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Abstract
Poroelasticity theory can be used to analyse the coupled interaction between fluid flow and porous media (matrix)
deformation. The classical theory of linear poroelasticity captures this coupling by combining Terzaghi’s effective stress
with a linear continuity equation. Linear poroelasticity is a good model for very small deformations; however, it becomes
less accurate for moderate to large deformations. On the other hand, the theory of large-deformation poroelasticity combines
Terzaghi’s effective stress with a nonlinear continuity equation. In this paper, we present a finite element solver for linear
and nonlinear poroelasticity problems on triangular meshes based on the displacement-pressure two-field model. We then
compare the predictions of linear poroelasticity with those of large-deformation poroelasticity in the context of a two-
dimensional model problem where flow through elastic, saturated porous media, under applied mechanical oscillations, is
considered. In addition, the impact of introducing a deformation-dependent permeability according to the Kozeny-Carman
equation is explored. We computationally show that the errors in the displacement and pressure fields that are obtained using
the linear poroelasticity are primarily due to the lack of the kinematic nonlinearity. Furthermore, the error in the pressure
field is amplified by incorporating a constant permeability rather than a deformation-dependent permeability.

Keywords Biot’s theory of linear poroelasticity · Large-deformation poroelasticity · Nonlinear poroelastic media ·
Finite element method · Poromechanics

1 Introduction

A saturated porous medium is composed of a porous solid
material, fully saturated by a viscous fluid, flowing through
connected pores. In deformable porous materials such as
soils, rocks and tissues, the flow of the pore fluid and the
deformation of the solid matrix are tightly coupled to each
other. Poromechanics involves fluid flow in porous media
that can deform when subjected to external forces and to
variations in pressure of the saturating fluid. Moreover,
poromechanical deformations are poroelastic when they are
controlled by the reversible storage and release of elastic
energy.
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In the last few decades, the mechanics of porous media
has been of great interest due to its potential application
in many geological and biological systems across a wide
range of scales such as civil engineering [7, 13, 20, 21, 32,
40, 43, 45], energy and environmental technologies [14, 17,
26, 37, 39, 51], material science [29] and biophysics [18,
30], where poromechanics plays an important role in
modelling bones and soft tissues [1, 15, 41]. In physical
chemistry, poromechanical processes include mass and heat
transfer [53]. Additionally, poromechanics has been studied
intensely in geophysics, in the context of consolidation of
aquifers [33, 36] and in the context of enhanced oil or
gas recovery [4, 38, 44]. Our current main motivation is
related to the development of a comprehensive model for
fluid injection into a monolayer of soil particles subjected
to surface mechanical oscillations. Therein, we include
dynamic effects, especially a time and space dependent
porosity and permeability.

Due to the high complexity and the unknown geometry of
porous media, a fully resolved model is nearly impossible to
obtain. Classically, in the theory of linear poroelasticity [5,
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48], fluid flow is described by Darcy’s law and fluid
mass conservation, and matrix deformation is described
by Terzaghi’s effective stress and linear elasticity. This
theory is originally emerged in soil mechanics with the
work of Terzaghi [46], but its general statement was given
by Biot [5, 6] using an elastic formulation for the solid
matrix and Darcy’s law for the fluid flow. This approach,
as formulated in Biot’s consolidation model [5], is valid
for infinitesimal deformations of the solid. However, it
becomes increasingly inappropriate for moderate to large
deformations. The well-known theory of large-deformation
poroelasticity [28] combines Darcy’s law with Terzaghi’s
effective stress and nonlinear elasticity in a rigorous
kinematic framework, leading to a strongly nonlinear
coupling between the pore structure and the fluid flow [18,
37]. Another nonlinear poroelasticity model that takes
large deformations into account is considered in [8]. In
this model, the mechanical deformation follows the Saint
Venant-Kirchhoff constitutive law for hyperelastic solid
materials and the fluid compressibility in the fluid equation
is assumed to be nonlinear. In the current paper, the fluid
phase is assumed to be incompressible and a linear stress-
strain constitutive law is considered.

It is difficult to obtain analytical solutions for poroelas-
ticity problems. Therefore, solving these problems relies
mainly on numerical methods. In addition, numerical meth-
ods are necessary to solve large deformation poromechani-
cal problems since these problems are inherently nonlinear.
Poroelasticity problems have been attracting attention from
the scientific computing community [25, 31, 50] (and ref-
erences therein). Some recent work can be found in [19,
24, 25, 35, 42]. The simplicity of the displacement-pressure
two-field formulation [31, 52] is attractive and hence pur-
sued by this paper. In addition, a numerical model has been
developed to solve the poroelasticity equations following
the continuous Galerkin (CG) finite element method. When
using the finite element method to solve the poroelastic
equations, the main challenge is to ensure convergence of
the method and to prevent numerical instabilities that often
manifest themselves in the form of spurious oscillations in
the pressure field. It has been proved that this problem is
caused by the saddle point structure in the coupled equa-
tions resulting in a violation of the famous Ladyzhenskaya-
Babuska-Brezzi (LBB) condition [34], thus highlighting the
need for a stable combination of mixed finite elements [22]
such as the popular Taylor-Hood element.

In this work, we propose finite element methods
for the resolution of the governing equations both in
the theory of linear poroelasticity as in the large-
deformation poroelasticity. The fluid-mass balance equation
is discretised in time by a backward Euler scheme.
The resulting system of nonlinearly coupled equations is

solved by a standard Picard iterative procedure, which is
linearly convergent. In the literature, this system is also
solved by Newton’s method [8], which is quadratically
convergent. The drawbacks of the Newton-Raphson method
are that the method is only locally convergent and that
the computation of derivatives is needed. Another valuable
alternative to Picard’s method is the L-scheme [8, 9].
The L-method is robust and linearly convergent, and
does not involve the computation of any derivatives.
Moreover, the convergence rate does not depend on the
mesh size. Only a relatively mild constraint on the time
step size is required when the hydraulic conductivity is
not taken constant [27]. The L-scheme contains a constant
parameter L > 0 which mimics the Jacobian from
Newton iteration. However, in order to determine the
parameter L, for any given problem, it is necessary to
use apriorily derived convergence estimates [12]. In the
current paper, Picard’s iterative method is used since it is
easy to understand and to implement and since it does
not involve the computation of derivatives or unknown
parameters. Furthermore, monolithic approaches for solving
the quasi-static two-field poroelasticity equations are
adopted. Another approach that is widely used in coupling
the flow and the mechanics in porous media is the fixed-
stress split method [10], which falls within the class of
segregated approaches. This method can be combined with a
linearisation scheme for the nonlinear poroelasticity models
(see [9] where the L-scheme is used for the linearisation).

To assess the accuracy of aforementioned constitutive
laws and the performance of finite element methods pre-
sented herein, we consider a two-dimensional simulation.
The obtained numerical results from both linear and non-
linear poroelasticity theories are compared with each other.
The research problem we address in the present paper is
for which applied mechanical oscillations it is sufficient to
solve the linear poroelasticity model, which is computation-
ally cheaper and simpler to solve.

The rest of this paper is organised as follows. In Section 2
the considered constitutive equations are summarised,
including the employed permeability model. Section 3
presents a two-dimensional numerical example that is
used to demonstrate the difference between the linear
and nonlinear poroelasticity models. In Section 4, the
nonlinear equations are discretised and the finite elements
are combined with the first-order implicit Euler temporal
discretisation to establish a solver for linear and nonlinear
poroelasticities on triangular meshes, which couples the
solid displacement and fluid pressure in a monolithic
system. Furthermore, the nonlinear equation systems are
solved using a Picard iterative method. Section 5 discusses
the numerical results and some concluding remarks are
reported in Section 6.
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2 Governing equations

In the following, we briefly recall the equations governing
the problem of a porous material subjected to oscillating
mechanical deformations characterised by displacements u
of the solid skeleton.

We consider a two-phase mixture composed of an elastic
solid matrix whose voids are continuous and completely
saturated by an incompressible Newtonian fluid. In this
study, it is further assumed that the porous material is in
an initial state of hydraulic and mechanical equilibrium,
gravitational body force remains constant and the matrix
grains are incompressible. Let �t ⊂ R

3 denote a bounded
domain occupied by a homogeneous and isotropic elastic
body with boundary �t and x = (x, y, z) ∈ �t . Denote by
�0 the reference domain corresponding to the poroelastic
medium in the initial state and �t the deformed domain.
Furthermore, t denotes time, belonging to a half-open time
interval I = (0, T ], with T > 0. To determine the local
displacement of the skeleton of a porous medium as well as
the fluid flow through the pores, the poroelastic equations
with single-phase flow can be expressed as [28]:

− ∇ · σ ′ + (∇p + ρg) = 0 on �t × I ; (1a)

∇ · Du
Dt

+ ∇ · vf = 0 on �t × I, (1b)

where σ ′ and vf are defined by the following equations

Stress-strain constitutive law: σ ′ = λtr(ε)I + 2με; (2)

Darcy’s law: vf = −κ

η
(∇p + ρg), (3)

where σ ′ is Terzaghi’s effective stress tensor for the porous
medium, p is the fluid pressure, ρ is the fluid density,
g is the gravitational acceleration vector, u is the solid
displacement vector, vf is Darcy’s velocity, λ and μ are
the Lamé constants, ε is the effective strain tensor, κ is
the permeability of the porous medium and η is the fluid
viscosity. Note that in Eq. 1b we have used the material
derivative, which reads as:

D

Dt
(·) = ∂

∂t
(·) + vs · ∇(·), (4)

where vs = ∂u
∂t

∣∣
�0 is the solid velocity. This system needs

to be complemented by appropriate boundary and initial
conditions that will be specified in Section 3.

In the infinitesimal deformation range, corresponding to
the assumptions that ‖u‖ � 1 and ‖∂u/∂x‖ � 1, the model
provided by Biot’s theory of linear poroelasticity [5] is used:

− ∇ · σ ′ + (∇p + ρg) = 0 on �t × I ; (5a)

∇ · ∂u
∂t

+ ∇ · vf = 0 on �t × I . (5b)

In the finite deformation range, the deformations are not
very small and can not be neglected. Hence, the poroelastic
equations with single-phase flow are expressed as:

− ∇ · σ ′ + (∇p + ρg) = 0 on �t × I ; (6a)

∇ · ∂u
∂t

+ ∇ · (∇u vs) + ∇ · vf = 0 on �t × I . (6b)

Furthermore, for the solid skeleton, we consider lin-
ear and nonlinear constitutive laws for the relationship
between strain and displacement. Assuming that the solid
deforms elastically, these relationships are quasi-static and
reversible. Hencky elasticity is a nonlinear hyperelastic
model that is based on a logarithmic strain measure and
provides good agreement for the elastic behaviour of a
wide variety of materials under moderate to large defor-
mations [2, 23]. The Hencky strain tensor can be written
as [28]:

εN = 1

2
ln(FFT ), (7)

where F = (I − ∇u)−1 is the deformation gradient tensor,
with I denoting the identity tensor. The natural logarithm
ln(·) is computed in each element of the tensor FFT . On
the other hand, assuming that the porous material is linearly
elastic, the linear strain tensor can be defined by:

εL = 1

2
(∇u + ∇uT ). (8)

Considering Hencky elasticity law (7) combined with
nonlinear poroelasticity (6) is the most appropriate model
for moderate to large deformations. However, this model
is computationally expensive. According to Auton and
MacMinn [3], using nonlinear poroelasticity (6) combined
with linear elasticity (8) offers a good compromise
between accuracy, robustness and computational efficiency,
demonstrating the same qualitative behaviour as the fully
nonlinear model. Hence, in this paper, we adopt linear
elasticity (8) for all models: ε = εL.

In addition, we assume that the solid and fluid phases
are individually incompressible, such that deformation
occurs only through rearrangement of the solid skeleton
with corresponding changes in the local porosity. This
is then likely to alter the permeability of the material.
The deformation-dependent permeability can be determined
using the Kozeny-Carman equation [49]:

κ(x, t) = d2
s

180

θ(x, t)3

(1 − θ(x, t))2
, (9)
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where ds is the mean grain size of the soil and the poros-
ity θ is computed from the displacement vector using the
porosity-dilatation relation (see [35, 47]):

θ(x, t) = 1 − 1 − θ0

exp(∇ · u)
, (10)

with θ0 the initial uniform porosity. In this study, the term
porosity refers to the entire connected porosity.

Since in linear poroelasticity it is assumed that the
deformations are infinitesimal, this model is in the literature
often combined with constant permeability. In this study,
we consider three models: linear poroelasticity, where Eq. 5
is used, combined with constant permeability κ(x, t) =
κ(x, 0) which we abbreviate as (LC), linear poroelasticity
combined with the Kozeny-Carman equation (LKC) and
nonlinear poroelasticity, where Eq. 6 is used, combined with
the Kozeny-Carman equation (NKC).

3 Numerical experiment

This section presents a numerical example that verifies
the proposed finite element formulation and highlights the
differences between the infinitesimal deformation and the
finite deformation regimes in a poromechanical problem. In
this example, we consider the effect of applied mechanical
oscillations with small and large amplitudes.

In this problem, a poroelastic medium is instantaneously
subjected to uniform boundary pressure on the left
boundary. As soon as the boundary pressure is applied,
excess pore pressure develops inside the domain, and so,
the pore fluid starts to drain through the right boundary.
The boundary pressure is maintained constant throughout.
Figure 1 illustrates the setup of the problem. We consider
a rectangular domain with initial width L and initial height
H . At the top of the domain, an oscillating mechanical
deformation is applied. No-flow conditions are imposed on
the top and bottom boundaries. The material is assumed
to be fully saturated and free of gravitational forces
throughout.

Fig. 1 Sketch of the setup for the two-dimensional problem

The boundary conditions for this problem are as follows:
κ

η
∇p · n = 0 on x ∈ �1 ∪ �3; (11a)

p = ppump on x ∈ �2; (11b)

p = 0 on x ∈ �4; (11c)

u = (0, uvib)
T on x ∈ �1; (11d)

σ ′n = 0 on x ∈ �2 ∪ �4; (11e)

u · n = 0 on x ∈ �3; (11f)

(σ ′n) · t = 0 on x ∈ �3, (11g)

where t is the unit tangent vector at the boundary, n the
outward unit normal vector and ppump is a prescribed pump
pressure. Figure 1 shows the definition of the boundary
segments. Initially, the following condition is fulfilled:

u(x, 0) = 0 for x ∈ �0. (12)

For the boundary displacement uvib, a standing wave is
considered, represented by:

uvib(x, t) = −γ cos
( π

2L
(x − L)

)
cos

( π

2�t
(t − �t)

)
,

(13)

with γ the amplitude of the oscillation and �t the time
increment.

4 Numerical procedure

In this section, we outline the numerical procedures used
to discretise the poroelastic models presented in Section 2
and to solve the resulting coupled fluid/solid finite-
dimensional problem. The weak form of the governing
equations will be derived and discretised using a continuous
Galerkin finite element approach with displacements and
fluid pressures as primary variables. The suitability of
the proposed methodology to model flow through elastic,
saturated porous media under finite deformations will
be demonstrated using the illustrative numerical example
described in the previous section.

4.1Weak formulation

We present a finite element framework for Eqs. 5 and 6,
using the continuously deforming domain �t with initially
�t = �0. Firstly, we introduce the appropriate function
spaces. Let L2(�t ) be the Hilbert space of square integrable
scalar-valued functions on �t defined as L2(�t ) = {f :
�t → R : ∫

�t
|f |2d�t < ∞}, with inner product (f, g) =∫

�t
fg d�t . Let H 1(�t ) denote the subspace of L2(�t ) of

functions with first derivatives in L2(�t ). Subsequently, we
define the function spaces Q = {q ∈ H 1(�t ) : q|�2 =
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ppump and q|�4 = 0} and W = {w ∈ (H 1(�t ))
2 : w|�1 =

(0, uvib)
T and (w · n)|�3 = 0}. Furthermore, we consider

the bilinear forms [35]:

a(u,w) = λ(∇ · u, ∇ · w) + 2μ
2∑

i,j=1

(εij (u), εij (w));

b(p,w) = (p, ∇ · w);

c(p, q) =
2∑

i=1

(
κ

η

∂p

∂xi

,
∂q

∂xi

).

Using the notation u̇ = ∂u/∂t , the variational formulation
for Eq. 5 with boundary and initial conditions (11)–(12)
consists of the following: Find (u(x, t), p(x, t)) ∈ (W ×Q)

such that:

a(u,w) − b(p,w) = h(w) ∀w ∈ W0; (14a)

b(q, u̇) + c(p, q) = 0 ∀q ∈ Q0, (14b)

with the initial condition u(0) = 0, and where

h(w) = −ppump

∫
�2

w · n d�;

W0(�0) =
{
w ∈ (H 1(�0))

2 :w|�1 =0 and (w · n)|�3 =0
}

;
Q0(�0) =

{
q ∈ H 1(�0) : q|�2∪�4 = 0

}
.

In this work, we use the implicit Euler method for the
discretisation in time, which is unconditionally stable and
commonly used in computational poromechanics literature.
Let us denote by �t = tm − tm−1 the time increment
from time tm−1 to tm and add the superscripts (·)m−1 and
(·)m to denote respective values at these time instances.
After applying this method we get: For m ≥ 1, find
(um(x), pm(x)) ∈ (W × Q) such that:

a(um,w) − b(pm,w) = h(w) ∀w ∈ W0; (15)

b(q,um) + �t c(pm, q) = b(q,um−1) ∀q ∈ Q0, (16)

while for m = 0: u0 = 0. At each time step, we solve the
equations as a fully coupled system.

Now we derive the variational formulation for Eq. 6b,
first we multiply this equation by a basis function q ∈ Q0,
and integrate the result over �t , to get:∫

�t

[
∇ · ∂u

∂t
+ ∇ · (∇u vs) + ∇ · vf

]
q d�t = 0. (17)

First, we introduce J = [∇u − (∇ · u)I]vs + vf , then
using Clairaut’s theorem on equality of mixed partials for
C2-functions over time and position, we obtain∫

�t

[
∂

∂t
(∇ · u) + ∇ · (vs∇ · u) + ∇ · J

]
q d�t = 0. (18)

The definition of the material derivative (4) gives∫
�t

[
D

Dt
(∇ · u) + (∇ · vs)(∇ · u) + ∇ · J

]
q d�t = 0.

(19)

According to Dziuk and Elliott [16], it holds that Dq
Dt

= 0
for the Lagrangian basis functions that we will use in this
study. Hence, we get using the definition of the material
derivative (4):∫

�t

[
∂

∂t
[(∇ · u)q] + vs · ∇[(∇ · u)q] + (∇ · vs)(∇ · u)q

+(∇ · J)q
]

d�t = 0. (20)

The divergence theorem gives:∫
�t

∇ · [vs(∇ · u)q]d�t =
∫

∂�t

vs(∇ · u)q · n d�t . (21)

Furthermore, from Reynolds’ theorem, it follows:∫
�t

∂

∂t
[(∇ · u)q] d�t = d

dt

∫
�t

(∇ · u)q d�t

−
∫

∂�t

(∇ · u)q vs · n d�t . (22)

This results into:

d

dt

∫
�t

(∇ · u)q d�t +
∫

�t

(∇ · J)q d�t = 0. (23)

Applying the divergence theorem again yields:

d

dt

∫
�t

(∇ ·u)q d�t −
∫

�t

J ·∇q d�t +
∫

∂�t

Jq ·n d�t = 0.

(24)

From boundary conditions (11) it follows, using the
definition of J, that:

d

dt

∫
�t

(∇ · u)q d�t +
∫

�t

[(∇ · u)I − ∇u]vs · ∇q d�t

−
∫

�t

vf · ∇q d�t = 0. (25)

After applying the implicit Euler method for the temporal
discretisation of vs :

vm
s = ∂um

∂t
≈ um − um−1

�t
, (26)

it follows that:∫
�t

(∇ · um)qm d�t −
∫

�t

[(∇ · um)I − ∇um]

×(um − um−1) · ∇qm d�t − �t

∫
�t

vm
f · ∇qm d�t

=
∫

�t−�t

(∇ · um−1)qm−1 d�t . (27)

We thus obtain, for each time step, a nonlinear system to
be solved using an iterative scheme. Nonlinear algebraic
system Eq. 27 can be solved by Picard’s iterative procedure,
where the subscripts (·)k−1 and (·)k denote the values of the
previous and the current iterations respectively. In addition,
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we choose the initial guess um
0 = um−1 and the stopping

criterion ‖uk−uk−1‖
‖uk‖ + ‖pk−pk−1‖

‖pk‖ ≤ 10−5, to get:
∫

�t

(∇ · um
k )qm

k−1 d�t −
∫

�t

[(∇ · um
k )I − ∇um

k ]

×(um
k−1 − um−1) · ∇qm

k−1 d�t − �t

∫
�t

vm
f,k

·∇qm
k−1 d�t =

∫
�t−�t

(∇ · um−1)qm−1 d�t . (28)

Picard’s iterative scheme is also applied for solving the
models that use the Kozeny-Carman equation. Thus, after
having obtained the numerical approximation for the
displacement in the previous iteration uk−1, we update the
porosity using Eq. 10. Subsequently, the Kozeny-Carman
relation (9) is used to calculate the permeability in the
current iteration k.

4.2 Finite element formulation

Equation 14 and Eqs. 14a and 28 are solved by apply-
ing the finite element method, with triangular Taylor-Hood
elements [11]. Regarding spatial discretisation, the dis-
placement field is approximated using finite elements with
quadratic basis functions, whereas continuous piecewise
linear approximation is used for the pressure field. Time dis-
cretisation of the above dynamical equations is performed
by using the implicit Euler method.

Let P l
h ⊂ H 1(�t ) be a function space of piecewise

polynomials on �t of degree l. Hence, we define finite
element approximations for W and Q as W l

h = W ∩ (P l
h ×

P l
h) with basis {φφφi = (φi, φi) ∈ (W l

h × W l
h ) : i =

1, . . . , nu} and Ql′
h = Q ∩ P l′

h with basis {ψj ∈ Ql′
h :

j = 1, . . . , np}, respectively. Subsequently, we introduce a
spatial approximation for the functions u(x, t) and p(x, t),
writing this in the form:

uh(x, t) =
nu∑
i=1

ui (t)φφφi(x), ph(x, t) =
np∑

j=1

pj (t)ψj (x),

(29)

in which the Dirichlet boundary conditions are imposed.
When a continuously deforming grid is used, each trial
function is time-dependent due to the motion of the grid.
Hence, the finite-element trial solution is of the form:

uh(x, t) =
nu∑
i=1

ui (t)φφφi(x(t), t),

ph(x, t) =
np∑

j=1

pj (t)ψj (x(t), t). (30)

For the mesh points, it holds x(t) = x0 + u(t), where x0 are
the coordinates of the reference domain �0.

5 Numerical results

The Galerkin finite element method with triangular Taylor-
Hood elements is employed for the solution of the dis-
cretised quasi-two-dimensional problems (5) and (6). The
numerical investigations are carried out using the matrix-
based software package MATLAB (version R2017a). The
computational domain is a rectangular surface with ini-
tial width L = 1.0m and initial height H = 1.0m. The
domain is discretised using a regular triangular grid, with
�x = �y = 1/200. Mesh refinement did not yield any sig-
nificant changes of the numerical solution. In addition, the
hydraulic and mechanical properties used in the simulation
can be found in Table 1. The solid material properties are
characteristic of an unconsolidated, sandy formation.

Furthermore, the Lamé constants λ and μ in Eq. 2 are
related to elasticity modulusE and Poisson’s ratio ν by: λ =

νE
(1+ν)(1−2ν)

and μ = E
2(1+ν)

. The suitability of the proposed
methodology to model flow through elastic porous media
under infinitesimal and finite deformations is investigated
in this study by means of the L2-norm of the computed
displacements ‖u‖ and pressure field ‖p‖. Subsequently, to
compare the results from the different models, we compute
the percentage change as follows:

‖u‖%,AB = ‖uA‖ − ‖uB‖
‖uB‖ · 100, (31)

where A and B are two different models from the three
models considered in this study: LC , LKC and NKC . In the
generations of the simulation results, the time increment is
chosen to be �t = 0.1.

In order to obtain some insight into the impact of the
applied mechanical oscillations on the solid displacements
and the fluid pressure, we present an overview of the
simulation results in Figs. 2 and 3. In these simulations,
water is injected into the soil at a constant pump pressure of
5 bar. We start with the simulation results for the nonlinear
model (NKC) without any oscillations applied, i.e. γ =
0. The simulated pressure and displacement profiles are
provided in Fig. 2a and b. Mechanically, the deformations
in the porous medium are negligible, other than a small

Table 1 An overview of the values of physical properties used in the
simulation

Property Symbol Value Unit

Elasticity modulus E 35 · 106 Pa

Poisson’s ratio ν 0.3 -

Mean grain size ds 0.2 · 10−3 m

Initial porosity θ0 0.4 -

Fluid viscosity η 1.307 · 10−3 Pa · s
Pump pressure ppump 5 · 105 Pa
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Fig. 2 Numerical solutions for
the pressure and the
displacement at time t = 0.9

shift of the grains to the right, as a result of the force
exerted on the grains by the injected water. As shown
in Fig. 2b, the simulated pressure is almost linear. This

means that the injected water flows in a horizontal direction
through the domain from the left to the right boundary.
In Fig. 2c and d, the numerical solutions at t = 0.9 are

Fig. 3 The norm of the
simulated displacement ‖u‖ and
pressure profiles ‖p‖ as
function of the time t
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Fig. 4 The percentage change in
the norm of the simulated
displacement ‖u‖% as function
of the time t
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shown for the nonlinear model using applied oscillations
with γ = 0.1.

Figure 2c and d show the impact of the applied
oscillations, imposed on the top of the domain, on the

water flow. In contrast to the pressure shown in Fig. 2b,
the numerical solution for the pressure in the problem with
oscillations is no longer linear, but shows an oscillatory
behaviour, as depicted in Fig. 2d. In this figure, we can

Fig. 5 The percentage change in
the norm of the simulated
pressure ‖p‖% as function of the
time t
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Fig. 6 The number of iterations per time step as function of the time
t , for different values of the amplitude γ

see that the fluid pressure increases when the grains are
pressed together by the applied oscillation. The norm of
the simulated displacement and pressure profiles that have
been obtained using an applied oscillation with γ = 0
(no oscillation) are depicted in Fig. 3a and b, while the
simulated results that have been obtained using an applied
oscillation with γ = 0.1 are provided in Fig. 3c and d.

In Fig. 3a and b, the behaviours of the displacement
and pressure fields as function of the time, without applied
oscillations, are shown. The difference between the linear
models LC and LKC is negligibly small in the displacement
field, while this difference is more visible in the pressure
field for small times. This is a consequence of the different
permeability relationships that are used in these models
and that have more effect on the pressure field than on
the solid deformations. Over time, the difference between
the three models becomes smaller in the pressure field.
However, the value of the norm of the displacement as a
result of the nonlinear model is larger than the norm of the
displacements in the linear models. Hence, for larger times,
the nonlinearity has more effect on the displacement than on

the pressure field. This is also expected from Eqs. 5 and 6.
The impact of the applied mechanical oscillation is shown
in Fig. 3c and d, where we notice an oscillatory behaviour in
the displacement and pressure profiles. In these figures, we
notice more similarity in the results of the three models for
the displacement than for the fluid pressure. Furthermore, it
is clear that the applied oscillation, which has an amplitude
equal to 10% of the height of the domain, has a larger impact
on the results than the adopted mathematical models.

The percentage change (31) in the norms of the simulated
displacement ‖u‖% and pressure ‖p‖% is depicted in Figs. 4
and 5, for different values of the amplitude of the applied
oscillations.

When comparing the linear models in Figs. 4 and 5,
we notice that the impact of the Kozeny-Carman relation
on the displacement is small, whereas this impact on the
fluid pressure field becomes larger with increasing ampli-
tude of the applied oscillation. The reason for this behaviour
is that the permeability relationship is directly related to
the pressure through Eq. 3. Moreover, the influence of the
deformations on the porosity (see Eq. 10), and thus on the
Kozeny-Carman permeability, is greater for larger deforma-
tions. In addition, the comparison between the linear and
the nonlinear models both combined with Kozeny-Carman
equation leads to the conclusion that the nonlinearity has
a larger impact on the displacement field more than the
permeability relationship. In contrast, the pressure field is
more influenced by the permeability relation that is used
than the nonlinearity in the models. In the extrema, the
percentage change between the nonlinear model and the
linear model with constant permeability is as large as the
percentage change between the linear models and the per-
centage change between the nonlinear model and the linear
model combined with the Kozeny-Carman relation.

Picard’s iterative scheme is used to solve the nonlinear
poroelasticity model (NKC). For the previous values of

Table 2 The upper limits of the
absolute values of the
percentage change

Amplitude γ ‖u‖%,NKCLKC
‖u‖%,NKCLC

‖p‖%,NKCLKC
‖p‖%,NKCLC

0.00 0.8242 0.8236 0.6140 0.8402

0.01 0.8889 0.9045 0.3345 0.7937

0.02 1.2588 1.2373 1.0128 2.2942

0.03 1.6468 1.4731 1.8968 4.2280

0.04 1.1095 1.0415 2.8980 7.3587

0.05 1.1938 1.6926 4.7570 11.6912

0.06 2.5034 3.1282 6.4628 15.1482

0.07 3.6431 4.3453 7.8815 18.0029

0.08 4.6264 5.3951 9.1113 20.4882

0.09 5.4970 6.3267 10.2152 22.7376

0.10 6.2852 7.1733 11.2296 24.8238

0.11 7.0107 7.9559 12.1755 26.7877

0.12 7.6857 8.6876 13.0655 28.6535
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the amplitude of the applied oscillations, the number of
iterations per time step as function of the time t is depicted
in Fig. 6. It can be seen from Fig. 6 that the number of
Picard iterations stabilises with time and depends mildly on
the magnitude of γ .

The aim of this study was to quantify the amplitudes for
which the linear poroelasticity model is accurate enough
and demonstrates the same qualitative behaviour as the
nonlinear poroelasticity model. As expected, for small
applied mechanical oscillations, the difference between
the linear and the nonlinear models is small both in the
displacement as in the pressure fields. In Table 2, the upper
limits of the absolute values of the percentage change for
the different models are depicted.

For instance, given an applied oscillation with an
amplitude γ = 0.08 (8% of the height of the domain), an
accuracy of 10% can be obtained in both the displacement
and the pressure fields using the linear poroelasticity
model combined with Kozeny-Carman equation. However,
this accuracy can only be obtained using the linear
model combined with constant permeability for applied
oscillations with an amplitude of 0.04 or smaller. For
applied mechanical oscillations with amplitudes larger than
γ = 0.12, the nonlinear poroelasticity model becomes
unstable resulting in negative porosities. Hence, we will not
consider these oscillations in this paper.

6 Discussion and conclusions

In this work, we have developed a mathematical model
for fluid injection into a monolayer of soil particles
subjected to surface mechanical oscillations, based on the
two-field model (solid displacement and fluid pressure).
This two-field mixed formulation is employed to calculate
the solid displacement and the fluid pressure directly,
in a monolithic system. In addition, we have included
dynamic effects, such as a time- and space-dependent
porosity and permeability. Firstly, we have summarised
the governing equations both in the theory of linear
poroelasticity as in the large-deformation poroelasticity.
Subsequently, we have presented a finite element solver for
the linear and nonlinear poroelasticity models, combined
with constant and deformation-dependent permeability.
This solver is developed on a triangular mesh and relies
on quadratic basis functions for the discretisation of the
displacement in elasticity and the continuous piecewise
linear approximation for discretisation of pressure in
Darcy’s flow. These spatial discretisations are combined
with the backward Euler temporal discretisation of the fluid-
mass balance equation. For the nonlinear poroelasticity
equation, a weak formulation based on the motion of the
solid was first presented, then linearisation of the resulting

nonlinear coupled equation systems has been made using a
standard Picard iterative procedure, which is subsequently
implemented in a finite element code that is based on
Taylor-Hood elements.

The suitability of the proposed methodology to model
flow through elastic, saturated porous media under finite
deformations is demonstrated using an illustrative numer-
ical example. In this example, injection of a fluid into a
two-dimensional fully saturated porous medium is consid-
ered, assuming that the solid material is subjected to surface
mechanical oscillations with different amplitude sizes and
that the fluid and solid constituents are individually incom-
pressible.

Linear poroelasticity is a good model for very small
deformations, besides that it is a simple model to solve
and is computationally cheap. On the other hand, the well-
known large-deformation theory is more suitable to solve
poroelasticity problems with moderate to large deforma-
tions. However, adopting this nonlinear mathematical model
increases the computational complexity and cost, especially
because the basis functions in the finite element code have
to be updated in every iteration within the time integration.
For this reason, the two-dimensional numerical example is
used in this study to investigate the accuracy of the lin-
ear poroelasticity model for applied mechanical oscillations
with different sizes. In addition, the impact of introduc-
ing a deformation-dependent permeability according to the
Kozeny-Carman equation is explored.

The numerical example is solved using mechanical oscil-
lations with amplitudes in the range [0, 0.12] corresponding
with [0, 12]% of the height of the domain. For solving this
physical problem, three different mathematical models are
considered: linear poroelasticity combined with constant
permeability (LC), linear poroelasticity combined with the
Kozeny-Carman equation (LKC) and nonlinear poroelas-
ticity combined with the Kozeny-Carman equation (NKC).
Since the nonlinear poroelasticity model was unstable for
applied mechanical oscillations with amplitudes larger than
0.12, resulting in negative porosities, we did not do any
simulations for larger oscillations. In order to remove the
nonphysical behaviour, one could analyse the improvement
of the initial condition for the Picard iteration scheme of the
displacement by the use of the linear model. As an alter-
native, one could investigate the performance of different
time-integration schemes and time stepping. Another aspect
is that, in the current work, we first applied time integra-
tion, followed by the finite element discretisation and finally
the Picard method was implemented. One could reverse
the order between the application of the finite element dis-
cretisation and Picard’s method and investigate whether this
reversal gives any improvement of the results. On the other
hand, we could also analyse whether the model would actu-
ally predict these negative porosities and look whether the
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model (in terms of the Kozeny-Carman relation Eq. 9 and in
the wake of Eq. 10) is entirely appropriate for this regime.

Firstly, by considering the numerical example without
applied oscillations, we have shown that the nonlinearity
has more effect on the displacement than on the pressure
field. This is a consequence of the nonlinearity in
the displacement that can be seen in Eq. 6. On the
contrary, the impact of including a deformation-dependent
permeability was larger on the pressure field than on
the solid deformations. The reason for this behaviour is
that the permeability relationship is directly related to the
pressure through Darcy’s law (3). Secondly, the impact
of the applied mechanical oscillation was investigated by
applying standing waves on the top surface of the solid
matrix. From the numerical results, we noticed that the
oscillatory behaviour was visible in the displacement and
pressure profiles. Moreover, the differences between the
three models (LC), (LKC) and (NKC) are small for small
applied oscillations, while these differences become larger
by an increasing amplitude of the applied oscillation. Hence,
the errors in the simulated displacement and pressure as
a result of solving the linear poroelasticity model in the
finite-deformation range increase when we choose applied
oscillations with large amplitudes. The difference between
the linear models can be explained by the impact of the
large deformations on the porosity, which in turn has a
larger impact on the Kozeny-Carman permeability. While
this influence is not taken into account in the linear model
combined with constant permeability.

In summary, for the studied problem and the set of
parameters chosen, the use of the linear poroelasticity model
for solving physical problems with finite deformations
results in errors in the displacement and pressure fields that
are mainly the consequence of the lack of the kinematic
nonlinearity. To reduce these errors, especially in the
pressure field, the linear poroelasticity model can preferably
be combined with a deformation-dependent permeability,
such as the Kozeny-Carman relationship.
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66(3), 248–273 (2016)

41. Støverud, K.H., Darcis, M., Helmig, R., Hassanizadeh, S.M.:
Modeling Concentration Distribution and Deformation During
Convection-Enhanced Drug Delivery into Brain Tissue. Transp.
Porous Med. 92(1), 119–143 (2012)

42. Sun, M., Rui, H.: A coupling of weak Galerkin and mixed finite
element methods for poroelasticity. Comput. Math. Appl. 73,
804–823 (2017)

43. Sun, W., Chen, Q., Ostien, J.T.: Modeling the hydro-mechanical
responses of strip and circular punch loadings on water-saturated
collapsible geomaterials. Acta Geotech. 9, 903–934 (2014)

44. Szulczewski, M.L., MacMinn, C.W., Herzog, H.J., Juanes, R.:
Lifetime of Carbon Capture and Storage as a Climate-Change
Mitigation Technology. In: Proc. Natl. Acad. Sci. U.S.A., vol. 109,
pp. 5185 – 5189 (2012)

45. Teatini, P., Ferronato, M., Gambolati, G., Gonella, M.: Ground-
water pumping and land subsidence in the Emilia-Romagna coast-
land, Italy: Modeling the past occurrence and the future trend.
Water Resour. Res. 42(1), W01406 (2006)

46. Terzaghi, K.: Theoretical soil mechanics. Chapman And Hall
Limited, London (1951)

47. Tsai, T.L., Chang, K.C., Huang, L.H.: Body force effect on
consolidation of porous elastic media due to pumping. J. Chin.
Inst. Eng. 29(1), 75–82 (2006)

48. Wang, H.F.: Theory of Linear Poroelasticity with Applications
to Geomechanics and Hydrogeology. Princeton University Press
(2000)

49. Wang, S.J., Hsu, K.C.: Dynamics of deformation and water flow
in heterogeneous porous media and its impact on soil properties.
Hydrol. Process. 23, 3569–3582 (2009)

50. Wheeler, M., Xue, G., Yotov, I.: Coupling multipoint flux mixed
finite element methods with continuous Galerkin methods for
poroelasticity. Comput. Geosci. 18, 57–75 (2014)

51. White, J., Chiaramonte, L., Foxall, S.E.W., Hao, Y., Ramirez, A.,
McNab, W.: Geomechanical behavior of the reservoir and caprock
system at the In Salah CO2 storage project. In: Proc. Natl. Acad.
Sci., vol. 111, pp. 8747 – 8752 (2014)

52. White, J.A., Borja, R.I.: Stabilized low-order finite elements for
coupled solid-deformation/fluid-diffusion and their application to
fault zone transients. Comput. Methods Appl. Mech. Engrg. 197,
4353–4366 (2008)

53. You, L., Liu, H.: A two-phase flow and transport model for
the cathode of PEM fuel cells. Int. J. Heat Mass Transfer 45,
2277–2287 (2002)

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/2004.09373

	A moving finite element framework for fast infiltration in nonlinear poroelastic media
	Abstract
	Introduction
	Governing equations
	Numerical experiment
	Numerical procedure
	Weak formulation
	Finite element formulation

	Numerical results
	Discussion and conclusions
	References


