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ARTICLE INFO ABSTRACT

Keywords: The mode-I dynamic fracture energy and failure mechanisms of glass fiber-reinforced polymer
Composites composites are investigated with an embedded cell model of the single-edge-notched-tension
Embedded cell (SENT) geometry. Under an applied dynamic loading, a crack may propagate in the embed-

Dynamic crack propagation

ded microstructure, accompanied by the development of a fracture process zone in which
Fracture energy

fiber/matrix debonding, matrix cracking and ductile matrix tearing are observed. Reaching a
maximum nominal strain rate of 250/s, a series of SENT tests are performed for different loading
velocities and specimen sizes while the dynamic energy release rate is evaluated using the
dynamic version of the J-integral. The influence and interaction of loading rate, time-dependent
material nonlinearity, structural inertia and matrix ligament bridging on the fracture toughness
and failure mechanisms of composites are evaluated. It is found that with the given material
parameters and studied loading rate range, the failure type is brittle with many microcracks
but limited plasticity in the fracture process zone and a trend of increasing brittleness for
larger strain rates is observed. The inertia effect is evident for larger strain rates but it is not
dominating. An R-curve in the average sense is found to be strain-rate independent before
the fracture process zone is fully developed and afterwards a velocity—toughness mechanism is
dictating the crack growth.

1. Introduction

Fiber reinforced polymer composites have been used in impact-resistant devices, automotives, aircraft structures due to their
potential for high strength-to-weight ratios and impact energy absorption. To be able to fully exploit the potential of impact behavior
of composites it is necessary to investigate dynamic crack propagation, in particular the underlying mechanisms, microstructural
effects and the fracture energy.

Starting from Griffith’s ideas postulated for equilibrium cracks [1] and its extension by Mott for dynamic fracture [2], dynamic
fracture can be investigated on an energetic basis. The dynamic energy release rate G, is the energy released into the crack tip
process zone per unit crack extension and must be equal to the energy required per unit extension G, [3]. Generally, both G, and G,
are functions of crack propagation history, in particular, the crack speed V. Freund [4] showed that for mode-I crack propagation
in homogeneous materials under elastodynamic 2cor;ditions and in plane strain state the dynamic energy release rate G, can be
expressed in the following form: G, = A I(V)(I_VE)K’ , where E is the Young’s modulus, v is the Poisson’s ratio, K; is the mode-I
dynamic stress intensity factor and A; is a universal function of crack speed V. The dynamic stress intensity factor K; tends to zero
as V approaches the Rayleigh wave speed c,, which implies a limiting crack speed of ¢, in mode-I. Corresponding to different
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Nomenclature
c Stress
c? Stress at crack initiation
70 Traction at damage initiation
n Outward normal
t Cohesive traction
tgq Equivalent traction for damage onset
[l Displacement jump
A Equivalent displacement jump
A(Y) Increment
Ay Equivalent displacement jump at damage onset
4, Equivalent displacement jump at full failure
5 Kronecker delta
6 Prescribed velocity
1, Viscoplastic coefficient
y Plastic multiplier
F((>) Integral path
[l Displacement jump
[u]® Displacement jump shift
[v] Shifted displacement jump
u Friction coefficient
v Poisson’s ratio
vy Plastic Poisson’s ratio
o Damage variable
14 Free energy
wh Plastic hardening energy
p Density
o, Yield stress in compression
o? Yield stress in compression at zero plastic strain
o, Yield stress in tension
o? Yield stress in tension at zero plastic strain
0 Mode interaction coefficient
€ Strain
€ Elastic strain
eP Plastic strain
eby Accumulated equivalent plastic strain
zr Viscoplastic dissipation per unit volume
Fue Viscoelastic dissipation per unit volume
} Jeffe Effective
}}deve Deviatoric
} Jvee Viscoelastic
} Jvole Volumetric
ag Initial notch length
Ap Universal function of crack speed
¢, Rayleigh wave speed
D, Fiber diameter
D, Cohesive damage variable
Dy Time-dependent stiffness
E Young’s modulus
e Kinetic work density
o Yield function
f Cohesive strength
Gy Long-term shear stiffness
G Fracture energy
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Gy Dynamic energy release rate

G, Shear stiffness of the Maxwell elements

g Shear relaxation time

I, First stress invariant

Jam Dynamic J-integral

J, Second invariant of the deviatoric stress

K, Long-term bulk stiffness

K, Mode-I stress intensity factor

K, Dummy stiffness

K, Bulk stiffness of the Maxwell elements

k, Bulk relaxation time

L Specimen length

Iy Length of a representative volume element

M Representative volume element row

m, Viscoplastic coefficient

N Representative volume element column

Nryve Number of representative volume element

p Hydrostatic stress

q Weighting function

S;j Deviatoric stress

t Time

|4 Crack speed

w Specimen width

w Stress work density

wP Accumulated dissipation per unit volume

Wi Total dissipated energy of cohesive interfaces
d”m Total dissipated energy of matrix

RVE Representative volume element

SENT Single edge notched tension

levels of propagation velocity, the crack surface roughness is observed to show different features since material in the fracture
process zone might experience high strain-rate plasticity, microcracks nucleation, thermomechanical interaction and other complex
deformation/failure mechanisms. Upon an increase of crack speed, the crack surface first appears to be almost flat (mirror
regime), next a rougher surface with conic marks forms (mist regime), and finally (micro)branching takes place (hackle regime).
Phenomenologically, a relationship between fracture energy G, and crack speed V therefore exists.

The relation between the dynamic fracture energy G, and the crack speed V' for composites is determined by the rate-dependent
deformation and failure process occurring across multiple length scales and time scales. More specifically, the contributing mecha-
nisms can be roughly classified as viscous material behavior, changes in fracture mechanism, inertia effects and thermomechanical
effects. Firstly, there is the role of viscosity of composite constituents (polymer, fiber and interfaces) and its interaction [5,6].
Shirinbayan et al. [5] postulated that a specific characteristic time for a local damage to occur might exist and this time scale is
related to the viscoelastic behavior of the matrix or fiber/matrix interface. Fitoussi et al. [6] argued that for high rate a local strained
zone around a debonded interface dissipates the strain energy and accordingly hinders the interfacial crack propagation through the
matrix, which causes a delay of the damage at macroscopic scale. Secondly, there can be rate-dependency of the fracture mechanism
induced by different failure processes (e.g. fiber failure with fiber pull-out, matrix damage, fiber-matrix interface failure) occurring
at microscale level under different loading rates. For instance, for quasi-static tests delamination is often dominated by fiber/matrix
interface failure while resin rich brittle fracture zones have been found more dominant in dynamic tests [7-11]. The extent of plastic
deformation may decrease with increased loading rate, which represents a ductile-to-brittle transition in the process zone. Thirdly,
there are inertia effects characterized as inertia resistance for rapid deformation, damage formation and crack propagation [12,13].
Due to material heterogeneity, micro-inertia effects also arise as a result of multiple wave reflection and transmission occurring
at the interfaces between the constituents, which can result in complex spatiotemporal scenarios of damage and failure evolution,
initiated at multiple spots [14,15]. Finally, there can be thermomechanical dissipation as a transition from isothermal to adiabatic
deformation and failure process for composites is expected for increasing loading rate [16-18].

Computational models have been developed on the mesoscale to capture deformation and failure in composites. For such
models, the composite ply is considered as a homogenized material where damage and failure can be described by continuum
damage models [19,20] or extended FEM models [21] with failure-mode-based criteria and different stiffness degradation laws
for the different failure processes. However, such models inevitably lead to complex constitutive and damage laws that require
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extensive experimental calibration and the observations obtained at these scales do not provide enough detail about the mechanical
processes that explain the inelastic behavior of the material. Hence, computational micromechanical models are an appealing option
for investigating the dynamic fracture energy and the interplay of different mechanisms of dynamic crack growth in composites.
Microscale-based approaches can be roughly classified as: the representative volume element (RVE) based multiscale approach, the
(modified) boundary layer approach and the embedded cell approach. An RVE is a characteristic sample of heterogeneous material
that should be large enough to contain sufficient composite micro-heterogeneities in order to be representative, however it should
also be much smaller than the macroscopic structure size [22]. The RVE-based multiscale approach assumes multiple spatial and (or)
temporal scales. Solution of finer-scale problems is analyzed in an RVE and information of the finer-scale is hierarchically passed
into a coarser scale by bridging laws. For a two-scale scheme, at the macroscopic level the strain localization can be represented
by cohesive cracks with strong discontinuity kinematics and a proper kinematical information transfer from the macro-to-micro-
scales [23-26]. However, the implementation of this method is not readily available in a general-purpose finite element code and
the computational cost of this method can be prohibitively high. The (modified) boundary layer formulation considers a small
layer of material near the crack tip with well-defined singularity displacement fields applied at the edges of the layer. Numerical
solution of this problem allows a quantification of the energy dissipation under such singularity field with energy integrals. This
approach has been applied to study elastic—plastic ductile cracking in a homogeneous material [27,28] and the effective fracture
toughness of a heterogeneous material [29-31]. However, it is not clear how to apply the boundary conditions if a singularity field
cannot clearly be defined. For the embedded cell approach, full details of the heterogeneous composite microstructure (including
the random spatial distribution of the fibers) are explicitly resolved in the fracture region with a finer discretization. Meanwhile,
the rest of the model is considered to be a homogeneous medium with simple constitutive equations (obtained a priori with any
appropriate homogenization technique) and coarser discretization. The region in which the microstructure is resolved should be
small so that the computational cost is affordable. However, it should be sufficiently large to include all the area in which damage
occurs during the propagation of the crack, thus energy spent by the different failure micromechanisms (interface debonding, matrix
cracking, matrix plastic deformation, etc.) is properly taken into account. This approach has been used in analysis of quasi-static
crack propagation of in composite material and to compute the fracture toughness associated to different failure modes [32,33].

In this paper, a multiscale numerical model using the embedded cell approach is developed to evaluate the mode-I fracture energy
of dynamic crack propagation in fiber-reinforced composites and to investigate the associated failure mechanisms. Specifically, the
single edge notched tension (SENT) specimen is analyzed. The paper is organized as follows: in Section 2, details of the embedded
cell model of the SENT specimen are given. Section 3 presents the typical deformation and failure phenomena in a series of tests
on SENT specimen and the obtained relations between the dynamic fracture energy G, and crack speed V. The failure mechanisms
in the fracture process zone of the composites are discussed in Section 4.

2. Numerical model

To compute the mode-I fracture energy of dynamic crack growth in fiber-reinforced polymeric composites, a embedded cell
model of an SENT specimen with a width of W and a length of L is developed. The SENT specimen is favored over other Mode-I
tests, such as the double cantilever beam test, because the absence of bending deformations (with both tension and compression) in
the SENT is beneficial for numerical robustness under dynamic loading condition. As it is shown in Fig. 1, an initial notch of length
ay along x-direction is created on one edge of the specimen and a symmetric displacement loading is applied on the top and bottom
edge of the specimen with a prescribed velocity of é. In the vicinity of the initial notch tip, a composite microstructure of M rows
and N columns of repeating RVEs is embedded in a homogenized medium of the composites. The RVE has a stochastic distribution
of 5 x 5 fibers with a fiber diameter D, = 5 um and a fiber volume fraction of 60%. It is generated by a discrete element method
generator called HADES, following the procedures in Liu et al. [34].

The matrix material of the microstructure is assumed to be epoxy modeled as viscoelastic-viscoplastic model as detailed in
Section 2.1 while the fiber is assumed to be linear elastic. The material around the embedded microstructure is treated as a
homogeneous isotropic elastic solid whose behavior is obtained by a standard computational homogenization scheme (see Appendix
A in [34]) from elastic constants of the fibers and matrix in an RVE. Cracking is allowed to develop only inside the matrix and on
the fiber/matrix interfaces in the embedded cell. Following Camacho and Ortiz [35], a dynamic insertion technique of cohesive
elements, introduced in Section 2.2, is used to capture cracking. The whole numerical model is solved with an implicit dynamics
scheme. A plane strain condition is assumed and the two-dimensional plane is considered as the transverse plane of a fiber-reinforced
composite ply. The algorithm is described in detail in Section 2.3. The dynamic energy release rate for the composites is computed
by utilizing the dynamic version of the J-integral with its formulation shown in Section 2.4.

2.1. Polymer model

The polymer matrix of the embedded microstructure is assumed to have a constitutive behavior according to a viscoelastic—
viscoplastic (VE-VP) model following Rocha et al. [36]. Following the conceptual representation of the VE-VP model in Fig. 2,
two contributing constitutive models are involved: a linear viscoelastic model and a viscoplastic component represented by a
Perzyna-type overstress formulation with a rate-independent backbone of a pressure-dependent plasticity model.
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Fig. 1. Finite element model of the SENT specimen. An initial notch is located on the left side of the specimen with an embedded microstructure represented
by a number of repeating RVEs with stochastic fiber distributions. The mesh is discretized with six-node triangular elements. The dotted box on the top right
shows the mesh of a RVE. Finer mesh is used for the embedded microstructure zone and coarser mesh is used for the surrounding homogeneous medium.
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Fig. 2. Schematic representation of the VE-VP polymer model in one-dimension.

2.1.1. Viscoelasticity

By assuming a linear viscoelastic model the stress o;; for time ¢ is expressed with Boltzmann’s hereditary integral of the elastic

: e .
strain '

o¢¢ (7)
M af
ot

1
0;;(1) :[ Dyt —1) 1)

in which D, (@) is a time-dependent stiffness which can be expressed with a time-dependent shear stiffness G(r) and bulk stiffness
K(1):

Dyyas®) = 261+ 3KOL, @
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where G(r) and K(r) can be further expanded as a combination of a Prony series of n,; shear elements and n, bulk elements and a
long-term contribution:

G(r):Gm+2GSexp <—gL> K@) =K +ZK exp (—]%) 3)

s=1 s r=1 r

in which G and K, represent the long-term shear and bulk stiffness, and G, K,, g, and k, are shear and bulk stiffness and
relaxation time of the Maxwell elements, respectively. The fourth-order deviatoric and volumetric operator tensors introduced in
Eq. (2) are defined as:

1

= 3858 1= 35,. 0k )

where §;; is the Kronecker delta. These operator tensors can also be used to decompose the elastic strain €, into a deviatoric part
£ dEL

dev
Iuk[ 56y

and a hydrostatic part 62 ool

e _ _edev e,vol dev _e vol _e
e, =¢;  te; =LiaEn t Lt ®

By substituting Egs. (2) and (3) into Eq. (1), the stress can be expressed as:

0,(t) = D £0, (D) + 2 P, + 2 St ©)
in which the deviatoric viscoelastic stress contribution:
¢ (=7 p) ge dev (l‘)
ve 7
Sus(t)—2G /_OOCXP <_g_y> Tdt (7)

and the hydrostatic viscoelastic stress contribution:

e ! r—7\ 0g5(D
p; (t)—K,/_ooexp <— a > pr dt (€3))

2.1.2. Viscoplasticity
The viscoplasticity model is assumed to be a Perzyna-type model with a backbone of a pressure-dependent hardening plasticity
model. The yield function of the plasticity model is defined as:

fp(o, sp)—6J2+211(0' —o0,)—20.0, 9

in which I, = o, is the first stress invariant, J, = %S,- ;S;; is the second invariant of the deviatoric stress S;;, and o, and o, are the
yield stress in tension and compression, respectively. The yield stress, o, or ¢, is a function of the accumulated equivalent plastic
strain £,,. In an incremental form, the accumulated equivalent plastic strain is defined as:

1
P — P AP
Aeeq =113 2‘/3 Asij Agij (10)

in which v, is the plastic Poisson’s ratio. The desired contraction behavior is implemented through a non-associative flow rule which
is expressed in an incremental form as:

2
Aefj.:Ay (35,-j+—a116,-j> (1D

9
where 4y is the incremental plastic multiplier and the parameter « is:
91— 2vl’

=2 12
21+vp (12)

By allowing the overstress to develop beyond the yield surface, a viscous time scale is introduced in the model. A Perzyna-type
of overstress formulation is adopted, which gives the evolution of the plastic multiplier 4y:

At fp p if 0
dy =4, \ 002 if,> 13)
0 if ,<0

in which ¢ and ¢? are the yield stress values when &b, =0, m, and n, are viscoplastic coefficients and 4r is the time increment.

2.1.3. Energy dissipation
The free energy ¥ of the VE-VP model can be expressed as:

1/ tagfj(i)
T:E/O/OT ukl(Zt—t—t)

)d?di +yh 14)
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Fig. 3. Sketch of the dynamic insertion technique of cohesive elements.

in which y" is the plastic hardening energy. According to the second law of thermodynamics, the Clausius-Duhem inequality for
the isothermal case is imposed:

53]

=06, - >0 (15)

Following the derivation in Rocha et al. [36], the work of energy dissipation per unit volume for viscoelasticity and viscoplasticity
can be expressed as:

L SUe S o (prey?

—ve ij,sij,s r

2= ) S=——+ (16)
; ZGSgS ; Krkr

EP =0yl =" a7

Summing up Egs. (16) and (17) and integration over time give the accumulated dissipation per unit volume w? as:
t
WP(t) = / [5%(5) +o, j(i)sfj(f)] di 18)
0

To derive Eq. (18) the term " is neglected because the plastic hardening in the polymer also contributes to the energy for growing
a macroscopic crack. In the numerical model, the total dissipated energy of the polymer matrix can be computed as the volume
integral over the embedded microstructure:

diss

w’ = / wldQ (19)
Qe

in which ¢ is the volume of the embedded microstructure zone.

2.2. Cohesive crack with Ortiz model

The microcracks in the embedded zone, representing fiber/matrix debonding and matrix cracking, are modeled with the cohesive
zone model. Instead of inserting cohesive elements between element boundaries before the simulation starts, in this study the
cohesive elements are placed on the fly following the shifted cohesive law technique described in Camacho and Ortiz [35]. A
stress-based failure criterion is introduced to determine when and where the cohesive element should be inserted. The crack always
starts at the middle node of edges of six-node triangle elements by splitting the nodes (see Fig. 3). Because cohesive elements are
inserted on the fly, continuity of the response requires that the adopted cohesive law is an initially rigid linear softening law. As a
consequence there is no initial stiffness present, of which the value could otherwise affect the overall compliance of the material or
the stress development under dynamic loading conditions.

2.2.1. Cohesive element insertion criterion
Considering mixed-mode fracture, the adopted stress-based failure criterion reads [35]:
ot > 1, (20)

where f, is the cohesive strength and the effective stress ¢! is defined as:

PRI Y (’n)2 +6 (|ts|)2’ [ull, 20 2n
Vo (1t,] = ult,]) [ull, <0

in which t = (z,,,) is the traction of cohesive surface along the normal direction and shear direction in the local {n,s} frame,
[ul = (l[u]],,,[[u]]s) is the displacement jump along normal and shear direction, ¢ is a shear stress factor, and u is the friction
coefficient.
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Fig. 4. Pure mode I representation of shift in cohesive law to mimic initially rigid behavior.

2.2.2. Shifted cohesive law

To construct an initially rigid law without singularity, a shifted cohesive law is adopted [37]. As seen in Fig. 4, starting from
a traction separation relation with a finite initial stiffness, a shift of this relation is applied such that the traction for zero crack
opening is equal to the traction at crack initiation. This leads to the desired initially rigid behavior.

For the shifted cohesive law, the traction is computed not from the actual displacement jump, but from a translated displacement
jump [[v]:

[l = [l + [u]’ 22)
The shift [u]® is computed from the bulk stress at the moment of crack initiation and can be expressed as:
0
0 o'n
=== 23
[l X (23)

m

in which 69 is the stress at crack initiation and K,, is a dummy stiffness.
The traction is updated in the local {n, s} frame as:

t=[I-Q' =[I-QK,[v] 24)

with the effective traction defined as t*f = K,,[v] and a damage tensor R is defined as:

<_teff>
Q= wnd; [ 1- 6= (25

eff
Iy

in which w,, is a damage variable, 1" = K, [v], is the normal component of the effective traction #*'f, 5, is the Kronecker delta
and the Macaulay bracket is define as (x) = %(x + |x]). The damage evolution is introduced according to a bilinear relation

0, A < Ay
47(4-19)

wm—n;gx m, AO<A<Af (26)
I, A> A,

where the equivalent displacement jump 4 is:

A=/ ({1l ))’ + (1u1,)° (27)
and the equivalent displacement representing onset of failure 4, reads:

4y =10 /K, (28)
and the equivalent displacement representing complete damage 4, is:

Ay =2G /1), (29)

where G, is the fracture energy. The equivalent traction corresponding to onset of damage t(e) / is introduced in Egs. (28) and (29)

with its definition as the norm of the traction at damage initiation 7°,

10, = /(@02 + (202 (30)

Note that this cohesive law formulation is generic in that it can be combined with any failure criterion, but its particular behavior
is linked to the used failure criterion through Egs. (28) and (30).
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2.2.3. Energy dissipation in fiber/matrix interfaces
The total dissipated energy of the cohesive interfaces reads:

we = / e (31)
re
in which I is the area of the cohesive elements and the incremental dissipation density d = can be computed by:
dE = %A/ K, 40dD,, (32)
with the incremental of a variable D,,
D, = 2% (33)
" A - A

2.3. Solution scheme

Implicit dynamics analysis is carried out. The adopted semi-discretization scheme includes an implicit time integration of the
Newmark-# type and a spatial discretization with six-node triangular elements. The solution program flow is illustrated in Box 1.
There are a few items to be noted: (1) in step 5 of the algorithm, the dynamic system of equations is solved with a Newton-Raphson
scheme. In certain circumstances, convergence cannot obtained by a large time step size. Then, an adaptive stepping algorithm
is used such that the time step size is reduced and the system equation is solved with smaller time steps until convergence is
reached. (2) when new cohesive elements are inserted, the mesh is updated and the same step is solved again to ensure that the
final converged solution for the time step does not violate the failure criterion.

. Set the time step number n = 1;

. Set the maximum allowed number of inserted cohesive element per time step N, and initiate the state variables to be zero;
. Apply the nth load/displacement increment;

. Set the nth time step size Ar";

. Solve dynamic equilibrium using a Newton-Raphson scheme and adaptive time stepping;

U WN

. Loop over the edges of elements representing the polymer matrix material in the embedded zone and check if the failure
criterion, i.e. Eq. (20), evaluated at the middle nodes of edges is satisfied or not?

* Yes—insert at most N, cohesive elements at edges starting from the element edge with highest ¢*f. Go to step 5;
* No—go to step 7;

7. Update the state variables;
8. n=n+1, go to step 4;

Box 1: Solution algorithm for the embedded cell model.

2.4. J-integral calculation

Following Anderson [38], for a fast moving crack the amount of energy flowing into the crack tip region through the contour I
can be calculated by the crack tip energy flux integral (see Fig. 5):

de":/rQljn/-ds:/r[(w+e)5]j—aij§7u; n;ds (34)
with
du;
0, = [(w+e)51j - aija] (35)

and ds is a line segment of path I', w = /0[ 0;;€;;dt is the stress work density, e = %pu,.ui is kinetic energy density, n; is the outward
unit normal to the contour I', o;; is the stress, ; is the displacement.

This J-integral formulation is valid for time-dependent as well as history-dependent material behavior because it was derived
from a generalized energy balance. In the special case of a constant crack propagation speed and steady-state crack propagation in
homogeneous hyperelastic material the dynamic J-integral becomes path-independent [39]. In this study, the integral contour is
defined outside of the embedded microstructure similar to what was done in the embedded cell model by Herraez et al. [30].

To facilitate the application of the dynamic J-integral into a FEM framework, an equivalent domain integral is introduced to
replace the line integral introduced [39]. Fig. 5 shows an example of the selected path I' along boundaries of one ring of finite
elements alongside with an extra remote path I’,, one segment of the initial surface I'* and one segment of the initial surface I'".
A closed path C =T, + I't + I'" — I is therefore constructed in counter-clockwise direction. In addition, a weighting function g(x),
which must be continuous and differentiable and fulfills the requirements,

0 on I,
q—{ 1 on I (36)
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-

Fig. 5. Sketch of the equivalent domain integral for the dynamic J-path integral. The ¢ function is equal to 1.0 for the nodes (indicated by black dots) on the
path I' while it equals to 0.0 for the nodes (indicated by red dots) on the path I,. Linear shape functions are used to ensure a linear field of function ¢ inside
the elements in domain C.

is introduced. A linear interpolation is applied for the g function for the enclosed domain C. The dynamic J-integral introduced in
Eq. (34) is reformulated as [39]:

de"=/Qljnjds=—/Qqu,de—/Qlj,jqu+/ 0y;n;qds (37)
r C C r++r-

Substitution of Eq. (35) into Eq. (37) gives the final expression for dynamic J-integral:

du;
dyn _ i
jdyn /C{[a,-ja_(w+e)51j

The conditions that the surfaces I'* and I'™ are traction-free and the crack growth direction is along the x-direction are used in
deriving the above equation.

q; + (pilu;  — pu,.u,.yl)q} ds (38)

3. Fracture energy and crack speed

In this study, a series of SENT plane strain numerical specimens (see Fig. 1) is tested with different loading velocities and different
specimen sizes. The considered cases of W and 6 are listed in Table 1. The maximum nominal strain rate investigated is 250/s, which
is intermediate compared with high strain rate testing, such as in plate impact tests where the strain rates up 10%/s to have been
reported [40]. Dimensions are normalized with respect to the length of a single RVE denoted /, = 0.02856 mm. For each case, the
geometry of the SENT specimen satisfies that a, = 0.05W and L = 4W. The number of RVEs in the microstructure is kept fixed
at Npyp = 2 X 20 except where mentioned otherwise (i.e. 2 rows and 20 columns of RVEs). The initial notch tip has a distance of
1.331, from the left edge of the embedded microstructure zone. The fiber is modeled as a linear elastic material with the elasticity
parameters listed in Table 2 and the material parameters for the VE-VP polymeric model are listed in Table 3. Considering that
there might exist a characteristic time for a local damage to occur and this time scale is related to the relaxation times of the matrix
as postulated in Shirinbayan et al. [5], it is ensured that the time steps adopted in the numerical simulations are much smaller than
the relaxation times. The elastic properties corresponding to the homogenized medium outside of the embedded region determined
by a computational homogenization technique are included in Table 2. Matrix cracking and fiber/matrix debonding are considered
with the cohesive zone model with the shifted cohesive law described in Section 2.2. Considering that the fiber/matrix interface is
generally weaker than the pure matrix, a smaller cohesive strength and fracture energy are adopted for the interface (see Table 4).
The energy release rate is equal to the energy flux into the crack tip, divided by the crack speed [41,42]. The mode-I energy release
rate for dynamic crack growth in composites can be computed by the dynamic J-integral formulation introduced in Section 2.4 for
all the considered SENT specimens. The crack speed V is the time derivative of the crack length which can be determined from
the numerical model. Since the dynamic energy release rate is equal to the dynamic fracture energy G, for a propagating crack, a
relationship between dynamic fracture energy G, and crack speed V' can be established.

In this section, the crack growth process of the SENT specimen under dynamic loading for a typical case with specimen width
W = 600!, and loading velocity é = 0.1 m/s is first described. Then, the influence of the size of the embedded microstructure on
the crack growth and energy release rate is discussed. Finally, the energy release rate for different crack speeds extracted from the
numerical tests are presented.

10



Y. Liu et al. Engineering Fracture Mechanics 243 (2021) 107522

Table 1
A summary of considered test cases with different specimen width W and loading velocities &.
$=0.01 m/s 6=0.1m/s 6=1.0m/s
W =701, v v v
W = 1001, v v v
W = 2001, v
W = 5001, v
W = 6001, v v
Table 2

Elastic properties of fiber and matrix taken from [43], and composite obtained from
computational homogenization.

Fiber Matrix Composite
Young’s modulus (MPa) 74000 2500 9407
Poisson’s ratio 0.2 0.37 0.31
Mass density (g/mm3) 0.01 0.004 0.0076

Table 3

Material properties of the polymeric matrix taken from [36].
Viscoelasticity

G, (MPa) 912.

K, (MPa) 3205.

G; (MPa) 36. 52. 178. 41.

g (ms) 146. 8080. 1.48e5  1.09e8

K; (MPa) 125. 182. 625. 143.

k; (ms) 41.6 2300. 42200. 3.11e7

Viscoplasticity

v, 0.32
o‘,(sfq) 64.80 — 33.6 X e€%/=0.003407) _ 1) 2] x o(€ks/~0.06493)
o (eh) 81.00 — 42.00 X €t/ ~000340) _ 12 76 x ¢(c6a/=006493)
m 7.305
n (MPa-s) 3.49¢e12
Table 4
Material properties of cohesive cracks taken from [43] and [30].
Matrix Fiber/Matrix interface
Interface penalty stiffness K,, (N/mm?) 1.e7 1.e7
Cohesive strength f, (MPa) 121. 42.0
Fracture energy G, (N/mm) 0.09 0.02
Mode interaction coefficient 6 0.4 0.4
Friction coefficient u 0.1 0.1

3.1. Typical observations

For a typical test case with W = 6001,, a, = 0.05W and L = 4W, the SENT specimen is subjected to a loading velocity 6 = 0.1 m/s.
A total number of 113550 six-node triangular elements is used for the discretization of the numerical sample with a transition from a
mesh size of 2 mm to 0.001 mm. Fig. 6 shows the initiation and evolution of cohesive cracks and the distribution of the normal stress
o,, of the material near the crack tip for five different time steps. It is found that the applied loading causes the typical plane-strain
crack tip stress field with peanut shaped stress concentration. Inside the microstructure, an inhomogeneous stress distribution is
found.

Cracks are formed in the fiber/matrix interfaces in a number of spots near the crack tip rather than the pure matrix (see Fig. 6(a)),
which is due to lower cohesion strength at fiber/matrix interfaces. The spots where cracks initiate are sparsely distributed near the
crack tip due to the inhomogeneous stress distribution caused by the applied dynamic loads and material inhomogeneity of the
microstructure.

The material near the crack tip is experiencing complex conditions with interaction between dynamic loading, structural inertia,
material nonlinearity and material failure. Importantly, the applied continuous loading generates a loading wave propagating into
the structure, while the newly created crack surface unloading waves are generated. The process is also complicated due to structural
inertia effects. Therefore, the material near the crack tip including the cohesive surfaces can experience several loading/unloading
cycles, as visible in the change of loading/unloading state of the cracks shown in Fig. 6(a—c). Finally, a fully developed cohesive zone
is formed and a dominant crack close to the mid-plane propagates in a self-similar manner (see Fig. 6(d—e)). Many cracks including
both fiber/matrix debonding and matrix cracking are formed ahead of the crack tip while the cracks at the wake are unloading.
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Fig. 6. Snapshots of the crack distribution and crack state (Left) and o,, stress distribution (Right).

Due to the inhomogeneous distribution of fibers, the growing crack is not straight but shows a certain tortuosity. The deformation

of the microstructure is relatively small with a large fracture process zone.

3.2. Size of the microstructure

The adopted number of embedded RVEs in the embedded zone is Npyg = 2 X 20. Justification for this choice was found in
a size dependence study which is presented in this section. A study on the influence of the microstructure size on the dynamic
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Fig. 7. J-integral contours: path A, B and C.

crack propagation in the SENT specimen is carried out. The size of the embedded microstructure, represented by the number of
embedded RVEs, is changed for a case with the width of the SENT specimen W = 600/, and the same loading velocity 6 = 0.1 m/s.
Four different sizes of the microstructure are considered, namely, 2 x 20 RVEs, 2 x 30 RVEs, 4 x 16 RVEs and 4 x 20 RVEs. The
response of the SENT specimen with these four different microstructure sizes under dynamic loading is investigated with emphasis
on the crack growth speed and the energy release rate.

The crack tip is defined as the appearance of the first fully damaged cohesive element with stress free surface (w, = 1), as
illustrated in Fig. 6e (Left). The time derivative of the crack length is the crack speed. To obtain the dynamic energy release rate of
the fracture process zone, the path of the J-integral is defined outside of the embedded microstructure zone. The path-dependence
of the dynamic J-integral is first investigated for three different prescribed paths, A, B and C shown in Fig. 7 for the case with
Ngyg = 2 % 20. Path A is the outer boundary of the microstructure while path B is slightly further away from Path A and path C is
even further than path B. Fig. 8 shows the dynamic J-integral value vs. time for the three paths. It is seen that there are only very
minor differences in the dynamic J-integral value for the three different paths, which means that the path-independence is found
for paths defined outside the embedded microstructure. It is noted that in the homogenized region where paths A, B and C are
defined, the material response is modeled as elastic, which attributes to the path-independence observed here. Path A is therefore
chosen as the J-integral contour used in this study.

Fig. 9 shows the crack extension 4a vs. time and dynamic J-integral for the four cases with different microstructure sizes. It can
be observed that the crack extension curve for the four cases are not exactly the same, which is related to the fact that the location
where crack occurs is not the same. However, the differences between the four cases are limited. The crack speed, i.e. the slope of
