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Abstract. The Volume of Fluid (VOF) method is one of the most effective methods employed
in the smulation of two fluid flows with interfaces where density and viscosity change
abruptly. These interfaces are represented implicitly by the values of a colour function which
is a volume fraction of one of the fluids. The advantage of the method is its ability to deal with
arbitrarily shaped interfaces and to cope with large deformations, as well as interface rupture
and coalescence in a natural way. In comparison to a level set method, the massisrigorously
conserved in VOF, provided the discretisation is conservative, but one of the main difficulties
is advecting the interface without diffusing, dispersing, or wrinkling it. This can either be
performed algebraically, in schemes such as CICSAM or geometrically, in schemes such as
PLIC.

In the present paper, an algebraic advection scheme for the interface is presented, which is
designed for the implicit time advancing algorithm. Analogous to CICSAM, the new scheme
switches smoothly between ULTIMATE-QUICK and the upper bound of the universal limiter,
depending on the angle between the interface and the flow direction. Four cases are tested
with the present scheme: (i) solid body rotation; (ii) circle in a shear flow; (iii) dam-break
and (iv) Rayleigh-Taylor instability. In the first two test cases, prescribed velocity fields are
used, thereby allowing the effectiveness of the scheme in advecting the colour function only to
be assessed. The scheme is found to outperform six other methods used for comparison in
both studies. In solid body rotation simulations a fractional error of 0.19% is calculated in
comparison to the next best recorded error of 1.1%. Smilarly, in the longest shear flow
simulation, a fractional error of 1.2% is calculated in comparison to the next best recorded
error of 3.9%. In the final two test cases the advection equation for the colour function is
coupled to the Navier-Sokes equations. In dam-break simulations it is found that the
resulting solution effectively captures the trends displayed in experimental data for the
advancing water front and the residual height of the liquid column against time. Qualitative
results obtained for the Rayleigh-Taylor instability modelling in test case four are found to
compare favourably to previous numerical simulations of the same phenomenon.
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1 INTRODUCTION

The accurate numerical computation of multi-fluid flows and the sitiaun of the flow of
two immiscible fluids separated by a well-defined interface,rhany applications. One area
is that of environmental engineering where it is used to simam and dyke-bredks
volcanic flows and plumésand the motion of water in a marine environniefhother is that
of biomedical sciences/engineering, where biological materialflaits such as blood are
transported through capillary tubing and channels in the vascutandys in Micro Electro
Mechanical Systems (MEMS) devices.

Current numerical methods for simulating such two-phase flows distirete interfaces
can be generally classified as eitheterface-tracking (surface) methods or interface-
capturing (volume) methods.® In interface-tracking methods the free surface is treated as a
sharp interface whose motion is followed. These methods areimipdgmented through the
use ofmoving grid techniques’ or height functions.® Whilst surface methods maintain a sharp
interface whose exact position is known throughout the calculation, theyerespecial
treatment when the interface is subject to large deformatiortretcing? Conversely,
interface-capturing methods cope well with large stretching and deformation of the interface
as well as rupture and coalescence. Their implementationsénmassless particf8sr the
use of an indicator function.

In the second approach, the indicator function is usually a scaldust#imn (known as a
colour function) representing the volume fraction of space occupied byfotie fluids
(known as VOB, or a smooth but arbitrary function (level’§eencompassing a predefined
iso-surface which identifies the interface. The advantagki®inethod is that conservation
can be enforced, since a scalar transport equation is solveEuearan manner, but one of
the main difficulties is advecting the step function withoutudiifig, dispersing or wrinkling
the interface. Various techniques have been proposed for capturingdefimed interface
using volume fractions and these are based largely on either a tgeoamealgebraic
approach. In the geometric approgcholume fractions (that are moved and updated by the
velocity field) are used to construct line segments across petividing a geometrical form
of the interface. A major problem with such methods is that ¢lleslbapes are implicitly
used in the interface reconstruction and so it is very difficuXtend these techniques to
arbitrary complex meshes and to three dimensions.

Alternatively an algebraic approach can be adopted in which the ciwevestalar
transport equation for the volume fraction is discretised in suchagssw as to guarantee
physical (bounded) volume fractions whilst preventing smearing of tedaoé over several
mesh cells. A problem with the original V8Fmethod is that it does not preserve local
boundedness i.e. a volume fraction value which initially lies betwkenvalues of its
neighbours does not necessarily preserve this property when advetiecdibsence of shear.
This numerically introduces new maxima and minima into the voluawtidn field and leads
to non-physical deformation of the interface shpé.

High resolution differencing schemes such as Total Variation Dihimgs (TVD)
methods, Flux Corrected Transport (FCT) schemes and techniques usirgjidémariable
Diagrams (NVDJ® offer another approach, but attempts to apply them show that thegoare
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diffusive!® ?° Although FCT schemes are non-diffusive by nature they creaies aof
unphysical flotsam (floating wreckage) or jetsam (jettisoned gdods)rthermore these
schemes are based on one-dimensional derivations with extensionsitdimnmemsional flow
by operator splitting® This limits their implementation to structured meshes whoseatontr
volume faces are aligned with the coordinate axes.

Ubbink & Iss&?have presented an algebraic advection scheme known as the Corapressi
Interface Capturing Scheme for Arbitrary Meshes (CICSAM). s Thakes use of the NVD
concept and switches between differencing schemes to yield a bloscalar field, but one
which preserves both the smoothness of the interface and itsdgffiaipon (over one or two
computational cells). This paper presents an implementation @AM for the implicit
time advancing algorithm and assesses its performance in a number of test cases

2 GOVERNING HYDRODYNAMIC EQUATIONS

In the VOF method, a one fluid formulation of two-fluid Navier-Swlequations is
employed as the interfacial boundary conditions are implicitlyacoatl in the equation of
motion. Both fluids are described by the same set of equations, butfénerdies in material
properties, such as density and viscosity, are explicitly accouistedConsider two
incompressible fluids, 1 and 2, separated by an interface Scofti@uity equation is given
by:

ou,

6_)g:0 (1)

where u; is the velocity andx is the spatial direction. The flow is governed by the
incompressible Navier-Stokes equations:

%.Fa_uiui —_1@+iﬂ+i+gi (2)

]

in which p, g andF; are the pressure, gravity vector and the interfacial suréasgon force,
respectively and; is the viscous stress tensor given by:

- ou,
rij :/J ﬂ+_l _E/’[%d] (3)
ox;  0x ) 3 0%
whereuis the coefficient of dynamic viscosity arflis the Kronecker delta. The local
densityp and viscosity are defined as:
p=Cp,+(1-C)p, andu=Cu,+( £C) 4, (4)

where the subscripts denote the different fluids @ns the volume fraction with a value of
unity in fluid 1 and zero in fluid 2. The volume fraction is governed by:
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The Continuum Surface Force (CSF) model of Brackb#l.?® has been frequently

employed to calculate the surface tension force and is given by:

F = G'Ka—c (6)

0%

where g is the surface tension andis the curvature of the interface. The CSF method
converts the surface force into a volumetric continuous fdfgeinstead of a boundary
condition on the interface. Equations (1)-(6) are discretised asfimife-volume method and
an implicit temporal scheme. The pressure and velocity fiekls@ved on a collocated grid
using the SIMPLE' algorithm coupled through Rhie and Chow interpolatfoRq. (5) is
essential for capturing the motion of the fluid interface but ateuwdiscretisation of its step-
like behaviour is not straightforward and is the focus for the remainder of the paper.

The method of solution operates in an iterative fashion, whereimttagi@n for the colour
function, Eq. (5), is solved first (starting from an initial vokirfield) and the resultant
volume fractions are used to compute the new densities and vestisibughout the domain
according to Eg. (4). The momentum and continuity equations are solvethgtihese new
values and the process repeats through a number of outer iteratibhsa suitable
convergence criterion has been satisfied, for each time step.

3 DESCRIPTION OF THE SCHEME

3.1 Discretisation of the equation

Consider the integral form of Eq. (5) over each control volume argititarvalAt. Then
a finite-volume first order implicit discretisation gives:

+ At +
C"=Cy-—> (C,F)™ (7)
V. 5

where P denotes the centre of the control volume (with volipe f is the centroid of the
cell face, the volumetric flux is given by the teffn=A, W, where A is the outward-

pointing face area vector normal to the face and the summation is over atesl| f
For a cell-centred method, such as that which we will be consigéhie cell centre values
are used to interpolate the values of the colour function on theClace<Eq. (7). Figure 1

contains a schematic representation of a one-dimensional control vollihe centre cell
(donor cell), referred to with subscript D, has two nearest neighbafesyed to with
subscripts A for the acceptor cell and U for the upwind cell. e Nloat the flow direction
determines the location of the neighbours. The face between the ddrexceptor cell with
subscriptf is the face under consideration.
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Figure 1: One dimensional control voéu

Linear interpolation of the face value, known as central diffengnas second order
accurate but results in an unbounded solution for problems in which convdominates.
The use of the donor cell value (upwind differencing) guarantees a libsatigion but is
diffusive and smears the transitional area between the fluidseveral cells. The use of the
acceptor cell value (downwind differencing) does not preserve bounddoimessintains
resolution of the interface. Hence the problem of interfaaekimg boils down to the
selection of a combination of differencing schemes which will pvedeoth the boundedness
of the volume fraction distribution and the sharpness of the interface.

To overcome this problem Ubbink & 1€8aroposed that the switch should be between
two high-resolution schemes which comply with local boundedness aritdrey argued that
a bounded compressive scheme should be used when the interfaceianientaore likely
to be normal to the flow direction and that a more accurate intéggolecheme, such as
bounded central differencing or bounded quadratic upwind interpolation, should be used when
the interface is more likely to be tangential to the directiomation. Furthermore they have
demonstrated that the switch between schemes should be more ,g@tiealthan the sudden
switch proposed by the original VOF scheme. Their mechanism ftohgvg and the high-
resolution schemes employed, are described next.

3.2 Normalised Variable Diagram (NVD)

The normalised variable, as proposed by Leoffafdims the basis on which the high
resolution schemes are constructed and is defined as:

C-C,
CA_CU

C=

(8)

The normalised variable can be used to give expressiocs fandC, :

. C -cC . C,-C,
C,=——andC, =
C, -C C, -C,

A U

(9)

Gaskell & Lad® have presented a convection boundedness criterion (CBC) for one-
dimensional implicit flow calculations. The CBC uses the nosedlvariable and stipulates

bounds onC, for which an implicit differencing scheme in 1D will alwayesgerve the local
boundedness criteria:
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- - - (10)
C,=<C, <1 for 0sC, <1

{éf ¢, forC <0 or C >1

Leonard® has shown that various difference schemes and the CBC can bertetedst
for one-dimensional transitional flow calculations using a lineaightimg based on the
Courant number, given as:

C, =(@1-a)C, +aC, (11)

whereC;, is the normalised face value for the implicit implementati@vith this linearisation

C, -Cif a~0andC, - C, if a - 1; thus a point to point transfer of the upwind nodal
value occurs ifa, =1. For transitional flow calculations, the CBC reduces to the tsave
limiter'® given by:

for C,<0or C, >1

- > ~ 12
<C, < min{l,C—D} forosC <1 (12)
a

Figure 2(a) shows the NVD region for this transitional flow implementation wwitrlaitrary
Courant number =0.2.

A differencing scheme which follows the upper bound of the universatet for
transitional flow calculations is shown to be very compressivause it turns every finite
gradient in a scalar field into a step profftédamed as HYPER-C by Leonafdt is precisely
the scheme required when the interface is more likely to be normal to the flgotiogire

Although the upper bound of universal limiter as defined in Eq. W&y derived for
explicit schemes it can be seen that its bounded region isyneéerelbset of the full region
defined in Eqg. (10) for implicit schemes. The current impkciheme can therefore utilise
this more restrictive criterion, because it guarantees boundednégrovides a compressive
scheme to use in appropriate situations where the interfacarésrmarmal to the direction of
motion. This knowledge was applied by Ubbink & Issa to generatSANG? the basis of
the current scheme described in the next section.

3.3 Basis of CICSAM and the current implicit scheme

As has already been stated, the HYPER-C scheme is thesuitatle for the advection of
a step profile when the interface is normal to the flow disectiThe original VOF schertle
determines the slope of the interface and switches to upwind diffeceif the smallest angle

between the interface and the face of the control volume is gteat®5. An extensive
study conducted by Lafauriet al,*® highlighted extensive problems with such an abrupt
switching. Ubbink & Iss& proposed two main changes. Firstly the scheme should
concentrate on how to switch and not when to switch and secondlyothataher higher
order scheme, other than upwind differencing should be used. Their CICShAd/ha
employed ULTIMATE-QUICKEST® in this role, but in the spirit of Leonard’s ULTIMATE
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strategy, the current scheme employs ULTIMATE-QUICK, a coatdion of the universal
limiter and QUICK?’ The mathematical formulation of ULTIMATE-QUICK in the NVD is:

_(6C,+3 - .
é min g C, when 0sC, < 1
fuquick é Whel"éD < OCD >

(13)

Ubbink & Iss&” defined a weighting factob<y, <1 based on the angle between the
interface and the direction of motion to calculate the normafesesl value. This weighting
factor ensures a smooth transition between the upper bound of thesahiweiter given by
Eq. (12) and the less compressive differencing scheme, represented IBWATE-QUICK,
given by Eqg. (13). The face value is defined as:

¢ =y,C, +(1-y,)C (14)

fuquick

where y, =1 is used when the interface is normal to the direction of motioryand is used

when the interface is tangential to it. As described by Ubbinlss&’f this implies that
ULTIMTE-QUICK operates where the universal limiter faits preserve the gradient in the
interface and that the universal limiter operates where UIAMEFQUICK fails to maintain
the sharpness of the interface. The basic derivation of the sclsecomplete by stating
Ubbink’s & Issa’$® definition of the weighting factgr . This is based on the cosine of the

angle g, between(OC), , the vector normal to the interface and the vedtarhich connects
the centres of the donor and acceptor cells and is given by:

_ cos(, 1
Y, = min kyT’l (15)
where:
ac),
6, = cos 89, @, (16)
(@), [l |

and k, 20 is a constant introduced to control the dominance of the differentmeshe
(recommended value &f =1). The NVD for the scheme is shown in Figure 2(b).

Although the normalised face value, predicted with the currentrelifétng scheme for
one-dimensional uniform flow, in Eq. (14) is important, the actua fadue can be derived
by algebraic manipulation of Eqg. (9) to give:

C, =@-8,)C, +pB.C, a7)

where:

B, =——— (18)
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Figure 2: (a) The universal limiter for explicibfll schemes, at an arbitrary Courant number val@2énd (b)
NVD for the implicit differencing scheme as defineglthe universal limiter and ULTIMATE-QUICK

The weighting factog, , which implicitly contains the upwind val@ (in the definition

of the normalised variables), carries all the informationroigg the fluid distribution in the
donor, acceptor and upwind cells as well as the interface atitamtrelative to the direction
of motion.

In accordance with CICSANF it can be seen from the NVD in Figure 2(b) that the formal
order of accuracy is not uniform. It varies from first ordgwind or downwind) to second
order (centred) to even third order (QUICK) depending on the approgimasied for the
surface integral over the face.

4 SIMPLE ADVECTION TESTS

Initial problems for the scheme were chosen so as to tesidwection of the colour
function alone. To this end, analytic velocity fields were usetre attempt was made to
couple the advection af to solutions of the Navier-Stokes equations.

4.1 Simulation of Zalesak’s rotating solid body problem

One such test is the “solid body” problem as described by Zal&sEthis problem
specifically tests the ability of the scheme to translatkratate a fixed volume, as the fluid
region should not deform during the advection.

A uniform 2-D square mesh of grid si260x 20Ccells was employed to represent a square
domain of side 4.0 in length. A slotted circle was created impving a slot of width 0.12,
from a circle of radius 0.5 and a finite boundary of half the gridisgagas placed around
the entire structure. Initially the fraction of fluid withircell, C ; at position(i, j) was set to
zero inside the structure and unity outside. Values in the boundaey given by linear

interpolation, perpendicular to straight edges and radially at theersoand on the curved
edge.
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The structure was subject to a unidirectional velocity field, witoseponents were given
by:
u=-Q(y-y,), v=Q(x=X,) (19)
where(x,, y,) = (2.0, 2.0)is the centre of rotation and wheteis the angular velocity of 0.5
rads/s. The circle’s geometric centre was located at the(pont (2.0,2.75, with 2524

time steps used for one full rotation. The fractional étroesulting from the simulation was
calculated using:

ZHC:T _Ci(?i H
E=+———

2.C)

B

(20)

whereC®is the solution (for the fraction of fluid) at the end of the sinfatC’ is the
initial solution and the summation takes place over all cells at positipn

4.1.1 Numerical results

Figures 3(a)-(b) show the shape of the slotted circle at the begimmd end of the
simulation for one full rotation. Qualitatively, the results digeld in Figure 3 compare
favourably to those obtained by Rudritaand Ubbink & Iss&? It is found that advecting the
discontinuities present at the corners poses the greatest difficulty for theesche

Figure 3: Results for solid body rotation, illusing the fraction of fluidC through the domain as denoted by
the colour scheme in each legend. a) The irgbafiguration; b) after one full revolution.

The calculated fractional error, as defined in €q), is displayed in Figure 4(a), together
with those obtained for six other methdds?As can be seen from Figure 4(a), the error
associated with the present scheme is approximately an ordesigofitude less than those
previously obtained. This may be attributable to the implicit adfithe present algorithm,
which advances the interface with the same up-to-date flownmatosn in all coordinate
directions. The results obtained for the fractional error againstasing time of simulation
are displayed in Figure 4(b). It can be seen that evenfaftefull rotations, the fractional
error accumulated by the present scheme has reached a value ofThi3G8.still lower than
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the value of 0.0109 that was calculated for the next best scheme €Eyaftey only one
rotation.

0.10- 00962 0.007+

(b)

0.005-

Fractional Errc
Fractional Errc

0.0037

0.001
Hirt-Nichols  SLIC FCT-VOF CICSAM-U CICSAM-S  Youngs THOR 1 2 3 4

Method Rotation Number

Figure 4: (a) Errors obtained after one full raiatof the slotted circle for the current scheme QR and six
other methods' ?*and (b) the fractional error measured against {imenits of full rotations).

4.2 Simulation of the shearing flow problem in two dimensions

An additional and arguably more demanding problem is the shearing iffaagon, as
described by Rudméahand Ubbink & Iss& The introduction of a shear in the velocity field
ensures that topological change occurs as the fluid volume is deformed.

A square mesh, consisting ©60x 10C uniform cells, was used to represent a square
domain of siderr in length. A circle of radiug.2r with a finite boundary of width half the
grid spacing was centred at posit{orbrz,0.2(1 7). Initially the fraction of fluid within each
cell, C ; at position(i, j) was set to zero inside the circle and unity outside, with vaiugei

boundary given by linear interpolation in the radial direction. Tharstgevelocity field was
given by components:

u(x,y) =cosk)sinf ~, v(x,y)=-sin(x)cosf . (21)
where|v| , the maximum magnitude of the velocity field on the domain, has toe vl

J2 in the corners of the domain as both components are unity. Thius edbrners of the
domain the requirement is that:

2 2
At < A AX +Ay® \/EA 22)

Vi V]

max max

This was obtained by enforcing the condition that the speed of informatipagation on the
domain should not exceed the fluid velocity. Since the maximum Couraritenumust be
less than unity, it follows from Eq. (22) that

10



Peter W. Hogg, Xiao-Jun Gu and David R. Emerson.

[V, A
c =—m=—
max \/EA

From the comparison studi&s??it was clear that a maximum Courant number of 0.25 had
been used throughout the simulations. Using Eq. (23), a value=0f/400 was calculated

and used in order to fairly compare the results. Each simulaticiora time steps, before
reversing the sign of the velocity field and integrating for anothdime steps, in an attempt
to recover the initial configuration. Values Hfin the range250< N < 200( were tested

A study of the effect of the Courant number on the fractional Emgoren by Eq(20), was
also completed over simulations of equal duration. In this casd-aayi time of 7.854s was
chosen, prior to reversing the sign of the velocity field andyratang for the same period
again. The Courant number was varied by changing both the time stepgcasgaging and
results were obtained in the rang@5<c, < 1.2t

(23)

4.2.1 Numerical results

Results for the fraction of fluid at three stages during the sfiontafor N =1000 and
N = 2000 are shown in Figures 5(a)-(f).

Figure 5: Surface plots of the value of the frattof fluid for a) initial configuration prior tantegration b) after
integrating forward 1000 steps c) after integratiagk for another 1000 and d) initial configuratjmor to
integration e) after integrating forward 2000 stBpafter integrating back for another 2000.

The illustrations in Figure 5 compare favourably to those presamtederences 15 & 22.
It can be seen that as the shearing field stretches the circle, the schemesstouggpbture the
tail which is perhaps only 1-2 grid cells in size. The remnantiseofail are clearly visible in

11
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the bottom left of the circle in Figures 5(c) & 5(f) and this &asncreasingly larger effect on
the calculated fractional error as the integration time increases.

Results for the errdg afterN time steps (forward and back) are shown in Figure 6(a) for
each of the methods described*and for the current scheme (marked THOR). It can be seen
from the calculated errors in Figure 6(a) that the curremrse outperforms those given in
references 15 & 22.
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A Time o Space

Figure 6: (a) The fractional errde againstN for each of the schemes as indicated in the legaddb)
Fractional errors obtained during repeats of th&®0 simulation for a range of maximum Courant nersb

Results for the value of the fractional efeagainst maximum Courant number are shown
in Figure 6(b). These simulations were performed over a sef tmeach case 7.854s.
Initially the grid remained unchanged and the time step was ststefly increased in order
to vary the Courant number, providing the results labelled “Time” in Figure 6(I@r tAfs, a
fixed time step was employed and a number of different gridscoéasing resolution were
employed to vary the Courant number. The results of these sonslare labelled “Space”
in Figure 6(b). Note that the Courant numbers quoted are the maxialuas Yound on the
domain during that simulation.

5 SIMULATION OF THE COLLAPSE OF A LIQUID COLUMNINTW O
DIMENSIONS

5.1 Overview of the numerical simulation

A number of problems, incorporating coupling of the advection of the caloatién with
solutions to the momentum equations were then solved. One such prothencadiapse of
a liquid column (e.g. a dam-break) for which experimental data itableaifor comparison.
The principle source used in this study was the paper of Martirogc®f® which describes
an experimental investigation of this problem and contains expeghmapaisurements. The
paper by Kim & Leé also describes a numerical simulation of this problem and wasasse
an initial starting point to setup the problem and later as a useful referecoenuairison.

12
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The separate collapses of two liquid columns in two dimensions Wwelied The first
was that of a square column of side 0.05715m and the second a restanguhn of height
0.1143m, width 0.05715m. Numerical integration was carried out over a total simulation time
of 0.13s and 0.23s for the square and rectangular columns respectively.

5.2 Experimental procedure

In the first test case, that of the square column, four segardsewere employed and both
a fixed and variable time step were used. Table 1 shows thepeatyal and temporal
parameters used in each simulation. An additional simulation was also run on eaclhigrid. T
used a variable time step whose value was recalculatée agnulation progressed in order
to maintain a constant maximum Courant number of 0.1.

Physical Grid Grid Size in Cells used in | Horizontal Vertical Time Step,
Size, horizontally units of the horizontal | Grid Step Grid Step | when used
and vertically Column (x) and AX Ay At
(m) Height , H, vertical (y) (m) (m) (s)
horizontally directions
and vertically
0.2286 x 0.06858 4H x 1.2H 80 x 24 2.86x 103 2 .86x 103 2.0x 104
0.2286 x 0.06858 4H x 1.2H 160 x 48 1.43x 103 1.43x 103 1.0% 104
0.2286 x 0.06858 | 4H x 1.2H 320 x 96 7.14x 10 7.14x 10" 1.0x 10°

Table 1: The parameters used in each of the sironator the square liquid column. Note that @hensions
are described horizontally and then vertically #rat four additional simulations employing the sagnd
parameters but variable time steps were also cdetple

In the second test case, that of the rectangular column, threetsepais were used and
as above, both a fixed and variable time step were employed. Thdie the grid and time
step parameters used in each simulation.

Physical Grid Grid Size in Cells used in | Horizontal Vertical Time Step,
Size, horizontally units of the horizontal | Grid Size Grid Size | when used
and vertically Column (x) and AX Ay At
(m) Height , H, vertical (y) (m) (m) (s)
horizontally directions
and vertically
0.4572 x 0.13716 4H x 1.2H 160 x 48 2.86x 103 2.86x 103 2.0% 104
0.4572 x 0.13716 4H x 1.2H 320 x 96 1.43x 103 1.43x 103 1.0x 104

Table 2: The parameters used in each of the simon&afor the rectangular liquid column. Note thkt

same grid parameters but variable time steps wsoecampleted.
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In both test cases, the liquid column is initially in hydrostatic equilibrium afubigined”
between the left vertical wall of the grid and a notional.gdtiee fraction of fluid in a cell at
position(i, j), representedC ; is initially set to unity inside the water column, and zero

outside, with a finite boundary of one grid cell being used on the surfdakies for the
fraction of fluid inside the boundary are given by linear interpmtaiin the direction

perpendicular to the boundary surface. The gate is suddenly remowee at 0" and the
water column starts to collapse under the influence of gravigyictionless boundary
conditions are specified on the bottom and vertical walls. Thetdemsl viscosity of water

are taken a00 kg/miandL.0x 10° kgni Srespectively. The ambient fluid is air. Density is
taken a4.0 kg/ni and viscosity.0x 10° kgt § respectively. The gravitational acceleration is
taken ag =9.81 m/$.

5.3 Numerical results

Figure 7 illustrates a typical collapse in time, in this dhs¢ of a square column on the
160 x 48 grid using a fixed time step. An interesting feature ofithelaion depicted in
Figure 7 is the presence of a horizontal jet on the water filthough these are not visible
in photographs of the collapse shown in reference 29, such jets @entpie similar
experiments performed by Stansby, Chegini & Barnsisig modern imaging techniques and
equipment. A close up of this feature for the example given in Figuseshown at time
t=0.13 <in Figure 8.

Fluid Fraction

w100
0.50

.0,0U

t = 0.0¢

Figure 7: The collapse of the square water colomthe 160 x 48 grid using a fixed time step ahezdhe
times shown. Each plot shows the fraction of fini¢ach cell throughout the domain as given bystiertrum
in the attached legend.
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Figure 8 illustrates the velocity field profile in the vicindf the jet. It can be seen that the
low volume fraction region on top of the jet appears to be tragelinore slowly, as in
encounters resistance from the air in the domain. It is litkely this low volume fraction
region is a mixed water-droplet/air spray. The effect contijustsn front of and above this
region where there is a general upward turning in the velocitydgettle air is pushed up and
over the jet and turns backs.

Fluid Fraction

ml.00

Figure 8: An expanded view of the horizontal gatfire. Velocity vectors are plotted, with relatigngths
indicating the magnitude of the velocity at thainp@n the domain. Contours of 0.1, 0.5 and O9pdotted in
the volume fraction field.

The position of the water wave front and the height of the residatdrvwolumn are
plotted as functions of elapsed time and compared with experimeta&f d&igures 9-10
show these plots for the square water column. It should be notethéisat simulations
correspond to thea =2.25inch andn? =1 experiment of Martin & Moycé® whereais the
width of the liquid column and is defined as a constant such thatis the height of the
column. All values have been rescaled to the appropriate dimessianiés described
therein.

Horizontally, the distance travelled by the water front fromiititial starting point is
defined ag, wherez = x/a. Vertically the quantityH represents the residual height, i.e. in

comparison to the original starting state. This is defined by/(nza). Time is defined in
two separate units, dependent upon the direction of motion under considetdtirizontally
the unit isT , whereT =nt,/g/a and vertically , wherer =t,/g/a..

Figures 9(a)-(b) show the position of the water front and residuama height against
time for the simulations performed using a fixed time step foh ed the four grids as
described in Table 2, whilst Figures 10(a)-(b) show the position ofwtter front and
residual column height against time, for the simulations run usiagable time step on each
of the four grids described in Table 2.

It can be seen from Figures 9-10 that there is excellent ragreebetween the results
obtained from numerical simulation and the experimental data. Iicypart the general
trends followed by the experimental data are clearly modelledch of the simulations. It
can be seen that the results obtained on the two finest grids ircasetare very closely
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matched, indicating that the grid spacing is sufficiently small tee heeached a grid
independent solution.

3.00 4

o
2 (a) ‘ff’: * FR p— (b)
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Figure 9: (a) The position of the water front ahiithe height of the residual water column against for the
square column using a fixed time step
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Figure 10: (a) The position of the water front #bythe height of the residual water column agains¢ for the
square column using a variable time step and d fimaximum Courant number of 0.1.

Conversely it is also clear from the results for the residolaimn height that the coarsest
grid has failed to accurately map the experimental trend indkis. cThe oscillatory nature of
the graph (particularly evident for the 64 x 19 grid results in Fi@@n¢) is due to linear
interpolation being used to locate the boundary surface on a very coarse grid.

A time lag between the numerical and experimental resultcydarly evident in Figures
9(a) & 10(a), exists. This may be caused by the fact that expaally it is very difficult to
remove the gate instantaneously and thus there is a finite loifiare the column begins to
fully collapse. An average value of this delay was calculayetbmparing experimental data
points 3-8, where the solution is fully developed, to those obtained usifigetstegrid. The
delay was found to b& =(0.16+ 0.01 dimensionless units, corresponding to a real time of

(12+ 1)ms.
Figures 11-12 show the same results for the rectangular watenrcollt should be noted

that these correspond to theé=2 anda=2.25inch experiment of Martin & Moy with
values rescaled to the appropriate dimensionless units adyattescribed. It should also be
noted that the shortened graphs for the finest grid in Figures lfel@ua to insufficient
computing time being available to complete the simulations.
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Figure 11: (a) The position of the advancing wétant and (b) the residual height of the water ootuagainst
time for the rectangular column using a fixed tishep.
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Figure 12: (a) The position of the advancing wéiant and (b) the residual height of the water omluagainst
time for the rectangular column, using a variabtetstep and a fixed maximum Courant number of 0.1.

Once again the trends displayed in the experimental and numeriaastaat/ excellent
agreement. As described above, the finite delay between theicalred experimental data
is also clearly visible in these results. This time amaavalue for the delay was calculated
by comparing experimental data points 4-11 against the solution forndst §rid. The
delay was found to be approximat€ly (0.22+ 0.02dimensionless units, corresponding to a

real time of(12+ 1)ms, which is identical to that calculated for the square liquid column.

6 RAYLEIGH-TAYLOR INSTABILITY MODELLING

6.1 Overview of Rayleigh-Taylor instability simulation and experimental procelure

The final problem investigated was that of the Rayleigh-Tapktability, as presented by
Lopez et al.*® A heavy fluid of density, =1.225 kg/niis placed above a lighter fluid of

densityp, =0.1694 kg/niin a rectangular domain 1m wide by 4m high. The viscosity of both

fluids was taken &&13x 10° kgnt 8. Due to the symmetry of the problem, only half of the

physical domain was solved. This was represented by a grid of 32 xellS6in the
horizontal and vertical directions respectively. The integrati@s werformed using a
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variable time step, but constant maximum Courant number of 0.1 in thendamarder to
reduce computing time. Free slip boundary conditions were imposed ahbatipper and
bottom boundaries, with both lateral boundaries having symmetry conditipased upon
them. The interface shape was initially given by the cosine fungtior0.05cos(2rx .

6.2 Numerical results for Rayleigh-Taylor instability modelling
Figure 13 shows the progression of the Rayleigh-Taylor instability simulattartimie.

Fluid Fraction
m1.00

10.30

.0.0D

t=0 t=0.2 t=04 t 60. t=0.8 t=0.95
Figure 13: lllustration of the progression of Rayleigh-Taylor instability with time as given Hdyetfraction of
fluid across the domain at each of the times shown.

As can be seen in Figure 13, the results are qualitatively cabipap those in reference
30 and the general form of the nonlinear dispersion of the more detseamalisplays a
similar pattern. Particular points of similarity are tt@vdward vertical plume at the right
edge of the domain, the upward hook emanating from the left edge of ume pind its
tapering through a fine connecting filament to a larger blob of material.

The main difference between the two results are in the preséram@ther kink in the
interface, that has developed just above the initial startingigposit timet =0.95 <. In the
simulation of Lopezt al® the interface drops smoothly downward from its position on the
high left to the downward plume on the right side of the domain. Thesepmhksicies are due
to the different natures of both schemes and are probably dependehbupoompressive or
diffusive the scheme is in its treatment of the interface.

7 CONCLUDING REMARKS

The scheme introduced in this report is based on the Compressiviacet&apturing
scheme for Arbitrary Meshes (CICSAM) of Ubbink & I1$8aThe scheme switches smoothly
between the upper bound of the universal liffitand ULTIMATE-QUICK, a combination
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of the universal limiter and QUICK,dependent upon the angle between the interface and the
direction of motion.

Numerical results for four main test cases have been peesern the first two cases,
prescribed velocity fields were used and the current scheme foutped six other methods
tested by Rudmdnand Ubbink & Iss& for comparison. In the final test cases, the advection
equation for the volume fraction was coupled to the Navier-Stodpeations and two real
fluid flow problems were examined. Test case three examinembliapse of liquid columns
under gravity, representing various dam-breaks. It was found thatasonutata for the
position of the advancing water front and for the residual height ofolbenn against time,
accurately modelled that presented in an experimental invésstigay Martin & Moyce?®
Additionally, qualitative results for the nature of the flow during dam-break indicated the
presence of horizontal jets above the boundary, an effect observed erparimental
investigation by Stansby, Chegini & Barrfesln the final test case, a Rayleigh-Taylor
instability problem was investigated and the qualitative resldtained agreed with those
observed in numerical simulations by Logeal.*°
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