY R© Output Models and the Assignment of Properties

The discretized FLUMY R© Cartesian grid is exported with 500 x 500 x 300 (x, y, z) cells
resulting in 75 million grid cells. The grid blocks are sized 10m x 10m x 0.5m (dx, dy, dz)
(Figure 2.3). The resulting grid size is 5000m x 5000m x 300m (x, y, z) and has a volume of
3.75 cubic kilometer. The discretized grid is imported in MATLAB R© and will be referred to
as the sample space. All models have the same grid block size and sample space.

Figure 2.3: Grid cell size of the discretized FLUMY R© output.

The models are populated with petrophysical properties based on the discretized grainsize
assigned to the grid cell. FLUMY R© assigns a grain size and a lithology to every cell. Fig-
ure 2.4 shows the lithologies and the associated grain sizes. The porosity and permeability
are assigned to the grain sizes based on an educated guess. They do not represent any real
world data. The porosity value is the effective porosity (i.e., the part of the porosity that
could potentially contribute to flow) and is assigned such that it potentially could meet real
world data. The permeability values are defined based on a cut-off value. Those grain sizes
that would very likely contribute to flow are assigned 1000 mD whilst the grain sizes that
very likely do not contribute to flow are assigned 1 mD. This means that we only consider
the effect of geometry. All measurements will be relative to the upper and lower bound of
the permeability. Introduction of more realistic permeability will likely increase the volume
needed to be representative for the permeability (Norris and Lewis, 1991).

Figure 2.4: FLUMY R© lithology output and associated grain size. The last two rows show the assigned
petrophysical properties.
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The clear cut-off has been used, because the main factor that affects the large scale flow
through fluvial reservoirs is the large contrast between low permeable and high permeable
deposits. This representation avoids assigning a specific value to the deposits, which highly
differs per reservoir, but rather sees it as a relative difference between high and low permeable
zones (i.e., only sandstone bodies significantly contribute to flow). A total of 21 models is
generated. The maximum channel depth is kept constant. The Sandbody Extension Index
(SEI) is set to 50, 80 and 110. For every SEI number, 8 models with varying expected Net-
to-Gross are generated. After generation of the models in FLUMY R©, the cells are populated
with the properties from Figure 2.4. The expected Net-to-Gross is not equal to the Net-to-
Gross of the populated grid, due to differences in cut-off values and FLUMY’s inability to
generate an expected Net-to-Gross explicitly. Table 2.1 shows the Net-to-Gross based on the
Cut-Off defined in Figure 2.4.

SEI = 50 SEI = 80 SEI = 110

NG = 5 8% 9% 9%
NG = 10 13% 15% 15%
NG = 15 18% 20% 22%
NG = 20 24% 25% 27%
NG = 30 33% 36% 38%
NG = 50 52% 55% 58%
NG = 70 69% 72% 75%

Table 2.1: Sample space Net-to-Gross values based on the Cut-Off values in Figure 2.4. The upper
row shows the Sandbodies Extension Index (SEI) and the left column shows the expected
Net-to-Gross.

2.2 evaluation of flumy R©models as a function of sam-
ple volume

To be able to find a REV for fluvial models, the effect of sample volume on porosity and per-
meability has to be evaluated. This is done by sampling blocks with predefined size at ran-
dom locations from the entire sample space. It is important to note that the sampling volume
must be small with respect to the sampling space (i.e. (Vsample volume << Vsample space volume)
and (Lsample length in x, y or z << Lsample space length in x, y or z)). Otherwise it would always converge
to the property of the entire sample space, no matter the amount of heterogeneity (Sahimi
and Islam, 1996).

2.2.1 Sub-Sample Number and Volume

The blocks are sampled from the sample space in a systematic manner. Every sampled block
has the same amount of cells in x, y and z direction. This means that a block with sub-sample
number 100 has 100 x 100 x 100 cells and has dimensions 1000m x 1000m x 50m with a total
volume of 50x106 m3. Figure 2.5 shows the relation between the sub-sample number and
the volume of the cell. Figure 2.6 shows an example of five randomly sampled blocks with
sub-sample numbers 20, 40, 60, 80 and 100. The yellow blocks represent the high permeable
zones (sandstone bodies) and the blue blocks represent the low permeable zones (overbank
deposits).
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Figure 2.5: Sub-sample number versus block volume. The block volume is plotted at a logarithmic
scale.

Figure 2.6: Five sampled blocks with sub-sample number 20, 40, 60, 80 and 100. The sub-sample
number corresponds with a block with an equal amount of cells in three dimensions. Sub-
sample number 100 has 100 x 100 x 100 cells and has dimensions 1000m x 1000m x 50m
with a total volume of 50x106 m3.

2.2.2 Sub-sampling Porosity

The sub-samples of porosity are sized between sub-sample number 2 (400 m3) and sub-sample
number 100 (50x106 m3). A set of 1000 sub-samples from random locations in the sample size
is taken for every even sub-sample number (2,4,6,8,...,100).
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2.2.3 Sub-sampling Permeability

The sub-samples for permeability are sized between sub-sample number 2 (400 m3) and sub-
sample number 100 (50x106 m3). A set of 100 sub-samples from random locations in the
sample space is taken for every even (2,4,6,8,...,50) sub-sample number from 2 to 50. From
sub-sample 55 to 100, a set of 20 sub-samples from random locations in the sample space is
taken for every sub-sample number that is multiple of 5 (55,60,65,70,...,100). Table 2.2 shows
the properties of the sample sizes schematically.

Property Porosity Permeability
Min sub-sample nr. 2 2

Max sub-sample nr. 100 100

Min Volume 400 m3 400 m3

Max Volume 50x106 m3 50x106 m3

Stepsize 2 2 from sub-sample number 2 to 50

5 from sub-sample number 50 to 100

Amount of samples 1000 100 until sub-sample number 50

per sub-sample volume 20 from sub-sample number 50 to 100

Table 2.2: Sample size properties for porosity and permeability.

2.3 upscaling
In order to upscale the cells for the main reservoir properties, porosity and permeability, up-
scaling functions have to be used. It is important to note that the upscaling method is heavily
dependent on the upscaled property. Generally, we can distinguish two property groups:
Additive and non-additive properties. Additive properties, such as porosity, can be upscaled
with simple averaging methods. Porosity is upscaled with simple arithmetic averaging. Non-
additive properties, such as permeability, may be upscaled with simple averaging methods3,
but will often not give realistic results with more complex geometries and anisotropy (Bear,
1972; Desbarats, 1987; Durlofsky, 1991; Wen and Gómez-Hernández, 1996). Therefore, they
are upscaled with numerical upscaling methods.

2.3.1 Porosity

The porosity, a function that inevitably arises from the Continuum Approach, is simply the
ratio between the void space and the total sample volume (Equation 2.1).

φ =
Vvoids

Vvoids + Vmatrix
(2.1)

Porosity is upscaled using weighted arithmetic averaging. Each factor is weighted by its
volume, but since all cell sizes are equal, this reduces to the simple arithmetic average. Equa-

3 Simple upscaling methods include the arithmetic, harmonic and geometric mean. For 1D flow, the upscaled grid
block permeability is perfectly represented by the harmonic mean of the permeabilities of the grid blocks (Wen
and Gómez-Hernández, 1996). For 2D and 3D flow, the geometric mean of the upscaled grid block permeability
will only yield a representative effective permeability value if the grid blocks have nearly random heterogeneity
and local isotropy (Matheron, 1967; Durlofsky, 1991). In cases with almost perfect layering, harmonic-arithmetic or
arithmetic-harmonic averaging can give proper results (Durlofsky, 1991).



16 methodology

tion 2.2 shows the formula for the weighted arithmetic average and its reduction the the
simple arithmetic average.

φ̄ =
∑n

i=1(φi ∗Vi)

∑n
i=1 Vi

−→ x̄ =
1
n

n

∑
i=1

(φi) (2.2)

With x̄ = Arithmetic mean, n = number of cells, φi = Cell property value and Vi = Cell
volume.

2.3.2 Permeability

Permeability is a measure of the ability of a porous medium to allow fluids to pass through
it. Permeability is mainly related to the porosity, geometry of the pores and the level of
connectedness of a medium. It is often too complex to encompass all factors that affect
flow through a porous medium. Therefore permeability is a widespread used parameter to
circumvent modelling of flow of fluids through the matrix itself, but rather capture the void
space and matrix as a continuum. Henry Darcy (1856) found that the flow velocity through
a porous medium is proportional to the change of hydraulic head divided by the length of
the sample. The change of hydraulic head over the length of the sample can be expressed
as the rate of change of pressure vector (∇p). If we include the viscosity in the equation,
Equation 2.3 shows the equation for the absolute permeability related to the superficial fluid
flow. It is important to note that the continuum approach regarding permeability is only valid if
the inertial forces are negligible as compared with that arising from viscosity (Laminar flow)
(Hubbert, 1956). This is very often the case for flow of fluids through natural rocks.

q = − k
µ
· ∇p (2.3)

With q = Superficial fluid flow velocity (m/s), k = Absolute permeability (m2), µ = Viscos-
ity of the fluid (Pa ·m) and ∇p = Pressure gradient vector (Pa/m).

Permeability can be upscaled with flow based upscaling methods. Multiple flow based
upscaling methods exist. They can generally be divided into two groups: local and non-local
upscaling methods. Local upscaling methods derive the effective permeability explicitly from
the cell permeabilities within the upscaled block. However, the effective permeability can be
heavily dependent on the boundary conditions applied to the block. This implies that block
permeability is non-local (i.e. the effective permeability is not only a function of the cells
within the upscaled block, but also a function of the flow conditions within the block that
depend on boundary conditions applied to the block) (Wen and Gómez-Hernández, 1996).
Therefore, non-local upscaling methods have been developed. These methods extend the do-
main of the computational boundary from the upscaled block. This reduces the dependency
of effective permeability on the initial boundary conditions on the flow cell. Figure 2.7 shows
an example of the extension of the flow domain in order to compute the effective permeabil-
ity of the upscaled block. Wen and Gómez-Hernández (1996) and Durlofsky (2005) provide
an extensive review of local and non-local upscaling methods. Indelman and Dagan (1993);
Li et al. (1995); Durlofsky (1991); Holden and Nielsen (2000); Wen et al. (2003) are just a few
of the papers concerning flow-based (non-local) upscaling techniques.

Single-Phase Flow-Based Permeability Upscaling with Sealed Sides Boundary conditions

This study uses single-phase flow-based permeability uspcaling with sealed sides boundary
conditions. This method is proposed by Warren and Price (1961) and simulates a conventional
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Figure 2.7: Local, regional and global upscaling methods (from PetroWiki (2015)).

core plug measurement, where two opposite sides are subjected to a pressure drop and all
other sides are sealed. A conventional core plug is only examined in one direction, but a
block can be subjected to three different directions with this method. Figure 2.8 shows a
hypothetical block that is subjected to a pressure drop in three different directions.

Figure 2.8: Flow-based ’scalar’ permeability uspcaling with sealed sides boundary conditions (Warren
and Price, 1961).
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The permeability is determined with inverse Darcy’s law by determining the outflow for a
given input pressure difference. The upscaled block is assigned a three dimensional diagonal
effective permeability tensor:

ke f f =

kx 0 0
0 ky 0
0 0 kz



This method is the simplest, but also the most intuitive flow-based upscaling method
(Durlofsky, 2005). This is one of the reasons this method is used in this study. Many other
flow-based upscaling methods, such as local periodic, regional and global upscaling, pro-
vide a full three dimensional effective permeability tensor that is better able to capture the
actual conditions imposed on the region during the course of flow simulation. Especially
because the actual conditions imposed on the region are not known beforehand (Durlofsky,
2005). Still, although these arguments are valid in the strict sense of accurate upscaling, they
are much more complex to simulate and process for the purpose of this research. A diago-
nal three dimensional effective permeability tensor is much easier to imagine and interpret.
Moreover, the input models in this study are not sampled with random orientation. The gen-
eral flow direction of all models is the same and the stacking pattern of the channels is not
tilted with respect to the reference plane. The horizontal permeability in the x and y direction
and the vertical permeability are therefore well aligned with the direction of the sandstone
bodies. The main differences between the effective block permeability that is upscaled with
single-phase flow-based upscaling with sealed sides boundary conditions and other single-
phase flow-based upscaling methods will likely occur in small sub-samples. It is important
to note that the single-phase flow-based permeability upscaling with sealed sides boundary
conditions generally tends to underestimate the ’true’ effective permeability (King and Mans-
field, 1999). It thickens the barriers and narrows the flow paths. This effect decreases with
increasing block size since a larger part of the sample space is sampled. A detailed descrip-
tion with formulas en governing equations of single-phase flow-based local upscaling with
sealed sides boundary conditions can be found in: (Durlofsky, 2005, 11-12).

2.4 statistical analysis of fluvial depositional systems
as a function of sample volume

The upscaled blocks with varying sample volume are analysed based on the statistical mo-
ments of the probability distribution that is computed for the sub-sample numbers in subsec-
tion 2.2.1. The set of sample properties for a certain sub-sample number is analysed based
on the mean, standard deviation and coefficient of variation. Figure 2.9 shows a typical Box-
Whisker plot of the probability distributions of the samples as a function of the sub-sample
number. Every box (and whisker) represents one probability distribution. It is important to
note that the mean of the probability distribution is the same for every sub-sample number
for porosity (additive property). On the contrary, the mean of the probability distribution per
sub-sample number could vary for permeability (non-additive property).
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Figure 2.9: Typical Box-Whisker plot for a property as a function of the sub-sample number. Every box
(and whisker) represents one probability distribution.

The set of property values per sub-sample number is analyzed based on the mean, stan-
dard deviation and coefficient of variation. The mean is the expected value of a probability
distribution. The mean of the set of samples for a given sub-sample number is computed by
Equation 2.4.

µ =
1
n

n

∑
i=1

(xi) (2.4)

With µ = mean, n = number of samples and xi = property value.

The standard deviation is a measure of the amount of variation or dispersion of a set of
data values. For a normally distributed dataset, there is a chance of 68.2% that a property
value is at maximum one standard deviation away form the mean. The standard deviation of
the set of samples for a given sub-sample number is computed by Equation 2.5.

σ =

√
1
n

n

∑
i=1

(xi − µ)2 with µ = Equation 2.4 (2.5)

With σ = standard deviation, n = number of samples, xi = property value and µ = mean.

Permeability values may span several orders of magnitude and the standard deviation
usually increases as the mean increases. The coefficient of variation is therefore a better
estimator of the dispersion of a set of permeability values. The coefficient of variation can
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be seen as a normalization of the standard deviation (i.e., it estimates the relative dispersion
rather than the absolute dispersion of a dataset). The coefficient of variation of the set of
samples for a given sub-sample number is computed by Equation 2.6.

Cv =
σ

µ
with µ = Equation 2.4 and σ = Equation 2.5 (2.6)

With Cv = coefficient of variation.

Corbett and Jensen (1992) provide an extensive review of the use of the coefficient of varia-
tion for permeability measurements. They conclude that the coefficient of variation is repre-
sentative for a set of samples if:

n0 = 100C2
v (2.7)

With no = the number of samples and Cv = coefficient of variation.

This criterion is not always met in case of the permeability measurements due to com-
putational limitations. This makes the coefficient of variation curves less smooth, but since
they are evaluated for multiple sub-sample numbers, a trend can be distinguished. This will
further be discussed in the conclusions and discussions.



3 R E S U LT S

The aim of the research is to evaluate if it is possible to define a Representative Elementary
Volume (REV) for fluvial depositional models. This is done by plotting the statistical mo-
ments of the probability functions as a function of sub-sample number. Figure 3.1 shows an
example of the representation of the mean and standard deviation of the horizontal perme-
ability parallel to the paleo-flow direction as a function of sub-sample volume for one specific
model. The coefficient of variation is used as the measure of dispersion of the dataset. Theo-
retically, REV is reached when the coefficient of variation is zero and the mean does not vary
with sample size. This criterion will not yield when the sample scale is small with respect
to the scale of the heterogeneity. Consequently, a criterion has to be used that is robust and
justifiable for the purpose of modeling. Therefore, the models are analyzed based on the
curves for the mean, standard deviation and coefficient of variation without making state-
ments about the REV beforehand. The discussion contains several methods to determine an
REV and the criteria that can be used to define an REV.

Figure 3.1: An example of the mean and standard deviation of the permeability parallel to the paleo-
flow direction as a function of sample volume. The blocks are examples of a randomly
sampled block. The histograms show the distribution for horizontal permeability parallel
to the paleo-flow direction for 100 blocks sampled at size 20 and 40 respectively.

21
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3.1 porosity as a function of sample volume

The mean, standard deviation and coefficient of variation of porosity are plotted as a function
of sample volume. Since porosity is an additive value, the mean of the porosity should not
vary with sample volume. The sampling of the porosity serves both as a proof of concept
for the model and as a method for comparison with the permeability as a function of sample
volume. Permeability is much more difficult to analyse, especially because the mean can
vary. The analysis of the porosity can therefore serve an important role as a model check and
a comparison for the analysis of the permeability.

3.1.1 Mean as a Function of Sample Volume

The mean of the porosity as a function of sample volume for a Sandbodies Extension Index
of 50, 80 and 110 with multiple Net-to-Gross ratios is plotted in Figure 3.2a, Figure 3.2b and
Figure 3.2c respectively. Although the sample spaces with low Net-to Gross show variation
in the mean for smaller sub-samples, there is no clear trend of increase or decrease of the
mean as a function of sample volume.

(a) The mean of the porosity as a function of
sample volume for models with a Sandbod-
ies Extension Index of: 50.

(b) The mean of the porosity as a function of
sample volume for models with a Sandbod-
ies Extension Index of: 80.

(c) The mean of the porosity as a function of
sample volume for models with a Sandbod-
ies Extension Index of: 110.

Figure 3.2: The mean of the porosity as a function of sample volume.

3.1.2 Standard Deviation as a Function of Sample Volume

The standard deviation of the porosity as a function of sample volume for a Sandbodies
Extension Index of 50, 80 and 110 with multiple Net-to-Gross ratios is plotted in Figure 3.3a,
Figure 3.3b and Figure 3.3c respectively. The standard deviation as a function of sample
volume shows convergence towards lager sample volumes for all curves. It is clearly visible
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that the standard deviation for the smallest sub-sample (2x2x2) is heavily dependent on the
the Net-to-Gross ratio for all different models. All three models have the highest initial
standard deviation for a Net-to-Gross between 0.33 and 0.58 and the lowest initial standard
deviation for a Net-to-Gross between 0.08 and 0.09. The highest Net-to-Gross curve (between
0.69 and 0.75, depending on the model) converges significantly faster than the curves for
lower Net-to-Gross.

(a) The standard deviation of the porosity as a
function of sample volume for models with
a Sandbodies Extension Index of: 50.

(b) The standard deviation of the porosity as a
function of sample volume for models with
a Sandbodies Extension Index of: 80.

(c) The standard deviation of the porosity as a
function of sample volume for models with
a Sandbodies Extension Index of: 110.

Figure 3.3: The standard deviation of the porosity as a function of sample volume.

3.1.3 Coefficient of Variation as a Function of Sample Volume

The Coefficient of Variation of the porosity as a function of sample volume for a Sandbodies
Extension Index of 50, 80 and 110 with multiple Net-to-Gross ratios is plotted in Figure 3.4a,
Figure 3.4b and Figure 3.4c respectively. All curves show a logarithmic decline. It is clearly
visible that the coefficient of variation is heavily dependent on the Net-to-Gross ratio. This
is fairly intuitive considering the standard deviation curves that are fairly similar to each
other except for the Net-to-Gross ratios above 0.69. It is important to observe that the some
curves in Figure 3.4a and Figure 3.4b show a more rapid decline of the coefficient of variation
after sub-sample number 60. For sub-sample numbers higher than 60, this results in a higher
coefficient of variation for models with a higher Net-to-Gross ratio than models with a smaller
Net-to Gross ratio. This deviates from the general trend that the coefficient of variation is
higher for models with a low Net-to-Gross ratio.
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(a) The coefficient of variation of the porosity as a
function of sample volume for models with a
Sandbodies Extension Index of: 50.

(b) The coefficient of variation of the porosity as a
function of sample volume for models with a
Sandbodies Extension Index of: 80.

(c) The coefficient of variation of the porosity as a
function of sample volume for models with a
Sandbodies Extension Index of: 110.

Figure 3.4: The coefficient of variation of the porosity as a function of sample volume.



3.2 permeability as a function of sample volume 25

3.2 permeability as a function of sample volume

The mean, standard deviation and coefficient of variation of the two horizontal and the ver-
tical permeability are plotted as a function of sample volume. Since permeability is an non-
additive value, the mean of the permeability may vary with sample volume, to the contrary
of porosity, where the mean does not vary with sample volume. This section only shows the
curves for a Sandbodies Extension Index of 50, because the directional effective permeability
tensor gives three permeability curves resulting in a large amount of data. The curves for the
mean, standard deviation and coefficient of variation of the different Sandbodies Extension
Index show similar behavior. The curves for all models are visualized in Appendix B.

3.2.1 Mean as a Function of Sample Volume

The mean of the horizontal permeability parallel to the paleo-flow direction, horizontal per-
meability perpendicular to the paleo-flow direction and vertical permeability as a function of
sample volume for a Sandbodies Extension Index of 50 with multiple Net-to-Gross ratios is
plotted in Figure 3.5a, Figure 3.5b and Figure 3.5c respectively. The mean of the permeability
as a function of sample volume for all models is plotted in Appendix B. A clear trend is
visible for both horizontal permeability and vertical permeability. The mean for all perme-
abilities is highest for high Net-to-Gross and lowest for low Net-to-Gross. The decrease of
the mean as a function of sample volume is much more drastic for the vertaical permeability
than for both horizontal permeabilities. All curves show a decrease of the mean with an in-
crease of sample volume. The mean of low Net-to-Gross sub-samples tends to converge at a
larger sub-sample size than high Net-to-Gross samples for the both horizontal permeabilities.
On the contrary, the mean of high Net-to-Gross sub-samples tends to converge at a larger
sub-sample size than low Net-to-Gross samples for the vertical permeability.

(a) The mean of the horizontal permeability
parallel to the paleo-flow direction.

(b) The mean of the horizontal permeability
perpendicular to the paleo-flow direction.

(c) The mean of the vertical permeability.

Figure 3.5: The mean of the permeability as a function of sample volume for models with a Sandbodies
Extension Index of: 50.
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3.2.2 Standard Deviation as a Function of Sample Volume

The standard deviation of the horizontal permeability parallel to the paleo-flow direction,
horizontal permeability perpendicular to the paleo-flow direction and vertical permeability
as a function of sample volume for a Sandbodies Extension Index of 50 with multiple Net-to-
Gross ratios is plotted in Figure 3.6a, Figure 3.6b and Figure 3.6c respectively. The standard
deviation of the permeability as a function of sample volume for all models is plotted in
Appendix B. The standard deviation of the permeability in all directions shows a decline as
a function of sub-sample size, but tends to be more dependent on Net-to-Gross ratio than the
porosity. The difference is more distinct for the vertical permeability than for the horizontal
permeability. Another difference between the standard deviation of horizontal permeability
and the vertical permeability is the relative decline of standard deviation for different Net-to-
Gross ratios. The standard deviation of vertical permeability shows the fastest decline for the
lowest Net-to-Gross ratio and the slowest decline for the highest Net-to-Gross ratio. On the
contrary, the standard deviation of horizontal permeability shows the fastest decline for the
lowest Net-to-Gross ratio, but the slowest decline for the Net-to-Gross ratios between 0.3 and
0.6 depending on the sandstone body geometry of the model.

(a) The standard deviation of the horizontal
permeability parallel to the paleo-flow di-
rection.

(b) The standard deviation of the horizontal
permeability perpendicular to the paleo-
flow direction.

(c) The standard deviation of the vertical per-
meability.

Figure 3.6: The standard deviation of the permeability as a function of sample volume for models with
a Sandbodies Extension Index of: 50.

3.2.3 Coefficient of Variation as a Function of Sample Volume

The coefficient of variation of the horizontal permeability parallel to the paleo-flow direction,
horizontal permeability perpendicular to the paleo-flow direction and vertical permeability
as a function of sample volume for a Sandbodies Extension Index of 50 with multiple Net-to-
Gross ratios is plotted in Figure 3.7a, Figure 3.7b and Figure 3.7c respectively. The coefficient
of variation of the permeability as a function of sample volume for all models is plotted
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in Appendix B. The coefficient of variation of the horizontal permeability shows a general
decline for all curves, with the coefficient of variation heavily dependent on the Net-to-Gross
ratio. The coefficient of variation of the vertical permeability shows more peculiar behavior
with an increase of the coefficient of variation after which it declines for all different curves.
The peak of the coefficient of variation tends to be at a higher sub-sample size for higher
Net-to-Gross ratios.

(a) The coefficient of variation of the horizon-
tal permeability parallel to the paleo-flow
direction.

(b) The coefficient of variation of the horizon-
tal permeability perpendicular to the paleo-
flow direction.

(c) The coefficient of variation of the vertical
permeability.

Figure 3.7: The coefficient of variation of the permeability as a function of sample volume for models
with a Sandbodies Extension Index of: 50.





4 D I S C U S S I O N

This chapter will focus on the statistical moments of the permeability as a function of sample
volume. The behavior of the curves of the statistical moments is translated to the input
properties of the models. The behavior is explained with both mind experiments and cross-
sections of the models. Furthermore, it will address the question if it might be possible to
determine the ’true’ effective permeability at REV scale without sampling at REV scale. The
final part of this chapter discusses the possible applications of the results from this study.

4.1 sampling and probability distributions

The evolution of probability distributions of effective properties as a function of sample size
forms the most important part of this study. The probability distributions are analyzed based
on their statistical moments, but these statistical moments tell little about the shape of the
distribution. Figure 4.1 shows a very simple two layered high contrast permeability field.
It is easy to imagine that the probability distribution of an infinitely small sub-sample at
random locations from the sample space would either capture a high or a low permeability.
If there is no initial difference in vertical and horizontal permeability, the distribution of the
sub-samples is bi-modal and will yield for both vertical and horizontal permeability the same
probability distribution. If the sub-sample size gets larger with respect to the scale of the geo-
bodies, the chance of sampling both high and low permeability in one sub-sample increases.
This is clearly visualized in Figure 4.1 where the lines indicate the part of the sample space
where a sub-sample samples captures both high and low permeability values. The influence
on the probability distribution of the horizontal and vertical permeability will be different.
The horizontal permeability will go from a symmetric bi-modal probability distribution to a
normal probability distribution and the expected value will be the same for all distributions,
since it converges to the arithmetic mean of the entire sample space. The vertical permeability
will go from a symmetric bi-modal probability distribution to a asymmetric bi-modal proba-
bility distribution and the expected value will decrease as a function of sample volume, since
it converges to the harmonic mean of the entire sample space (Figure 4.1). The evolution of
probability distributions as a function of sub-sample size and its relation with the sampled
properties is important to keep in mind in order to get a better understanding of the influence
of geometry on effective properties and REV. Most high permeability contrast sedimentary
deposits show horizontal layering due to the nature of deposition. The harmonic and arith-
metic mean of a perfect layered system generally form the upper and lower bounds of the
’true’ effective permeability. This knowledge, in combination with the evolution of probability
distributions as a function of sub-sample size forms the foundation of the evaluation of the
effect of geometry on effective permeability as a function of sub-sample size and REV.

29
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Figure 4.1: The upper figure shows a very simple two layered system with a high permeable and low
permeable layer. The lines represent the range that for which a random sub-sample cap-
tures at least a part of the high and low permeable layer. It is easy to understand that
if the sub-sample size is infinitely small, the probability distribution is bi-modal, it either
captures a high permeable sample or a low permeable sample. If the sub-sample size in-
creases, the likelihood of capturing both a part of the low permeable and the high permeable
layer in one sample increases. This is why small sub-samples of high contrast permeability
fields generally show a bi-modal distribution. As the size of the sub-sample increases, the
probability distribution tends to be shaped more like a normal or log-normal distribution
depending on the measured property. The graphs show hypothetical probability distribu-
tions as a function of sub-sample volume for both horizontal and vertical permeability. The
horizontal permeability converges to a value that is the arithmetic mean of the entire sample
space and the distribution tends to go from a symmetric bi-modal to a normally distributed
probability distribution. The vertical permeability converges to a value that is the harmonic
mean of the entire sample space and tends to go from a symmetric bi-modal to a asymmetric
bi-modal distribution.
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4.2 mean effective permeability
The coefficient of variation and the standard deviation of permeability clearly do not converge
to zero within the volume range that is sampled (Appendix B). Although many curves reach
values that are within the threshold of a coefficient of variation of 0.5 that Corbett and Jensen
(1992) define as a homogeneous, this threshold is disputable and heavily dependent on the
purpose. The mean effective permeability curves show clear convergence for larger volumes.
This indicates that, although the variation between the sub-samples is still large, the mean of
the samples becomes (more) representative for the ’true’ effective permeability at the scale of
REV. Even more, it indicates that it could be unnecessary to capture the effective permeability
at the REV scale (i.e., the scale where there is no variation between the samples), but rather
capture its value where the mean does not change as a function of sample volume. Desbarats
(1989); Deutsch (1989) have used this criterion for determining the statistical properties of
flow in mud-sand systems. It must be noted that it is not known at which scale the effective
property is not a function of sample volume any more (REV). Objections exist to this this
assumption from which a couple are addressed in section 4.4 and section 4.5.

(a) The dimensionless mean difference be-
tween the horizontal permeability parallel
to the paleo-flow direction and mean of
the horizontal permeability parallel to the
paleo-flow direction between sub-sample
size 90 and 100 as a function of sample vol-
ume for samples with a Sandbodies Exten-
sion Index of 50.

(b) The dimensionless mean difference be-
tween the horizontal permeability perpen-
dicular to the paleo-flow direction and
mean of the horizontal permeability per-
pendicular to the paleo-flow direction be-
tween sub-sample size 90 and 100 as a func-
tion of sample volume for samples with a
Sandbodies Extension Index of 50.

(c) The dimensionless mean difference be-
tween the vertical permeability and mean
of the vertical permeability between sub-
sample size 90 and 100 as a function of sam-
ple volume for samples with a Sandbodies
Extension Index of 50.

Figure 4.2: The dimensionless mean difference between the permeability and mean of the permeability
between sub-sample size 90 and 100 as a function of sample volume for samples with a
Sandbodies Extension Index of 50.
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4.2.1 Dimensionless Mean Difference of the Effective Permeability

The curves in Figure 4.2 show the dimensionless difference between the mean of the perme-
ability of a sub-sample size and the mean of the permeability of sub-sample sizes 90 to 100

for models with a Sandbodies Extension Index of 50. The mean of the permeability of the
sub-samples between 90 and 100 is chosen to diminish the variation caused by the low sample
support at large sub-sample sizes (i.e., 20 samples per sub-sample size). More detailed curves
for all models are plotted in Appendix C. If we assume that the mean of the permeability of
sub-samples between 90 and 100 is representative for the ’true’ effective permeability at the
REV scale, we can plot the dimensionless difference between the mean of the permeability
of a sub-sample size and the assumed ’true’ effective permeability. The dimensionless differ-
ence is used to evaluate the convergence of the curves. The horizontal permeability parallel
to paleo-flow for small sub-sample sizes can be two times higher than the horizontal perme-
ability parallel to paleo-flow for low Net-to-Gross. The variation does not show a clear trend
for sub-samples larger than 30 and variation is expected to be caused by the small amount
of samples (i.e., 20 samples per sub-sample size after sub-sample size 50). The horizontal
permeability perpendicular to paleo-flow for small sub-sample sizes can be more than three
times higher than the horizontal permeability perpendicular to paleo-flow for low Net-to-
Gross. The variation does not show a clear trend after sub-sample size 70 and variation is
expected to be caused by the small amount of samples (i.e., 20 samples per sub-sample size
after sub-sample size 50). The vertical permeability shows an even more drastic trend. The
vertical permeability for small sub-sample sizes can be more than hundred times higher than
the vertical permeability for low Net-to-Gross. The variation does not show a clear trend after
sub-sample size 70.

4.2.2 The Mean Effective Permeability as a Function of Net-to-Gross

A curve of the effective permeability of fluvial positional system as a function of Net-to-Gross
ratio can be plotted under the assumption that the mean of the permeability between sub-
sample size 90 and 100 is representative for the ’true’ effective permeability at REV (i.e., the
sample size where there is no or little variation in the mean effective permeability between
the sub-sample sizes). These curves can be compared with the curves for minimal (harmonic
mean) and maximal (arithmetic mean) effective permeability values in a perfectly layered
system. The geometric mean as a function of sample volume is plotted as a representation
of a sample space with random heterogeneity and local anistropy. The curves for horizontal
permeability (parallel and perpendicular to the paleo-flow direction) and vertical permeabil-
ity with three different sandbody geometries as a function of Net-to-Gross are plotted in
Figure 4.3.

4.2.3 Horizontal Permeability

Figure 4.3 shows that the expected value of the horizontal permeability parallel and per-
pendicular to flow diverge more from the arithmatic average if the Net-to-Gross decreases.
The divergence from the arithmatic average is more drastic for the horizontal permeability
perpendicular to flow than for the horizontal permeability parallel to flow. Even more, the
ribbon type deposits tend to have a significantly lower effective permeability perpendicular
to paleo-flow than the models with more sheetlike deposits. On the other hand does the ef-
fective permeability parallel to paleo-flow exhibit little difference between the different type
of sandbody geometries. This difference is quite intuitive if we consider that a flow path (con-
nectivity) is generally easier established in the paleo-flow direction of the river, if we assume
that the point bars are connected (Donselaar and Overeem, 2008), than perpendicular to the
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Figure 4.3: The mean of the effective permeability between sub-sample sizes 90 and 100. The three solid
lines represent the harmonic, geometric and arithmetic mean for a Net-to-Gross ratio. For a
perfectly layered medium, the effective vertical and horizontal permeability is represented
by the harmonic and arithmetic mean respectively. The geometric mean represents the
permeability for random heterogeneity and local anisotropy.

paleo-flow direction of the river, where the pointbars have to be connected by a process of in-
cision and amalgamation. Even if the point bars are not connected by the sedimentary nature
of the rives system, the likelihood of being connected is expected to be larger in the direction
of the paleo-flow than perpendicular to it. The process of incision and amalgamation also
forms a reason for the difference between the expected value of the effective permeability per-
pendicular to the paleo-flow direction of deposits that are sheetlike or ribbon type. A ribbon
type sandbody is much less likely to connect with other sandstone bodies, because it exhibits
less lateral width perpendicular to the flow direction. It is worth nothing that a river system
that shows less trend in the general flow direction will be expected to show a more uniform
horizontal permeability (i.e., the effective horizontal permeability in all directions shows less
spread) an connectivity is expected to increase.

4.2.4 Vertical Permeability

Figure 4.3 shows that the expected value of the effective vertical permeability follows the line
of the harmonic mean below a Net-to-Gross around 0.25. The expected value of the effective
vertical permeability slowly diverges from the harmonic mean above a Net-to-Gross of 0.25.
This behavior is strikes with conclusions about 3D-connectivity of fluvial depositions systems
from Larue and Hovadik (2006); Pranter and Sommer (2011); Willems et al. (2017). They show
that connectivity generally increases from very little to almost 100 % connectivity between
Net-to-Gross ratios of 0.2 and 0.3.
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4.3 rev, mean effective permeability and geometry in
fluvial depositional systems

The main goal of this study is to evaluate if it is possible to translate the REV theorem to the
scale of the fluvial depositional system. It is therefore valuable to translate the results of this
study (i.e., the statistical moments of the probability distributions of porosity and permeabil-
ity as a function of sample volume) back to the geological concepts that are distinctive for a
fluvial depositional system. Cross-sections of models with different Net-to-Gross ratios and
different sandstone body geometries are visualized in Figure 4.4 and Figure 4.7.

Figure 4.4: A comparison of three cross-sections from three models with a different Net-to-Gross ratio,
but the same sandstone body geometry (SEI is 50). The left, middle and right three figures
are cross-sections taken from a model with a Net-to-Gross ratio of 0.08, 0.33 and 0.69 respec-
tively. The upper three figures are horizontal slices of the models, the middle three figures
are vertical slices parallel to the paleo-flow direction and the lower three figures are vertical
slices perpendicular to the paleo-flow direction.

4.3.1 REV, Mean Effective Permeability and Net-to-Gross Ratio

Figure 4.4 shows cross-sections in three dimensions of three different models with varying
Net-to-Gross ratios and identical sandstone body geometries. All models have a Sandbodies
Extension Index of 50 (ribbon type deposits) and a Net-to-Gross ratio from left to right of 0.08,
0.33 and 0.69. Figure 4.5 and Figure 4.6 show curves of the mean and coefficient of variation
of the probability distributions of the effective permeability in three directions as a function
of sample volume. Nine curves are plotted. The curves with the same line style have the same



4.3 rev, mean effective permeability and geometry in fluvial depositional systems 35

Sandbodies Extension Index and the curves with the same color have a comparable Net-to-
Gross ratio. Figure 4.5 and Figure 4.6 show that Net-to-Gross is the most important parameter
for the values of the statistical moments of the probability distributions of the permeability
as a function of sample volume. The behavior of the curves in Figure 4.5 and Figure 4.6
can be explained by a visual comparison of the cross-sections in Figure 4.4. This is done for
three different directions, since the behavior of the statistical moments of permeability as a
function of sample volume is heavily dependent on the orientation of the permeability with
respect to the sandstone bodies.

(a) The mean of the horizontal permeability
parallel to the paleo-flow direction.

(b) The mean of the horizontal permeability
perpendicular to the paleo-flow direction.

(c) The mean of the vertical permeability.

Figure 4.5: The mean of the permeability as a function of sample volume for models with a Sandbodies
Extension Index of 50, 80 and 110 and comparable Net-to-Gross ratios.

Horizontal Permeability Parallel to the Paleo-Flow Direction

A low Net-to-Gross ratio results in sandstone bodies that are more or less independent flow
paths within the clay matrix (overbank deposits). Therefore, the wavelength of the sandstone
body is the main factor influencing the mean effective horizontal permeability parallel to
the paleo-flow direction (i.e., the wavelength of the sandstone bodies is the dominant length
scale). The mean of the effective horizontal permeability parallel to the paleo-flow direction
will stay constant if a large enough part of the tortuous flow path is captured. The variability
between the samples with a low Net-to-Gross ratio will be high compared to higher Net-to-
Gross ratios, because there is a large chance of capturing parts of the model where there are
no sandstone bodies (Figure 4.4). If the Net-to-Gross ratio increases, the sandstone bodies
become more and more amalgamated. Therefore, the flow paths become less and less tortu-
ous if we assume that the sandstone body geometry does not change. This can be compared
with adding multiple sine waves with different offsets. If the waves are combined, the mean
amplitude will be lower and lower if we increase the amount of waves with different offsets.
This results in less tortuous flow paths and a lower dominant length scale (Figure 4.5a and
Figure 4.6a). Another effect of increasing the Net-to-Gross ratio is the increase of the likeli-
hood of capturing a sample that is representative for the model as a whole. This can be seen
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(a) The coefficient of variation of the horizon-
tal permeability parallel to the paleo-flow
direction.

(b) The coefficient of variation of the horizon-
tal permeability perpendicular to the paleo-
flow direction.

(c) The coefficient of variation of the vertical
permeability.

Figure 4.6: The coefficient of variation of the permeability as a function of sample volume for models
with a Sandbodies Extension Index of 50, 80 and 110 and comparable Net-to-Gross ratios.

in Figure 4.4 if the cross-sections of the low Net-to-Gross model are compared with the high
Net-to-Gross model. The clay matrix (overbank deposits) act more and more like indepen-
dent random spots of low permeability within the permeable zones (amalgamated sandstone
bodies).

Horizontal Permeability Perpendicular to the Paleo-Flow Direction

The statistical moments of the probability distributions of the horizontal permeability per-
pendicular and parallel to the paleo-flow direction as a function of sample volume show
similar behavior(Figure 4.5 and Figure 4.6), but the flow paths are different. The elongated
and continuous shape of a sandstone body, under the assumption that the point bars are
connected, supports the permeability parallel to the paleo-flow direction intrinsically (i.e., a
flow path is always established in the paleo-flow direction). On the other hand, the width
of an isolated sandstone body is restricted by the lateral accretion and amplitude of the river.
The mean effective permeability parallel to the paleo-flow direction will therefore converge
to the permeability of the overbank deposits if the sample volume increases to the width of
the sandstone body. Amalgamation of different sandstone bodies perpendicular to the paleo-
flow direction is therefore essential for establishing horizontal flow paths perpendicular to
the paleo-flow direction. The amalgamation of sandstone bodies is heavily dependent on the
Net-to-Gross ratio. If the Net-to-Gross ratio increases, the chances of amalgamation of one
or multiple sandstone bodies increases. Flow paths of amalgamated sandstone bodies are
expected to be complex. Flow paths perpendicular to the paleo-flow direction can not only
be established with horizontal amalgamation, but also vertically via incision. Generally, flow
paths will be established more and more if the Net-to-Gross ratio increases and the flow paths
become less tortuous with increasing Net-to-Gross. Figure 4.5b illustrates this behavior with
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little decrease of the mean effective permeability perpendicular to the paleo-flow direction
with increasing sample volume for high Net-to-Gross ratios and a significant decrease of the
mean effective permeability perpendicular to the paleo-flow direction with increasing sample
volume for lower Net-to-Gross ratios.

Vertical Permeability

The statistical moments of the probability distributions of the vertical permeability show
completely different behavior compared to the horizontal permeability (Figure 4.5c and Fig-
ure 4.6c). Still, the behavior is mainly dependent on the Net-to-Gross ratio. This can be ex-
plained by the elongated geometry and stacking patterns of sandstone bodies. As mentioned
before, low Net-to-Gross ratios result in sandstone bodies that are more or less independent
flow paths within the clay matrix (overbank deposits). Even more, if the sandstone bodies
are isolated objects and the sample size is large enough, they only support flow parallel to
the paleo-flow direction. Therefore, the mean effective vertical permeability will converge to
the permeability values of the clay matrix if the sample size increases. Increasing the Net-
to-Gross ratio will increase the chance of incision and amalgamation of sandstone bodies.
The values for the mean effective vertical permeability at sub-sample size 100 in Figure 4.3
clearly show that the connectivity reduces to the permeability values of the clay matrix for
Net-to-Gross ratios below 0.3. If the Net-to-Gross ratio increases, more and more vertical
flow pathways are established by amalgamation of the sandstone bodies. Multiple studies
(Larue and Hovadik, 2006; Pranter and Sommer, 2011; Willems et al., 2017) have shown that
three dimensional connectivity rapidly increases from several percentages to almost 100%
connectivity around a Net-to-Gross ratio of 0.3. This is in line with the findings in this study
(Figure 4.3). It is shown that the mean effective vertical permeability values at large sample
sizes for models with a Net-to-Gross above 0.3 clearly show higher values than the harmonic
mean of all the permeability values in the model1. Still, the mean effective vertical perme-
ability is low for models with a Net-to-Gross ratio around 0.7 (20mD). A visual inspection
of the cross-sections of the model with a Net-to-Gross ratio of 0.69 in Figure 4.4 suggests a
higher mean effective vertical permeability. section 4.4 and section 4.5 elaborate on possible
explanations for this behavior.

4.3.2 REV, Mean Effective Permeability and Sandstone Bodies Extension Index

The curves of the mean and coefficient of variation of the probability distributions of the
effective permeability as a function of sample volume in Figure 4.5 and Figure 4.6 are heavily
dependent on the Net-to-Gross ratio, but the geometry of the sandstone bodies can not be
neglected. Figure 4.3 visualizes the differences of the mean effective permeability between
models with different sandstone body geometries even better. The horizontal permeability
parallel to the paleo-flow direction is very similar for all sandstone body geometries. The
horizontal permeability perpendicular to the paleo-flow direction shows different behavior.
The ribbon type sandstone bodies tend to have a significant lower mean effective horizontal
permeability perpendicular to the paleo-flow direction compared to the models with more
sheetlike type sandbody geometries. This behavior can be explained with a visual inspection
of the cross-sections of two models with a comparable Net-to-Gross ratio, but a different
sandstone body geometry (Figure 4.7). The left three cross sections are taken from a model
with a ribbon type sandstone body geometry whilst the right three cross-sections are taken
from a model with a sheetlike type sandstone body geometry. The horizontal permeability
perpendicular to the paleo-flow direction is heavily dependent on lateral amalgamation of
sandstone bodies in order to ensure connectivity perpendicular to the paleo-flow direction.

1 The lower bound of the effective permeability of the entire model
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If the width of the sandstone bodies is larger, the chances of lateral amalgamation increase.
The cross-sections perpendicular to the paleo-flow directions in Figure 4.7 clearly show this.
The sandstone bodies of the model with an SEI of 110 are much more amalgamated than the
sandstone bodies of the model with an SEI of 50. An important observation from Figure 4.3
is the difference between the curve of the mean effective vertical permeability of the ribbon
type deposits (SEI 50) and the curves of the mean effective vertical permeability of the more
sheetlike type deposits (SEI 80 and 110). The mean effective vertical permeability of the
ribbon type deposits is diverging faster from the harmonic mean of the permeability as a
function of Net-to-Gross. This is very likely caused by the sandstone body geometry. If
the sandstone bodies are more ribbon type, the volume of a single sandstone body is much
smaller than the volume of a sheetlike type sandstone body. This results in more individual
sandstone bodies if the models have the same Net-to-Gross ratio. The likelihood of incision
and amalgamation therefore increases. This could result in more vertical flow pathways and
a higher mean effective vertical permeability.

Figure 4.7: A comparison of three cross-sections from two models with a comparable Net-to-Gross ra-
tio, but a large difference in sandstone body geometry. The left cross-sections are taken
from a model with a Sandbody Extension Index (SEI) of 50 (ribbon type) and the right
cross-sections are taken from a model with a Sandbody Extension Index (SEI) of 110 (sheet-
like type). The sheetlike type deposits (right) show more horizontal amalgamation of the
sandstone bodies than the ribbon type (left). Especially the cross-sections perpendicular to
the paleo-flow direction illustrate the difference of the sandstone body geometry.
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4.4 effective permeability and non-intuitive hetero-
geneity scales

Figure 4.8: This figure shows the vertical permeability from different heterolithic tidal lithofacies mod-
els as a function of sample volume from the study of: Nordahl and Ringrose (2008). The
number in the upper right corner of each plot shows the mudstone fraction of the lithofa-
cies model. Each model has ten realizations. A sample is taken from the centre of each
realization with increasing size. Each line represents the vertical permeability of a single
realization with increasing block size. The dashed line is the coefficient of variation of the
ten realizations as a function of sample size. All curves show a clear increase in vertical
permeability as a function of sample volume for models with a mudstone content below
0.60. Especially the behavior of the models with a mudstone content of 0.10 is particular. A
couple of the curves start with a high vertical permeability. The vertical permeability dimin-
ishes if the sample volume increases. A further increase in sample size drastically increases
the permeability. This behavior is very likely caused by the effects explained in Figure 4.9.
Figure from: Nordahl and Ringrose (2008).

Many authors have done analysis on the statistical properties of high permeability contrast
deposits (Desbarats, 1987; Deutsch, 1989; Desbarats, 1989; Nordahl et al., 2005; Nordahl and
Ringrose, 2008). They all conclude that the vertical permeability is generally underestimated
and the horizontal permeability is generally overestimated if the effective permeability is mea-
sured below REV. Figure 4.8 shows an example of the effect of sample size on the measure-
ment of vertical permeability of heterolithic tidal depositional models (Nordahl and Ringrose,
2008). On the contrary, the results from this study show that the horizontal permeability and
especially the vertical permeability is overestimated if the samples are below REV. An impor-
tant difference is that measurements from Desbarats (1987); Deutsch (1989); Desbarats (1989);
Nordahl et al. (2005); Nordahl and Ringrose (2008) are taken over a volume that has equal
sides in all directions. Sedimentological structures, at every scale, are usually wider than long
due to the nature of deposition. This is the main reason that almost every sedimentological
system has a significantly higher effective horizontal permeability than effective vertical per-
meability (i.e., the vertical flow pathways, if they even exist, are much more tortuous than the
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Figure 4.9: The upper picture shows a clear fluid pathway for vertical flow. Although it is tortuous,
the vertical permeability will clearly not tend toward the the low permeability values. If
we would sample from random locations with a small sample size, the mean of the vertical
permeability will be high, because many samples do not catch the clay layers. If the size
increases, the likelihood of capturing both the high permeable and low permeable layers
in one sample increases and the mean of the sub-samples decreases. Because the drop
of the mean is steeper than the decline in standard deviation, the coefficient of variation
increases first with sampling size. With the sub-sample size increasing more and more the
decline of the mean gets less than the decline of the standard deviation and the coefficient
of variation decreases. If the sample size is large enough that it always captures at least two
low permeable layers (B), the mean of the sub-samples will be mainly dependent on the
low permeable layers (i.e., the low permeable layers seem to act as barriers to vertical flow.).
This results in a coefficient of variation that is reduced to zero and a constant mean that
tends towards the low permeability values. The system seems to have reached all criteria
for REV. Nevertheless, if we increase the sub-sample size such that it is larger than the size
of sub-sample size C, at a certain point the mean of the vertical permeability will increase
as does the coefficient of variation. This is caused by the fact that the sub-sample size is
now able to capture a full flow path and the low permeable layers rather act as baffles than
barriers.
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horizontal flow pathways). Due to the regular ways of measuring permeability in core plugs
(sealed side permeability measurement) and upscaling (sealed sides boundary conditions or
periodic boundary conditions), vertical permeability is generally underestimated (very tortu-
ous flow pathways are not captured and baffles act as barriers) and horizontal permeability
is generally overestimated (barriers and baffles to horizontal flow are not captured result-
ing in less tortuous flow pathways than in reality). An example of the effect of thickening
barriers and missing tortuous flow pathways on the vertical permeability is shown and ex-
plained in Figure 4.9. It is easy to imagine that the mean effective permeability will always
be maximal if the sample size is infinitely small. This has been shown in Figure 4.1. An
increase in sample size will generally result in a decrease of the mean effective permeability
perpendicular to the layering of the model (Figure 4.9). At a certain sample size, the mean
of the effective permeability could potentially become constant as the sample size increases.
Still, the ’true’ effective permeability could not yet been reached. The baffles act as barriers
at this sub-sample size and if the sample volume is increased or elongated in the horizontal
direction, the mean of the vertical permeability will suddenly increase. This shows that the
REV (or length scale of the heterogeneity) can be not intuitively clear from the the statistical
moments (or model). This hypothesis can be tested using the data of the vertical permeability
of (Nordahl and Ringrose, 2008) shown in Figure 4.8. All curves clearly show an increase in
vertical permeability as a function of sample volume. The behavior of the curves of the real-
izations with a mudstone content of 0.10 are very distinctive. Some of the realizations have
high permeability with small sample sizes. An increase in sample size results in a decrease
in vertical permeability. If the sample size is further increased the vertical permeability goes
up again until it reaches a constant value. This behavior is perfectly in line with the behavior
of the mind experiment in Figure 4.9. The models with higher mudstone contents have more
baffles. This could cause even the smaller measurements to always capture a mudstone layer.
Increasing the sample size results in capturing more and more of the tortuous flow pathways.

4.4.1 Fluvial Depositional Models and Vertical Permeability

The explanation for the difference between the results of this study and the studies of Des-
barats (1987); Deutsch (1989); Desbarats (1989); Nordahl et al. (2005); Nordahl and Ringrose
(2008) is twofold. At first, the geometry of the sandstone bodies and the stacking pattern
of fluvial systems is different from the behavior of small scale sedimentary structures. This
results in different permeable zone geometries and could potentially have a different effect
on the behavior of the vertical permeability as a function of sample size. The second reason
for the differences could be caused by the shape of the samples. This study uses cells and sub-
samples that are 20 times as wide as thick. The likelihood of sampling the whole vertical flow
pathway becomes therefore larger and the samples are less likely to capture barriers as baf-
fles. This could cause the mean to show only monotonic decline of the vertical permeability
with an increase in sample size. Still, analysis of the high Net-to-Gross models (Net-to-Gross
around 0.7) shows that the mean effective vertical permeability at large sub-samples (> 80)
is around 20mD. This number seems low if we visually inspect the cross-sections from the
model in Figure 4.4 and Figure 4.10. A possible explanation for a lower mean effective per-
meability than expected could be due to baffles that act as barriers at the scale of the largest
sub-sample size (i.e., 1000m x 1000m x 50 m). Figure 4.10 shows an example of potential
flow barriers/baffles in a high Net-to-Gross model. The example in Figure 4.9 is identical
to how these elongated patches of clay matrix can affect the behavior statistical moments of
the probability distributions of the vertical permeability. This shows that the vertical perme-
ability decreases for sub-samples up to 1000m x 1000m x 50m, but the vertical permeability
could certainly increase if sub-samples are larger. Sampling at larger sub-sample sizes could
confirm or reject this hypothesis.
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Figure 4.10: The figure shows a cross section of a model parallel to the paleo-flow direction with a Net-
to-Gross ratio of 0.69. The red boxes show examples of continuous patches of clay matrix
that are longer than the largest sub-sample size (1000m). The barriers/baffles are generally
less extensive perpendicular to the flow direction so that they would act as baffles rather
than barriers. The figure illustrates the mind experiment explained in Figure 4.9 and its
potential influence on the mean effective vertical permeability. The mean effective vertical
permeability determined in Figure 4.3 could well be higher if the sample size is further
increased.

4.5 rev and the shape of sub-sample volumes

The difference between the results of Desbarats (1987); Deutsch (1989); Desbarats (1989); Nor-
dahl et al. (2005); Nordahl and Ringrose (2008) and this study shows that the expected value
of the effective vertical permeability as a function of sub-sample volume can be dependent
on both the geometry of the permeability field of the sample space and the shape of the sub-
sample volume. Figure 4.9 clearly visualizes why the shape of the sub-sample size has a large
influence on the effective permeability as a function of sub-sample volume with respect to
the heterogeneity scales. If the shape sub-sample volume would have been much more elon-
gated, both the expected value of the effective permeability and the coefficient of variation as
a function of sub-sample size would have been significantly different. The shape of the sub-
sample volume could potentially be made elongated enough that the curve of the expected
vertical permeability would only decrease as a function of sub-sample size and the coefficient
of variation would not reach zero without capturing the REV of the large heterogeneity scale.
This theory is mainly valid for a layered system, especially if there are no major baffles for
horizontal flow that can act as barriers if the the sub-sample size is too small. Figure 4.11

shows the effective permeability as a function of sub-sample size in the strict definition of
REV. This figure shows clearly that a heterogeneity scale is missed if the sub-sample size is
a square or a cube. An elongated sub-sample volume would be more likely to capture the
small scale heterogeneity REV. The considerations above suggest that it is better to use elon-
gated sub-sample volumes for REV estimation in layered systems, because they are generally
better able to capture the heterogeneity of geometry than sub-samples with equal sides. It is
very difficult to obtain the length scales of the heterogeneity’s intuitively, but these examples
and the results from this study show that this sub-sampling method pays more respect to the
intrinsic geometry of the layered systems.
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Figure 4.11: Figure A shows a small scale heterogeneity if we assume that the bedding structures (small
black lines) represent minor baffles to flow. Figure B shows the large scale heterogeneity
scale with the high permeable cross-bedded sands and low permeable clay intercalations.
If the small scale heterogeneity is sampled for effective vertical permeability, the effective
vertical permeability varies if more and more of the complex bedding structures are cap-
tured. As the sub-sample volume is increased, at a certain point the new heterogeneity
scale is captured and the vertical permeability is drastically decreased. It still varies and
will either reach REV if the sub-sample size is further increased or reaches a possible
new heterogeneity scale. The graph shows that expected property as a function of sample
volume.

4.6 upscaling and sample size statistics

The influence of the geometry of the high permeable zones (sandstone bodies) on the REV
and effective properties of a porous medium is clear from Figure 4.1, Figure 4.9 and Fig-
ure 4.11. The complexity of flow paths through porous media at all heterogeneity scales
forms the main basis of the research on REV. The main goal of research on permeable me-
dia, from the first experiments with permeability of Henry Darcy in 1856 to very complex
multi-phase flow models of today, is to produce a realistic response output for flow of flu-
ids through a porous medium. Lack of computational power and the inability to describe
the flow of fluids in porous media into detail physically is and always has been the reason
to simplify fluid flow through porous media with effective parameters such as permeability
and porosity. If it would be possible to describe the response output of the reservoir at the
size of the pore level, induced by any configuration of injection and/or production wells
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in a reservoir, this would always be preferable; this is certainly not the case. Even more, a
coarse scale dynamic reservoir model generally has grid cells between 50 and 200 meters in
length and are generally 0.5 to 5 metres thick. The coarse scale dynamic model is derived
from upscaling of a fine scale static model. This study shows that the expected value of both
vertical and horizontal permeability would be overestimated if the the size and shape of the
grid cells is the same as used in this study and the cells are upscaled with single-phase flow-
based permeability upscaling with sealed sides boundary conditions. The overestimation will
generally be less with higher Net-to-Gross ratios. It must be noted that the spatial distribu-
tion of the coarse grid cells with the effective properties will restrict the overestimation of
the permeability of the entire reservoir (i.e., the new coarse scale heterogeneous permeability
field induces new restrictions to flow that generally decrease the effective permeability of
the entire reservoir). Other upscaling methods for both single and multi-phase flow exist
(Wen and Gómez-Hernández, 1996; Durlofsky, 2005). Many of the upscaling methods, such
as regional and global upscaling capture the surrounding geometry around the upscaled cell.
The surrounding geometry is used to obtain a better estimate of the response of the flow
cell including the effect of the surrounding cells or the entire sample space on the boundary
conditions imposed on the flow cell (Durlofsky, 2005). Still, problems exist with upscaling,
because the size of the upscaled cell is not inevitably clear from the model. The statistical
moments of the probability distributions of permeability as a function of sample size and
especially the sample size where the expected value of the effective permeability does not
vary with increasing sample size could potentially serve as a test for the relevant spatial scale
of upscaling.

4.7 applications of rev and effective property estima-
tion

This study shows that fluvial depositional systems can be analyzed with REV theory and the
determination of effective properties can be used to estimate the effective properties. Still,
the applications of the methods are different compared to REV theory and determination of
effective properties at the pore or bedding scale. section 4.6 briefly elaborates on the potential
of REV theory for determining a relevant spatial scale for upscaling. But the potential of this
theory could have other applications. Sanei and Fertig (2015) have done research on variabil-
ity of the fiber volume fraction in fiber reinforced polymers. This study shows that the REV
of fiber reinforced polymers is generally larger than the assumed to be homogeneous cell size.
One of his most important findings dealt with the spatial relationships of cells with varying
sizes. The study shows that it is possible to find a cell size where there is still variability
between the different sub-samples (i.e., REV is not reached), but the measured cell properties
become uncorrelated with respect to their neighboring cells (Sanei and Fertig, 2015). If there
would exist such a scale for fluvial depositional models that is smaller than the REV, this
could drastically simplify the population of properties of fluvial reservoir models. This could
mean that that the knowledge of the variability and the mean of the permeability at a certain
scale are the only two parameters needed to obtain a reasonably accurate and statistically
accurate reservoir model. It could potentially be used if we would like to obtain models for
reservoirs where we do not have extensive knowledge or where there is no time and money
for extensive reservoir modeling. The input models for the analysis of the statistical moments
of the permeability, as well as other non-additive properties that would be needed to simu-
late a reservoir (water saturation, relative permeability, etc.), need to be accurate in order to
obtain realistic results. Heterogeneity and statistics at the wells could potentially be included
specifically in order to address the uncertainty at the well.
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Fluvial reservoirs are difficult to model due to the high permeability contrasts between the
sandstone bodies and the overbank deposits and the complex geometry of the permeable
(sandstone bodies) and impermeable zones (overbank deposits). The concept of REV has
proven to be a successful method for the determination of effective properties such as poros-
ity and permeability in heterogeneous high permeability/porosity contrast sedimentary de-
posits. The statistical moments of the probability distributions of porosity and permeability
as a function of sample volume have been determined for synthetic models of fluvial de-
positional systems. The curves of the statistical moments have been analyzed for different
Net-to-Gross ratios and different sandstone body geometries. This study helps to get a bet-
ter understanding of the effect of the geometry of permeable zones in a fluvial depositional
system on the size of an upscaled cell.

The main results from this study are:

• It is shown that a fluvial depositional system can be analyzed by the statistical moments
of the probability distributions of porosity and permeability as a function of sample vol-
ume. A sample space at the scale of a depositional system does not react significantly
different than analysis that has been done on smaller scales (Bachmat and Bear, 1986,
1987; Deutsch, 1989; Desbarats, 1989; Nordahl and Ringrose, 2008; Nordahl et al., 2014).
The main difference between the studies of small scale heterogeneities and this study
is the behavior of the mean vertical permeability as a function of sample volume. This
study shows that the vertical permeability is overestimated with small sample sizes,
while all studies of small scale heterogeneities show that the mean vertical permeabil-
ity is overestimated with small sample sizes. The reason for this difference could be
twofold. At first, it could be an effect of the differences between the geometries of small
scale sedimentary structures and geometries of sandstone bodies in fluvial depositional
systems. At second, it could be an effect of the shape of sub-samples. The sub-samples
in this study are more elongated in the horizontal direction, compared to square and
cubic samples in studies of smaller sedimentary structures.

• It is shown that the statistical moments of the effective properties as a function of sample
size relate to properties like Net-to-Gross and the geometry of sandstone bodies. Net-
to-Gross is the most important parameter for the effective properties. The sandstone
body geometry is an important parameter for the horizontal permeability perpendicular
to paleo-flow direction. Sandstone bodies with a more sheetlike type geometry show
significant higher horizontal permeability perpendicular to paleo-flow than sandstone
bodies with a ribbon type geometry. On the contrary, sandstone bodies with a more
ribbon type geometry show a slightly higher vertical permeability compared to models
with a more sheelike type geometry.

• All models show that the expected value of the permeability as a function of sub-sample
size tends to be independent from the sub-sample size if it is larger than a certain value.
Even more, the convergence of the expected value of the permeability as a function of
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sample value occurs much earlier than the convergence of the variability. This indicates
that it might be possible to say something about the true effective properties based on
the statistical moments of probability distributions as a function of sub-sample size at
REV, without reaching REV.

• The REV analysis of fluvial depositional shows potential applications for modeling of
fluvial reservoirs. The determination of the relevant spatial scale of upscaling from
the static (fine scale) to the dynamic (coarse scale) model is difficult (de Hoop, 2017).
Analysis of the convergence of the mean effective permeability as a function of sample
volume could potentially serve as a test for the determination of the relevant spatial
scale. A second potential application is the simplification of modeling of fluvial reser-
voirs. If the mean of the effective permeability does not change with sample volume
and the cells are uncorrelated with respect to neighboring cells, fluvial reservoirs can
potentially be modeled with the statistical moments of the effective properties (Sanei
and Fertig, 2015). Further research is needed to evaluate the potential.
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52 mean, standard deviation and coefficient of variation of porosity as a function of sample size

(a) The mean of the porosity as a function of sample volume for models with
a Sandbodies Extension Index of: 50.

(b) The mean of the porosity as a function of sample volume for models with
a Sandbodies Extension Index of: 80.

(c) The mean of the porosity as a function of sample volume for models with
a Sandbodies Extension Index of: 110.

Figure A.1: The mean of the porosity as a function of sample volume.
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(a) The standard deviation of the porosity as a function of sample volume for
models with a Sandbodies Extension Index of: 50.

(b) The standard deviation of the porosity as a function of sample volume for
models with a Sandbodies Extension Index of: 80.

(c) The standard deviation of the porosity as a function of sample volume for
models with a Sandbodies Extension Index of: 110.

Figure A.2: The standard deviation of the porosity as a function of sample volume.



54 mean, standard deviation and coefficient of variation of porosity as a function of sample size

(a) The coefficient of variation of the porosity as a function of sample volume
for models with a Sandbodies Extension Index of: 50.

(b) The coefficient of variation of the porosity as a function of sample volume
for models with a Sandbodies Extension Index of: 80.

(c) The coefficient of variation of the porosity as a function of sample volume
for models with a Sandbodies Extension Index of: 110.

Figure A.3: The coefficient of variation of the porosity as a function of sample volume.
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56 mean, standard deviation and coefficient of variation of permeability as a function of sample size

(a) The mean of the horizontal permeability parallel to the paleo-flow direc-
tion.

(b) The mean of the horizontal permeability perpendicular to the paleo-flow
direction.

(c) The mean of the vertical permeability.

Figure B.1: The mean of the permeability as a function of sample volume for models with a Sandbodies
Extension Index of: 50.
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(a) The mean of the horizontal permeability parallel to the paleo-flow direc-
tion.

(b) The mean of the horizontal permeability perpendicular to the paleo-flow
direction.

(c) The mean of the vertical permeability.

Figure B.2: The mean of the permeability as a function of sample volume for models with a Sandbodies
Extension Index of: 80.



58 mean, standard deviation and coefficient of variation of permeability as a function of sample size

(a) The mean of the horizontal permeability parallel to the paleo-flow direc-
tion.

(b) The mean of the horizontal permeability perpendicular to the paleo-flow
direction.

(c) The mean of the vertical permeability.

Figure B.3: The mean of the permeability as a function of sample volume for models with a Sandbodies
Extension Index of: 110.
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(a) The standard deviation of the horizontal permeability parallel to the paleo-
flow direction.

(b) The standard deviation of the horizontal permeability perpendicular to
the paleo-flow direction.

(c) The standard deviation of the vertical permeability.

Figure B.4: The standard deviation of the permeability as a function of sample volume for models with
a Sandbodies Extension Index of: 50.



60 mean, standard deviation and coefficient of variation of permeability as a function of sample size

(a) The standard deviation of the horizontal permeability parallel to the paleo-
flow direction.

(b) The standard deviation of the horizontal permeability perpendicular to
the paleo-flow direction.

(c) The standard deviation of the vertical permeability.

Figure B.5: The standard deviation of the permeability as a function of sample volume for models with
a Sandbodies Extension Index of: 80.
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(a) The standard deviation of the horizontal permeability parallel to the paleo-
flow direction.

(b) The standard deviation of the horizontal permeability perpendicular to
the paleo-flow direction.

(c) The standard deviation of the vertical permeability.

Figure B.6: The standard deviation of the permeability as a function of sample volume for models with
a Sandbodies Extension Index of: 110.



62 mean, standard deviation and coefficient of variation of permeability as a function of sample size

(a) The coefficient of variation of the horizontal permeability parallel to the
paleo-flow direction.

(b) The coefficient of variation of the horizontal permeability perpendicular
to the paleo-flow direction.

(c) The coefficient of variation of the vertical permeability.

Figure B.7: The coefficient of variation of the permeability as a function of sample volume for models
with a Sandbodies Extension Index of: 50.
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(a) The coefficient of variation of the horizontal permeability parallel to the
paleo-flow direction.

(b) The coefficient of variation of the horizontal permeability perpendicular
to the paleo-flow direction.

(c) The coefficient of variation of the vertical permeability.

Figure B.8: The coefficient of variation of the permeability as a function of sample volume for models
with a Sandbodies Extension Index of: 80.



64 mean, standard deviation and coefficient of variation of permeability as a function of sample size

(a) The coefficient of variation of the horizontal permeability parallel to the
paleo-flow direction.

(b) The coefficient of variation of the horizontal permeability perpendicular
to the paleo-flow direction.

(c) The coefficient of variation of the vertical permeability.

Figure B.9: The coefficient of variation of the permeability as a function of sample volume for models
with a Sandbodies Extension Index of: 110.
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66 dimensionless mean difference with the ’true’ effective permeability

(a) The dimensionless mean difference between the horizontal
permeability parallel to the paleo-flow direction and mean
of the horizontal permeability parallel to the paleo-flow di-
rection between sub-sample number 90 and 100 as a func-
tion of sample volume.

(b) The dimensionless mean difference between the horizontal
permeability perpendicular to the paleo-flow direction and
mean of the horizontal permeability perpendicular to the
paleo-flow direction between sub-sample number 90 and
100 as a function of sample volume.

(c) The dimensionless mean difference between the vertical
permeability and mean of the vertical permeability be-
tween sub-sample number 90 and 100 as a function of sam-
ple volume.

Figure C.1: The dimensionless mean difference between the permeability and mean of the permeability
between sub-sample number 90 and 100 as a function of sample volume for models with a
Sandbodies Extension Index of: 50.
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(a) The dimensionless mean difference between the horizontal
permeability parallel to the paleo-flow direction and mean
of the horizontal permeability parallel to the paleo-flow di-
rection between sub-sample number 90 and 100 as a func-
tion of sample volume.

(b) The dimensionless mean difference between the horizontal
permeability perpendicular to the paleo-flow direction and
mean of the horizontal permeability perpendicular to the
paleo-flow direction between sub-sample number 90 and
100 as a function of sample volume.

(c) The dimensionless mean difference between the vertical
permeability and mean of the vertical permeability be-
tween sub-sample number 90 and 100 as a function of sam-
ple volume.

Figure C.2: The dimensionless mean difference between the permeability and mean of the permeability
between sub-sample number 90 and 100 as a function of sample volume for models with a
Sandbodies Extension Index of: 80.



68 dimensionless mean difference with the ’true’ effective permeability

(a) The dimensionless mean difference between the horizontal
permeability parallel to the paleo-flow direction and mean
of the horizontal permeability parallel to the paleo-flow di-
rection between sub-sample number 90 and 100 as a func-
tion of sample volume.

(b) The dimensionless mean difference between the horizontal
permeability perpendicular to the paleo-flow direction and
mean of the horizontal permeability perpendicular to the
paleo-flow direction between sub-sample number 90 and
100 as a function of sample volume.

(c) The dimensionless mean difference between the vertical
permeability and mean of the vertical permeability be-
tween sub-sample number 90 and 100 as a function of sam-
ple volume.

Figure C.3: The dimensionless mean difference between the permeability and mean of the permeability
between sub-sample number 90 and 100 as a function of sample volume for models with a
Sandbodies Extension Index of: 110.
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