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Summary

A rtificial intelligence (AI) has become a widely discussed and transformative technol-
ogy, with its adoption growing across industries to drive insights and impact. In this
thesis, we explore how Al methods and algorithms can facilitate the operation of soft-fruit
supply chains, using strawberries as a case study.

The thesis begins by presenting the general background and various perspectives from
related works on how Al and machine learning (ML) have been applied to address prob-
lems in agricultural or horticultural practices. This includes tasks that, while not directly
optimizing supply strategies, still contribute to solving broader challenges. In a nutshell,
this thesis categorizes the scope of study into three scales: the single-fruit scale, the green-
house scale, and the market scale. Within each scale, we review the existing research,
identify knowledge gaps, and introduce robust and applicable methodologies capable of
dealing with real-world conditions.

Since no publicly available datasets met the requirements of the research plan, we es-
tablished several datasets for research on the soft-fruit supply chain through collecting,
annotating, and (pre-)processing data. These newly curated datasets not only support the
research presented in this thesis but also lay a foundation for future research from vari-
ous perspectives. Details about these datasets are introduced in Chapter 2. Moreover, we
conceptualize the process of gathering longitudinal observations from growth monitoring
images as a multiple object tracking (MOT) task. We named the image collection and their
MOT annotations as “The Growing Strawberries (GSD)”. The computer vision challenge
that GSD brings are further benchmarked and discussed in Chapter 3. Following this, the
core contributions of the thesis is presented from Chapter 3 to Chapter 6, each correspond-
ing to a published paper or one currently under review. Finally, Chapter 7 summarizes the
research findings, answering the research questions proposed in Chapter 1 and discussing
the overall work of the thesis.

We discuss these contributions for each of the three mentioned scales separately:

At the fruit scale, we designed and analyzed novel methodologies to keep track of
the fruit growths and to predict key properties, including both external characteristics
like ripeness and internal qualities such as sweetness. For the ripeness, we propose to
use appearance properties, mainly the hue, as an objective metric to quantify it. For the
sweetness, we trained deep neural networks to perform non-destructive prediction using
environmental and image data, individually and integrally.

Our employment of color analysis and ML models provides a non-destructive and gen-
eralizable manner that ensures consistency when upstream and downstream parties in a
supply chain estimate the properties of fruits. Meanwhile, the models perform compar-
atively with laboratory benchmarks even under imperfect, outdoor data collection. We
further demonstrated the model in a mobile app to further facilitate adoption in the field.

By benchmarking state-of-the-art MOT algorithms on GSD, we illustrated the new
challenges that are brought by this use case: first, the MOT objects change appearance
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during the tracking due to their biological development, and second, sparse frame rates
introduce irregular movements from image to image. We showcased how fruit properties,
such as ripeness, change over its life cycle. The results not only provide quantitative mea-
surements that describe the fruit’s biological development, but also depict the pain points
of current MOT algorithms’ predictions. In the meantime, by quantifying these changes
over the biological development, we also retrieval relevant information and datasets to
support predictions of the changes.

At the greenhouse scale, we designed a framework that optimizes the timing of fruit
harvesting by integrating the aforementioned quantified changes over biological develop-
ment, based on sequential demands about the desired quantities to be harvested. Essen-
tially, the framework makes fruit-specific decisions on dates of harvests by leveraging the
monitoring data. The decisions are thus made to enhance both current and future demand-
fulfillment capabilities. At each stage of this framework, we evaluated various methods
and discussed their effectiveness in achieving the stage targets. For example, how to pro-
cess the infield data to achieve coherent functions about the ripeness development, how
to predict future changes, how to include different perspectives in the optimization model,
and etc. As the decisions are made for each specific fruit, the work also demonstrates sig-
nificant potential for integration with mobile apps and harvesting robots. On top of that,
the information retrieval function can also serve as a standalone application to provide
objective fruit-level quality assessment.

At the market scale, we focus on the portfolio optimization of a grower under a
widely applied mechanism of the market system: the majority of demands for harvests
are predetermined through advance contracts, which also serves as an a priori condition
of the solution proposed at the greenhouse level. The local market, with dynamic prices
and demands, can be used to save losses from the difference in contracted demands and
the actual yield. To mitigate outlying decision failures, we introduced the “smart predict-
then-optimize (SPO)” method, which trains models to predict future yield and local market
prices. Our results illustrate that SPO loss primarily affects the bias layer in neural net-
works, contrasting with models trained using mean squared error (MSE). This difference
essentially leads to more conservative estimations in decision-making scenarios, and also
motivates and highlights the importance of effective MSE-based pre-training. Addition-
ally, our study reveals how SPO loss makes models interact when multiple neural networks
are trained to predict decision parameters with diverse functions. This insight expands the
applicability of SPO loss across a broader range of use cases and model architectures, un-
derscoring its contribution to the field of decision-focused learning.

In conclusion, this thesis introduces diverse data-driven methodologies to tackle the
distinct tasks involved in optimizing fruit supply, using strawberries as a case study. Cen-
tral to our approach is the effective utilization of data, which serves as the foundation for
solutions that span from fruit-level evaluations to market-level planning. By leveraging
analytics of non-destructive data, our solutions provide objective estimations of fruit qual-
ity, fostering a more consistent shared understanding between sellers and buyers while
reducing potential food waste. Overall, these advancements push the boundaries of Al in
supporting decision-making during the supply of soft fruits, particularly for smaller grow-
ers. The findings not only empower more efficient and sustainable supply chain operations
but also highlight the strong potential for many practical real-world applications.
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Samenvatting

rtificial intelligence (AI) is uitgegroeid tot een veelbesproken en transformatieve tech-
A nologie, waarbij de toepassing ervan in steeds meer sectoren inzichten en impact op-
levert. In dit proefschrift onderzoeken we hoe Al-methoden en algoritmen de werking van
productieketens voor zacht fruit kunnen vergemakkelijken, met aardbeien als case study.

De dissertatie begint met het presenteren van de algemene achtergrond en verschil-
lende perspectieven van gerelateerde werken over hoe Al en machine learning (ML) zijn
toegepast om problemen in de land- en tuinbouw aan te pakken. Dit omvat taken die, hoe-
wel ze niet direct voorzieningsstrategieén optimaliseren, toch bijdragen aan het oplossen
van bredere uitdagingen. In een notendop categoriseert dit proefschrift het studiegebied
in drie schalen: de schaal van één vrucht, de schaal van de kas en de schaal van de markt.
Binnen elke schaal beoordelen we het bestaande onderzoek, identificeren we open vragen
en introduceren we robuuste en toepasbare methodologieén die kunnen omgaan met de
omstandigheden in de echte wereld.

Omdat er geen publiek beschikbare datasets waren die voldeden aan de eisen van het
onderzoeksplan, hebben we verschillende datasets opgesteld voor onderzoek naar de pro-
ductieketen van zacht fruit door data te verzamelen, te annoteren en te bewerken. Deze
nieuwe datasets ondersteunen niet alleen het onderzoek dat in dit proefschrift, maar leg-
gen ook een basis voor toekomstig onderzoek vanuit verschillende perspectieven. Details
over deze datasets worden geintroduceerd in Chapter 2. Bovendien conceptualiseren we
het proces van het verzamelen van longitudinale observaties van groeimonitoringbeelden
als een meervoudige objectvolgtaak (MOT). We noemden de beeldverzameling en hun
MOT-annotaties “The Growing Strawberries (GSD)”. De uitdagingen voor de beeldher-
keningstaken die dit met zich meebrengt worden verder besproken in Chapter 3. Daarna
worden de belangrijkste bijdragen van het proefschrift gepresenteerd van Chapter 3 tot
Chapter 6, elk van deze bijdragen correspondeert met een gepubliceerd artikel of een ar-
tikel dat momenteel wordt getoetst. Tot slot geeft Chapter 7 een samenvatting van de on-
derzoeksbevindingen, waarbij de in Section 1.2 voorgestelde onderzoeksvragen worden
beantwoord en het algehele werk van het proefschrift wordt besproken.

We bespreken deze bijdragen voor elk van de drie genoemde schalen afzonderlijk:

Op fruitschaal hebben we nieuwe methodologieén ontworpen en geanalyseerd om de
groei van het fruit bij te houden en belangrijke eigenschappen te voorspellen, waaronder
zowel uiterlijke kenmerken zoals rijpheid als inwendige kwaliteiten zoals zoetheid. Voor
de rijpheid stellen we voor om uiterlijke kenmerken te gebruiken, voornamelijk de tint, als
een objectieve maat om deze te kwantificeren. Voor de zoetheid hebben we neurale net-
werken getraind om niet-destructieve voorspellingen te doen met behulp van omgevings-
en beeldgegevens, afzonderlijk en integraal.

Ons gebruik van kleuranalyse en ML-modellen biedt een niet-destructieve, generali-
seerbare en consistente manier om de eigenschappen van fruit in te schatten voor upstream-
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en downstreampartijen in een productieketen. De modellen presteren vergelijkbaar met
laboratoriumonderzoeken, zelfs bij imperfecte gegevensverzameling. We hebben het mo-
del verder gedemonstreerd in een mobiele app om de toepassing in het veld verder te
vergemakkelijken.

Door state-of-the-art algoritmes voor MOT te testen op GSD, illustreerden we de nieuwe
uitdagingen die deze toepassing met zich meebrengt: ten eerste veranderen de MOT-
objecten (fruit) van uiterlijk tijdens het volgen door hun biologische ontwikkeling, en ten
tweede zorgen lage framerates voor onregelmatige bewegingen van beeld naar beeld. We
lieten zien hoe fruiteigenschappen, zoals rijpheid, veranderen gedurende de levenscyclus.
De resultaten bieden niet alleen kwantitatieve metingen die de biologische ontwikkeling
van het fruit beschrijven, maar tonen ook de pijnpunten van de voorspellingen van de
huidige MOT-algoritmen. Door deze veranderingen tijdens de biologische ontwikkeling
te kwantificeren, vinden we ondertussen ook relevante informatie en datasets om voor-
spellingen van de veranderingen te ondersteunen.

Op kasschaal hebben we een framework ontworpen dat, gebaseerd op eisen over de
gewenste hoeveelheden die geoogst moeten worden, de timing van het oogsten van fruit
optimaliseert door de bovengenoemde metingen over de biologische ontwikkeling te ge-
bruiken. Het framework neemt fruitspecifieke beslissingen over oogstdata door gebruik
te maken van de monitoringgegevens. De beslissingen worden dus genomen om zowel de
huidige als de toekomstige mogelijkheden om aan de vraag te voldoen te verbeteren. In
elke fase van dit framework hebben we verschillende methoden geévalueerd en hun effec-
tiviteit besproken om de doelstellingen van de fase te bereiken. Bijvoorbeeld, hoe verwerk
je de veldgegevens om coherente functies over de rijpheidsontwikkeling te verkrijgen, hoe
voorspel je toekomstige veranderingen, hoe neem je verschillende perspectieven op in het
optimalisatiemodel, enz. Aangezien de beslissingen voor elke specifieke vrucht worden ge-
nomen, toont het werk ook een aanzienlijk potentieel voor integratie met mobiele apps
en oogstrobots. Bovendien kan de functie voor het ophalen van informatie ook dienen als
zelfstandige toepassing voor een objectieve kwaliteitsbeoordeling op fruitniveau.

Op de schaal van de markt richten we ons op de optimalisatie van de portfolio van
een teler onder een veel toegepast mechanisme van het marktsysteem: de meeste oog-
staanvragen worden vooraf bepaald door middel van voorcontracten, wat ook dient als
een voorwaarde voor de oplossing die wij voorstellen op kasniveau. De lokale markt, met
dynamische prijzen en vraag, kan gebruikt worden om verliezen te besparen die worden
veroorzaakt door het verschil in gecontracteerde vraag en de werkelijke opbrengst. Om
beslissingsfouten te beperken, introduceerden we de “smart predict-then-optimize (SPO)”
methode, die modellen traint om toekomstige opbrengsten en lokale marktprijzen te voor-
spellen. Onze resultaten laten zien dat SPO-verlies voornamelijk de bias-laag in neurale
netwerken beinvloedt, in tegenstelling tot modellen die zijn getraind om de mean squared
error (MSE) te minimaliseren. Dit verschil leidt tot conservatievere schattingen in be-
sluitvormingsscenario’s en benadrukt ook het belang van effectieve, op MSE gebaseerde
pre-training. Daarnaast onthult onze studie hoe SPO-verliesmodellen op elkaar inwerken
wanneer meerdere neurale netwerken worden getraind om beslissingsparameters met ver-
schillende functies te voorspellen. Dit inzicht breidt de toepasbaarheid van SPO uit naar
een breder scala aan gebruikssituaties en modelarchitecturen, en onderstreept de bijdrage
ervan aan het veld van decision-focused learning.
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Concluderend introduceert dit proefschrift verschillende datagestuurde methodolo-
gieén om de verschillende taken aan te pakken die komen kijken bij het optimaliseren
van het aanbod van fruit, met aardbeienteelt als case study. Centraal in onze aanpak staat
het effectieve gebruik van data, die als basis dienen voor oplossingen die variéren van eva-
luaties op fruitniveau tot planning op marktniveau. Door gebruik te maken van analyses
van niet-destructieve data bieden onze oplossingen objectieve schattingen van de kwaliteit
van fruit, waardoor een consistenter gedeeld begrip tussen verkopers en kopers ontstaat
en potentiéle voedselverspilling wordt verminderd. In het algemeen verleggen deze ont-
wikkelingen de grenzen van Al bij het ondersteunen van de besluitvorming tijdens de
levering van zacht fruit, met name voor kleinere telers. De bevindingen maken niet alleen
efficiéntere en duurzamere toeleveringsketens mogelijk, maar benadrukken ook het grote
potentieel voor veel praktische toepassingen.






Introduction

1.1 Background

This dissertation presents algorithms, benchmarks, models, and datasets, designated to
support decision-making that are relevant for strategizing the supply of soft fruits.

The motivation for this work stems from the significant impact of food waste on land
use, climate, and the global economy. Statistics show that approximately 40-50% of root
crops, vegetables, and fruits are lost or wasted globally, with losses reaching trillions of
dollars [82]. A range of factors contribute to this waste, including inconsistent harvesting
criteria, subjective assessments of fruit quality among supply chain stages, and insuffi-
cient information shared across the parties in the supply chain. Together, these issues
often leads to spoilage before the fruits reach the down-stream buyers or consumers [209].
Furthermore, inaccurate demand forecasts, diverse grading standards, specific customer
requirements, and improper storage practices exacerbate post-harvest waste, particularly
during periods of high demand [244].

To minimize waste during harvest and related activities, the concept of precision agri-
culture - also known as “smart farming” - leverages data-driven tools empowered by
machine learning (ML) and artificial intelligence (AI) within the agricultural industry [14,
17, 228]. By utilizing sensors, cameras, and drones, growers can monitor critical aspects
of crop production such as micro-climates, crop health, maturity status, plant canopies,
geographical specialization, etc. The data collected from these technologies enable the
development of analytical and predictive tools that assist in automating agricultural prac-
tices, optimizing crop and yield management, and enhancing decision-making throughout
their participation in the supply chain [125, 147, 226].

For instance, computer vision (CV) techniques provide fundamental support for pro-
cessing image data, which identifies and monitors the crops. Convolutional neural net-
works (CNN) can be trained and deployed to analyze observations of crops or their grow-
ing environment [30]. This promotes downstream tasks such as quality inspection [22,
283]. The model can also serve as a part of the automatic control systems, which are in-
creasingly incorporated in agricultural machinery to enhance cost and labor efficiency [245].
Or, more often, detection models such as the region-based CNN (R-CNN) family and the
YOLO family are widely used in these type of and branched tasks, i.e. detecting, distin-
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guishing, and locating fruits, etc [215, 258, 261]. The outputs of the model can also stream
into further crop management [147, 300] and yield estimation [22, 175] tasks.

At a higher level, in terms of optimizing marketing strategies and supply-chain po-
sitioning, the employment of mathematical models and operations research methods is
widely explored [7, 182, 236]. Before and during harvest, growers must make critical deci-
sions regarding planting and harvesting plans [63]. When participating in a supply chain,
they need to estimate the maximum quantities available for sale and decide the minimum
contractual quantities by considering the price of each variety [125]. The implementation
of such decision-support systems has enabled companies to plan their production more
consistently and professionally, leading to enhanced operational efficiency [43].

Most existing research approaches the problem from a single scale, either focusing on
point measurement data to optimize overall production and demand strategies or using
laboratory data to model the quality of individual crops. However, the real-world practice
of optimizing supply strategies and implementing them effectively requires a more com-
prehensive, interdisciplinary approach. This involves an interconnected, bottom-up flow
of data across scales. This gap in the current methodologies is a key barrier preventing
state-of-the-art techniques from being successfully applied in practice.

Building on the success of Al and ML algorithms, the vision of the research is to lever-
age data-driven tools to support the decision-making and optimize the operations at vari-
ous stages of fruit supply. These tasks include monitoring the cultivation in field, assess-
ing the quality of harvests, predicting the future development of crops, forecasting the
demands from downstream parties in the supply chain, and strategizing the supply by
assigning the agricultural products to different markets.

In this research, we focus on soft-skinned fruits, also commonly named soft fruits, as
the main instance. Soft fruits like strawberries and raspberries are popular commercial
crops, but are particularly vulnerable due to limited surface protection [4, 293]. Subse-
quently, these fruits must be harvested at optimal ripeness to ensure that the quality can
be guaranteed after post-harvest processes such as transportation and storage, which vary
for different markets. Addressing these challenges necessitates optimizing the decisions
of their supply. As a typical kind of soft fruit with large consumption, strong flavor, rich
nutritional value, and a long harvesting season over the year [244, 250, 281], we chose
strawberry as a representative example of the studies in the thesis.

As such, the primary goal of the PhD research is to understand where and how well Al
can facilitate strawberry supply from a grower’s perspective by investigating and devel-
oping algorithms and models to utilize available data from greenhouses’ daily operations.
The motivations of the research questions comes from concerns directly related to routine
practices of growers: What is the quality of a strawberry? How will this change over time?
When to harvest the fruits? How large is a future harvest, or how large shall it be? To which
market shall we offer the harvests? And additionally, what supporting data are necessary?

1.2 Research Objectives

The primary objective of this research is to develop data-driven methods for optimizing
fruit harvesting decisions in greenhouses, thereby better aligning the supply with down-
stream. From a practical standpoint, our primary focus is on in-field data collected via
reliable and non-intrusive devices, such as observations of fruit growth and micro-climate
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sensor readings. In addition, the research is contextualized and supported by external in-
formation, including market records and insights into specific supply chain mechanisms.

Considering the abovementioned concerns from practices, we have established eight
research questions to to identify key tasks for employing data-driven techniques and eval-
uate their advantages over existing methods. In this way, we addressed the broader issue
of supply optimization across three interconnected levels: the fruit scale, the greenhouse
scale, and the market scale. In specific, at the fruit scale, we developed deep learning
models to analyze, estimate, and predicted the quality and specific attributes of individ-
ual fruits. At the market scale, we investigated how factors such as demand, purchasing
power of buyers, specific policies, and modeling methods affect the supply and selling
strategy. Just like assembling a jigsaw puzzle from its edges to the center, we integrated
information from both fruit and market levels to tackle tasks at the the greenhouse scale.
In specific, we guided harvest decisions by aligning of fruit development insights with
downstream demands.

This section introduces and motivates the research questions that arise when we ap-
proach the sub-tasks at these three scales in specific, and what the supporting datasets
that we have been establishing.

1.2.1 Fruit scale

“What is the quality of a strawberry?”

Traditionally, horticulturalists use the appearance, mainly the skin color, to identify the
ripeness level of a fruit [200, 227, 294]. Assessing it subjectively can lead to inconsistent
quality interpretations between suppliers and downstream customers [96, 299]. Further,
as doing this for all the crops can be time-inefficient and labor-intensive, it also limits
the potential to plan harvests and post-harvest activities in time [274]. Following such
concerns, researchers trained ML models to estimate the ripeness of fruits, by which a
few datasets were also established [76, 287]. This can be combined with detection models
to directly distinguish the fruit into different ripeness categories from images, and thus
scaling up the evaluation to the whole crops becomes a relatively easier task [242, 293].

In addition to ripeness, fruit characteristics such as size, shape, firmness, sweetness,
and shelf life are critical indicators of fruits’ quality. Among these, firmness and sweetness
are often measured using destructive tests [1, 177]. To overcome the limitations of these
methods, many studies have explored ML techniques for non-destructive estimation of
these characteristics.

However, most research is conducted under controlled laboratory conditions that in-
volve sealed apparatuses, uniform lighting, and specialized sensors like hyper-spectral
imagery (HSI) to assess various fruit attributes [153, 171, 176, 293]. While effective, the re-
liance on such controlled laboratory setups necessitates a “harvest-first, analyze-second”
approach. This limits the practical applicability of these methods for crucial in-field tasks
like yield estimation or harvest planning. This thesis therefore pivots to an "analyze-first”
approach, focusing on methods compatible with affordable, non-destructive, in-field data
collection. The viability of moving beyond the lab is supported by evidence that the most
decisive features for quality prediction lie within the visible light spectrum, making ex-
pensive specialized sensors not a hard requirement for all time [86, 102, 274, 293]. This
fundamental challenge of practical in-field analysis motivates the first research question:
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1. How accurately can key quality attributes of fruit, such as external characteristics
like ripeness and internal properties like sugariness, be estimated using in-field data?
How do these estimations compare to traditional assessments or benchmark methods
based on laboratory data?

To address this need, we developed deep learning models for predicting fruit quality
at the individual level. These models estimate internal properties non-destructively, such
as sugar content (sugariness), which is typically measured by °Brix (or shortened as Brix)
in the juice of the fruit. By leveraging in-field data, our approach follows the “analyze-
first, harvest-second” principle, which enables continuous quality assessment throughout
the entire growth cycle and makes our models ideal for integration into larger agricultural
solutions. This practicality is enhanced by their ability to operate offline, allowing for them
to be embedded in mobile apps for real-time quality estimation. A small demonstration
of such an app was presented at BNAIC 2023 [265]. In addition to Brix, we successfully
applied a similar methodology to predict firmness, as discussed in a paper by Jol, Wen, and
Van Gemert [123].

Meanwhile, while image data remains essential for accurate fruit-level predictions, the
fruit quality is heavily influenced by the growing conditions such as the air temperature,
CO, level, precipitation, etc. [72, 127, 187, 264]. This means that predictive models often
rely on a mix of inputs, from direct sensor measurements to external forecasts. To our
knowledge, no prior work has systematically analyzed how fusing data from these differ-
ent domains, such as combining real observations with predictive forecasts, impacts model
performance. This unexamined domain motivates our second research question:

11. How important are the image and micro-climate sensor data in training proper
(internal) quality prediction models? What is an optimal way of utilizing this multi-
modal data?

In response to this question, we conducted an in-depth evaluation of the practicabil-
ity of using a single type of data versus integrating multiple data sources for predicting
strawberries’ Brix. Above all, we introduced a conceptual framework designed to train
and validate various approaches to data fusion in this context. Our methodology empha-
sizes the selection of the optimal model-training process based on both prediction accu-
racy and practicability. The main findings from our study are detailed in a journal paper
by Wen, Abeel, and de Weerdt [264] (Chapter 4). We also explored other potential data
sources, such as the near-infrared data, which are discussed in the work of Jol, Wen, and
Van Gemert [123].

“How will this change over time?”

For strawberry growers, harvesting at the precise peak of quality is crucial for market
success. Achieving this requires carefully tracking how key attributes like sweetness and
firmness develop on the plant. A common research method to know how the quality devel-
ops over-time involves performing destructive tests on batches of strawberries at specific
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stages of growth, typically determined by the number of days since flowering [124, 178].
These tests provide a general estimation of the fruit’s development, however, just as “no
two snowflakes are alike”, they cannot capture the unique life-cycle of an individual straw-
berry. Relying on such generalized patterns for decision-making overlooks annual varia-
tions in growing conditions, which limits the practical applicability of any optimization
models based on them [184].

Given the utility of image data for non-destructive quality estimation, a logical ex-
tension is to continuous monitor to enable lifelong and/or real-time assessments of each
fruit. Data collected in this way is crucial for supporting yield prediction, harvest plan-
ning, and supply management [11, 37, 115, 203]. However, achieving this level of precision
agriculture — making decisions for each specific fruit — requires tracking individuals over
time [147]. While multiple-object tracking (MOT) is the primary technology for such
tasks, its application to plant growth presents a novel problem. Originally developed for
tracking dynamic objects like pedestrians, MOT has been extended to domains like live-
stock monitoring, as the core task still revolves around tracking motion in real-time over
short durations [91, 285]. In contrast, long-term growth monitoring involves static ob-
jects where the key difficulty shifts from tracking movement to accurately identifying
individuals despite gradual but significant changes in appearance. The performance of
conventional MOT algorithms on this distinct type of task is a largely unexplored area,
compounded by the lack of relevant public datasets. This fundamental difference between
the two domains motivates our next research question:

1. What are the distinct characteristics of a long-term monitoring task compared to
typical MOT tasks? How will they affect the performance of existing MOT algorithms,
compared to their benchmarks on typical MOT tasks?

In response to this question, and to address the lack of relevant public datasets, our first
contribution is the creation and publication of a new benchmark dataset, “The Growing
Strawberries” (GSD). Using this dataset, we conduct a comprehensive comparison against
a typical MOT dataset, MOT20, analyzing differences in object characteristics, inter-object
relationships, and trajectory properties. This comparison highlights two major challenges
that are unique to long-term growth monitoring: significant appearance changes in ob-
jects over time and irregular, non-motion-based trajectories. Finally, we benchmarked
a variety of MOT algorithms on GSD to quantitatively assess their performance on this
novel tracking task.

Essentially, the principal objective of applying MOT to growth monitoring data is to
understand how fruit quality develops over time. This involves an essential additional
step: mapping the series of longitudinal observations to stages of realistic biological devel-
opments. However, many existing studies often simply used discrete ripeness categories,
such as “flower”, “immature”, “young”, and “mature”. While such labels enable multi-class
classification beyond simple “fruit” vs. “non-fruit” detection [115, 242], their discrete na-
ture inherently limits models to basic classification tasks [18, 153, 177, 186, 281] prevent-
ing both the progressive assessment of growth and the modeling of continuous biological
development. This limitation has practical consequences; for instance, misclassifying an
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occluded fruit based on a simple category can cause errors, which can still cascade through
long-term forecasts [54, 198]. The need to explore a more refined, preferably continuous,
maturity labeling system to mitigate such errors and on downstream tasks raises our next
research question:

1v. Apart from MOT metrics, how can monitoring results be practically assessed? In
what ways can they be combined with in-field quality analysis to effectively represent
biological development?

To answer this, we revisited the traditional criteria for assessing ripeness, which re-
lies on a subjective perception of the fruit’s appearance. To create a more objective and
quantitative alternative, we proposed using hue as a measurable indicator to track color
change. Specifically for strawberries, we employ the A* channel from the CIELAB color
space, which is along the green-to-red color axis, as a straightforward and standard met-
ric for monitoring ripeness development [221]. By mapping this quantitative metric to
longitudinal observations, we can track the growth pattern of each individual fruit and
compare these patterns across different seasons and treatments. We validated this met-
ric against traditional ripeness labels from open-source datasets to analyze its advantages.
Furthermore, this detailed mapping enables a precise analysis of how appearance changes
in GSD impact the performance of MOT algorithms.

1.2.2 Greenhouse scale

“When to harvest the fruits?”

Strawberries are non-climacteric fruits, meaning that once harvested, they stop ripening,
which halts the development of key quality attributes like appearance, sweetness, and
firmness [93, 178]. This standard practice, however, often creates a costly misalignment
with fluctuating downstream demand [63, 126]. Optimizing the harvest schedule therefore
presents a crucial opportunity to not only increase profitability by preventing economic
losses but also to reduce food waste, creating a compelling case for the development of
algorithmic decision-support tools [160, 231].

Most research on supply chain harvesting decisions treats quality as an aggregate
value. For instance, models might use generalized ripeness states or analyze seasonal pat-
terns to maintain a consistent average quality, as seen in optimizations for orange juice
production [184]. However, this way of modeling leaves a gap in practical application: it
cannot guide real-world decisions about “which fruit to harvest and which not” because
it lacks actual growth tracks of individual fruits. With the advancement of CV techniques,
monitoring each fruit’s unique development is now possible, opening the door to preci-
sion agriculture where decisions can be made for every single fruit [147]. This raises an
interesting question:

v. How can we analyze and apply individual growth patterns at the fruit level to
support the decisions and optimization at the level of a whole greenhouse?
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To answer this, our method builds a predictive pipeline founded on the objective in-
dicator developed in our answer to Research Question 1v, i.e. hue or A% to longitudinal
observations of each fruit. This creates quantified growth records that detail the develop-
ment of individual strawberries over time. This process creates quantified growth records
for each fruit, detailing their individual development over time. From these historical
records, we develop algorithms to predict the future growth trends of newly developing
fruits. To enhance the accuracy of this entire pipeline, we employ advanced image process-
ing techniques. Subsequently, these individual growth forecasts are used by optimization
algorithms to determine harvest plans, maximizing yield and profitability.

“How large shall a future harvest be?”

Accurate yield prediction is crucial for optimizing both resource management and supply
chain positioning [141, 160, 236]. Current yield prediction methods mostly fall into two
main categories: forecasting with micro-climate data [232, 248] and estimating based on
fruit counting [98, 101, 192]. The former approach use environmental data to forecast
aggregate yields (e.g., in tons) for market-level decisions, such as supply and financial
planning [7]. The latter, which increasingly automated by computer vision, provides de-
tailed estimates of fruit numbers for tactical harvest decisions [19, 180, 190, 198]. While
both approaches primarily useful insights within their respective scopes, there remains a
gap in linking these predictions to actionable decisions. Creating a dynamic mechanism
to translate strategic plans into tactical outcomes therefore represents a key opportunity
to improve decision-making, raising an interesting research question:

vI. How can individual fruit growth models be used to plan the harvest and optimize
the greenhouse’s production?

To answer this, we propose a two-stage framework that connects long-term strate-
gic planning with short-term operational reality. The first stage addresses the strategic
definition of supply targets, which are often fixed months in advance due to commercial
practices like contract farming. The second, operational stage then focuses on using in-
dividual fruit growth models to create precise harvest plans that meet these overarching
goals. Our approach aims to synthesize these two perspectives into a single, robust, and
practical optimization strategy.

1.2.3 Market scale

“To which market shall we offer the harvests?”
To reduce economic loss and food waste, the soft-fruit industry is adopting more sustain-
able and economically viable practices in cultivation, harvesting, and supply chain opera-
tions [7, 31, 37, 209]. From a grower’s perspective, a key component of this is optimizing
their market strategy and operational fulfillment, which involves answering two core ques-
tions: first, “how do I invest my potential yield?” and second, “how can I operationally
ensure my supply matches that investment?”

The primary financial risk for growers comes from fluctuations in both their produc-
tion capabilities and market demand [63, 126, 254]. To mitigate market risks, practices
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like “contract farming” allow growers to fix production amounts and prices before har-
vest. However, since production levels are uncertain at the time of contracting, growers
typically do not commit their entire expected yield to these contracts, opting instead to
keep a portion to sell in local markets [125, 189, 222]. This hedging strategy is further
motivated by the asymmetric risk inherent in many supply contracts, where the financial
penalties for mismatching the agreed-upon volume are often severe on one side and less
consequential on the other, e.g. more costly on under-supplying than over-production, or
vice versa. This complex trade-off between the security of contracts and the potential prof-
itability of local or spot markets — a dynamic also seen in industries like energy and finance
— highlights the need for context-specific models to strategize supply decisions [194, 236].
This challenge raises a key strategic question:

vir. How can the investment performance be improved by making the yield forecast-
ing model aware of the downstream economic impacts of their predictions? What is
the effect on the model and on the profitability?

To account for downstream impacts, we train the predictive model by incorporating
the economic consequences of the decisions that result from its forecasts — specifically, the
regret associated with decision-making. This approach is usually referred to as “decision-
focused learning (DFL)”, in contrast to “precision-focused learning (PFL)” of which the
primary goal is to maximize forecasting accuracy of prediction models [168]. The key
motivation behind using DFL is to effectively manage the different consequences of over-
and under-estimation. Since this is a novel application of DFL, we first evaluate its impact
on profitability compared to traditional PFL. On top of that, we also investigate how the
different loss functions affect the tuning of model hyperparameters.

Once the strategic investment decisions are made, which are informed by yield and
market forecasts, the challenge shifts from planning to operational execution. This re-
quires translating these high-level market plans back into specific, fruit-level harvest ac-
tions. Using the predictive models and optimization methods developed in our previous
work together with growth monitoring data, we can now address this final, capstone re-
search question:

vir. What is an effective strategy to predict and realize greenhouse production, so
as to achieve the best alignment of supply with downstream parties?

To answer this, we propose a two-stage approach that connects long-term strategic
planning with short-term operational reality. First, in the strategic stage, we use market
data to establish the long-term production targets, specifically, for the supply contracts.
Second, in the operational stage, we use the harvest optimization method, supported by
our answer to Research Question v, to make precise, short-term adjustments, as the har-
vest moment approaches. This integration of macro-level planning with micro-level exe-
cution ensures the final supply aligns close with long-term targets, or more importantly,
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commitments, creating a more robust and actionable production strategy. Consequently,
this comprehensive approach answers this final research question by integrating all solu-
tions across the three scales as defined at the beginning of this section.

1.2.4 Shared prerequisites

“What data are desired to support the proposed studies?”

Answering the research questions and developing effective data-driven tools requires com-
prehensive, multi-modal datasets. Accordingly, our data collection process is designed to
combine non-destructive monitoring throughout cultivation with post-harvest analysis of
stakeholder-relevant quality attributes.

In practical scenarios, micro-climate information and images are two of the most acces-
sible and non-destructive data types for monitoring the full cultivation process. Research
confirms that growth conditions are critical for final fruit quality [98, 146], and images al-
low for the essential task of tracking individual fruits. This process also generates valuable
longitudinal data for advancing research in MOT, where datasets of evolving biological ob-
jects are particularly scarce [163, 164, 282, 290].

Our post-harvest data collection encompasses both subjective expert assessments, such
as ripeness and marketability, and objective physical measurements. These objective tests
include non-destructive metrics like size and shape, as well as destructive analyses of Brix,
firmness, and changes during storage. The primary goal is to develop machine learning
models that can standardize the inconsistent nature of expert assessments and create a non-
destructive alternative to the damaging ground-truth tests. To enable this, we curated a
dataset that links the post-harvest quality measurements of each fruit to its corresponding
image data from the growth monitoring period. These data create a unique record for each
fruit that pairs its visual growth history with its final post-harvest quality attributes.

1.3 Outline of the Thesis

To lay the groundwork for this thesis, we begin with a comprehensive exploration of the
datasets in Chapter 2. These datasets form the crucial foundation for the proposed solu-
tions and serve as the basis for addressing the research questions outlined in this thesis.

Chapter 3 then focuses on “The Growing Strawberries” Dataset (GSD), which is central
to growth monitoring. This chapter identifies and validates the unique challenges it in-
troduces to the multi-object tracking (MOT) community. We benchmark state-of-the-art
MOT algorithms on GSD, examining how these challenges affect performance and metrics.
Additionally, we introduce new methods for evaluating fruit ripeness for the first time in
this chapter to demonstrate where current MOT algorithms fall short, emphasizing poten-
tial downstream applications. The chapter addresses Research Question 111 and 1v, while
also laying the groundwork for potential solutions to Research Question v.

In Chapter 4, we introduce a variety of machine learning methods to predict sugari-
ness, a key internal characteristic of strawberries. Trained on cost-effective, in-field data,
our models perform on par with existing benchmarks that use specialized in-lab setups.
By estimating post-harvest quality with satisfying accuracy, these models provide grow-
ers with consistent and reliable insights to inform their future harvesting decisions. The
results provide answers to Research Question 1 and 11.
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In Chapter 5, we present an integrated framework to support decision-making for pre-
cise strawberry harvests. To align with long-term sales contracts, the framework treats
market demand as a fixed quantity, allowing us to scale optimization down to the single-
fruit level. Building on the ripeness evaluation and quantification methods introduced
in Chapter 3, we developed algorithms and models to forecast ripeness changes over time.
These predictions are then aligned with the demand inputs, framing the task as an assign-
ment optimization problem. This chapter advances Research Question 1v and v1 while
addressing Research Question v and viiI.

Chapter 6 focuses on the fruit trading system, which shares similarities with the trad-
ing of other agricultural products, as well as sectors like renewable energy and stocks. A
unique aspect of such a system is that contracts are usually involved in the trading, whilst
the production/yield cannot be predetermined at the time of contracting. In this work,
we tailor a training method to develop prediction models for yield and market price -
both are critical for determining contract amounts. We compare the performance of this
method against traditional accuracy-oriented regression models, examining its impact on
contracting outcomes and model hyperparameters. Additionally, we propose and validate
methods to enhance model performance. Experiments in this chapter utilize open-source
data with extensive variables, further validating the method’s applicability beyond straw-
berry supply. This chapter specifically addresses Research Question v1 and virI.

Finally, Chapter 7 summarizes the findings from Chapters 3 to 6 to comprehensively
address Research Question 1 to viir. We discuss the thesis’s contributions across the three
aforementioned research levels — fruit, greenhouse, and market — to systematically sup-
port the decision-making scenarios in strawberry supply. We also reflect on the underly-
ing assumptions, unresolved tasks, and suggest potential avenues for future research.
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Datasets Overview

For a research project that addresses real-world challenges as reported in this thesis, the
data serves as a crucial foundation. As such, we collected data from various sources that
are integral to the research questions in Section 1.2 and curated a series of datasets by in-
tegrating the information from diverse perspectives, ensuring a well-rounded perspective
on the problem at hand. Before delving into the main, paper-based chapters as in Chap-
ters 3 to 6, this chapter provides a systematic overview of the datasets that were collected,
annotated, and utilized throughout the research.

We begin with the motivation behind establishing these datasets, which is rooted in
our overarching methodology to address the aforementioned research questions. Through-
out the cultivation process, we collected diverse types of information, including growth-
monitoring images, quality measurements, and records of the cultivation environment. In
this chapter, we detail the data collection process and provide examples of the datasets,
ensuring that the approach is reproducible. The datasets are provided publicly as part of
the open science policy, facilitating follow-up research. The chapter also provides a closer
look at the datasets themselves, presenting statistical insights and discussing key factors
that impact dataset quality. While part of these sections may overlap with Section 3.3
and Section 4.2, which focus on growth tracking and quality prediction, respectively, the
purpose here is to highlight the collective significance of these datasets within the broader
research framework. To this end, we emphasize not only their individual contributions
but also how they interconnect to support the overall goals of the thesis. At the end of this
chapter, we present the metadata associated with each dataset, offering practical guidance
for potential future users. We aim to facilitate effective use of these datasets in similar or
extended research endeavors, helping to advance the field and encourage new solutions
to related challenges.
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2.1 Design of Data Flow

To develop the algorithms and models, the project needs the input of four sources: (i) the
images that monitor the cultivation periods, (ii) the environment data in the greenhouse
compartment over the same periods, and (iii) destructive test measurements of fruits that
are also visible in images, and (iv) data or facts about the soft-fruit market. Figure 2.1
illustrates the data flow by the models involved in this project among the three scopes of
studies: fruit level, greenhouse level, and market level. The data were collected during the
cultivation periods and after the harvests. Eventually, the data that we have collected or
their features or properties after a certain level of processing are fed into the optimization
task of harvest planning about specific fruits.

Fruit Scale Greenhouse Scale Market Scale

(Quality)
Prediction
Model(s)

eeeee

Figure 2.1: Proposed data flow of the models implemented in this research, organized across the three scales
of research scope described in Section 1.2. Green boxes represent collected data, while brown boxes indicate
data processed during the research. The legend explains the meaning of the box frame line styles. Bolded text
highlights the major topics or objects of the paper-based chapters in this thesis.

At the fruit level, we collect two types of data to describe properties of individual
fruits: images and measurements. As a non-destructive measuring way, we collect images
over the cultivation period, of which the longitudinal observations also form monitoring
information about the growth. These images are therefore the main source of growth
monitoring and forecasting tasks. Measurements included results of destructive and non-
destructive tests, that are labeled or measured by human experiments after the growth.
In specific, the sugariness is measured by the percent dissolved solids in aqueous liquids
using an Abbe refractometer scaled in Brix units, and the firmness is measured by reg-
istering the force required for a Cylinder Probe to penetrate the fruit’s flesh to a chosen
distance. They are mainly treated as labels for supervised learning using image data.

At the greenhouse level, we collected micro climate information such as temperature,
CO, and humidity, which is mainly shared over all growths at the same moment. Specifi-
cally, for fruit-level quality prediction work, we measured plant load and yield, which was
suggested by the greenhouse experts. This information acts as aggregated information for
training/anchoring the quality prediction task about individual fruits. Meanwhile, they
are also the crucial foundation for the market-level optimization task.
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The research at the market level optimizes the matching between gaining from har-
vests and demands from downstream customers in the supply chain, from the perspectives
of a grower. For such, the yield data represents the production quantity and the price and
demand over time describe the markets performance. The historical values of all these data
are used to train forecasting models, so that the model outputs can be used in planning
before the real harvest.

Next, we provide the details on each of these data sources.

2.2 Data Collection

Growth Monitoring Images

According to the research in which hyperspectral images (HSI) techniques are considered,
most principal features still fall in to the visual spectrum [85, 102, 274]. Thus, from 2021 to
2023, we used six RGB and OCN* cameras (model Survey3N from MAPIR®) to track the
growth of 12 Favori strawberry plants (each year) in three greenhouses in Netherlands.
The cameras were paired in three sets, denoted as RGB/OCN-1/2/3. All the images are
4000x3000 pixels. For each pair, the two cameras are installed in parallel with a fixed
distance of 10 cm, forming a big view overlap that ensured most fruits were monitored by
both cameras. In 2024, we retained the RGB cameras and set up two additional fish-eyed
RGB cameras for overhead monitoring, which captured images every three hours. We
used this setup to monitor the fruit growths in the same greenhouse as where the data
was collected in 2021, so as to form a validation set.

Figure 2.2 gives a sample view of each camera, collected at the same moment. The
horizontal shift of view of each camera pair due to the parallel setup can be noticed in
each row. Although there exist some small dislocations among the images resulted from
the camera shaking from practice, many static reference objects can still be found in the
images for re-alignment of the views.

The monitoring of fruit growths is therefore formed by the longitudinal observations,
i.e. considering the time-lapse images as frames of a long video, and the fruits are the ob-
jects to be tracked over the frames. For instance, the individual bounding boxes (bbox) as
shown in each row of Figure 2.3, from which we can form series of observations as in Fig-
ure 3.1. For the growth-monitoring images collected in 2021 and 2022, we provide human-
annotated bboxes for every strawberry, at all growth stages, along with identity labels
for trajectory tracking during the period of their biological developments. This therefore
formed a multiple object tracking (MOT) challenge with unique complexities raised by
the prolonged monitoring periods. The dataset, published as “The Growing Strawberries”
Dataset (GSD), is accompanied by a detailed paper, included in this thesis as Chapter 3. The
annotation process, i.e. marking the bbox and trajectory IDs as illustrated in Figure 2.2,
included an initial annotation stage and three rounds of review and verification from non-
annotating workers, so as to mitigate potential labeling errors and personal biases.

On top of the MOT annotation of GSD images, we applied “Segment Anything” [133]
to segment the strawberries with polygon masks from the bbox images. By connecting
the segments from the longitudinal observations from both the RGB and OCN cameras by
the stickers in view, we form a dataset of in-field image and post-harvest measurement of

“The channels are: Orange/615nm, Cyan/490nm, Near-Infrared/808nm.
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Figure 2.2: Example views of the three pairs of cameras. The numbers in the camera name indicate how they
were paired. The color-coded rectangles are the ground-truth bbox annotations of object detection. The MOT
annotation are noted as the trajectory IDs at the top of the bboxes.

strawberries over three years, as depicted in Figure 2.4. The first-year data is published
together with the paper by Wen, Abeel, and de Weerdt [264], and the entire collection is
available via the 4TU.ResearchData Platform [271].

As we collected images at different times of the day, we also included exploiting color
normalization methods as a crucial step of data pre-processing. The second row in Fig-
ure 2.3 gives one example way of normalizing the images — by performing a mixed-use of
gamma correction and histogram equalization, inspired by Young-Chang Chang and Reid
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[291] and Bezryadin, Bourov, and Ilinih [28]. A few algorithmic color correction methods,
intrinsic color measurements, and generative models could be employed for this purpose,
of which a further discussion of them can be refer to Chapter 5. In a nutshell, many of the
approaches achieved a reduction of the color difference of the time-lapse images, facilitat-
ing the computational methods to obtain useful information which quantify the growth
of the fruits and can be used in further growth predictions.
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Figure 2.3: Example time-lapse images, along with the detection and segmentation of strawberry fruits. The
original names of the images are displayed at the top of the plots, wherein the collection time is indicated. The
first row shows the original images, while the second row displays the images after a certain level of color
normalization. Detection bounding boxes are shown in both rows, and the segmentations are represented as
yellow masks in the first row.

Quality Attribute Evaluations

A few hours before the harvest, we label a few fruits with an ID by a physical sticker
that is visible to the cameras, such as the yellow stickers in Figure 2.2. Then, after it has
been harvested, the measurements of the quality attributes can be again connected to the
images that were taken in-field, so we formed a dataset to train deep learning models to
achieve the goal of “analysis first, harvest second”.

The quality assessment criteria include physical and biochemical indicators of the
ripening process, and also the subjective concerns of suppliers of how to categorize the
strawberries in the market. The quality attributes are determined through human assess-
ment and device measurements. A horticulturist labels the ripeness of fruit according to
the greenhouse standards and decides whether a strawberry is marketable, usually based
on its appearance — specifically, its roundness and visible defects if any. Device measure-
ments can be non-destructive or destructive. Strawberries are weighed and measured for
size, typically indicated by diameter. Many greenhouses use ring-passing tests to catego-
rize sizes instead of providing exact numbers, with diameter ranges listed in corresponding
measurement sheets. Destructive tests assess sugariness (measured in °Brix or written as
“Brix” for short), firmness (measured in kg/mm?), and changes in appearance and weight
loss during a two-week cold storage period. Since sugariness and firmness tests destroy
the fruit, the shelf life test is conducted using a different batch from the harvest used for
the other measurements.
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ID: 2021-0183-01
Marketablility: No

Ripeness: 9 (1-10)

Size: Small (25-30 mm)
Sugariness: 9.5

Firmness: 0.318

Harvest date: 2021-07-02
Harvest location: Bleiswijk, NL

ID: 2022-0080-07
Marketability: Yes
Ripeness: 3 (1-5)
Diameter: 35mm

Weight loss on shelf: 9.03%
Harvest date: 2022-03-21
Harvest location: Horst, NL

ID: 2024-0099-02

Sugariness: 6.9

Harvest date: 2024-04-08
Harvest location: Bleiswijk, NL

Figure 2.4: Yearly dataset samples: segmented strawberry images labeled with quality properties. The 2021 and
2022 samples contain parallel views from the paired RGB and OCN cameras, offering richer features for analysis.

Micro-Climate Records

It is demonstrated in many related studies that the greenhouse environment, including
the temperatures (at multiple locations), relative humidity (RH), CO, density, illumination
level, and additional nutrition to the plants influences the growth and final quality signifi-
cantly [51, 56,70, 110]. Thus, in our research, the environment information is considered as
an auxiliary feature for both prediction models. Sets of sensors monitored various places
in the greenhouse or in the neighborhood at a minimum 5-minute frequency.

An overview of the collected attributes are presented by Table 2.1: The sensor mea-
surements of temperatures, RH, CO,, and radiation are collected in the greenhouse com-
partment where the strawberries were cultivated. The rainy condition at the greenhouse’s
location was recorded as Boolean values, i.e. “whether it rained or not”. Additional treat-
ments such as irrigation and cyclic lighting were logged by greenhouse managers. The
data were then aggregated into hourly or daily to reduce influences from sensor failures.

Market Information
To better understand the trading dynamics in the soft-fruit market, we conducted surveys
and interviews with several key suppliers among our project stakeholders and reviewed
relevant literature. Our qualitative research revealed that most agricultural products, in-
cluding those we examined, are sold to large distributors through contracts signed weeks
or even months in advance. This practice, commonly known as “contract farming”, also
serves as a risk management tool for growers that helps to mitigate the unpredictability of
production. Furthermore, this strategy does not only prevalent in agriculture but is also
widely applied across various industries.

Unfortunately, we couldn’t access specific data related to strawberries due to confiden-
tiality restrictions. However, when we expanded our scope to encompass other markets,
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Table 2.1: Attributes of Growing Environmental Records. The columns indicate the higher-level groups, where
“xxx” refers to the name codes of specific (known) locations in the greenhouse. The content of each cell is for-
matted as “abbreviation: explanation”. The records of indoor micro-climate, outdoor weather, and plat treatment
are aggregated hourly in the latest published version of Wen et al. [271].

Abbreviation Content

INDOOR MiCRO-CLIMATE

PT-xxx Plant Temperature (PT) at specific locations

LT-xxx Leaf Temperature (LT) at specific locations

ST-xxx Substrate Temperature (ST) at specific locations

RT-compt Room Temperature (GT) in the greenhouse compartment
VT-compt Ventilation Temperature (VT) in the greenhouse compartment

AH-compt Absolute Humidity (AH) in the compartment
RH-compt Relative Humidity (RH) in the compartment
CO2-compt CO, intensity in the compartment

OuTDOOR WEATHER

Rain Rained or not

T-outer Temperature (T) outside

RH-outer Relative Humidity (RH) outside

AH-outer Absolute Humidity (AH) outside

RDAN Net radiation

PAR-xxx Photosynthetically Active Radiation (PAR) sensor data
PLANT TREATMENT

Lighting Artificial lighting by the flowering bulbs

CyLighting  Artificial cyclic lighting by the flowering bulbs

Watering Amount of irrigation

we found other publicly available online datasets, by Borsa [33] and Jhana [121], that we
could still utilized to benchmark the contracting methodologies developed in Chapter 6.
In this way, the expanded focus not only enhances the generalizability of our conclusions,
but the insights also contribute beyond the strawberry use case.

2.3 Dataset Statistics

Based on the collected data and information, we established two collections of datasets:
“Growth monitoring of strawberries” [270] and “Quality evaluation of strawberries” [271].
The growth monitoring datasets consist of time-lapse images used to track the growth
of strawberries, along with the corresponding MOT annotations. The quality evaluation
datasets include in-field images of strawberries before they were harvested, their associ-
ated post-harvest measurements, and relevant environmental information as further in-
puts for training prediction models.

The annotated growth monitoring images from 2021 and 2022 have been published as
“The (original) Growing Strawberries Dataset (GSD)” [269]. We designate the daytime im-
ages from 2023 and 2024 as the “extended-GSD”, while the remaining unannotated, mostly
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dark images are labeled as “dark-GSD”. Our exploration on [269] focuses primarily on the
properties of its MOT annotations. Moreover, a detailed exploration of GSD-2021 and a
comparison of the characteristics between GSD-2021 and MOT20, a popular dataset from
MOTChallenge, is presented in Section 3.3.

For the quality evaluation datasets, we analyzed the label distributions across the dif-
ferent years in which the data was collected. This analysis highlights both the similarities
and differences in measurements of various attributes, as well as how these distributions
can vary among different cultivation years and locations.

Growth Monitoring of Strawberries

Images and annotations
Table 2.2 presents the overall statistics of GSD as accessible via [269]. For our bench-
marking experiments detailed in Chapter 3, we focused exclusively on the RGB images
within GSD. Accordingly, we provide the statistics of only these RGB images in Table 3.1
in Section 3.3. On top of that, following three additional rounds review and annotation
correction of GSD, Table 2.2 has been updated to reflect these revisions, while Table 3.1
remains as it was originally published with the its release in 4TU.ResearchData [272].
Further, Table 2.3 shows the statistics of the “extended-GSD”, which is composed of only
growth monitoring images collected in 2023 and 2024. Since both GSD and “extended-GSD”
contain only daytime images, we store the nearly-dark or blacked-out images separately in
an entry, designated as “dark-GSD”. All three datasets are encapsulated under the collective
title, “Growth Monitoring of Strawberries”, available on the 4TU.ResearchData platform.

Table 2.2: Statistical overview of the RGB and OCN images of the latest update of GSD. The 2" column lists the
duration of data collection. The 3™ and 4™ columns note the amounts of all time-lapse images (“Total images”)
and the annotated images that formed the dataset (“Dataset images”), respectively. The last two columns present
the total number of annotation bboxes and trajectories.

Camera Period Total images Dataset images Total bbox Total tracks

subset: GSD-2021

RGB-1 Apr 23-Nov9 4786 2689 66342 490
RGB-2 Apr 23 -Nov9 4785 2595 63444 393
RGB-3 Jun 29-Nov9 3181 1694 67000 422
OCN-1 Apr 23 -Nov9 4786 2612 73072 559
OCN-2 Apr 23 -Nov9 4785 2677 72029 451
OCN-3 Jun29-Nov9 3182 1727 68550 482
subset: GSD-2022
RGB-1 Feb 22 - Oct 3 5128 3279 93542 562
RGB-2 Feb 22 - Oct 3 4699 3000 115531 895
RGB-3 Feb 22 - Oct 3 5156 3280 108488 753
OCN-1 Feb 22 - Oct 3 5159 3247 72780 690
OCN-2 Feb 22 - Oct 3 5162 3323 100749 766

OCN-3  Feb 22-0Oct3 5158 3323 107838 749
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Table 2.3: Statistical overview of the RGB and OCN images of the extended-GSD. The 2™ column lists the duration
of data collection. The 3™ and 4™ columns note the amounts of all time-lapse images (“Total images”) and the
annotated images that formed the dataset (“Dataset images”), respectively.

Camera Period Total images Dataset images

subset: GSD-2023

RGB-1 May 31 - Aug 29 1819 1413
RGB-2 May 31-0Oct 18 2328 1401
RGB-3 May 31 - Oct 18 2018 1232
OCN-1 May 31 - Aug 29 1592 1109
OCN-2 May 31-Oct 18 1847 1127
OCN-3 May 31-0Oct 18 1848 1126
subset: GSD-2024

RGB-1 Feb 6 - Jun 27 3404 2150
RGB-2 Feb 6 - Jun 27 3404 2120
RGB-3 Feb 6 - Jun 27 3404 1998
RGB-4 Feb 6 - Jun 27 3407 2008
Overhead-1 Feb 6 - Jun 27 1136 905

Overhead-1 Feb 6 - Jun 27 1137 906

MOT trajectories

explain why there is a sample video

Since the cameras are stationary and strawberries generally do not travel long dis-
tances throughout their life cycle, many strawberries in GSD obtain a complete trajectory
from early growth to harvest. For example, Figure 3.1 shows a strawberry positioned on
the outer layer, which was largely visible throughout its development. However, not all of
the strawberries were completely monitored. As illustrated by the track length statistics
in Figure 2.5, a notable portion of tracks are relatively short.

Various factors contribute to these incomplete observations:

1. In cooler weather such as in May or September, the strawberries grow slower and
less dense. Both factors make the trajectories naturally longer than in warmer times.

2. The strawberries were growing in dense gathers, as can be observed in the sample
views as in Figure 2.2 and the demo video GSD-sample_video.mp4 in [269]. For in-
stance, in the branches captured by cameras RGB-2 and OCN-2 in Figure 2.2. In
these conditions, some strawberries in the inner layers were occluded. Neverthe-
less, due to varying rates of weight gaining, their positions could shift relative to
one another, allowing them to emerge at later stages of maturity in view.

3. The increases in size and weight might also squeeze some strawberries out of frame.
For example, the strawberry #397 in the view from RGB-2 in Figure 2.2; the straw-
berry #596 in the demo video also moves back and forth at the edge of the frame.
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4. Strawberries from the inner layer started to have more complete observations when
the outer-layer strawberries were harvested. For example, radical position changes
can be observed in the the demo video.

5. Some strawberries grew above the cameras, which were not intended to be moni-
tored. For example, the strawberry #451 in the view from RGB-2 in Figure 2.2.

6. In addition, human activities, such as harvesting one fruit, can cause nearby fruits
to move as well. For example, intentional actions like pulling fruits outward (called
“uvithalen” in Dutch) may also occur. While these behaviors are not evident in the
demo video GSD-sample_video.mp4, they are known to exist.

Track length in RGB images Track length in OCN images
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Figure 2.5: Statistics of track lengths in GSD, based on the latest update from Wen et al. [270]. The histograms
display the statistics for the 2021 and 2022 datasets, with normalized frequencies. Track length is defined as the
number of bounding boxes assigned to a track according to the ground-truth MOT annotations.

For instance, in the example subsequence of GSD as in GSD-sample_video.mp4, two
drastic location changes happened between 12-1 pm, Sep. 1%, and between 5-6 pm, Sep. 6
because of the harvests. It could be noticed that strawberries #355 and #354 switched
positions suddenly between frame 1-2 pm, Sep. 7™, because of the harvest of #391. This
exemplifies the irregular movements of GSD objects. The video is accessible in the GSD-
Sample file folder in [269].

Quality Evaluation of Strawberries

Statistics of measurement data and image labels

Table 2.4 presents the count of data points from measurements conducted between 2021
and 2024. We classify these data points into three different sets due to varying levels
of completeness: some data points are excluded from labeling an image because the cor-
responding strawberry or its physical label in the images were either occluded, poorly
labeled, or out of view, leading to gaps in the datasets. Nevertheless, based on the Law of
Large Numbers, we expect that a larger amount of quality evaluations will better reveal
underlying attribute distributions, which can still be collected regardless of the associ-
ation with strawberry images. Therefore, we established two dataset configurations: an
image-based dataset (noted as “Data points labels an image” as in Table 2.4), where quality
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attributes serve as labels for the strawberry segments in the images, and a measurement-
based dataset, which archives all measurements associated with a valid sampling date. In
addition to that, in selected greenhouses where they also have a regular plan of sampling
fruits from harvests, we also collect the measurements for the strawberries of the same
species and underwent the same treatment before and during cultivation (hereby, called
“same fruit” for short). This approach aims to capture more representative distribution
patterns at each harvest round. A time-based comparison of the three sets of data points
are as shown in Figure A13.

Table 2.4: Statistical overview of the quality evaluation datasets, organized by the specific attributes. The 3™
column presents the total number of fruits that were assessed or measured. The 4™ column displays the number
of data points in the image-based dataset, where we used each quality attribute to label specific strawberry
segments in the RGB images. The 5™ column notes additional measurement data gathered from extra samples
used by the greenhouse to assess each harvest.

ualit . # Data points # Data points from
%tribuie Year #Data points labels aI; image the sanfe treatment
Marketability 2021 315 204 -
2022 947 758 -
2023 145 - -
Ripeness 2021 310 200 -
2022 947 758 -
2023 145 - -
Size 2021 310 199 -
2022 947 757 -
2023 145 - -
Sugariness 2021 1144 199 583
2022 475 383 475
2024 1514 269 909
Firmness 2021 245 164 -
Harvest weight 2022 477 373 -
2023 145 - -
Weight loss 2022 471 373 -

on shelf for 14d

Distributions of quality evaluations

Figure 2.6 illustrates the label distribution of the images, which are formed by the quality
evaluation attributes. We divide the labels into tow rows: three categorical labels in the top
row and three continuous labels in the bottom row. As shown, since the harvesting are still
based on a market-oriented standard, the majority of strawberry samples are marketable
and were harvested at or near optimal ripeness.

Notably, the ripeness distributions differ significantly between 2021 and 2022, which
resulted from the distinct labeling criteria used by the two greenhouses. In 2021, one
greenhouse rated ripeness on a scale from 1 (green) to 10 (over-ripe), resulting in a pre-
dominant score of 7 or 8. In contrast, in 2022, the second greenhouse employed a scale
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from 1 to 5, where 1 encompassed all green and greenish strawberries, resulting in most
scores clustering around 3 or 4. Meanwhile, as most greenhouses utilized a ring test for
measuring size, the highest label categories were therefore limited by the largest ring that
they used. Aside from species and cultivation differences, these methodological variations
contribute to the differing distribution widths seen in the dataset.

The three continuous attributes in the bottom row are collected from destructive mea-
surements. Sugariness, which we discuss further in Chapter 4, was measured across mul-
tiple seasons over three years. According to Figure 2.6, measurements from 2024 are more
concentrated to their average, while 2022 measurements show a leftward shift along the
x-axis, indicating an overall lower mean value. These distributional differences impact val-
idation performance, highlighting the need for larger datasets to train more generalized
models or, alternatively, recommending transfer learning before applying these models to
a new greenhouse. Firmness and weight loss (measured after 14 days on the shelf) were
assessed in only one year each. For these attributes, our dataset provides a foundational
basis for training non-destructive estimation models, with putting the detailed model de-
velopment and validation for these attributes outside the scope of this thesis.
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Figure 2.6: Statistics of the measurements (/labels) in the image-based quality evaluation dataset. The quality
attribute are noted on the labels of the x-axes respectively. The y values indicate the density of the data that fall
within each range over the measurements of the same year.
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Long-Term Tracking of
Multiple Objects with
Biological Development

»

This chapter explores the unique challenges posed by the “the Growing Strawberries (GSD)
to the research of multi-object tracking (MOT). Specifically, it highlights two key chal-
lenges: (1) significant appearance changes of objects across frames and (2) irregular object
movement patterns. These challenges are illustrated through a comparison with a well-
known MOT dataset, MOT20, and benchmarking of state-of-the-art MOT algorithms on
our dataset. Additionally, we introduce a novel method for quantifying fruit ripeness to
highlight the limitations of existing MOT algorithms on GSD. While there is some overlap
in Section 3.3 with Section 2.2, this chapter emphasizes the new challenges introduced to
the MOT field and the reasons behind their emergence.

This chapter was previously published as: Junhan Wen, C. R. Verschoor, C. Feng, L
Epure, T. Abeel, M. de Weerdt. 2024. "The Growing Strawberries Dataset: Tracking Mul-
tiple Objects with Biological Development over an Extended Period." Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). 2024. [272]
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ultiple Object Tracking (MOT) is a rapidly developing research field that targets precise
Mand reliable tracking of objects. Unfortunately, most available MOT datasets typically
contain short video clips only, disregarding the indispensable requirement for adequately cap-
turing substantial long-term variations in real-world scenarios. Long-term MOT poses unique
challenges due to changes in both the objects and the environment, which remain relatively
unexplored. To fill the gap, we propose a time-lapse image dataset inspired by the growth
monitoring of strawberries, dubbed “Ihe Growing Strawberries” Dataset (GSD). The data was
captured hourly by six cameras, covering a span of 16 months in 2021 and 2022. During
this time, it encompassed a total of 24 plants in two separate greenhouses. The changes in
appearance, weight, and position during the ripening process, along with variations in the
illumination during data collection, distinguish the task from previous MOT research. These
practical issues resulted in a drastic performance downgrade in the track identification and
association tasks of state-of-the-art MOT algorithms. We believe “The Growing Strawberries”
will provide a platform for evaluating such long-term MOT tasks and inspire future research.
The dataset is available at https://doi.org/10.4121/e3b31ece-cc88-4638-be10-8cedd4c5f2f7.v1.

3.1 Introduction

Multiple Object Tracking (MOT) is an exciting Computer Vision topic with wide applica-
tions in autonomous driving [99, 162], traffic monitoring [122, 149], video surveillance [132,
170], etc. While these studies mainly focused on video clips of a few minutes or even
shorter [65, 88, 174, 286], consistent tracking over a longer period also has significant im-
plications in real-world contexts. The supervision of cultivation and livestock [84, 91, 223,
285], the progression assessment of lesions and wounds [21, 39,41, 117, 251], and the micro-
scopic scrutiny of cells [13, 173] serve as intriguing illustrations of this pragmatic scenario.
However, there is a lack of research on MOT algorithms applied for long-term purposes,
particularly when the intrinsic properties of objects are also simultaneously developing.
Furthermore, using a lower capture frequency over extended periods [41, 223, 285] leads
to a substantial information loss, thereby heightening the challenges in accurate object
tracking. Therefore, there is a pronounced need for a realistic dataset to bridge the gap
between current MOT algorithms and their effective application over prolonged periods,
so as to facilitate the advancement of effective methods.

The tracking of biological development processes exemplifies a prominent long-term
MOT challenge within this particular context [163, 164, 282, 290]. For instance, accurate
growth monitoring of fruits and vegetables over time is a key ingredient to successful
horticulture. Recent studies have demonstrated that images are feasible non-destructive
tools to evaluate the status and quality of fruits [83, 103, 295]. Keeping track of the growth
helps in planning harvest schedules, so as to achieve the peak quality and nutritional value
of crops. To follow the growth of individual fruits through visual observations, automated
image processing is required. We chose strawberries for our research because their 3-
7 day life cycle allows for tracking noticeable appearance changes while maintaining a
reasonable frame rate. In addition, the natural growth and horticulture activities also
introduce object movements along frames.

In this chapter, we introduce the first in-the-wild biological development monitoring
dataset, The Growing Strawberries Dataset (GSD). The videos of GSD consist of time-lapse
images of strawberry cultivation in six spots at two different greenhouses during the grow-
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ing season in 2021 and 2022 respectively. The longitudinal observations of strawberries
over their growth are supportive for ripeness assessment, yield prediction, and harvest
planning for efficient supply [37, 203]. Unlike the trajectory tracking of common moving
objects, GSD involves long-term tracking of developing objects under a low frame rate,
which introduces the two following unique challenges to the MOT task.

Figure 3.1: An example subsequence of image segments from GSD, depicting the growth over five days. We can
notice dramatic appearance changes and gradual enlargement during the development. In addition, even though
the segments are selected to minimize lightness variations, slight differences in segment brightness may still be
discernible due to the shifting angles of sunlight.

Appearance changes result from the biological growth of strawberries and include
changes in color, shape, and size, as depicted in Figure 3.1. These are common proper-
ties when a biological object is developing over time, yet limited MOT research has taken
these issues into concern. Unlike pedestrians or vehicles that remain visually consistent
throughout short videos, strawberries undergo continuous changes in appearance during
long-term tracking. Additionally, the visual appearances of strawberries are more similar
to each other than those of the traffic participants, which are more colorful and varied.
The in-frame discrimination and across-frame association result in challenges for the ap-
pearance descriptors, particularly when also confronting dynamic lighting situations and
overnight intervals.

Irregular movements can be caused by horticulture operations or other human ac-
tivities. They exhibit occasional co-occurrence with the strawberries’ incremental move-
ments from natural weight increase. For example, the natural increase in fruit weight or
deliberate repositioning by horticulturalists can lead to changes in fruit positions. Hu-
man intervention can introduce unexpected occurrences like sudden object movements
or camera view occlusions. Additionally, harvested fruits may permanently vanish from
sight. Since the data is captured hourly, movements could lead to abrupt changes, e.g. po-
sition jumps or switches, which make many location changes of GSD objects non-linear
and irregular. This characteristic from practice calls for research of discontinuous or in-
terrupted videos, which has not been thoroughly investigated, whilst the joint effect with
the appearance change still calls for more effective MOT solutions.

The main contributions of our work in this chapter are:

« We established GSD, a long-term MOT dataset that used six cameras to track the
growth of 12 plants of strawberries in 2021 and 2022 in two different greenhouses.

« We quantitatively compared GSD with one popular MOT dataset, MOT20, and pro-
posed a unique MOT scenario: the temporal tracking of biologically developing
objects in a sparse and long-term data collection.

« We benchmarked the performance of five MOT algorithms to prove the challenges
brought by our proposed scenario.
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» We visualized the importance of GSD from a realistic perspective. In all, our results
evidence the limitations of state-of-the-art MOT algorithms for such a long-term
MOT task, which highlights the emergence and necessity of proposing GSD.

3.2 Related Work

In this section, we briefly review popular object-tracking and temporal datasets that pro-
mote algorithm development and their limitations on scenarios, in order to highlight the
uniqueness and importance of the GSD. Secondly, we summarize the concepts of state-of-
the-art MOT algorithms and explain our method for evaluating the GSD.

3.2.1 Image datasets for multiple-object tracking
Datasets for MOT predominantly focus on trajectory tracking. Many of the recent tasks
of the MOT Challenge [179] are motivated by surveillance and autonomous driving. Thus,
they mostly focus on the tracking of pedestrians, vehicles, passengers, etc. [79, 88, 174].
For instance, MOT20 [67] is a widely-used and representative MOT dataset and is exten-
sively utilized by various algorithms as a benchmark to assess their performance. The
majority of the sequences are short videos with 10-30 frames per second and lasting for a
few minutes [65]. New challenges mainly originate from a higher amount and density of
objects in emerging datasets [67, 239, 263]. However, the characteristics of these scenarios
are limited. For instance, popular research objects such as pedestrians or vehicles are often
characterized by regular or predictable movement patterns. As a result, a greater diversity
of datasets is required to facilitate the generalization of MOT in broader domains [65, 286].
The majority of long-term temporal image datasets are used for substantial-scale change
detection, e.g. the progress monitoring of construction, deforestation, urbanization, or an-
imal migrations [75, 185, 193, 247, 280]. One of the shared goals is to track the temporal
changes of large and (mostly-)static objects or of a comprehensive overview of objects.
Therefore, the main concern in these studies is the pattern differences across images. On
the other hand, these datasets have limited potential to motivate the development of MOT
algorithms due to the restricted spatial movements of objects.

3.2.2 Image datasets for plant science

Image datasets are vital for plant science. Sequential images are a practical data type to ac-
complish non-destructive tests and continuous growth monitoring. The majority of plant
science research involving non-destructive testing of images is carried out within con-
trolled and calibrated laboratory settings [165, 196, 295]. However, for fruits that do not
ripen after harvest, it becomes impractical to rely on lab data for recording status updates
during their growth. Existing in-field datasets primarily focus on one-shot fruit detection
and lack information on the ripening progress due to limited object appearance changes
over a short period [86, 140, 199, 292]. Moreover, hyper-spectrum images (HSI) play a
valuable role in plant studies by developing numerical indicators and training machine-
learning models [86, 114, 295]. Yet, integrating these images into agriculture practices is
resource-intensive, given the already costly nature of HSI data collection. Therefore, we
advocate for a more practical solution: an integrated temporal dataset merging images in
the visual and near-infrared spectrum. The scarcity of non-visual images further empha-
sizes the need for such a comprehensive dataset.
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3.2.3 Algorithms for multiple-object tracking

Online MOT algorithms aim to perform real-time tracking of multiple objects in video se-
quences by continuously updating object identities and associations. Tracking-by-detection
is the most widely-used strategy in achieving online MOT [12, 74, 262]. The strategy
enhances the algorithms’ adaptability and robustness, enabling them to easily accom-
modate and perform well in diverse scenarios. In addition, it has less reliance on high
FPS of data collection than strategies building end-to-end detector-trackers such as [25],
which exhibits a higher potential for successful adaptation and utilization in long-term
MOT problems. Offline MOT solvers are also powerful tools as they utilize batches of
frames [35, 213, 273]. Since the computation effort grows tremendously on larger datasets
!, it is out of the scope of the context of our dataset. Thus, online MOT algorithms are
more applicable in GSD.

Algorithms following the tracking-by-detection strategy consist of two stages: (i) ap-
plying object detection models and (ii) associating bbox across frames. Research towards
better (near-)real-time performance mainly focuses on enforcing the associating algorithm
or a better interconnection between the two stages [262]. Generally, the association step
concerns two criteria [239]: (i) The trajectory and motion of objects. Many MOT
algorithms are developed based on the Simple Online and Real-time Tracking (SORT)
algorithm, in which a Kalman filter framework is applied to analyze the velocity vec-
tors [27, 45, 297]. The utilization of inertia measurement is a widely recognized approach
for expeditiously handling the MOT task. Nevertheless, researchers argue that trajectories
of spatially close objects are difficult to be distinguished [273]. (ii) The appearance of
objects. Deep learning techniques are usually applied to encode the appearance informa-
tion of targets [52, 262, 273, 276]. Field-specific object properties are often integrated to
enhance association performance [41, 213]. Particularly, when the frames are discontinu-
ous or when the objects are occluded, appearance features are crucial in re-identifying and
associating the tracklets to achieve consistent global tracking [229, 298, 301-303]. Never-
theless, the sparsity of the image collection for GSD indicates a longer interval between
frames, which exacerbates the existing complexity of the task.

3.3 The Growing Strawberries Dataset (GSD)

We aimed to establish a dataset about prolonged object tracking in a real-world setting for
the purpose of long-term MOT. The growth of strawberries is a good example of a natural
biological development process. Appearance changes and irregular movements happen
during this ripening process. Such dynamics reveal special characteristics that are also
shared among all kinds of agricultural crops.

To this end, we used six cameras (three RGB + three OCN ?) to track the growth of
12 Favori plants over 30 weeks in 2021 and 32 weeks in 2022, in two greenhouses with
different cultivation setups in The Netherlands. The cameras were paired in three sets,
denoted as RGB/OCN-1/2/3. They captured time-lapse images in the greenhouse, such that
videos of the entire ripening process were archived. We provide human-annotated bboxes
for every strawberry, at all growth stages, and identities for corresponding trajectories.

'An example on GSD is demonstrated in the supplementary materials.
*The channels are: Orange/615nm, Cyan/490nm, Near-Infrared/808nm.




28 3 Long-Term Tracking of Multiple Objects with Biological Development

3.3.1 Data collection setup

Since the ripening lasts around 7-14 days, we used hourly images for growth monitoring,
such that a complete track of the plant is ensured with circa 100 observations. The straw-
berries were cultivated in planting baskets that hung from the ceiling. A heating pipe was
hung beneath each planting basket. The cameras were attached to the heating pipe on
the opposite side of the strawberry plant. Figure 3.2 illustrates the detailed setup of the
cameras in the greenhouse.

Both cameras faced the plants from parallel perspectives, where the OCN images were
taken with a large view overlap with the RGB ones to provide hyper-spectral information.
On average, 28 strawberry fruits from 4 plants were monitored by one RGB camera. We
index all three RGB cameras as RGB-1,2,3. Figure 3.3 shows the annotations of an example
image sequence taken by camera RGB-3.

Figure 3.2: Detailed setup in the greenhouse in 2021. The left photo shows the positions of the white stripes, the
planting baskets, and the heating pipe, which were all placed in parallel. The distance from the edge of the white
stripes to the camera lens was 93 cm. The RGB camera was placed 10 cm to the left of the OCN camera of each
pair, as shown on the top right. The elevation angle of both cameras is 16.9°. Sample images from RGB-1 and
OCN-1 are shown in the bottom right. Identical strawberries are color-coded. The setup is similar in 2022 with
slightly varied dimensions.

3.3.2 Ground-truth annotation
The trajectory annotations of the strawberries consist of bboxes with track identifiers
(track IDs). To remain consistent in labels, the first round of annotation was performed by
a single person. Subsequently, two separate reviewers performed a manual check on the
annotations to ensure accuracy and to mitigate potential labeling errors or personal biases.
In this way, we guarantee accurate annotations. Examples of the MOT annotations are
depicted in Figure 3.3 and Figure 2.2.

All the images are 4000x3000 pixels. Due to the continuous data collection spanning
the entire day, the illumination conditions exhibited significant and periodic variations.
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We therefore set up a brightness threshold and defined a subset specifically for the follow-
ing benchmarking experiments.

View at 2021-08-16 17:19
4. i -

View at 2021-08-16 19:19  View at 2021-08-13 21:16  View at 2021-08-16 15:19
. R 4

— red
— green
blue

#pixels
ok N w

0 64 128 192 256 0 64 128 192 256 0 64 128 192 256 0 64 128 192 256 0 64 128 192 256

Figure 3.3: The upper row lists five image samples taken by RGB-3. The capture time is indicated in the title.
The 1° - 4™ images depict the normal changing pattern of sunlight during the day. We use the 4™ image from
a different date because the dawn and dusk were not captured every day. The 5™ image shows how the view
might be blocked due to human activities. The plot beneath each photo is the corresponding color spectrum from
R/G/B channels respectively. The x-axes indicate the color value (encoded as 0-255). The y-axes are the power
of the color spectrum with a shared amplitude. The color-coded rectangles illustrate the ground-truth (GT) bbox
and trajectory annotations.

Day images. The RGB images that were taken under normal lighting conditions are
the majority share of the growth tracking task. Examples are as depicted in the left three
photos in Figure 3.3. We call this subset the “day images”. Quantitatively, they were
defined as the images with luminance® higher than 50. As is illustrated by the first three
columns in Figure 3.3, when the zenith angle of the sun changes during the day, the color
spectrum of the photo shifts. This is a practical challenge brought by the in-the-wild data
collection, which also aggravates the variation of object appearances.

Remainder images. The annotations are available for all frames until most strawber-
ries became invisible when the view became very dark or when the camera was occluded
by human activities (e.g. the 5 photo Figure 3.3). We defined the subset “darker images”
as the photos that were taken under insufficient daylight (i.e. image luminance < 50) but
the strawberries were still visible to be annotated, for example, the 4™ photo in Figure 3.3.
Nevertheless, without additional brightness normalization, darker images degraded the
performance of the detection models. Considering that the number of darker images was
limited (at most once during dawn and/or dusk), we excluded them in the benchmarking
experiments to keep a fair performance comparison.

Trajectory annotations. Overall, the trajectories of strawberries have an average
length of 152 bboxes, yet it ranges from 2 to 600+ bboxes. The extra-long tracks resulted
from slower growths under cool temperatures. In fact, there is still a notable proportion
of tracks that last less than 20 segments, which are mostly incompatible with the natural
growth cycle of strawberries. Two major reasons for these short tracks are: (i) the back-
layer ones only started to be visible after re-position practices from humans because the
strawberries grew in dense clusters; (ii) the growths were only partially monitored because
the size increases of strawberries might squeeze the others out or into the frames.

*Luma, calculated according to ITU-R BT.601 standard [29].




30 3 Long-Term Tracking of Multiple Objects with Biological Development

Table 3.1: Statistical overview of the RGB images of GSD. The 2" column lists the duration of data collection. The
3" and 4™ columns note the amounts of all images and the images used in the benchmarking studies respectively.
The last two columns present the total number of bboxes and trajectories. An overview of the OCN images is
presented in the supplementary materials.

Camera Period Total img Anno. img Total bbox Total tracks
RGB-1 Apr 23 -Nov 9, 2021 4786 2823 67957 492
RGB-2 Apr 23 - Nov 9, 2021 4785 2638 64434 392
RGB-3 Jun 29 - Nov 9, 2021 3181 1761 70641 431
RGB-1 Feb 22 - Oct 3, 2022 5128 3369 93439 540
RGB-2 Feb 22 - Oct 3, 2022 4699 3062 117291 872
RGB-3 Feb 22 - Oct 3, 2022 5156 3330 109946 754

3.3.3 Data characterization

Compared to pedestrian-focused datasets such as the MOT20, GSD objects usually are
more similar looking to one another, whilst they have more evident appearance changes
over frames. In addition, larger and more irregular movements are observed in GSD tra-
jectories.

Object hue distribution Object movements distribution

Movement changes distribution
20 01

204
[ GSD-CAM1

15 A [ MOT20-01
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3 20
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Proportion of bboxes [\%]
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Hue value of object loU with the former bbox [Std. of loUs] along trajectories

Figure 3.4: Quantitative comparisons of GSD-2021-RGB-1 and MOT20-01, using the GT annotations. The 1%
spectrum shows the distribution of object colors, posed by the average hue from the center 50% area of the
bboxes. The 2™ plot illustrates the distribution of overall object movements, using IoU as the metric. The 3™ plot
presents the standard deviations of the bbox IoU of each trajectory.

Figure 3.4 presents comparisons of the color and movement distribution of the se-
quence GSD-2021-RGB-1 (shorten as RGB-1 in the following text) and MOT20-01. The 1*
subplot shows the hue value, calculated from the HSV color space [159], of all bboxes.
Here, RGB-1 shows a higher degree of monotonicity among the observations compared
to MOT20-01, which also indicates larger challenges to the feature extractors. Neverthe-
less, for the same GSD object, the color keeps changing due to its biological development
over the time span, together with the illumination condition. An example is shown in Fig-
ure 3.5.

We measured the object movements by the Intersection of Union (IoU) of observations
in adjacent frames because a large proportion of MOT algorithms consider a sequential
matching of objects by including more and more frames in analysis. Followingly, larger
movements are indicated from the left of the x-axis in the 2" subplot. As Figure 3.4 shows,
the movements of GSD objects are more spread out, whilst the MOT20 objects exhibit
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slower movements, holding a minimum IoU of 0.8. Moreover, there are a few bboxes that
have minimal intersections with its previous observation, which introduces extraordinary
challenges to the inertia measurement and the association algorithms. We also calculated
the standard deviation (std.) of the IoU of each trajectory. The value indicates the irregu-
larity of how each object moves. As the 3" subplot shows, such irregularity in RGB-1 is
higher in magnitude.

3.4 Benchmark Studies

Since GSD has a large number of high-resolution images, we primarily restricted our atten-
tion to lighter, online solvers. In addition, we applied GMTracker [106] on a small subset*
to exemplify the performance with an offline solver.

We assessed the performance of the four MOT algorithms to demonstrate the chal-
lenges presented by GSD: (i) ByteTrack [297] that performs an Intersection of Union (IoU)
analysis after applying the Kalman filter as SORT does; (ii) Observation-Centric SORT
(OC-SORT) [45] that is enhanced against noised and non-linear movements; (iii) Deep-
SORT [276] that introduces appearance descriptions to identify objects before applying
the matching by movements; (iv) StrongSORT [74] that improves the movement measure-
ment and its balance with the appearance features. On top of the original settings, we
altered the appearance-cost parameter (1) of StrongSORT to introduce different emphases
for appearance and motion information in the association stage.

Since all the algorithms share the tracking-by-detection strategy, we present our ex-
periments from three aspects: the overall MOT performance of the algorithms (and vari-
ations), detection-stage impact, and tracking-stage influence. Drawing upon the results,
we explore the potential implications stemming from the distinctive characteristics of the
GSD, which we contend represent challenges within biological development tracking ap-
plications.

3.4.1 Application of MOT algorithms on GSD
By dividing the subsets by cameras, we first trained three YOLOX-x models with a “leave-
one-camera-out” cross-validation strategy. We employed the detections on the test set for
the MOT performance evaluation. We conducted all experiments using the daytime sub-
set of GSD-2021 to ensure that darkness-related distractions were avoided, thus enabling a
more equitable comparison. We reduced the IoU threshold to 0.1 in the association stages,
due to the different object movement patterns as indicated in Figure 3.4. We indepen-
dently developed autoencoders to serve as the appearance descriptors for DeepSORT and
StrongSORT. Detailed parameter settings and searching are noted in the supplementary.
We evaluated the overall performance by the widely-known MOT criteria: the Higher
Order Tracking Accuracy (HOTA) [161] and the Multi-Object Tracking Accuracy (MOTA) [26].
The performance of track identification is described by accuracy (AssA), recall (AssRe),
precision (AssPr), and the balanced criterion IDF1 [211]. We counted the number of iden-
tity switches (IDS) and the interruptions of trajectories (Fragmentation/FM) and divided
the values by the amount of ground-truth (GT) tracks to compare with other datasets, e.g.
MOT20 or MOT17. They are noted as “IDS/Tr” and “FM/Tr” respectively.

*Our justification for using the subset is provided in the appendix.
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3.4.2 Assessing comprehensive MOT performance

The performance metrics are summarized in Table 3.2. In general, the algorithms exhibited
inferior performances on GSD-2021 compared to their achievements on MOT20. Notably,
compared to more comprehensive metrics such as HOTA and MOTA, all the criteria related
to the evaluation of bbox association and trajectory identifications, e.g. IDF1 and AssA,
indicate intense performance drops from their original benchmarks. The performance
downgrade came with exaggerated frequencies of ID switches and trajectory interruptions.
The numbers suggest that the GSD tracks have a relatively higher discontinuity as per the
MOT algorithms, which could be caused by the increasing changes during the prolonged
data collection. The results further evidence that GSD introduces a more challenging task
than MOT20 for the state-of-the-art MOT methods.

As shown in Table 3.2, ByteTrack performed the best in terms of HOTA, and OC-
SORT was better in limiting the switching of track IDs. When adjusting the parameter
A in StrongSORT to increase the emphasis on motion over appearance matching, notable
improvements in overall performance were observed. Hence, associating bounding boxes
based on inertia measurements is proved to be relatively more applicable in this case. Nev-
ertheless, we also notice that, whilst shifting the focus to object movements lessened the
IDS/Tr, it also led to higher FM/Tr. It indicates that the current appearance-based methods
need to be improved to handle data collected at such a sparse frequency.

Upon a dedicated processing time of 112 hours, GMTracker associated the first 750
frames of RGB-1. Notably, apart from the training process that already required substan-
tial time and computational memory resources, it devoted over 2 hours to processing some
of the frames, with a maximum time of 7498 seconds for a single frame. As evident in Ta-
ble 3.2, this end-to-end network’s performance matched the other benchmarks, yet was
achieved by significantly more intensive use of resources. Hence, we remain our focus on
the lighter solvers in subsequent discussions.

3.4.3 Detection performance and impact

To verify the attainable optimal solution of the object-detection stage, we evaluated two
state-of-the-art object detection methods on GSD, the anchor-based detector Faster R-CNN
and the anchor-free detector YOLOX-x, following the “leave-one-camera-out” strategy.
The Average Precision (AP) obtained by both models is noted in Table 3.3.

Due to limitations from the volume and properties of the training data, the detection
performances were not so competitive as the private models that were specifically trained
for the pedestrian-tracking challenges [74]. However, under a single-category setting,
both detectors’ performances aligned with the published detections of the MOT20 testing
set [67] and their respective model developers’ benchmarks [87, 278]. Although these
performances are not directly comparable due to the differences in the validating datasets,
we argue that the difficulty level of the object detection task on GSD is not significantly
higher than other datasets. Therefore, the main challenge brought by GSD lies in the
association stage, which is also the main task of MOT.

Moreover, for a fair comparison of algorithm performances on GSD, we also present
the metrics obtained from the public MOT20 detection sets, as provided on the MOTChal-
lenge website [128, 191]. As shown in Table 3.2, the MOTA scores achieved using the pub-
lic MOT20 detections are even lower than the results obtained on GSD. This divergence can
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be attributed to the limited accuracy of the public detection set. Nevertheless, even when
emphasizing track identification metrics like HOTA and IDF1, substantial differences per-
sist. Additionally, the algorithms’ IDS/Tr and FM/Tr on GSD are still significantly higher
compared to those on MOT20.

Table 3.3: The first three rows show the AP of the detections of GSD and the public MOT20 detections. All values
are averaged over the three test sets split by the “leave-one-camera-out” strategy. The latter two rows present
the original mAP benchmark for comparison.

Model-Dataset Configuration =~ AP

YOLOX-x on GSD 55.7
Faster R-CNN on GSD 55.8
Faster R-CNN on MOT20 [67] 57.6

Faster R-CNN on COCO [278] 40.2 (mAP)
YOLOX-x on COCO [87] 59.2 (mAP)

3.4.4 Association performance and impact

To compare the specific accuracy of track association, we decouple the detection perfor-
mance by benchmarking StrongSORT on the ground-truth detection annotations from
GSD-2021 and MOT20. For validation, we used RGB-1 and MOT20-01 as examples. As
shown in Table 3.4, both MOTA were boosted due to the perfect-detection assumption.
However, the improvements in HOTA and IDF1 on RGB-1 experiment were not so signif-
icant as those in the MOT20-01 experiment. Furthermore, noticeable gaps in performance
are observed in IDS/Tr and FM/Tr.

The influence of the parameter A follows a similar pattern as previously described -
the emphasis on motion or appearance results in a trade-off between IDS/Tr and FM/Tr.
Referring to the data characterization, the higher similarity in appearances among the
GSD objects and the dynamic variation of them may contribute to the downgraded ID-
S/Tr performance. Considering that the data was collected over prolonged periods, the
incorporation of appearance features is expected to assist in consolidating the fragmented
tracklets, e.g. after human activity or overnight. Hence, it is advisable to tailor the uti-
lization of appearance matching in MOT algorithms for scenarios involving sparse frame
rates.

3.4.5 Evaluating results from a downstream application

One contribution of GSD is its provision of valuable information for agriculture practices,
enabling precise anticipation of crop growth. Since the natural ripening pattern of straw-
berries is growing from green to red, we utilized the A* channel from the CIELAB color
space [221], which essentially represents the levels of green or magenta. In Figure 3.5,
the blue curve demonstrates a sample A* variation of the object across frames. Marking
associated observations with colored dots and un-associated ones with empty dots, the de-
picted process is fragmented into five segments by four tracklets suggested by ByteTrack
(for obtaining the highest HOTA in Table 3.2), involving two IDS in tracklet #21 and #40.
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Notably, during the crucial period when the strawberry underwent the transition from
green to red, which is a crucial factor in determining the timing of harvest, ByteTrack was
unable to provide a thorough description of this transformation.
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Figure 3.5: The color change of an example strawberry under the GT trajectory and the ByteTrack results. The
x-axis indicates the sequence of frames. The y-axes are for the average A" values (scales on the left) and L*
values (scales on the right) of the observations. The blue and gray translucent strokes illustrate the value of the
GT annotations. The lines with filled dots are identified observations by ByteTrack, which are color-coded to
indicate each track ID. If the object in one frame is not associated with any of the tracks, we put an empty dot
on the A" curve from GT.

To evaluate the significance of performance deficiency from the perspective of realis-
tic, downstream applications, i.e. tracking the biological development of objects, we set
up thresholds to define the “cherry-picked tracks” that record relatively comprehensive
monitoring of growth patterns. We chose tracks based on more significant variations of
the object’s transition from green to red, determined by the changes in the A* channel
values in the CIELAB color space, or simply select the tracks with longer lengths. These
tracks were considered “more important” ones as they provide more complete informa-
tion about the growing progress of the crop. We implemented incremental thresholds to
perform stricter filtering of their importance.

Figure 3.6 discusses the specific performance of ByteTrack, the relatively more capa-
ble solution for GSD, on the different filtered subsets of RGB-1. As is depicted, the recall
of track association declined as the track became more comprehensive about the biolog-
ical development cycle. Simultaneously, there were increases in IDS/Tr and FM/Tr. The
track length played a more significant role in the deterioration of performance under this
particular scenario.

Viewing from an application-oriented standpoint, the growth-tracking task also tar-
gets monitoring pivotal stages when fruits are ripening swiftly. Therefore, it is argued that
there is potential for advancing state-of-the-art MOT algorithms, particularly in accurately
identifying and associating objects within similar biological development processes.
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Influence of Track Length on MOT metrics:
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Figure 3.6: MOT performance change by selection criteria of trajectory subsets, demonstrated by recall (1
column), ID switching (2™ col.), and times of fragments (3" col.) of tracklets. The first row illustrates the impact
on the performance metrics when different minimum lengths filtered the tracks. Experiments for the second row
selected the tracks based on the differences in the average A* value of the last three and the first three bboxes.

3.5 Conclusion

With this chapter, we propose a fully-annotated dataset that tracks the growth of in to-
tal of 3481 strawberries over 30 weeks in 2021 and 32 weeks in 2022 in two different
greenhouses: The Growing Strawberries Dataset (GSD). It reveals a unique Multiple-Object-
Tracking (MOT) challenge - following biologically developing instances over a prolonged
period. In GSD, progressive appearance change and irregular movements are captured
from the longitudinal observations of cultivation practices. For example, human inter-
ference with the sparse frame rate introduced drastically non-linear movement, which is
challenging for many algorithms.

We benchmarked the performance of four online MOT algorithms on GSD. The ob-
tained result metrics highlight the need for advancing MOT methods, particularly in asso-
ciating the bounding-box association for long-term MOT tasks. The tracking continuity
was affected by both appearance changes and diverse object motions, which also presented
a trade-off when fine-tuning StrongSORT. Furthermore, an offline algorithm demonstrated
the computational effort required to handle a large dataset such as GSD, yet achieving
similar metrics. In summary, the results call for algorithms that could improve track asso-
ciations while utilizing the features properly and efficiently.

Essentially, biological development is the principal property that makes the GSD chal-
lenge unique, but it can also provide insights for other long-term MOT tasks. For instance,
monitoring other processes with incremental changes, such as cellular growth and corro-
sion expansion, etc. The information provided by more than the visual spectrum is also
supportive of plant science [37, 203]. The GSD challenge highlights the need for reliable
methods to handle in-the-wild data imperfections. The inevitable real-world challenges
point out potential future research for robust data utilization.
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Predicting Sugariness Using
Non-Destructive and
Affordable Hardware

This chapter explores the results of a conceptual methodology for training machine learn-
ing models on various data types. We leverage in-field data to make accurate predictions
about a strawberry’s sugariness, a crucial characteristic of interest for supply chains that
have traditionally been assessed through destructive testing or laboratory analysis after
harvest. While there exist some overlaps with Section 2.2, Section 4.2 focuses on the spe-
cific input data and labels used in this research.

This chapter was previously published as: Junhan Wen, T. Abeel, M. de Weerdt. 2023.
" “How sweet are your strawberries?” : Predicting sugariness using non-destructive and
affordable hardware." Frontiers in Plant Science 14 (2023): 1160645. [264]




40 4 Predicting Sugariness Using Non-Destructive and Affordable Hardware

lobal soft fruit supply chains rely on trustworthy descriptions of product quality. How-
Gever, crucial criteria such as sweetness and firmness cannot be accurately established
without destroying the fruit. Since traditional alternatives are subjective assessments by hu-
man experts, it is desirable to obtain quality estimations in a consistent and non-destructive
manner. The majority of research on fruit quality measurements analyzed fruits in the lab
with uniform data collection. However, it is laborious and expensive to scale up to the level
of the whole yield, and such a “harvest-first, analysis-second” method also comes too late to
decide to adjust harvesting schedules.

In this research, we validated our hypothesis of using in-field data acquired via commodity
hardware to obtain acceptable accuracies. The primary instance that the research concerns is
the sugariness of strawberries, described by the juice’s total soluble solid (TSS) content (mea-
sured in ‘Brix or shortened as Brix). We benchmarked the accuracy of strawberry Brix predic-
tion using convolutional neural networks (CNN), variational autoencoders (VAE), principal
component analysis (PCA), kernelized ridge regression (KRR), and support vector regression
(SVR), based on fusions of image data, environmental records, and plant load information, etc.
Our results suggest that: (i) models trained by environment and plant load data can perform
reliable prediction of aggregated Brix values, with the lowest RMSE at 0.59; (ii) using image
data can further supplement the Brix predictions of individual fruits from (i), from 1.27 to
1.10, but they by themselves are not sufficiently reliable.

4.1 Introduction

Soft fruits such as strawberries, raspberries, blueberries, etc. are popular and profitable
fruit varieties. The annual consumption of strawberries in Europe is estimated to be more
than 1.2 million tonnes, which leads the market share of horticultural crops [44, 47, 48].
Worldwide production of strawberries is stable with increasing demands and prices and is
continuously growing even through the COVID-19 pandemic [34, 48, 49, 233]. However,
without the protection of hard skins, soft fruits are vulnerable during production and post-
harvest activities. This results in significant food waste and economic loss [100, 208, 237].
The food loss and waste comprise up to 50% loss along the supply chain in some coun-
tries [130, 205], among which the production loss is the majority, which consists of up to
20% [201, 244]. It has been estimated that for every ton of food waste, €1,900 of produc-
tion and processing costs are lost. Moreover, it is argued that 50% of the waste could be
edible [237].

The nutritional and economic value of crops is influenced by the harvesting strategy.
However, subjective assessments and inappropriate maintenance of fruit quality could
bring conflicts in logistics planning between suppliers and distributors, which results in
even further post-harvest loss [77, 204]. Therefore, early decision-making supports both
ecological and economic interests. To make logistic and harvesting decisions as early as
possible, it is highly desirable to predict the quality of ready-to-harvest strawberries in
the field [1, 60, 147, 235].

Multiple variables determine the quality of a strawberry, including maturity, shape,
sweetness, and firmness [153, 178, 279]. As the majority of strawberry products are con-
sumed fresh, the taste is the highest priority for most European consumers of strawber-
ries [48, 49]. Therefore, we narrow our research scope of this chapter to concern the
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interior quality of the fruit, which is not directly told by their appearances: this study
explores the assessment of the level of sweetness of strawberries, which is quantitatively
described by total soluble solid (TSS) content in the juice of freshly harvested fruits, using
informatics and machine learning (ML) approaches.

Traditionally, the TSS content is measured by a refractometer and expressed in de-
grees Brix (°Brix), often shortened to simply “Brix” [18]. The measurement is expensive in
both labor cost and capital because the samples that are sent to destructive measurements
can no longer be sold [6, 96]. To reduce errors and optimize the supply chain, there is a
desire for more accurate, quantitative, and non-destructive tools to assess the quality of
each fruit [166, 253]. Therefore, we explore the feasibility of Brix prediction with easily-
acquirable data, such that the prediction can be carried out on-site without specific fruit
preparation.

Related research has demonstrated the applicability of computer vision (CV) in grad-
ing the quality of fruits [135, 154, 183, 294] and in assessing specific quality attributes [2,
18,178, 250]. CV and spectral analysis with hyperspectral imaging (HSI) are popular tech-
niques that are often used to investigate intrinsic properties [6, 9, 85, 158]. High prediction
accuracy was achieved when fruit photos were acquired under a (mostly-)uniform exper-
iment setup [166, 186, 227, 274, 279]. Such a setup requires delicate devices that, on the
other hand, limit further development for real-world applications and large-scale sam-
pling. Moreover, the “harvest first, analysis second” methodology limits the possibility of
adjusting the harvest strategy for supply chain optimizations because strawberries stop
growing after being harvested. Hence, our study concerns the implication of the fruit’s
intrinsic characteristics by its appearance under natural light, when the fruit is still on the
plant.

Meanwhile, the micro-climate in the greenhouse and the horticultural treatments strongly

influence the harvest quality and pace of growing [56, 70, 232]. The temperature, humid-
ity, CO, level, lighting conditions, and irrigation are proven to be crucial factors [15, 60,
110, 181, 232]. The crop load is also argued to influence the quality of fruits [23, 61, 256].
In modern horticulture, environmental data is readily collected by field sensors or climate
computers in most greenhouses [105, 181, 219, 232]. Nevertheless, these point measure-
ments cannot provide distinctive information to specify the quality of individual fruits.
Thus, our research introduces approaches to integrate in-the-wild fruit images with envi-
ronmental and plant-load data in predicting the Brix values of individual fruits.

By investigating the performances of Brix prediction models, we aim at providing in-
sights into two main questions: (1) how accurately can the models estimate the Brix values
by different sets of inputs? and (2) which data are valuable for training the Brix prediction
models? The research addresses these questions and contributes from four perspectives:
(i) we collected and labeled a dataset of strawberry images and quality measurements, us-
ing commodity hardware; (ii) we designed a conceptual methodology of non-destructive
quality estimation; (iii) we shaped and implemented our methodology to predict the straw-
berry sugariness; (iv) by comparing the model performances, we suggest how to develop
reliable prediction models by CV and ML methods.
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4.2 Materials and Methods
4.2.1 Dataset

Data were collected from May 2021 to November 2021. This was carried out on overwin-
tered trays of Favori strawberry plants in a greenhouse at the Delphy Improvement Centre
B.V. (Delphy) in Bleiswijk, the Netherlands. Strawberries were cultivated in baskets that
were hung from the ceiling in the greenhouse. For the plants monitored by the cameras,
the harvesting frequency is mostly once per week, or twice per week when the strawber-
ries grow faster in warmer periods. There is exactly one harvest round per day, so we use
“from a harvest” to describe the data collected from the same date.

The data collection setup consisted of the following parts: (1) static cameras facing
the planting baskets to take periodic photos; (2) Brix measurements of the strawberries
by the horticulturalists from Delphy; (4) physical labels on the branches to identify the
measurement results of a strawberry with its appearance in images; (4) climate sensors
to record the environment in the greenhouse and the outside weather; (5) plant loads,
represented by the average number of Favori fruits and/or flowers per unit area; (6) other
logs about the plant cultivation.

Representations of individual strawberries were the major inputs to train the Brix pre-
diction models. We considered image data because they are objective and distinct. The
images were collected hourly with a time-lapse setting. The same sections of six exam-
ple images are shown in Figure 4.1. As is shown in the figures, we stuck a yellow label
to indicate the ID of a strawberry a few hours before the harvest (namely the “ID label”),
such that the strawberry’s appearance in the images can be connected to the measurement
results. The measurement data that are assigned to identified strawberries are called the
“connected measurements” in the following text.

2021-08-18 4PM 2021-08-19 4PM 2021-08-20 8AM 2021-08-20 9AM 2021-08-20 3PM 2021-08-20 4PM
J 1

Figure 4.1: Illustration of the time-lapse images, with the same sections selected across six frames. The times-
tamps of data collection are indicated above the images. As can be seen, by 9 am on 2021-08-20, the yellow
physical label was attached to the branch, and strawberry 20.8.1.1 was then harvested between 3 to 4 pm. Thus,
the last time when it was observable on images was 3 pm, 2021-08-20.

Based on previous research on influencing factors of strawberry qualities [15, 51, 61]
and the expertise of our collaborating horticulturalists, temperature, humidity, radiation
level, CO, density, and relevant plant treatment records (additional lighting, watering were
all considered as the environment data. The number of fruits and/or flowers per unit area
was counted weekly and noted as the “plant load”. Both the environment and plant load
data were collected by Delphy.

The strawberries with the ID labels were stored separately. On the same day of the
harvest, researchers from Delphy measured the Brix value and the firmness of those straw-
berries, with a refractometer and a penetrometer respectively. The size category is defined
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by a ring test, and the ripeness level is evaluated according to the experience of the green-
house researchers.

4.2.2 Methodology

We segmented the strawberries from the in-field images, such that only the pixels that de-
scribe the sample strawberry were analyzed. We trained a Mask R-CNN model [107] with
a ResNet101 backbone for semantic segmentation. We used the Detectron2 platform [278]
to build the model. The ResNet101 backbone was pre-trained on the ImageNet dataset. We
resized the image segments to 20020073 pixels. They were the raw inputs for Brix predic-
tion and feature extraction in the image-only experiment, the image-with-env experiment,
and the image-with-Brix experiment. We considered only the last available observations,
e.g. the strawberry segment from the 5/ image in Figure 4.1. In this way, we limited the
quality changes between when it was in the image and when it was measured. We also
normalized the colors of the images to reduce the distraction from the changing lighting
conditions during the day by applying elastic-net regressions at the red, green, and blue
channels respectively.

To analyze the images in the image-only experiment, we built convolutional neural net-
works (CNNs) and variational auto-encoders (VAEs) to analyze and encode the image seg-
ments of individual strawberries with multi-layer perceptrons (MLPs). The models were
either trained from scratch or with weights pre-trained by other popular datasets such
as the ImageNet [68]. Details of model architectures can be found in the supplementary
materials. We also introduced principal component analysis (PCA) in the experiments for
feature dimensionality reduction and model regularization [89, 225]. By taking the largest
differences among the pixel data, PCA helps to exclude disturbance from the shared in-
formation of strawberry images to some extent. Hereafter, we use the word “encode” to
represent the process of dimensionality reduction by the encoder parts of the VAEs and/or
PCA. We use “attribute” to describe the content of information that our model concerns.
“Feature” or “input” represents what goes directly to the models, such as information from
the latent space of the VAEs and/or after PCA.

We trained the CNNs, MLPs, the predictor part of the VAEs, and the PCA models
by the strawberry observations with connected measurements, which are 178 out of 304
Brix measurements. We trained the encoder and decoder parts of the VAEs by all the
segmentation outputs of the Mask R-CNN model. Hence, this dataset includes images
that were taken over the life cycles and of more strawberries. The image-only experiment
and the image-with-env experiment applied the same encoders.

We designed the env-only experiment to analyze the relationship between the environ-
ment data and the Brix. We used rolling averages of the environment data over different
periods. Since the environment data does not include specific information about individ-
ual strawberries, we took all of the 304 Brix measurements into account and grouped them
by each harvest. They are called the “aggregated Brix”. The reliability of the aggregated
Brix could also be better ensured by introducing more sample measurements. We not only
trained machine learning models to predict the value expectation, but also the standard
deviation (std.) and the percentiles from 10% to 90% (with intervals of 10%). The repre-
sentations of the Brix distribution were considered in supporting further experiments of
individual Brix prediction.
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Since the amount of data points was reduced to the same as the days of harvests af-
ter the aggregation, the volume of the dataset became too small to support the training
of deep neural networks. Hence, we applied linear regression (LR), support vector re-
gression (SVR), and kernelized ridge regression (KRR) models. In addition, leave-one-out
experiments were considered to enlarge the training sets of the env-only experiment. That
means we split only one data point as the validation set in each experiment run, instead
of proportionally splitting. Under this setting, we ensured all the data was used once in
performance validation so that we could get a predicted value at every data point. The
performance of individual Brix prediction in the env-only experiment is discussed based
on the results from the leave-one-out experiments, by considering the predicted value
expectation as the Brix predictions of all harvests on the same day.

In the image-with-env experiment, we stacked the features of images and the environ-
ment data according to the object strawberries to train models. By the encoder parts of the
VAEs and the PCAs fitting to the training set, we encoded the images to image features. We
trained the models of the image-with-Brix experiment by the same image features but with
the outputs from the env-only experiment— predictions of the mean, std., and percentiles,
etc. We established four neural network architectures to fit the various size of features in
both the image-with-env experiment and the image-with-Brix experiment, including three
three-layer MLPs and one four-layer MLP.

We used the Keras library to build and train the CNNs, VAEs, and MLPs in the ex-
periments. All model training used the Adam optimizer (betal=0.9, beta2=0.999) and a
learning rate of 0.0003. We considered random rotation, mirroring, and flipping to aug-
ment the image data. When training the VAE, we also considered random scaling up to
+#10%. We used the Scikit-Learn library to conduct PCA and to construct LR, SVR, and
KRR models in the env-only experiment. The KRR used polynomial kernels of degrees up
to 3 and penalty terms of 1 and 10. These are all state-of-the-art implementations in data
analytics.

For all experiments except with specific definitions, we split the data into 7:1:2 for
training: testing: performance validation. We ran each experiment 15 times with a fixed
series of data splits. All the deep learning models were trained on a Geforce GTX 1080
GPU under a maximum of 300 epochs.

4.3 Experiment Results

This chapter describes our research findings in four steps: (i) the exploration of the dataset
that we collected; (ii) our conceptual methodology of designing the experiments; (iii) the
model performance of each series of experiments respectively; (iv) two influencing fea-
ture selections: whether to use the plant load data or not and which image encoder to
choose. The last section gives a comparison among the experiment series and states our
suggestions for developing a reliable Brix prediction model.

4.3.1 An integrated dataset of growth and harvest quality

In order to predict Brix from non-destructive in-field data, we collected observations of
the fruits and related environmental records in a greenhouse. The observations were in
the form of images, and the environmental records are time-series and single-value mea-
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surements. All relevant data were linked with the observations of individual fruits. As
such, we could implement machine learning techniques to discover the mapping from the
collected data to the Brix values.

From April 2021 to November 2021, we recorded the growth of strawberries by 13,400
images from three RGB cameras and collected environmental records during this period.
We measured the Brix of 304 ready-to-harvest strawberries, which were selected from 28
harvests in 22 weeks. The overall statistics of the measurement data set are shown in Fig-
ure 4.2. According to the box plots and the line plot, the Brix at each harvest usually has
a median value lower than the mean, implying that using the averaged sample measure-
ments to estimate the Brix of every fruit has a higher probability to overestimate.

The environmental records during the data collection period were archived hourly and
were grouped by rolling averaging over periods. As a preliminary analysis, we computed
the correlations of the environmental data under different averaging periods and the ag-
gregated Brix values of each harvest. The results indicate a strong correlation between
temperatures (measured on the leaves, plants, and in the air), radiation levels, watering,
and cyclic lighting strengths with the mean Brix of each harvest. The correlations of the
Brix with humidity and CO, density are weaker. Details of the correlation analysis can be
referred to Figure A11 in the appendix.

.
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Figure 4.2: Statistics of the Brix measurements, grouped by harvests per week. On the left, the x-axis indicates
the calendar week number of the harvests. The green y-axis presents the number of tested samples. The blue
line and its contour indicate the averaged Brix value and the standard deviation (std.) of the measurements of
the week respectively. The box plots illustrate the distribution of the measurement for the week. On the right,
the histogram gives an overview of the distribution of all Brix measurements in 2021.

4.3.2 Conceptual experiment design

We designed four series of experiments to study the effectiveness of using these data,
shown in Figure 4.3: we first analyzed whether the images (Section 4.3.3) or the environ-
ment data (Section 4.3.4) could work alone in Brix prediction, and then we considered two
ways of data fusion (Section 4.3.5).
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In image-only experiment, the Brix prediction model was trained solely by the images
of strawberries. We considered both supervised learning (SL) and semi-supervised (SSL)
in training the models in this experiment series. A challenge in this experiment was that
the inclusion of non-relevant pixel data lowered the learning process and even reduced
the prediction accuracy. To reduce this effect, some of the models were accompanied by
additional regularization, such as conducting principal component analysis (PCA) on the
training dataset and using the principal components as the features for learning.

We considered environmental records and/or plant loads as the input in env-only ex-
periment. Together we call these the environment data. In the primary step, we conducted
correlation analysis to classify the importance of each sort of attribute and to define sets of
features. Since the environment data cannot express information about individual straw-
berries, we trained regression models to predict the expectation and the distribution of
Brix value aggregations of each harvest.

Input Model Output

Segments from || #1 Thcvlmagc—Only Exp. \
in-Field Images Image Segments

o Exp3 -> Quality of a Strawberry

#2 The Env-Only Exp.
Environment (+ Plant Load)
-> Aggregared Quality
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#3 The Image-with-Env Exp.

=< Im. + Env. (+ Plant Load)

Aggregated

Quality
Prediction

-> Quality of a Strawberry Exp2,

Aggregated
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Figure 4.3: The methodology of the four experiment series in this research. They are described by the data
flow, consisting of the input attributes, the output objects, and the models to map the corresponding inputs
and outputs. The line colors and the short notes indicate different experiment series: red represents image-only
experiment ("Exp1”), yellow is for env-only experiment ("Exp2”), blue is for image-with-env experiment ("Exp3”),
and green is for image-with-Brix experiment ("Exp4”). All the models are evaluated by comparing the outputs
with the ground truth.

We established image-with-env experiment and image-with-Brix experiment respectively
as two ways of integrating the image data and environmental records in training. We en-
coded the image of each strawberry to comprise the image features. These features were
combined directly with the environmental records to train the neural networks in image-
with-env experiment. We considered the image features and the aggregated Brix predic-
tions from env-only experiment as the inputs in image-with-Brix experiment. The setup
was chosen based on two assumptions: (i) the predictions from env-only experiment are
good indications of the overall quality of harvests; (ii) compared to predicting the absolute
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Brix, the appearance information might be more helpful in terms of estimating the relative
position out of value distribution of Brix.

We set up two baselines to evaluate the experiment outcomes. First, we used the aver-
age value of all the Brix measurements as the expectation of the Favori species. It repre-
sents the empirical Brix value that members of the soft fruit supply chain usually believe,
so it is named the empirical baseline. 1t is the baseline of this Brix prediction study. Second,
we considered the average Brix of each harvest as the expected value. As it represents the
traditional way of sugariness assessment, which is anticipated by sample measurements,
it is called the conventional baseline. According to the experiment setup, the conventional
baseline is essentially the optimal situation of models from env-only experiment.

We used root mean squared error (RMSE) and mean absolute error (MAE) to represent
the model accuracy. The RMSE is regarded as the main indicator of model performance.
It gives increasingly more punishments if the predicted value is further from the ground
truth. After running the experiments over different dataset splits, we used the standard
deviation of the RMSEs (RMSE-std.) to indicate the robustness of model performances.
The coeflicient of determination (also called the R2 score) is considered a quantitative as-
sessment of the level of model fitting. It is the proportion of the variation in the dependent
variable, i.e. the individual or the aggregated Brix in this case, that is predictable from the
input data. Higher R2 scores indicate better correlations between the inputs and outputs
in the mapping.

1.64
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Using Brix expectation of the variety
Using Brix expectation of the harvest
The best performance with only images
Error std. of the best im.-only prediction
Only environment data

Im. + environment data
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Im. + prediction of Brix percentiles
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Figure 4.4: Performance comparison of Brix prediction accuracies among the four experiment sets, using RMSE
as an indicator. The error bars indicate the standard deviation of RMSEs (RMSE-std) across different splits of
validation sets. The models are grouped by the ending point of the periods of the environmental records. The
y-axis shows the minimum RMSE of models from the same group. The colors indicate the input attributes of the
experiment sets. The best performance of models using only image data is presented by a horizontal line. The
contour around it indicates the corresponding RMSE-std. The horizontal line in gray and brown indicates the
two benchmarks that are mentioned in the methodology section.
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4.3.3 Brix prediction models require more than images.

By image-only experiment, we inspect the feasibility to train a Brix predictor with only im-
ages. We trained CNNs from scratch, with transfer learning (TL), and with semi-supervised
learning (SSL) methods. The best-performing model of the entire experiment series has
an averaged RMSE of ca. 1.33 over different validation splits.

As the horizontal lines in Figure 4.4 indicate, the selected model outperforms empirical
baseline, while it is slightly worse than conventional baseline. It is implied that the appear-
ances of strawberries provide hints of the Brix to a limited extent, whereas the time of
harvest has more predictive power. We hence conducted further experiments to unravel
the other attributes for Brix prediction.

Among the experiment results, we noticed that the involvement of feature dimension-
ality reduction facilitates the model performance. A possible mechanism would be that a
large proportion of overlapping features were condensed in the latent space of VAEs or
the orthonormal bases of PCA [95]. As the pixel data from a fine image is likely to corre-
late with each other, PCA is practical to de-correlate the data and facilitate model training.
Meanwhile, the model fitting might also be regularized with the help of PCA, particularly
when the model was trained with a small data set in our situation [66, 89]. These findings
also motivated us to encode the images in the data fusion steps of further experiments.

4.3.4 Models reveal dependencies on environment data.

Performance in predicting aggregated values

In env-only experiment, we trained LR, SVR, and KRR models to assess how well the collec-
tive Brix value can be predicted with only the environment data. When aggregating the
data points, overfitting was an indispensable issue. Particularly, when the data are very
few whilst the inputs have a large dimension. To assess the level of model-fitting, we cal-
culated the R2 score of models using different subsets of features, hyper-parameters, and
train-test splits to predict the representations of value aggregations on the testing data set.
When we grouped the scores by the algorithms of models to evaluate the level of model
determination, we found more than half of the LR models have a negative R2 score, which
indicates that simple linear models cannot fit this mapping. With a stronger regularizer, or
with higher outlier flexibility, the R2 scores of KRR (alpha=10) and SVR models are more
condensed to 0.5-0.6. The generally higher R2 scores also indicate they are more practical
models in tackling this circumstance.

Performance in predicting individual values

To make the results comparable, the predictions of the averaged Brix were regarded as the
estimation of all the strawberry measurements at each harvest. The RMSEs were hence cal-
culated on the same validation splits as the other experiment sets take. Figure 4.4 compares
the effectiveness of using various periods of environment data with other experiments, of
which the time spans are grouped by the ending time.

As the bars in Figure 4.4 demonstrate, when models use features from the periods
closer to the harvest time, they obtain lower and less diverged RMSEs in general. The
RMSE-std of the models in env-only experiment is lower than the best-performing model
from image-only experiment. The result argues that even using only the environment
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data in Brix prediction could train more reliable and stable models. Hence, it is strongly
suggested to involve the environment data in training further comprehensive models.

4.3.5 Images enable individual prediction with env-data.
Results from env-only experiment indicate that we need specific information to distinguish
fruit-to-fruit differences from each harvest. Since the environment data are all point mea-
surements, we encoded the images into 200, 50, 10, and 5 features by four combinations
of VAEs and PCA respectively to fit the dimension differences between the two types of
data. The image-with-env experiment and image-with-Brix experiment introduce two ways
of fusing the image feature and environment data.

Combining image features with direct environmental information

The image-with-env experiment straightforwardly combined the two types of data to train
the MLPs for the individual Brix prediction. Unsurprisingly, the lowest RMSEs from all
the groups outperformed the best models from image-only experiment and env-only exper-
iment, as is illustrated in Figure 4.4.

As is shown, the performance difference caused by the collection time span of envi-
ronment data was remarkably reduced in this experiment. A possible reason would be
that the MLPs also learned the trend of changes within the time-series data — such that
the performance did not reduce as much as in env-only experiment. Meanwhile, the non-
linearity and regularization performed by the neural network also ensured the robustness
of the model performances.

Combining image features with predicted distribution of a harvest
The fourth experiment, image-with-Brix experiment, allows us to explore another way of
integrating the knowledge from the two sorts of data: to use the image features to predict
the relative quality within the distribution of Brix values. We used the predictions of Brix
aggregations’ from the leave-one-out experiments from env-only experiment. Among all
the experiment series, the models from image-with-Brix experiment resulted in the lowest
RMSEs, as illustrated in Figure 4.4. Among the different features of the aggregated Brix,
models that were trained by Brix percentiles slightly outperform the models that assumed
a Gaussian-distribution fit, i.e. using the mean and std. as inputs.

4.3.6 Plant load further facilitate prediction performance.
As is illustrated in Figure 4.5, introducing the plant load as part of the input attributes has
a positive effect on the model performances, which is more outstanding on the models
from env-only experiment. In image-with-env experiment, the upper limit of model accu-
racy was slightly improved. But more importantly, there were notable decreases in the std.
of RMSEs over different data splits. Both changes were limited in image-with-Brix experi-
ment. In all, we suggest that plant load is a crucial feature when the raw environmental
information comprises the input data.

Moreover, since our plant load data was averaged over different branches of strawber-
ries, they did not directly reflect the division of nutrition on the camera-monitored plants

“To limit the variables, we took only results from the KRR model with alpha=10 and polynomial degree=3.
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Figure 4.5: Performance comparison of Brix prediction using different attributes of environmental information,
using RMSE as an accuracy indicator. The colors indicate the involvement of the plant load data. The y-values
indicate the minimum RMSEs of models from the same group.

as the literature suggests. Hence, we suppose that the data could reveal the general influ-
ence of the growing environment on strawberries in this greenhouse compartment in an
indirect and deferred way.

4.3.7 Image encoders notably impact model performances.
The best-performing models of each family are considered in the previous result discus-
sions. However, the number of image features also influenced the model accuracy. The
information from different latent spaces is illustrated in Figure 4.6. Figure 4.7 discusses the
effects when the image features are utilized with different representations of environment
data.

When we used only the images in the prediction, it is still important to keep as many
features as possible. Referring to the illustrations in Figure 4.6, it is indicated that con-
sidering the texture and the shape of strawberries could have a positive influence on the
intrinsic quality representation. When using image features together with the raw envi-
ronment data, we cannot see much difference in the best performances. Nevertheless, we
observe an increase in the RMSEs when using larger dimensions of image features with
the aggregated Brix. Overall, it is suggested that similar dimensions of image features and
the other source of data could generally achieve better RMSEs.
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Figure 4.6: Examples of an image segment and its latent features from the four VAEs, plotted in a monologue
style. The first column is the original image segment uniformed into a size of 200x200 pixels. The segment
background is saved as black and transparent pixels. The level of dimensionality reduction from each encoder is
shown on top of the latent space illustrations.
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Figure 4.7: Performance comparison of Brix prediction using different image encoders, using RMSE as an ac-
curacy indicator. The x-axis indicates the input attributes of the experiment sets. The colors indicate the di-
mensionality of the image features involved in the experiments. The y-values show the minimum RMSEs of all
models from the same group.
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Table 4.1: Detailed accuracy indicators of the best-performing models using different sets of input attributes.
The models are ranked according to the "RMSE” column. the empirical baseline is calculated by using the Brix
expectation of the strawberry variety as all the predicted values. the conventional baseline is calculated by taking
the average Brix of each harvest as the individual predictions. The MAE and RMSE of all models and benchmarks
are calculated by averaging over 15 random validation splits. The std. of the RMSE on each validation split is
presented in the "RMSE-std” column.

Image Feature Env. Data Plant Load Brix Agg. MAE RMSE RMSE-std.
Included In Agg. Pred. In Agg. Pred. Percentile  0.81 1.10 0.158
Included In Agg. Pred. In Agg. Pred. Mean+std. 0.86 1.12 0.139
Included In Agg. Pred. In Agg.Pred. Mean 0.90 1.15 0.118
Included Included Included N/A 0.90 1.18 0.103
Included Included Not included N/A 0.90 1.22 0.119
The conventional baseline 0.91 122 0.151
N/A Included Included N/A 0.96 1.24 0.128
N/A Included Not included N/A 1.00 1.27 0.146
Included Included Included N/A 1.04 1.32 0.134
Included Not included Not included N/A 1.00 1.33 0.189
The empirical baseline 1.21 1.56 0.312

4.4 Conclusion

In this chapter, we propose and evaluate a practical methodology for estimating the sug-
ariness of individual strawberries, starting from planning the data collection setups. This
approach uses affordable devices to collect relevant observations in the field and does not
require harvesting or destroying the fruit. The experiment results demonstrate that it is
feasible to anticipate the quality of strawberries when they are still growing. Such infor-
mation could support the decision-making of harvesting and supply-chain strategies of
greenhouse managers.

According to Figure 4.4 and Table 4.1, the models using image features with aggre-
gated Brix information are the optimal choices among all the attribute combinations. The
models could reduce the RMSE by up to 28.8% and 18.9% from the empirical baseline and
the conventional baseline respectively. Compared to the image data, the environmental
information has shown to be more relevant for the models to learn from, yet they lack
the capability to tell fruit-to-fruit variances. Compared to using data from a sole source, a
mixed-use of both could lead to an accuracy improvement of 10.0% and 6.2%, respectively.

Compared to other research in the field, we included multiple types of data to build
machine-learning models. Our models show competitive performances in the sweetness
prediction of strawberries — e.g. RMSE 1.2 from Sun et al. [238], RMSE 1.18 from Amoriello,
Ciccoritti, and Ferrante [10], MSE 0.95 from Cho et al. [55] — while using in-field data
collected more easily-acquired devices. On top of that, the dataset that we collected for
pursuing this research is also useful for more research in this field.

In the aforementioned experiments, we performed all the procedures step-by-step, yet
we see potential for greater model integration. Nevertheless, as state-of-the-art computer
vision technologies allow detection models to be faster and more portable, expanding the
capability of real-time assessments of fruit quality could also be an interesting topic.
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The research primarily studies in-field and non-destructive data that are worth to be
considering in training Brix prediction models. The images, which the prediction models
were trained with, are essentially a subset of the time-lapse image dataset. With the entire
dataset, further research is suggested to include temporal information for refining the
quality prediction models. It is also an interesting topic to explore the practicability of
using earlier images in forecasting future Brix values.

Our results suggest that environmental information plays a vital role in training a reli-
able model. Particularly, the environmental information from up to fourteen days before
the harvest is crucial to ensure the model’s accuracy. Nevertheless, we did not discuss the
detailed influence of specific sources of climate data on our model accuracies. It is there-
fore recommended to conduct subsequent studies on the effectiveness of learning with
different environmental factors.
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Data-Driven Precision
Harvest Planning via Visual
Growth Forecasting

This chapter demonstrates a framework to support fruit-specific decision-making for har-
vests, using strawberries as a use case. This framework addresses operational-level op-
timization, creating precise harvest plans to meet demand established by longer-term
strategies. The optimization process starts with the methods introduced primarily in Sec-
tion 3.4.5, which quantifies ripeness throughout the growth of a strawberry. For the fruits
that hold sufficient historical observations from growth monitoring, we forecast their fu-
ture growth using ripeness as the major metric and assign them to harvests at different
dates in the future, facilitating informed decision-making for optimal yield.

This chapter is under the reviewing process of: Junhan Wen, T. Abeel, M. de Weerdt.
"Data-Driven Precision Harvest Planning via Visual Growth Forecasting." Applied Artifi-
cial Intelligence.
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hile Artificial Intelligence (AI) techniques have been widely applied to problem-solving,

their true transformative power lies in enhancing people’s practice. For instance, in
greenhouse agriculture, data analytics can enhance crop monitoring and resource planning;
computer vision can support detecting crops and their conditions; and machine learning meth-
ods can foster tasks such as quality assessment and yield prediction. However, these technolo-
gies are often deployed only in isolated stages of cultivation, highlighting the absence of an
integrated pipeline that connects them to what is desired in real world practices. To bridge
this gap, we propose CROPI, an end-to-end framework that leverages Computer vision for
Resource Optimization and Precision harvest using Image data.

CROPr is developed with four core functionalities: i) we propose and justify using hue as
an objective redefinition of fruit ripeness; ii) we parameterize the ripeness development over
time by analyzing growth monitoring images; iii) we develop predictive models to forecast
the growth of new fruits; and iv) we optimize fruit-level harvest plans by aligning predicted
growths with sequential demands. We demonstrate this approach using strawberries as the
use case. By integrating insights from data mining and machine learning into harvest plan-
ning of crops, CROPI lays the foundation for next-generation precision agriculture, ensuring
efficiency, sustainability, and improved yield management.

5.1 Introduction

Effective and efficient planning in real-world scenarios often calls for a combination of di-
verse, interdisciplinary techniques to extract meaningful structure and insights from data
in the wild. Such data are typically multimodal, noisy, and sometimes scarce, demanding
the methodical integration of complementary methods to bridge the gap between het-
erogeneous inputs and abstract, behavior-level targets. For example, when optimization
algorithms are used to guide future plans, their utility depends heavily on accurate repre-
sentations of the current state. This, in turn, necessitates the use of artificial intelligence
(AI) to process unstructured inputs into reliable, real-world assessments and forecasts.
However, many existing technologies focus narrowly on isolated subtasks, resulting in a
lack of integrated, end-to-end workflows. Addressing this gap requires a paradigm that
unifies data-driven methods to orchestrate insights from diverse sources in a coherent and
task-oriented manner.

A typical field that is currently being reshaped by information and data science is agri-
culture, leading to the term “precision agriculture”, where in-field data is converted into
actionable crop-management decisions [64]. Machine learning models can be trained on
such data, which are primarily images, to support crop counting, disease and pest detec-
tion, yield prediction, and fruit-level cultivation by humans or robots [20, 76, 172, 197, 212].
Yet most solutions still tackle narrow, stand-alone tasks - such as training a ripeness clas-
sifier that merely mimics humans’ judgment. Developed in isolation, these models are
hard to weave into the broader pipelines that real-world decision-making demands. What
growers need instead is integrated, interdisciplinary data analytics that delivers objec-
tive, actionable insights. Hence, we introduce CROP1, an interdisciplinary, end-to-end
pipeline that combines machine learning, computer vision, and algorithmic components
into a seamless pipeline for a realistic challenge: using accessible infield data to determine
optimal harvesting strategies, which can assist both immediate and future decisions.
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Figure 5.1: The left image shows a plan from CROPI under a daily demand of 3 fruits; the right shows the practice
of the greenhouse in the same period, where “+d*” means harvesting * days from now.

The primary motivation of CROP1 stems from growers’ interest in engaging in “con-
tract farming” — a marketing arrangement in which they sell most of their agricultural out-
put to downstream buyers, particularly wholesalers with sufficient scale to influence bar-
gaining power. Contract farming is increasingly popular because its pre-arranged terms
for supply quantity, quality, delivery schedules, and pricing provide growers with a sta-
ble market, especially for perishable products like soft fruits [116, 194]. However, many
growers involved in these arrangements are of a small scale and operate independently,
which can place them at a disadvantage position when negotiating with larger buyers who
hold greater market power [24, 116]. For instance, the consequences of breaching such
contracts are severe, and risks related to harvest uncertainties lie mainly with the grow-
ers [24, 194], although this cannot be perfectly controlled. Consequently, this forces the
growers to continuously adjust decisions in their daily harvest practices, e.g. re-deciding
the minimum maturity of fruits to be harvested, to meet the contracted demands without
exceeding them by much. As of now, with limited tools to quantify maturity and model
growth, decisions largely depend on the growers’ expertise. Managing these complexi-
ties requires more advanced, data-driven approaches that can account for both analyzing
growth dynamics and optimizing harvest timing.

To this end, we develop CROP1: an end-to-end pipeline that leverages temporal, in-
field data to optimize sequential harvest decisions. Combining computer vision, machine
learning, and optimization, CROPI supports precision agriculture by aligning growth mon-
itoring with downstream demand: in the first place, we propose using hue values as an
objective alternative to eliminate inconsistencies in subjective quality assessment. This
refined ripeness definition allows us to quantify the entire growth process, which can be
modeled using standard growth functions [210]. Subsequently, forecasting models trained
on cultivation records then predict future growth from early-stage data and promote proac-
tive decision-making for the greenhouses. Finally, these growth predictions are combined
with future demand to optimize sequential harvest decisions together.

To the best of our knowledge, no existing approach integrates biological development
analysis with future demands to arrive at optimizing the harvest planning. CROP1 bridges
this gap by mining key information from temporal monitoring data (which are mostly
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images), using this for forecasting daily production, and matching this to daily demands.
Specifically, it converts time-lapse images into fruit-level time series that support predict-
ing the maturity levels during growth, and disaggregates higher-level harvest demands
(e.g., in kg) into fruit-specific targets per day, so as to enable both sides of the optimiza-
tion problem to be expressed at the fruit level. Through this alignment, CROP1 enables
integrated, fruit-level optimization using data accessible in the field, which further paves
the way for the broader adoption of more autonomous, data-driven farming techniques.

In this chapter, we start with a detailed problem definition as in Section 5.3. We in-
troduce the conceptual workflow of CROPI by the specified methodologies behind each
functionality in Section 5.4. The workflow is illustrated using realistic strawberry growth
records from greenhouse practices in Section 5.5. Strawberries are chosen as a use case
due to their typical growth pattern, which is indicated by hue, and the availability of open-
source image datasets that provide individual-fruit level monitoring [272].

Overall, the contributions of this chapter lay in:

« a comprehensive, end-to-end pipeline that enhances precision agriculture by lever-
aging multi-modal greenhouse monitoring data;

« a vision-based, objective method for assessing fruit maturity in the field and en-
abling parametric growth modeling;

. an effective and efficient approach to optimize sequential harvest decisions based
on growth and demands.

5.2 Background and Related Work
5.2.1 Current practice with vision data

The development stages of many crops are defined by the change in appearance during the
biological development of the plants. For fruits that show an evident color change among
stages, color cards are designed to improve the consistency for people to assess the ma-
turity level [16, 143]. Hence, image analysis and machine learning are widely adapted to
predict ripeness [172]. The intuitive development of models, predicting human labels from
images, can also be easily plugged with developed object detection frameworks to perform
on scale. Nonetheless, in order to lift their efficiency, workers may rely more on their expe-
rience than the color cards in practice. While most existing works focused on classifying
the maturity stages that are assessed by people, they essentially introduce subjectivity to
the objective assessments. Thus, in this chapter, we suggest redefining ripeness labeling
by quantitative color analysis to achieve true objectiveness in the modeling. We believe
this leads to more consistent results and better defines a continuous space of ripeness
rather than manual categorization with vague and potentially overlapping boundaries.

To use color as the primary characteristic for defining ripeness, it is crucial to minimize
illumination variations caused by factors such as the time of image capture and changes in
viewing angles [218]. Preliminary research on identifying fruit ripeness using image data
was usually taken out with laboratory settings to limit the influences [120, 144]. In fact,
computer vision techniques such as color correction algorithms [92, 94] and generative
algorithms [42, 150] are practical for conducting robust and adaptive corrections. We
believe these promising candidates can facilitate the use of infield data, which lead to
higher applicability of the entire machine learning framework.
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5.2.2 Formulation of growth functions

In agricultural research, parametric functions have been used to model crop growth, in-
cluding overall development, future, and even seasonal production (we use the term “growth
function” from here on). The sigmoid function, or the more generalized form, Richard’s
function [210], is a widely-used mathematical model to parameterize the growth for many
crops [90, 118]. In research where the growth models were considered to optimize har-
vests, researchers took fixed coefficients from statistics of species [104]. However, when
the other influencing factors, such as the growing environment and cultivation treatments,
are omitted, the growth models are not precise enough to provide realistic predictions ap-
plicable to actual harvests [111].

A major reason for this limitation is the lack of comprehensive analyses that account
for variations in time, location, and treatment conditions. One promising way to address
this gap is through the mining of crop growth monitoring data, which, as previously dis-
cussed, provides a directly accessible source of information for capturing these variations.
In this context, computer vision techniques play a key role by enabling objective analysis
and helping extract consistent, generalizable insights from the data.

5.2.3 Prediction of future growth
Looking from the dimension of time, growth functions are time-ordered data, shaped by
species-specific patterns but influenced by environmental conditions. Forecasting growth,
then, becomes a task of completing the function based on partial observations, i.e., predict-
ing future development from what has been observed so far. This forecasting can also be
framed as a next-token prediction task, where the model continues the observed sequence
by mimicking its underlying process. This approach, common in natural language pro-
cessing [3], has also proven effective in traditional time-series forecasting [188, 296].
Alternatively, since the growths tend to follow a similar pattern, k-nearest neighbor
(k-NN) and clustering methods can help advance analysis by capturing temporal depen-
dencies and complex trends through distance-based comparisons [230]. Besides tradi-
tional measures like Euclidean distance, specialized metrics such as autocorrelation and
Dynamic Time Warping (DTW) [217] could be more practical to be considered. When
the data contains noise or perturbations, distances like soft DTW [62] and LB Keogh lower
bound [131] are preferred, as they offer greater robustness by accommodating temporal
mis-alignments and outliers. With these metrics, the aforementioned machine learning
methods could work more effectively.

5.2.4 Harvest and supply optimization

Existing research on agri-food supply optimization has typically addressed broader, more
general problems, on which they often employed linear programming or dynamic pro-
gramming models to incorporate uncertainties and constraints [7, 243]. The implemen-
tation of such methods tailored the solutions to focus on decision-making at the level of
management units or batches [46, 97]. However, this approach remains distant from the
practical realities faced by harvest robots. Alternatively, in solutions for other practices,
when framed the optimization as an assignment problem and subjected to proper feasi-
bility checks [40, 148], the Hungarian algorithm can achieve optimized planning within
polynomial time [138, 142].
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5.3 Problem Formulation
5.3.1 Context and Definition

In this chapter, we investigate a real-world use case that integrates analytics of fruit
(growth) development to the optimization of harvest decisions. For non-climacteric fruits
like berries, which do not keep ripening after picking, their maturity at harvest directly
determines selling quality. Therefore, CROP1 primarily focuses on optimizing the timing
of harvest by aligning fruit growth stages with delivery requirements.

The problem involves two fundamental sources: on one side, cameras in greenhouses
monitor fruit growth through videos or time-lapse images, enabling us to reconstruct past
development and predict future ripeness by associating changes with frame timestamps.
On the other side, delivery contracts provide known requirements, specifying quantities
and deadlines in advance. Hence, we could model the problem as an assignment optimiza-
tion: allocating harvest times to fruits to best meet quality and delivery targets.

5.3.2 Formulation
Overall, the problem is formally defined as:

« Given:

— The growth monitoring of fruits j € {1,2,..., N}, in the form of video frames or
image series.

- The demand from downstream Dy, t € {1,2,..., T}, which are sequential and are
fixed from contracts.

— Other related records, e.g. weather in the past.
« Find:

- 'The optimal plan, defined as a set of binary actions x;j; (“harvest or not”) over
time ¢ for each fruit j.

+ Objective:
- Maximize the profitability of selling by planning x;;:

max (Z, 2N x;- Vi) (5.1)

- where the profit Vj; is assessed by scoring the growth of fruit j at the proposed
harvest time t.

« Constraints

- As anatural constraint, one action per fruit, i.e. Zthlxjt <1, xj€[0,1]for je
{1,2,..,N}.

- Each growh is modeled as an independent time-dependent function G;(?), i.e.
harvesting j will not significantly impact others’ G (1;)(t) of the plant.
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5.3.3 Data source

In the demonstration of this chapter, we primarily utilized public image datasets to evalu-
ate the approach under a spectrum of demands. Our inputs cover the following categories:

Greenhouse monitoring: “The Growing Strawberries” Dataset (GSD) [272] collected
on-site time-lapse images during cultivations in two years. Example raw images are de-
picted in the first row of Figure 5.7. Its annotations for a multiple object tracking (MOT)
task identify the growth of individual strawberries, from which we can curate the datasets
for growth monitoring and forecasts in the following demonstration.

In addition, we used the timestamps of the monitoring images to align the cultivation
record with close-site weather data [109], so as to provide more input features for the
prediction task.

Future demands: Due to the lack of relevant public data, we designed a set of typical
comparative scenarios to simulate the demands required for our analysis. These scenarios
represented cases in which demand could be higher than, close to, or lower than projected
future yields. The synthetic data was crafted to reflect realistic conditions and generate
meaningful insights for the study.

Fruit maturity assessment: In addition, we discuss the outcomes of our proposed
objective ripeness assessment in Section 5.5.1, and compare them with descriptive assess-
ments or discrete scores assigned using typical datasets provided by Elhariri et al. [76] and
Wen et al. [266] respectively.

5.4 Methodology

Figure 5.2 depicts the workflow of our proposed solution. The solution utilizes accessi-
ble on-site data from real-world greenhouses to optimize the sequential harvest decisions
based on predictive growth models of fruits. so as to support the decision-making of how
much and which fruits to harvest for the best possible match to the demand over time.
The methodologies of the four main functionalities, as identified by the diamond shapes,
are introduced in the following subsections, and demonstrated in Sections 5.5.1 to 5.5.4
respectively.

Preparation Phase
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Figure 5.2: Pipeline of the CROP1 framework, divided into two main sections: the Preparation Phase and the
Application Phase. The core functional components, represented by the four color-coded diamond shapes, are
benchmarked and discussed respectively in subsections of Sections 5.4 and 5.5. Specific steps of the first stage,
“process images”, are provided within the additional section on the right.
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5.4.1 Processing the images

The right subplot of Figure 5.2 illustrates the main and branched streamlines of the im-
age processing workflow. Given videos or image series capturing crop growth, multiple
object tracking (MOT) algorithms can identify individual strawberries and therefore tell
the individual growth pattern of every fruit. To reduce noise in the further processing,
segmentation models, or taking a subarea in the detected bounding box as an approximat-
ing alternative, can be applied on top of the MOT results. In the meantime, since many
cultivation environments use only limited lighting control, using color consistency correc-
tion methods, such as the Gray World [94], intrinsic color decomposition [150], or style
transfer models [42] can also be added to the main workflow.

We chose strawberries as an example because fruit color is a widely accepted indica-
tor of maturity [119], making it a simple yet representative case for demonstrating CROP1.
Traditionally, ripeness is assessed by comparing fruits to reference color cards or personal
expertise. While computer vision offers more consistent and objective evaluations, cur-
rent methods often rely on subjective human annotations to train models from scratch
or fine-tuning from object detectors like YOLO or R-CNN. Since biological development
is continuous and lacks clear stage boundaries, we propose using the fruit skin’ s hue
to eliminate human error and ensure true objectivity. For strawberries, we used the A*
value from the CIELAB color space [221], which naturally reflects growth - from green
on the negative axis to red on the positive axis. The A" values collected over time form
(timestamp, color) pairs that serve as the raw data for growth modeling.

5.4.2 Modeling the growths

We considered two ways of developing growth models: (1) a traditional method that fits
development using a logistic growth function, referred to as the “parametric growth func-
tion”, and (2) a deep learning approach inspired by natural language processing (NLP),
which models growth as a time-based sequence using an autoregressive next-token pre-
diction (NTP) strategy. Given its roots in NLP techniques, we refer to the second approach
as the “growth language” model.

Fit to parametric growth functions

Both Richard’ s curve and the logistic function are suitable for modeling the typical
smooth-rapid-smooth growth pattern, as illustrated in Figure 5.7. Between them, the fewer
coefficients for the logistic function, as shown in Equation (5.2), make it more robust and
efficient for fitting noisy real-world data and thus is more applicable for our case [118].
Example growth functions are shown as dashed lines in Figure 5.6. Its alignment with
natural biological growth trends also allows us to identify potential detection or tracking
errors by comparing the fitted parametric curve to the raw A* value trajectories. Such
a comparison also highlights potential errors in GSD annotations, helping us refine the
dataset before training the predictive models.

A

Note that since MOT is not the main task of CROP1, we simply took the revised an-
notations in the demonstration in Sections 5.5.2 to 5.5.4. For future applications on new
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monitoring data, we can still employ real-time MOT algorithms to keep track of each new
fruit’s growth.

Train growth language models

Beyond parametric function models, deep learning offers a more flexible way to capture
growth patterns. Since input data lengths vary in realistic applications, NTP is more prac-
tical to make full use of available data. Additionally, with the rise of large language models
(LLMs), transfer learning using open LLMs can improve efficiency, particularly with lim-
ited datasets like those in agriculture. Therefore, in developing CROP1, we explored both
training NTP models from scratch and from fine-tuning open-source LLMs to learn growth
patterns. In experiments in Section 5.5.3, we applied nanoGPT [129] to build our growth
language models. Given the high computational demands of GPT models, we limited each
model’ s training time to a maximum of 36 hours on an NVIDIA A40 GPU.

5.4.3 Predicting the growths

The task of growth prediction involves estimating the development over a fixed time range,
based on the ripeness states observed so far (i.e., MOT data up to that moment) for the
strawberries in a given frame, optionally incorporating relevant monitoring data such as
weather. Using the GSD dataset [272], which includes data from both 2021 and 2022, we
created two train-test splits to evaluate performance: (i) training on one camera’ s image
series from 2021 and testing on another camera’ s images from the same year; and (ii)
training on all 2021 images and testing on a single camera’ s series from 2022.

When using the growth language model, we treated each series as independent and
added separating tokens at the end. However, a fixed forecast length can cause the model
to predict a separating token prematurely, triggering a “new” series to be predicted without
any observation. To address this, we replace all predictions after the first separating token
with the last valid token before it, until the forecast period ends. This approach reflects
the idea that maturity cannot decrease, and the extended stay in the mature stage can be
handled later using the scoring function described in Section 5.4.4.

When fitting the parametric growth function, we first filtered by min. length, max.
initial, and min. ending A* to ensure the task uses relatively more complete growth mon-
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Figure 5.3: Demonstration of the sliding-window k-NN (s.k-NN) method. The observation is shown in dark
brown, with lighter shades indicating the ground-truth future. Thinner lines are growth functions from the
training set. For each observation, the k functions with the highest similarity and the corresponding window
sliding pointers are noted to estimate Tj/‘ 0-
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itoring records throughout the seasons. These, together with relevant climate data from
near-site sources, formed the “training set”. Since the training and testing sets cover dif-
ferent periods but share the same hourly resolution, we developed a two-stage algorithm
to estimate growth function coefficients.

In the first stage, we identified growth functions from the training set whose inflection
points (t, in Equation (5.2)) fall within a narrow time window. The primary inflection point
Ty of the testing set was determined by aggregating votes from growth observations that
have passed the lag phase [80], i.e. characterized by a clear transition from green to red, by
comparing pattern similarities with historical growth observations or climate data in the
training set. After narrowing down candidate growth functions based on Ty, the second
stage estimates potential inflection dates, T, and other coefficients, i.e. A, B, C of Equa-
tion (5.2), using the similarity measures again, to identify the specific growth functions
of fruit j. To assess these similarities, clustering, autocorrelation (autocorr.), and sliding-
window k-NN (s.k-NN; as illustrated in Figure 5.3) were used for growth data, while clus-
tering, 2D-autocorr., and k-NN were applied to 2D data of historical climate. S.k-NN with
the same metric was used in the second stage if the first stage used a clustering method.

5.4.4 Optimizing the harvest plans

The final task of CROP1 is to maximize the supply quality through planning the sequence
of harvesting actions. We model this as an assignment optimization problem, where each
fruit is assigned an optimal harvest time to ensure the best possible outcome. For non-
climacteric fruits such as strawberries, which stop growing once harvested, the problem
is equivalent to maximizing the overall quality at each fruit’s harvest moment. The reward
of harvesting fruit j at time ¢, denoted as Vj;, can be assessed by the growth stage, G;(t).
In Figure 5.4, we illustrate a few scoring options — such as binary, fuzzy logic, and fuzzy
logic with timing penalties — which serve as examples but are by no means exhaustive.
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Figure 5.4: The scoring of harvests at different future moments, using predictions from our nanoGPT model.

Each figure shows a different scoring method, using the same data. We highlighted the score change from three
typical observation patterns, as noted in the legend.

We treated the harvesting decisions, denoted as a binary variable x;;, as optimizing the
assignment between fruit growths and harvest time slots. Hence, the fundamental form
of the objective function, which is commonly referred to as the cost matrix in assignment
problems, is defined as follows:

T N
max Z,lejzlxj,-Vjt

st 2Lixj <1,x;, €[0,1]forj €{1,2,..,N} (5.3)
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Building on this formulation, we discretized the greenhouse-level demand based on
visible plant area, resulting in integer-valued demands for each time slot, i.e., D; € IN,vt €
{1,2,..., T}. This setup enables the use of the Hungarian method to perform the optimiza-
tion, which also guarantees that each element in the smaller set is matched to one in the
larger set [138]. As a result, if supply exceeds demand, some fruits will not be scheduled
for harvest; if demand is too high, even the greenest fruits may be assigned. To address
these impractical scenarios, we introduce two additional options: an oversupply allowance
D’;, representing an alternative supply venue where the demand and/or price might be
(8-)discounted; and a postponed harvest by placing a dummy demand variable Do. The cor-
responding decisions are denoted as y;; and z;, respectively. With these options included,
the objective function is updated accordingly:

max 2,3, (e Ve + 98- Vi) + 2 2 Vo

st ZL (i +yi)+z=1,¥j€{1,2,..,N} (5.4)

Hence, when xj; = 1 or y;; = 1 in the solution, the optimal harvest time for that fruit j
is the corresponding t. If z; = 1, the fruit is excluded from this given harvesting period T.

Since no established metrics exist for evaluating fruit-level harvest activities, we as-
sess the outcome plans by estimating the “reward”, i.e. V;(t) as in Equation (5.4). In Sec-
tion 5.4.4, we compare the plans optimized using predicted fruit growth with three bench-
marks: (i) the actual harvest, derived from MOT annotations in GSD; (ii) a simple “harvest
all mature fruit” policy, applied directly to the recorded growth data; and (iii) optimized
plans using parametric growth functions fitted to those records (“complete simulation” as
in Table 5.3). To ensure a fair comparison, we applied a fuzzy-logic scoring system that
accounts for penalties, as later visualized in Figure 5.4, under the simulated parametric
growth setting to calculate V;(t).

5.5 Experiments and Demonstrations

This section demonstrates the methodologies employed to execute the four principal func-
tions of the solution pipeline, corresponding to the color-coded components in Figure 5.2.

5.5.1 Ripeness evaluation
To illustrate the necessity of using color as an objective measure to assess the ripeness,
we first compared the exact color values from the fruit with the original maturity labels
annotated by human experts. To accelerate, we used the averaged A* value from the center
crop of the detection bounding box (bbox). We compared these assessments with the
original ripeness labels provided by the two datasets: StrawberryDS from Elhariri et al. [76]
that uses six descriptions to categorize fruits from early growth until peak ripeness, and
the quality assessment collection from Wen et al. [266] that uses a discrete grade from 1
— 10 to identify the maturity levels. Note that the latter dataset only consists of harvested
strawberries due to other measuring purposes, resulting in the labels not being distributed
over all values.

Figure 5.5 illustrates a trend where A* values generally increase with higher ripeness
levels. However, some overlap exists between distributions, especially when the cate-
gories are too fine. These overlaps likely stem from the subjectivity of human labeling
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Figure 5.5: Distribution of A* values of fruits in images under different ratings of ripeness. The left comparison
uses the training set from Elhariri et al. [76]. The right plot uses the full dataset from Wen et al. [266]. The
original annotation of each dataset is indicated on the x-axis of the corresponding figure.

or occlusion by other objects in view, with subjectivity being the primary factor. This
is particularly significant because such ambiguity is even more evident in [266], where
the classification boundaries are vague due to class refinement. Hence, the inherent dif-
ferences between human and machine labeling efforts further underscore the need for
objective metrics.

This experiment validates using hue (or A* in this case specifically) as the primary
reference rather than just a supplementary aid, to reduce subjectivity and improve consis-
tency in ripeness evaluations. This approach not only supports more transparent and data-
driven supply negotiations but also lays the foundation for building a quantitative, contin-
uous growth model, as further demonstrated in the following functionalities of CROPIL.

5.5.2 Growth function formulation

When we applied an objective ripeness evaluation as presented in Section 5.5.1 to pro-
cess growth monitoring data, we could record the biological development as a time-based
function. In Figure 5.6, we demonstrated this methodology using the growth monitoring
images and MOT annotations of GSD [272].

As shown in Figure 5.6, the A* value generally increases over the stages of biological
development, though at varying rates. However, notable noise causes fluctuations, pri-
marily due to changes in illumination conditions during the monitoring period. Among
those, the most significant variations can be eliminated by filtering image data using a
brightness threshold, as illustrated by the half-transparent lines in Figure 5.6.

To further mitigate the impacts of the varying illumination, we tested a few color cor-
rection methods on the image data, as demonstrated in Figure 5.7. The growth functions
after selected pre-processing are shown as other colored lines in Figure 5.6. By compar-
ing Figures 5.6 and 5.7, we observed that intrinsic color decomposition effectively mini-
mized fluctuations, but at the cost of lowered image contrast and compressed hue value
ranges. Generative models used for style transfer also improved color consistency from
a perceptual standpoint; however, they sometimes introduced unpredictable sharp values,
which adversely affected further processes. In contrast, although the Gray World algo-
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Figure 5.6: Example growth function (top) and observations (bottom) for a strawberry. A* are shown for both the
original and color-corrected images. Dashed lines represent sigmoid curves fitted to the A* values. Darker lines
indicate data from images with brightness above 50. Triangles mark the data points of the below observations.
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rithm offered a more modest adjustment, its deterministic nature ensures that it behaves
consistently and avoids the instabilities of generative approaches. Thus, we used its output
in subsequent demonstrations.

5.5.3 Growth prediction

Given the available crop observations up to the decision-making point, we frame growth
prediction as a completion task — estimating the full developmental trajectory from incom-
plete data. To this end, we explored two approaches: 1) training a growth language model
to perform next-token prediction (NTP) in an autoregressive manner, and 2) fitting the
parametric growth function from Equation (5.2) by seeking similar samples from observed
patterns in the training set.

Tables 5.1 and 5.2 present the prediction results for the two train-test splits described
in Section 5.4.3. Overall, NTP-based methods demonstrate stronger performance for this
task. Notably, since most models trained from scratch did not fully converge within
the budget computational time, the accuracy achieved by fine-tuning a pretrained GPT-2
model stands out more clearly. This advantage is particularly evident under cross-entropy
loss, which favors sequence modeling tasks but is less suited for continuous regression.

In contrast, the pattern-matching approach via sliding-window k-NN (s.k-NN) achieved
comparable accuracy in many cases but suffered from significantly higher computational
costs. Within this family, matching based on growth patterns outperformed those rely-
ing on climate data similarity, while autocorrelation (autocorr.) was mostly ineffective.
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Figure 5.7: Illustration of color consistency corrections, using sample images collected at 12, 5, and 9 pm. The
original images are at the top. The processing methods are noted on the left of the rows.
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The reduced performance of autocorr. and other linear methods is mainly due to their ten-
dency to select mismatched samples, particularly when the training and testing data come
from different years. This often results in overly generalized, average-like predictions, as
seen in the final two evaluations of Table 5.2.

Even in the testing phase, a trained model would take around 2 minutes to perform the
NTP task. Hence, among the methods presented, s.k-NN with L2-norm offered a favorable
balance between performance and runtime. In addition to this, as can be observed from Fig-
ure 5.4, outputs from NTP often retain fluctuations caused by illumination noise in the in-
put data. To ensure clearer visualizations and more stable results for downstream analysis,
we used predictions from s.k-NN with L2 in the main demonstrations of Section 5.5.4. We
also evaluated how different levels of prediction accuracy influenced optimization perfor-
mance with more prediction results (with superscripted markers in Table 5.1).

Table 5.1: Comparison of selected growth prediction methods, measured on all visible strawberries on a random
frame from 2021 as in Section 5.5.4. The table is split into four sections, based on the method and data sources.
Performances are described by common time-series analysis metrics as in the header. Note that for two-stage
methods, the same metric as in the second column was used in both. Superscripts link methods to their opti-
mization performance in Table 5.3.

Method Metric L2| DIW| ACT Time [s]

PERFECT SIGMOID FIT 0.19 1.73 0.13 -

TRAINING A NEXT-TOKEN PREDICTION MODEL

Full training L2-norm 0.19 2.84 0.09  (max 36h)
Full training CrossEntropy  0.33 3.68 0.12  (max 36h)
Finetune GPT-2&  L2© 0.17 2.30 0.10  (max 36h)

Finetune GPT-2 CrossEntropy  0.18 2.01 0.08  (max 36h)
CONSIDERING SHAPE SIMILARITY OF GROWTH FUNCTIONS

autocorr. autocorr. 0.75 8.74 0.30 9
s.k-NN* L2-norm>* 0.22 2.81 0.10 4
s.k-NN LB Keogh 0.21 2.29 0.13 232
s.k-NN DTW 0.23 3.05 0.15 157
K-means L2-norm 0.26 2.65 0.08 28
K-means DTW 0.30 3.48 0.06 31114
CONSIDERING SIMILARITY IN HISTORY CLIMATE
2d-autocorr. autocorr. 0.65 7.79 0.36 10
K-NNw# cos-sim. % 0.25 2.78 0.00 10
K-means L2-norm 0.26 2.65 0.08 42
K-means DTW 0.28 2.69 0.05 202

5.5.4 Harvesting optimization

We applied CROP1 to a randomly selected timestamp — the 1000th frame from Camera RGB-
2 in the 2021 split of the GSD dataset [272] — and visualized the following in Figure 5.8:
observed growths until the decision moment, predicted growths using s.k-NN with L2
Norm, changes in harvest reward (which we simply named it the “score”) over predicted
growth, and suggested harvest plans under varying demands. In the third subplot, dashed
lines indicate where the suggested plan advises harvesting, i.e. halting simulated growth
for a non-climatic fruit like strawberry, based on a daily demand of 3 fruits from the plants
that are in the view of the camera. The final result plan is illustrated in Figure 5.1.
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Table 5.2: Comparison of selected methods, trained on the 2021 dataset and measured on all strawberries on a
random frame in 2022.

Method Metric L2| DIW] ACT

PERFECT SIGMOID FIT 0.17 1.53 0.18

PREDICTION PERFORMANCES

Train NTP from scratch L2-norm 0.27 2.86 0.20
Finetune GPT-2 for NTP  L2-norm 0.18 1.68 0.19
Finetune GPT-2 for NTP  CrossEntropy  0.19 2.02 0.19
sk-NN on G;(t) L2-norm 0.20 2.35 0.16
sk-NN on G;(t) LB Keogh 0.21 2.41 0.17
K-means on G;(t) L2-norm 0.24 2.67 0.15
k-NN on climate record cos-sim. 0.37 3.63 0.00

As shown in Table 5.3, CROP1 significantly improved the overall outcomes. Finer pre-
dictions delivered better plans and approached closer to the optimal score, which was
defined using the ground-truth simulation as input. In contrast, the current harvest plan
based on an empirical approach and derived from GSD annotations - yielding 2 fruits
on day 1 and 8 on day 6 — performed worse overall in both harvest score and demand
fulfillment compared to the other heuristics or the optimized plan.

As illustrated in the final subplot of Figure 5.1 and Table 5.3, harvests with CROP1
could have provided a steadier supply with more balanced harvest schedules. In specific,
when demand is high, it responds by scheduling more fruits for harvest the next day (
“+1d” ), aligning closely with observed real-world behavior; while the contract is small, it
allows for slight delays to optimize fruit quality, with necessary over-harvesting to prevent
rotting on the plant. By maintaining a balanced harvest distribution over time, CROP1
improves overall performance and demonstrates strong potential for stabilizing supply
chains through predictive, sequential decision-making,.

Furthermore, the current setting of such a sparse harvesting schedule is partly due to
labor constraints, as human workers cannot cover all plants efficiently. This highlights
the potential of robotic harvesting, yet a simple “harvest once mature” policy remains
suboptimal, particularly for maintaining a stable supply. While prediction uncertainty
persists, CROP1 strategically optimizes harvest timing, mitigating these challenges and
demonstrating the potential of Al-driven solutions that enhance both adaptability and
efficiency in precision agriculture.
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Figure 5.8: Illustrative examples using fuzzy-logic scoring with penalties, as in the third subplot of Figure 5.4.
The first three subplots show observed growth, predicted growth¥, and scored growth, which are depicted as
color-coded curves. The final subplot compares daily harvest amounts from the plans optimized over different
demand levels, based on the same predictions and scoring method as in the middle subplots.
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Table 5.3: Comparison of harvest plans under multiple daily demands using 2021 scenario predictions. Plans were
evaluated by applying fuzzy-logic scoring with rotting penalty and over-fulfillment earnings on the simulated
growths. Demand fulfillment was measured with only the basic daily demands. The results with predictions,
marked with the special superscripts, were from the outputs of corresponding model settings as in Table 5.1.

Daily Harvest Overall Demand
Demand | Method Score  Fulfillment[%]
d=3 Actual harvest 5.36 28.57
Harvest once mature 8.22 47.62
Opt. w/ ground-truth simu. 20.63 100.00
Opt. w/ prediction from pred.& 18.75 100.00
Opt. w/ prediction from pred.* 13.41 76.19
Opt. w/ prediction from pred.# 12.00 57.14
d=4 Actual harvest 5.36 25.00
Harvest once mature 8.22 61.90
Opt. w/ ground-truth simu. 21.60 78.57
Opt. w/ prediction from pred.&y 20.01 92.86
Opt. w/ prediction from pred.» 14.52 64.29
d=5 Actual harvest 5.36 22.86
Harvest once mature 8.22 71.43
Opt. w/ ground-truth simu. 21.60 65.71
Opt. w/ prediction from pred.& 20.16 77.14
Opt. w/ prediction from pred.* 15.20 57.14

5.6 Conclusion

This chapter presents a novel end-to-end pipeline, CROP1, for optimizing fruit-level har-
vest decisions. In specific, CROPI uses computer vision and machine learning to quantify,
track, and forecast the biological development of individual fruits, and optimization tech-
niques to plan when and how each fruit should be harvested. Our approach integrates
four key components: objective ripeness (re-)definition, growth modeling, biological de-
velopment forecasting, and daily harvest planning. In a nutshell, this work demonstrates
how infield monitoring can directly support data-driven harvest decisions.

In the optimization phase of our strawberry case study, we apply fuzzy-logic scoring to
evaluate the plans using an objective redefinition of fruit development that is inspired by
and reflects real-world practices. In this case, as illustrated in Section 5.5.1, the objective,
such as generalizable ripeness definition can also function as a standalone application for
consistent quality evaluations via vision systems or mobile devices. Maturity standards
and market preferences, however, vary across species. In some cases, additional quality
attributes such as size, firmness, sugar content, or post-harvest development must also be
considered in forecasting and scoring [123, 195]. For this reason, tailored scoring crite-
ria and corresponding data analytics are essential steps before adapting the approach to
other fruits. Moreover, for risk-averse decision-makers, incorporating stochastic or robust
optimization into the scoring can provide more practical and preferred alternatives.

Our demonstration includes benchmarks on three public datasets, including two for
ripeness grading [76, 266] (see Section 5.4.1) and one for growth monitoring [272] (see Sec-
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tions 5.4.2 and 5.4.3). Due to limited open-source data, we relied on nearby climate data [109]
as a proxy for on-site microclimate information. While the weather-related model was not
the top performer, its higher explainability indicates potential for improvement. In the
final planning step, we used virtual demands, which could have missed details about real-
istic market fluctuations. More broadly, the lack of comprehensive open-source datasets
is a shared concern for benchmarking how Al can be applied in agriculture [214, 272]. We
hope the introduction of this novel approach also inspires the development of more com-
prehensive datasets to support advanced methods, such as deep reinforcement learning
and predict-then-optimize strategies.

Overall, the framework demonstrates the concept of transforming diverse temporal
information into a unified form suitable for optimization, by mining and harmonizing
meaningful patterns from the diverse data sources. With the rapid processing enabled by
the Hungarian method, CROP1 supports real-time decision-making and automation, ad-
vancing smarter greenhouse management and boosting the efficiency of harvesting robots.
This functionality can still be further enhanced with adaptive control methods or reinforce-
ment learning to dynamically adjust actions in the longer term. Most importantly, as this
entire end-to-end process relies solely on raw, in-field, non-destructive data, it makes the
framework broadly applicable and practical for real-world use in precision agriculture and
autonomous farming.
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Performance and Interaction
Assessment of Model
Architectures and Bivariate
Smart
Predict-then-Optimize

This chapter explores the impact of decision-focused learning (DFL) within a trading sys-
tem applied across various fields, using renewable energy and fruit trading as examples.
In this system, trades can occur through contracts or real-time markets, where the pre-
dictions of final yields are not often sufficient to lead to the most profitable contracts.
We implement DFL and compare its effectiveness to traditional prediction-focused learn-
ing (PFL). Our empirical investigation, based on two real-world trading scenarios, demon-
strates the novelty and generalizability of our findings, which also serve as a pre-assumption
of the work presented in Chapter 5.

This chapter is based on a manuscript accepted for publication as: Junhan Wen, T.
Abeel, M. de Weerdt. 2025. "Performance and Interaction Assessment of Model Architec-
tures and Bivariate Smart Predict-then-Optimize."

Machine Learning Journal.
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Smart “predict, then optimize” (SPO) [78] is an end-to-end learning strategy for models

that predict parameters in optimization problems. Unlike minimizing mean squared er-
ror (MSE) which cares about prediction accuracies, SPO aims to ensure that predictions lead
to the best possible decisions. The associated loss function, termed SPO loss, measures the
decision’s regret from optimal outcomes with parameter realizations. Existing literature has
demonstrated the viability of SPO, however, these studies often focus on classical optimization
problems and employ a limited set of models for benchmarking.

In this study, we tackled a decision-making task inspired by real-world challenges across a
wide range of neural network models. Unlike classical problems, our task requires a unique
approach: collaboratively training two models to predict different variables. On top of that,
one of the decision variables also affects the feasibility of the decisions, further increasing
the complexity. While our implementation validates the benefits of SPO, we were surprised
to find that models trained exclusively on SPO loss do not consistently attain the minimum
regret. Our further investigation into hyperparameters illustrates that the well-tuned models
learned very similar patterns from the feature set, irrespective of whether MSE or SPO loss
was used. In other words, the change from MSE to SPO loss in training primarily affected the
layer biases. Therefore, to improve the learning efficacy with SPO loss, we propose prioritizing
learning feature patterns as the fundamental step. Possible strategies include using special-
ized neural network layers to capture deeper patterns more effectively or simply warming up
by training with MSE. Specifically, a warming-up process is particularly advantageous for
model(s) where the outputs are closely tied to constraints, as their prediction accuracy signifi-
cantly impacts the decision feasibility. The insights are investigated empirically through two
real-world trading scenarios. By leveraging datasets with diverse properties, we demonstrate
the novelty and generalizability of our investigation.

6.1 Introduction

When machine learning models are employed to assist with downstream tasks, the impact
of prediction errors can be asymmetric. In cases where the downstream task involves
solving an optimization problem, this scenario is commonly referred to as a predict-then-
optimize problem [78]. To enhance overall performance, it is essential to shift the focus
of the learning process from prediction-oriented methods to decision-centric approaches.
This paradigm shift is known as decision-focused learning (DFL) [168].

Regret is the core metric for evaluating decision-making performance. It describes the
disparity between the optimal outcome and the outcome from the actual decision made
with decision parameter estimations. To optimize the DFL process, [78] proposed training
models directly on regret rather than on accuracy-based losses like mean squared error
(MSE). They named this method Smart “Predict, then Optimize” (SPO). As such, the regret
is also referred to as the SPO loss.

The SPO method has been widely used to tackle classical optimization problems [73, 275]
and in a few abstractions of real-world cases [255, 259]. However, current research leaves
two significant gaps when it comes to addressing a broader range of real-world challenges.
First, most studies oversimplify decision-making by assuming only one type of unknown
parameter, which can therefore be estimated with a single model or optimizer. Second,
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existing research in DFL is often investigated with using only one machine learning model
- typically a small neural network (NN) with fixed hyperparameters, or even simple linear
models [136, 167, 246, 284]. This facilitates the explainability of the models within the
DFL task; nevertheless, with the vast variety and more complex architectures of neural
network models available, it is still an open question about how different architectures
could enhance DFL performance.

To advance DFL research in realistic scenarios, we evaluated the performance of SPO in
training diverse neural networks for a type of financial optimization task. We focused on
an integrated system for both futures and real-time market trading, where products can
be sold immediately or traded as futures, with transactions agreed upon in advance. Many
real-world trading activities follow a pattern similar to this system, such as day-ahead bid-
ding and last-minute trading in the renewable energy market [134, 224], the procurement
of fresh agricultural products [71, 116, 222], and in financial markets where stocks, options,
and futures are traded concurrently [36, 38, 57]. In these scenarios where future produc-
tion cannot be perfectly controlled, a pre-set contract may result in waste from overpro-
duction or penalties for under-delivery. Further, improper market price predictions may
reduce potential profits. As a consequence, the challenge requires proper forecasts of both
the price and the yield, which also acts as a constraint to the decision-making.

In short, our study investigates how different architectures and training strategies affect
the models’ abilities to predict and promote the downstream optimization task. Our study
adopts and tailors the SPO method to train multiple prediction models that estimate de-
cision variables (some of which act as soft constraints) respectively and collaboratively,
aiming at minimizing the overall regret incurred by the resulting contracting decisions.

The main contributions of this work consequently are:

+ We introduced a novel and realistic optimization task for product trading, of which the
decision is incentivized by prices and the feasibility is bounded by yield.

« With this task, we evaluated the impact of training with smart predict-then-optimize
(SPO), and illustrated that exclusive use of SPO loss did not improve regret consistently.

« With two real-world scenarios, we analyzed how neural networks’ learning capacity fits
with SPO, discovering that simpler models show more significant discrepancies of train-
ing and testing on regret, while too complex models tend to get stuck in local optima.

« The results validate that layer weights of models trained with MSE and SPO loss are
similar, suggesting that training with MSE as a warm-up can enhance both effectiveness
and efficiency, especially when output impacts the feasible region.

6.2 Related Work

6.2.1 Decision-focused learning

Apart from prediction-focused learning (PFL) that maximizes the accuracy of predictions,
decision-focused learning (DFL) optimizes the downstream impact of decisions based on
those predictions [168]. The smart predict-then-optimize (SPO), one of the latest DFL frame-
works, introduced the decision regret as the SPO loss to train DFL models. In a linear
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problem that optimizes w to minimize c¢'w, the SPO loss is written as [78]:

Lspo(c, &) :=max(c’w)— ¢’ argmax(éT w) (6.1)
w w

, where ¢ represents the decision parameter that describes a linear optimization problem
in a known feasible region and w is the decision variable optimized according to ¢ (or
the predicted value ¢). Training models with SPO loss have proven to be highly effective
across a wide range of optimization problems [50, 169, 249, 259]. However, researchers
have identified a trade-off between prediction accuracy and SPO loss during training. Thus,
some suggest that accuracy may serve as a regularizer in DFL [168, 240].

Among DFL-related studies, most work has focused on a single model or a lone optimizer
to demonstrate the SPO method. However, this approach falls short of realistic scenario
modeling, where multiple decision variables often need to be predicted — each potentially
having varied impacts on the optimal solution. For instance, the standard setting of SPO
uses a known feasible region [78, 157], but the problem when the predictions may lead to
decisions that violate constraints has not been well-defined yet [168]. While methods like
relaxing constraints or imposing penalties improved the feasibility of solutions, they did
not consistently ensure constraint satisfaction [50, 112, 136, 220, 220]. In our study, we
apply SPO to a bivariate optimization problem to address the increased variable complexi-
ties that exceed those of existing setups. By training models individually, we demonstrate
the effectiveness of DFL and PFL in fine-tuning models to meet specific targets.

Meanwhile, most existing works fit in learning programming formulations and simple
prediction models [255]. Some applied small (two to four layers) neural networks and
compared the benchmarks with classical regressors [113, 156]. Nevertheless, the choice of
model architecture was always predetermined without explicitly reasoned or finetuning
discussion. In fact, the family of deep learning models is much broader, with techniques
ranging from traditional grid search to advanced metaheuristics for systematically explor-
ing those hyperparameters [277]. For instance, recurrent and attention modules that are
beneficial in-/extrinsic time-series analysis tasks [59, 206, 252] align well with the prop-
erties of many feature sets in DFL tasks. However, to the best of our knowledge, these
neural network architectures have yet to be explored within the context of DFL.

Furthermore, many training strategies that were originally designed for PFL can be adapted
for DFL tasks. For instance, [169] “warmed up” the SPO learning with a transferring
learning-based idea, aiming at accelerating the training process. This approach was ini-
tially applied to demonstrate its potential for speeding up training. However, the setting
of a limited number of pre-training epochs restrict the methodology’s generalizability,
and other benefits remain unexplored. Despite this, the warm-up process used in PFL can
easily be connected to other PFL and DFL solutions, enabling deeper discussions on how
these strategies fine-tune models.

6.2.2 Optimizations constrained by contracting decisions

At present, there exist many situations where the same product is traded in multiple mar-
kets, with varying time lags between the trading and transaction dates. For example, in
the renewable energy sector, prices fluctuate due to shifts in supply and demand [32, 134].
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To manage this volatility, traders commonly use supply contracts to stabilize and secure
transactions and turn to real-time markets for last-minute adjustments [202, 289]. A com-
parable strategy is found in the trade of perishable agricultural products, commonly re-
ferred to as contract farming in many countries [71, 116, 222]. Price stability encourages
growers to sell most of the harvests through contracts, with surplus typically directed to
local markets. However, imbalances in negotiation power — particularly between small
suppliers and large buyers such as supermarkets — can lead to inefficiencies, which often
manifest as either over-supply or under-supply [81, 189, 234].

Since contracts require advance commitments while the real-time market has higher un-
certainty but lower capacity, producers face the challenge of determining how much fu-
ture production to allocate to contracts. Existing studies estimate the profitability un-
der such situations by statistical models such as mean-variance and probability density
distribution models [53, 137, 224]. To optimize contracting decisions, common methods
include stochastic optimization and worst-case analysis models [155, 202, 216, 224]. How-
ever, these models generally prioritize accuracy in predicting future production and real-
time prices, often overlooking the specific consequences of under- or over-supply, such as
contract-breaching fines [32]. Consequently, such predictions should (also) be evaluated
based on their ultimate impact, which underscores the importance of the DFL concept.

6.3 Research Questions

Previous works have demonstrated the advancement of using SPO loss in training models
for decision-focused learning (DFL) purposes. However, there is no common understand-
ing of what machine learning models we need to use and which model is suited for which
problems. To enhance the integration of the SPO method with a broader range of deep
learning tools, we explore a variety of neural network architectures with diverse learning
capabilities and assess the PFL and DFL performance. In essence, this research is desig-
nated to answer the following questions:

RQ1. How does the learning capacity of models influence PFL and DFL?
RQ2. How do MSE and SPO loss functions influence the fine-tuning of models?
RQ3. How to optimize the DFL performance under a given model architecture?

RQ4. How can training strategies be tailored to align with the roles of the target (deci-
sion) parameters being predicted?

6.4 Methodology

In this study, we comprehensively investigated the influence of model design and train-
ing setup in the implementation of the end-to-end training strategy smart predict-then-
optimize (SPO) [78]. We addressed our research inquiries by benchmarking against real-
istic variants of a portfolio decision-making scenario. The objective of the use case is to
decide how much future production should be committed to a given trading contract while
both the (other) market’s price and the future yield are unknown. Under this scenario, the
yield directly influences the scale of the decision and the price mainly incentivizes the de-
cision towards one of the trading channels. This section outlines our methodology from
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four key perspectives: model selections, metric choices, loss function decisions, and how
we came up with the improvement strategy.

Models: To explore DFL with a border range of models, we exploited neural networks
with different depths of multi-layer perception (MLP) layers, with a recurrent neural net-
work (RNN) layer, with pair-wise self-attention module (ATT) after the input layer, plues
one with just one linear layer to represent a linear regressor. RNN and ATT were cho-
sen because the features are extrinsic time-series data. In the use case specifically, two
models were trained to predict the market price and production. They were trained collab-
oratively from scratch with specified optimizers. By employing diverse training settings
and strategies, we empirically studied the effectiveness of PFL and DFL on models with
different learning capacities.

Metrics: The primary metric for evaluating model performance is the average regret on
the testing set, which reflects the expected “unearned” monetary units from real-world
decisions. To assess real-world impact, we compared the profit distributions under vari-
able predictions with optimal decision outcomes under parameter realizations. We also
analyzed the mean squared error (MSE) of predictions, as it indicates the generalizabil-
ity of the model and the training strategy. We used the mean error (ME) of predictions
to demonstrate the bias of models. Additionally, we discussed the performance related
to timing. To compare how PFL and DFL fine-tune the models, we measured the cosine
similarity of corresponding layers in the trained models, which reveals how each method
influences the weight and bias of the layers.

Training losses: Our study began with models trained exclusively on MSE or SPO loss.
We then refined the experiments by training the models using a weighted average of both
MSE and SPO loss, i.e. the loss L = wy - regret + wy - MSE, s.t. w;+w; = 1. By varying the
ratio wy : wp from 0 to infinite, we evaluated how the models are progressively tailored
in terms of PFL and DFL goals. We applied two independent ratios for the price and
yield prediction models respectively, so as to explore specific preferences for each model’s
training and optimize the learning efficacy.

Improvements: By comparing the final weights of models and investigating the metrics
during the training process of PFL and DFL, we decided to “warm up” the DFL training
from models converged on PFL process. We compared the performance with the other
models that were trained by DFL from scratch, and with models trained under diverse
numbers of PFL epochs, so as to generalize the methodology. On top of that, we con-
ducted such initialization on only one of the models to further explore whether there is
a core model to start with or if the collaboration essentially affects the training. The in-
depth exploration suggests the optimal design of learning settings, referring to the outputs’
specific functionalities in the downstream optimization task.

6.5 Problem and Task Formulation
6.5.1 Background

When the future production of a product cannot be perfectly controlled, such as with agri-
cultural products or renewable energy, maintaining steady relationships with downstream
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partners can be challenging. To manage the risks associated with forecast errors, traders
often diversify their strategies across markets that differ in how far in advance decisions
must be made [260]. For example, some contracts require early commitments, while real-
time markets are typically smaller and more volatile [116, 134]. Poor forecasts can lead
to overproduction and waste, or shortfalls that result in monetary penalties and damage
relationships with downstream buyers. In additiona, inaccurate predictions about market
conditions might also cause producers to miss more profitable sales opportunities.

In related studies, the profitability is estimated by statistical models, e.g. by a mean-
variance model or probability density distributions [53, 137, 224]. However, these methods
can lead to high penalties when the decisions are diverged from the predictions. To avoid
such, growers, for example, may opt for conservative yield estimations [189, 234]. Thus, it
is more insightful to evaluate predictions based on their impact on decisions rather than
on accuracy alone. This approach aligns well with the DFL strategy.

We chose this type of use cases because it represents a common scenario across many
financial systems, featuring a straightforward and distinct goal that serves as a basis for
experimenting with various models. Even so, the problem can be more complex and pose
greater challenges than many existing DFL works, as it involves predicting multiple pa-
rameters (prices, production, etc.) and the available feature set may not always have a
linear relationship with the target outputs.

6.5.2 Problem characteristics

In this chapter, we investigated a use case where the goal is to maximize the overall profit
for each batch of production by determining the best trading strategy within an integrated
contract and market system. For the decision, we specify how much of a future production
batch will be sold through contractual agreements at a predetermined price, and how much
will be reserved for sale in the market, where prices fluctuate in real time. Generally,
the closer the time to the transaction, the higher accuracy of prediction can be achieved.
Nevertheless, real-time demand and price have significantly higher variations than trading
through futures or options [58, 222, 257] — sometimes there can be barely any demand and
thus significantly low prices, but at other times their profitability can surge in response to
sudden demand or an unforeseen supply shortage.

In specific, this problem scenario has the following characteristics:

1. We act as a price-taker in all trading activities.

2. Atthe time of decision-making, the contract prices P.* and transaction time t are known,
and both the final production volume (shortened as Y for yield) and the (real-time)
market price P; can be predicted based on current trends.

3. Once production is completed, we first fulfill our contract obligations by delivering the
agreed-upon amount, or as much as we can. The remaining product is then sold in the
market at the prevailing price.

'We use bold fonts when introducing new parameters. After that, we use roman font for decision parameters
such as P, P,, Y, and calligraphic font for the decision variable, i.e. the contracting amount D, and D..
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4. The volume of contract-based trading is constrained by the capacity of the contract and
the actual yield of our production. Moreover, contracted buyers generally do not accept
purchases beyond the committed amount at decision-making time.

6.5.3 Objective function and specific SPO framework

In this use case, the optimization objective is the overall profit of a batch of production,
denoted as Pft(D,, T, T, Y), wherein D, is the contracting decision, T. means the contract
transaction, T; means the market transaction, and Y represents the final production.

By definition, the profit is the difference between the total revenue, i.e. P.-T.+ P, T},
and the costs. In line with established practices in the field [81, 145], we considered linear
competitive market models to describe market capacities, i.e. the maximum volumes for
contract trading is T¢ max : = acr'Pc+ber, and in the real-time market is Ty yax = arpPrtbyy.
Consequently, to focus solely on the parameters derived from the datasets, the objective
function can be formulated as Pft(D,, P.,P,,Y).

According to the trading mechanism, at the transaction date, the actual transaction amount
with the contract is the (original) decision bounded by the actual production and the con-
tract capacity: T, = min{D,, Y, T, max}. The market transaction is bounded by the remain-
ing production and the market capacity: T, = min{Y — T, Ty max}. Given the real-time
price and production are unknown at the time of contracting, the decision is actually made
based on their predicted values P, and Y. Hence, the best decision that we can make is
DC = argmaxp, Pft(DC,PC,Pr, Y) Consequently, later at the transaction execution date,
the actual contract transaction is T, = mln{DC, Y, Temax}- In this way, the yield Y serves
as a soft constraint of the optimization problem.

The costs consist of (i) the internal production cost that depends on the production' acrY

short of the contracted amount, i.e. D, > Y, we pay a penalty for every under-delivery
unit acy - pos[D.—Y] and we trade to the contract with T, = Y instead of T, = 7.50 because
T. = min{ﬁc, Y, T max}; (iii) or if the overall production exceeds the contracted amount
and the market’s capacity, the waste is is accounted for in financial terms: a3 - pos[Y—
T.—T,]. Note that in this specific context, the penalty for infeasible decisions is smoothly
incorporated by the under-delivery costs.

Hence, the objective function, i.e. the profit Pft, is written as:

Pft(D,,P.,P,,Y)
=P, T.+P-Ty—ac1- Y —ae-pos[D.—Y] —acs3 - pos[ Y =T,.—T,] (6.2)
= P.-min{D,, Y, (a¢;P.+be;)} + Pr-min{Y —min{D,, Y, (ac;-Pe+ber)}, (ars-Pr+byy)}
—ac Y
—acy - pos[D.—Y]
—ae3 - pos[|Y—min{D,, Y, (ac;-Pe+bet)} — min{Y —min{D,, Y, (act - Pe+ber)}, (art-P,+brt)(}] |
6.3
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By capturing the core concept of the original SPO loss as in Equation (6.1) and given that
the contract price P, is known at the moment of decision-making, we derived the specific
SPO loss for the market price and yield prediction P, and Y as:

Lspo(P,P,,Y,Y) := r%axpft(Dc, P.,P,,Y)-Pft(D., P, P, Y)

= rrzljafot(Dc, P, P., Y)—Pft(argmaxP£t(D,, P, Py, Y), P, Py, Y) (6.4)
¢ D,

6.5.4 Data

To illustrate the decision problem at hand and to assess the effectiveness of the proposed
methodology in realistic settings, the experiments of the chapter are conducted as case
studies. The experiment section mainly focuses on the decision-making performance of a
wind farm that participates in the day-ahead and real-time market, using the energy price
and consumption data sourced from [121] (refer to as the “wind” case).

The decisions of trading in the day-ahead market, which we identify as the channel for
“contracting”, must be finalized before the bid clearing deadline at 12 pm [5, 58, 289]. When
there is a shortage of production, we may opt to purchase additional electricity to ful-
fill our committed amount; nevertheless, in instances of unplanned overproduction, the
cost of finding immediate consumers can be prohibitively high [58]. Consequently, the
expense incurred from overproduction significantly outweighs that of underproduction,
underscoring the importance of employing DFL in predicting the unknowns. The dataset
covers 34,613 timestamps, collected hourly from 2015 to 2018. Due to the large computa-
tional load of DFL, we used the data from every tenth hour for exploitative studies. The
feature set had 143 attributes in total, consisting of local weather records from the past
week, trading information from the past four realizations, and the contract price for the
current decision round. The price was scaled by 100 from the original monetary unit (euro),
and the generation was scaled by 10,000 to facilitate neural network training. Detailed set-
tings, exploration, and accessibility of the data can be referred to the appendix.

In fact, in 90% of the instances in our primary dataset, the real-time market price exceeds
the daily market price, which serves as our contract price. To address this bias, we per-
formed an ablation study that ensures an equal likelihood of either price being higher than
the other, and we refer to this as the “wind-50" case.

In addition, we curated a dataset for another use case involving a similar trading optimiza-
tion problem, but with different characteristics from the wind trading scenario. In this
case, we consider the role of a tomato grower, where the task is to decide how much yield
to commit through farming contracts [71, 189]. The available price data, sourced from [33],
is reported daily, though not consistently for every single day. Given that prices are pro-
vided in upper and lower limits but without specifying the trading channel, we considered
two scenarios: in the first, the upper limit is seen as the contracting price and the lower
limit as the market price (referred to as “tomato-c” as the contract price is higher); in the
second scenario, we reversed this arrangement, ensuring that the contract is not more
favored than the market (referred to as “tomato-m”).
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We used similar attributes to form the features for the two tomato cases. Nonetheless,
since the decision-making time and available data are much sparser, we used the daily
temperature record in the past 28 days of the decision date and the realized cases of the
past four available records within a month. Together with the current contracting price,
the feature set had 41 attributes. In total, we had 369 data points, collected from January
2014 to August 2023. For both cases, we scaled the features by constants to facilitate the
training. These two cases, together with the “wind-50" case, compared the impact of DFL
on yield (Y) and market price (P,) predictions under more diverse scenarios. The decision
performances on these three cases are discussed in Section 6.6.5.

6.6 Experimental Results

In this section, we present experimental results on investigating and refining the decision-
focused learning (DFL) process with SPO loss by primarily the wind case, so as to gain
deeper insights and address the research questions outlined in Section 6.3.

Our exploration begins with the examination of multi-layer perception (MLP) models with
varied numbers of layers. This includes a one-layer model without activation, which essen-
tially functions as a linear regressor. Additionally, we analyzed the performance implica-
tions of incorporating a fully-connected recurrent (RNN) layer or a pair-wise self-attention
(ATT) layer alongside the MLP layers. All models started with 256 neurons and ended with
512, except for the linear regressor, which had only one layer of 256 neurons. Dropout lay-
ers were added after every two MLP layers. For model trained by DFL, the outputs of the
neural networks flowed into a CVXPY layer [69] to compute and back-propagate the SPO
loss. We trained both the price- and yield-prediction models using identical model archi-
tectures and input features. Unless specified otherwise, the models were trained together
from scratch. Hyperparameter fine-tuning is further discussed in the appendix.

In this section, we present results from models trained by stochastic gradient descent
(SGD) optimizers with a 2e-3 learning rate, a 1e-5 weight decay regularization, and a max-
imum of 1,000 epochs with early stopping. The dataset is divided into 7:1:2 for training,
validation, and testing. All experiments were run with five fixed random seeds unless
otherwise noted. The experiments were carried out on an NVIDIA A40 GPU.

6.6.1 Model architecture impacts performance and training-
testing discrepancy on regret

This subsection addresses the first research question regarding how the learning capabil-
ities of MLP models affect outcomes. Figure 6.1 depicted the final regrets, resulting from
decisions optimized using parameters predicted by models of different depths. The plot
on the left compares the total regret across three cases: when neither model, only one, or
both models were trained using the SPO loss. The four smaller plots on the right provide
a closer look at regret under various combinations of training losses. Regret results from
models trained with both MSE and SPO loss are included to link the findings between PFL
and DFL approaches.



6.6 Experimental Results 83

Influence of MLP architecture on regret
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Figure 6.1: Regret of models varies with MLP layer numbers and loss function combinations. The left plot
compares regret over depths for models trained on different loss functions. The right four plots compare regrets
under different loss functions and model architectures. For the right plots, the x-axis label means the loss for
yield prediction training and the y-axis label is that for price. The arrows on the x- and y-axis indicate the
increasing involvement of SPO in the loss function. All plots share the same color scale, shown on the right. The
results in the middle boxes used loss = 0.5- MSE +0.5- SPO. Results are collected over five seeds.

Asillustrated in the first subplot, models trained both by PFL exhibited the poorest decision-
making performance, underscoring the necessity of integrating SPO loss into the training
process. The subsequent four colored plots further reveal that decision performance gener-
ally improves when the price model training includes more SPO loss. However, this trend
isn’t consistently seen when increasing SPO loss in the yield prediction model’s training.
In other words, the lowest regret doesn’t always occur when all models are trained ex-
clusively with SPO loss. This inconsistency is especially clear in shallower models, while
deeper models tend to perform worse overall, likely because they get stuck in local optima.

Influence of regressors on PFL and DFL
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Figure 6.2: MSE of the price (left), yield (middle) prediction models, and their resulting regret (right). The x-axis
represents the number of MLP layers. Lines are color-coded by neural network architecture, as indicated in the
legend. Dot markers show performance for models trained under PFL, while ’x’ markers indicate DFL-trained
models. Except for the zero-shot performance of GPT-4, results are averaged over five seeds.

Next, we compare the performance among four types of neural networks: MLP, RNN-
MLP, ATT-MLP, ATT-MLP and with MLP residuals. Figure 6.2 presents the average MSE
and regret from the models with varying numbers of MLP layers and different loss func-
tions. The prediction accuracies of the models are close to state-of-the-art — for example,
comparable to the method by [188] — and can improve slightly with more complex mod-
els. This suggests that all architectures are suitable for the learning tasks in this scenario.
However, these gains in accuracy only modestly reduce final regret to a limited extent. In
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contrast, training models with DFL produces more substantial gains in decision-making
performance. As shown in the third plot of Figure 6.2, this advantage is consistent across
all architectures, highlighting that optimizing directly for regret is more effective than
simply increasing model complexity while using the same loss function.

We also analyzed the correlations of Kullback-Leibler (KL) divergence between regret and
the MSEs of the price and yield predictions across five test sets. Our results show that
regret is moderately positively correlated with errors in yield prediction (0.61), suggesting
that yield prediction quality does influence the regret. In contrast, regret has almost no
correlation with price prediction errors (-0.01), indicating that perfect accuracy in price
prediction is not always necessary for DFL purposes. Interestingly, the PFL performances
of the two prediction models show a slight negative correlation (-0.37), which further sup-
ports the idea that these models play different roles in the optimization task.

6.6.2 Models learn alike feature patterns from PFL and DFL

To better understand the mechanisms behind PFL and DFL training, we analyzed the
cosine similarity between layer parameters of models trained with different loss func-
tions. Figure 6.3 shows the results for models with six MLP layers, which was the best-
performing architecture among models in Figures 6.1 and 6.2. We observe notable sim-
ilarities in the weights of MLP layers, while the differences appear mainly in the layer
biases®. These results suggest that the divergence between PFL and DFL primarily affects
the bias terms, with limited impact on feature representations. This observation motivates
our strategy of pre-training on PFL before fine-tuning with DFL, as shown in the final plot
of Figure 6.4. The impact is further discussed in Section 6.6.3.

Parameter change of models compared to the same archiecture trained by PFL
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Figure 6.3: Cosine similarity of layer parameters between models with six MLP layers (“fc”) trained with SPO and
MSE. The final plot compares a PFL model with a DFL model that was initialized with the PFL model’s weights
(referred to as a “warm-up”), while the other plots compare PFL-only models to DFL models trained from scratch.
Layer indices are shown on the y-axis. All plots share the color bar on the right, ranging from 0 to 1.

Interestingly, as shown in Figure 6.4, with increasing involvement of SPO loss during train-
ing, the regret performance of ATT models changes similarly to a much deeper MLP model,
such as that with 12 layers as depicted in Figure 6.1. Both architectures show weaker DFL
performance compared to others, suggesting that models with very high learning capacity
may be more prone to getting stuck in local optima. As illustrated in Figure 6.3, the price
prediction component in these models appears to be overly influenced by DFL, which may

*Similar trends were found in the self-attention and RNN layers, detailed in the appendix.
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contribute to the performance decline. One potential solution is to use MLP outputs as
residuals alongside the self-attention layers. As demonstrated in Figure 6.3 and Figure 6.4,
this adjustment helps produce more balanced prediction biases and improves performance
in both tasks. Furthermore, as indicated in Figure 6.2, these models also achieve lower
MSEs, indicating improved generalizability.

Influence of model architecture on regret
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Figure 6.4: Regret from decision-making, using parameters from models with varied architectures and trained on
different loss functions. The models are aligned with those used in the layer parameter comparisons (figure 6.3).
The x- and y-axis follow the same configuration as in figure 6.1. All plots share the same color scale as on the
right. The upper-left corner of the final plot is left empty, as it represents again a purely PFL-trained model.

6.6.3 Pre-training mitigates discrepancy and reduces regret m

Motivated by the strikingly similar feature patterns learned by PFL and DFL, we investi-
gated using PFL as a form of pre-training — or “warm-up” - for the DFL process. As il-
lustrated in Figure 6.4, incorporating SPO loss after such a warm-up significantly reduced
the performance discrepancy between training and testing on regret, leading to improved
overall performance. Notably, when comparing models trained with identical loss func-
tions from scratch, the improvement is most pronounced when the model is trained ex-
clusively with SPO loss. Further analysis in Figure 6.3 reveals that this warm-up strategy
results in stronger alignment of layer-wise biases with the original PFL model, compared
to models where DFL is trained entirely from scratch. This suggests that warm-starting
DFL encourages smoother and more consistent bias adaptation, which likely improves the
models’ generalizability.

It is important to note that in our problem, yield naturally serves as a soft constraint of the
objective function, whereas price primarily incentivizes decision direction, rather than its
magnitude. This difference affects how DFL introduces bias into the two prediction models.
Since decision feasibility is highly sensitive to changes in the yield model, preserving its
pre-trained structure is critical. With warm-started DFL, the yield model changes very
little, helping to avoid harmful bias and supporting stable decision-making. Conversely,
the price model can tolerate — or can even benefit from - certain bias introduced during
DFL, as it helps align predictions with task-specific goals. Still, compared to training from
scratch, the bias introduced by performing DFL as a fine-tuning process remains more
moderate, reflecting a better balance between task adaptation and generalization.

Considering that price and yield function differently, we conducted comparative experi-
ments to assess the effectiveness of selectively warming up the training of each model. As
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is shown in Figure 6.5, initializing the yield predictions model with pre-trained weights
proves essential for solving the optimization problem effectively, as it ensures that deci-
sions are made under more realistic constraints, which contributes to the lower regret
observed. These findings reinforce that, for the yield model, preserving accuracy is more
important than inducing bias aligned with the task. In other words, an accurate estimation
of feasible regions provides a more reliable starting point for the following DFL phase.

Average regret on test data with different warm-up strategies
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Figure 6.5: Comparison of the effect of the pre-training strategy by the regret, of models with different training
losses. The color codes show which model(s) was/were pre-training on the MSE. The x-axis shows the model
depth, with “11i” referring to linear regression.

In the above experiments, the warm-up phase lasts until the model converges over 20
epochs based on MSE. As illustrated in Figure 6.6, the impact of warm-up on final per-
formance also depends on how well the model is pre-trained. To further explore this, we
compared our convergence-based, dynamic approach against using a fixed warm-up of 6
epochs, as used by [169]. While a short fixed warm-up can still offer some benefit, our
results suggest that a convergence-based schedule with sufficient patience contributes to
more robust and consistently better performance.

Meanwhile, implementing a warm-up process for both models reduces the average train-
ing time from 1.23 hours to 0.79 hours®. This time-saving effect is particularly notable
when only the yield prediction model undergoes the warm-up process. In contrast, warm-
ing up only the price prediction model does not result in a significant reduction in com-
putational time.

Average regret on test data with different pre-training policies
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Figure 6.6: Resulting regret of models warmed up differently. The titles indicate which model(s) was/were pre-
trained. The color shows the periods of pre-training.

*Averaged across all models in Figure 6.5 and all seeds. More comparisons can be referred to in the appendix.
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6.6.4 The sub-problems unveiled as classical DFL tasks

By using the ground truth of one parameter and implementing DFL with SPO loss on the
other, we simplify the real-world problem to a more ideal and classical DFL task. From the
middle plot in Figure 6.7, it is clear that SPO is a powerful solution when the yield is known.
In this case, where all constraints are fixed, the problem setting closely resembles the one
proposed byElmachtoub and Grigas [78], underscoring the strength of SPO under such
conditions. Thus, applying DFL to the task of price prediction represents a meaningful
and novel advancement over prior approaches.

However, the scenario changes when prices across all trading channels are known and the
prediction target shifts to yield. In this setting, yield directly influences key operational
outcomes such as overproduction costs and supply shortage penalties. As a result, achiev-
ing high prediction accuracy becomes even more crucial. This shift is illustrated by the
third subplot in Figure 6.7: the varying gaps between the three solid lines further empha-
size how the benefits of DFL depend significantly on the decision parameters involved and
their specific roles within the optimization.
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Figure 6.7: Regret of MLP models when one parameter is considered as known in the DFL task, compared to
previous PFL and (both-)DFL models’ performances. The subtitles indicate the specific loss function of the yield
(ly]) and price ([p]) prediction model. The x-axis shows the depth of the MLP model.

Further, when reviewing the training progress in detail, we observed that gradient van-
ished several times when training the price prediction model solely on the SPO loss. This
issue, which is known as the zero-gradient problem in several DFL studies [168], occurred
because price, in this context, functions purely as a decision-driven parameter. Conse-
quently, without incorporating a regularization strategy or a warm-up phase using MSE
during training, the model can become significantly biased, as demonstrated in Figure 6.3.

6.6.5 Real-world impact

In previous sections, we focused on model performance across training losses and strate-
gies, using the “wind-ori” dataset as an illustrative example due to its realistic and suffi-
cient data. Here, we evaluate the regret from 3-layer MLP models across the four scenarios
introduced in Section 6.5.4: the original wind farm case (“wind-ori”), a modified version
with more balanced price signals (“wind-50"), and two tomato-grower scenarios (“tomato-
¢” and “tomato-m”), where underproduction incurs heavier penalties than overproduction,
contrasting with the wind farm cases. We also consider the real-world impact of DFL by




6 Performance and Interaction Assessment of Model Architectures and Bivariate
88 Smart Predict-then-Optimize

evaluating mean error (ME) across the four cases and the profitability in the “wind-ori” sce-
nario. A summary of the resulting regrets under different learning settings are depicted
in Figure 6.8. To better understand the real-world implications of applying DFL, we also
evaluate the mean error (ME) across these four cases, as described in Table 6.1.

Influence of MLP architecture on regret
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Figure 6.8: Average regret of price and yield prediction models in different experiment cases. The loss function
is indicated in the x and y labels respectively. The wind cases share the color bar in the first row and the tomato
cases share that in the second row on the right.

Table 6.1 shows that DFL intentionally introduces bias in yield and price models to account
for asymmetric penalties: yield predictions are skewed to avoid costly underproduction,
while price predictions exaggerate contract-market price differences to favor more prof-
itable decisions. These biases reduce overall regret compared to models trained with MSE
alone, which suffer from symmetric error distributions that hurt downstream tasks.

Nonetheless, as Figure 6.8 illustrates, regret is a challenging loss for models to optimize
directly. This difficulty is especially evident when training jointly on regret for both tasks,
resulting in a noticeable gap between training and testing performance. Interestingly, we
find that lower bias in yield prediction often aligns with reduced regret in these cases. This
suggests that carefully controlled bias in DFL can improve prediction models and lead to
better downstream outcomes.

Figure 6.9 shows the profiting performance of selected models and two more case-specific
baselines: one used the optimal decision from the latest parameter realization (“last-round
decision”), and another trained models using MSE weighted by under- and over-supply
costs, i.e. ac and a3 in Equation (6.3) (“MLP: weighted-MSE”). These baselines, along
with the two blue boxplots, represent traditional two-stage approaches: first the forecast-
ing models are trained independently, and then decisions are optimized based on their
predictions. Moreover, while weighting MSE helps reduce extreme losses, it falls short
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Table 6.1: ME of price and yield predictions in different experiment cases. The loss function is indicated by the
2" and 4™ columns.

Case Price Yield

777777 Training Loss ~ Testing ME ~ Training Loss  Testing ME

tomato-c MSE 0.26 MSE -0.07

MSE 0.23 SPO 0.34

SPO -1.31 MSE -0.07

SPO -1.32 SPO 0.26

tomato-m MSE 1.10 MSE -0.02

MSE 1.01 SPO 0.02

SPO -1.18 MSE -0.04

SPO -1.32 SPO -0.04

wind-ori MSE -0.08 MSE -0.02

MSE -0.01 SPO 0.50

SPO 1.74 MSE -0.05

SPO 0.76 SPO 0.05

wind-50 MSE -0.08 MSE -0.03

MSE -0.22 SPO 0.47

SPO 2.11 MSE -0.05

SPO -0.23 SPO 0.40

of matching the profit levels achieved by DFL-trained models. This suggests that simply
improving the forecasting model has limited impact unless the prediction is aligned more
directly with the downstream objective.

Across all boxplots, the models with DFL applied on top of PFL-pretrained models (cyan
boxes) stand out by both raising the upper bound of achievable profits and reducing losses
in the lower tail. This indicates that their improved performance comes not just from
higher average returns, but from a more favorable overall distribution — achieving stronger
gains while limiting downside risk. The stability introduced by PFL helps maintain reliable
yield predictions, which in turn supports the SPO algorithm in enforcing constraints more
effectively. This enables DFL to better guide the prediction of decision parameters and
ultimately leads to more robust decision-making outcomes.

Profit distribution on testing datasets from different training strategies

1.0
0.5
0.0

—0.5

Absolute Profit

—1.0
¢
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MLP:MSE
MLP:Iveighted«MSE
MLP:SPO
MLP:[MSE]-[SPO]
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RNN:SPO
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{

Model Architecture : Training loss (noted as a shared loss function or detailed as loss[ P;]-loss[Y])
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warmed-up MLP:SPO
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Figure 6.9: Profit distribution in the “wind-ori” case, with a 6-layer MLP model. The [architecture:training loss]
configuration is indicated next to each box plot. The distribution plots are color-coded to distinguish the loss
functions and training strategies. Profits from optimal decisions based on parameter realizations are shown in
the yellow box, with the lighter yellow band serving as a value reference for other distributions.
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6.7 Discussion

In this study, we investigated the comparative effectiveness of prediction-focused learn-
ing (PFL) and decision-focused learning (DFL) within the “smart predict-then-optimize”
(SPO) framework. We empirically assess mode performance through a real-world task:
maing selling decisions in an integrated contract and (real-time) market trading system.
Our research extends existing DFL studies by (i) incorporating diverse neural network ar-
chitectures and exploring the impact of their learning capabilities, and (ii) addressing a
more intricate decision-making problem, where models collaboratively predict two types
of variables: market price as a decision parameter and yield as both a decision parameter
and a soft constraint.

Our benchmarks underlined a notable performance discrepancy: Models trained solely
on the regret, which is also known as the SPO loss, do not consistently lead decisions on
the test set to achieve the lowest regret. This inconsistency appears across various model
architectures and is especially pronounced in simpler models. Although we have explored
a variety of network architectures, our study covers only a small slice of the landscape of
deep learning. Future work aiming to discover the optimal network depth and architecture
in more problem settings may benefit from metaheuristic methods such as those proposed
in [139] and [8].

In terms of the efficacy of DFL and PFL, our investigation into model hyperparameters
demonstrates that although models trained with Mean Squared Error (MSE) and SPO loss
exhibit different biases, they tend to converge on similar layer weights and self-attention
patterns. Considering that PFL is more computationally efficient, it gives a clear moti-
vation for enhancing DFL by starting from models pre-trained with MSE. This warm-up
approach offers three main benefits: (a) narrowing the training-testing performance gap
by boosting DFL effectiveness; (b) reducing computational cost; and (c) improving gener-
alization by regularizing the bias introduced during DFL training.

In our specific use cases involving decision making as a wind farm operator or a tomato
grower, our findings highlight two key insights: DFL can change price predictions com-
pared to PFL, while accurate yield prediction is especially important when the yield serves
as a constraint in the decision-making process. This difference comes from the distinct
roles that price and yield play in the objective functions. In this way, our findings of-
fer clearer insights into the SPO method’s applicability and highlights the importance of
modeling constraint-related variables with care. Similar advantages were also evidenced
in other constrained decision-making scenarios, such as safe reinforcement learning [288].

In all case studies, the same input features were used for both prediction tasks, naturally
motivating the use of multitask learning (MTL) to improve learning and data efficiency.
Prior work [241] has shown that MTL with DFL can be especially effective for smaller
datasets. While we do not evaluate MTL in the wind farm setting due to its larger dataset
size, it presents a promising direction for sparser cases like the tomato price dataset dis-
cussed in Section 6.6.5.
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Discussion

In this thesis, we present four studies that systematically develop data-driven solutions
for a challenge investigated across three interconnected levels: the fruit, the greenhouse,
and the market. The work begins at the fruit level (Chapters 3 and 4), focusing on predict-
ing individual fruit characteristics. This analysis is then scaled up to the greenhouse level
in Chapter 5 to support harvest decision-making. Finally, the investigation is elevated to
the market level in Chapter 6 to analyze the overarching strategic and economic context.
This multi-level approach is supported by a combination of unique datasets curated for
this research (presented in Chapter 2) and publicly available market and climate data. Ul-
timately, this research provides a holistic and coherent solution to the initial real-world
problem: optimizing the supply and harvest planning of a soft-fruit supply chain.

This discussion chapter provides a comprehensive overview of the thesis from two dis-
tinct perspectives. First, we present detailed, question-by-question responses to the eight
research questions that form the foundation of the study. These responses are drawn di-
rectly from the findings presented in the published papers, which constitute the main,
interconnected, chapters of the thesis. Second, we synthesize three overarching insights
that go beyond the scope of the individual research questions. These insights integrate and
contextualize the key findings, highlighting their significance to the broader field of ma-
chine learning (ML) and its applications on decision-making tasks in the soft-fruit supply
chain. Accompanying these insights, we identifies potential directions for future research,
underscoring areas where further exploration can extend the contributions of this work.

7.1 Answers to Research Questions

The four paper-based chapters, Chapters 3 to 6, answered the eight research questions
framed in detail in Section 1.2. Our contributions span the entire pipeline, from data
acquisition and modeling to operational optimization and strategic decision-making. We
began by developing methods to monitor and assess the fruits when they are still in field,
specifically, by investigating Multiple-Object Tracking (MOT) algorithms to keep track of
the fruits and designing ML models to predict their quality from images and micro-climate
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data. These insights informed our formulation and predictive modeling of their biological
development process, enabling us to optimize fruit-specific harvest plans for short-term
demand. We also elevated the analysis to a strategic level, leveraging decision-focused
learning (DFL) to forecast productivity (yield) and market (prices), thereby supporting
growers in making more profitable selling decisions. Below, these questions are answered
specifically according to these findings, with the relevant chapters noted for each.

1. How accurately can key quality attributes of fruit, such as external charac-

teristics like ripeness and internal properties like sugariness, be estimated using

in-field data? How do these estimations compare to traditional assessments or
?

benchmark methods based on laboratory data? Chapter 3, Chapter 4, Chapter 5

We proposed two main conceptual methodologies, one for measuring the growth based
on (longitudinal) observations, and the other for performing non-destructive quality esti-
mation of internal properties such as sugariness (Brix) and firmness.

The former was built upon revisiting the evaluation criteria” instead of using ML mod-
els to imitate human horticulturalists’ evaluations, we considered directly taking the hue
from camera observations. This approach provides consistent, objective, and quantitative
evaluations of the entire growth cycle, moving beyond subjective human perception. Our
comparison to human-based labeling in Section 5.4.1 shows that while overlaps exist be-
tween fine-grained categories due to human subjectivity, objective color metrics provide
a more reliable measure, supporting their use in a continuous scoring system.

For the latter, our models predict strawberry Brix with competitive accuracy using in-field
data, collected from easily-acquired devices. The results confirm the feasibility of reliably
anticipating fruit quality pre-harvest, supporting better harvesting and supply strategies.
This non-destructive method is suitable for in-the-wild use and has been integrated into a
mobile app with offline models to demonstrate its feasibility in real practice.

11. How important are the image and micro-climate sensor data in training proper
(internal) quality prediction models? What is an optimal way of utilizing this

multi-modal data? > Chapter 4

Our analysis reveals the complementary roles of environmental and image data for pre-
dicting internal fruit quality. While environmental data — particularly records from the
past fourteen days — proved to be more influential, it cannot pinpoint fruit-specific quali-
ties on its own. Image data provides this crucial specificity, yet is insufficient on its own
for robust prediction.

This synergy explains why an integrated, multi-modal approach is optimal. This is con-
firmed by our results, where the optimal models integrated image features with weather-
based, aggregated Brix predictions, achieving a significant reduction in RMSE over base-
line methods and related works.

111. What are the distinct characteristics of a long-term monitoring task compared
to typical MOT tasks? How will they affect the performance of existing MOT

algorithms, compared to their benchmarks on typical MOT tasks? apter 3
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Tracking the growth of biological objects presents a distinct MOT challenge, primarily
due to the significant temporal evolution and sparse data collection during a prolonged pe-
riod. To investigate this, we curated the “The Growing Strawberries Dataset (GSD)”, which
exhibits two characteristics that differ from typical MOT benchmarks such as MOT20: (1)
progressive appearance changes driven by biological development, and (2) irregular object
movements resulting from a low frame rate.

These factors create a significant challenge for existing MOT algorithms. The slow but
drastic appearance changes make it difficult to maintain consistent object associations
over time, while the irregular movements increase the risk of identity switches. Our
benchmarking of five state-of-the-art MOT algorithms on GSD confirms these limitations,
revealing a marked performance decline in long-term tracking for such dynamic objects,
as detailed in Section 3.4.5.

1v. Apart from MOT metrics, how can monitoring results be practically assessed?
In what ways can they be combined with in-field quality analysis to effectively

represent biological development?
> Chapter 3, Chapter 5

For a practical assessment beyond standard MOT metrics, we first quantify ripeness through
color hue analysis, a method also central to our answer for Research Question 1, and then
use these ripeness indicators to model the complete growth trajectory of each fruit. By
mapping this maturity data to MOT annotations, we find that the biological development
of strawberries follows a typical S-shaped “growth function,” a finding that aligns with es-
tablished horticultural research. These functions reveal growth trends and rate variations
under different cultivation conditions.

Interestingly, this process also highlights a key challenge for many state-of-the-art MOT
algorithms: their performance, particularly with increased trajectory fragmentation and
ID switching, more often when a fruit’s color changes rapidly (Figures 3.6 and 5.6). This
finding not only highlights the significant challenge that appearance changes pose in the
MOT field but also underscores the value of incorporating physical properties — such as
the color development that we demonstrated - when examining real-world challenges.

v. How can we analyze and apply individual growth patterns at the fruit level to
support the decisions and optimization at the level of a whole greenhouse?

> Chapter 5

Following the answers to Research Question 1v, once individual growth functions are es-
tablished, they can be aggregated to train predictive models that forecast the development
of new fruits. In the CROPI1 framework (Chapter 5), we explored two such modeling ap-
proaches: a traditional parametric growth function and a novel “growth language” model
inspired by NLP techniques.

vi. How can individual fruit growth models be used to plan the harvest and opti-

mize the greenhouse’s production?
> Chapter 5
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Crop yield estimation can be approached in two ways: as a multivariate time-series analy-
sis or as an extended object detection task, which counts the number of maturing fruits in
sample areas and scaling up the results. Our research primarily focuses on the former ap-
proach, employing a popular DFL method called “smart predict-then-optimize” (SPO). This
method incorporates the downstream impact of predictions into the training of predictive
models, enhancing their relevance for decision-making.

In the meantime, we retain the latter approach as a complementary strategy to tailor the
final yield by controlling and rescheduling the harvests to some extent. This involves
formulating and fitting growth models to observable fruits, a need previously addressed
by Research Question 1v. The outcomes of these growth models are crucial for optimizing
harvest timing and improving overall production management.

vil. How can the investment performance be improved by making the yield fore-
casting model aware of the downstream economic impacts of their predictions?
What is the effect on the model and on the profitability?

> Chapter 6
Having established methods to monitor, predict, and optimize the physical harvest at the
fruit and greenhouse levels, the final strategic challenge is to maximize the financial per-
formance of that supply in the market. To address this, we frame the decision of how
to sell the harvested produce as a portfolio optimization problem in Chapter 6. The goal
is to maximize profitability by optimally balancing fixed-price contracts with forecasted
opportunities in (volatile) real-time markets, all while accounting for an uncertain and
not fully controllable production volume. While this scenario was initially developed for
our strawberry case, this framework is also applicable to a broader range of real-world
situations, such as trading other agricultural products or renewable energy.

We explored two approaches: prediction-focused learning (PFL), which uses prediction ac-
curacy as the loss function, and decision-focused learning (DFL), which uses the SPO loss
(“regret”). Our analysis of models trained with the SPO loss revealed a common perfor-
mance discrepancy: models trained solely on regret did not consistently minimize testing
regret. Additionally, we found that combining MSE and SPO losses led to different biases,
yet similar layer weights and self-attention coefficients. This effect was relatively more
evident in the price prediction model, where the output does not constrain the objective
function of the downstream optimization problem.

viil. What is an effective strategy to predict and realize greenhouse production,
so as to achieve the best alignment of supply with downstream parties?
> Chapters 5 and 6

Our ultimate solution is a two-stage method that integrates strategic, long-term commit-
ments with dynamic, short-term harvest planning. The first, strategic stage establishes
the overall production goals by defining long-term supply targets, which are often fixed
by contract farming. These targets are informed by the improved yield and price forecast-
ing algorithms developed in our answer to Research Question vi1. The second, operational
stage then uses individual fruit growth models to determine the real-time readiness and
availability of the crop, as addressed in our answer to Research Question vi1.
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This process culminates in a harvest plan where the predicted supply of ready fruit (from
the operational stage) is matched against the daily requirements derived from the long-
term contracts (from the strategic stage). By determining the ideal harvest date for each
fruit, this method ensures that the overall harvesting decisions to be best aligned with
the greenhouse’s most important strategic commitments, creating a more profitable and
practical production plan.

7.2 Outlook and Insights

Building on the paper-based chapters, this section synthesizes three overarching insights
that integrate and contextualize the key findings: the transformative potential of AL the
pivotal role of data, and the importance of dataset consistency in achieving impactful and
scalable solutions. Collectively, they underscore how machine learning transforms op-
erational data into actionable insights, enabling non-destructive and automated quality
assessment which, in turn, informs and optimizes greenhouse’s decisions, while also sug-
gesting promising directions for future research and development.

Al Enables Harvest and Portfolio Optimization for Growers.

This thesis focused on how Al can enhance the daily operations of small growers, who rely
on supply contracts for stability about what will be sold and when, yet face challenges from
limited negotiating power and the inherent uncertainty of agriculture. To navigate this
uncertainty, growers employ several operational strategies: (i) utilizing more flexible but
less stable selling channels such as local markets; (ii) modifying the harvest schedule by ad-
vancing or delaying harvest times; and (iii) employing buffers like cold storage to manage
surplus. Effectively balancing the stability of long-term contracts with these short-term
adjustments is the most critical challenge. Therefore, our ultimate solution is a two-stage
method that integrates strategic, long-term commitments with dynamic, short-term har-
vest planning. The strategic stage, addressed in Chapter 6, focuses on optimizing contract
portfolios across multiple sales channels. The operational stage, detailed in Chapter 5,
then uses these strategic goals to guide daily harvest decisions.

For the strategic stage, our work in Chapter 6 explore how ML models can balance compet-
ing demands from multiple selling channels. Our findings highlight that DFL essentially
tailors bias layers in neural networks to steer decision-making toward risk aversion. This
effect is particularly pronounced when the model output serves as a decision parameter
but not constraining the problem. However, DFL is not a one-size-fits-all solution. When
decisions rely on multiple model outputs, we recommend initializing training with inde-
pendent loss functions, such as mean squared error (MSE), to capture essential feature
patterns efficiently as the first step.

For the operational stage, we introduce CROPI, an end-to-end framework for optimizing
harvest schedules. In Chapter 5, we frame the task as an assignment problem, aiming
to maximize the alignment between predicted fruit quality and demand at specific time
slots. While the demonstration uses color as a proxy for quality, the framework is exten-
sible to other metrics such as size and firmness. A key limitation of the current setting
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is the assumption of risk-neutrality, hence, making stochastic, robust, or scenario-based
optimization methods more practical alternatives for risk-averse decision-makers.

Looking ahead, future work could incorporate storage as the third optimization strategy.
For instance, it could address a key limitation in the CROP1 framework by offering a more
realistic alternative to its current handling of surplus fruit, which simply assumes all over-
productions can be sold at a fixed discount/cost. Truly integrating storage, however, re-
quires moving beyond the fixed-horizon Hungarian method used for daily assignments.
This extension of the problem would necessitate advanced techniques such as dynamic pro-
gramming, Monte Carlo simulations, or reinforcement learning to optimize longer-term
decision-making. Moreover, adopting such methods would also require a more complex
market dynamics model from Section 6.5. Tackling these emergent challenges can be the
next frontier for this research, promising a truly unified AI solution for building more
resilient and profitable grower portfolios.

Analytical Methods Support Objective Fruit Assessments.

In the market, fruit is categorized by attributes like ripeness, size, shape, Brix, firmness,
shelf life, and etc., which can enable price discrimination [123, 195]. However, this reliance
on subjective grower expertise frequently leads to disagreements with downstream cus-
tomers over quality standards, resulting in significant financial losses, food waste, and sup-
ply chain inefficiencies. Our research addresses this by developing objective, data-driven
evaluation methods, whose practical adoption is increasingly viable due to the rapid ad-
vancement of fast, portable computer vision (CV) models.

Ripeness assessment is a prime example, which is often subjective because reference stan-
dards are not always consistently applied in real practice. We address this by proposing
raw color hue as a direct, quantitative indicator of ripeness, rather than training ML mod-
els to mimic flawed human evaluations as most related works did. This hue-based ap-
proach was first validated against human perception in Chapter 5 and then extended into
a parametric growth function. The resulting growth model proved versatile, as we also
used it in Chapter 3 to visualize and diagnose failure modes of MOT algorithms. This pro-
gression demonstrates how a simple, objective metric can be foundational for developing
powerful analytical tools with applications far beyond initial quality assessment.

Another challenge is destructive testing, required for metrics like Brix or firmness. Achiev-
ing a reliable estimate requires sacrificing a large proportion of harvests, which causes
waste. To address this, Chapter 4 details a group of ML- and CV-based methods to predict
Brix using multi-modal data. Our models demonstrate an accuracy comparable to lab-
based benchmarks on in-field data, showcasing their better efficacy and practical viability.
Because the models were trained on the growth monitoring dataset GSD, future work can
leverage early-stage images to forecast Brix or even its development.

Building on these proofs of concept, our data-driven approach also holds the potential to
be extended to other key attributes. For instance, CV offers a promising, non-invasive
alternative for size and shape measurement, though robust models require larger datasets
to tackle the problem of partial visibility. Firmness, another destructive test, can likely be
addressed with methods similar to our Brix prediction [123]. Shelf life, however, presents
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a more complex challenge, as our current models cannot be directly transferred to this
task. Overall, synthesizing these methods can provide the supply chain with a unified,
data-driven language for assessing fruit quality in an non-destructive manner, ultimately
enhancing the efficiency and profitability.

Dataset Consistency and Sufficiency are Critical for Solu-
tions when Spanning Multiple Seasons.

This project produced two complementary datasets using affordable, real-world hardware:
a time-lapse image dataset (“the Growing Strawberries”/GSD) for longitudinal growth
monitoring, and a multi-module dataset linking images to detailed quality assessments.
These resources enabled our research at the fruit and greenhouse levels, while market-
level analysis utilized public data.

GSD, created to document long-term biological development, presents unique challenges
that are actually common in real-world data collection. When forming an MOT task, the
fruits’ irregular movement and evolving appearance create conditions rarely encountered
in standard MOT datasets. Furthermore, because the data spans multiple daytime and
seasons, it highlighted the critical importance of data consistency. We found that subtle
changes in field illumination caused significant fluctuations in color hue, which compli-
cated the evaluation in Section 5.4.1 by causing measurements to misalign with human
perception. When physical interventions during collection are infeasible, robust post-
processing becomes essential. While algorithmic techniques like color correction offer
limited mitigation, deep learning methods such as generative models achieve higher out-
put consistency, yet with the risk of altering the actual color. This trade-off between
algorithmic performance and data fidelity calls for future work on developing advanced
models that can ensure color consistency without distorting the underlying data.

The multi-module dataset combines images from GSD with critical cultivation data like
micro-climate records, to enable research on non-destructive quality prediction and pre-
cision agriculture. However, its sufficiency for training large neural networks is a key
limitation. While techniques like transfer learning can maximize the utility of the exist-
ing data, developing truly robust models still requires more extensive datasets. This limi-
tation underscores the need for greater collaboration and a commitment to open science.
By collectively expanding and sharing foundational resources, the research community
can accelerate progress and foster a more impactful research environment.
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Appendix

A.1 Hosting and licensing information
License

GSD is released under the Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International (CC BY-NC-ND 4.0) license.

Terms of Use

By accessing and using GSD, users agree to comply with the terms and conditions outlined
in the CC BY-NC-ND 4.0 license. Users are responsible for ensuring the appropriate use
of the dataset in accordance with the license and any applicable laws or regulations.

Author statement

The corresponding authors state that they collected the data as described in this document
and in the main paper. The authors have the right to publish this dataset. GSD is licensed
under the CC BY-NC-ND 4.0 license. Users of this dataset are required to comply with the
license terms, including providing proper attribution when using the dataset. We provide
the dataset “as is”, without any warranty or guarantee of its accuracy or reliability. We
disclaim any liability for errors, damages, or consequences arising from the use of the
dataset.

Hosting and Maintenance Plan

GSD is hosted and maintained on 4TU.ResearchData Platform. It is published with a DOI
doi.org/10.4121/e3b31ece-cc88-4638-be10-8ccdd4c5f2f7.v2 for long-term accessibility and
versioning under the CC BY-NC-ND 4.0 license.

The extended-GSD and dark-GSD is hosted and maintained on 4TU.ResearchData Platform.
They are published under [268] and [267] for long-term accessibility and versioning under
the CC BY-NC-ND 4.0 license. Overall, we made a collection of all the growth monitoring
images at doi.org/10.4121/f2ad72ce-3e5b-429e-ba14-78eed903ce03.

The measurement and environment dataset is hosted and maintained on 4TU.ResearchData
Platform. The data accompanying Chapter 4 is published at doi.org/10.4121/21864590.v1.
The collection of all the measurement and environment data over the four years, as pre-
sented in Chapter 2 is published at: doi.org/10.4121/1d02156d-7011-4052-8175-da52a2e32cba
for long-term accessibility and versioning under the CC BY-NC-ND 4.0 license.

The code that we used in Chapter 6 are available at: anonymous.4open.science/r/predict-
then-contract-F6EB/. The GitHub address will be available with the camera-ready version.


doi.org/10.4121/e3b31ece-cc88-4638-be10-8ccdd4c5f2f7.v2
doi.org/10.4121/21864590.v1
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Dataset Structure

To suit studies in different fields, we separate our datasets into two main sets: the time-
lapse images for growth monitoring, and the relevant data to conduct quality prediction
studies. This section presents the abstracted structure and the connection of the two sets.
Detailed licensing and hosting information can be referred to Appendix A.1.

Time-lapse images

Part of the time-lapse images set, collected in 2021 and 2022, has been annotated and pub-
lished with the paper Wen et al. [272], it is named as The Growing Strawberries Dataset
(GSD) and hosted by the 4TU.ResearchData Platform: Wen et al. [269]. Along with the
main MOT dataset, we provide a sample subset of GSD under the file folder GSD-Sample.
The sample includes images collected from 2021-09-01 to 2021-09-02 by RGB-3, and the
corresponding annotations in a coco-format JSON file and a TXT file compatible with the
MOT evaluation tools. The images are with the original filenames assigned by the cameras
when the photos were taken. We also provide a short video to illustrate a subsequence
of GSD. The video presents the growth monitoring of strawberries from 2021-09-01 to
2021-09-07 in RGB-3. The non-annotated images collected in 2023 and 2024 are archived
on 4TU.ResearchData Platform, of which the daytime images are established as ”extended-
GSD” and the darker images are stored together with “dark-GSD”. Overall, we made a
collection of all the growth monitoring images at Wen et al. [270].

Growth Monitoring of Strawberries with in-Field Time-Lapse Images
| The Growing Strawberries ("GSD") [269]
. _GSD-Images
| <year> (2021/2022)
L4,<camera> (RGB/OCN-1/2/3)
img
LA,<image-id>.jpg
| _GSD-Annotations
<cam.> (RGB/OCN-1/2/3-’21/22).json
<cam.> (RGB/OCN-1/2/3-"21/22).txt
| GSD-Sample
img
|_*.jpg
gt.json
gt.txt
GSD-sample_video.mp4
| Extension of The Growing Strawberries ("extended-GSD") [268]
2023
| <camera> (RGB/OCN-1/2/3)
L_*.jpg
2024
L4,<camera> (RGB-1/2/3/4 and Overhead-1/2)
|_*.jpg
| _Dark Images of The Growing Strawberries ("dark-GSD") [267]
| <year> (2021/2022/2023/2024)
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<cameras of each year>

L *.jpg

annotations (for 2021/2022)

| <cam.> (RGB/OCN-1/2/3-721/22).7son

Quality prediction

The subset of the quality prediction dataset collected in 2021 was published as the accompa-
nying dataset of Wen, Abeel, and de Weerdt [264], which benchmarked the Brix prediction
methods and is also the Chapter 4 of this thesis. The prediction about ripeness and firmness
using convolutional neural networks (CNN) was analyzed in Jol, Wen, and Van Gemert
[123]. Since the cultivation performance can vary from year to year, we still keep collect-
ing and extending the dataset over more seasons. For instance, Appendix A.7 include new
measurement results from different greenhouses and cultivation years to validate the mod-
els demonstrated by Wen, Abeel, and de Weerdt [264]. To include different perspectives
of quality measurement labels with the in-field images collected at different years, we re-
organized the entire dataset and archived them as an entire group in the 4TU.ResearchData
Platform, while the original dataset was still available in the same platform [266].

Strawberry Quality Prediction with in-Field Data
| __Individual quality evaluations
| RGB segments
t::<year>_<day—of-year>_<fruit—id>.png
<year>_<day-of-year>_<fruit-id>_bbox.png
|  OCN segments
t::<year>_<day—of—year>_<fruit—id>.png
<year>_<day-of-year>_<fruit-id>_bbox.png
. _Measurement and labeling
Measurements_with_Image_Connections-<year>.csv (2021/2022/2024)
On-shelf images (2022)
L% jpg
. Micro-Climate
LA,Greenhouse_Environment-<year>.csv (2021/2024)
| Aggregated quality evaluations
Strawberry_Measurements-<year>.csv (2021/2022/2023/2024)

The original dataset [266] was structured as in below. The image part of the dataset con-
tains the growth-monitoring images with their original names, which has the correspond-
ing timestamp associated. No specific format is considered.

Data underlying the research of quality prediction of strawberries with
GB image segments [266]

Segments
L<date>_<fruit—id>.png
Images
| *.JPG
Strawberry_Measurements_with_Seg_Connections_mtdl.csv
Greenhouse_Environment_Hourly_20210401-1118.csv
Strawberry_Plant_Load_2021.xlsx
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A.2 Implementation details for Chapter 2

This section introduces the detailed data collection hardware setup of GSD.

Data collection setup

The strawberries in the greenhouse were cultivated in planting baskets, which were hung
in parallel lines. Figure A1 gives a side view of the rows. Strawberries grew out from both
sides of the baskets.

Figure A1: A side view of the planting baskets. The cameras were attached to the heating pipe at the neighbor’s
row. For example, if the strawberries grew in the left row in the image, cameras would be installed at the
highlighted heating pipe. This particular image is not taken by the data collection devices, so the distortion in
the image is not related to the strawberry observations.

The cameras were grouped as three pairs of RGB and OCN cameras. They were installed
on the opposite row from where the strawberries were growing, as shown in Figure 2
in the main text. As Figure A2 shows, they were fixed on the heating pipe with camera
clamps. They were connected to the local electrical grid with a powered USB hub, so they
could stay awake all the time.

Camera Settings

We used cameras from MAPIR®to collect the time-lapse images. We used Survey3N - Vis-
ible Light RGB for RGB image collection and Survey3N Camera - Orange+Cyan+NIR (OCN,
NDVI) for OCN images. All cameras had the same settings as we show in Table A1. We set
the shutter speed, ISO, and white balance into the auto to maintain an optimal state of each
image. No extra exposure was added. We take the neutral setting of color presentation,
contrast, and sharpness.
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Figure A2: Camera installation for data collection. The cameras were fixed to the heating pipe and connected to
the electrical grid with the yellow USB hub.

Table Al: Settings of the data collection cameras. Hereby all the changeable settings of the cameras are listed.
There is no difference when setting the RGB or the OCN cameras.

Item Setting
Shutter Auto
1SO Auto
White Balance  Auto
Exposure 0
Metering Centre
Color Normal
Contrast Medium
Sharpness Medium

A.3 Implementation details for Chapter 3

We introduce further details about the implementations of the algorithms and explain the
reason of our parameter settings in this section.

All the object detection and MOT algorithms that we used for the benchmarking experi-
ments are open-source: YOLOX-x and Faster R-CNN (model established with the Detec-
tron2 framework [278]) come with Apache License 2.0. ByteTrack and OC-SORT use the
MIT License. DeepSORT and StrongSORT use GNU General Public License v3.0.
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Figure A3: Example dark images at different brightness levels. The collection time and the average Luma are
written on top of each image. The RGB spectrum is drawn beneath.

Selection criteria of daytime subset of image data

We have divided the set of images into a daytime subset, which has a brightness (Luma)
of at least 50, and a dark image set which is not annotated. We calculated the brightness
(Luma) of images according to [29], and here exemplify the brightness levels in figure A3.
We illustrate the example images and the corresponding Luma to show that 50 is a ra-
tional threshold to select the “day-image” and “dark-image” subsets. An overview of the
proportions of images with different levels of brightness is shown in figure A4.
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Figure A4: Histogram of GSD images under different ranges of brightness. The brightness value is calculated in
Luma and averaged over all pixels.

Detection models

We trained two object detection models, YOLOX-x [87] and Faster R-CNN [207], to per-
form the object detection stage of the MOT algorithms. Since they had similar perfor-
mances, as presented in appendix A.6, we selected the MOT results produced only from
the YOLOX-x model’s predictions in the main paper.

This section presents the hyper-parameters for building up and training the models. Both
models are trained with the complete RGB image dataset, with a “leave-one-camera-out”
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train-test-split strategy since the RGB cameras monitored different plants. The two models
shared the same scales of data augmentation, listed in table A2. The detection results are
filtered with a confidence threshold of 0.1 before going to the association stages of the
MOT algorithms.

Table A2: Data augmentation for training the object detectors. The first column lists how we augment the data,
and the second column indicates the value ranges.

Data Augmentation Method  Scale

Random flip horizontal (probability =) 50%
Random flip vertical (probability =) 50%
Random rotation 0-90 degrees
Random brightness % 0.92-1.12
Random contrast % 0.92-1.12

The YOLOX-x model was initialized with a COCO[152] pre-trained model. The images are
scaled to 2133x1600 and then padded to 2174x1600 to fit the input aspect ratio. The batch
size for training is 4. The model is trained with a cosine annealing learning rate 3.125¢7°
with a warm-up, and a weight decay of 5¢™*. The model is trained by 100 epochs on an
Nvidia Tesla V100 GPU. We select the checkpoint with the optimal parameters on the
validation set to predict the object detection results for further steps of the experiments.

We trained another Faster R-CNN model using the original ResNet-50 from MSRA [108]
and Feature Pyramid Network (FPN) [151] as the model backbone. The model is pre-
trained with ImageNet [68].

MOT algorithms

Before starting the evaluations of the MOT algorithms, we first conducted grid searches to
figure out the optimal parameters for the strawberry growth-tracking scenario. The grid
search was conducted on the YOLOX-x detections of the RGB-1 set.

table A3 and A4 present part of our grid-search results. As is shown, the Intersection over
Union (IoU) threshold (“iou-thre”) was the dominant variable of performance of OC-SORT,
both in terms of MOTA and IDF1. One reason could be the irregular movements of objects,
illustrated by the Figure 4 in the main text. The confidence threshold had limited effects
when using low IoU Threshold.

DeepSORT uses the maximum cosine distance of features (“max-cos-dist”) as a gating
threshold. Considering the changing appearance of the GSD objects, we checked the co-
sine distance of the features of the same object over the frame. As depicted by figure A5,
the features of adjacent observations of the object have an average cosine distance of 0.44.
Hence, we regard distances larger than the value are large enough for distinctive objects.
Therefore, we select 0.45 as the max-cosine-distance value when implementing DeepSORT
and StrongSORT.

The final decision on the parameters is made by referring to the grid search results and
the default settings of the MOT algorithms. Details are listed in table A5.
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Table A3: Grid search of iou-thre and conf-thre in OC-SORT. Performances are indicated by MOTA. All experi-
ments have a default setting of min-hits=3 and max-age=30. The selections of conf-thre are the indices of rows,
and the selections of iou-thre are indicated by the columns.

IoU Threshold
Confidence Threshold | 0.1 0.3 0.5 0.7 0.9

0.1 | 645 614 561 456 157
03 | 646 614 562 456 157
0.5 | 645 614 56.1 456 157

Table A4: Grid search of iou-thre and conf-thre in OC-SORT with performances indicated by the IDF1 score
under different settings. All the experiment settings are the same as in Table 2. The selections of conf-thre and
iou-thre are the indices of rows and columns respectively.

IoU Threshold
Confidence Threshold | 0.1 0.3 0.5 0.7 0.9

0.1 | 673 649 606 512 20.2
03 | 674 649 60.6 51.2 20.2
0.5 | 673 648 605 51.2 20.2
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Figure A5: The cosine distances of the normalized features of adjacent observations during the complete track
of an example strawberry. The x-axis shows the temporal sequence of the observations, and the y-axis indicates
the cosine distance from the previous observation. The features are encoded by the same extractor as we used
for DeepSORT and StrongSORT. The blue line presents the original cosines distances, and the orange line depicts
the effect of adding a gate threshold = 0.45.

Table A5: Detailed parameter settings of the benchmark experiments of the MOT algorithms.

conf. thre iouthre minhit maxage max cosine-cost

OC-SORT 0.1 0.1 3 30 -
ByteTrack 0.1 - 3 30 -
Deep-SORT 0.1 0.1 1 30 0.45
Strong-SORT 0.1 0.1 1 30 0.45
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A.4 Implementation details for Chapter 4
Time span

We archived hourly environmental records and weekly plant load data during the data
collection period, as previewed in Table 2.1. We grouped the environmental information
as rolling averages every 7 days for the model training.

The plant load was recorded by calendar weeks, from the 12" week to the 42" week
of 2021. As no finer time information was available, the significance of plant load was
analyzed in different branches of experiments when all the other environment information
was also aggregated by calendar weeks.

Neural network architectures

We trained two/three/four-layer CNNs from scratch for supervised learning (SL), with
kernel size 12¥12, 99, or 6"6. Each was connected with a two-layer multi-layer percep-
tion (MLP) which outputs the Brix value of each strawberry. When considering transfer
learning for the SL, we replaced the CNNs trained from scratch with popular pre-trained
models such as the ResNet and the EfficientNet. We used three-layer and four-layer CNNs
to build the encoders and decoders for semi-supervised learning (SSL). We considered max-
pooling layers of 2*2, 4*4 and 5*5 among the convolutional layers to reduce the volume of
the latent space. The MLPs that mapped the latent space to the final output, i.e. the Brix
values, consisted of three or four fully connected layers.

Parameter selection of regression models

We tested four scales of regularizers (also named “alpha” in mathematical models) in the
kernelized ridge regression (KRR), with three degrees of the polynomial kernel (“degree”).
As is shown by Figure A6, the levels of fitness were illustrated by plotting the predicted
Brix value with the first principal component of all the input features, which is all available
environment records up to 21 days in advance. We finally decided to use both alpha=1 and
alpha=10 in our experiment series.
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Figure A6: Parameter tests of the regularizer (alpha) and polynomial kernel (degree) in the kernelized ridge
regression (KRR). We tested alpha=0.1,1,10,100 and polynomial degree=1,2,3 to decide the final parameters. The
influences from various alpha are discussed over rows, and the fitness under different polynomial degrees is
compared within each row. The x-axis of each subplot indicates the value of the first principal component of the
input feature. The y-axis of each subplot indicates the value of Brix. All the data points are sorted by the scale
of the first principal component, so as to better present the influence from the regularizer.
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A.5 Implementation details for Chapter 6
Model parameters

Table A6 lists all the notations that we use to describe the models in Sections 5.2 and 5.3
of the main text. In the main text, every decision parameter or variable is introduced with
a boldface, and used in italic in later texts.

Table A6: Annotations of decision parameters and variables.

Notation Description

Objective function: the profit. It is a function of Y, P, P, D..
D, Decision variable: the amount of product that is planned to be
sold by the contract.

D, The decision of contract transaction made under predicted pa-
rameters.

t The time gap between when a contract is signed and when the
transaction is executed.

Y The production/yield of the product, in an artificial volume unit.

P, The unit price of the product sold by the contract, in an artificial
monetary unit.

P, The unit price of the product sold at the market.

Y, P, The predicted values of the production Y and market price P;.

(act'Pc+bct)
(art'Pr +brt)

T

The maximum transaction capacity of the contract, also written
as acsP.+b,; using the fully competitive market model.

The maximum transaction capacity of the market, also written
as a,¢P.+b,; using the fully competitive market model.

The actual amount of product sold by the contract at the trans-
action date, limited by the pre-made decision, the actual produc-
tion, and the contract capacity, i.e. T, = min{D,, Y, Temax}-

The actual amount of product sold at the market at the transac-
tion date, limited by the unsold items from the contract and the
market capacity, i.e. T, = min{Y—Tg, Ty max}-

The unit cost of the production.

The unit cost of delivery shortage of the contract.

The unit cost of over production waste.

Situation-wise object function

Due to the time gap t between committing and executing transactions to the contract,
the contracting decision can only be made under a few parameter predictions, i.e. D, =
argmaxp, Pft(D,,P., ﬁr, f/). Due to the limitation from contract capacities and production
amount, there can be varied consequences: For decisions within the feasible region, i.e.
D.>0,D.<Y,D.<(a¢s"P.+ber), we have T, = min{D,, Y, (acs-Pe+bes)} = D.. Since P, is
known when contracting, the only constraint that the decision can violate is when ¥ > Y
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results in D, > Y. In that case, we have T, = min{~D~C, Y}=Y <D, =D, <min{Y,(ac P+
be;)} and we pay the supply shortage fine: ax-(D.—Y) = ag, - (D.—Y), which acts as the
penalty of the constraint set. In short, we can re-write equation (2) in the main text into a
situation-wise form:
Pft(D., Y, P, Py)
=P, -To+P,-Ty—a¢ - Y —acg- pos[De— Y] —ae- pos[Y — T — T,
when Y-D, <0 :
=P.-Y—ag - (D.—Y)
= —ae De+ fi(Y,P) (1)
when 0 < Y=D, < (ap-Pr+byy) :
=P De+Pr-(Y=Dg)—ae Y
= (Pc~P,)-Dc+ fo(Y,P,) (2)
when 0 < Y=D, > (a,-Pr+byy) :
=P D+ Py (a0 Prtbre) — aci - Y —acs - (Y=De—(ay¢-Pr+byr))
= (Pe—acs) De+ f(Y, Py) (3)

Here, f.(...) denotes a function that depends solely on the parameters within the paren-
theses (bracelet) and is not influenced by external factors, such as D.. As shown above,
Pft(Dc, Y,P.,P,) is a piece-wise linear function of D Hence, its second-order derivative
is not constantly equal to 0, and SPO loss is feasible to implement in model training.

lllustration of problem setting

Figure A7 illustrates the training setting of the models and how the losses, which can be
either the regret (SPO loss) or the mean-squared error (MSE), are back-propagated.

Object function: Profit

| = Pricecontrace - Transactioncontrace

MSE loss + Pricemarier - Transactionyngryet
_____ = = — = 5[production cost] — [miss supply cost] — [over supply costs]

198S ainjesa

Figure A7: The training setting.
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Case-specific configuration
Wind farm case

We set up the profit function of the wind farm case using the parameter values as in
Table A7*. Among all data points, the contract’s capability bound 12% of the optimal
decisions, and the actual yield bounds 9% of the optimal decisions. Moreover, 6% of the
optimal decisions are valued at 0, when the real-time price is higher than the day-ahead
price and the market capacity is also sufficient.

Table A7: Parameters to calculate the profit in the wind farm case.

Name Value Note

ac -0.269  Weight from fitting the mapping of day-ahead price to a proportion*
of total energy load by ridge regression (RR, alpha=10).

b, 0.774 RR bias from fitting the mapping by plus a small intercept, such that
the yield exceeds the contract capacity in ca. 1/3 of the cases.

ar -0.454 RR weight from fitting the mapping of real-time price to the propor-
tional load.

b, 0.613 RR bias plus a small intercept, such that the yield exceeds the total
capacity in less than 10% of the cases.

act 0.005 A smaller number than that of the tomato case.

ac2 0.578 Averaged real-time price.

acs 1.734  3x averaged real-time price.

Tomato grower case

Using the values from Table A8, the contract’s capability bounds 34% of the optimal deci-
sions, and the actual yield bounds 68% of the optimal decisions in the tomato case.

Table A8: Parameters to calculate the profit in the tomato case.

Name Value Note

ac -0.113  RR weight from mapping the contract price to the yield.

b, 2.087 RR bias plus a small intercept, such that the yield exceeds the capacity
of the contracts in ca. 1/3 of the cases.

ar -0.152  RR weight from mapping the contract market price to the yield.

b, 0.391  RR bias plus a small intercept, such that the yield exceeds the capacity
of the entire multiple-market system in less than 10% of the cases.

Acl 0.010 A larger number than that of the wind farm case.

ac2 4710  3x Averaged market price.

ac3 1.570  Averaged market price.

“The proportion is calculated as total wind energy generation:total energy generation.
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A.6 Further experimental results of Chapter 3

With the “leave-one-camera-out” policy, we validate the two object detection models in
three datasets, i.e. RGB-1/2/3. As such, the same policy is also applied to the implementa-
tion of the MOT algorithms. The model performances in Chapter 3 are presented by group-
ing all the validation results together. This section provides the specific performances on
each validation set.

Performance of online MOT algorithms

In the main paper, we present the benchmark of the four MOT algorithms on GSD by the
overall metrics from the daytime subset. This section shows metrics in specific. Below,
table A9 and table A10 present the detailed performance of ByteTrack and StrongSORT
respectively. The performance is assessed on each camera subset on the full annotated
dataset and on the daytime subset. In general, there are no significant performance gaps
in the algorithms when using the data from different cameras. In terms of RGB-1, which
we used as a test set to decide whether to use a daytime subset or not, we could notice a
slight improvement in the MOT metrics, yet the performance on the entire dataset shows
limited differences when using different subsets for evaluation.

Table A9: Detailed performance of ByteTrack

Camera HOTA MOTA IDF1 AssA AssRe AssPr IDS/Tr FM/Tr

PERFORMANCE ON THE FULL DATASET:

RGB-1 39.77 64.68 40.58 2730 32.44 66.95 4.4 7.1
RGB-2 39.25 64.65 40.07 27.22  30.82 70.12 5.0 6.8
RGB-3 40.17 80.78 38.09 23.01 25.72 72.64 6.3 7.7
All 39.74 70.29 39.59 25.72 29.49 70.06 5.2 7.2
PERFORMANCE ON THE DAYTIME SUBSET:
RGB-1 40.03 65.53 40.74 2738 32.43 66.79 4.4 4.6
RGB-2 39.25 64.67 39.95 27.15 30.64 70.37 5.1 5.8
RGB-3 39.93 81.17 37.40 22.63 25.27 7249 6.3 5.8
All 39.75 70.73 39.38 25.58  29.26 70.01 5.2 54

Performance of end-to-end MOT algorithms

Since GSD consists of long series of high-resolution images, we excluded offline MOT
solvers in the scope of benchmarking experiments. However, we argue that end-to-end is
feasible for the task, though it does not outperform the other real-time MOT algorithms
that we have applied in the paper. We implemented a demo of GMTracker [106] on YOLO-
X detections of the first few frames of GSD-2021-CAM-1. However, the performance met-
rics are not very positive: without using the quadratic matching function to represent
the second-order relationship, the HOTA score is 30 (on the first 1000 frames); and when
the quadratic matching function is activated and its GNN uses the parameters trained on
MOT17, the HOTA score improved to 38 (on the first 750 frames, as shown in Table 3.2).
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Table A10: Detailed performance of StrongSORT

Camera HOTA MOTA IDF1 AssA AssRe AssPr IDS/Tr FM/Tr

PERFORMANCE ON THE FULL DATASET:

RGB-1 34.11 33.96 3293 2398 28.76 6036 8.2 6.5
RGB-2 35.31 40.84 33.95 2534 28.61 65.50 9.1 7.0
RGB-3 37.29 66.36 3341 21.14 24.01 66.73  11.2 7.3
All 35.51 47.45 33.41 2338 2698 6439 95 6.9
PERFORMANCE ON THE DAYTIME SUBSET:
RGB-1 35.17 36.86 33.83 2493 30.16 6094 7.3 4.3
RGB-2 35.76 41.96 34.64 2589 2946 6501 85 5.8
RGB-3 37.58 67.74 33.48 21.18 23.95 67.53  10.7 5.4
All 36.14 49.32 33.98 23.87 27.66 6474 8.8 5.1

We noticed that with the involvement of more frames, the performance slightly raised,
nevertheless, the processing time becomes exponentially longer with the greater amount
of detections-to-be-matched between frames, as shown in figure A8 — hence we only ap-
plied the demo in the first 750 frames of GMT, which has already taken nearly a week to
run with a trained object-matching model.

. Matching process of GMTracker on GSD-2021:RGB-1
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Figure A8: Reaction time of GMTracker when processing each frame of the daytime subset of GSD-2021-RGB-1.
The x-axis indicates the frame number, which was re-indexed according to the daytime subset. The blue line
with the y-axis on the left indicates the amount of detected bbox in each frame. The red line with the y-axis on
the right illustrate the time that the model needed to match the detected bbox within that frame with those in
the previous frame.

Noted that our implementation used a model with pre-trained parameters, due to the fact
that the training process requires tremendous computation effort. Particularly, a quadratic
affinity matrix as described in [106] requires much larger memories (e.g. matching 50 ob-
jects with another 50 requires 40+GB of memory when training on the MOT17 dataset)
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than the Hungarian-algorithm-based methods, yet could not result in a significant perfor-
mance increase in our demonstration.

Hence, we did not apply the end-to-end MOT on the entire daytime subset as the other
four two-stage MOT algorithms in Chapter 3. Nevertheless, we still noted the metrics
down in Table 3.2, so as to compare the performance with other algorithms and with the
metrics that GMTracker achieved on other popular MOT datasets.

Performance of object detection

In the experiment of object detection, we averaged the performances of implementing
each object detector over RGB-1/2/3. table A11 lists the specific model performance on
each validation set. The YOLOX-x model performs similarly, with AP in the range 51 to 54
and APs in 86 to 89. The Faster R-CNN model has an average precision between 53 to 59
(AP5 between 85 to 92). The performances on RGB-2 are relatively worse than the others,
but the differences are limited. We also list the benchmark Average Precision (AP) of the
model on the COCO dataset, as claimed by the model developers. The results validate that
the models perform similarly on the three validation sets, so it is reasonable to use the
averaged AP for discussion in Chapter 3. The comparison in Chapter 3 demonstrates that
both models perform at a comparable level with the corresponding benchmarks that are
stated by the model developers [87, 278]. Hence, in Chapter 3, we argue that the difficulty
level of object detection on GSD is not significantly higher than other MOT datasets.

Table A11: Performances of object detectors on RGB-1/2/3 of GSD respectively. We use AP, AP5; and AP75 as the
metrics. The first column gives the model of the object detector, and the second column indicates the validation
set. The last row of each detector section, written as “average”, is the averaged performance of the models on
the three validation sets, calculated without a weight. Performance of object detectors on GSD, evaluated by
AP, APsj and APy5. All the values are averaged over the metrics of the three models that tested on the camera
RGB-1/2/3 respectively.

Detector Validation Set AP  APs5y APys
YOLOX-x
RGB-1 53.7 88.3 57.7
RGB-2 51.0 86.0 54.7
RGB-3 62.4 87.5 71.7
Average 557 873 614
Faster R-CNN
RGB-1 58.2 915 65.9
RGB-2 53.3 87.9 58.0
RGB-3 56.0 85.8 65.7
Average 558 884  63.2
YOLOX-x COCO[87] 59.2 863  61.9

Faster R-CNN COCO[278]  40.2 609 43.8
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MOT Metrics correlation with data characteristics

In Chapter 3, we highlight two primary challenges presented by this dataset: irregular
movements and significant appearance changes exhibited by a majority of the objects. To
further investigate the impact of dataset characteristics, we conducted MOT performance
evaluation over fixed-duration periods. These periods were determined using a rolling
window of 14 days, with a stride of 7 days. We measured changes in object appearances
by calculating the y? distance of each color spectrum at 2 p.m. daily, so as to limit the
daily illumination variance. Differences in object locations were quantified by averaging
the location changes of the same objects, based on bounding box (bbox) coordinates. Addi-
tionally, we computed the average lengths of trajectories (TL) within each period, which
is defined as the number of bbox annotations. To assess the correlation between these in-
dicators and the MOT metrics derived from DeepSORT, which incorporates both location
and appearance features during data association, we analyzed the results.

The correlation values, depicted in figure A9, demonstrate the extent of influence on the
metrics. It is evident that color changes exert a significant impact on all performance met-
rics. Notably, the False Positive (FP) rate of detected-and-associated bounding boxes is par-
ticularly affected, indicating an increased number of missed object matches when relying
on appearance-based association across frames. The influence of object movement vari-
ations, while comparatively less pronounced than color changes, is more strongly corre-
lated with tracklet identification performance. This observation aligns with the challenges
posed by sudden position changes resulting from horticulture activity interruptions and
the sparsity of data collection. The correlations between FP rate and redness, as well as
between FP rate and trajectory length (TL), reach values of 0.7, underscoring their signif-
icant contributions to overall performance. Moreover, longer trajectories exhibit a strong
correlation with reduced Multiple Object Tracking Accuracy (MOTA) and precision, indi-
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Figure A9: Correlation analysis among the performance metrics of DeepSORT and trajectories characteristics.
The values in the grid indicate the exact value of correlation between the MOT metric from the horizontal axis,
which is mentioned on the top of the figure, and the characteristics indicator from the vertical axis and listed on
the left. The color of each grid is defined by the correlations, according to the scale shown on the right.
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cating a substantial negative impact resulting from the extended duration of the tracking
task. Taken together, these correlations provide evidence of the challenges introduced by
the GSD: i) the appearance change of objects over the long period and ii) the irregular
movements recorded in the sparse frames.

Comparisons of trajectories

figure A10 gives a more abstracted comparison of trajectories in GSD-2021-RGB-1 and
MOT20-01, using the ground-truth annotations of the first and last observation of each
track. The visualization demonstrates that a majority of objects in both sequences expe-
rienced changes in their locations, with object movements in MOT20-01 generally being
more substantial. This observation, when compared with Figure 3.4, further supports the
distinctive pattern of movement exhibited by objects in the GSD: predominantly static yet
with sudden and irregular changes.

The Euclidean distances and their ratios to the area of the initial observation (1** bbox) in
both sequences exhibit similar distributions, indicating that the scales of movements in
GSD-2021-RGB-1 and MOT20-01 are comparable.
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Figure A10: Quantitative comparisons of tracks in GSD-2021-RGB-1 and MOT20-01. The 1** plot shows the IoU
distribution of the first and last bbox of each track. The 2" plot illustrates the IoU Euclidean distance (ED) of the
first and last bbox of each track. The 3™ plot presents the proportion of the Euclidean distance (ED) of the first
and last bbox of each track to the size of the first bbox.

A.7 Further experimental results of Chapter 4
Feature of env-only experiment

As a preliminary analysis, we computed the correlations of the environmental records
and the average Brix of each harvest. We considered the environmental records from the
week before the harvest. The results in Figure A11 indicate a strong correlation between
temperatures (from the surface, leaves, plants, outdoor, etc.), radiations, watering, and
cyclic lighting with the Brix expectation.

We grouped the attributes according to their absolute correlation with the Brix, using
thresholds of 0.3 and 0.5. Although the data under each category were highly correlated,
the data selection did not negatively affect the prediction performances. Neither did it
significantly improve accuracy. Hence, we included only the best-performing model in
the result section.
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Figure A11: Correlations of each combination of features and the features with the daily averaged Brix. The
color indicates the definition of each abbreviated name on the x-axis, which can be referred to Table 2.1. The
heatmap gives the level of correlation.

Regression example of env-only experiment

With the aggregated Brix information that was only predicted with environment records,
we used the leave-one-out method to split the train and validation data. Figure A12 illus-
trates the prediction results from two selected models.

Distribution Character (mean, var) Prediction of Daily Brix Values Using Different Models

14

Brix Value

6 == Average Brix
m Best KRR Model Predictions
Best SWR Model Predictions
n Real Range of Values

116 125 140 151 154 139 141 183 188 150 193 157 200 204 207 211 225 232 239 246 253 260 247 274 281 286 302 309
Day of Year

Figure A12: Brix distribution prediction over the measurement period. The distribution is illustrated by the
(predicted) average and standard deviation of the Brix at the harvest day. The best model is selected by the
minimum average RMSE over all data points, under various groups of feature selection.
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Validation on Further Datasets

In 2022 and 2024, we undertook two additional rounds of growth monitoring and Brix
measurements in two greenhouses, continuing our efforts to gather comprehensive data
on plant development and fruit quality. These new datasets allowed us to examine growth
trends and sugar content dynamics over multiple years, providing a robust foundation for
further analysis. Leveraging these observations, we conducted a detailed validation study
aimed at corroborating the findings and methodologies presented in Chapter 4. This exten-
ded investigation not only reinforces the initial results but also offers new insights into
the consistency and applicability of the proposed approaches under varying greenhouse
conditions.

Data exploration

In addition to displaying measurements that are used to label strawberry image segments,
we examine the distribution of all the relevant measurements over the years. With an
increased sample size, we observe in Figure A13 a generally smaller standard deviation,
though with a slight shift in values. These statistics underscore the importance of larger
sample sizes to ensure that the label distributions to be relatively more representative.

Table A12: Availability of datasets

Year Mean Std ImageData Climate Data
2021 816 1.73 Y Y
2022 7.25 1.57 Y N
2024: treatment 1 7.27  1.24 Y Y
2024: treatment 2 7.33 1.20 Y Y

Overall performance comparison

The validation process utilizes data collected in 2024 and is carried out using two distinct
approaches. First, we employed the best-performing or most representative models iden-
tified in Chapter 4. Second, we re-trained models using datasets from 2021 and 2022 to
evaluate performance under alternative training conditions. These validation results, com-
bined with the benchmarks detailed in Chapter 4, are summarized in Table A13, providing
a comprehensive comparison of model performance.

As shown in the table, simply applying the model to the new dataset can result in an RMSE
worse than the standard deviation of the testing set, indicating that the model performs
worse than a constant guess. The model performs particularly poorly when it only con-
siders environmental features, as it becomes less robust due to the limited amount of data.
However, incorporating a ground truth of the distribution significantly reduces the pre-
diction error, as the anchor points are updated to reflect the new dataset. In conclusion,
when using models on new data, it is always recommended to sample a few data points
from the new set. This can either contribute to retraining the model or provide additional
insights into the distribution.
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Sugariness over the year (same and all treatments)
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Figure A13: Statistics of the aggregated Brix measurements over the datasets. The x-axis depicts the dates using
the “day of year”. The y-axis shows the Sugariness measured in *Brix. The solid lines represent the mean values
and the contour indicates the standard deviation of the samples of the day.

Table A13: performance comparison all image-brix datasets

model in paper, re-train by "21+22,

2021 (Paper) validated on ’24  validated on ’24

Std. of testing set 1.73 1.15 1.15
Image-only model 1.33 1.24 1.13
Env.-only model 1.27* (new: 1.22) 2.35 1.47
Image+mean(gt) 1.13 1.18 1.04
Image+quantiles(gt) 1.13 1.10 1.00
Image+mean(pred) 1.15* 1.61 1.35
Image+quantiles(pred) 1.10* 2.03 1.65

A.8 Further experimental results of Chapter 6
Loss in the training and validation set

Below, Figure A14 presents the average regret in the training set and validation set at the
last epoch of training. By comparing the values from each pair of plots for the same model
architecture, we can observe that deeper architectures tend not to overfit the training set
but rather encounter challenges such as getting trapped in local optima during training.
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Figure A14: Regret of models varies with MLP layer numbers and loss function combinations. The X-axis label
means the loss for yield prediction training and the Y-axis label is that for price. The value in the middle boxes
("M+S”) used loss = 0.5*"MSE+0.5*SPO. The upper left corners value 0 because no regret was calculated when the
models were both trained by MSE. All plots share the same scale of color illustration but are different than Fig-
ures 6.1 and 6.4. Upper plot: results are collected from the last epoch’s training performance over five seeds.
Lower plot: results of the ending validation performance.

More weighted aggregations of training losses

Influence of regret coefficients in wind case, using SPO loss and a 2-layer MLP regressor
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Figure A15: Prediction accuracies and regret under different combinations of MSE and SPO loss of 6-layer MLP
models. The intermediate blocks are results from 0.9*MSE+0.1*SPO, 0.5-0.5, and 0.1-0.9 (in the same direction as
the arrows). Values were averaged over five testing sets.
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As presented by the detailed color maps in Figure A15, the MSE of price prediction boosts
in both cases when the MSE was not involved and regularized the training. Such bias
in prediction results in a higher incentive to invest (more) in the market with unknown
parameters, which usually results in better regret according to the third plot of each row.
However, the 2-layer model failed to give an accurate prediction about the yield, whereas
the MSE on yield is similar to its prediction-focused learning (PFL) benchmarks in more
cases in the 6-layer model. Our empirical findings lead us to conclude that the decline
in decision-making performance primarily stemmed from inaccuracies in predicting the
yield. The yield serves as both a pivotal decision parameter and a constraint within the
problem. The results indicate that a reliable estimation of the feasible region is crucial to
implement SPO loss properly.

The gradients from different training purposes show similar scales, as illustrated in Fig-
ure A16. Upon examining the boxplot, it becomes apparent that the gradients share similar
scales. Consequently, weight combinations such as 0.1-0.9, 0.5-0.5, and 0.9-0.1 are all vi-
able options for aggregating the losses.

Value distribution of gradients from different loss functions
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Figure A16: Gradient from prediction-focused learning (PFL) and decision-focused learning (DFL) in the first
three epochs. A 3-layer MLP model is used as an example.

Further layer comparison of models

In Chapter 6, we mainly compared the weight and bias in the MLP layers. In fact, the
hyperparameters of the (fully-connected) RNN layer and self-attention module are also
very similar when the model were trained under MSE or SPO loss. The comparisons of
full models are depicted in Figure A17.
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Figure A17: Similarity of parameters between models with 6 MLP layers ("fc”) when trained on SPO loss and
MSE. The last plot compares DFL models with pre-trained on PFL with the same PFL model. We used the cosine
similarity of corresponding layer parameters, noted on the Y-axis. The color scale ranges from 0 to 1, as shown
on the shared color bar on the right.
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Influence of model architecture on regret
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Figure A18: Regret of models varies with MLP layer numbers and loss function combinations. The models are
aligned with the above layer parameter comparison plot. The X-axis label means the loss for yield prediction
training and the Y-axis label is that for price. All plots share the same color scale (shown on the right). Results
are collected over five seeds.

Specific performance of models after pre-training

In Chapter 6, we discussed the final regret of models that were pre-trained on PFL and com-
pared with the performance with original benchmarks and with single-model pre-training,
as shown in the upper plot of Figure A19. In fact, by applying the pre-training strategy, the
prediction accuracies were also better maintained. The lower plot of Figure A19 presents
the MSE of price and yield predictions respectively. This ensured that the decision was
made under more realistic constraints. This is one of the reasons why the regret is further
improved by the pre-training strategy.

Average regret on test data with different warm-up strategies
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Figure A19: Comparison of the effect of the transfer learning strategy by the regret (upper) and MSE (lower),
after switching to different combinations of training losses. The color bars show which model(s) was/were pre-
training on the MSE. The x-axis shows the depth of the MLP model. In the lower figure, the values on the left
y-axis indicate the MSE of price prediction and the right y-axis is for the MSE of yield. The line color is shared
with the upper plot, and the marker identifies the metric. Results collected over five seeds.
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Enhanced yield prediction is a strategic jump start

Since all the above results were achieved from models trained together from scratch, we
looked into the change of accuracy and regret during training. We observed from Fig-
ure A20 that SPO loss converged more smoothly after the MSE on yield prediction mostly
converged. Hence a faster convergence of yield prediction is preferred. This can be
achieved by using models with higher capacity, e.g. with a deeper architecture or using
self-attention to highlight the features, which enhance the learning efficiency for small-
er/shallower models. Moreover, the changes during the training process also inspire us to
pre-train the model or use accelerating techniques such as adding self-attention.
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Figure A20: The training process of models, represented by MSE and SPO loss. Models are trained simultaneously
unless early-stopped. The x-axis is the shared epoch number. The first two lines are from MLP models with 3
and 8 layers respectively. The last line is a 3-layer MLP model with a self-attention module after the input layer.
All training used SPO loss solely for both price and yield prediction models. Results collected over five seeds.

Interestingly, the training logs also reveal a key area for improvement: models tend to in-
fluence each other when using the joint SPO loss, potentially leading them down incorrect
or sub-optimal paths. To mitigate this risk, training should commence with weights that
aren’t entirely random but are initialized in a more informed and reasonable manner.

By checking the losses of PFL and DFL during the training progress of different models,
we found that smoother loss convergence and better performance of DFL highly rely on
the stable prediction performance of at least one model. According to Figure A19, models
that were trained solely on SPO loss from scratch can easily perform biased predictions,
which do not always benefit the final decision-making.

Transfer learning and self-attention can accelerate DFL

The computational time is also a crucial criterion of DFL due to the extensive duration re-
quired for performing differentiation within the objective function. Table A14 compares
the computational time of DFL by the above-mentioned regressors. The findings suggest
that the training time of MLP models can be significantly reduced by integrating atten-
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tion modules or by pre-training based on MSE, of which the converging time until early
stopping is on average < 0.01 hour. A similar effect was also been demonstrated by [169]
in their setting, that the pre-training on (an easier) part of the main task facilitates the
overall training efficiency.

Table A14: Average training time of models when they were both trained on MSE or SPO. The time is averaged
over models of the same initial layer as presented in Figure A19, plus the warmed-up MLP models. pre_on_[x]”
indicates a pre-training process was applied on model [x]. The total time is counted until both models converge
on the loss or reach the epoch limit.

Regressor DFL Time [h]
mlp 1.23
rnn+mlp 1.37
atti+mlp 1.38
atti+res+mlp 1.87

mlp+pre_on_both  0.76
mlp+pre_on_price 1.34
mlp+pre_on_yield 0.49

Influence of learning rate

As illustrated in Figure A21, the learning rate of model training has limited influences
on the final decision-making performance. We used a learning rate of 0.002 in the experi-
ments as a balanced choice, aiming to avoid excessively slow training while also mitigating
the risk of getting stuck in local minima. According to the first subplot, it is sufficient in
training adequate PFL models. Moreover, the consistent trend observed in the regret plot
suggests that using this same learning rate for pre-training is likewise viable.

Average regret on test data from different learning rates
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Figure A21: Influence of learning rate on the testing regret on various depths of MLP models. The y-axis gives
the average regret on the test sets. Results collected over three seeds.

Influence of optimizers

We also compared the performance of the optimizer on PFL and DFL progress. As illus-
trated in Figure A22, stochastic gradient descent (SGD) and Adam showed similar perfor-
mance, with SGD demonstrating greater stability. Considering that SGD is more robust
to hyperparameter changes, we used only SGD for the experiments in Chapter 6.
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Average regret on test data from different optimizers
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Figure A22: Influence of optimizer on the testing regret on various depths of MLP models. All models used a
learning rate of 0.002. The y-axis gives the average regret on the test sets. Results collected over three seeds.

Positioning of the Self-Attention Module

Figure A23 compares decision-making performance of models with different ways of inte-
grating the self-attention layer. The results suggest that substituting the input layer with a
self-attention layer is not optimal — while it speeds up progress, it fails to reach the global
optimum. Utilizing residuals from the initial MLP layer or relying solely on the input data
can prevent entrapment in local optima while retaining the acceleration advantages.
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Figure A23: Influence of integrating self-attention layer on the testing regret for models with different MLP
depths. The y-axis gives the average regret. In the legend, "w/-res” means the second MLP layer receives the
outputs from the self-attention layer and the residuals from the first MLP layer, and “w/-input” means the second
MLP layer receives the self-attention outputs and original input data. Results collected over five seeds.

Influence of using a subset of data

As shown in Figure A24, the models perform similarly when it was trained on the full
dataset, with also the discrepancy exists. Nonetheless, under a 4-hour limit in training

Performance discussion of applying a 3-layer MLP model on 10\% of the data versus full dataset
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Figure A24: Comparison of MSE on price and yield prediction, and regret, when the same model was trained on
10% or on the full dataset. The intermediate blocks are results from 0.9*"MSE+0.1*SPO, 0.5-0.5, and 0.1-0.9 (in the
same direction as the arrows). Values were averaged over five testing sets.
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time, less than 1/3 of the model can finish the DFL process. Particularly, when the models
were both trained exclusively on SPO loss, none of the training processes ended within 4
hours. Hence, using a 10% is sufficient to represent the findings, but the experiments can
be done more efficiently.

Case-specific benchmarking

Figures A25 and A26 illustrate the performance of the selected models for the ”wind-ori’
and "tomato-c” cases Prediction errors — (Py preq — Prreqr) in white and (ypred = Yrear) in
yellow — are shown together with the resulting regrets, collected over multiple trials using
3-layer MLPs with different seeds on the full dataset. Four baselines were compared: (a)
empirical decisions made from the latest parameters, (b) decisions from predictive models
directly, (c) using standard PFL to train price/yield models on MSE, and (d) price/yield
models trained on cost-weighted MSE. To quantify the involvement of SPO loss in training,
we used the ratio of SPO and MSE loss, denoted as w; : wy (as described in Section 6.4).

The wind case: parameter prediction and decision regret in different models
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