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Abstract 

Starink, J.P.P. and I.T. Young, Localization of circular objects, Pattern Recognition Letters 14 ( 1993 ) 895-905. 

Localization of circular objects is easy when all objects are isolated, but becomes more complicated when two or 
more objects are touching or overlapping. In this paper we discuss a method to accurately localize the centroids 
and obtain estimates on the sizes. The method consists of a segmentation step followed by a separation step in case 
of multiple-object regions. Both steps are based on region growing methods. 

Keywords. Segmentation, region growing, object localization, image processing, electron microscopy, 
immunolabelling. 

1. Introduction 

Extracting object information from images using 
digital image analysis, requires the object to be sepa- 
rated from the background. This step, commonly  re- 
ferred to as image segmentation, is one of  the crucial 
steps in image analysis, since the accuracy of  the ob- 
ject measurements is closely related to the quality of  
the segmentation result. The goal of  image segmen- 
tation is to partition the image into mutually exclu- 
sive subsets, called object regions. Each region should 
be uniform and homogeneous with respect to some 
property, such as gray-value or texture, and signifi- 
cantly differ from each neighbouring region. Due to 
various reasons such as noise, overprojection, lack of  
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pixel resolution, etc., objects may aggregate and mul- 
tiple-object regions result from the segmentation pro- 
cedure. To separate the regions into their objects, 
sometimes simple morphological operations will suf- 
fice, e.g. touching objects may be disconnected with 
an opening. In this paper we present a method to re- 
cover the objects when aggregation is more severe. 

The algorithm consists of  two steps. The first step 
is the segmentation step and is based on a combined 
region growing and edge detection procedure. It is well 
known that region growing techniques may produce 
false boundaries, due to the strict definition of  region 
uniformity. Usually, they are quite good in detecting 
the presence of  a region, but show a rather poor ac- 
curacy in localizing boundaries. To solve these draw- 
backs, region growing may be combined with edge 
detection. For instance, both techniques can be com- 
bined into a decision whether a point is a boundary 
point or a region point [ 1,5 ]. Another approach is to 
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obtain an initial guess for the contour by region grow- 
ing, and to optimize this contour with respect to some 
criteria (e.g. contour smoothness) based on local edge 
information [ 8,12 ]. 

The second step of the algorithm consists of  esti- 
mating the number of objects in the regions and lo- 
calizing their centroids. 

2. Method 

Throughout the paper, the image is assumed digi- 
tized in N X N  pixels, of  which the gray-values are 
represented by I (x, y) for 0 ~< x, y ~< N -  1. The under- 
lying continuous gray-value function of the image is 
denoted b y f ( x ,  y).  

2.1. Segmentation 

To be detectable, the regions should be homoge- 
neous with respect to some property. Thus it is pos- 
sible to manipulate the images such that the regions 
become more or less bright blobs on a dark 
background. 

Starting from at least one point inside an object re- 
gion, a region growing procedure is used to extract 
the region. To solve region growing problems, the edge 
likelihood of a pixel, derived from an edge detector 
and an edge strength detector, is integrated in the 
acceptance criterion of the region growing procedure. 
The outline of the segmentation scheme is shown in 
Figure 1. 

Peak detection 
The problem of locating points - the kernels - is a 

peak detection problem. However, we are not inter- 
ested in the true peaks of the underlying gray-value 
function, which can be difficult to situate, but just in 
points located inside the regions, somewhere near the 
peaks. One quick and satisfying method of such a peak 
detection algorithm is the convergent squares algo- 
rithm (CSA). This iterative algorithm locates the 
peak pixel in the region of highest density. It per- 
forms best for images of convex objects, is computa- 
tionally very efficient and has no empirical parame- 
ters [11]. The algorithm is straightforward in 
detecting the peak. It starts with the image of size 
N×N, which is subdivided into four overlapping 
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Figure 1. Outline of the segmentation scheme. 

subimages of sizes N -  1 X N -  1. The maximum den- 
sity subimage is selected for the next iteration. This 
continues until the comparison is among four pixels, 
after which the peak is found. 

To detect the other peaks, a circular region slightly 
bigger than the expected object size surrounding the 
peak last found is set to zero and the CSA is restarted. 
For this purpose, a rough estimate for the size of the 
objects is needed. This process is repeated until all 
peaks have been detected. The peaks are collected in 
the kernel list, that consists of  the coordinates (x~, 
y~), 1 4i<~m, of the peak pixels. 

Edge detection 
Based on the human visual system, Marr and 

Hildreth [ 10 ] have developed an operator consisting 
of a smoothing followed by a high pass filter, in par- 
ticular the Laplacian of a Gaussian 

V2*G~(x,y) (1) 

where V 2 is the classical Laplace operator and G~ the 
Gaussian with standard deviation ag. The only 
parameter ag in this operator is kept as small as 
possible for the following reasons: 
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• High spatial accuracy requires the smallest pos- 
sible smoothing filter [2 ]. 

• The width of  the central positive region of  the 
Marr-Hi ldreth  operator is 2x/2ag. As such, the edge 
positions of  smaller objects are displaced and may 
even be fused. 

• The aim is to detect as many candidate edge pix- 
els as possible. Their relevance towards the segmen- 
tation is tested in the region growing procedure. 

The actual choice for a~ depends on the signal-to- 
noise ratio of  the image, although a lower bound for 
¢Yx lies between ca. 0.8 and 1.0 [ 15 ]. 

The digital smoothing filter must be a good ap- 
proximation of  the continuous Gaussian. Since at 
least 47.5% of  the area under the Gaussian lies be- 
tween 0 and 1.96Crg, the window with Wg of  the dis- 
crete Gaussian is set to [2ag+ 1 ]. This yields a mini- 
mum width of  5 when ag~ 1.0. 

Instead of  using the classical Laplace filter, a non- 
linear filter based on local maximum and min imum 
filters is used [ 15 ] 

t '2(_'( ,  l ?) = MAX,(x ,  y) +MIN, , (x ,  y)  

- 2 1 ( x ,  y )  (2) 

where the m a x i m u m / m i n i m u m  is searched in an 
n × n square or in a circle with radius n centered at 
(x, y). The advantage of  this filter is that the second- 
order derivate is taken in the most relevant direction, 
i.e. perpendicular to the edge direction, while the 
classical Laplace operator only computes this deft- 
vate along both axes o f /he  grid. 

Edge likelihood 
To the edge pixels, an edge likelihood measure 

based on the gradient in the pixels is assigned. Con- 
ventional gradient operators like Sobel, Prewitt and 
Roberts perform rather poorly in noisy images [ 13 ]. 
Lee [9] proposed a filter which is less sensitive to 
noise. It is also based on local maximum and mini- 
mum filters 

L,,(x, y) = min [l(x,  y)  - MIN~(x, y),  

MAX~(x,y)+l(x ,y)] .  (3) 

To suppress non-ramp edges (texture and noise) 
to a greater extent, the ramp version of  the Lee detec- 
tor is used, as proposed in [ 16 ] 

L,*(x, )') = m i n  [ LOW~(x, 39 - M I N , , ( x ,  y),  

MAX,, (.v, y)  - UPP~ (x, y)  ] 
(4) 

where 

LOW,,(x, y)  - MAX,,[ MlNn(x, y)  ] and 

UPP~(x, y) = MIN~[MAX~(x,  y) ] . 

The edge likelihood of  the edge pixels is obtained 
by multiplying the result of  the zero-crossing detector 
with the edge strength image. Since the zero-crossing 
detector has a maximum displacement of  one pixel, 
zero-likelihood pixels are assigned an edge likelihood 
half the value of  the maximum adjacent edge 
likelihood 

E,,(x, y) = max[L*(x ,  y).  ½MAX,,(L*(x, y) )] . 

(5) 

Zero-crossings localization 
The response of  the Marr-Hildreth operator is zero 

at the inflection of  the gray-value surface. In digital 
images, these zero-crossings usually cannot be de- 
tected directly, because they are surrounded by posi- 
tive and negative operator response. On the other 
hand, the transition strip may be wider than one pixel 
in case of  ramp edges. In the presented method, the 
zero-crossings are localized [ 15 ] by first assigning all 
zero-value pixels to the nearest region, either positive 
or negative. In case of  a tie, the pixel is assigned to 
the nearest negative region. The border pixels of  the 
negative regions are then taken as the edge pixels. 

Region growing 
The region growing procedure starts with a region 

of  one pixel, namely the element i of  the kernel list 
for which I(&, y,) is maximal, that is removed from 
the kernel list. Next, its eight connective neighbours 
are marked as the initial set of  candidate pixels. The 
candidates are tested against the acceptance crite- 
rion. l f a  candidate (k, l) passes the test, it is moved 
to the region, otherwise it is removed from the can- 
didate list. The candidate set is extended with the 
eight connective neighbours of  the newly added re- 
gion pixel that are not yet region pixels or candidate 
pixels themselves. When no candidates are left, the 
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region is complete and the next maximum gray-value 
kernel from the kernel list is processed. Segmentation 
is complete when the kernel list is empty. 

By applying the Marr-Hildreth operator, the gray- 
value of the candidate has changed to a fraction a of  
the original gray-value step I(xi ,  yi) ,  and the edge 
likelihood to a fraction b of this value. The values a 
and b and their standard deviations aa and ab mainly 
depend on the edge type (step, ramp),  the widths of  
the Gaussian (wg) and the nonlinear Laplace filter 
(wl), and the noise. 

For the acceptance criterion, the gray-value I ( k ,  l) 
and edge likelihood E ( k ,  l) are classified according 
to Figure 2(a) .  Depending on the resulting classes, 
Figure 2 (b) shows the decision scheme. The decision 
is one of the following: 

1. Reject. The candidate is outside the region. 
2. Accept as region pixel. The candidate is added 

to the region and its neighbours become candidates. 
3. Accept as boundary pixel. The pixel is on the 

region's boundary and is accepted as region pixel. 

I II III 

1 I I I 
0 a -a  a a a+G a 100% 

I(k,1) 

I II III 

I I I I 
0 b-G b b b+a b 100% 

E(k,l) 

a.  parameter  intervals 

I 

III 

I(k,0 

I II III 

reject region region 

boundary rule region 

!boundary boundary boundary 

b. decision scheme 

Figure 2. Defining three intervals for a candidate's gray-value and 
edge likelihood (a) used for its classification (b). 

However, its neighbours do not become new 
candidates. 

4. In case of  statistical doubt, the following rule is 
applied 

a E ( > 0, region pixel, 
l ( k , l ) - ~  (k,l)~.<~O ' boundarypixel. (6) 

2.2. Separation 

Each region in the segmented image either con- 
tains only one object or it contains more objects. If  it 
holds only one object, the centroid is readily esti- 
mated by calculating the mean position for all pixels 
in the region. In the case of a multiple-object region, 
first the number of objects in the region and esti- 
mates for their positions and sizes are determined. 

Since the objects are circular, their inscribing cir- 
cles serve as initial estimates. These circles are iden- 
tified by the peak values in the distance image [4]. 
The peak pixel marks the circle centroid, its distance 
value the circle radius. The number of  distance peaks 
probably exceeds the number of objects really pres- 
ent, due to noise, object irregularities, etc. Therefore, 
a subset has to be selected. The number of selected 
peaks then equals the number of objects in the region. 

An estimate for the object size is known (used in 
the CSA), so an estimate for the radius is also known. 
Thresholding the peak values against this value elim- 
inates the objects that are too small. After selecting a 
peak, all peaks covered by the corresponding inscrib- 
ing circle are removed from the kernel list, since all 
object centers are assumed to be uncovered. 

One simple peak selection procedure is to select the 
peaks in descending order of  magnitude. A problem 
with this procedure is that the maximum peak does 
not necessarily represent an object center, by which 
the inscribing circle may cover other, true peaks and 
disturb the region lay-out. The effect mainly occurs 
at the 'end objects' of the region: objects having only 
one neighbour. This problem is avoided by identify- 
ing the end objects. Considering the distance image 
as a mountain range, then the mountain ridge is ob- 
tained by calculating the distance skelet. The end 
points of this skelet are then used to recognize the 
end objects as peaks that are closer to an end point 
than to the background. From these, select the peaks 
in ascending order of distance to the end point. After 
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detecting the end objects, the remaining peaks are se- 
lected in descending order of  distance to the 
background. 

There are two reasons why the selected peaks should 
be treated as initial centroids. First, for blobs the cen- 
troid does not coincide with the center of  the inscrib- 
ing circle, and second, not all information contained 
in the region has been used, since the inscribing cir- 
cles do not cover the entire region. The region con- 
tains free pixels, which are used to update the cen- 
troid and the object lay-out by assigning them to the 
objects. The pixels in the region belong to one of  these 
classes: 

• The initial pixels belong to the objects' inscribing 
circles. 

• Pixels belonging exclusively to one object are the 
unique pixels. 

• Shared pixels are assigned to more than one 
object. 

The initial pixels can belong to more than one ob- 
ject, since the objects are allowed to overlap. The free 
pixels are obtained by removing all assigned pixels 
from the region. Each object, starting with the in- 
scribing circle, is dilated. The dilated region is checked 
against the set of  free pixels. When it includes free 
pixels, the object status remains incomplete, other- 
wise its status becomes complete and is no longer al- 
lowed to dilate, l f a  pixel is found in one dilation only, 
it is classified unique, otherwise it is assigned to the 
corresponding objects as a shared pixel. Then the set 
of  free pixels is determined and the procedure starts 
again. The iteration stops when all objects are com- 
plete. The process is illustrated in Figure 3. 

The pixels are used to update the object centroid, 
but with different weights. The initial and unique 
pixels do positively belong to the object, so their 
weight factors are 1, wi= w , =  1. For the shared pixels 
however, there is an uncertainty to which object(s)  
they belong. The probability of  a pixel in the dilated 
region being unique is estimated by the number  of  
unique pixels divided by the total number  of  pixels. 
If  this probability is assumed the same for all pixels, 
then w~ equals this probability, given by 

n i  + n u  
w s - -  

n i --t- I ' /u --t- n s 

where ni, n.  and ns represent the number  of  initial, 
unique and shared pixels in the object. With ci, c. and 

\ 

vl 

I , /  
J / ¢ ~  

a. two-object region 

I P ' /JP' /Y// /~. '%-." .~"~".~ P'/Z//Z//Z///N~'%L."~'-,~,."..~"..~'-~ 
p'//p'/X///p'/i#jL,.',~',..~,.'.~',~'-.~ I 
P'/JP'/Ag/Z//Z/A ~xk'..",~ I 
I V/Z//ff//A I 

I l I I  

b. initial pixels 

"-.N 

c. dilation completed 

E 
-1 

d. resulting objects 

Figure 3. Example of the separation of a two-object region (a). 
The initial pixels of the inscribing circles are shown in (b). The 
free pixels are assigned to the objects (c), resulting in two com- 

plete objects (d). 

cs being the centroids of  these sets, the new centroid 
of  the object is given by 

n i 71- n u -1- W s H  s 
(ci +C. + wsc,) . (7) 

This completes the update for the object's centroid. 
To stabilize the centroids, the update procedure can 
be iterated until the shift of  the centroid is smaller 
than some number, for example 1/50th of  the object 
radius. 
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3. Experiments and discussion 

This section describes two series of  experiments. 
The first series was performed to determine the pa- 
rameters of  the region growing procedure for differ- 
ent edge types in the presence of  noise. In the second 
series of  experiments, the positional error of  both the 
segmentation and separation step are determined. 
Finally, a practical example will be given on the lo- 
calization of  immunogold labelled proteins. 

In general, the signal-to-noise ratio (SNR)  is de- 
termined from the gray-value step h of  the edge and 
the standard deviation ~r of  the additive noise (zero 
mean ) with 

SNR=h2/o~. (8)  

In all experiments, the gray-value of  the background 
was set 100 and the gray-value of  the object 200, by 
which h =  100 and S N R =  ( 1 0 0 / a , )  2. 

The localization procedure is controlled by four 
parameters: o,, % and the filter widths Wg and wt. The 
parameter choice is directed by the SNR of  the im- 
age. In [ 15 ], the optimal parameter choices for ag and 
the width of  the Laplacian were determined experi- 
mentally. Based on these results, the configurations 
of  the parameters in our experiments were set for two 
ranges of  the SNR (Table 1 ). Given the SNR, the 
optimal values for w~ and tyg and therefore Wg are 
given. 

3.1. Region growing parameters 

To determine the parameters a and b and their 
standard deviations aa and Oh, a one-dimensional step 
edge of  height 100 was processed. Besides a step edge, 
four different types of  (linear) ramp edges were gen- 
erated by blurring the step edge with filters of  sizes 
wu=3, 5, 7, 9. Normal distributed noise with zero 
mean was added to the signal. The parameters were 
determined from 1000 realizations of  the signal with 
additive noise according to Table 1. The edge point 
was assumed to be located at the zero-crossing closest 
to the true boundary point. In that element, the gray- 
value and edge likelihood were collected. The result- 
ing configurations of  the region growing parameters 
are given in Figure 4. The parameters in absence of  
noise are listed in Table 2. Examining Figure 4, the 
following remarks can be made: 
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Figure 4. The region growing parameters as determined for a step edge blurred with a uniform filter of different widths ( l, 3, 5, 7 and 9 ) 
for SNRs in the interval l, ..., 100. 

• As expec ted ,  in all cases the  s t andard  dev i a t i ons  

aa and  ab decrease  as the S N R  increases.  

• A l though  it is expec ted  that  a and  b stay cons tan t  

o v e r  the S N R  interval ,  they do vary. P a r a m e t e r  b de- 

creases  in all cases as noise  is reduced,  while  there  is 

no such t rend  for  a. 
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Table 2 
The region growing parameters in the noiseless case for a step 
edge (width 1 ) and 4 linear ramp edges (width 3, 5, 7 and 9) 

1 3 5 7 9 

a 0.70 0.65 0.60 0.57 0.56 
b 0.30 0.33 0.32 0.28 0.22 

• Less noise corruption makes b to vary less. This 
trend is not influenced by the edge width, in contrary 
to aa which increases with edge width for high SNR 
values. For width 9, this parameter even seems to be 
constant over the entire noise range. This is caused 
by the fact that for wide edges the gray-value step 
within the discrete Gaussian window is smaller than 
for narrow edges. Since the noise is the same for both 
edges, the wide edges will be corrupted more than the 
narrow edges (compare the definition o f  the signal- 
to-noise ratio, equation (8) ). 

These remarks indicate that parameter a is more 
sensitive to noise and to the edge width than param- 
eter b. This sensitivity can be reduced by making pa- 
rameter ag also depend on the edge width. For in- 
stance, if the edge width is n, the image may be 
smoothed with the operator Go* u, instead of  G,. 

3.2. Positional error 

Both the segmentation and separation step cause a 
positional error apos in the objects' centroids, aseg and 
trsev, respectively. The goal o f  the experiments 
described in this section is to quantify these errors. 

For the experiments, artificial blobs were used, 
which were generated by manually drawing circles on 
a computer  screen with a mouse. In total, 50 different 
blobs were created. All experiments were repeated for 
three different blob sizes: 25, 50 and 75 pixels ( r=2.8 ,  
4.0 and 4.9 pixels), and, if applicable, for the 19 dif- 
ferent signal-to-noise ratios as listed in Table 1. For 
each configuration, the positional error, defined as the 
square root of  the mean squared euclidian distance 
between the estimated centroid and the true cen- 
troid, was obtained from 250 blobs. 

First, Cqeg was determined by randomly distribut- 
ing the blobs over the image such that all blobs were 
isolated. By this, only the segmentation procedure is 
needed to obtain estimates for the blob centroids, 

1 ; ~ size 25 
I I ; I l l l l l ;  i .... * , z e ~  

o~ 0 .2  

0 
1 1 0  100  

s n r  

Figure 5. Positional error of objects' centroids in single-object 
regions as a function of the signal-to-noise ratio for three differ- 

ent object sizes. 

since all regions are single-object regions. The results 
are plotted in Figure 5. 

As expected, the positional error decreases as the 
SNR increases for all sizes. Since more noise disturbs 
the segmentation result to a greater extent, the posi- 
tion error should be larger for smaller objects, which 
is true, however, only for SNR > 5. 

In the next experiment, images containing two ob- 
ject regions were used. First, images were generated 
without adding noise, in which case there is no need 
for segmentation, since a simple threshold at gray- 
value 150 will do a perfect job. The resulting error is 
due entirely to the separation procedure (Table 3). 

Next, noise was added to the images. The resulting 
apos after the separation then is a combination of  the 
errors due to segmentation and separation. The po- 
sitional errors are plotted in Figure 6(a) .  This two- 
object region experiment was repeated for three-ob- 
ject regions. The results o f  this experiment are shown 
in Table 4 and Figure 6(b) .  

The error ase~ in multi-object regions can be esti- 
mated with 

2 2 t / 2  
O'seg = ( O ' p o  s - -  O ' s e p )  

Table 3 
Positional error of the objects in noiseless two-object regions due 
to the separation procedure 

object size 25 50 75 

apos 0.15 0.17 0,21 
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gions, even though the error is only due to the seg- 
mentat ion step. However, as noise reduces, the posi- 
tional error of  the single-object regions is overtaken 
by the other two and ends at ca. one third of  their 
minimum. 

• The positional error in two-object regions is 
smaller than the error in three-object regions. 

• In general, the size and the number  o f  objects per 
region do not seem to influence the localization very 
much. Therefore, the error in the localization of  four 
or more objects in a region will probably not deviate 
too much from that of  three-object regions. 

a .  two-ob jec t  regions 3.3. Practical example 

"~ 0.4 

0.2 

0.8 i 

0.6 

l 
i 

I 0  

s n r  

size 25 

I O0 

b .  th ree -ob jec t  regions 

Figure 6. For two-object (a) and three-object (b) regions, the 
positional error centroids as a function of the signal-to-noise ra- 

tio for three different object sizes. 

Table 4 
Positional error of the objects in noiseless three-object regions 

object size 25 50 75 

apo~ 0.15 0.17 0.21 

when both errors are statistically independent. 
Although this is probably not the case, especially for 
the noisier images, it is the only way to obtain a rough 
estimate on this parameter. 

The following remarks can be made from 
examining Figures 5 and 6: 

• For low SNRs, single-object regions show a larger 
positional error than the two- and three-object re- 

In the field of  cell biology, immunolabelling has 
become an important  technique to relate proteins or 
nucleic acids to their locations within the cell. With 
antibodies raised against these proteins, their loca- 
tions can be visualized by light microscopy using flu- 
orescent labels, or by electron microscopy using col- 
loidal gold particles. 

For this practicle example, aggregation competent 
cells of  the slime mould Dictyostelium discoideum 
were fixed with formaldehyde and glutaraldehyde and 
prepared for cryosectioning according to Tokuyasu 
[ 14 ] as described previously [6 ]. The cryosections 
were labelled with a monoclonal  antibody for the 
crystal protein, the major component  of  a protein 
crystal enclosed in the endoplasmatic reticulum [ 3 ]. 
The primary antibody is detected by protein A bound 
to 10 nm colloidal gold particles (Figure 7(a)  ). The 
micrographs were recorded with a Philips EM420 
transmission electron microscope on sheet film (Agfa 
Scientia 23D56)  at a primary magnification of  
105,000. 

The sheet films were placed on a dazzle-light and 
digitized using a Sony XC-77CE CCD camera cou- 
pled to an Imaging Technology VFG fi-amc grabber 
in a PC-AT compatible. Image processing was per- 
formed on a SUN SPARC/2  workstation with the 
image processing package SCIL-Image. Preprocess- 
ing the image towards bright blobs on a dark back- 
ground consisted of  (Figure 7 (b) ): 

-Noise reduction. The noise peaks were removed 
by applying the NOise Peak ELimination filter [7] 
three times. This filter replaces the center pixel of  a 
3 × 3 window by the one but highest (lowest) gray- 
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a .  original  
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b.  preprocess ing 

c.  s e g m e n t a t i o n  d.  separat ion 

Figure 7. Electron microscope image of the immunogold labelled crystal protein of Dictyoste/iurn discoideum at a magnification of 105, l O0 
(a). After preprocessing (noise peak elimination and background subtraction), bright spots on a dark background remain (b). The 
segmentation procedure was performed with ag= I. 1, implying wg= 5 and wt= 7 (c). The resulting centroids are shown overlaid on the 

original image in (d). 

value if it holds the highest ( lowest)  gray-value in the 
window. 

-Background subtraction. The image was smoothed 
with GI.4. The upper envelope was determined by ap- 
plying a maximum followed by a minimum filter. 
Both filters were circular shaped with a radius o f  9 
pixels. The original image was subtracted from this 
upper envelope and clipped against 0 and 255. 

Finally, the centroids of  the gold particles were lo- 
calized using the method described, segmentation 
( Figure 7 (c)  ) and separation ( Figure 7 (d)  ). 
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