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Abstract

Starink, J.P.P. and I.T. Young, Localization of circular objects, Pattern Recognition Letters 14 (1993) 895-905.

Localization of circular objects is easy when all objects are isolated, but becomes more complicated when two or
more objects are touching or overlapping. In this paper we discuss a method to accurately localize the centroids
and obtain estimates on the sizes. The method consists of a segmentation step followed by a separation step in case

of multiple-object regions. Both steps are based on region growing methods.

Keywords. Segmentation, region growing, object

immunolabelling.

1. Introduction

Extracting object information from images using
digital image analysis, requires the object to be sepa-
rated from the background. This step, commonly re-
ferred to as image segmentation, is one of the crucial
steps in image analysis, since the accuracy of the ob-
ject measurements is closely related to the quality of
the segmentation result. The goal of image segmen-
tation is to partition the image into mutually exclu-
sive subsets, called object regions. Each region should
be uniform and homogeneous with respect to some
property, such as gray-value or texture, and signifi-
cantly differ from each neighbouring region. Due to
various reasons such as noise, overprojection, lack of
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localization, image processing, electron microscopy,

pixel resolution, etc., objects may aggregate and mul-
tiple-object regions result from the segmentation pro-
cedure. To separate the regions into their objects,
sometimes simple morphological operations will suf-
fice, e.g. touching objects may be disconnected with
an opening. In this paper we present a method to re-
cover the objects when aggregation is more severe.
The algorithm consists of two steps. The first step
is the segmentation step and is based on a combined
region growing and edge detection procedure. It is well
known that region growing techniques may produce
false boundaries, due to the strict definition of region
uniformity. Usually, they are quite good in detecting
the presence of a region, but show a rather poor ac-
curacy in localizing boundaries. To solve these draw-
backs, region growing may be combined with edge
detection. For instance, both techniques can be com-
bined into a decision whether a point is a boundary
point or a region point [1,5]. Another approach is to
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obtain an initial guess for the contour by region grow-
ing, and to optimize this contour with respect to some
criteria (e.g. contour smoothness) based on local edge
information [8,12].

The second step of the algorithm consists of esti-
mating the number of objects in the regions and lo-
calizing their centroids.

2. Method

Throughout the paper, the image is assumed digi-
tized in NXN pixels, of which the gray-values are
represented by I(x, y) forO<x, y< N—1. The under-
lying continuous gray-value function of the image is
denoted by f(x, y).

2.1. Segmentation

To be detectable, the regions should be homoge-
neous with respect to some property. Thus it is pos-
sible to manipulate the images such that the regions
become more or less bright blobs on a dark
background.

Starting from at least one point inside an object re-
gion, a region growing procedure is used to extract
the region. To solve region growing problems, the edge
likelihood of a pixel, derived from an edge detector
and an edge strength detector, is integrated in the
acceptance criterion of the region growing procedure.
The outline of the segmentation scheme is shown in
Figure 1.

Peak detection

The problem of locating points - the kernels — is a
peak detection problem. However, we are not inter-
ested in the true peaks of the underlying gray-value
function, which can be difficult to situate, but just in
points located inside the regions, somewhere near the
peaks. One quick and satisfying method of such a peak
detection algorithm is the convergent squares algo-
rithm (CSA). This iterative algorithm locates the
peak pixel in the region of highest density. It per-
forms best for images of convex objects, is computa-
tionally very efficient and has no empirical parame-
ters [11]. The algorithm is straightforward in
detecting the peak. It starts with the image of size
NX N, which is subdivided into four overlapping
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Figure 1. Outline of the segmentation scheme.

Edge Likelihood Operator

subimages of sizes N— | X N— 1. The maximum den-
sity subimage is selected for the next iteration. This
continues until the comparison is among four pixels,
after which the peak is found.

To detect the other peaks, a circular region slightly
bigger than the expected object size surrounding the
peak last found is set to zero and the CSA is restarted.
For this purpose, a rough estimate for the size of the
objects is needed. This process is repeated until all
peaks have been detected. The peaks are collected in
the kernel list, that consists of the coordinates (x;,
i), L <i<m, of the peak pixels.

Edge detection

Based on the human visual system, Marr and
Hildreth [10] have developed an operator consisting
of a smoothing followed by a high pass filter, in par-
ticular the Laplacian of a Gaussian

V2+G,(x, ) (1)

where F? is the classical Laplace operator and G, the
Gaussian with standard deviation o, The only
parameter g, in this operator is kept as small as
possible for the following reasons:
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» High spatial accuracy requires the smallest pos-
sible smoothing filter [2].

« The width of the central positive region of the
Marr-Hildreth operator is Zﬁog. As such, the edge
positions of smaller objects are displaced and may
even be fused.

« The aim is to detect as many candidate edge pix-
els as possible. Their relevance towards the segmen-
tation is tested in the region growing procedure.

The actual choice for g, depends on the signal-to-
noise ratio of the image, although a lower bound for
g, lies between ca. 0.8 and 1.0 [15].

The digital smoothing filter must be a good ap-
proximation of the continuous Gaussian. Since at
least 47.5% of the area under the Gaussian lies be-
tween 0 and 1.960,, the window with w, of the dis-
crete Gaussian is set to [2g,+ 1 ]. This yields a mini-
mum width of 5 when g,x 1.0.

Instead of using the classical Laplace filter, a non-
linear filter based on local maximum and minimum
filters is used [15]

2(x. v)= MAX,,(x, 1) +MIN,,(x, 1)

—2I(x.¥) (2)

where the maximum/minimum is searched in an
X n square or in a circle with radius »n centered at
(x, v). The advantage of this filter is that the second-
order derivate is taken in the most relevant direction,
1.e. perpendicular to the edge direction, while the
classical Laplace operator only computes this deri-
vate along both axes of the grid.

Zero-crossings localization

The response of the Marr-Hildreth operator is zero
at the inflection of the gray-value surface. In digital
images, these zero-crossings usually cannot be de-
tected directly, because they are surrounded by posi-
tive and negative operator response. On the other
hand, the transition strip may be wider than one pixel
in case of ramp edges. In the presented method, the
zero-crossings are localized [ 15] by first assigning all
zero-value pixels to the nearest region, either positive
or negative. In case of a tie, the pixel is assigned to
the nearest negative region. The border pixels of the
negative regions are then taken as the edge pixels.
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Edge likelihood

To the edge pixels, an edge likelihood measure
based on the gradient in the pixels is assigned. Con-
ventional gradient operators like Sobel, Prewitt and
Roberts perform rather poorly in noisy images [13].
Lee [9] proposed a filter which is less sensitive to
noise. It is also based on local maximum and mini-
mum filters

L,(x,¥)=min[/(x, y) —MIN,{(x, y),
MAX, (x, v)+1(x. ¥)]. (3)

To suppress non-ramp edges (texture and noise)
to a greater extent, the ramp version of the Lee detec-
tor is used, as proposed in [16]

L*(x,y) =min[LOW, (x, 1) = MIN,,(x, ).

MAX,(x, y)—UPP,(x, )}
(4)

where
LOW,(x, 1) =MAX,[MIN,(x.y)] and
UPP, (x, y) =MIN,[MAX, (x.})] .

The edge likelihood of the edge pixels is obtained
by multiplying the result of the zero-crossing detector
with the edge strength image. Since the zero-crossing
detector has a maximum displacement of one pixel,
zero-likelihood pixels are assigned an edge likelihood
half the value of the maximum adjacent edge
likelihood

E (x.p)=max[Ly(x, ). sMAX, (L%(x, )] .
(5)

Region growing

The region growing procedure starts with a region
of one pixel, namely the element i of the kernel list
for which I{x,, »;) is maximal, that is removed from
the kernel list. Next, its eight connective neighbours
are marked as the initial set of candidate pixels. The
candidates are tested against the acceptance crite-
rion. If a candidate (&, /) passes the test, it is moved
to the region, otherwise it is removed from the can-
didate list. The candidate set is extended with the
eight connective neighbours of the newly added re-
gion pixel that are not yet region pixels or candidate
pixels themselves. When no candidates are left, the
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region is complete and the next maximum gray-value
kernel from the kernel list is processed. Segmentation
is complete when the kernel list is empty.

By applying the Marr-Hildreth operator, the gray-
value of the candidate has changed to a fraction g of
the original gray-value step /(x;, y;), and the edge
likelihood to a fraction b of this value. The values a
and b and their standard deviations ¢, and g, mainly
depend on the edge type (step, ramp), the widths of
the Gaussian (w,) and the nonlinear Laplace filter
(w;), and the noise.

For the acceptance criterion, the gray-value (%, /)
and edge likelihood E(k, /) are classified according
to Figure 2(a). Depending on the resulting classes,
Figure 2(b) shows the decision scheme. The decision
is one of the following:

1. Reject. The candidate is outside the region.

2. Accept as region pixel. The candidate is added
to the region and its neighbours become candidates.

3. Accept as boundary pixel. The pixel is on the
region’s boundary and is accepted as region pixel.

I I I
lf—_'}“——‘\ —t— — |
| L T T i
0 a-6, a a+c, 100%

Ik —
I I I
N A
} 1 I I {
0 b-o, b b+o, 100%
E(k,)—

a. parameter intervals

Ikl
I I a1
I reject region region
:e} I boundary| rule region
boundary | boundary { boundary

b. decision scheme

Figure 2. Defining three intervals for a candidate’s gray-value and
edge likelihood (a) used for its classification (b).

898

PATTERN RECOGNITION LETTERS

November 1993

However, its neighbours do not become new
candidates.

4. In case of statistical doubt, the following rule is
applied

>0, region pixel,

<0, boundary pixel. (6)

Ik, 1) — gE(k, 1){

2.2. Separation

Each region in the segmented image either con-
tains only one object or it contains more objects. If it
holds only one object, the centroid is readily esti-
mated by calculating the mean position for all pixels
in the region. In the case of a multiple-object region,
first the number of objects in the region and esti-
mates for their positions and sizes are determined.

Since the objects are circular, their inscribing cir-
cles serve as initial estimates. These circles are iden-
tified by the peak values in the distance image [4].
The peak pixel marks the circle centrotid, its distance
value the circle radius. The number of distance peaks
probably exceeds the number of objects really pres-
ent, due to noise, object irregularities, etc. Therefore,
a subset has to be selected. The number of selected
peaks then equals the number of objects in the region.

An estimate for the object size is known (used in
the CSA), so an estimate for the radius is also known.
Thresholding the peak values against this value elim-
inates the objects that are too small. After selecting a
peak, all peaks covered by the corresponding inscrib-
ing circle are removed from the kernel list, since all
object centers are assumed to be uncovered.

One simple peak selection procedure is to select the
peaks in descending order of magnitude. A problem
with this procedure is that the maximum peak does
not necessarily represent an object center, by which
the inscribing circle may cover other, true peaks and
disturb the region lay-out. The effect mainly occurs
at the ‘end objects’ of the region: objects having only
one neighbour. This problem is avoided by identify-
ing the end objects. Considering the distance image
as a mountain range, then the mountain ridge is ob-
tained by calculating the distance skelet. The end
points of this skelet are then used to recognize the
end objects as peaks that are closer to an end point
than to the background. From these, select the peaks
in ascending order of distance to the end point. After
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detecting the end objects, the remaining peaks are se-
lected in descending order of distance to the
background.

There are two reasons why the selected peaks should
be treated as initial centroids. First, for blobs the cen-
troid does not coincide with the center of the inscrib-
ing circle, and second, not all information contained
in the region has been used, since the inscribing cir-
cles do not cover the entire region. The region con-
tains free pixels, which are used to update the cen-
troid and the object lay-out by assigning them to the
objects. The pixels in the region belong to one of these
classes:

« The initial pixels belong to the objects’ inscribing
circles.

« Pixels belonging exclusively to one object are the
unique pixels.

o Shared pixels are assigned to more than one
object.

The 1nitial pixels can belong to more than one ob-
ject, since the objects are allowed to overlap. The free
pixels are obtained by removing all assigned pixels
from the region. Each object, starting with the in-
scribing circle, is dilated. The dilated region is checked
against the set of free pixels. When it includes free
pixels, the object status remains incomplete, other-
wise its status becomes complete and is no longer al-
lowed to dilate. If a pixel is found in one dilation only,
it is classified unique, otherwise it is assigned to the
corresponding objects as a shared pixel. Then the set
of free pixels is determined and the procedure starts
again. The iteration stops when all objects are com-
plete. The process is illustrated in Figure 3.

The pixels are used to update the object centroid,
but with different weights. The initial and unique
pixels do positively belong to the object, so their
weight factors are 1, w,;=w,=1. For the shared pixels
however, there is an uncertainty to which object(s)
they belong. The probability of a pixel in the dilated
region being unique is estimated by the number of
unique pixels divided by the total number of pixels.
If this probability 1s assumed the same for all pixels,
then w; equals this probability, given by

n;+n,
Wy = —_—
n,+n,+ng

where n;, n, and n, represent the number of initial,
unique and shared pixels in the object. With ¢;, ¢, and

PATTERN RECOGNITION LETTERS

November 1993

a. two-object region

k pan|
N

b. initial pixels

c. dilation completed

d. resulting objects

Figure 3. Example of the separation of a two-object region (a).

The initial pixels of the inscribing circles are shown in (b). The

free pixels are assigned to the objects (c¢), resulting in two com-
plete objects (d).

¢, being the centroids of these sets, the new centroid
of the object is given by

1
o, (¢ te, twie) . (7)
This completes the update for the object’s centroid.
To stabilize the centroids, the update procedure can
be iterated until the shift of the centroid is smaller
than some number, for example 1/50th of the object
radius.

899



Volume 14, Number 11 PATTERN RECOGNITION LETTERS November 1993

3. Experiments and discussion

I~
2182 wwo
This section describes two series of experiments. el - -
The first series was performed to determine the pa- E o
rameters of the region growing procedure for differ- F3I&|-"0e
ent edge types in the presence of noise. In the second g o
series of experiments, the positional error of both the Té g|=ww=
segmentation and separation step are determined. &
Finally, a practical example will be given on the lo- 2l o lZhuma
calization of immunogold labelled proteins. § - -
In general, the signal-to-noise ratio (SNR) is de- ze N
termined from the gray-value step £ of the edge and | -
the standard deviation o, of the additive noise (zero ] o
mean) with E‘ -
<
SNR=h?/02. (8) § S
In all experiments, the gray-value of the background £
was set 100 and the gray-value of the object 200, by % S IR %
which #=100 and SNR= (100/g,)>. I
The localization procedure is controlled by four f‘é o | Y-
parameters: ¢,, g, and the filter widths w,and w,. The g - ~
parameter choice is directed by the SNR of the im- E -
age. In [15], the optimal parameter choices for o, and S
the width of the Laplacian were determined experi- £ <
mentally. Based on these results, the configurations '§ o |2
of the parameters in our experiments were set for two 2
ranges of the SNR (Table 1). Given the SNR, the 2| . e
optimal values for w, and g, and therefore w, are i
given. 3 2 e o
“E’ ~ A
3.1. Region growing parameters g ©
g) © -— e~ ;
To determine the parameters g and b and their S -
standard deviations ¢, and o,, a one-dimensional step E - | =g
edge of height 100 was processed. Besides a step edge, 2
four different types of (linear) ramp edges were gen- o - 2o 2
erated by blurring the step edge with filters of sizes g
w,=3, 5, 7, 9. Normal distributed noise with zero ‘§ S o
mean was added to the signal. The parameters were é’o - o
determined from 1000 realizations of the signal with § e
additive noise according to Table 1. The edge point ERR aToR
was assumed to be located at the zero-crossing closest 2 _
to the true boundary point. In that element, the gray- _i o g
value and edge likelihood were collected. The result- - N -
ing configurations of the region growing parameters 2 % =
are given in Figure 4. The parameters in absence of EE|Gles®s

noise are listed in Table 2. Examining Figure 4, the
following remarks can be made:
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100

fraction (x100)

snr

a. width 1 (step edge)

TS T
80 BRI oo+ 1
g g 1
X % ®°
5 5
E E 40
207
oL
1 10 100 1 10 100
snr snr
b. width 3 c. width 5

fraction (x100)
fraction (x100)

LI T LT

1 10 100 1 10 100
snr snr
d. width 7 e. width 9
Figure 4. The region growing parameters as determined for a step edge blurred with a uniform filier of different widths (1,3, 5,7 and 9)
for SNRs in the interval 1, ..., 100.

 As expected, in all cases the standard deviations over the SNR interval, they do vary. Parameter b de-
o, and g, decrease as the SNR increases. creases in all cases as noise is reduced, while there is

« Although it is expected that a and b stay constant no such trend for a.
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Table 2
The region growing parameters in the noiseless case for a step
edge (width 1) and 4 linear ramp edges (width 3, 5, 7and 9)

PATTERN RECOGNITION LETTERS

1 3 5 7 9
a 0.70 0.65 0.60 0.57 0.56
b 0.30 0.33 0.32 0.28 0.22

« Less noise corruption makes b to vary less. This
trend is not influenced by the edge width, in contrary
to g, which increases with edge width for high SNR
values. For width 9, this parameter even seems to be
constant over the entire noise range. This is caused
by the fact that for wide edges the gray-value step
within the discrete Gaussian window is smaller than
for narrow edges. Since the noise is the same for both
edges, the wide edges will be corrupted more than the
narrow edges (compare the definition of the signal-
to-noise ratio, equation (8)).

These remarks indicate that parameter a is more
sensitive to noise and to the edge width than param-
eter b. This sensitivity can be reduced by making pa-
rameter o, also depend on the edge width. For in-
stance, if the edge width is n, the image may be
smoothed with the operator G,*u,, instead of G,.

3.2. Positional error

Both the segmentation and separation step cause a
positional error g, in the objects’ centroids, g, and
Owp> Tespectively. The goal of the experiments
described in this section is to quantify these errors.

For the experiments, artificial blobs were used,
which were generated by manually drawing circles on
a computer screen with a mouse. In total, 50 different
blobs were created. All experiments were repeated for
three different blob sizes: 25, 50 and 75 pixels (r=2.8,
4.0 and 4.9 pixels), and, if applicable, for the 19 dif-
ferent signal-to-noise ratios as listed in Table 1. For
each configuration, the positional error, defined as the
square root of the mean squared euclidian distance
between the estimated centroid and the true cen-
troid, was obtained from 250 blobs.

First, 0., was determined by randomly distribut-
ing the blobs over the image such that all blobs were
isolated. By this, only the segmentation procedure is
needed to obtain estimates for the blob centroids,
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Figure 5. Positional error of objects’ centroids in single-object
regions as a function of the signal-to-noise ratio for three differ-
ent object sizes.

since all regions are single-object regions. The results
are plotted in Figure 5.

As expected, the positional error decreases as the
SNR increases for all sizes. Since more noise disturbs
the segmentation result to a greater extent, the posi-
tion error should be larger for smaller objects, which
is true, however, only for SNR > 5.

In the next experiment, images containing two ob-
ject regions were used. First, images were generated
without adding noise, in which case there is no need
for segmentation, since a simple threshold at gray-
value 150 will do a perfect job. The resulting error is
due entirely to the separation procedure ( Table 3).

Next, noise was added to the images. The resulting
0,0s after the separation then is a combination of the
errors due to segmentation and separation. The po-
sitional errors are plotted in Figure 6(a). This two-
object region experiment was repeated for three-ob-
ject regions. The results of this experiment are shown
in Table 4 and Figure 6(b).

The error g, in multi-object regions can be esti-
mated with

Oseg = (U;st - Jgep) bz

Table 3
Positional error of the objects in noiseless two-object regions due
to the separation procedure

object size 25 50 75

Oos 0.15 0.17 0.21
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Figure 6. For two-object (a) and three-object (b) regions, the
positional error centroids as a function of the signal-to-noise ra-
tio for three different object sizes.

Table 4
Positional error of the objects in noiseless three-object regions

PATTERN RECOGNITION LETTERS

object size 25 50 75

Gpos 0.15 0.17 0.21

when both errors are statistically independent.
Although this is probably not the case, especially for
the noisier images, it is the only way to obtain a rough
estimate on this parameter.

The following remarks can be made from
examining Figures 5 and 6:

« For low SNRs, single-object regions show a larger
positional error than the two- and three-object re-

November 1993

gions, even though the error is only due to the seg-
mentation step. However, as noise reduces, the posi-
tional error of the single-object regions is overtaken
by the other two and ends at ca. one third of their
minimum.

« The positional error in two-object regions is
smaller than the error in three-object regions.

« In general, the size and the number of objects per
region do not seem to influence the localization very
much. Therefore, the error in the localization of four
or more objects in a region will probably not deviate
too much from that of three-object regions.

3.3. Practical example

In the field of cell biology, immunolabelling has
become an important technique to relate proteins or
nucleic acids to their locations within the cell. With
antibodies raised against these proteins, their loca-
tions can be visualized by light microscopy using flu-
orescent labels, or by electron microscopy using col-
loidal gold particles.

For this practicle example, aggregation competent
cells of the slime mould Dictyostelium discoideum
were fixed with formaldehyde and glutaraldehyde and
prepared for cryosectioning according to Tokuyasu
[14] as described previously [6]. The cryosections
were labelled with a monoclonal antibody for the
crystal protein, the major component of a protein
crystal enclosed in the endoplasmatic reticulum [3].
The primary antibody is detected by protein A bound
to 10 nm colloidal gold particles (Figure 7(a)). The
micrographs were recorded with a Philips EM420
transmission electron microscope on sheet film (Agfa
Scientia 23D56) at a primary magnification of
105,000.

The sheet films were placed on a dazzle-light and
digitized using a Sony XC-77CE CCD camera cou-
pled to an Imaging Technology VFG framc grabber
in a PC-AT compatible. Image processing was per-
formed on a SUN SPARC/2 workstation with the
image processing package SCIL-Image. Preprocess-
ing the image towards bright blobs on a dark back-
ground consisted of (Figure 7(b)):

-Noise reduction. The noise peaks were removed
by applying the NOise Peak ELimination filter [7]
three times. This filter replaces the center pixel of a
3% 3 window by the one but highest (lowest) gray-
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a. original
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c. segmentation

d. separation

Figure 7. Electron microscope image of the immunogold labelled crystal protein of Dictyostelium discoideum at a magnification of 105,100

(a). After preprocessing (noise peak elimination and background subtraction), bright spots on a dark background remain (b). The

segmentation procedure was performed with g,= 1.1, implying w,=5 and w;=7 (c). The resulting centroids are shown overlaid on the
original image in (d).

value if it holds the highest (lowest) gray-value in the
window.

—Background subtraction. The image was smoothed
with G, 4. The upper envelope was determined by ap-
plying a maximum followed by a minimum filter.
Both filters were circular shaped with a radius of 9
pixels. The original image was subtracted from this
upper envelope and clipped against 0 and 255.

Finally, the centroids of the gold particles were lo-
calized using the method described, segmentation
(Figure 7(c)) and separation (Figure 7(d)).
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