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a b s t r a c t 

Process plants can be potential targets to terrorist attacks with the aim of triggering domino effects. Compared 

to accidental domino effects where the possibility of having multiple primary events is very remote, man-made 

domino effects are likelier to be initiated from multiple units within the plant in order to increase the knock-on 

likelihood and thus causing maximum damage. In this regard, identification of critical units that - under attack 

- may lead to likelier and severer domino effects is crucial both to assess the vulnerability of process plants and 

subsequently to increase their robustness to such attacks. In the present work, we have applied graph theory and 

dynamic Bayesian network to identify critical units. Further, low-capacity utilization of process plants (e.g., by 

keeping some of the storage tanks empty) has been demonstrated as an effective strategy in the case of imminent 

terrorist attacks. As such, the robustness of the plant against intentional attacks can temporarily be increased 

while considering the cost incurred because of such a low-capacity utilization. 
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. Introduction 

Industrial plants and facilities have frequently been the targets of
ntentional attacks such as terrorist attacks, sabotage, and vandalism
1] . Fig. 1 depicts the number of attacks to industrial facilities among
hich are power towers and transformers in Thailand and The Philip-
ines, power plants and gas compression facilities in Iraq, oil facilities
n Libya, oil and gas pipelines in Yemen, Nigeria, Turkey, Pakistan, and
olombia, as well as oil wells in Iraq [1] . 

Intentional attacks, especially those launched by terrorists, are usu-
lly aimed at causing maximum damage in terms of, among others, loss
f lives and assets. As such, it seems reasonable to expect an “intelli-
ent attacker ” to aim for triggering domino effects in process facilities.
n the chemical and process industries, the term “domino effect ” is re-
erred to a chain of fires and/or explosions triggered by a primary fire
r explosion at a process vessel [2] . The escalation of primary fire(s)
r explosion(s) (primary events) to secondary fires or explosions (sec-
ndary events) occurs by means of heat radiation, fire impingement,
re engulfment, blast wave, or projectile fragments, which are known
s escalation vectors. Although rare, domino effects have contributed to
 number of catastrophic accidents such as for instance explosions at a
iquefied petroleum gas facility in Mexico in 1984 [3] , fires and explo-
ions at an oil storage terminal in the UK in 2005 [4] , and tank farm
xplosions and fires in Puerto Rico in 2009 [5] . 
∗ Corresponding author. 
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In the case of intentional attacks with improvised explosive devices
IEDs) such as pipe bombs and car bombs, the blast wave of detona-
ion can severely damage process vessels and result in major release of
ammable chemicals, which in contact with the heat of detonation, are
ery likely to ignite and lead to domino effects. Compared to accidental
omino effects where the possibility of having multiple primary events
s very remote, in intentional domino effects, it is likelier that multi-
le vessels are simultaneously attacked in order to increase (from the
ttacker’s viewpoint) the possibility and severity of potential domino
ffects. The relatively recent attack to a French chemical plant in July
015 [6] is an example of such multi-target attacks in which two chem-
cal storage tanks, nearly 500 m away from each other, were attacked
ith IEDs, leading to tank fires. 1 

Due to the catastrophic consequences of domino effects, many re-
earches have been devoted to their modeling and risk assessment in
hemical and process facilities [7–14] . A multitude of previous work has
een devoted to accidental domino effects whereas only a few works has
een dedicated to intentional domino effects [15–18] . Comparing inten-
ional and accidental domino effects, aside from the higher likelihood of
ultiple primary events in intentional domino effects, the likelihood of

argeting the most critical vessels in the former is much higher than the
atter. This is because, if the attacker is considered a rational decision
aker [19] , he would plan to maximize the expected utility of his attack
1 Remainings of some IEDs were also found near a third storage tank though 

t did not cause any damage. 

https://doi.org/10.1016/j.ress.2018.03.030
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Fig. 1. Number of attacks to utilities (1970–2016) [1] . 
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Fig. 2. (a) Bayesian network. (b) Influence diagram. 
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20] via attacking the vessels with the highest possibility of triggering
omino effects and thus inflicting maximum damage to the plant. 

The axioms required for a presumably “rational decision maker ”
ight be violated by a real decision maker [20] . Nevertheless, the as-

umption of a “rational attacker ” who wishes to maximize the expected
utcome of his attack would seem to result in conservative preventing
nd mitigating strategies by defenders since the most severe damage
ould be anticipated. 

Khakzad and Reniers [21] demonstrated that modeling potential
omino effects in a process plant as a directed graph, graph central-
ty metrics such as closeness and betweenness can be used to identify
rocess vessels with the largest contribution to domino effects. Using
 similar approach, Khakzad et al. [22] combined graph metrics with
ulti-criteria decision analysis so as to find an optimal fire protection

f process plants against domino scenarios. 
In the present study, we aim to develop a methodology based on

raph theory and Bayesian network to assess and reduce the vulnerabil-
ty of process plants in face of targeted domino effects. The developed
ethodology is shown to be effective in temporarily increasing the ro-

ustness 2 of existing process plants against intentional attacks (which
re aimed at triggering severe domino effects) particularly without mak-
ng macro-layout changes to the plant. In Section 2 , the fundamentals of
raph theory, Bayesian network, and multi-criteria decision making are
riefly recapitulated. In Section 3 , a demonstrative example is used to
evelop the methodology based on graph theory, followed by its valida-
ion using dynamic Bayesian network. Application of the methodology
o a case study and the results are in Section 4 . The conclusions are
rawn in Section 5 . 

. Background 

.1. Graph theory 

Domino effects in a process plant can be modeled as a directed graph
 = { 𝑉 , 𝐸 } where the process vessels are considered as the vertices of

he graph, 𝑉 = { 𝑣 1 , 𝑣 2 , … , 𝑣 𝑛 } , and the escalation vectors among the ves-
els as the edges of the graph, 𝐸 = { 𝑒 12 , 𝑒 13 , … , 𝑒 𝑖𝑗 } [21] . For instance,
f vessel v 1 is on fire, the heat radiation that v 2 receives from v 1 is in-
icated as e 12 . In a weighted graph, a set of numerical values can be
ssigned to either the vertices or the edges of the graph. A weighted
raph can be presented as 𝐺 = { 𝑉 , 𝑊 𝑣 , 𝐸, 𝑊 𝑒 } in which W v and W e are
eight vectors allocated to the vertices and the edges, respectively. 

In a directed graph, a path from v i to v j is a sequence of edges start-
ng from the former to the latter when each intermediate vertex can be
raversed only once. Similarly, the geodesic distance between the ver-
2 In the present study, we use “robustness ” as an antonym of “vulnerability ”. 

o  

s  

n  
ices, denoted by 𝑑 𝑖𝑗 = 𝑑( 𝑣 𝑖 , 𝑣 𝑗 ) , is the length of the shortest path from
 i to v j . 

Based on the concept of geodesic distance, a number of graph metrics
an be used to describe the characteristics of either the nodes of a graph
r the graph itself. Among such metrics, closeness centrality scores are
ery popular. The out-closeness of v i , C out ( v i ), can be defined as the num-
er of steps needed to reach every other node of the graph from v i ; the
n-closeness C in ( v i ), on the other hand, is the number of steps needed to
each v i from every other node of the graph [23] : 

 𝑜𝑢𝑡 

(
𝑣 𝑖 
)
= 

1 ∑
𝑗 𝑑 𝑖𝑗 

(1)

 𝑖𝑛 

(
𝑣 𝑖 
)
= 

1 ∑
𝑗 𝑑 𝑗𝑖 

(2)

Based on the centrality scores of a graph’s nodes given in Eqs. (1) and
2) , the closeness scores of the graph can be measured. As such, the out-
loseness of the graph can be calculated as: 

 𝑜𝑢𝑡 ( 𝐺 ) = 

∑𝑛 

𝑖 =1 𝐶 𝑜𝑢𝑡 

(
𝑣 𝑖 
)

𝑛 
(3)

.2. Bayesian network and influence diagram 

Bayesian network (BN) is a graphical tool for reasoning under un-
ertainty [24,25] . In a BN, the joint probability distribution of a set of
andom variables is represented in terms of conditional probabilities.
n a BN ( Fig. 2 (a)), random variables are represented by nodes (in the
orm of an ellipse) while the direct dependencies among the nodes are
epresented by directed arcs. Satisfying the Markov condition – which
tates that a node (e.g., X 4 ) is independent of its non-descendants (i.e.,
 1 and X 3 ) given its parents (i.e., X 2 ) – a BN factorizes the joint probabil-

ty distribution of its nodes as the product of the conditional probability
istributions of the variables given their parents: 

 

(
𝑋 1 , 𝑋 2 , … , 𝑋 𝑛 

)
= 

𝑛 ∏
𝑖 =1 

𝑃 ( 𝑋 𝑖 |𝑃 𝑎 (𝑋 𝑖 

)
) (4)

here Pa ( X i ) is the parent set of the variable X i . Considering the BN in
ig. 2 (a), P ( X 1 , X 2 , X 3 , X 4 ) = P ( X 1 ) P ( X 2 | X 1 ) P ( X 3 | X 1 , X 2 ) P ( X 4 | X 2 ). 

A BN can be extended to an influence diagram ( Fig. 2 (b)) using two
dditional types of nodes, decision node D and utility node U [25] in or-
er for decision making. Decision and utility nodes are conventionally
isplayed as rectangles and diamonds, respectively. A decision node in-
orporates a number of decision policies. A decision node should be
ssigned as the parent of nodes the probability distributions of which
epend on decision policies (e.g., the arc from the decision node D to
 2 ). Likewise, the decision node should be the child of nodes the states
f which have to be known to the decision maker before making deci-
ion (e.g., the dashed arc from X 1 to the decision node D ). The utility
ode U incorporates utility values (positive or negative) to represent the
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Fig. 3. Schematics of a dynamic Bayesian network in two sequential time in- 

tervals. 
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references of the decision maker as to the outcomes of each decision
olicy. 

Considering three decision policies for node D = { d 1 , d 2 , d 3 } and a
inary node X 3 = { 𝑥 + 3 , 𝑥 

− 
3 } in Fig. 2 (b), node U should include six util-

ty values, one for each pair of decision policies and the states of X 3 .
s such, the expected utility of each decision policy can be calculated;

or example, the expected utility of the 2nd decision policy d 2 can be
alculated as: 

𝑈 

(
𝑑 2 
)
= 

∑
𝑋 3 

𝑃 
(
𝑋 3 |𝑑 2 ) 𝑈 

(
𝑑 2 , 𝑋 3 

)
= 𝑃 ( 𝑥 + 3 |𝑑 2 ) 𝑈 

(
𝑑 2 , 𝑥 

+ 
3 
)

+ 𝑃 
(
𝑥 − 3 |𝑑 2 ) 𝑈 

(
𝑑 2 , 𝑥 

− 
3 
)

(5) 

Assuming a rational decision maker [19] , the decision policy with
he maximum expected utility can be selected as the optimal decision,
 

∗ [25] : 

 

∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥 𝐸𝑈 

(
𝑑 𝑖 
)

𝑑 𝑖 
for 𝑖 = 1 , 2 , 3 (6)

A dynamic Bayesian network (DBN) is a replication of ordinary BN
ver time, that compared to its predecessor, facilitates explicit modeling
f temporal changes of random variables. Dividing the timeline into a
umber of time intervals, DBN allows a node at the i th time slice to be
onditionally dependent not only on its parents at the same time slice
ut also on its parents and itself at previous time slices. Fig. 3 shows a
BN where the probabilities at a time slice are conditioned on the same
nd previous time slices: 

 

(
𝑋 1 , 𝑋 2 , … , 𝑋 𝑛 

)
= 

∏𝑛 

𝑖 =1 
𝑃 
(
𝑋 

𝑡 +Δ𝑡 
𝑖 

|𝑋 

𝑡 
𝑖 
, 𝜋( 𝑋 

𝑡 
𝑖 
) , 𝜋

(
𝑋 

𝑡 +Δ𝑡 
𝑖 

))
(7)

According to the DBN in Fig. 3 , the conditional probability of X 4 , for
xample, at the time slice 𝑡 + Δ𝑡 is 𝑃 ( 𝑋 

𝑡 +Δ𝑡 
4 |𝑋 

𝑡 +Δ𝑡 
2 , 𝑋 

𝑡 
3 , 𝑋 

𝑡 
4 ) . 

.3. Pareto optimization 

In real-life decision making problems, decision criteria that influence
he decision making process are usually in conflict. Multi-criteria deci-
ion analysis (MCDA) techniques have been developed with the aim of
elping decision makers deal with such complex situations. Due to the
onflicting nature of decision criteria, it is usually unlikely to make a de-
ision which satisfies all the decision criteria. In MCDA, a Pareto-optimal
olution is a decision alternative for which there are no other alterna-
ives where the value of a criterion can be improved without worsening
r maintaining the value of other criteria. A set of Pareto-optimal solu-
ions refers to a number of such decision alternatives which are normally
rioritized based on the preferences of a decision maker. 

The method of “reference point ” is one of the techniques in bi-criteria
ecision analysis, which intuitively represents the preferences of a de-
ision maker based on aspiration and reservation vectors [26] . An as-
iration vector is composed of the best values of the criteria whereas
 reservation vector contains the worst values of the criteria. The as-
iration and reservation vectors identify “Utopia ” and “Nadir ” points,
espectively. 
Optionally, a decision maker can define his preferred solution be-
ween aspiration and reservation levels, and based on the distances of
areto-optimal solutions from Utopia and Nadir points. Fig. 4 schema-
izes a reference point decision making technique, comprising a set of
areto-optimal solutions, i.e., points A–F, and Utopia and Nadir points.
ccordingly, the solution which is the closest/farthest (e.g., using Eu-
lidean distance) to/from the Utopia/Nadir point can be determined as
he best solution: 

𝑖 = 

2 
√ (

𝑥 𝑖 − 𝑥 𝑈 
)2 + 

(
𝑦 𝑖 − 𝑦 𝑈 

)2 
(8) 

here 𝜌i is the Euclidean distance of the i-th Pareto-optimal point from
topia point; x i and x U are the values of the criterion X of the i th point
nd Utopia point, respectively; y i and y U are the values of the criterion
 of the i th point and Utopia point, respectively. It should be noted
hat the application of the reference point technique implies the equal
mportance of the decision criteria to the decision maker. 

. Vulnerability of process plants to targeted attacks 

In this section, using a simple example, we will demonstrate via both
 graph theoretic approach and DBN approach that targeted attacks to
he units with the highest out-closeness score would result in the most se-
ere domino scenarios in a process plant than attacks to any other units
o. In Section 4 , the graph theoretic approach and pareto optimization
ill be applied to a more complex case study to show the low-capacity
tilization of process plants as a way of increasing their robustness to
ntentional attacks. 

.1. An example 

For the sake of clarity, we use a demonstrative example to help de-
elop the methodology. Fig. 5 (a) displays an oil terminal consisting
f six gasoline storage tanks with a diameter of D = 30.5 m, height of
 = 9.1 m, and capacity of V = 8000 m 

3 . Considering tank fires as the
ikeliest scenario anticipated from an attack with IEDs [6] , the amounts
f heat radiation Tank Tj receives from Tank Ti are calculated using
LOHA software [27] as reported in Table 1 , assuming a wind speed of
 m/s from NW, 25% relative humidity, and air temperature of 18 C. 

Since all the storage tanks are atmospheric, the heat radiation thresh-
ld cable of causing damage and thus triggering a domino effect is con-
idered as 15 kW/m 

2 [11] . As such, heat radiation intensity values less
han this threshold are not presented in Table 1 . 

.2. Vulnerability assessment 

.2.1. Application of graph metrics 

Modeling possible domino effects in a process plant as a directed
raph ( Fig. 5 (b)), Khakzad and Reniers [21] showed that process vessels
ith higher out-closeness centrality scores can lead to relatively severer
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Fig. 5. (a) An oil terminal consisting of six gasoline storage tanks. (b) Repre- 

sentation of possible domino scenarios as a directed graph. 

Table 1 

Heat radiation intensity (kW/m 

2 ) Tj receives from a tank fire at Ti . Values less 

than 15 kW/m 

2 are not presented. 

Ti ↓ Tj → T 1 T 2 T 3 T 4 T 5 T 6 

T 1 – 38 − 22 – –

T 2 38 – 38 – 22 –

T 3 – 38 – – – 22 

T 4 22 – – – 38 –

T 5 – 22 – 38 – 38 

T 6 – – 22 – 38 –

Table 2 

Out-closeness centrality of the storage tanks shown in Fig. 5 . 

Storage tank T 1 T 2 T 3 T 4 T 5 T 6 

C out (Tank) 0.556 0.714 0.556 0.556 0.714 0.556 
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3 In the present study, the storage tanks are considered to have two states, 

namely “Tank fire ” and “Safe ”. 
4 A threshold of 45 kW/m 

2 has been proposed for pressurized vessels exposed 

to heat [10] . 
omino effects if ignited or exploded as primary vessels. Following their
ork in the present study, we aim to investigate if intentional attack to a

imited number of process vessels with the highest out-closeness scores
node out-closeness) would result in the severest domino scenario than
ttack to any similar number of other process vessels. 

To this end, the directed graph in Fig. 5 (b), which has been drawn
ased on mutual interactions between the storage tanks in Table 1 , is
odeled in igraph package [28] . The storage tanks’ out-closeness scores

re presented in Table 2 , indicating T 2 and T 5 as the tanks with the
ighest out-closeness. As such, a single attack to T 2 or T 5 should trigger
 severer domino effect than a single attack to any other storage tank.
ikewise, simultaneous attacks to both T 2 and T 5 are expected to result
n a severer domino effect than a multi-attack to any other combination
f two tanks. 

For this purpose, we consider a number of single attack ( Fig. 6 (a)–
c)) and double-attack scenarios ( Fig. 6 (d)–(f)), where, for the sake of
larity, the targeted vessels are highlighted. Modeling the graphs in
ig. 6 in igraph [28] , the out-closeness scores of the graphs, as an in-
ication of graph vulnerability to domino effects [22] , are presented in
able 3 (1st row). 

As can be seen, among single-attack scenarios, the graph presented
n Fig. 6 (b) has the highest graph out-closeness, indicating that a sin-
le attack to T 2 (or T 5) would lead to the severest single-primary-event
omino effect. Likewise, among double-attack scenarios, the graph pre-
ented in Fig. 6 (e) has the highest graph out-closeness score, indicat-
ng that a double-attack to both T 2 and T 5 would result in the severest
ouble-primary-event domino effect. In the next section, we will com-
are the results obtained from the application of graph metrics with
hose of a BN approach. 

.2.2. Application of dynamic Bayesian network 

We use a methodology based on DBN to model all possible sequences
f events during domino effects in the oil terminal [14] . Fig. 7 displays
he DBN to model possible single- and multiple-primary-event domino
ffects in the plant shown in Fig. 5 . The DBN has also been extended to
n influence diagram by adding the node Utility to the nodes at the last
ime slice to account for the damage inflicted upon the storage tanks. 

To model the single-primary-event domino effect triggered by an
ttack to T 1, for example, the state of node T 1 at the first time slice,
enoted by t = 0, is instantiated to “T 1 = Tank fire ” while the states of
he other nodes at t = 0 are instantiated to “Safe ”. 3 Based on the as-
igned marginal and conditional probabilities, the developed DBN com-
utes unconditional probabilities of the storage tanks at each time slice.
or the sake of exemplification, the conditional probabilities assigned
o node T 4 at 2nd time slice, i.e., t = 1, are reported in Table 4 . 

In Table 4 , the probabilities P 1 , P 5 , and P 15 are also known as esca-
ation probabilities, and can be calculated using a variety of techniques
uch as probit models [10,11] based on the intensity of the escalation
ector (e.g., heat radiation) and type and size of target vessels. For the
urpose of this study, which is the identification of critical vessels based
n their relative contribution to domino effects, we use a linear relation-
hip to proportionate the escalation probability to the magnitude of heat
adiation. Since a threshold of 15 kW/m 

2 has been proposed for atmo-
pheric vessels exposed to heat radiation [10] , the linear relationship in
q. (9) could be used. It should be noted that Eq. (9) is only for demon-
trative purposes and is not aimed at superceding the well-known probit
odels: 

 = 1 − 

15 
𝑄 

(9)

here Q (kW/m 

2 ) is the heat radiation received by an atmospheric ves-
el. 4 As such, for instance, P 15 = P ( T 4 t = 1 = Tank fire | T 4 t = 0 = Safe,
 1 t = 0 = Tank fire, T 5 t = 0 = Tank fire) = 1 − 

15 
Q 14 + Q 54 

= 1 − 

15 
22+38 = 0 . 75 ,

here Q 14 and Q 54 are the heat escalation vectors (kW/m 

2 ) T 4 receives
rom T 1 and T 5, respectively, as listed in Table 1 . 

In the present study, for illustrative purposes, we assign a utility of
 10.0 to a tank damaged either due to attack with IEDs or due to esca-

ation of subsequent domino effects. Similarly, the utility of a safe tank
s 0.0. For example, if an attack to T 1 triggers a domino effect involving
 2 and T4, the respective utility value incorporated in the node Utility
n Fig. 5 is U ( T 1 = Tank fire, T 2 = Tank fire, T 3 = Safe, T 4 = Tank fire,
 5 = Safe, T 6 = Safe) = − 30.0. 

Simulating the DBN in GeNIe [29] , the expected disutility of single-
nd double-attack scenarios (due to possible single-primary-event and
ouble-primary-event domino effects that can be triggered by which)
re calculated as listed in Table 3 (2nd row). As can be seen, among the
ingle-attack scenarios, the attack to T2 would result in the largest disu-
ility ( − 49.45) whereas among the double-attack scenarios, the attack
o both T 2 and T 5 would result in the largest disutility ( − 58.68). Clearly
nough, the results of the DBN analysis are in complete agreement with
hose of the graph-theoretic approach in the previous section. As a re-
ult, in a process plant, graph out-closeness score can be used as an
ndication of the plant’s vulnerability to domino effects triggered from
ntentional (or accidental) damage to process vessels. 
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Fig. 6. (a) Domino effect triggered by attack 

to T 1. (b) Domino effect triggered by attack to 

T 2. (c) Domino effect triggered by attack to T 6. 

(d) Domino effect triggered by attack to T 1 and 

T 2. (e) Domino effect triggered by attack to T 2 

and T 5. (f) Domino effect triggered by attack to 

T 1 and T 6. 

Table 3 

Graph out-closeness and utility values for single-attack and double-attack scenarios 

depicted in Fig. 6 . Utility values have been calculated using DBN in Fig. 7 . 

Graph 

Single-attack Double-attack 

Fig. 6 (a) Fig. 6 (b) Fig. 6 (c) Fig. 6 (d) Fig. 6 (e) Fig. 6 (f) 

C out (Plant) 0.180 0.423 0.180 0.142 0.208 0.117 

Utility − 42.86 − 49.45 − 42.86 − 52.81 − 58.68 − 56.77 

Table 4 

Conditional probability table of node T 4 at t = 1 in Fig. 7 . 

T 4 t = 0 T 1 t = 0 T 5 t = 0 T 4 t = 1 

Tank fire Safe 

Tank fire Tank fire Tank fire 1 0 

Tank fire Tank fire Safe 1 0 

Tank fire Safe Tank fire 1 0 

Tank fire Safe Safe 1 0 

Safe Tank fire Tank fire P 15 1 - P 15 

Safe Tank fire Safe P 1 1 - P 1 
Safe Safe Tank fire P 5 1 - P 5 
Safe Safe Safe 0 1 

4
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. Application of the methodology 

In the previous section, it was demonstrated that targeted attacks
o critical units, that is, the units with the higher out-closeness scores,
ould lead to more severe domino scenarios in a process plant. As such,
irtual elimination of critical units, e.g., by emptying the critical storage
anks via emergency drainage or fluid transfer or shutting down the
ritical process vessels, would be expected to increase the robustness of
he process plant against such intentional domino scenarios. 

However, since the elimination of critical units would result in a
ow-capacity utilization or partial shutdown of the plant, incurring costs
ue to business interruption and plant startup, it has to be performed
ia a cost-benefit analysis so that an optimal strategy can be adopted.
ince the benefit gained from such a low-capacity utilization would be
n increase in the robustness of the process plant, we refer to it as a
ost-robust analysis. The methodology for cost-robust low-capacity uti-
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Fig. 7. Dynamic Bayesian network to model possible sequences of events during 

domino scenarios. 

Table 5 

Out-closeness scores of the storage tanks shown in Fig. 8 . 

Storage tank T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 

C out ( T i ) 0.70 0.64 0.70 1.0 0.78 0.64 0.86 0.70 
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ization of process plants as a means of tackling intentional domino sce-
arios can be summarized as follow: 

(i) model domino scenarios in a process plant as a directed graph; 
(ii) identify critical units and calculate the vulnerability of the pro-

cess plant based on out-closeness scores; 
(iii) sequentially eliminate the critical units (in a descending fashion)

and calculate the plant’s residual out-closeness (the average of
the out-closeness scores of the remaining units) as an indication
of the plant’s robustness; 

(iv) calculate the cost incurred due to the virtual elimination of crit-
ical units; 

(v) use an optimization technique to decide the optimal (cost-robust)
number of critical units to remove. 

The application of the methodology has been exemplified using a
ase study in the following sections. 

.1. Case study 

To demonstrate the application of the methodology, consider the
ank farm in Fig. 8 (a) comprising eight atmospheric storage tanks of
il with a diameter of D = 33.5 m, height of H = 15.2 m, and capacity of
3,000 m 

3 . Considering tank fires as the primary and secondary events,
ossible fire escalation patterns during domino effects are presented as
he directed graph in Fig. 8 (b). 

The intensity of heat radiation between the tanks has been calculated
y ALOHA [27] as listed in Table A.1 in the appendix, assuming the same
eather conditions as of the illustrative plant in Fig. 5 . Following the

ame approach as in Section 3.2.1 , possible domino scenarios (propaga-
ion of fire) were modeled using a directed graph ( Fig. 8 (b)), and the
ut-closeness scores of the tanks (node out-closeness centrality) were
alculated using igraph package [28] as presented in Table 5 . Storage
anks 4, 7, and 5 are accordingly the ones with the highest out-closeness
cores in a descending order. 
.2. Cost-robust utilization 

To prevent or delay the escalation of domino effects, especially in the
ase of fire propagation, usually a variety of fire protection measures is
onsidered in process plants. Safety measures, including fire protection
ystems, can generally be classified into inherently safer techniques, en-
ineering (passive and active) protection systems, and emergency re-
ponse measures [30] . 

Inherently safer techniques such as an adequate separation distance
etween hazardous vessels or adopting less hazardous chemicals and
perations [31,32] are among macro-layout changes which are usually
pplicable in the design stage of process plants. Where macro-layout
hanges (inherent protection) are not possible, micro-layout modifica-
ions such as adding passive and active protection systems (add-on pro-
ection) can be considered, including sprinkler systems, water deluge
ystems, emergency shutdown systems, and fireproofing [33] . Emer-
ency response measures such as firefighting can be integrated with
ngineering protection systems to further delay and control fire esca-
ation. 

In the present study, low-capacity utilization of process plants as a
emporary way of increasing their robustness against impending inten-
ional domino effects is examined. Provisionally reducing the inventory
f hazardous chemicals in face of imminent terrorist attacks can signifi-
antly reduce the severity and extent of damage. Since low-capacity uti-
ization of a process plant can inflict losses in the form of, among others,
oss of revenue or adverse impacts on downstream industries and supply
hain, it should be performed based on a cost-benefit analysis. Since the
enefit gained from such low-capacity utilization would be an increase
n the robustness of the plant, we refer to it as a cost-robust analysis
nstead. 

Based on the out-closeness scores of the storage tanks in Table 5 as
n indication of their criticality with respect to intentional attacks, a
umber of plans can be considered for low-capacity utilization of the
lant. The plans, their costs and resulting plant out-closeness scores as
n implication of plant robustness have been listed in Table 6 . To cal-
ulate the graph out-closeness scores resulting from the implementation
f each plan, the escalation vectors emitting from respective storage
ank(s) have been removed from the graph in Fig. 8 (b) and the modi-
ed graph’s out-closeness has been recalculated. For example, since T4
ould be empty for Plan 1, there would not be any directed arcs (esca-

ation vectors) from T4 to the other storage tanks (nodes) in the graph
ven if T4 is damaged under attack. As can be seen from Table 6 , the
lant’s out-closeness decreases with an increase in the number of empty
anks. 

In order to calculate the cost of each plan, we, for illustrative pur-
oses, assume that the cost the plant incurs due to operating under lower
apacity can be estimated using an exponential relationship as presented
n Eq. (10) . 

 = 1000 exp ( 𝑛 − 1 ) (10)

here C is the cost (Euro), and n is the number of empty tanks. The
xponential utility function given in Eq. (10) is a concave utility function
o indicate the risk aversion [34] of the plant’s owner (decision maker)
oward the low-capacity utilization of the plant. In other words, the cost
ncurred grows exponentially with lowering the capacity of the plant.
his is because, a number of storage tanks should presumably be in
peration in order to keep the plant running even though at a reduced
fficiency. Thus, any excessive number of empty storage tanks would be
argely averted by the plant owner. However, it should be noted that
q. (10) is not suitable for process plants with storage tanks of different
hemicals, as in the current form, it only accounts for the number of
dentical tanks with the same volume and the same type of chemical.
aving the cost and graph out-closeness of the plans, a “reference-point ”
ptimization technique ( Fig. 9 ) can be used to identify the optimal cost-
obust plan for low-capacity utilization of the plant in face of imminent
errorist attacks. 
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Fig. 8 . (a) An oil terminal consisting of eight atmospheric stor- 

age tanks of oil. (b) Possible fire escalation scenarios as a di- 

rected graph. 

Table 6 

Low-capacity utilization plans. 

Plan ID Description Graph’s out-closeness C out (G) Cost ( €) Distance from Utopia ( 𝜌i ) 

0 No tank is empty 0.322 0 0.231 

1 T 4 is empty 0.291 1000 0.223 

2 T 4 & T 7 are empty 0.282 2718 0.332 

3 T 4, T 7 & T 5 are empty 0.169 7389 0.743 

4 T 4, T 5, T 7 & T 1 are empty 0.091 20,085 2.01 

Fig. 9. Application of reference-point decision making to identify optimal strat- 

egy for low-capacity utilization. 
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As displayed in Fig. 9 , the point with the lowest cost and highest ro-
ustness (the lowest graph out-closeness) is presented as Utopia, which
s the closest node that can be identified as the optimal plan. Using
q. (8) , Plan 1 (to empty tank T 4) turns out to have the shortest dis-
ance to Utopia (last column in Table 6 ), and thus being identified as
he optimal cost-robust strategy. 

.3. Discussion 

In the present study, we proposed a low-capacity utilization of pro-
ess plants as an effective way of increasing the plant’s robustness
gainst targeted attacks. The term “targeted attack ” can basically be
aken as an implication of a “rational attacker ” with the complete knowl-
dge of the process plant’s layout, types of chemicals, and operations,
ho tries to maximize the expected utility of his attack by targeting the
ost critical units of the process plant, hoping for triggering the most se-
ere domino effect scenarios. As pointed out in the introduction section,
n most real-life situations a decision maker would not always comply
ith the axioms of “rational decision making ”. 

Particularly, in security risk assessment of hazardous facilities, the
dentification of target units by attackers can be influenced by a number
f factors, including but not limited to the type of attackers (external,
nternal, hybrid), ease of access and egress for attackers, the intention of
ttackers, type of weapon and means of delivery, availability and effi-
acy of physical security barriers, units’ attractiveness, etc. For instance,
n attacker with the intention of causing mass casualties would be more
ttracted to a small cylinder of toxic gas such as chlorine rather than
o a large storage tank of gasoline despite the fact that the latter could
rigger a domino scenario [18] . 

On top of that, as argued by Bhashyam and Montibeller [35] , the
xpected utility sought by attackers from an attack could be quite “irra-
ional ” from defenders’ perspective, as, for example, an Islamic suicide
omber would take into account the afterlife in paradise in his expected
tility too. As such, setting optimal low-capacity utilization strategies
or process plants under the presumption of attackers targeting criti-
al units with the aim of triggering severe domino scenarios should be
imited to “rational ” attackers with the intention of causing maximum
roperty damage. 

Aside from the assumption of a “rational attacker ”, the application of
areto optimization technique for deciding an optimal low-capacity uti-
ization plan under cost and robustness concerns, which in turn, implies
qual importance of both decision criteria in decision making. However,
he weights of decision criteria can be tailored in accordance with the
evel of threat determined by intelligent services. For instance, in case of
levated or imminent threat levels [36] , the robustness may take prior-
ty over the cost, resulting in a heavier weight for the robustness. Given
ifferent weights of cost and robustness, other multi-criteria decision
aking techniques capable of accounting for relative importance of de-

ision criteria, such as AHP, TOPSIS, and ELECTRE, can be employed
37] . 
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Apart from the above-mentioned modeling features and assump-
ions, the developed methodology outdoes previous relevant works in
everal aspects. Among others, Khakzad et al. [22] applied graph met-
ics and pareto optimization to find an optimal fire protection of process
lants against accidental domino scenarios. In their work, for one thing,
nly single-primary-event domino scenarios were considered, presum-
ng that fire protection of any number of critical units would be an op-
imal strategy compared with the fire protection of the same number
f other units. In the present study, however, not only the possibility of
ultiple-primary-event domino scenario has been accounted for but also

ia a Bayesian network methodology it has been demonstrated that pro-
ection of critical units, as many as the limited resources allow, would
e an optimal strategy – taken for granted in [21,22] . 

. Conclusions 

In the present study we employed graph theory to assess the vul-
erability of process plants to domino effects triggered by intentional
ttacks. We also compared the results obtained from the graph theo-
etic approach with those obtained from a dynamic Bayesian network
pproach to find a good agreement between the two methodologies. 

Applying both graph theoretic and dynamic Bayesian approaches,
t was demonstrated that a simultaneous attack to process vessels with
he highest out-closeness centrality scores would result in more exten-
ive domino effects compared to attacks to any other configuration, thus
ausing maximum damage within the plant. In this regard, a plant’s out-
loseness score, that is the average of the out-closeness scores of the
rocess vessels in the plant, was illustrated to represent the plant’s vul-
erability to such intentional domino effects. 

We proposed low-capacity utilization of process plants as a tempo-
ary way of reducing their vulnerability (or alternatively, increasing
heir robustness) to intentional domino effects in the case of impend-
ng terrorist attacks (for example, in the case of elevated or imminent
lerts [36] ). To determine the optimal low-capacity utilization plan, we
mployed the reference-point optimization technique to make a trade-
ff between the cost the plant incurs and the robustness the plant gains,
oth due to low-capacity utilization. 

Although the focus of the present study has been on intentional
omino effects, the developed methodology – both graph theoretic and
ynamic Bayesian network approaches – can also be applied to increase
he robustness of process plants to accidental domino effects. This is
ecause, the process vessels with the highest out-closeness would con-
ribute the most to both intentional and accidental domino effects if
appen to be the primary events (in the former by intention and in the
atter by chance). The developed methodologies can be used in the de-
ign phase of process plants so as to design inherently safer and securer
lant layouts. 

ppendix 
able A.1 

eat radiation intensity (kW/m 

2 ) Tj receives from a tank fire at Ti . Values less 

han 15 kW/m 

2 are not presented. 

Ti ↓ Tj → 1 2 3 4 5 6 7 8 

1 – 46 23 58 24 – – –

2 42 – – 23 55 – – –

3 24 – – 45 – 59 24 –

4 61 25 44 – 46 23 55 24 

5 23 58 – 42 – – 22 56 

6 – – 59 25 – – 46 –

7 – – 24 60 25 44 – 46 

8 – – – 23 57 – 42 –
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upplementary materials 

Supplementary material associated with this article can be found, in
he online version, at doi:10.1016/j.ress.2018.03.030 . 
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