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Abstract

Nonlinear surface waves over topography

As ocean surface waves radiate into shallow coastal areas and onto beaches, their

lengths shorten, wave heights increase, and the wave shape transforms from near-

sinusoidal to the characteristic saw-tooth shapes at the onset of breaking; in the ensuing

breaking process the wave energy is cascaded to small-scale turbulent motions in the

surf zone. This nearshore transformation of ocean waves, and the modeling thereof, is

the subject of this thesis. In particular, the integral objective of the present work is to

develop and verify a stochastic model for directionally spread random wave fields over

topography in the nearshore.

We have developed a deterministic spectral evolution model based on a multi-frequency,

angular spectrum decomposition of the wave field. The model consists of a set of coupled-

mode transport equations for the spectral amplitudes. Two-dimensional topography is

accounted for through a scattering mechanism, which redistributes the angular com-

ponent amplitudes such that the resulting ray geometry corresponds to the actual

(two-dimensional) topography. The model is an extension of previous work in the sense

that (i) arbitrary resonance mismatch for quadratic interactions is accounted for, thus

including both the Stokes-regime and the shallow-water (Boussinesq) regime; (ii) the

model accounts for cubic (quadruplet) interactions without the shallow-water break-

down typically associated with Stokes-type expansions. The model is verified through

comparison to well-known analytical expressions in both the deep- and shallow-water

regime. Empirical verification with laboratory observations of nonlinear wave evolution

confirms (i) the unified description of the quadratic and cubic nonlinear effects, and

(ii) the robustness of the scattering approach to account for the interaction with the

topography.

On the basis of the deterministic model a stochastic model is derived which computes

the wave field statistics directly without the need for repeated simulation (as in a

Monte-Carlo simulation). This gain in efficiency comes at the expense of an additional

approximation: a so-called closure hypothesis. The stochastic model consists of a coupled

set of transport equations for the spectrum and bi-spectrum respectively and as such

accounts for quadratic interactions; cubic nonlinear effects are not accounted for in this

model. The model is closed in the linear sense which implies that it accounts for the

(linear) effects of refraction and diffraction with the same accuracy as the underlying

deterministic model. Moreover, and in contrast to conventional stochastic wave models



based on the energy balance equation, the present model thus accounts for directional

coherence in crossing waves which is important e.g. in focal regions and around thin

barriers. To extend modeling capability to the surf zone, parameterizations for depth-

induced wave breaking and stochastic relaxation are developed and incorporated. Ver-

ification of the resulting model with laboratory and field observations for a range of

wave conditions and topographies, confirms the model’s robustness and its suitability

for application to wave propagation in the nearshore, including the surf zone.

In conclusion: the present study has resulted in the development and verification of

both a deterministic and stochastic model for nearshore wave propagation. The determi-

nistic model is suitable for larger propagation distances and deeper water, whereas the

stochastic model is particularly aimed at the nearshore, including the surf zone. Both

models are verified analytically and empirically, which demonstrates the robustness and

potential of the present approaches to operational modeling of nearshore wave field

evolution.

Tim Janssen

May 2006



Samenvatting

Niet-lineaire oppervlaktegolven over variabele diepte

Wanneer windgolven ondiepe kustgebieden binnenlopen en het strand naderen, neemt

hun lengte af, hun hoogte neemt toe en hun vorm verandert van bijna sinusöıdaal tot

de typische zaagtandvorm vlakbij het breekpunt; met het uiteindelijk breken van de

golven wordt de energie omgezet in turbulentie. Deze transformatie van golven in het

kustgebied is het onderwerp van dit proefschrift. Meer specifiek, het integrale doel van

dit werk is het afleiden en verifiëren van een stochastisch model geschikt voor realistische

golfvelden over twee-dimensionale bodemvormen in de kustzone.

Allereerst is een deterministisch spectraal model ontwikkeld, gebaseerd op een multi-

frequentie, hoek-spectrum decompositie van het golfveld. Dit model bestaat uit een

gekoppeld stelsel transportvergelijkingen voor de spectrale amplituden van het golfveld.

De twee-dimensionaliteit van de bodem is verdisconteerd middels een verstrooiingsterm,

zodanig dat de golfstraalgeometrie in overeenstemming is met de feitelijke (twee-dimensionale)

bodemtopografie. Het model is een uitbreiding van eerder werk omdat het (i) geldig

is voor arbitraire afwijking van resonantie voor de kwadratische wisselwerkingen en als

zodanig ten aanzien van deze wisselwerkingen zowel het zogenaamde Stokes (diep water)

als het Boussinesq (ondiep water) regime omvat; (ii) het model beschrijft de effecten van

kubische niet-lineariteiten maar blijft geldig in ondiep water waar standaard Stokes-type

expansies divergeren. Het model is geverifieerd middels vergelijking met beschikbare

analytische uitdrukkingen voor de diep- en ondiepwaterlimieten; empirische verificatie

met laboratoriummetingen bevestigt (i) de geünificeerde beschrijving van kwadratische

en kubische niet-lineaire koppelingen; (ii) de robuustheid van de modellering ten aanzien

van de wisselwerkingen van het golfveld met de twee-dimensionale bodem.

Op basis van het deterministische model is een stochastisch model afgeleid dat de

golfveldstatistiek berekent zonder dat daarvoor herhaalde berekeningen (zoals in een

Monte-Carlo simulatie) nodig zijn; deze winst in efficiëntie vereist een additionele aan-

name, te weten een zogenaamde sluitingshypothese. Het stochastisch model bestaat uit

een gekoppeld stelsel transportvergelijkingen voor het spectrum en het bispectrum, en als

zodanig beschrijft het kwadratische niet-lineaire effecten; kubische golf-golf koppelingen

zijn niet verdisconteerd in dit model. In de lineaire benadering is het stochastische model

gesloten, wat impliceert dat het model de (lineaire) effecten van refractie en diffractie met

dezelfde nauwkeurigheid beschrijft als het onderliggende deterministische model. Het

model – en hierin verschilt het van conventionele fase-middelende modellen gebaseerd op



de energiebalansvergelijking – beschrijft dus tevens de coherentie in twee-dimensionale

golfvelden en is als zodanig geschikt voor heterogene golfveldcondities, inclusief sterke

diffractieëffecten, zoals bijvoorbeeld relevant is in convergentiezones en in de nabijheid

van obstakels. Teneinde modellering van de brandingszone mogelijk te maken, is een

dissipatieterm voor diepte-gëınduceerd breken en een stochastische relaxatieterm on-

twikkeld en gëımplementeerd. Verificatie van het model met een uiteenlopende set van

laboratorium- en veldmetingen bevestigt de robuustheid en het potentieel van het model

voor operationele golfveldvoorspellingen in de kustzone, inclusief de brandingszone.

Concluderend: deze studie heeft geleid tot de ontwikkeling en succesvolle verificatie

van zowel een deterministisch als een stochastisch golfmodel. Het deterministische model

is – dankzij de toevoeging van hogere orde niet-lineariteiten – geschikt voor relatief

langere ontwikkelingsafstanden en dieper water; het stochastische model is – door de

geparameteriseerde beschrijving van dissipatie van golfenergie door breking en relaxatie

van niet-lineaire koppelingen – bij uitstek geschikt voor ondiepe kustgebieden, inclusief

de brandingszone. Zowel analytische als empirische verificatie van beide modellen is gep-

resenteerd en deze bevestigt de robuustheid van de modelleringsaanpak en het potentieel

voor operationele voorspelling van de golfveld-evolutie in het kustgebied.

Tim Janssen

mei 2006
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1Introduction

When visiting an exposed ocean beach on a ‘big’ day, the sight and roaring of powerful

large, long-period ocean waves, breaking as they enter shallow water, are captivating;

the rapid transition from sinusoidal wave forms to the characteristic sawtooth shapes

with near-vertical faces at the onset of breaking; the turning-over of the wave, the violent

(and deafening) plunging of the crest through the smooth surface just in front of it, and

– finally – the transition from ordered wave motion into an increasingly chaotic and

turbulent (‘white’) water mass, progressively dissipating the energy associated with the

incident wave motion.

The esthetics are best appreciated holistically. However, the incessant and often

powerful wave-induced fluid motions have important implications for e.g. the nearshore

marine biology/ecology, coastal engineering and recreation, which provides the impetus

behind scientific research into the dynamics of ocean waves in coastal waters, to which

this study is intended to contribute.

As ocean waves advance from deep water into shallow coastal areas and onto beaches

they transform owing primarily to refraction and nonlinear wave interactions, the latter

dominated by near-resonant quadratic interactions involving triplets of waves. These

nonlinear effects cause the transformation to the characteristic skewed, pitched-forward

shapes of waves observed on beaches [e.g. Elgar & Guza, 1985], they induce the formation

of multi-crest wave trains behind submerged obstacles [e.g. Johnson et al., 1951; Byrne,

1969], and radiate long wave motion in the nearshore region. These effects are recognized

as major factors in the study of nearshore morphological evolution [e.g. Roelvink & Stive,

1989; Hoefel & Elgar, 2003] and are of paramount importance in the design of coastal

structures and harbors.

Although advances in modern water wave theory were reported as early as in the 17th

century by Newton [Craik, 2004], and a fully nonlinear description of water waves was

already given by Gerstner in 1802 [Lamb, 1932, §article 251], it is probably fair to say

that our present-day conceptual and theoretical understanding of nonlinear surface wave

motion derives primarily from the pioneering observations and experiments by Russell

[1838, 1844], and the monumental theoretical work by Stokes [1847]†. These milestone

†Historically it is appropriate to remark that Kelland [1840], based on what Craik referred to as

a ‘dubious analysis’ [Craik, 2004], published a dispersion relation for water waves that included what

is now usually referred to as Stokes’ amplitude dispersion correction, at least for deep water; in finite

depth it is incorrect. Nonetheless, it preceded Stokes’ deep-water result by seven years and it was not

until forty years later that Stokes finally presented the (correct) finite depth expressions [Stokes, 1880].
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works implied an acute paradigm shift and were certainly not without controversy

initially. For instance, with respect to Stokes’ weakly nonlinear theory Rayleigh remarked

[Rayleigh, 1876, pp 270] ‘...it seems to me by no means certain that any such (Stokes, ed.)

type exists, capable of propagating itself unchanged with uniform velocity...’. Likewise,

Russell’s observation of what he referred to as a ‘solitary’ wave (and descriptively

designated as the ‘Great Primary Wave of Translation’) led to a controversy with

Airy, who was unconvinced that these waves where external to the existing body of

theory for nonlinear long waves [Rayleigh, 1876; Ablowitz & Segur, 1981]; the latter was

not resolved until the theoretical work on shallow-water waves by Boussinesq [1872],

Rayleigh [1876], and later Korteweg & De Vries [1895](KdV hereafter). These (and other)

early advances in the theoretical understanding of what Whitham later referred to as

‘Laplace’s equation with strange boundary conditions at the free surface’ [Whitham,

1974, pp. 4] formed the basis from which the more recent developments in nonlinear

wave theory and modeling, starting in the 1960’s with the advent of modern computers,

could flourish.

In the 1960’s renaissance, Boussinesq theory was made suitable for non-uniform depth

[Mei & LeMéhauté, 1966; Peregrine, 1967], and subsequently used to study evolution of

solitary [e.g. Madsen & Mei, 1969], and time-periodic [e.g. Madsen et al., 1970] waves

over variable depth. Since then a continual extension of Boussinesq theory has been

ongoing [see e.g. Madsen & Sørensen, 1992; Nwogu, 1993; Chen & Liu, 1995] with major

recent advances in their application to extremely nonlinear waves and deeper water [see

e.g. Wei et al., 1995; Madsen & Schäffer, 1998; Madsen et al., 2003; Fuhrman et al.,

2004]. Excellent overviews on the state of development are given in e.g. Kirby [1995],

Dingemans [1997] Chapter 5, and Madsen & Schäffer [1999].

Advances in nonlinear solids renewed interest in Russell’s ‘Primary Wave of Trans-

lation’. Triggered by the pioneering observations of recurrence in numerical simulations

of a weakly nonlinear lattice [Fermi et al., 1955], Zabusky & Kruskal [1965] re-derived

the KdV equation and discovered particle-like behavior of the KdV solitary waves (the

hyperbolic secant squared), which they subsequently labeled as ‘solitons’. With the

advent of the inverse scattering transform [Gardner et al., 1967, 1974] these soliton-type

wave forms were soon shown to exist for other equations also [Zakharov & Shabat, 1972;

Ablowitz et al., 1973a,b, 1974], which aroused great interest in many branches of physics

and mathematics. This is probably one of the first accounts where the judicious use of

numerical simulation [Fermi et al., 1955; Zabusky & Kruskal, 1965] led to the discovery of

a whole new field of science [Zabusky, 1981]; an overview is given in Ablowitz & Segur

[1981]. Two-dimensional generalizations of the periodic cnoidal-wave solutions of the

KdV equation were given by Segur & Finkel [1985] based on a multi-parameter family

of exact solutions for the KP equation [Kadomtsev & Petviashvili, 1970], a weakly two-

dimensional extension of the KdV equation. Hammack et al. [1989, 1995] empirically

verified the existence of such two-dimensional bi-periodic wave forms (in both spatial

dimensions of the fluid surface) that propagate in shallow water without change of shape.
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Based on a spectral generalization of a Stokes-type expansion, Phillips [1960] demon-

strated that secular terms at the third order in wave steepness allow a continuous flow of

energy across spectral components, which implies leading-order dynamical consequences

over asymptotic length scales. Hasselmann [1962, 1963] embedded this paradigm in a

statistical description of the sea surface and derived a stochastic model for the non-

linear evolution of the wave field, accounting for such quartet resonances. (See also

Phillips [1981] for an historical account of these advances in a much wider context than

considered here.) This unification of small-amplitude wave theory with the concepts

of statistical physics stands at the heart of widely-used, present-day operational wave

models [Komen et al., 1994; Booij et al., 1999], and gave impetus to further advances

of the statistical description of nonlinear wave evolution [e.g. Benney & Saffman, 1966;

Benney & Newell, 1969; Newell & Aucoin, 1971]. The work by Hasselmann and – in

a deterministic context – the development of the Zakharov equation [e.g. Zakharov,

1968; Stiassnie & Shemer, 1984], and the narrow-band NLS and Dysthe equation [e.g.

Zakharov, 1968; Chu & Mei, 1970; Hasimoto & Ono, 1972; Dysthe, 1979] consider cubic

resonances, while treating quadratic interactions as non-secular, i.e. forced excitations

of small amplitude. This premise is suitable in finite depth where the dispersion relation

precludes resonance at the second-order, but is invalid in shallow water where – as

already indicated by Phillips [1960] – quadratic interactions approach resonance and

therefore have dynamical implications.

Near-resonant theory: amplitude evolution equations

Although Phillips (rightly) anticipated that second-order interactions (both sum and

difference interactions) have dynamical consequences in shallow water, his expansion was

incompatible with such near-resonances. This led Bretherton [1964] to devise a formalism

based on multiple scales that supported modeling of near-secular contributions. Based

on Bretherton’s work and contemporary advances in nonlinear optics [Armstrong et al.,

1962], Mei & Ünlüata [1972] and Bryant [1973] were the first to apply these ideas to

shallow-water wave modeling; they demonstrated that energy and phase modifications

associated with these interactions allow for nonlinear wave evolution in shallow water on

much shorter space and time scales than those associated with (higher-order) quartet

resonances, consistent with observations [Jolas, 1960] and Phillips’ remarks. Freilich

& Guza [1984] successfully modeled nearshore evolution of ocean waves on natural

beaches utilizing evolution equations derived from Boussinesq theory [Peregrine, 1967]. A

myriad of models based on these near-resonant principles emerged since then, suitable

for unidirectional wave propagation [e.g. Agnon et al., 1993; Bredmose et al., 2004],

directional waves over laterally uniform bathymetry [e.g. Herbers & Burton, 1997;

Sheremet, 1996; Eldeberky & Madsen, 1999], and small-angle wave propagation over

two-dimensional topography [e.g. Kaihatu & Kirby, 1995]. The later advances include

full dispersion in the linear terms and interaction coefficients, and account for arbitrary
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resonance mismatch [Bredmose et al., 2002; Janssen et al., 2004; Bredmose et al., 2005]†;

nonetheless, they do not account for tertiary interactions, which implies a restriction to

fairly moderate water depth where the near-secularity (and thus dynamical relevance)

of quadratic contributions is warranted.

To illustrate the concept of amplitude evolution equations for shallow-water wave

propagation, consider for instance the KdV equation [see e.g. Dingemans, 1997, §6.1]

∂η

∂t
+
√
gh
∂η

∂x
+

3

2

√
g

h
η
∂η

∂x
+

1

6
h2
√
gh
∂3η

∂x3
= 0, (1.1)

which describes the free surface elevation (η) associated with unidirectional wave pro-

pagation over uniform depth in fairly shallow water. In (1.1), g denotes gravitational

acceleration and h represents (uniform) water depth. To solve this partial differential

equation as an amplitude evolution equation we write the surface elevation η by means

of a Fourier series as

η(x, t) =
∞∑

p=−∞

ζp(x) exp

[
iωp

(
x√
gh

− t

)]
(1.2)

such that the ζp(x) can be interpreted as slowly varying amplitudes of a time-periodic,

wave-like signal with the associated phase function ωp(x/
√
gh − t). Since η is a real

function, ζp = ζ∗−p with ∗ denoting the complex conjugate. The slow modulation of

the ζp(x) in the spatial dimension (the slowness can be formalized through multiple

scales but is simply postulated here) accounts for frequency dispersion and nonlinear

corrections. Upon substituting (1.2) into (1.1), omitting contributions involving dζp/dx

from the nonlinear and dispersive term (which are assumed small), we find the ordinary

differential equation for the spatial evolution of the component amplitudes ζp(x)

dζp
dx

= i
ω3
p

6

√
h

g3
ζp − i

3ωp

4
√
gh3

∞∑

n=−∞

ζp−nζn. (1.3)

The first term on the RHS of (1.3) accounts for a dispersion correction on account of

the dispersive term in (1.1); the convolution term on the RHS of (1.3) accounts for the

nonlinearity through a weighted mode-coupling of the spectral components and results

from the nonlinear term in (1.1). Thus by imposing a solution in the form of a superpo-

sition of time-periodic, wave-like functions, the partial differential equation in x and t

is transformed to an (infinite) set of ordinary differential equations in one-dimensional

†Bryant’s so-called µ-exact model [Bryant, 1973] also includes full frequency dispersion and accounts

for arbitrary resonance mismatch. His derivation assumes uniform depth and is remarkably compact as

it describes the modulation in time of spatially periodic waves; later advances that include full frequency

dispersion and arbitrary resonance mismatch of quadratic interactions [Bredmose et al., 2002; Janssen

et al., 2004; Bredmose et al., 2005; Janssen et al., 2006] evolve time-periodic wave components through

space, which is better suited for waves advancing over variable depth.
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space, which involve a spectral convolution term on account of the nonlinearity present

in eq. (1.1). From a heuristic viewpoint it may appear somewhat troubling that the

closed-form representation of (1.1) results in an infinite set of equations, but this merely

reflects that the time variable is treated as continuous. As numerical evaluation of (1.1)

requires discretization, this in turn implies a truncation of the series (1.2) rendering

the set finite, say consisting of N equations. Thus instead of solving for the surface

elevation η at N time steps, we solve O(N) equations for the spectral amplitudes ζp.

Such a coupled set of ordinary differential equations can generally be solved with simple

and efficient numerical techniques [Bredmose et al., 2004, 2005; Canuto et al., 1987] and

on account of the fact that the rapid spatial phase is split off (viz. (1.2)), the spatial

evolution can be computed utilizing larger step sizes.

Although the integration of such amplitude evolution equations is relatively efficient,

such considerations may not always be decisive in a deterministic context. After all,

with the ever-increasing capacity of modern-day computers, numerical evaluation of

time-domain, higher-order Boussinesq approximations [Wei et al., 1995; Shi et al., 2001;

Fuhrman et al., 2004] or even more general models [Westhuis, 2001; Stelling & Zijlema,

2003] come within reach. Such time-domain models are orders of magnitude computa-

tionally more demanding but potentially include more physics and are less approximate;

in particular, they are generally more accurate on steep slopes and in the presence

of strong nonlinearity. Then, apart from the fact that amplitude evolution equations

are readily interpretable in terms of interacting ‘waves’, a concept so deeply ingrained

in our conceptual understanding of nonlinear waves, it is primarily on account of the

intrinsic random character of ocean waves that amplitude evolution equations, which

provide a suitable platform for so-called stochastic modeling (see below), are pursued;

such stochastic models provide an efficient means of modeling random waves on typical

coastal scales, for which the computational effort associated with time-domain models

is (still) prohibitive.

Stochastic modeling in shallow water

Ocean waves are generally considered as realizations of a stochastic process. As a

consequence, the deterministic details of a single realization are usually of little interest

and, moreover, phase-resolving boundary conditions, required to compute such detail,

are unavailable. Statistical properties of the wave field can – in principle – be estimated

through repeated simulation with a suitable deterministic model [Freilich & Guza, 1984]

but this Monte-Carlo approach is computationally intensive. Alternatively, on the basis

of amplitude evolution equations, stochastic models can be derived that consist of a set

of transport equations for the statistical moments [e.g. Saffman, 1967], thus describing

the evolution of the statistics without the need for repeated simulation. This efficiency

gain, however, comes at the expense of an additional approximation: the so-called closure

hypothesis, the nature of which is best illustrated by forming moment equations on the

basis of the amplitude evolution equation (1.3). The evolution equation for the moment
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〈|ζp|2〉 (the 〈 〉 denote ensemble averaging) is obtained through multiplication of (1.3)

by ζ∗p , summing the resulting equation with its conjugate, and ensemble averaging the

result, yielding
d

dx
〈|ζp|2〉 =

3ωp

2
√
gh3

∞∑

n=−∞

={〈ζp−nζnζ∗p〉}, (1.4)

where ={ } denotes ‘the imaginary part of’. From (1.4) we see that the evolution of 〈|ζp|2〉
depends on the triple-moment 〈ζζζ〉 through the convolution term on the RHS. When

forming the transport equation for the triple-moment, which is obtained through similar

operations, it is readily observed that it depends on the quadruple moment 〈ζζζζ〉; this

dependency on the next higher-order moment (or cumulant) continues indefinitely, and

consequently renders the set of moment equations open. Numerical evaluation of the

hierarchy of stochastic equations is possible only if a closure assumption of some sort is

provided such that the hierarchy is represented by a finite number of equations. In deep

water, a natural asymptotic closure exists for the quartet resonances [Hasselmann, 1962;

Benney & Saffman, 1966] but in shallow water, on account of the reduced dispersiveness,

such a natural closure appears unavailable. Although early attempts [Abreu et al., 1992]

were based on a so-called semi-dispersive wave closure [Newell & Aucoin, 1971], later

advances usually applied the quasi-normal closure [Herbers & Burton, 1997; Agnon

& Sheremet, 1997] or modifications thereof [Eldeberky, 1996; Eldeberky et al., 1996;

Becq et al., 1998]. In general, the quasi-normal closure, which essentially omits the

fourth and higher cumulants, renders statistics that are too far from Gaussian, and is

particularly inaccurate in the presence of strong nonlinearity (e.g. the surf zone). To

extend modeling capability to highly nonlinear, dissipative regions, Herbers et al. [2003]

proposed a closure approximation involving a relaxation term that allows a return to

Gaussian statistics in the presence of strong nonlinear interactions, reminiscent of eddy

relaxation in turbulence [Orszag, 1970].

Stochastic modeling over topography

Operational stochastic wave models [e.g. Komen et al., 1994; Booij et al., 1999] are

generally based on the so-called action balance equation, which expresses the conser-

vation of action in a slowly varying medium, with forcing (or source) terms added to

account for physical processes such as e.g. wind stress on the fluid surface, nonlinear

energy redistribution and dissipation on account of wave breaking. This description

is an isotropic representation of the evolution of a spatially homogeneous wave field

through a slowly varying medium. However, extension of this approach to include

three-wave coupling from first principles is not straightforward as an isotropic evolution

equation for the higher-order correlations is unavailable. Although approximations to

augment the action balance equation with suitable source terms to account for near-

resonant quadratic interaction have been reported [e.g. Eldeberky, 1996; Becq, 1998],

later advances in nonlinear shallow-water modeling [Herbers & Burton, 1997; Agnon

& Sheremet, 1997; Eldeberky & Madsen, 1999] abandoned this approach in favor of
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a frequency/lateral wavenumber decomposition of the two-dimensional wave field; this

so-called multi-frequency angular-spectrum decomposition [e.g. Stamnes, 1986] is a nat-

ural choice for wide-angle wave propagation over laterally uniform (one-dimensional)

topography.

In the present work we follow the multi-frequency angular-spectrum approach but

include two-dimensional topography through a Taylor expansion of the bottom boundary

condition [Dalrymple et al., 1989; Suh et al., 1990]. In the coupled-mode transport equa-

tions for the (deterministic) frequency/angular components, the topographical forcing

is represented through a scattering term that redistributes the angular amplitudes to

correct the ray geometry in accordance with the topography. The stochastic model

is based on the deterministic coupled-mode model and consists of a coupled set of

transport equations for the spectrum and bi-spectrum respectively. In the stochastic

framework, the scattering on submerged topography induces correlations between non-

collinear wave trains; these cross-correlations capture the spatial inhomogeneity of the

waves on account of the underlying topography, which is important for the modeling

of e.g. crossing waves in the convergence zone of a topographical lens. Based on this

stochastic angular-spectrum formalism we develop and verify a stochastic model suitable

for inhomogeneous, two-dimensional, random wave fields over nearshore topography,

including the surf zone.
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1.1 Objective and outline of the present study
The integral objective of the present study is to develop and verify – both analytically

and empirically – a stochastic model for surface gravity waves, suitable for application

to two-dimensional random wave fields over topography in shallow water, including the

surf zone, and apply it to the study of nonlinear waves over variable depth, including

the forcing of long waves through quadratic difference interactions.

We first develop a deterministic evolution model suitable for nonlinear wave evolution

over topography. This is achieved by means of a multi-frequency angular-spectrum

decomposition applied to the governing equations for irrotational flow of an inviscid and

incompressible fluid with a free surface (Chapter 2); the deterministic model accounts

for quadratic and cubic interactions in a unified manner, and includes two-dimensional

topography through a scattering mechanism. In Chapter 3 we present analytical and

empirical verification of the unified treatment of quadratic-cubic nonlinearity and two-

dimensional capability embedded in the deterministic model.

Based on the deterministic model, but omitting cubic interactions and the interaction

with the wave-induced current field, a stochastic model formalism is derived in Chapter

4. In this chapter we introduce and illustrate the stochastic representation of laterally

heterogeneous wave propagation. To extend the modeling capability to dissipative and

strongly nonlinear regions, parameterizations for depth-induced wave breaking and a

Gaussian relaxation closure are developed. Empirical verification of the stochastic model

is presented in Chapter 5, including a wide range of wave conditions and topography to

assess its robustness and limitations.

In Chapter 6 we study the shoaling behavior of wave-group induced long waves

over variable depth, and assess the ability to model the nonlinear energy transfers and

phase coupling with the stochastic model developed in Chapter 4. Detailed laboratory

observations are used to examine the phase shift between wave groups and associated

long wave motion over variable depth, and verify the model-predicted correlations and

spectra.

Discussion of the deterministic model (Chapter 2 and Chapter 3) and stochastic

model (Chapter 4 and Chapter 5) is provided in the closing sections of Chapter 3 and

Chapter 5 respectively. A short discussion on our findings related to wave-group induced

long waves is given in the final section of Chapter 6.

Overall conclusions of the present study are presented in Chapter 7.



2Nonlinear waves over topography:

deterministic theory

Since the seminal work by Stokes (1847), the nonlinear evolution of gravity waves

on the surface of the oceans has received much attention and major advances have

been made [e.g. Phillips, 1960; Whitham, 1974]. General formulations, without inherent

limitations on spectral width, were derived for the deep ocean [Hasselmann, 1962;

Zakharov, 1968], and for regions of finite depth [Herterich & Hasselmann, 1980; Stiassnie

& Shemer, 1984]. These models account for cross-spectral energy transfer by cubic

resonances, the lowest-order nonlinear resonances for gravity surface waves in finite

depth, that involve the mutual interaction between quadruples of wave components.

As waves cross the continental shelf and propagate into shallow coastal areas, the

presence of submerged topography increasingly affects the wave field evolution through

refraction by large-scale depth variations [e.g. Munk & Traylor, 1947; Battjes, 1968]

and Bragg-type scatter over bottom features which vary on the scale of the surface wave

length [e.g. Mei, 1985; Ardhuin & Herbers, 2002; Elgar et al., 2003]. The effects of slowly

varying topography on the nonlinear evolution of narrow-band waves was incorporated

in Chu & Mei [1970] and Djordjević & Redekopp [1978]; the work by Liu & Dingemans

[1989] also accounts for rapid topographical undulations. These models describe the slow

variation of the wave envelope and the concomitant wave-induced mean-flow. However,

apart from the one-dimensional simulations in Dingemans et al. [1991], few numerical

implementations have been reported. The angular-spectrum approach by Dalrymple

& Kirby [1988] includes full directionality in the half plane and is suited for wide-

aperture diffraction such as e.g. encountered around breakwater gaps [see e.g. Stamnes,

1986]. This approach eliminates the lateral dimension from the governing equations,

describing two-dimensional wave propagation through a set of ODEs and a simple eikonal

relation; it is extended to laterally varying depth, through a Taylor expansion of the

bottom boundary condition, and to third-order Stokes waves by Dalrymple et al. [1989]

and Suh et al. [1990]. Numerical simulations based on the nonlinear angular-spectrum

approach showed good agreement with observations of finite-amplitude wave evolution

over topography [Dalrymple et al., 1989; Suh et al., 1990].

The prevalence of cubic interactions over quadratic interactions (which are of lower

order) in deeper water is due to the fact that the dispersion relation for surface waves

does not support resonances between triplets of waves in finite depth. Therefore, finite-

depth models with cubic interactions as the dominant nonlinear mechanism invariably

assume quadratic interactions off-resonant, rendering them incompatible with shallow
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water where quadratic interactions approach resonance, i.e. where the Stokes number is

O(1) [e.g. Bryant, 1974].

As a consequence, in the nearshore, wave models are historically based on a different

asymptote of nonlinear wave theories. The classical uniform-depth theories of Boussinesq

[1871] and Korteweg & De Vries [1895], extended to variable depth [Mei & LeMéhauté,

1966; Peregrine, 1967], assume nonlinearity, a/h, and dispersion, µ2 of the same order,

i.e. the Stokes number, (a/h)/µ2, is assumed O(1) [see e.g. Dingemans 1997 Chapter 5 &

6 for an overview]. Following progress in nonlinear optics [Armstrong et al., 1962] and the

work by Bretherton [1964], amplitude evolution equations based on Boussinesq theory

were developed to describe the effects of quadratic near-resonances in uniform depth

[e.g. Mei & Ünlüata, 1972; Bryant, 1973], over undulating topography [Lau & Barcilon,

1972] and over arbitrary but mildly varying depth [Freilich & Guza, 1984]. Keller [1988]

showed that similar equations are in fact derivable from fully dispersive theory. Many

models have emerged since then, either based on Boussinesq theory [e.g. Madsen &

Sørensen, 1993; Herbers & Burton, 1997] or fully dispersive theory, models that are

suitable for unidirectional waves over one-dimensional topography [e.g. Agnon et al.,

1993], small-angle models for two-dimensional topography [e.g. Kaihatu & Kirby, 1995;

Tang & Ouellet, 1997] and models for multi-directional wave propagation over laterally-

uniform topography [e.g. Sheremet, 1996; Eldeberky & Madsen, 1999]. In general, the

models based on fully-dispersive theory include full dispersion in the linear terms and

the non-linear interaction coefficient but retain the premise of near-resonance. The latter

restriction was removed by Bredmose et al. [2002, 2005] who apply suitable boundary

conditions on a general solution to the Laplace equation in the form of infinite expansions

of trigonometric functions [see also Madsen & Schäffer, 1998; Rayleigh, 1876]; based on

a conventional WKB wave field description, Janssen et al. [2004, 2006] derive evolution

equations that account for arbitrary resonant mismatch in quadratic interactions that –

to second-order and for unidirectional waves – can be shown identical to the expressions

in Bredmose et al. [2002].

In contrast to deep-water approaches, these models invariably include quadratic near-

resonances as the dominant nonlinear physics. However, they lack the ability to model

cubic near-resonances, which implicitly restricts them to relatively shallow regions where

the assumption of dominant quadratic interactions is warranted.

The following theoretical development aims at deriving generalized evolution equa-

tions suitable for surface wave propagation over two-dimensional topography, including

the transition from cubic wave-wave interactions in deep-intermediate water (Stokes

regime) to quadratic interactions in shallow water (Boussinesq regime) in a consistent

and unified manner. Our derivation is along the lines of Chu & Mei [1970], generalized to

a multi-frequency and multi-directional wave field utilizing an angular spectrum decom-

position of the wave field [e.g. Stamnes, 1986; Dalrymple et al., 1989], and extended to

higher-order in the bound-wave components to support the transition to shallow water.

The effects of topographical features on the wave propagation are included through a
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scattering mechanism [e.g. Suh et al., 1990]. The resulting model does not break down

in shallow water (where the Stokes number is O(1)), typical for models based on Stokes-

type expansions, but instead reduces to a Boussinesq-type approximation.

In §2.1 we define the wave field and bottom decomposition, introduce notational

conventions and a general treatment of secular forcing terms in the ordered boundary

value problem. The finite depth solutions are given in §2.2 and extended to shallow

water in §2.3. Based on these results, a uniformly valid evolution equation is presented

in §2.4.

2.1 General theory
The starting point of our derivation is the governing set of equations for irrotational

flow of an incompressible, inviscid fluid:

∇2Φ + Φzz = 0, ∀z ∈ D, (2.1a)

Φtt + gΦz + T
{
|∇Φ|2 + (Φz)

2} = 0, z = η(x, y, t), (2.1b)

Φz + ∇h · ∇Φ = 0, z = −h(x, y), (2.1c)

gη + Φt +
1
2

(
|∇Φ|2 + (Φz)

2) = 0. z = η(x, y, t). (2.1d)

Here Φ is the velocity potential function, η is the surface elevation and g denotes grav-

itational acceleration; the operator T =
[
∂t +

1
2
∇Φ · ∇ + 1

2
Φz∂z

]
. We use a Cartesian

frame of reference with its origin at the undisturbed free surface of the fluid: x, y

denote the two horizontal coordinates and z corresponds to the vertical coordinate,

positive pointing upward. The operator ∇ ≡ (∂x, ∂y), where ∂x is a shorthand for

partial differentiation with respect to the subscripted variable. The Laplace equation

(2.1a) follows from continuity. The free-surface boundary condition (2.1b) combines

the kinematic and dynamic conditions while assuming a constant atmospheric pressure

[see e.g. Phillips 1977 §3.1 or Dingemans 1997 §1.3]. Impermeability and immobility of

the bottom is expressed by (2.1c), and the surface elevation is related to the velocity

potential by the dynamic free-surface boundary condition (2.1d).

2.1.1 Decomposition for weak lateral depth variability

We consider weakly nonlinear surface waves propagating in finite water depth over slowly

varying topography with weakly two-dimensional features. The topography is considered

one-dimensional to leading order with a two-dimensional perturbation superposed, writ-

ten as:

h(x) = h(x) − h̃(x).

Here h represents the lateral average of h; the h̃ denotes the (two-dimensional) residue.

Without loss of generality, we let the x- and y-axes coincide with the principal and

lateral direction respectively, and since we are particularly interested in the description
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of waves propagating from the deep open ocean into a shallow coastal area, we refer

to the principal direction as the cross-shore direction and the lateral direction as the

alongshore direction.

The magnitude of the lateral depth variations, h̃, is characterized by the small

parameter γ defined as

O(γ) = O

(
h̃0

h0

)
¿ 1, (2.2)

where h̃0 is a characteristic amplitude of h̃ and h0 is a reference depth.

The nonlinearity of the wave field is governed by the parameter

O(ε) = O(a0/Lv) ¿ 1, where a0 and Lv denote a characteristic amplitude of the surface

elevation and a representative vertical length scale of the wave motion respectively.

Since we consider wave propagation from deep to shallow water we choose a generally

applicable vertical length scale Lv = µ/k0, where k0 is a representative wavenumber of

the wave motion and µ = tanh k0h0, which can be considered a generalized dispersion

parameter varying from O(1) in deep-intermediate water to O(k0h0) in shallow water

[see also Beji, 1995; Kirby, 1998].

The depth variations are assumed small over distances O(k−1
0 ), made explicit by the

parameter β, where

O(β) = O

(
∂xh

k0h

)
= O

(
|∇h̃|
k0h

)
¿ 1. (2.3)

We set the relative magnitudes of the relevant small parameters O(β) = O(γ2) =

O(ε2/µ2) and define multiple scales [see e.g. Chu & Mei, 1970; Liu & Dingemans, 1989;

Suh et al., 1990]:

〈tn, xn, yn〉 =

(
ε

µ

)n
〈t, x, y〉, n = {1, 2}. (2.4)

To make the ordering of the bottom perturbation explicit in the derivation we write

h̃ = γĥ, ∇h̃ = γ2
∇1ĥ, (2.5)

where ĥ ∼ O(1) and ∇1 ≡ 〈∂x1
, ∂y1〉.

In the present scaling the bottom slope is O(ε2/µ2), affecting wave evolution at O(ε2)

in deep-intermediate water (O(µ) ∼ O(1)) and O(ε) in shallow water (O(µ2) ∼ O(ε)).

This approximation is well-suited to typical coastal bathymetry with a sloping beach

extending onto a relatively flat continental shelf. Moreover, the relative magnitude of

the lateral depth variations, h̃, is introduced at lower order, O(ε/µ), to accurately

resolve wave propagation over shallow submerged bathymetric features such as banks

and shoals that are common in coastal areas. The scaling of (2.2)–(2.4) further implies

that the characteristic length scale of the two-dimensional topography is long, O(µ/ε),

compared with the surface wavelength and thus the back-scattering of waves (induced
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by bottom undulations of about half the surface wavelength) is neglected in the present

approximation, consistent with estimates of wave scattering from natural continental

shelf topography presented in earlier studies [e.g. Ardhuin & Herbers, 2002].

Following Chu & Mei [1970], the set (2.1) is solved by applying a perturbation

expansion of the surface elevation and velocity potential. In order to capture both

the leading-order effects of cubic resonances in deep-intermediate water and quadratic

resonances in shallow water, we explicitly evaluate the bound-wave components induced

by quadratic wave–wave interactions

[
Φ

η

]
=

∞∑

n=1

εn

µn−1

{[
Φ(n,0)

η(n,0)

]
+

[
Φ(n,1)

η(n,1)

]
+

ε

µ2

[
Φ(n+1,2)

η(n+1,2)

]}
+ HBC. (2.6)

The (n, 0) components correspond to the wave-driven mean flow, (n, 1) to free waves,

and (n+1, 2) to quadratically coupled or bound waves. Anticipating the near-resonance

of quadratic nonlinear forcing terms in shallow water, these are scaled with ε/µ2 which

has the appropriate deep- and shallow-water asymptotes of wave steepness, a0k0, and the

Stokes number, a0/(k
2
0h

3

0) [Stokes, 1847], respectively. The HBC in (2.6) denotes higher-

order bound components (involving cubic and higher-order, non-resonant interactions)

that will not be considered in the present analysis [see also Shemer et al., 2001].

The premise of a leading-order, alongshore-uniform topography supports a frequency

(ω)–alongshore wavenumber (λ) or angular-spectrum decomposition [see e.g. Suh et al.,

1990]. Accordingly we write the primary wave field (lowest-order free waves) as a sum-

mation of modulated plane waves propagating at discrete angles in positive x direction:

[
Φ(1,1)

η(1,1)

]
=

∞∑

p,q=−∞
p6=0

[
φ̃

(1,1)
q,p

ζ̃
(1,1)
q,p

]
exp [i (λqy − ωpt)] =

∑

v

[
φ

(1,1)
v

ζ
(1,1)
v

]
Ev. (2.7)

Here λq = q∆λ and ωp = p∆ω in which ∆λ and ∆ω represent the discrete alongshore

wavenumber and angular frequency spacing respectively. The summation over v = (q, p)

is a shorthand for the summation over all combinations of the discrete frequencies and

alongshore wavenumbers. We exclude zero-frequency components (p = 0) since these

are part of the mean flow and are treated separately (Appendix C). The {φ(1,1)
v , ζ

(1,1)
v }

are slowly varying amplitudes while the rapid phase variations are incorporated in Ev,

given as

Ev = exp [i (ψv(x) + λqy − ωpt)], ψv(x) =

∫ x

κv(x
′) dx′. (2.8)

Here κv = sgn(p)
√
k2
p − λ2

q, with sgn denoting the signum function, and kp is related

to the angular frequency, ωp, through the lowest-order dispersion relation. Since Φ and

η are real functions we have φ
(1,1)
v = φ

(1,1)∗
−v

and ζ
(1,1)
v = ζ

(1,1)∗
−v

, where ∗ denotes the

complex conjugate.
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In the present work we consider only propagating modes. We omit exponentially

decaying (evanescent) modes, such as refractively trapped waves for which |λq| > kp,

and vertical eigenmodes. Such non-propagating modes may e.g. be excited around

bathymetric features (refractive trapping) or on steep slopes and at domain boundaries;

they can be important locally, but are confined to the near field (typically a few

wavelengths) of their generation source. Away from such regions, at distances much

greater than O(κ−1
v

), the wave field is accurately represented by the propagating modes

[Stamnes, 1986]. The complete solution to the linearized problem and further discussion

on the validity of the present approximation is given in §19.1 of Stamnes [1986].

Using the spectral decomposition (2.7), the total wave field (2.6) can be expressed as

[
Φ

η

]
=

∞∑

n=1

εn

µn−1

{[
Φ(n,0)

η(n,0)

]
+
∑

v1

[
φ

(n,1)
1

ζ
(n,1)
1

]
E1 +

ε

µ2

∑

v1,v2

[
φ

(n+1,2)
12

ζ
(n+1,2)
12

]
E12

}

+ H.B.C. (2.9)

For notational convenience, we write E12...n = E1E2 . . . En and apply numerical sub-

scripts to identify individual wave components, for example φ
(n,1)
1 is a shorthand for φ

(n,1)
v1

denoting the velocity potential function for free wave component v1. Double subscripts

without separator always refer to the corresponding bound wave component; accordingly,

φ
(2,2)
12 denotes the bound wave component resulting from the quadratic interaction of

φ
(1,1)
1 and φ

(1,1)
2 .

The lateral variability of the wave field is captured by the decomposition in angular

components so that the modulation of the amplitudes due to wave–wave, wave–current

and wave–bottom interactions, as well as the effects of non-stationarity, take place on

slow scales in x and t alone:[
φ

(n,m)
am

ζ
(n,m)
am

]
=

[
φ

(n,m)
am (z, x1, t1, x2, t2)

ζ
(n,m)
am (x1, t1, x2, t2)

]
m = 1, 2 n > m, (2.10)

where the subscript am = 1 for m = 1 and am = 12 for m = 2, corresponding to

components v1 and (v1,v2) respectively.

The remainder of this chapter deals with the derivation of transport equations for the

wave field variables that describe both the linear processes of shoaling, refraction and

diffraction, and quadratic and cubic nonlinear effects. The main result of that derivation

is equation (2.44) in §2.4. The order of presentation follows causality, but the reader can

choose to skip ahead to §2.4 first, and read through Chapter 3, where we present both

an analytical and empirical verification of the theory derived here, before returning to

the details of the derivation presented in the following.

2.1.2 The ordered solution

Upon substituting the wave field decomposition (2.9) in the Laplace equation (2.1a),

the bottom boundary condition (2.1c) and the free-surface boundary condition (2.1d),

these can be written in the form [see e.g. Chu & Mei, 1970; Liu & Dingemans, 1989]:
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(
d2
z − k2

am

)
φ(n,m)
am

= R(n,m)
am

, ∀z ∈ D, (2.11a)

dzφ
(n,m)
am

= F (n,m)
am

, z = −h, (2.11b)

ζ(n,m)
am

=
1

g

[
iωam

φ(n,m)
am

−H(n,m)
am

]
, z = 0, (2.11c)

where dz denotes differentiation with respect to z, n > m and the forcing terms

R
(n,m)
am , F

(n,m)
am and H

(n,m)
am on the right-hand side (RHS) of (2.11) depend on lower-order

results and are specified below as needed.

A general solution to (2.11a) and the condition (2.11b) can be found through variation

of parameters [e.g. Chu & Mei, 1970]:

φ(n,m)
am

= −ChQam

k2
am

[
I

(n,m)
1 (Qam

) + M(n,m)
am

]
+

ShQam

k2
am

[
I

(n,m)
2 (Qam

) + kam
F (n,m)
am

]
,

(2.12)

where M(n,m)
am is an integration constant,

Qam
= kam

(h+ z), Ch{} = cosh{}, Sh{} = sinh{}, (2.13)

and

I
(n,m)
1 (Qam

) =

∫ Qam

0

R(n,m)
am

ShQ′
am
dQ′

am
, (2.14)

I
(n,m)
2 (Qam

) =

∫ Qam

0

R(n,m)
am

ChQ′
am
dQ′

am
. (2.15)

Insertion of (2.12) in the combined free-surface boundary condition (2.1b) yields

∆am

[
I

(n,m)
1 (qam

) + M(n,m)
am

]
−Γam

[
I

(n,m)
2 (qam

) + kam
F (n,m)
am

]
= −S(n,m)

am

kam

g Sh qam

, (2.16)

where the forcing term S
(n,m)
am is the result of the perturbation expansion for the wave

field, the expansion of the coordinates in multiple scales and the Taylor expansion of

(2.1b) around z = 0. We have used the shorthand notation

∆am
= 1 − ω2

am

gkam
Tam

, Γam
=

1

Tam

− ω2
am

gkam

, Tam
= tanh qam

, qam
= kam

h, (2.17)

where ∆am
can be interpreted as a measure of resonance mismatch.

Note from (2.16) that m = 1 is a special case in the sense that ∆a1
vanishes (i.e.

the forcing is secular) so that (2.16) constitutes a solvability condition on the lower-

order wave field, but with ∆a1
= 0 it leaves the homogeneous part of φ

(n,1)
1 (viz. M(n,1)

a1 )

undetermined [see also Chu & Mei, 1970; Liu & Dingemans, 1989]. The derivation of

the third-order evolution equations involves operations on φ
(2,1)
1 and thus the complete

solution for φ
(2,1)
1 , including the contribution from M(2,1)

a1 , is needed to consistently

extend the derivation to this order. To this end, Chu & Mei [1970] asymptotically
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matched their second-order result to the corresponding deep-water solution, whereas

Liu & Dingemans [1989] derived an evolution equation for the combined first- and

second-order free wave (m = 1) potential amplitudes. Kennedy & Kirby [2003] discarded

the homogeneous contribution at second order altogether which, in their context, is

equivalent to the approach of Liu & Dingemans [1989]. In the present context these

approaches would either result in ambiguous results or yield modifications of the wave

field due to wave–bottom interactions even in deep water, which must be rejected on

physical grounds. Therefore, we pursue an explicit derivation of the second-order free

wave potential from first principles that includes the contribution from M(2,1)
a1 and

assures a proper deep-water asymptote (i.e. vanishing contributions of wave-bottom

interactions in deep water). To this end, the case m = 1 (free waves) is considered as

the limit of a vanishing mismatch from resonance by writing

ω2
a1

= lim
∆a1

→0
gka1

Ta1
(1 − ∆a1

) (2.18)

and we expand Γa1
and S

(n,1)
a1 in terms of ∆a1

according to

Γa1
= Γ(0)

a1
+ ∆a1

Γ(1)
a1
, (2.19)

S(n,1)
a1

=
1∑

j=0

∆j
a1

j!

djS
(n,1)
a1

d∆j
a1

∣∣∣∣∣
∆a1

=0

+O(∆2
a1

)

= S(n,1,0)
a1

+ ∆a1
S(n,1,1)
a1

+O(∆2
a1

). (2.20)

Insertion of (2.19) and (2.20) into (2.16) yields

M(n,1)
a1

= lim
∆a1

→0

{
1

∆a1

[
Γ(0)
a1

(
I

(n,1)
2 (qa1

) + ka1
F (n,1)
a1

)
− ka1

g Sh qa1

S(n,1,0)
a1

]

+Γ(1)
a1

(
I

(n,1)
2 (qa1

) + ka1
F (n,1)
a1

)
− I

(n,1)
1 (qa1

) − ka1

g Sh qa1

S(n,1,1)
a1

+O(∆a1
)

}
(2.21)

and thus for vanishing ∆a1
we obtain from (2.21)

M(n,1)
a1

= Γ(1)
a1

(
I

(n,1)
2 (qa1

) + ka1
F (n,1)
a1

)
− I

(n,1)
1 (qa1

) − k2
a1

ω2
a1

S
(n,1,1)
a1

Ch qa1

, (2.22)

provided that the contribution between square brackets in (2.20) – multiplied by ∆−1
a1

–

cancels, yielding

1

ka1

∫ qa1

0

R(n,1)
a1

ChQ′
a1
dQ′

a1
+ F (n,1)

a1
=

Ch qa1

g
S(n,1,0)
a1

. (2.23)

Equation (2.22) unambiguously defines the homogeneous part of the velocity potential

while (2.23) is the usual solvability condition. The latter is also found if the limit is not

taken explicitly (as done here) but the forcing is considered secular from the outset;

however, in that case the contribution given in (2.22) remains undetermined.
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For m = 2 we have ka2
= k12 = |k1 + k2|, ωa2

= ω12 = ω1 + ω2 and the resonance

mismatch is generally O(µ2). To make the order explicit we write ∆a2
= µ2∆̂a2

with

∆̂a2
∼ O(1). The lowest-order forcing problem for m = 2 (n = 2) is inhomogeneous

only in the free-surface boundary condition involving the forcing term S
(2,2)
a2 . Since in

(2.9) we expand the bound waves as O(ε2/µ2) from the outset rather than O(ε2) we

correspondingly write

M(2,2)
a2

= − ka2

gTa2
∆̂a2

S
(2,2)
a2

Ch qa2

. (2.24)

In the present analysis, quadratic bound wave contributions of higher than second order

(n > 2) are considered only in the near-resonant shallow-water limit (see §2.3) where

the Stokes number is O(1).

2.2 Deep-intermediate water solution
In deep-intermediate water the representative vertical length scale Lv = k−1

0 and the

nonlinearity parameter, ε, represents wave steepness. Here µ ∼ O(1) and thus can be

omitted, simplifying the analysis to an expansion in a single small parameter, ε. Our

expression for the second-order free wave potential differs from earlier studies (for the

reasons explained in §2.1.2), leading to modifications of the O(ε3) evolution equations.

2.2.1 First order, O(ε)

For m = 1 the lowest order solution renders the boundary value problem (2.11) homo-

geneous (R
(1,1)
a1 = F

(1,1)
a1 = H

(1,1)
a1 = 0), yielding for the primary waves:

φ
(1,1)
1 = ϕ

(1,1)
1 f1, f1 =

ChQ1

Ch q1
, ϕ

(1,1)
1 = −i g

ω1

ζ
(1,1)
1 ,

and the dispersion relation

ω2
1 = gk1T1, (2.25)

where ϕ
(n,m)
am = φ

(n,m)
am |z=0 is the velocity potential amplitude evaluated at the undis-

turbed surface.

2.2.2 Second order, O(ε2)

At this order, for m = 1, the set (2.11) is inhomogeneous with secular forcing terms

including a quadratic forcing term involving a product of the bottom perturbation, ĥ,

and the wave potential, ϕ
(1,1)
1 , which accounts for the interaction of the wave field with

the lateral depth variations:

R
(2,1)
1 = −i2κ1φ

(1,1)
1,x1

, (2.26a)

S
(2,1)
1 = 2iω1ϕ

(1,1)
1,t1

, (2.26b)

F
(2,1)
1 = − k2

1

Ch q1
G1{ĥ, ϕ(1,1)

2 }. (2.26c)
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The forcing term, F
(2,1)
1 , involves the wave-bottom operator

Gi{a, bj} = Fi{a(y)F−1{bj exp [iψj]}} exp [−iψi], (2.27)

where Fi denotes the ith component of the discrete Fourier transform (DFT) with

respect to the lateral coordinate, and F−1 denotes the inverse Discrete fourier trans-

form (IDFT). The interaction with the topography is thus modeled as a triad inter-

action between two wave components with equal frequency and a difference alongshore

wavenumber matching that of the (zero-frequency) bottom component, i.e. the triad

{ω1, λ1;ω1, λ2; 0, λ1 − λ2}. This scattering approach, as opposed to more conventional

approaches for refraction–diffraction modeling, describes wave propagation over two-

dimensional topography by a set of one-dimensional (apart from time) transport equa-

tions.

From (2.12), using (2.22), we find for the potential function φ
(2,1)
1

φ
(2,1)
1 =

[
K(1,2)

1 − i

(
κ1

k2
1

ϕ
(1,1)
1,x1

Q1TQ1
− ik1G1{ĥ, ϕ(1,1)

2 }TQ1

)]
ChQ1

Ch q1
(2.28)

where

TQ1
=

ShQ1

ChQ1

, K(2,1)
1 = −i

[
ϕ

(1,1)
1,t1

ω1

− κ1

k2
1

ϕ
(1,1)
1,x1

q1T1 + ik1T1G1{ĥ, ϕ(1,1)
2 }

]
. (2.29)

Setting K(2,1)
1 = 0 in expression (2.28) yields the corresponding expression in Suh et al.

[1990]. This implies a non-vanishing contribution of the lateral depth variations to

both the second-order velocity potential and the corresponding second-order surface

elevation, ζ
(2,1)
1 , which persists in deep water, as can be easily verified. This is unphysical.

Taking K(2,1)
1 into account, as in (2.28), determines φ

(2,1)
1 unambiguously, such that

the topography has a vanishing effect on the velocity potential in deep water. The

corresponding surface elevation correction at this order, ζ
(2,1)
1 , vanishes identically, which

can be seen from inserting (2.28) into (2.11c).

The solvability condition (2.23) for n = 2 on the lowest-order wave field is

L(1){ϕ(1,1)
1 } = ξ

(2,wb)
1 {ϕ(1,1)

2 }, (2.30)

where

L(1){} = [∂t1 + V1∂x1
] , ξ

(2,wb)
1 {ϕ(1,1)

2 } = i
g

2ω1

k2
1

(
1 − T 2

1

)
G1{ĥ, ϕ(1,1)

2 }, (2.31)

in which V1 = (κ1/k1)Cg,1 is the cross-shore (principal direction) component of the

linear group speed vector. The forcing term involving the operator ξ
(2,wb)
1 describes the

lowest-order interaction between the surface waves and topography, indicated by the

superscript wb. This convolution-type term redistributes the complex amplitudes over

the alongshore wavenumber components, thus correcting the wave ray geometry relative
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to Snel’s law† to account for the lateral variability of the topography; lateral diffraction

is accounted for implicitly by the summation of the angular wave components [see also

Stamnes, 1986; Dalrymple & Kirby, 1988; Dalrymple et al., 1989].

For m = 2 we find forcing terms quadratic in the free wave components that generally

result in components that are coupled or bound to the primary waves; in fact they

represent the spectral generalization of the second-order harmonic in a periodic wave

train first described by Stokes [1847]. We will refer to these components with m = 2

as bound waves. The non-zero forcing term is S
(2,2)
12 = iD1,2ϕ

(1,1)
1 ϕ

(1,1)
2 , where D1,2 is

a quadratic wave–wave interaction coefficient given in Appendix A. The corresponding

velocity potential is given by

φ
(2,2)
12 = ϕ

(2,2)
12

ChQ12

Ch q12
, ϕ

(2,2)
12 = i

D1,2

gk12T12∆̂12

ϕ
(1,1)
1 ϕ

(1,1)
2 . (2.32)

Expressions (2.32) are in agreement with Hasselmann [1962, §4].

2.2.3 Third order, O(ε3)

At this order, for m = 1, we incorporate modulations due to the non-stationarity, large-

scale bottom slope, cubic wave–wave and wave–bottom interactions, and the interaction

with the mean flow. After some algebraic manipulation, the solvability condition (2.23)

at this order yields

L(2){ϕ(1,1)
1 } = ξ

(3,wb)
1 {ϕ(1,1)

2 } + ξ
(3,wbb)
1 {ϕ(1,1)

2 } + ξ
(3,wc)
1 {ϕ(1,1)

2 }

+ ξ
(3,www)
1 {ϕ(1,1)

2 ϕ
(1,1)
3 ϕ

(1,1)
4 } − 1

ω1

∑

v2,v3,v4

D2,34ϕ
(1,1)
2 ϕ

(2,2)
34 δλ,ω234;1E234;1, (2.33)

where the terms involving the operators ξ
(3,j)
1 are specified below,

L(2){} =

[
∂t2 + V1∂x2

+
1

2
∂x2

V1 −
i

2
M1∂

2
x1

]
, (2.34)

M1 =

(
κ1

k1

)2
∂2ω1

∂k2
1

+

(
1 −

(
κ1

k1

)2
)
Cg,1
k1

, (2.35)

†This is sometimes spelled as ‘Snell’s law’. The quantitative law of refraction was named after the

Dutch scientist Willebrord Snel van Royen. His name was latinized into Snellius and later incorrectly de-

latinized into Snell. Therefore, the spelling ‘Snel’s law’ is historically appropriate. See also Dingemans

[1997, p. 67]. The discovery of the refraction law was never published by Snel but mentioned by Huygens

in his ‘Dioptrica’, who had seen Snel’s work. Although Huygens mentions that he assumes that Descartes

had also seen this work, the latter makes no mention of this in his ‘Dioptrices’ where he presents

the law in a new form and attempts to prove it with, what Mach refers to as ‘a pedantic method of

demonstration’ [Mach, 1926]. Descartes’ work led to an historic controversy with Fermat who denounced

his proof; to discover what he believed to be the ‘true law of refraction’ Fermat devised his celebrated

‘principle of least time’ and – to his own astonishment – found the same refraction law as Descartes

had published [Sabra, 1981]. (The least-time principle is more general and moreover correctly relates

the refractive index to the ratio of velocities of propagation in the respective media.)
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and we make use of the notional contractions

Eijk;l = EijkE
∗
l , δλ,ωijk;l = δ(λi + λj + λk − λl)δ(ωi + ωj + ωk − ωl), (2.36)

with δ representing a discrete Dirac delta or unit impulse function [see e.g. Oppenheim

& Schafer, 1989].

Equation (2.33) is the third-order transport equation for the free-wave components.

The left-hand side (LHS) operator in (2.33) includes the linear effects of shoaling,

refraction and diffraction for waves propagating over an alongshore-uniform topography

(h). The forcing terms on the RHS of (2.33) take into account the third-order effects

of the weak two-dimensional topography (h̃) and nonlinearity on the wave evolution.

In particular, the operators ξ
(3,wb)
1 and ξ

(3,wbb)
1 account for the interaction with the

lateral depth variations; both terms are linear in the surface elevation while linear and

quadratic in the bottom perturbation respectively. The terms involving the operators

ξ
(3,wc)
1 and ξ

(3,www)
1 describe the interaction with the mean flow and cubic nonlinear

wave interactions respectively. Note that there is no wave–wave–bottom (wwb) forcing

term in (2.33) because in the present approximation the bottom wavenumbers are small

relative to the wavenumber mismatch of quadratically forced bound waves such that

these contributions are non-secular.

The convolution term on the RHS of (2.33) represents the quadratic interaction

between bound and free wave components, which is given in explicit form for later use.

Since (2.33) represents an intermediate result, explicit expressions for the remaining

forcing terms (involving the operators ξ
(3,j)
1 ) are omitted for brevity. If needed they can

be recovered from the final expressions in physical coordinates and variables which are

included in Appendix B.

We combine (2.30) and (2.33) while absorbing the small parameters so that in physical

coordinates and variables we have

L{ϕ(f)
1 } = ξ

(wb)
1 {ϕ(f)

2 }+ξ(wbb)
1 {ϕ(f)

2 } + ξ
(wc)
1 {ϕ(f)

2 } + ξ
(www)
1 {ϕ(f)

2 ϕ
(f)
3 ϕ

(f)
4 }

− 1

ω1

∑

v2,v3,v4

D2,34ϕ
(f)
2 ϕ

(b)
34 δ

λ,ω
234;1E234;1, (2.37)

where ϕ
(f)
1 = εϕ

(1,1)
1 and ϕ

(b)
34 = ε2ϕ

(2,2)
34 and the superscripts f and b refer to free and

bound waves respectively; the operator L{} = εL(1){}+ ε2L(2){}. The forcing terms ξ
(j)
1

are given in Appendix B.

2.3 Extension to shallow water

The main result of §2.2, the transport equation for the ϕ
(f)
1 (2.37), is valid in deep-

intermediate water but includes a quadratic wave-wave interaction term that involves

the second-order bound waves. Closure by means of substitution of expressions (2.32)

(in physical variables) for the bound wave amplitudes renders (2.37) incompatible with
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the limit O(µ2) → O(ε) where the quadratic interactions approach resonance. To include

this limit with O(ε2) accuracy we extend our expansion of the bound components to

higher order, taking into account terms that are of O(ε3/µ2), O(ε4/µ4), i.e. all terms that

are O(ε2) or lower order as O(µ2) → O(ε). Although this selective inclusion of higher-

order terms may appear to conflict with the expansion for deep-intermediate water, the

ordered expansion is merely a device to make the relative magnitude of terms explicit

and is used here to identify terms that can formally be neglected in deep-intermediate

depth (where they are smaller than the general order of approximation) but are essential

in shallow regions where the Stokes number is O(1).

Here we consider the shallow-water limit where Lv = h0, ε = a/h and use the

Boussinesq approximation O(µ2) ∼ O(ε). Secular contributions from quadratic inter-

actions to the wave field evolution are removed by introducing the composite bound

wave amplitude

ϕ
(2,2)
1 =

∑

v2,v3

ϕ
(2,2)
23 δλ,ω23;1E23;1, (2.38)

which can be considered the ‘bound’ wave contribution to spectral component v1. In

shallow water, where the forcing is secular, ϕ
(2,2)
1 is a slowly varying quantity that can be

described using the same WKB formalism that was used to derive the transport equa-

tions (2.30) and (2.33) for ϕ(1,1). Collecting terms of O(ε3/µ3) and O(ε4/µ4) (that become

O(ε3/2) and O(ε2) in shallow water respectively) yields forcing terms R
(3,2)
1 , S

(3,2)
1 , F

(3,2)
1

and R
(4,2)
1 , S

(4,2)
1 , F

(4,2)
1 that – apart from the wave–wave and wave–current interactions

in S
(4,2)
1 – are identical to R

(2,1)
1 , S

(2,1)
1 , F

(2,1)
1 and R

(3,1)
1 , S

(3,1)
1 , F

(3,1)
1 respectively, with

ϕ
(1,1)
1 and ϕ

(2,1)
1 consistently replaced by ϕ

(2,2)
1 and ϕ

(3,2)
1 . For brevity we omit the details

(which are similar to those in the analysis for deep-intermediate water) and give the

resulting evolution equations for ϕ
(2,2)
1 . At O(ε3/µ3) we obtain

L(1){ϕ(2,2)
1 } = ξ

(2,wb)
1 {ϕ(2,2)

2 }. (2.39)

At O(ε4/µ4) we find

L(2){ϕ(2,2)
1 } = ξ

(3,wb)
1 {ϕ(2,2)

2 }+ ξ
(3,wbb)
1 {ϕ(2,2)

2 }− 1

2ω1

∑

v2,v3

D2,3ϕ
(2,2)
2 ϕ

(2,2)
3 δλ,ω23;1E23;1. (2.40)

Equations (2.39), (2.40) are higher-order expressions describing the evolution of the ϕ
(2,2)
1

on the slow scales; these expressions are needed solely in the near-resonant limit (shallow

water), which justifies the premise of slow variation of the component amplitudes ϕ
(2,2)
1 .

The similarity with (2.30), (2.33) is expected since they are obtained through a similar

analysis; differences are due to the fact that we pursue only O(ε2) accuracy in shallow

water (in contrast to deep-intermediate water where we retain O(ε3) accuracy), and the

quadratic interactions in (2.40) involve a product of bound waves (as opposed to the

free wave–bound wave interaction in the corresponding term in (2.33)).

It should be noted that the quadratic response may also contain fast modulations

due to large resonance mismatches, even in relatively shallow water for interactions
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between non-collinear wave components. The governing evolution equation, valid from

deep-intermediate to shallow water, is obtained by combining (2.39) and (2.40), changing

to physical coordinates while accounting for variations on the fast space scale related to

the resonance mismatch, and utilizing expressions (2.32) for the bound wave amplitudes.

In physical coordinates and variables we have

L{ϕ(b)
1 } = ξ

(wb)
1 {ϕ(b)

1 } + ξ
(wbb)
1 {ϕ(b)

1 }

− V1

∑

v2,v3

D2,3

gJ2,3

(
ϕ

(f)
2 ϕ

(f)
3 +

gJ2,3

2ω1V1

ϕ
(b)
2 ϕ

(b)
3

)
δλ,ω23,1E23;1, (2.41)

where ϕ
(b)
1 = ε2/µ2ϕ

(2,2)
1 , J2,3 = k23T23∆23/Λ2,3 and Λ2,3 = κ2+κ3−κ2+3. The operators

ξ
(j)
1 (involving wave-bottom interaction) are given in Appendix B.

2.4 A generalized third-order evolution model
The evolution equations (2.37) and (2.41) represent a coupled set of equations for the

free and bound wave components respectively. A transport equation for the composite

amplitude ϕ1 = ϕ
(f)
1 + ϕ

(b)
1 is obtained by summing (2.37) and (2.41):

L{ϕ1} = ξ
(wb)
1 {ϕ2} + ξ

(wbb)
1 {ϕ2} + ξ

(wc)
1 {ϕ2}

+ ξ
(www)
1 {ϕ2ϕ3ϕ4} − V1

∑

v2,v3

D2,3

gJ2,3

(
ϕ

(f)
2 ϕ

(f)
3 +

gJ2,3

2ω1V1

ϕ
(b)
2 ϕ

(b)
3

)
δλ,ω23,1E23;1

− 1

ω1

∑

v2,v3,v4

D2,34ϕ
(f)
2 ϕ

(b)
34 δ

λ,ω
234;1E234;1. (2.42)

The forcing terms ξ
(j)
1 are given in explicit form in Appendix B. Note that

lim
µ2→ε

gJ2,3

2ω2+3V2+3

= 1 +O(ε) (2.43)

so that, upon substituting ϕ1 in the products in the first convolution sum on the

RHS of (2.42), we can replace ϕ
(f)
1 by ϕ1 and substitute the second-order bound wave

solution (2.32) for ϕ
(b)
34 in the remaining terms. These operations result in the closed-form

equation

L{ϕ1} = ξ
(wb)
1 {ϕ2} + ξ

(wbb)
1 {ϕ2} + ξ

(wc)
1 {ϕ2}

+ ξ
(M,www)
1 {ϕ2ϕ3ϕ4} + ξ

(ww)
1 {ϕ2ϕ3}, (2.44)

which retains O(ε2) accuracy in the limit O(µ2) → O(ε). Here ξ(ww) and ξ(M,www) account

for quadratic and cubic interactions in ϕ1; the latter is modified with respect to the finite

depth result, indicated by the M in the superscript (explicit expressions are given in

Appendix B); it ensures proper cubic nonlinearity in finite depth while retaining O(ε2)
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accuracy in shallow water. Equation (2.44), the main result of the present analysis, is a

one-dimensional (in space) evolution equation for weakly nonlinear waves propagating

from deep to shallow water over weakly two-dimensional topography. Although (2.44)

does not consider bound and free wave components explicitly, it fully accounts for near-

resonant cubic interactions in deep-intermediate depth and near-resonant quadratic

interactions in shallow water; also, quadratic non-secular contributions (off-resonant

bound waves) are accounted for (see §3.1). It is a closed set of equations, apart from the

term involving the mean-flow quantities, for which expressions are given in Appendix

C. Since the mean flow is modeled without z-dependence the model is suitable for

intermediate depths (k0h0 ∼ O(1)) and shallow water where waves ‘feel the bottom’.

In deeper water (εk0h0 ≥ O(1)) more general expressions for the mean flow are needed,

which is considered in Peregrine [1983b].

Equation (2.44) describes the evolution of the velocity potential amplitude. The

corresponding spectral amplitudes for the surface elevation function can be readily

obtained from

ζ1 = i
ω1

g
ϕ1 −

1

g

∑

v2,v3

R2,3ϕ2ϕ3δ
λ,ω
2,3;1E2,3;1, (2.45)

where the nonlinear term is a second-order correction required to accurately include

second-order bound waves in the free surface elevation. This term is O(ε2) and thus

a genuine second-order term irrespective of the resonance mismatch. In contrast, the

contribution to ϕ1 due to quadratic interactions is O(ε2/µ2) and becomes an O(ε)

secular forcing term in shallow water with leading-order contributions over distances

O(ε−1). In view of this, the nonlinear term in (2.45) – contributing a local, second-order

correction without affecting the wave field evolution – is usually neglected in models for

near-resonant quadratic interactions [e.g. Agnon et al., 1993; Kaihatu & Kirby, 1995],

which is consistent with the premise of that derivation. Since the present model allows

for arbitrary resonance mismatch (and thus includes off-resonant, second-order bound

waves), the inclusion of the nonlinear term in (2.45) is necessary to obtain second-order

accuracy in the surface elevation matching Stokes’ second-order theory.

In the following chapter (Chapter 3) the theory presented here is verified, both analy-

tically – through comparison to expressions in the literature – and through comparison

of numerical simulations to laboratory observations.





3Analysis and verification

deterministic theory

The main result of Chapter 2 is a set of evolution equations for the angular spec-

trum components (viz. (2.44)), suitable for wave propagation from deep-intermediate to

shallow water over weakly two-dimensional topography.

We verify the uniform validity of the nonlinearity embedded in the model propagation,

through analytical comparison to well-established expressions in the literature (§3.1)
and empirical verification for one-dimensional wave propagation is presented (§3.2).
In the analytical comparison we address both the deep-water (§3.1.1) and shallow-

water asymptotes (§3.1.2). With respect to the latter, various approximations exist

in the literature; their mutual (dis-)similarities are considered and their relation, as

special cases, to the more general expression in eq. (2.44) is shown. We empirically

verify the model through comparison of numerical simulations with a reduction of eq.

(2.44), appropriate for one-dimensional wave propagation, to laboratory observations of

unidirectional waves (§3.2).
The two-dimensional capability of the model is assessed in §3.3 and §3.4, where we

primarily focus on the concomitant modeling of the effects of quadratic interactions

and refraction; the third-order nonlinear physics is omitted. In particular we address

the (linear) properties of the two-dimensional approximation, its inherent limitations,

and relation to more general, two-dimensional formulations of waves over varying depth

(§3.3). The robustness of the approximation with respect to lateral depth variability,

in the presence of shallow-water nonlinearity, is empirically verified (§3.4) through

comparison of model-predicted wave evolution to observations of waves over weakly non-

uniform topography (§3.4.1), and over submerged two-dimensional obstacles (§3.4.2).
The inherent limitations and potential of the present approach, both from a de-

terministic viewpoint (Chapters 2 and 3) and with an outlook to stochastic modeling

(Chapters 4 and 5) are discussed in §3.5.

3.1 Asymptotic limits of the nonlinear model

3.1.1 Deep-intermediate water: cubic nonlinearity

We consider wave propagation in sufficiently deep water such that second-order bound

waves do not affect the wave field evolution and nonlinear resonances are accounted for

through the cubic forcing term ξ(www) given in Appendix B. It can be shown (Appendix

D) through some algebraic manipulation that the interaction coefficient H1,2,3 in ξ(www)

is equivalent to that of Herterich & Hasselmann [1980] [a corrected version of the
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interaction term given in Hasselmann, 1962]. Furthermore, it can be shown (Appendix D)

that expressions for the dispersion corrections from the pairwise, third-order interaction

of a bichromatic, directional wave train in deep water agree with expressions derived

by Longuet-Higgins & Phillips [1962] (when accounting for the misprint in that paper

previously pointed out by Hogan et al. [1988] and Willebrand [1973, 1975]).

If we further restrict the wave field to a single angular component

η = ζ exp

[
i

(∫ x

κ dx+ λy − ωt

)]
+ ∗ (3.1)

then (2.44) reduces to

[
∂t + V ∂x +

1

2
∂xV − i

2

[(
κ

k

)2 ∂2ω

∂k2
+

(
1 −

(
κ

k

)2
)
Cg
k

]
∂2
x

]
ζ

= −ik
2ω

4T 2

(
9T−2 − 12 + 13T 2 − 2T 4

)
|ζ|2ζ + iζ

[
k2

2ω

(
1 − T 2

)
∂t − k · ∇

]
Φ. (3.2)

This expression, coupled to the mean-flow equations in Appendix C, agrees with

corresponding expressions given by e.g. Liu & Dingemans [1989] if likewise lateral

modulation of the wave amplitude is omitted and higher-order refraction corrections

[included in Liu & Dingemans, 1989] are excluded.

Alternatively, if we consider a wave train, propagating along x with slow modulations

in both horizontal dimensions we may write the surface elevation as

η = a(x, y) exp

[
i

(∫ x

k dx− ωt

)]
+ ∗,

where we decompose the amplitude a as

a(x, y) =
∑

λ

ζλ exp

[
i

(∫ x

(κλ − k) dx+ λy

)]
. (3.3)

For small-angle propagation (λ ¿ k) the eikonal κλ =
√
k2 − λ2 can be approximated

by κλ − k ≈ −λ2/(2k), and we can write

dxa(x, y) ≈
∑

λ

(
dxζλ − i

λ2

2k
ζλ

)
exp

[
i

(∫ x

(−λ
2

2k
) dx+ λy

)]
. (3.4)

We rewrite (2.44) using (3.4), assuming uniform depth and deep-intermediate water,

and transform to coordinates of a frame moving with the envelope, ξ = x−Cgt so that

the evolution of a may be written as

[
∂t −

i

2

∂2ω

∂k2
∂2
ξ −

i

2

Cg
k
∂2
y

]
a = −ik

2ω

4T 2

(
9T−2 − 12 + 13T 2 − 2T 4

)
|a|2a

− i
k2

2ω
Cg

[
2
C

Cg
+
(
1 − T 2

)]
Φξa. (3.5)
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Here we have made use of the identity dnya =
∑

λ(iλ)nζλ exp [iλy]. For the mean flow

(Appendix C) we obtain

(
gH − C2

g

)
Φξξ + gHΦyy = −gk

T
Cg

[
2
C

Cg
+
(
1 − T 2

)] (
|a|2
)
ξ
. (3.6)

The equations (3.5) and (3.6) constitute a coupled set for the wave envelope evolution

and the concomitant wave-induced mean flow; it can be shown that they are equivalent

to the eq.’s (2.15) and (2.14) in Davey & Stewartson [1974] respectively.

For unidirectional wave propagation (no lateral modulations), the mean-flow equa-

tions can be integrated once with respect to ξ, and back-substituted into the envelope

equations so that the result can be written in the cubic Schrödinger form [see e.g Mei,

1983; Griffiths, 1994]

i∂tã+
1

2

∂2ω

∂k2
∂2
ξ ã− J |ã|2ã = 0 (3.7)

with

J =
k2ω

4T 4



(
9 − 12T 2 + 13T 4 − 2T 6

)
− 2

(
2 C
Cg

+ (1 − T 2)
)2

(
gH
C2

g
− 1
)


 (3.8)

ã = a exp

[
i

∫ t

Cg
k2

2ω

(
2
C

Cg
+ (1 − T 2)

)
N(t′) dt′

]
(3.9)

and N(t) an integration constant. These expressions agree with Mei (1983, §12). For

one-dimensional wave propagation (κi = ki) over variable depth, (3.2) can be shown

to agree with expression (2.14) in Djordjević & Redekopp [1978] (if the last σ in their

expression (2.17) for ν is replaced by σ2).

Amplitude dispersion embedded in our model is evaluated for the reduced case

of Stokes waves, i.e. one-dimensional, periodic waves of permanent shape in uniform

depth. Therefore we omit terms involving non-stationarity of the wave field and the

topographical variations from (2.44). To make analytical comparison to Stokes theory

we assume zero net mass flux (the appropriate choice for wave flume experiments),

which determines current and set-down terms unambiguously. The resulting transport

equation for a single primary wave component reads

1

ϕp

d

dx
ϕp = i

|ϕp|2
2ωpCg,p

[
3Dp,p,−p − 2Dp+p,−p

Dp,p

gkppTpp∆pp

+ 4k3
p

Tp
h

− k4
p(1 − T 2

p )2

]
, (3.10)

where the secular forcing terms are due to cubic self-self interaction and quadratic

interaction with its harmonic. The last two terms between brackets on the RHS of (3.10)

account for the effects of the wave-induced return current and set-down respectively (see

Appendix C); since the mean surface elevation corrections must vanish identically, the

last term in brackets counters the water level corrections that are implicitly included in

the third-order interaction coefficient Dp,p,−p. The forcing terms in (3.10), in quadrature
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with ϕp, cannot transfer energy but result in (amplitude) dispersion corrections. Seeking

a permanent-shape solution, we insert ϕp(x) = −igap/(2ωp) exp iθp(x) into (3.10) with

ap the (constant) surface elevation amplitude, and evaluate the nonlinear wavenumber

correction k̃p = dxθp:

k̃p = −1

2
(kpap)

2kp
Cp
Cg,p

[(
9 − 10T 2

p + 9T 4
p

)

8T 4
p

− 1

qpTp

]
. (3.11)

Here Cp and Cg,p are the linear phase and group speeds respectively. Eq. (3.11) cor-

responds to the expressions in Stokes [1880] apart from the last term between square

brackets. The latter term accounts for the wave-induced current [see e.g. Isobe & Kraus,

1983; Fenton, 1985], such that the resulting wave celerity is in accordance with Stokes’

second definition [see Stokes, 1847]. Note that, although expression (3.11) includes the

effects of amplitude dispersion by correcting the wavenumber rather than the frequency,

as is typical for a frequency-domain model, the corresponding frequency correction

ω̃p = −(dωp/dkp)k̃p can be shown to agree to third order in wave steepness with eq.

(26) of Fenton [1985] for zero mass flux.

3.1.2 Shallow water: quadratic interactions

In this section the wording ‘shallow-water’ is not used to imply explicit restrictions

on water depth from the outset (i.e. kh ¿ 1), but rather the region where quadratic

interactions are dynamically important to the wave field evolution. The evolution equa-

tions considered here, generally do not have explicit restrictions on water depth (i.e.

kh ¿ 1), neither in the linear terms nor in the interaction coefficient [Agnon et al.,

1993; Kaihatu & Kirby, 1995]. The absence of such explicit restrictions on water depth

has focused much of the discussion in the literature on the matching to Stokes second-

order theory [e.g. Eldeberky & Madsen, 1999] which, given the second-order accuracy

retained in the models, seems a reasonable demand. Nevertheless, the fundamental

motivation for deriving evolution-type models is to include dynamical effects on the

propagation, effective over asymptotically large distances [see e.g. Armstrong et al., 1962;

Bretherton, 1964; Mei & Ünlüata, 1972]. Even with an exact match to Stokes second-

order theory in deeper water (where these interactions constitute non-secular, local

corrections), the omission of cubic nonlinear terms, the prevalent nonlinear mechanism

in deep-intermediate water, implicitly restricts models that account for quadratic but

not cubic interactions to fairly shallow water or relatively short propagation distances.

Hence the title.

When considering the propagation of steady waves over alongshore-uniform bathy-

metry while momentarily omitting interaction with the mean flow and cubic wave–wave

interactions, the general equations (2.44) and (2.45) reduce to the form
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[
d

dx
+

1

2V1

dV1

dx

]
ϕ1 = i

∑

v2,v3

D2,3

gJ2,3

ϕ2ϕ3δ
λ,ω
23;1E23;1, (3.12)

ζ1 = i
ω1

g
ϕ1 −

1

g

∑

v2,v3

R2,3ϕ2ϕ3δ
λ,ω
2,3;1E2,3;1, (3.13)

which can be solved as a coupled set to obtain the surface elevation amplitudes [Kaihatu,

2001]. Alternatively, the coupled set can be combined into a single evolution equation,

describing the spatial variation of surface elevation amplitudes by eliminating the velo-

city potential amplitude. Through substitution we have
[
d

dx
+

1

2V1

dV1

dx

]
ζ1 = i

∑

v2,v3

Z(g)
2,3ζ2ζ3δ

λ,ω
23;1E23;1, (3.14)

where

Z(g)
2,3 =

ω2+3

ω2ω3J2,3

D2,3 +
g

ω2ω3

Λ2,3R2,3. (3.15)

The coupling coefficient Z (g)
2,3 in (3.14) is equivalent to the nonlinear coupling coefficient

derived in Bredmose et al. [2005]; in fact, the evolution equation (3.14) reduces to

the corresponding equation in Bredmose et al. [2002] for unidirectional waves. The

eq. (3.14) represents a generalization with respect to the treatment of the quadratic

interactions of the earlier, resonant models by Agnon et al. [1993], Kaihatu & Kirby

[1995], Sheremet [1996], and the ‘quasi-resonant’ model by Eldeberky & Madsen [1999],

in the sense that it is valid for arbitrary resonance mismatch; the generalized form of the

coupling coefficient is identified by the (g) in the superscript for later use. We refer to the

present interaction coefficient as ‘generalized’ since both the resonant and quasi-resonant

coefficients are special cases which can, with the appropriate restriction on resonance

mismatch instated, be derived from the interaction coefficient Z (g)
2,3 . We use the wording

‘quasi-resonant’ to indicate the fact that, although the model by Eldeberky & Madsen

[1999] assumes resonance from the outset, it does include the nonlinear contribution in

the relation between the velocity potential and the surface elevation as present in (3.13);

essentially this approximation is found by assuming resonance in the first term of (3.15)

while retaining the second term in that expression†. If the latter term is omitted, which

is consistent with the assumption of quadratic resonance (see also §2.4, following eq.

(2.45)), we refer to the model as ‘resonant’ [Agnon et al., 1993; Kaihatu & Kirby, 1995;

Sheremet, 1996].

Taking the shallow-water limit of (2.44) by setting O(ε/µ2) = O(1) and expanding all

contributions explicitly in terms of µ2, yields to order O(ε2, εµ2) the transport equation:

†If resonance is consistently assumed, the second term in (3.13) would also vanish since Λ1,2 is of

the order of the resonance mismatch. The wording ‘quasi-resonant’ is inspired by the semantics ‘quasi-

normal’, commonly used to indicate an inconsistent use of the premise of Gaussianity with respect to

the closure of the hierarchy of statistical moments [see e.g. Lesieur, 1997; Salmon, 1998, and Chapter

4 of this thesis].



30 Analysis and verification deterministic theory

[
d

dx
+

1

4h

dh

dx
− i

ω1√
gh

(
1 +

ω2
1h

6g
− λ2

1

2ω2
1

gh

)]
η1 =

− i
3ω1

4h
√
gh

∑

v2,v3

η2η3δ
λ,ω
23;1 +O(ε2µ2, µ4ε, ε3), (3.16)

where η1 exp{i (λ1y − ω1t)} = ζ1E1. Equation (3.16) is a lowest order Boussinesq ap-

proximation in agreement with Herbers & Burton [1997] and (for unidirectional waves)

Freilich & Guza [1984, the ‘consistent shoaling model’]. Evolution equations based on

Boussinesq equations with improved dispersion characteristics [e.g. Madsen & Sørensen,

1993] are detailed in Bredmose [2002] and Bredmose et al. [2004], and not further

considered here. Instead we will refer to the ‘Boussinesq’ approximation only where it

applies to the interaction kernel, not the linear properties of the model such as frequency

dispersion and shoaling; this is similar to the so-called ‘dispersive’ model by Freilich &

Guza [1984], an approach later also considered by Becq [1998]. In the following we

will make use of the archetype evolution equation for the surface elevation spectral

amplitudes, written as

d

dx
A1 = i

∑

v2,v3

√
V1

V2V3

Z(j)
2,3A2A3δ

λ,ω
23;1E23;1, (3.17)

where A1 =
√
V1ζ1 and various forms of the coupling coefficient Z (j)

2,3 for generalized,

resonant and Boussinesq approximations are listed in Table 3.1. This list is by no

means exhaustive, and certainly within the context of e.g. higher-order (in the dispersion

parameter) Boussinesq approximations many more approximate forms can be conceived.

However this set includes both a lowest-order Boussinesq form [Freilich & Guza, 1984;

Herbers & Burton, 1997], the most general form [Bredmose et al., 2005; Janssen et al.,

2006], the resonant approximation [Agnon et al., 1993; Kaihatu & Kirby, 1995] and

quasi-resonant expressions [Eldeberky & Madsen, 1999], which more than suffices for

the purpose of discussion.

Superharmonics and amplitude dispersion

It is well known [Stokes, 1847] that the appearance of quadratic terms in the boundary

value problem for small but finite-amplitude, oscillatory wave motion in finite depth

results in forced wave motion at harmonic frequencies. From a spectral point of view this

can be regarded as a self-self interaction: the interaction of component (ω, k) with itself

forces a wave at (2ω, 2k). In turn, the (difference) interaction of the harmonic component

at (2ω, 2k) with the primary train (ω, k) produces a resonance at the third order in wave

steepness, in quadrature with the primary wave, resulting in a dispersion correction of

the latter. In the coupled-mode models these effects are also present. Surely, it comes as

no surprise that harmonic modes are excited which is, after all, the prime motivation to

include the nonlinear coupling term in the first place. However, perhaps less conspicuous

is the fact that the nonlinear coupling also induces third (and higher) order amplitude
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Model Coupling coefficient

Generalized Z (g)
1,2 =

ω1+2

ω1ω2J1,2

D1,2 +
g

ω1ω2

Λ1,2R1,2

Bredmose et al. [2005]

Janssen et al. [2006], this thesis

Quasi-resonant Z (qr)
1,2 =

g

2ω1ω2V1+2

D1,2 +
g

ω1ω2

Λ1,2R1,2

Eldeberky & Madsen [1999]

Resonant Z (r)
1,2 =

g

2ω1ω2V1+2

D1,2

Agnon et al. [1993]

Kaihatu & Kirby [1995]

Boussinesq Z (b)
1,2 = − 3ω1+2

4h
√
gh

Freilich & Guza [1984]

Herbers & Burton [1997]

Table 3.1: Coupling coefficients quadratic wave–wave interactions. Co-

efficients D1,2 and R1,2 are given in Appendix A. The Λ1,2 and V1

denote resonant mismatch and the principal component of the group speed

vector. The J1,2 and Λ1,2 are given on pp. 22 below (2.41). We remark

that the numeral subscripts are used as running counters, related to the

frequency/lateral wavenumber pairs (ωp1 , λq1) and (ωp2 , λq2).

dispersion effects. After all, the convolution sum, which governs the nonlinear evolution

of component (ω, k), includes all contributions for which the frequencies add up to ω,

including the difference interactions between (2ω, 2k) and (ω, k). However, the nonlinear

coupling term is derived on the premise that the interacting modes are ‘free’ WKB waves,

an assumption clearly not applicable to the bound component (2ω, 2k), rendering the

weighting of the (third-order) interaction inaccurate. Given these considerations with

respect to the harmonic-primary interactions, augmented with the fact that cubic terms

(primary-primary-primary interactions) are lacking entirely in the quadratic models,

we do not anticipate amplitude dispersion predictions by these models to agree with

third-order theory (if this is the case then the second-order model would have third-

order accuracy for this class of interactions). Nevertheless, it is useful to understand

the amplitude dependency in the dispersion characteristics of these types of models

(see Table 3.1) and their mutual differences. Thereto, and to investigate the forcing

of bound superharmonics in unidirectional waves, we substitute a convenient surface

elevation function into the governing evolution equation (3.17), written as

η =
2∑

p=1

ζp exp [i [(kpx− ωpt)]] + ∗, (3.18)
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where

ζp = εp
a′p
2k1

exp
[
i
(
p(k1 + ε2k̃x) − kp

)]
. (3.19)

The ε¿ 1 denotes a measure of wave steepness, the a′p are constant (non-dimensional)

amplitudes of O(1), and k̃ is the wavenumber correction due to the nonlinear interac-

tions. Inserting this decomposition into (3.17) we readily find

a′2 =
Z(j)

1,1

2k1 (2k1 − k2)
(a′1)

2, (3.20)

k̃ =
Z(j)

2,−1

k1

a′2 =
Z(j)

1,1Z(j)
2,−1

2k2
1 (2k1 − k2)

(a′1)
2. (3.21)

If we substitute the expression for the generalized interaction coefficient Z (g)
1,1 (see Table

3.1) into eq. (3.20) for the first harmonic it reads (in physical variables)

ζ2 = k1
3 − T 2

1

2T 3
1

ζ2
1 , (3.22)

which agrees with Stokes’ second-order theory [see e.g. Stokes 1847; Dingemans 1997

§2.8]. If instead we substitute the interaction coefficient corresponding to the quasi-

resonant model the result is but slightly different (see Figure 3.1). In fact, for one-

dimensional wave propagation, the quasi-resonant model is equivalent to the generalized

model in deep water (kh → ∞), which can also be readily seen from the algebraic

expressions for the coupling coefficients (Table 3.1). In contrast, in deep water, diffe-

rences with the resonant and Boussinesq approximation are most prominent. This can

be understood from the fact that in deep water, quadratic forcing is entirely due to the

nonlinear contribution to the relation between velocity potential and surface elevation:

this contribution is absent in the resonant and Boussinesq approximation.

As we argued before, it is unreasonable to expect these second-order models to

accurately predict amplitude dispersion, a third-order phenomenon. As it turns out:

neither of them does. In fact, when compared to the exact expression in (3.10) for zero

net mass flux (Stokes’ second definition Stokes 1847, §3) we find that the generalized

model typically overestimates the amplitude dispersion strongest (Figure 3.2); the quasi-

resonant model performs slightly better overall but has much the same dispersion

characteristics as the generalized model (strong overestimation). The behavior in deep

water for the resonant and Boussinesq model is quite distinct. On account of the

vanishing of their coupling coefficient, essentially rendering the model linear in the

wave-field variable, amplitude dispersion effects are absent for these models in deep

water.

Although it comes as no surprise that the second-order models are incapable of accu-

rately predicting a third-order effect, it is somewhat disappointing that the most general

second-order model, being ‘exact’ at the second-order, seems to be the most inaccurate



3.1 Asymptotic limits of the nonlinear model 33

PSfrag replacements

k1h [-]

Z
(j

) /
Z

(g
)
[-
] Boussinesq

resonant
quasi-resonant

0
0

1

1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

1.2

Figure 3.1: Self-self interaction coefficients for Stokes harmonic normalized with generalized

formulation as a function of k1h.

model in terms of amplitude dispersion; however, a more accurate representation of

a lower order does not imply an improvement at the next (and it turns out it does

not). The magnitude of the mismatch found for the generalized and (quasi-)resonant

model (Figure 3.2) suggests that for intermediate depth (kh ≈ 1.5) these models can

be expected to significantly overestimate wave celerity, and in terms of dispersion may

perform even worse than linear models (that account for frequency dispersion) in such

regions [see also Bredmose et al., 2005].

Narrow-band difference interactions: surfbeat

Another well-known phenomenon induced by quadratic nonlinearities in modulated wave

trains is the forcing of a secondary wave train at the beat frequency. This class of

wave motion was theoretically predicted by Biésel [1952] and related to the concept

of ‘radiation stress’ by Longuet-Higgins & Stewart [1962]. To compare beat motion as

predicted by the coupled-mode models to the theory by Longuet-Higgins & Stewart

[1962] for narrow-band forcing and uniform depth (in Chapter 6 bound-wave evolution

in shoaling waves is discussed), we consider the surface elevation as the sum of a

bichromatic primary wave field and a low-frequency component at the beat frequency

(momentarily omitting forced super-harmonics) written as

η =
2∑

p=1

ζp exp [i (kpx− ωt)] + ζ∆ exp [i (k∆x− ∆ωt)] + ∗,

where the ζp and ζ∆ denote the primary wave and forced wave amplitudes respectively.

Further, we write
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Figure 3.2: Amplitude dispersion normalized by Stokes amplitude dispersion (viz. eq. (3.10)).

Values larger than 1 indicate an overestimation of the wave propagation velocity with respect

to Stokes theory (Stokes’ second definition).

ζp = ε
a′p
2k0

, ζ∆ = ε2
a′∆
2k0

. (3.23)

The k∆ denotes the wavenumber related to ∆ω through the linear dispersion relation.

We assume ∆ω ¿ ω0 so that

[
ω1

ω2

]
= ω0 −

∆ω

2

[
1

−1

]
,

[
k1

k2

]
= k0 −

∆ω

2Cg,0

[
1

−1

]
, Cg,0 =

dω

dk
|ω=ω0

. (3.24)

Further, we anticipate the water depth such that the low-frequency component is a long

wave, viz. k∆h¿ 1 ⇒ ∆ω/k∆ ≈ √
gh.

Through substitution of the decomposition (3.23) in the general form (3.17) we can

show that for the generalized model we obtain

a′∆ = − g

k0

(
gh− C2

g,0

)
[
2
Cg,0
C0

− 1

2

]
a′2(a

′
1)

∗ exp [i(k2 − k1 − k∆)x]. (3.25)

In physical variables, the low-frequency surface elevation can thus be written as

ηlf = 2<{ζ∆ exp [i (k∆x− ∆ωt)]} = − RS (x, t)

ρ
(
gh− C2

g,0

) , (3.26)

where ρ is the fluid density and RS (x, t) is the radiation stress function written as

RS (x, t) = 4ρg

[
2
Cg,0
C0

− 1

2

]
<{ζ1ζ∗2 exp [i ((k1 − k2) x− ∆ωt)]}. (3.27)
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The eq. (3.26) is the well-known expression for the long-wave response due to radiation

stress forcing in water of uniform depth [Longuet-Higgins & Stewart, 1962]. This is a

forced response, consequently of small magnitude, propagating with the primary wave

group at the (linear) group speed Cg,0. Note that this is not a valid description in the

limit of near-resonance where the denominator in (3.26) diminishes. The equivalence

with Longuet-Higgins & Stewart [1962] is only for the generalized model; the quasi-

resonant and resonant coupling coefficients generally predict higher values for the bound

wave amplitude (Figure 3.3) whereas the Boussinesq approximation predicts bound-wave

amplitudes that are lower than the equilibrium solution (3.26).

Interactions over finite bandwidth

The quadratic narrow-band sum and difference interactions are but special cases of

the interaction configurations in a spectrum of arbitrary bandwidth. Since analytical

expressions for forced modes in a spectrum of arbitrary shape are not readily available,

we resort to inter-comparison of the coupling coefficients (for unidirectional waves),

utilizing the generalized coupling coefficient Z (g)
2,3 as a benchmark. We have verified the

latter with the second-order expressions in Hasselmann (1962) §4, which can be regarded

as a spectral generalization of Stokes second-order theory.

In Figure 3.4, 3.5 and 3.6 we show contour lines in the (k1h, k2h)-plane for the quasi-

resonant, resonant and Boussinesq coupling coefficients respectively, normalized by the

generalized coefficient, for both sum and difference interactions. For the quasi-resonant

model (Figure 3.4), the contour lines are close to unity in most of the domain, in

particular for the sum-interactions. Notable exception are the interaction configurations
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corresponding to fairly narrow-band difference interactions (region near diagonal in

lower pane), where values considerably larger than unity are observed (lower pane of

Figure 3.4). For the resonant model (Figure 3.5) and Boussinesq model (Figure 3.6)

the differences in interaction coefficients are more pronounced. In particular, coupling

through sum-interactions is generally underestimated by the resonant and Boussinesq

approximations. The forcing of difference interactions is overestimated by the resonant

coefficient and underestimated by the Boussinesq coefficient for the ranges shown.

However, differences in the coupling coefficient do not necessarily reflect a distinct

dynamical behavior of the nonlinear wave system. Away from resonance the quadratic

response is a forced, non-secular, contribution and inherently of small magnitude; it is

only when interaction configurations approach resonance that they have a dynamical

effect on the wave evolution. A measure for the proximity to resonance is†

δ
(r)
1,2 =

∣∣∣∣
κ1 + κ2 − κ1+2

min (κ1,κ2,κ1+2)

∣∣∣∣ . (3.28)

Small values of δ
(r)
1,2 indicate that the interaction is near-secular, whereas δ

(r)
1,2 ∼ O(1)

indicate a departure from resonance. The shaded areas in Figures 3.4, 3.5 and 3.6

represent the regions where δ(r) < 0.5. It can be seen that in these regions, apart maybe

from the Boussinesq model, the coupling coefficients are very nearly the same. Thus, in

†Differing from measures proposed by Agnon et al. [1993] and Eldeberky & Madsen [1999] in that

the denominator is the minimum wavenumber in the interaction.
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Figure 3.7: Sketches of interaction configurations; solid arrows indicate wavenumber vectors

of primary waves; dashed arrows indicate sum/difference wavenumber vector. Left panel:
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the vicinity of resonance, the dynamically most interesting region, the models are nearly

equivalent, implying that their nonlinear dynamical response is very similar; it is only

in the bound wave representation, and then mostly in the low-frequency bound waves,

that the models are at variance.

Non-collinear interactions in the angular-spectrum representation

Noteworthy is the fact that, although the angular spectrum description forms a natural

basis for directional wave fields, and most of the considerations for unidirectional waves

readily apply to the shoaling of directional wave fields in the presence of nonlinearity,

this is not the case for non-collinear difference interactions. Although non-collinear in-

teractions are generally further from resonance than their collinear counterparts [Newell

& Aucoin, 1971, even proposed to use directionality in shallow water as a source of

‘dispersion’], these interactions can contribute to the dynamics of the nearshore wave

field [see e.g. Elgar et al., 1993]. In the present approximation, non-collinear difference

interactions are only partially represented. Consider for instance the difference inter-

action between component (ω1, λ1) and (ω2, λ2) forcing a component (ω1 − ω2, λ1 − λ2),

which is schematically sketched in the right panel of Figure 3.7. On account of the

fact that we model such forced modes as modulations of propagating free modes we

implicitly impose the condition λ1 − λ2 ≤ k1−2, with k1−2 denoting the wavenumber

related to ω1 −ω2 through the linear dispersion relation. However, from that dispersion

relation we have k1 − k2 > k1−2 such that we exclude forced waves for which the lateral

wavenumber is k1−2 < λ1 − λ2 ≤ k1 − k2, since for these components the corresponding

free mode (ω1 − ω2, λ1 − λ2) is evanescent. Thus, on account of the fact that we model

the presence of bound waves through the modulation of propagating free modes we

implicitly introduce an aperture restriction on bound wave motion forced by non-

collinear difference interactions. Since non-collinear interactions are generally further

from resonance than their (near-)collinear counterparts, the dynamical consequences of

their omission are most likely indirect, through excitation (or lack thereof) of trapped
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modes [edge waves, see e.g Bowen & Guza, 1978]. No such implicit restrictions apply to

superharmonic interactions in directional wave fields; for these components k1 + k2 ≤
k1+2, so that they are fully represented in the angular spectrum description (left panel

Figure 3.7).

3.2 Comparison to observations: unidirectional waves in deep

and shallow water
In this section we compare model results with laboratory observations of steady, unidi-

rectional waves to verify the generalized validity of the nonlinear interaction terms that

account for cubic resonances in deep-intermediate water and quadratic resonances in

shallow water.

For a steady wave field (2.44) reduces to

(
d

dx
+

1

2V1

dV1

dx

)
ϕ1 = Ξ̃

(wb)
1 {ϕ2} + Ξ̃

(wbb)
1 {ϕ2} + Ξ̃

(wc)
1 {ϕ2}

+ Ξ̃
(ww)
1 {ϕ2ϕ3} + Ξ̃

(www)
1 {ϕ2ϕ3ϕ4}, (3.29)

where Ξ̃
(ww)
1 = ξ

(ww)
1 /V1, Ξ̃

(www)
1 = ξ

(M,www)
1 /V1 and the remaining forcing terms are given

in Appendix B. The corresponding surface elevation amplitudes, ζ1, are found through

(2.45).

For unidirectional wave propagation over one-dimensional topography we numerically

evaluate (3.29) for λ = 0 (thus unidirectional waves propagating along x) and omit the

terms involving the lateral depth variability. For that case, the wave–current forcing

term Ξ̃
(wc)
1 {ϕ1} for λ = 0 is given as

Ξ̃(wc)
p1

{ϕp1} = i
kp1
Cg,p1

ϕp1
∑

p2

ωp2kp2
gh

|ϕp2|2. (3.30)

and accounts for the effects of the attendant return current – to ensure zero net mass

flux – on the wave propagation. The predicted wave-induced water level changes (i.e.

set-down) were found to be everywhere smaller than 0.1% of the undisturbed water

depth, and are neglected here.

The model is initialized at the up-wave boundary with the observed primary spectral

component(s) obtained from a Fourier-transformed time series at that location with

added (theoretical) second-order harmonics. This boundary condition was chosen, in-

stead of simply utilizing the full observed spectrum, to minimize spurious modulations

in the computations induced by spectral leakage effects as a result of small imperfections

in e.g. wave generation or recording devices [see also Shemer et al., 2001].

The ordinary differential equations (3.29) are integrated using a standard fourth-

order, fixed-step-size, Runge–Kutta scheme.
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3.2.1 Evolution of wave groups in intermediate water depth

The third-order model (3.29) is compared to observations of periodic wave groups

propagating in relatively deep water reported by Shemer et al. [2001], to verify the

model’s representation of the deep-water nonlinear physics (i.e. near-resonant cubic

interactions). The experiments were conducted in a wave flume, 18 m long and 1.2 m

wide, with a uniform water depth of 0.60 m. The positive x-axis is in the direction of

propagation with the origin at the wave generator. For more detailed information on the

experimental set-up and the complete set of experiments conducted we refer to Shemer

et al. [1998, 2001].

The wave field consists of a periodically modulated carrier wave with period T0 =

0.9 s. The wave board is driven by a signal of the form

s(t) = s0| cos (Ω0t)| cos (ω0t), Ω0 =
ω0

20
, (3.31)

where ω0 = 2π/T0. The spectrum of this signal is characterized by a maximum at ω0 and

sidebands at integer multiples of 2Ω0 with the two nearest to ω0 being most significant.

For the case considered here k0a0 ≈ 0.21, where k0 is related to ω0 through the linear

dispersion relation and a0 is taken (after Shemer et al., 1998) as the maximum amplitude

of the carrier wave in a group close to the wave generator.

The model is initialized with the spectral components at ω0 and ω0 ± 2Ω0 of a time

series of 18 s (i.e. 20 wave periods) duration observed at x = 0.245 m (re-sampled with

N = 1024 points and ∆t = 0.0176 s). Second-order components are computed using

Stokes’ second-order theory (equation (2.32)) and included in the up-wave boundary

condition. We compute the evolution of an equidistant array of 65 frequencies with

∆ω = 2π/(N∆t). The integration is performed using a step size, ∆x, of 0.1 m.

In Figure 3.8 we compare the observed (circles) and predicted (solid line) time series

at five positions: x = {0.245, 1.845, 5.78, 6.98, 8.425}m. The initially near-symmetrical

wave groups develop strong left–right asymmetry of the envelope with steep fronts and

gently sloping rears as also observed in the experiments reported by e.g. Feir [1967].

The asymmetry can be explained heuristically by the combined effects of amplitude

and frequency dispersion (Lighthill 1978, p. 462). Initially the larger waves in the group

propagate fastest under the effects of amplitude dispersion, reducing wavelengths in

the front of the group and increasing those in the rear; the associated group speed

variation further enhances the localization of energy in the front of the groups, resulting

in increasingly forward leaning of the wave groups as observed in the experimental data.

In Figure 3.9 observed and predicted amplitudes of the spectral components are

compared for the same locations as in Figure 3.8. The initially narrow spectrum widens

by energy transfers mostly to higher frequencies and an increase of the energy level just

below the main peak, apparently at the expense of the spectral components just above

the peak (Figure 3.9). The agreement with the model results is excellent (as implied by

the level of agreement in the time domain).
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Figure 3.8: Time series comparison of observed and predicted nonlinear wave group evolution

in uniform depth. The carrier frequency ω0 = 2π/(0.9 s), water depth = 0.6 m, ε ≈ 0.21. Circles

denote observed surface elevations from Shemer et al. [1998, 2001]; solid line denotes model

result. Panels (from top to bottom) correspond to positions {0.245, 1.845, 5.78, 6.98, 8.425}m.
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Figure 3.9: Comparison of observed and predicted spectral amplitudes of nonlinear wave

groups in uniform depth. The carrier frequency ω0 = 2π/(0.9 s), water depth = 0.6 m, ε ≈ 0.21.

Left panels: observed amplitudes from Shemer et al. [1998, 2001]. Right panels: model predic-

tions. Rows (from top to bottom) correspond to positions {0.245, 1.845, 5.78, 6.98, 8.425}m.

Following Shemer et al. [2001], amplitudes of the observed spectra at frequencies other than

intervals of integer multiples of 2Ω0 separated from ω0 are set to zero. These amplitudes are

small for all positions and attributed mainly to spectral leakage.
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Figure 3.10: Schematic representation of the trapezoidal bottom profile of Luth et al. [1994];

circles at z = 0 m denote wave gauge positions.

The model predictions accurately reproduce both the increasing asymmetry of the

envelope and the evolution of the individual waves. Apart from some discrepancies in the

less energetic region between groups, the agreement is excellent. This demonstrates the

model’s ability to accurately predict wave group evolution resulting from near-resonant

cubic wave–wave interactions in deep-intermediate water depth.

Model simulations (not shown here) extended to larger distances from the wavemaker

than for which observations were available in the experimental data, indicate that the

groups eventually split into a group consisting of the higher waves and one with the lower

waves. The higher-wave group leads and eventually coalesces with the preceding low-

wave group followed by recurrence-type behavior qualitatively similar to that observed

and discussed in Lo & Mei [1985]. Intermittent wave breaking due to increased steepness

(k0a ≈ 0.34 was observed in the numerical simulations) will probably result in only

partial recurrence.

3.2.2 Wave propagation over a submerged obstacle

To test the model’s ability to predict harmonic generation due to near-resonant quadratic

interactions over variable depth in relatively shallow water, we consider the propagation

of waves over a trapezoidal shoal in a laboratory flume [Luth et al., 1994; Beji &

Battjes, 1993], a schematic representation of which is shown in Figure 3.10. The up-

and downslope of the shoal are 1:20 and 1:10 respectively. Away from the shoal the

uniform water depth is 0.80 m, and the minimum depth over the shoal is 0.20 m. The

wave generator is positioned at x = 0. At x = 46 m a wave absorber is installed to

ensure unidirectional wave propagation in the area of interest; circular markers in the

figure denote wave gauge positions. The bathymetrical dimensions are those reported

by Luth et al. [1994], which is a scaled, enlarged version (by a factor of 2) of the set-up

used by Beji & Battjes [1993]. The wave field characteristics were scaled accordingly to

reproduce cases reported by Beji & Battjes [1993].
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Figure 3.11: Comparison of observed and predicted time series for wave propagation over a

shoal. Incident waves have wave period 2.86 s and amplitude 0.02 m. Circles denote laboratory

observations by Luth et al. [1994], solid line represents model predictions.

The incident wave train is monochromatic with period T0 = 2.86 s and amplitude

0.02 m. The model is initialized with the spectral component at ω0 of a (re-sampled)

time series of 25.71 s duration (512 points at 0.0502 s intervals) observed at x = 3.04 m.

The first harmonic is computed using Stokes’ second-order theory (viz. (2.32)) and

included in the up-wave boundary condition.

The numerical integration is performed for 60 equidistant frequency components with

∆ω = 2π/(N∆t) with a spatial step size of 0.1 m.

Figure 3.11 shows a comparison of observed and predicted surface elevation time se-

ries for positions x = {20.04, 24.04, 28.04, 30.44, 33.64, 41.04}m. The model successfully

captures both the initial steepening and forward leaning of the waves on the up-slope and

the release of higher harmonics over the shoal and down-slope; the agreement between

observed and predicted time series is excellent, even at the farthest location x = 41.04m

(Figure 3.11). Similar agreement with somewhat larger discrepancies in the details of

the wave profile was reported by Beji & Battjes [1994], who compared simulations

of a Boussinesq model with improved dispersion characteristics [Madsen & Sørensen,

1992] to the earlier dataset of Beji & Battjes [1993] in a more restricted domain. These

authors also illustrated that improved dispersion is crucial to predict the wave evolution

accurately by including a comparison to simulations with Boussinesq equations with
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Figure 3.12: Evolution of amplitude of the primary wave component and three harmonics

for a periodic incident wave with period 2.86 s and initial amplitude 0.02 m propagating over a

shoal. Circles denote observed values from Luth et al. [1994], solid line represents model result.

Note different scale vertical axis for 4ω0.

lowest-order dispersion [Peregrine, 1967], which compared considerably less favorably

with the observations than the dispersion-enhanced formulation by Madsen & Sørensen

[1992]. Dingemans (1997, §5.9) showed that even the predictions with the enhanced

Boussinesq formulation deteriorate for positions far behind the shoal (x = 33.64 m and

x = 41.04 m, no measurements were available at these positions in the set-up used by

Beji & Battjes), suggesting that taking full account of dispersion (as in the present work)

or a high-order approximation [e.g. Agnon et al., 1999; Madsen et al., 2003] is essential

to resolve wave phases over larger distances [see also Stelling & Zijlema, 2003].

A comparison between predicted and observed amplitudes of the primary wave com-

ponent and three harmonics as a function of the horizontal coordinate is shown in Figure

3.12. The model slightly overestimates the amplitude of the primary wave and its first

harmonic for all positions behind the shoal; overall the computed evolution is in very

good agreement with the observations.

Although the depth variations over the shoal are fairly rapid, the observations at

locations between the generator and the trapezoid (not shown here) did not indicate

the presence of significant wave reflections; moreover, the level of agreement between

observations and predictions supports the assumptions of unidirectionality and slowly

varying depth as implicit in the model.
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3.3 Wave-bottom interactions in the angular-spectrum approxi-

mation
In this paragraph we address the properties of the approximation with respect to

the lateral variability, its limitations and relation to more general, two-dimensional,

formulations.

In the linear approximation, the angular spectrum description is, apart from the

omission of local evanescent modes, an ‘exact’ description of the wave field evolution over

an alongshore-uniform topography [e.g. Stamnes, 1986]. However, the inclusion of the

effects of lateral depth variability on the wave evolution, contained in the convolution-

type forcing terms on the evolution equations involving the depth perturbation h̃, is more

approximate. Essentially, through these terms, the waves ‘feel’ the perturbation of the

bottom boundary condition. Their contribution to the wave evolution or, equivalently,

the sensitivity of the wave field to perturbations at the bottom, is attenuated with

increasing depth and vanishes in deep water. These wave–bottom operators are rather

long expressions and, apart from the fact that they vanish in deep water, a causal

prerequisite, they are not readily interpretable in physically meaningful terms.

We illustrate the nature of the approximation and its inherent limitations by means

of a reduced case example of waves over uniform depth. However, we write the (uniform)

depth, somewhat arbitrarily, as the sum of a (constant) reference depth h and a (small,

and uniform) perturbation h̃ such that h = h− h̃, and h̃¿ h. The attendant wave field

is represented by a temporally and laterally periodic potential function written as

Φ = ϕ̃
ChQ

Ch q
exp [i (λy − ωt)] + ∗, (3.32)

with ϕ̃ governed by the Helmholtz equation
[
d2

dx2
+ (k2 − λ2)

]
ϕ̃(x) = 0, (3.33)

and k is related to the frequency ω through the dispersion relation. We omit evanescent

modes and consider only waves propagating into the half plane of positive x. The

associated principal wavenumber κ̃ = (k2 − λ2)
1/2

is expanded in a Taylor expansion

around the reference depth h as in

κ̃(h) =
∞∑

j=0

(−h̃)j
j!

djκ̃

dhj

∣∣∣∣
h=h

=
∞∑

j=0

(−h̃)j
j!

djκ

dhj
. (3.34)

In the following, for convenience of notation, we use κ = κ̃|h=h and dnhκ = dnh κ̃|h=h.
The potential amplitude ϕ̃, governed by (3.33), is subsequently written as

ϕ̃ = ϕ exp [iκx], (3.35)

where ϕ is a slowly varying amplitude that incorporates the difference between the

‘actual’ cross-shore wavenumber κ̃ and κ, evaluated at the reference depth. In essence,
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the modulation of ϕ accounts for all the remaining terms (j > 0) in the expansion (3.34)

which, in differential form, may be written as

d

dx
ϕ = iϕ

∞∑

j=1

(−h̃)j
j!

djκ1

dhj
. (3.36)

To relate (3.36) to the angular-spectrum approximation we consider the transport

equation eq. (3.29), in the linear approximation for a topography consisting of a two-

dimensional perturbation h̃ on an otherwise horizontal bottom (h):

dxϕ1 = Ξ̃
(wb)
1 {ϕ2} + Ξ̃

(wbb)
1 {ϕ2}. (3.37)

If, as in the reduced case above, we assume the perturbation h̃ to be spatially uniform

we can show (after some manipulation) that eq. (3.37) reads

d

dx
ϕ1 = −i

[
h̃
dκ1

dh
ϕ1 −

1

2
h̃2d

2
κ1

dh2

]
ϕ1. (3.38)

The RHS of (3.38) is identically the first two terms of the expansion in (3.36), which

shows that the wave–bottom terms in (3.29) in fact represent the first few terms of a

series expansion of the eikonal relation around a reference depth. Therefore, to ensure

accuracy of the approximation we require

O(
h̃j

κ1

djκ1

dhj
) ¿ 1, (3.39)

which becomes increasingly restrictive on h̃ with decreasing κ1 (thus increasing angle

of wave incidence). Thus, although the angular-spectrum approximation derived here is

isotropic for the discrete angular components incident into the half plane of positive x

over a laterally uniform topography, it is an anisotropic approximation with respect to

the wave interaction with the laterally varying depth; the approximation is increasingly

restrictive on the magnitude of the lateral depth variation for increasing angle of wave

incidence.

If we consider a more general setting, allowing for spatial variability of the (one-

dimensional) reference depth h, we can (after some manipulations) write the linear

forcing terms involving the two-dimensional perturbation h̃ as

Ξ̃
(wb)
1 {ϕ2} = −idκ1

dh
G1{h̃, ϕ2} −

1

2V1

dV1

dh
G1{h̃x, ϕ2} −

λ1

2k1V1

∂Cg,1
∂h

G1{h̃y, ϕ2}, (3.40)

Ξ̃
(wbb)
1 {ϕ2} =

i

2

d2
κ1

dh2
G1{h̃2, ϕ2}. (3.41)

The bottom slope terms represent a lowest-order (in terms of h̃) approximation of the

more general two-dimensional evolution equations for WKB waves [e.g. Mei, 1983], apart

from the fact that they are anisotropic. In particular, in the third term on the RHS of
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(3.40) the derivation with respect to the depth is a partial derivative (∂/∂h), while in

the second term, accounting for variation in the principal direction, a total derivative

(d/dh) operates on the principal group speed component V1. This anisotropy in the

bottom slope terms can be brought back to the disparate treatment of variations in the

principal and lateral direction. In the principal direction multiple scales were defined,

and used in the WKB formalism, while in the lateral direction variations are implicit in

the summation of the angular components, without distinction of slow and fast scales.

Although the expressions (3.40) and (3.41) are physically meaningful and surpris-

ingly simple in appearance, they are obtained through a posteriori analysis, motivated

by heuristic considerations. Nevertheless, the result suggests that the wave–bottom

approximation can indeed quite simply be related to the lowest-order terms of more

general, two-dimensional formulations, which in turn leads us to hypothesize that the

algebraic effort required to derive the higher-order approximations for the wave–bottom

interactions – which in the formalism adopted in Chapter 2 becomes quite exhaustive

at the order presently retained – may be circumvented when a more heuristic approach

is followed from the outset. Although a more efficient derivation may bring even higher-

order approximations within reach, the approximation in the wave–bottom interactions

remains inherently restricted to relatively small incident wave angles, even with a larger

– but finite – number of terms included.

3.4 Comparison to observations: waves over topography
To asses the model’s performance over complex topography in the presence of nonli-

nearity, and verify empirically the robustness of the approximation, we compare model

simulations to observations of wave propagation over two-dimensional topography. The

emphasis is on the modeling of lateral depth variability in the presence of shallow-water

nonlinearity. Since the cases we consider either involve wave propagation over relatively

short length scales or exhibit very weak nonlinearity, we tentatively discard third-order

effects (cubic interactions and wave–current interaction) in the simulations. Numerical

simulations are performed with a slightly modified form of the governing equations for

stationary wave fields (viz. (3.29)). A convenient form for the governing set is obtained

upon combining (3.29) and (2.45) into a single equations for A1 =
√
V1ζ1 (more detail

on the form of the quadratic nonlinear term is given in §3.1.2)

dA1

dx
= Ξ

(wb)
1 {A2} + Ξ

(wbb)
1 {A2} + i

∑

v2,v3

W2,3A2A3δ
λ,ω
23;1E23;1, (3.42)

where the operators Ξ
(j)
1 are modified with respect to the Ξ̃

(j)
1 in (3.29) only to account

for the ‘shoaling factor’
√
V1

Ξ
(j)
1 {A2} =

√
V1Ξ̃

(j)
1 { A2√

V2

}, (3.43)
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and

W2,3 =

√
V2+3

V2V3

Z(g)
2,3 . (3.44)

The Z(g)
2,3 is the generalized form of the interaction coefficient defined in §3.1.2, eq. (3.15).

In all the numerical evaluations of (3.42) for two-dimensional cases, evanescent modes

(|λ| > kω) are excluded from the computations, including those modes that are evanes-

cent at x = 0 but become propagating inside the computational domain on account

of the variable depth. The set of ordinary differential equations (viz. eq. (3.42)) are

integrated with a fourth-order, fixed-step-size, Runge–Kutta scheme.

3.4.1 Harmonic generation on a convex beach: weak lateral depth variability

To validate the model representation of wave propagation over weakly two-dimensional

topography in the presence of strong harmonic enhancement, we compare model predic-

tions to observations reported by Whalin [1971, 1972] who performed experiments on

a laterally convex-shaped beach, shown in Figure 3.13, with monochromatic, normally

incident waves. The experiments were performed in a wide flume (6.1 m wide, 25.6 m

long). The two-dimensional topography consists of circular bottom contours with equal

radii (half the flume width), centered along the centerline of the flume. The topography

can be approximated by [Whalin, 1972]

h(x, y) =





0.457 m, if 0 ≤ x < 7.62 m + 1
2
Wf −G(y)

0.457 m + 1
25

(
7.62 m + 1

2
Wf −G− x

)
, if 7.62 m + 1

2
Wf −G(y) ≤ x

≤ 15.24 m + 1
2
Wf −G(y)

0.152 m, if 15.24 m + 1
2
Wf −G(y) < x ≤ 21.34 m

(3.45)

where Wf denotes the width of the flume (6.1 m) and

G(y) =
√
y (Wf − y), 0 ≤ y ≤ Wf . (3.46)

The principal and lateral coordinates, x and y respectively, are defined as in Figure 3.13.

The wave generator was positioned in the deeper part of the wave tank at x = 1.615 m.

The observations by Whalin [1971, 1972] indicate significant enhancement of harmonics

in the focal region where the combined effects of refraction, diffraction and nonlinear

wave–wave interactions are important.

We compare model simulations (viz. a numerical implementation of (3.42)) to obser-

vations for four cases; periods and amplitudes are listed in Table 3.2 for each experiment.

A snapshot of the model-predicted surface elevation over the topography for the case

with 2.0 s period and 1.06 cm amplitude is shown in the lower panel of Figure 3.13. For

each of the cases considered, the model is initialized with a single spectral component

with the appropriate amplitude, frequency and alongshore wavenumber at x = 0, and
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Figure 3.13: Top panel: depth contours experimental set-up of Whalin [1971] (units m),

circles denote wave gauge positions along the centerline. Lower panel: model-predicted surface

elevation (viz. eq. (3.29)) for incident wave period 2.0 s and initial amplitude 1.06 cm.

the corresponding (theoretical) first harmonic (Stokes second-order theory). The spatial

domain is discretized with ∆x and ∆y both equal to 0.1 m; we numerically evaluate the

evolution of the primary wave (ω0) and its three harmonics (2ω0, 3ω0, 4ω0).

Period [s] Amplitude [cm]

2.0 0.75

2.0 1.06

1.0 0.97

1.0 1.95

Table 3.2: Wave periods and amplitudes for

cases selected from Whalin [1971], for model-

data comparison.

Figure 3.14 shows the evolution of the spectral amplitudes of the primary, first and

second harmonic for the 2.0 s cases considered. As the waves propagate from the deep

end of the flume over the topography into shallow water, the primary wave component

initially increases predominantly due to shoaling and wave convergence until quadratic

interactions approach resonance, resulting in the observed rapid growth of the first and

second harmonic at the expense of the primary wave component, followed by partial

recurrence.
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For the 1.0 s cases, waves are in relatively deeper water and the quadratic interactions

are considerably further from resonance. This results in relatively small first harmonic

amplitudes (see Figure 3.15) and practically negligible second harmonics (not shown,

no observations available). The large resonance mismatch results in rapid oscillations in

the harmonic amplitude at the shallow end of the flume. These rapid recurrences can

be understood as follows. At x = 0 the model is initialized with second-order, uniform-

depth boundary conditions so that in the uniform-depth, deep end of the flume the

amplitudes are constant (waves of permanent shape). Over the slope the interactions

result in the excitement of ‘free’ motion at the harmonic frequency; in this region and

in the shallow end of the flume, the harmonic wave train is then the superposition of

free and forced waves (forced waves according to the local equilibrium) which, due to

the large resonance mismatch, results in the oscillatory-type behavior observed in the

predicted harmonic amplitude. Although we expect similar oscillations present also in

the observations, the spatial resolution in the observations is insufficient to conclusively

resolve such variations.

The agreement between model predictions and the observations is generally good.

The large spread in observed wave amplitudes in the uniform-depth, deep-end of the

flume is unexplained, and not seen in the simulation result; it is expected that these are

in part due to inaccuracies in the wave generation (Whalin remarks that the plunger-

type wave generator does not produce perfect sinusoidal waves, suggesting spurious wave

excitation even at the lowest order). For the larger-wave 2.0 s case, the model predicts

spatial oscillations of the primary harmonic in the down-wave region of the flume (Figure

3.14 panel b), which is absent in the observations; a similar discrepancy was invariably

found by other authors [e.g. Liu et al., 1985; Kaihatu & Kirby, 1995; Tang & Ouellet,

1997].
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Figure 3.14: Evolution of amplitudes of primary wave component and harmonics for

a periodic incident wave with period 2.0 s propagating over two-dimensional bathymetry.

Amplitudes incident waves are 0.75 cm (left panels) and 1.06 cm (right panels) respectively.

Circles denote observed values by Whalin [1971], solid line represents model results. Note

differences in amplitude scales.
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Figure 3.15: Evolution of amplitudes of primary wave component and harmonics for

a periodic incident wave with period 1.0 s propagating over two-dimensional bathymetry.

Amplitudes incident waves are 0.97 cm (left panels) and 1.95 cm (right panels) respectively.

Circles denote observed values by Whalin [1971], solid line represents model results. Note

differences in amplitude scales.
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3.4.2 Waves over topography: submerged two-dimensional obstacles

The premise of weak lateral depth variations appears a reasonable one for the topography

in the experiments by Whalin [1971]. However, less idealized topography can (and most

likely will) be present on most natural beaches (e.g. nearshore sandbars or irregular reef

shapes). In any case, if pronounced two-dimensional topography is present, the angular-

spectrum model should generally be applied with caution. Here we empirically assess the

limits of applicability of the model by comparing predictions to observations of waves

traversing localized two-dimensional topography.

In the presence of fairly localized (in the lateral sense) obstacles, a practical difficulty

occurs in the definition of the reference depth h. In the derivation we have chosen the

laterally averaged depth as the reference depth, as this appears a natural choice for cases

where the lateral depth perturbation is fairly homogeneous (thus lateral homogeneity of

the topography in the statistical sense is implied). However, since the reference depth is

the key determining factor for the sensitivity of the model to the lateral depth variations

(the model essentially ‘picks up’ the perturbation at the reference depth) this is probably

not the best choice for more localized topographical variability. The most conspicuous

difficulty with using a laterally averaged depth as a reference depth for cases with fairly

local (in the lateral sense) depth variability, is the fact that the model’s sensitivity to

bottom perturbation depends on the lateral extent of the domain. For instance, consider

the sketch in Figure 3.16. If we extend the uniform-depth area laterally, the mean water

depth diminishes, rendering the model less sensitive to the same obstacle. This behavior

is clearly unphysical and highly undesirable from a practical point of view, for obvious

reasons.

To ameliorate this, instead of using the lateral average, we propose to use half the

depth range as in

hm(x) =
1

2
(max [h(x, y)] + min [h(x, y)]) . (3.47)

where max [h(x, y)] and min [h(x, y)] are the maximum and minimum depth respectively

over the lateral section at x. This measure does not depend on the lateral extent of

the domain; moreover, since for laterally homogeneous perturbations this definition is

practically equivalent to a lateral average, the hm can generally be used (re-computations

of the Whalin cases utilizing hm instead of h yielded similar results, not shown).

PSfrag replacements

h

1
2
(max (h) + min (h))

h̃

z

Figure 3.16: Principle sketch of definition reference depth for submerged two-dimensional

obstacle. The sketch shows the actual bottom profile (dashed line) the laterally averaged

depth h (thick solid line), and half the depth range hm (dash-dot).
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Although hm is generally more applicable than h for use as a reference depth, since

it does not depend on the lateral extent of the domain, situations are conceivable were

even hm is not very well suited. For instance, consider the case where a localized

obstacle (as shown in Figure 3.16) stands out from on otherwise (very) deep area. If

the depth-attenuated, wave-induced fluid motions are confined to an upper region of

the fluid, above hm say, then by placing the reference at hm the model is not affected

by the topographical features, i.e. although the topography physically interferes with

the wave-induced fluid motions, the model, on account of the reference depth being too

deep, cannot correct the wave motion accordingly. This can occur for instance for wave

fields traversing nearshore canyons and troughs. To improve the model’s sensitivity

to topographical variations in such regions, a modification of the depth function is

needed; essentially it requires placing a ‘false bottom’ at the depth where wave motion

is practically no longer felt, say where krh = α, with kr denoting a characteristic wave

number for the waves. We propose, somewhat arbitrarily, α = 3, which we will use

throughout the remainder of this thesis. The modified depth function reads

h∗ =

{
h, if h ≤ α/kr

α/kr, if h > α/kr
(3.48)

and accordingly

h∗m(x) =
1

2
(max [h∗(x, y)] + min [h∗(x, y)]) . (3.49)

The h∗m is a modification of the definition of hm to account for such extreme cases where

local topography stands out from a deep surrounding area; if the bottom is everywhere

felt by the waves h∗m is equivalent to hm. In the numerical simulations of waves over

localized two-dimensional topography in the present work, we have everywhere used h∗
m

as a reference depth. However, for the cases considered, the maximum kh equals 2.35

thus for α = 3 this implies hm = h∗m.

For each of the cases considered in the following, two simulations are performed: one

including quadratic nonlinearity (viz. eq. (3.42)) and a linear run where the quadratic

term in (3.42) is omitted. The model runs are initialized with the spectral component

with the appropriate amplitude, frequency and alongshore wavenumber (λ = 0) at

x = 0; for the nonlinear model the corresponding (theoretical) first harmonic (Stokes

second-order theory) is added.

To verify model predictions with experimental observations, we compare predicted

and observed normalized wave heights along instrumented transects. To quantify the

level of agreement between observations and model predictions along these transects we

utilize the index of agreement proposed by Willmott [1981]:

d = 1 −
∑

i |yi − xi|2∑
i (|yi − y| + |xi − x|)2 , (3.50)

where xi and yi are the measured and predicted values respectively; the x and y denote

their mean values [the present notation follows Dingemans, 1997, §4.7].
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Ito & Tanimoto 1972

Ito & Tanimoto [1972] performed experiments over a topography where a shoal with

concentric circular contours is placed on an otherwise horizontal bottom (see Figure

3.17). The submerged shoal acts like a lens which, when described by the wave rays of

geometrical optics, results in a cusped caustic. It is well known that in the region of

ray convergence, the theory of rectilinear wave propagation is not a proper presentation

of the physics, and a diffraction theory (present model) is needed [see e.g. Mach, 1926;

Stamnes, 1986].

In the experimental set-up used by Ito & Tanimoto [1972], the water depth surround-

ing the shoal is h0 = 0.15 m, and in the shoal area the depth is given by

h(x, y) = 0.05 m + (0.15625 m−1)
[
(x− xc)

2 + (y − yc)
2
]
. (3.51)

The minimum depth over the shoal is 0.05 m, and the shoal center coordinates are

(xc, yc) = (1.2, 1.2) m. Monochromatic waves are normally incident at x = 0 (Figure

3.17) with wave height and period equal to 1.04 cm and 0.511 s respectively. Observations

are available along three transects, indicated in Figure 3.17.
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Figure 3.17: Bottom lay-out experimental set-up Ito & Tanimoto [1972], depth in meters.

Waves incident from the left. Dashed lines indicate instrumented transects.

For the numerical simulations the spatial domain is discretized with ∆x and ∆y equal

to 4.0 cm and 3.8 cm respectively; the evolution of the primary wave (ω0) and its first

harmonic (2ω0) is computed.

Along the center of the shoal, wave heights are amplified as the waves are refractively

focused (top panel Figure 3.18). Due to the refraction of the incident waves and the

associated bending of the rays, crossing wave trains occur in the area behind the shoal,

which is visible from the wave height patterns observed (and predicted) at the cross-

sectional transects 2 & 3 (middle and lower panel Figure 3.18).

Overall, the agreement between predictions and observations is fairly good (Figure

3.18), also substantiated by the high Willmott-index values listed in Table 3.3. A

few notable differences remain. At transect 2, the model-predicted lateral wave height

variability, away from the center region of strong refractive focus (1.0 m < y < 1.4 m),
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is not as pronounced as in the observations. The observations along Transect 3 exhibit

lateral asymmetry (with respect to the shoal center); this is at variance with the laterally

symmetrical conditions imposed on the numerical model, and therefore not found in the

simulation results.

Transect no. Nonlinear Linear

1 0.962 0.964

2 0.960 0.962

3 0.961 0.960

Table 3.3: Willmott index values for angular spectrum

model predictions and observations by Ito & Tanimoto

[1972]; normally incident waves with 1.04 cm amplitude and

0.511 s period. (Transects indicated in Figure 3.17.)

The effect of nonlinearity is minimal for the case considered (Figure 3.18) on account

of the fact that the waves are of fairly low steepness, and propagate over a relative short

distance (few wavelengths) in relatively deep water.
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Figure 3.18: Comparison predicted and observed [Ito & Tanimoto, 1972] normalized wave

heights; normally incident waves with 1.04 cm wave height and 0.511 s period. Thick solid line

represents nonlinear model prediction (eq. (3.42)); dashed line is linear model prediction (same

equation without nonlinear coupling).
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Berkhoff, Booij & Radder 1982

The experimental study by Berkhoff et al. [1982] was specifically designed to test

the performance of approximate numerical models in regions of combined refraction-

diffraction. The topography consists of an elliptic shoal situated on a plane, 1:50,

sloping beach, rotated over 200 with respect to the (straight) wave generator. Depth

contours and measurement transects are shown in Figure 3.19. At the deep end of the

basin, water depth measures 0.45 m; the minimum depth over the shoal is 0.1332 m.

The x and y axis for the computational domain are defined as in Figure 3.19, but the

topography is best described in coordinates (x′, y′) with the origin at the shoal center

((xc, yc) = (10.5, 10) m) and oriented along the slope-normal (Figure 3.19). In that

coordinate frame, the area occupied by the shoal is defined as

(
x′

3 m

)2

+

(
y′

4 m

)2

≤ 1 (3.52)

with the depth in this region given by

h = 0.75 m − 0.02 (5.84 m + x′) − 1

2

[
1 −

(
x′

3.75 m

)2

−
(
y′

5 m

)2
]1/2

. (3.53)

Outside of the shoal area the depth is given by

h =

{
0.45 m, if x′ < −5.84 m

0.45 m − 0.02 (5.84 m + x′) , if x′ ≥ −5.84 m
(3.54)

These shoal-coordinates are related to the computational coordinates through

x′ = (x− 10.5 m) cos 20o + (y − 10 m) sin 20o, (3.55)

y′ = (x− 10.5 m) sin 20o − (y − 10 m) cos 20o. (3.56)

This topography will clearly violate the lateral periodicity assumption implied in the

angular-spectrum model, which results in modeling errors originating from the lateral

boundaries. However, for the case considered the observational area is well away from

the lateral model boundaries (Figure 3.19) and we tentatively assume boundary effects

negligible in the area of interest. Comparison is made to observations of an incident

wave field with 1.0 s period and 2.32 cm amplitude. The spatial domain is discretized

with ∆x = 0.1 m and ∆y = 0.078 m. The evolution of the primary wave (ω0) and its

first harmonic (2ω0) is computed.

We compare normalized wave heights along the transects 1–8 (Figure 3.20 & 3.21).

Overall, we observe that the inclusion of the nonlinear terms in the simulation results

in much better agreement with the observations. Table 3.4 confirms the generally good

agreement between predictions and observations (values close to 1.0); also it indicates

that the inclusion of quadratic nonlinear interactions results in improvements at all
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Figure 3.19: Bottom lay-out experimental set-up Berkhoff et al. [1982], depth in meters.

Dashed lines indicate instrumented transects.

Transect no. Nonlinear Linear

1 0.902 0.924

2 0.961 0.955

3 0.987 0.986

4 0.994 0.975

5 0.987 0.942

6 0.987 0.864

7 0.981 0.952

8 0.915 0.928

Table 3.4: Willmott index values for angular spectrum

predictions and observations by Berkhoff et al. [1982];

normally incident waves with 2.32 cm amplitude and 1.0 s

period. (Transects indicated in Figure 3.19.)

transects except no. 8 and 1 where the linear model scores slightly better (note that wave

height variability is relatively small over these transects and therefore small deviations

are heavily penalized by the Willmott index).

It is instructive to consider the differences in the wave field prediction between the

linear and nonlinear model in a more qualitative sense (Figure 3.22). The inclusion of

the nonlinear term results in the well-known elongation of the troughs and sharpening

of the crests (Stokes waves), an effect most pronounced in the refractive focus area
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Figure 3.20: Comparison of predicted and observed [Berkhoff et al., 1982] normalized wave

heights; normally incident waves with 2.32 cm amplitude and 1.0 s period. Thick solid line

represents nonlinear model predictions (eq. (3.42)); dashed line is linear model predictions

(same equation without nonlinear coupling).



60 Analysis and verification deterministic theory

PSfrag replacements

y [m]

H
/H

0
[-
]

0

1

2

3

4

6

7

8

9

12

10

11

12

13

14

15

16

18

20

25

17

19

21

0

1

2

3

(a) Transect 2

PSfrag replacements

y [m]

H
/H

0
[-
]

0

1

2

3

4

6

7

8

9

12

10

11

12

13

14

15

16

18

20

25

17

19

21

0

1

2

3

(b) Transect 3

PSfrag replacements

y [m]

H
/H

0
[-
]

0

1

2

3

4

6

7

8

9

12

10

11

12

13

14

15

16

18

20

25

17

19

21

0

1

2

3

(c) Transect 4

PSfrag replacements

y [m]

H
/H

0
[-
]

0

1

2

3

4

6

7

8

9

12

10

11

12

13

14

15

16

18

20

25

17

19

21

0

1

2

3

(d) Transect 5

Figure 3.21: Comparison of predicted and observed [Berkhoff et al., 1982] normalized wave

heights; normally incident waves with 2.32 cm amplitude and 1.0 s period. Thick solid line

represents nonlinear model predictions (eq. (3.42)); dashed line is linear model predictions

(same equation without nonlinear coupling).



3.4 Comparison to observations: waves over topography 61PSfrag replacements

x [m]

y [m]

0

4

8

12

16

20

24

0

4

8

12

16

20

PSfrag replacements

x [m]

y
[m

]

0 4 8 12 16 20 240

4

8

12

16

20

PSfrag replacements

x [m]

y [m]

0

4

8

12

16

20

24

0

4

8

12

16

20

PSfrag replacements

x [m]

y
[m

]

0 4 8 12 16 20 240

4

8

12

16

20

Figure 3.22: Model-predicted surface elevation (viz. eq. (3.42)) for incident wave period 1.0 s

and 2.32 cm amplitude. Top panel: linear model. Lower panel: nonlinear model.

and the shallower part of the basin. More importantly perhaps is the fact that the

nonlinearity is seen (Figure 3.22) to induce a widening of the aperture of the refractive

focus (de-focusing effect). The quantitative comparisons in Figures 3.20 & 3.21 indicate

that the linear model predicts a focal region slightly too narrow and overestimates wave

height amplification in that region (notably transect 4 in Figure 3.21). The inclusion

of nonlinearity causes a de-focusing of the waves in the focal region behind the shoal,

resulting in wave height values that are in closer agreement with the observations along

transects in that region.

Remarkable is the fact that the improvement due to the inclusion of quadratic nonli-

nearity is qualitatively similar to the improvements observed by e.g. Kirby & Dalrymple
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[1983] and Suh et al. [1990] who included amplitude dispersion through a cubic self-

self-self interaction term. It is surprising to find that such disparate formulations for

nonlinear wave propagation result in very similar effects/improvements in the model

predictions. However, the disparity is but apparent and the physical phenomenon in

both cases is believed the same, namely amplitude dispersion. Although the harmonic

amplitudes in the observational area remain relatively small (compare upper and lower

panel Figure 3.22), it is indirectly through the dispersion corrections on the primary wave

train that the nonlinearity affects the refractive focus. We recall from the discussion in

§3.1.2 that the quadratic interaction term generally overestimates such effects in these

water depths, nevertheless, when compared to the linear estimate, the nonlinear model

is notably more accurate.

Then, on the premise that the improvements in the model predictions are due to

amplitude dispersion, the argument can be made that this invalidates the omission

of cubic terms from the equation, amplitude dispersion being a third-order effect; an

argument strengthened by the fact that the second-order model strongly overestimates

such effects in unidirectional waves (§3.1.2). The conclusive answer needs to await

numerical evaluation of the complete model, including such terms. However, although

amplitude dispersion in unidirectional waves is strongly overestimated by the quadratic

models in deeper water, the nonlinear de-focusing effect is due to amplitude-induced,

relative phase changes of the directional components in the focal region. Therefore,

although the wave field as a whole can be expected to propagate too fast, a deduction

that can be verified by comparing time series at locations in and beyond the focal

region (not available for the present case), the relative phase modification of directional

components inside a narrow aperture is weighted approximately proportional to the

square of the wave amplitude, as one would also expect in a third-order theory. Although

this is an a posteriori argument, inspired foremost by the notable improved agreement

in wave height evolution due to the inclusion of nonlinear terms, it provides some

rationale to qualitatively explain the undeniable improvements in the model result with

an incomplete description of the third-order nonlinear physics.

Chawla 1995

Chawla [1995] performed laboratory experiments over a topography [see also Chawla

et al., 1996, 1998] consisting of a circular shoal (radius r = 2.57 m), with its center at

(xc, yc) = (5.0, 8.98) m placed on an otherwise uniform bottom (x and y as in top panel

of Figure (3.23)). Within the shoal perimeter the depth is given as

h = h0 −
√
R2
s − (x− xc)

2 − (y − yc)
2 + 8.73 m, (3.57)

where h0 = 0.45 m is the depth away from the shoal and Rs = 9.1 m is the radius of

the sphere defining the shoal geometry. Model simulations are compared to observations

of normally incident waves (along x) with 1.0 s period and 1.165 cm amplitude. The

computational domain is discretized with ∆x = 0.1 m and ∆y = 0.0706 m.



3.4 Comparison to observations: waves over topography 63

PSfrag replacements

x [m]

y
[m

]

A

BCD

EFG

A’

B
’

C
’

D
’

E
’

F
’

G
’

0.15

0.35

0.35

0.45

0

4

8

12

16

20

24

0 4 8 12 1620

24

PSfrag replacements

x [m]

y [m]

A

B

C

D

E

F

G

A’

B’

C’

D’

E’

F’

G’

0.15

0.35

0.35

0.45

0

4

8

12

16

20

24

0

4

8

12

16

20

24

PSfrag replacements

x [m]

y
[m

]

A

B

C

D

E

F

G

A’

B’

C’

D’

E’

F’

G’

0.15

0.35

0.35

0.45

0

4

8

12

16

20

24

0 4 8 12 1620

24

Figure 3.23: Bottom lay-out (top panel) experimental set-up Chawla [1995], depth in meters;

dashed lines indicate instrumented transects. Model-predicted surface elevation (bottom panel,

viz. eq. (3.42)); incident wave period 1.0 s and 1.165 cm amplitude.

This is the most extreme of the cases considered for two-dimensional wave propagation

in terms of the lateral depth variations in the topography. With the depth varying from

45 cm away from the shoal to 8 cm over the top of the shoal this topography exhibits

considerable lateral depth variability and thus represents a severe test on the model’s

two-dimensional capability.

The incident wave field experiences strong refractive focusing as it traverses the shoal

area, indicated by the wide-angle scattering in the surface elevation (bottom panel Figure

3.23), and the rapid increase in wave height along the center-line of the basin (Figure
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3.24, transect A). Although model-predicted amplitude variation over the shoal along A

is in fair agreement with the observed variability, the predictions spatially lag behind the

observations; moreover, the model predictions show wave height oscillations for x > 10 m

which are not present in the observations. Along the cross-basin transects G & F (Figure

3.24) wave height variations are minimal, but strong lateral wave height variations,

with a pronounced maximum near the shoal-center along transects B–E (Figure 3.25),

indicate the presence of a distinct focal region and considerable cross-basin standing

wave motion associated with the crossing of wave trains behind the shoal.

The agreement between observations and predictions is notably less than for the other

cases considered (observations by Ito & Tanimoto and Berkhoff et al.), also indicated

by the markedly lower Willmott index values (Table 3.5). This is not surprising given

the fact that the fundamental assumption of weak lateral variations in water depth is

strained to it limits and perhaps well beyond. Taking that into account, the agreement

between model predictions and observations is actually remarkable. Prominent features

such as the rapid increase in wave height over the shoal, and the laterally standing

wave height patterns behind the shoal are all faithfully predicted by the model. Even

at a more quantitative level, the agreement is generally favorable. In particular, good

agreement is found for the transects D–B (located behind the shoal, Figure 3.25), away

from the primary focusing region. These (strong) lateral variations in wave height outside

the primary focal region (near yc) are due to crossing waves scattered at relative large

angles in the refraction-diffraction process over the shoal and in the refractive focus area;

the observed level of agreement is attributed to the wide-angle ability of the model.

Good agreement in these regions was also found by Kaihatu [2001] with a wide-aperture

approximation to the mild-slope equation (see also discussion in §3.5).

Transect Nonlinear Linear

A 0.889 0.913

B 0.842 0.837

C 0.688 0.674

D 0.829 0.832

E 0.937 0.947

F 0.736 0.769

G 0.5 0.504

Table 3.5: Willmott index values for angular spectrum

model and observations by Chawla [1995]; normally incident

waves with 1.165 cm amplitude and 1.0 s period. (Transects

indicated in Figure 3.23.)

However, some distinct quantitative disagreement remains. The most conspicuous

data-model disagreement is the erroneous wave height variation along the center tran-

sect A; although approximately correct in magnitude range, the predicted wave height
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variations are spatially lagging. This lag is also reflected in the lesser agreement between

predicted and observed wave heights over the cross-basin transects B−G in the focal area

near yc. Consistent with the spatial lagging of the model-predicted wave height observed

along transect A, the wave height along transects E −G, near yc, is underestimated by

the model; at transects D−B the model consistently overestimates wave heights in that

area.

The cases considered exhibit very low wave steepness and consequently nonlinear

effects are very weak. However, in general, over strongly two-dimensional topography

the quadratic nonlinear coupling term is inaccurate; the lateral heterogeneity of the

topography only affects the nonlinear coupling indirectly though the lateral variation

of the amplitude, not through the varying depth directly since the coupling coefficient

depends on the reference depth, not the laterally varying part. It is clear that nonlinearity

is enhanced locally, over the shallow part of the shoal even if, hypothetically, the wave

height would be laterally uniform. This laterally global nature of the coupling coefficient

results in underestimation of the ensuing nonlinear couplings in the vicinity of two-

dimensional shoal and over-prediction in the surrounding area.
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Figure 3.24: Comparison of predicted and observed [Chawla, 1995] normalized wave heights;

normally incident waves with 1.65 cm amplitude and 1.0 s period. Thick solid line represents

nonlinear model predictions (eq. (3.42)); dashed line is linear model prediction (same equation

without nonlinear coupling).
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Figure 3.25: Comparison of predicted and observed [Chawla, 1995] normalized wave heights;

normally incident waves with 1.165 cm amplitude and 1.0 s period. Thick solid line represents

nonlinear model predictions (eq. (3.42)); dashed line is linear model prediction (same equation

without nonlinear coupling).

3.5 Discussion deterministic model

Outlook on approach and numerical feasibility

The application of a multi-frequency angular-spectrum decomposition results in a di-

mensional reduction of the governing equation (a set of ODEs describes the evolution of

stationary, two-dimensional wave fields over two-dimensional topography) at the expense

of convolution-type forcing terms for the wave–wave and wave–bottom interaction, which

is typical for spectral Galerkin-type methods.

Direct evaluation of the convolution-type forcing terms is straightforward, but in

particular for the cubic interaction terms the number of operations is O(N 3) (N being

the number of spectral components), which becomes prohibitive for larger-scale applica-

tions. Such terms can be implemented by utilizing standard pseudospectral methods [see
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e.g. Orszag, 1972] so that the number of operations scale as O(N log2N) [see also e.g.

Bredmose et al., 2002, 2004, 2005; Canuto et al., 1987]; this renders the approach suitable

for application to wave fields with realistic spectra and spatial scales as encountered in

typical (nearshore) oceanographic applications. Pseudo-spectral approaches are possible

for resonant formulations only, not for the generalized forms of the coupling coefficient;

the dissimilarities in dynamic response between resonant and generalized models are

very minor [see also Bredmose et al., 2005, and discussion in §3.1.2] so that for practical

application it is preferable to use a resonant formulation with the convolutions efficiently

evaluated through the use of a pseudospectral implementation. Practical considerations

for such implementations are discussed in detail in Bredmose et al. [2005]. No such (or

other) efficiency improvements were pursued for the numerical evaluations presented

here, but we remark that on a standard desktop (P4) computer the computations for

the unidirectional cases with cubic nonlinearity take a few minutes, not hours; the two-

dimensional model runs (cubic terms omitted and maximal four harmonics computed),

require less than a minute of CPU time.

For waves of moderate amplitude over mildly varying depth with weak lateral vari-

ations, the multi-frequency angular-spectrum approach presented here is efficient and

applicable to scales covering hundreds of wavelengths (e.g. wave propagation over the

continental shelf onto beaches); in particular, it has the potential to investigate the

effects and relative importance of competing nonlinear processes in random ocean waves

over shoals and banks. More general time-domain models such as boundary-integral

methods and field approximations of the Laplace equation [e.g Westhuis, 2001] or even

recent developments in extended Boussinesq theory [e.g Madsen et al., 2003] are poten-

tially more accurate, in particular over steep topography or in the presence of strong

nonlinearity, but are computationally intensive which generally restricts their application

to smaller areas. Furthermore, such models do not explicitly describe the wave inter-

action mechanisms, which, since Stokes [1847], are so deeply rooted in our conceptual

understanding of nonlinear wave physics and at the basis of widely used, operational

wave models [e.g. Hasselmann, 1962].

Angular spectrum and small-angle approximation

The model derivation is based on the premise of weak lateral depth variability. Com-

parison to observations of waves over two-dimensional topography indicate that this

approximation is applicable to realistic beach topographies (§3.4.2, observations by

Berkhoff, Booij & Radder) but should be applied with caution over topographies with

pronounced and localized two-dimensional features (see e.g. §3.4.2, observations by

Chawla). Moreover, it was noted that the nature of the approximation impairs the

accuracy of the nonlinear coupling in regimes with pronounced two-dimensional topo-

graphy.

Notwithstanding the apparent robustness of the approach, for wave fields impin-

ging on strongly two-dimensional topography the underlying premises of the angular-
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spectrum model are clearly violated, and may not be the most suitable in the first place.

In particular, if the incident wave field is characterized by a narrow-aperture propagation

along a principal direction, say x, then a so-called ‘small-angle’ approximation, which

assumes small-aperture wave propagation along a principal direction but retains two-

dimensionality in the topographical forcing, appears a more realistic approximation.

To illustrate the differences between the angular-spectrum description and small-

angle approximation, we consider time-periodic waves propagating over laterally uniform

topography governed by the mild-slope equation [Berkhoff, 1976]

∇ [CCg∇η] + k2CCgη = 0, (3.58)

where k is related to the wave frequency through the dispersion relation. We consider

solely waves propagating into the half plane of positive x and insert the angular-spectrum

expansion for the wave field variable

η =
∑

λ

ζλ(x) exp [i(κλx+ λy)] exp [−iωt] + ∗. (3.59)

Further, we assume the angular amplitudes ζλ sufficiently slowly varying in x so that

we may ignore ∂2
xζλ and accordingly write (3.58) as

i

[
2Vλ

d

dx
+
dVλ
dx

− i
Cg
k

(
k2 − κ

2
λ − λ2

)]
ζλ = 0, (3.60)

where, as before, Vλ = (κλ/k)Cg denotes the cross-shore component of the group speed

vector. Equating imaginary and real parts gives

∑

λ

dAλ
dx

= 0, (3.61)

where Aλ =
√
Vλζλ, and the simple eikonal

κλ =
√
k2 − λ2. (3.62)

Eq.’s (3.61) & (3.62) constitute the angular-spectrum description of waves shoaling on

a laterally uniform beach.

A similar reasoning can be extended to, what we refer to as, the ‘small-angle’ ap-

proximation. Instead of allowing the waves to propagate at arbitrary angles in the half

plane, we assume their propagation direction confined to a narrow aperture along the

principal direction (x). On the basis of this assumption we write the surface elevation

as

η = a exp [i (kx− ωt)] + ∗ =
∑

λ

ζ
(sa)
λ exp [iλy] exp [i (kx− ωt)] + ∗, (3.63)

where the (sa) in the superscript is an abbreviation of ‘small-angle’. The aperture width

is incorporated through the (slow) variation of the amplitude a. Insertion into (3.58),
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assuming again a laterally uniform depth and the amplitudes ζ
(sa)
λ (x) slowly varying

along the principal direction, yields the expression

∑

λ

[
d

dx
+ i

λ2

2k

]
A

(sa)
λ = 0, (3.64)

with A
(sa)
λ =

√
Cgζ

(sa)
λ . From (3.64) we see that the small-angle† approximation implies

the eikonal relation

κλ = k − λ2

2k
, (3.66)

which is the first two terms of a Taylor expansion of (3.62) for small angles (λ ¿ k).

Based on the small-angle approximation Kaihatu & Kirby [1995] derived evolution

equations including quadratic nonlinearity. To further illustrate the differences in the

approximation, by means of a numerical comparison to the experimental data by Chawla

[1995], we evaluate the governing equations in Kaihatu [2001] (modifying the nonlinear

term for compatibility with the present model) utilizing a spectral method in the lateral

direction. In that way the models can be evaluated with the same numerical scheme

(one-dimensional, 4th-order Runge-Kutta), thus minimizing differences from a numerical

origin. Thereto we write the surface elevation associated with a narrow-aperture wave

field propagating along x as

η =
∞∑

p=−∞

ap(x, y) exp

[
i

(∫ x

kp dx− ωpt

)]

=
∞∑

p,q=−∞

ζp,q(x) exp [iλqy] exp

[
i

(∫ x

kp dx− ωpt

)]
, (3.67)

where λq are again the discrete lateral wavenumbers; the laterally averaged wavenumber

kp(x) = 1/Ly
∫ Ly

0
kp(x, y

′) dy′, where kp is related to ωp through the linear relation

dispersion and Ly is the lateral extent of the domain. Note that the ζp,q represent the

lateral Fourier coefficients of the amplitude ap(x, y), which is distinct from the angular-

spectrum model; here the lateral wavenumber decomposition is introduced merely as

a means to numerically evaluate the evolution equations as a set of ODEs rather than

the parabolic-form partial differential equation in Kaihatu & Kirby [1995] and Kaihatu

[2001]. Inserting the decomposition (3.67) into the linear part of eq. (4) in Kaihatu [2001]

†Upon inverse Fourier transforming (3.64) with respect to λ we obtain the relation

∂Ã(sa)

∂x
=

i

2k

∂2Ã(sa)

∂y2
, (3.65)

where the Ã(sa) =
∑

λ A
(sa)
λ exp [iλy]. Thus the small-angle approximation changes the governing

equation (3.58) from being essentially elliptic, utilizing semantics borrowed from analytical geometry,

to the parabolic form of (3.65); therefore the small-angle approximation is also often referred to as the

‘parabolic’ approximation. In the present context, we prefer the wording ‘small-angle’, which is more

inclined toward the physical significance of the approximation.
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and augmenting it with the generalized nonlinear coupling term† discussed in §3.1.2, we

obtain in terms of the surface elevation

dζp,q
dx

= −ikpζp,q + Fq{f (1)
p (y),F−1

q′ {ζp,q′}} + Fq{f (2)
p (y),F−1

q′ {iλqζp,q′}}

− Fq{f (3)
p (y),F−1

q′ {λ2
qζp,q′}}

+ Fq

{
i
∑

n,m

Zλ=0
n,m (y)F−1

q′ {ζn,q′}F−1
q′′ {ζm,q′′} δωnm;pEnm;p

}
. (3.68)

Here the operator Fq{ } denotes the qth component of the Fourier transform with respect

to the lateral coordinate; the F−1
q { } is the inverse Fourier transform with respect

to the lateral wavenumbers associated with the subscript. The interaction coefficient

Zλ=0
n,m (y) is the generalized interaction coefficient Z (g)

1,2 defined in §3.1.2 (Table 3.1),

for λ = 0 (thus unidirectional waves) but a function of the lateral coordinate y; the

Enm;p = exp
[
i
∫ x

(kn + km − kp)
]
dx}, and the fp’s are given as

f (1)
p (y) = − Cg,p

2Cg,p(y)
+ ikp, (3.69)

f (2)
p (y) = i

∂y (Cg,p/kp)

2Cg,p
, (3.70)

f (3)
p (y) =

i

2kp
. (3.71)

Note that here the kp and Cg,p are functions of the lateral coordinate. The equation

(3.68) describes the nonlinear wave evolution on the premise of small-angle propagation

relative to the principal direction (x), but without explicit restrictions on the slowly

varying topography. The model is accurate only for (λq/kp)
2 ¿ 1 and for reasons

of numerical stability we explicitly exclude lateral wavenumber components for which

|λq| >
√

2kp; these components are well beyond the validity of the model and very high

lateral wavenumbers render the numerical integration unstable.

The experimental observations by Chawla (see §3.4.2), given the fairly extreme topo-

graphy, are well-suited to illustrate the differences between the small-angle model (viz.

eq. (3.68)) and the angular-spectrum model (viz. eq. (3.42)). The models are initialized

as in §3.4.2 and computations are performed with the same spatial discretization as

before; computed surface elevations are shown in Figure 3.26.

In a qualitative sense, the most conspicuous difference in the surface elevation pre-

dictions by the two models is the directional spreading predicted behind the shoal.

Compared to the angular-spectrum model prediction (bottom panel), the small-angle

model (eq. (3.68)) predicts a wave field in the refractive region with a somewhat narrower

aperture‡. Also, the cancellation of wave motion due to directional interference along

†The nonlinear term in Kaihatu [2001] is equivalent to the quasi-resonant model by Eldeberky &

Madsen [1999] (see §3.1.2).
‡This is not due to the computational cut-off for |λq| >

√
2kp; simulations with cut-offs at much

higher wavenumbers (not shown) rendered identical results.
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Figure 3.26: Inter-comparison model-predicted surface elevation for incident wave period

1.0 s and 1.165 cm amplitude over topography as in Chawla [1995]. Top panel: small-angle

model (viz. eq. (3.68)). Bottom panel: angular-spectrum model (viz. eq. (3.42)). The lateral

asymmetries in surface elevation are on account of the of the (artificial) lighting of the plot.

the center line of the tank in the focal region is stronger in the small-angle model than

in the angular-spectrum model.

In a more quantitative sense the differences are quite distinct (Figure 3.27). The small-

angle model predictions are generally in very good agreement with the observations at

locations well inside the main focal region (sections B and C, near the center line);

the agreement is certainly better than that found for the angular-spectrum predictions

in that region. However, for these sections (B and C), and away from the center line,

we note that the angular-spectrum model appears more accurate, i.e. the wide-angle

spreading behind the shoal appears better captured by the angular-spectrum model
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than by the small-angle model. This wave motion, propagating at large relative angles

with the principal direction, is the result of strong refraction effects and diffractive

scattering in the focal region. The angular-spectrum model includes the topographical

forcing only approximately, but wide-angle diffraction is fully accounted for [in the far

field approximation, see e.g. Stamnes, 1986; Dalrymple et al., 1989].
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Figure 3.27: Comparison of predicted and observed [Chawla, 1995] normalized wave heights;

normally incident waves with 1.165 cm amplitude and 1.0 s period. Thick solid line represents

angular spectrum model (eq. (3.42)); dashed line is small-angle model (eq. (3.68)).

It turns out that the small-angle model does not generally produce much higher

Willmott index values (Table 3.6), and despite its markedly better agreement at some lo-

cations, even scores slightly lower along some transects. As the Willmott index measures

the performance over the transect as a whole it penalizes the small-angle model for its

limited representation of wide-angle components, deteriorating its overall performance

in terms of the index values. We remark that the underestimation by the small-angle

model of wave height increase over the shoal as seen along transect A was not found by

Kaihatu [2001]. Although we use the same small-angle model, the difference may be on

account of our use of the spectral method in the lateral direction (differences on account

of the different nonlinear term are minimal, not shown). Nevertheless, the small-angle

model scores much better along this transect than the angular-spectrum model.

We noted in §3.4.2 that the description of nonlinearity in the angular-spectrum

model results in underestimation of nonlinear couplings in localized shallow regions;

the nonlinear coupling in the small-angle model does not have directional dependency

but is a function of the local (not the global) depth and is therefore expected more

sensitive to two-dimensional topographical features, and more accurate for near-collinear

wave propagation. In Table 3.6 the Willmott index values for the linear models are also

shown; along transect B and D the small-angle model predictions improve considerably

through the inclusion of nonlinearity but the effects of nonlinear corrections are small
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Transect Angular Spectrum Small-angle

Nonlinear Linear Nonlinear Linear

A 0.889 0.913 0.965 0.948

B 0.842 0.837 0.769 0.634

C 0.688 0.674 0.705 0.683

D 0.829 0.832 0.736 0.534

E 0.937 0.947 0.892 0.922

F 0.736 0.769 0.902 0.919

G 0.500 0.504 0.638 0.658

Table 3.6: Willmott index values for angular spectrum and small-angle

model predictions and observations by Chawla [1995]; normally incident

waves with 1.165 cm amplitude and 1.0 s period.

at other transects, the nonlinear simulation being generally – but not everywhere – the

more accurate.

Thus the restriction on two-dimensionality of the topography, as implied in the

angular-spectrum approach, can be removed at the expense of aperture limitations on the

wave propagation (small-angle model). Both approaches are approximate over fully two-

dimensional topography; the angular-spectrum explicitly, due to its assumption of weak

lateral variation; the small-angle model implicitly, since the presence of two-dimensional

depth variations will result in wide-angle refraction and scattering of the wave field.

We have not discussed wider-angle approximations [Kirby, 1986; Kaihatu, 2001] that

ameliorate the aperture limitation of the small-angle model, neither is the comparison

intended to claim the ‘better’ approximation. This discussion and comparison serve to

illustrate how these models are inter-related and how the differences in the premises,

on which the derivations are based, reflect on model performance when predicting wave

evolution over complex topography. It generally depends on the nature of the physical

reality, of which the model is supposed to be a fair representation, which approximation

is the better suited.

Stochastic evolution equations

For random ocean wave fields, understanding of the evolution of the wave field statistics

is often more useful than detailed, deterministic knowledge of individual realizations.

For applications on scales typically encountered in coastal areas, a stochastic mode-

ling approach, despite its approximate closure, is generally preferred over Monte Carlo

simulations, for reasons of efficiency. The multi-frequency angular-spectrum approach,

developed in Chapter 2 and verified in the present chapter, is particularly well suited as

a basis for the latter approach, which is further detailed in Chapter 4.





4A stochastic model for nonlinear

waves over topography

The spatial and temporal irregularity of ocean waves, visible even from casual ob-

servation, presents great difficulty for deterministic modeling approaches as it requires

detailed, phase-resolving knowledge of the wave field along the model boundary. In

practice, such detailed information is not available. However, most engineering appli-

cations (e.g. the modeling of morpho-dynamic evolution, structural fatigue & design

criteria) require statistical properties of the wave field as input, such that the intrinsic

deterministic details of the wave field are usually of little interest. Instead, prediction of

the wave field characteristics in a statistical sense suffices.

From a stochastic viewpoint, the instantaneous surface elevation is but a realization

of an underlying random process, which – from a loose use of the central limit theorem –

is generally regarded weakly non-Gaussian, with deviations from normality anticipated

owing to the nonlinearity of the governing equations. The description of ocean waves as

a stochastic rather than deterministic process, and the anticipation of near-Gaussianity,

has lead to great advances, both in our theoretical and conceptual understanding of

ocean wave physics [Hasselmann, 1962; Kinsman, 1965; Benney & Saffman, 1966], and

in the operational wave modeling capability [see e.g. Komen et al., 1994].

If a deterministic model exists, the properties of the underlying random process can –

in principle – be estimated by computing an ensemble of realizations through repeated

simulations [Tucker et al., 1984], and subsequently ensemble-average the moments of

the wave field variable [Freilich & Guza, 1984]. However, to accurately estimate the

statistical moments with such a Monte-Carlo approach (in particular the higher-order

moments such as the sea surface skewness) large ensembles are needed, rendering the

technique computationally intensive. Alternatively, the governing equations can be re-

cast into evolution equations for the ensemble-averaged spectral moments, describing

the evolution of the wave field statistics directly, i.e. without the need for repeated

simulations. However, this is achieved at the expense of an additional approximation or

a so-called closure hypothesis.

To substantiate the discussion somewhat, which is central to much of the following,

consider the one-dimensional transport equation for the Fourier components, ζp, of a

random wave field
d

dx
ζp = ikpζp + i

∑

n+m=p

Wnmζnζm, (4.1)

where the linear term represents dispersion, and the convolution is the quadratic nonli-

nearity originating from the free surface, with Wnm = Wmn. The details of these terms
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are of no particular concern at this point. In the present context, the eq. (4.1) describes

evolution of nonlinear surface waves, but similar equations can be conceived e.g. in the

context of turbulence, with the linear term then accounting for viscous damping (instead

of dispersion) and nonlinearity originating from the advective term in the Navier-Stokes

equation [see e.g. Leslie, 1973]. By forming the evolution equations for the ensemble-

averaged spectral moments, and if, after Holloway & Hendershott [1977], we temporarily

drop all subscripts, summations and coefficients, the moment-hierarchy is symbolically

represented by

dx〈ζζ〉 = 〈ζζ〉 + 〈ζζζ〉 (4.2a)

dx〈ζζζ〉 = 〈ζζζ〉 + 〈ζζ〉〈ζζ〉 + 〈ζζζζ〉C (4.2b)

dx〈ζζζζ〉C = 〈ζζζζ〉C + 〈ζζ〉〈ζζζ〉 + 〈ζζζζζ〉C (4.2c)

...

where the superscript C denotes the so-called cumulant, the residue after decomposing

the moment in products of lower-order moments [e.g. Kim & Powers, 1979; Priestley,

1981]. The set (4.2) is open. After all, in order to compute the evolution of a moment of

order n, we require knowledge of the next higher-order moment (cumulant). This pro-

blem of closure has been studied extensively in turbulence modeling [see e.g. Proudman

& Reid, 1954; Orszag, 1970; Leslie, 1973; Lesieur, 1997; Salmon, 1998, and many others].

For surface gravity waves in deep water, in marked contrast to turbulence, a natural

asymptotic closure for the hierarchy of stochastic equations exists. Based on heuristic

considerations, Hasselmann [1962] first derived evolution equations for the wave spec-

trum in closed form by assuming normality and filtering non-resonant contributions by

integrating the moment equations over an asymptotic large time. Using formal multiple

scales, Benney & Saffman [1966] showed that the closure implied in Hasselmann’s work

is valid, without the necessity of assuming the wave field to be Gaussian [see also

Benney & Newell, 1969; Benney, 1971]. This natural asymptotic closure is the result

of the coexistence of isolated nonlinear resonances and strong dispersive effects; the

former generating correlations over asymptotic length scales, governed by the prevalent

nonlinear mechanism; the latter represents a de-correlating mechanism, effective on

much shorter scales and enforcing a return to the Gaussian state. After Holloway [1979]

we refer to this form of asymptotic closure as ‘resonant interaction’ (RI) closure.

In shallow water, due to lack of frequency dispersion, the RI closure is invalidated.

Abreu et al. [1992] developed a stochastic wave model for shallow water based on the

asymptotic closure proposed by Newell & Aucoin [1971]; the latter closure substitutes di-

rectionality of the waves as a de-correlation mechanism, while assuming exact resonance

among collinear waves. This approach is suitable for what is coined ‘semi-dispersive’

wave systems by Newell & Aucoin [1971]. However, it is doubtful that surface gravity

waves, even in the shallow-water limit, actually belong to this sub-class of wave systems.

Apart even from the fact that the closure excludes energy transfers between non-collinear
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wave components, which is at variance with empirical evidence [Elgar et al., 1993], the

resonance mismatch due to frequency dispersion is, in shallow water, of the same order

as the directional effects, which invalidates a fundamental premise of the closure used

in Abreu et al. [1992].

After this first attempt at the stochastic modeling of shallow-water wave propagation,

a multitude of approaches emerged, either based on the so-called Zakharov kinetic

integral [Eldeberky, 1996; Eldeberky et al., 1996; Becq et al., 1998], Boussinesq-type

amplitude equations [Herbers & Burton, 1997; Kofoed-Hanssen & Rasmussen, 1998] or

amplitude evolution equations including full dispersion in the linear terms and the cou-

pling coefficient [Agnon & Sheremet, 1997; Eldeberky & Madsen, 1999]. Invariably these

models apply a so-called quasi-normal closure, a semantics borrowed from turbulence

literature, with either full discard of the fourth cumulant or a heuristic approximation

[see Rasmussen, 1998, for a review]. Generally, these stochastic models either solve a

coupled set of equations for the spectrum and bi-spectrum equations [Herbers & Burton,

1997; Kofoed-Hanssen & Rasmussen, 1998; Eldeberky & Madsen, 1999] or explicitly

integrate the bispectral evolution equation – at the expense of additional assumptions

– to obtain a single transport equation for the energy spectrum [e.g. Eldeberky, 1996;

Eldeberky et al., 1996; Becq et al., 1998].

The stochastic models by e.g. Agnon & Sheremet [1997] and Herbers & Burton [1997]

compare favorably to observations up to Ursell numbers around 1.5 [Kofoed-Hanssen &

Rasmussen, 1998; Agnon & Sheremet, 1997; Norheim et al., 1998]. At the shallow end

of the beach and the surf zone, a region typified by strong concomitant dissipative and

nonlinear effects [Chen et al., 1997; Herbers et al., 2000], modeling capability is greatly

hampered by the quasi-normal closure approximation, to the extent that predictions

become entirely unreasonable and even unphysical [occurrence of negative ‘energies’, see

e.g. Ogura, 1962]. Herbers et al. [2003] extend the predictive capability to the surf zone

through modification of the closure approximation by means of a heuristic relaxation

term, inducing a return to Gaussian statistics in the presence of dissipation. Comparison

to observations of waves propagating across a beach, including the surf zone, show good

agreement, even through regions involving strong dissipation and high Ursell numbers.

State-of-the-art shallow-water nonlinear stochastic models [Agnon & Sheremet, 1997;

Eldeberky & Madsen, 1999; Herbers et al., 2003] are based on an angular-spectrum

decomposition of the wave field, assuming a one-dimensional topography. In the present

chapter we aim at deriving a stochastic nonlinear wave model for shallow regions inclu-

ding the surf zone, without inherent limitations on (linear) frequency dispersion, and

suitable for two-dimensional topography. The stochastic model development is based on

the deterministic model derived in Chapter 2, which accounts for interaction with two-

dimensional topography through a scattering mechanism. To illustrate the stochastic

representation of two-dimensional wave-bottom interaction, we consider the angular-

spectrum decomposition of a time-periodic surface elevation function
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η(x, y, t) =
∞∑

q=−∞

ζ̃q exp [i (λqy − ωt)], (4.3)

where the q denotes the lateral wavenumber counter. Assuming the waves to propagate

over two-dimensional topography, represented as a superposition of a uniform reference

depth and a two-dimensional perturbation, the linear evolution along the principal

direction of the spectral amplitudes ζ̃q, is governed by a transport equation of the form

(see e.g. §3.4) [
d

dx
− iκq

]
ζ̃q =

∑

qb+q′=q

f̃qb(x)ζ̃q′ , (4.4)

where κq =
√
k2 − λ2

q is the principal wavenumber component (k is related to ω through

the linear dispersion relation at the reference depth); the f̃qb symbolically denotes the

Fourier amplitude associated with the lateral wavenumber λqb of the topographical

forcing, the details of which do not concern us here. For purpose of illustration we have

written the interaction with the laterally varying depth as a spectral convolution, rather

than the more implicit pseudo-spectral operator notation used elsewhere. In essence the

wave-bottom interaction in the deterministic model (viz. (4.4)) is thus described as a

triad interaction between two wave components with a difference wavenumber matching

that of the bottom component, i.e. λq = λq′ + λqb .

From (4.4) we derive evolution equations for the statistical moments 〈ζ̃q ζ̃∗q′′〉 (the 〈 〉
denote ensemble averaging) through multiplication by ζ̃∗q′′ , summing with the evolution

equation for ζ̃∗q′′ multiplied by ζ̃q, and ensemble averaging the result. These operations

yield

[
d

dx
− i (κq − κq′′)

]
〈ζ̃q ζ̃∗q′′〉 =

∑

qb+q′=q

f̃qb〈ζ̃q′ ζ̃∗q′′〉 +

( ∑

qb+q′=q′′

f̃qb〈ζ̃q′ ζ̃∗q 〉
)∗

. (4.5)

The set of transport equations (4.5) constitute a stochastic model representation of the

wave field evolution over topography. Note that the scattering term that accounts for the

wave bottom interactions, induces correlations between non-collinear wave components

– represented here by the cross-spectrum terms 〈ζ̃p,q ζ̃∗p,q′′〉 with q 6= q′′. Consequently, on

account of the anticipated lateral heterogeneity, the spectral description in the stochastic

framework is dimensionally extended from one-dimensional (for a homogeneous wave

field) to two-dimensional in the lateral wavenumber space. This reflects the fact that the

covariance function in a heterogeneous wave field depends on location and separation,

whereas for homogeneous conditions it is a function of the separation alone (thus

likewise a dimensional extension by one). Consider the covariance function of the surface

elevation function at (x, y + υ/2, t) and (x, y − υ/2, t) which can be written as

〈η(x, y + υ/2, t)η(x, y − υ/2, t)〉 = Cov(x, y, υ)

=
∑

q,q′′

〈ζ̃q ζ̃∗q′′〉 exp
[
i
(

1
2
(λq + λq′′) υ + (λq − λq′′)y

)]
. (4.6)
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The spatial variation of the wave field statistics results from the off-diagonal moments

(〈ζ̃q ζ̃∗q′′〉 with q 6= q′′). For instance, if a laterally homogeneous wave field (〈ζ̃q ζ̃∗q′′〉 = 0

for q 6= q′′) impinges on two-dimensional topography (f̃qb 6= 0) then the interaction

with f̃qb causes the off-diagonal moments to develop (see eq. (4.5)). In the stochastic

framework, the effects of the lateral depth variability and associated heterogeneity of

the wave field are thus accounted for through the evolution of the averaged moments

〈ζ̃q ζ̃∗q′′〉, q 6= q′′; conceptually we can think of these off-diagonal moments as forced

by triads involving two wave components and a bottom wavenumber component (viz.

〈fζζ〉), but since the topography is considered deterministic, the bottom component

can be taken outside of the averaging operation. Physically this can be understood as

follows. Submerged topography in shallow water scatters waves in different directions.

These scattered components are mutually correlated through the interaction with the

topography, and exactly this correlation is captured through the cross-spectrum terms.

As such, this stochastic formalism resolves the spatial inhomogeneity of the wave field,

including the (linear) phase coupling of topography-induced non-collinearity (e.g. in the

focal region of a topographical lens).

Since the stochastic model is closed in the linear sense, the (linear) processes of

shoaling, refraction and diffraction are accounted for with the same accuracy as the

deterministic model (see Chapter 3). Since phase coupling between non-collinear waves

is fully resolved, this approach is potentially more accurate than conventional spectral

models such as SWAN [Booij et al., 1999], which assume homogeneity from the outset,

in regions where such heterogeneous effects are important (for instance in focal regions

behind topographical lenses or wave propagation around breakwater heads). We will

return to the heterogeneous effects and interpretation in terms of geometrical optics in

more detail in §4.2.
With respect to the nonlinear processes the stochastic model is more approximate

than the underlying deterministic model since the stochastic hierarchy of moment equa-

tions is closed utilizing a heuristic modification of the quasi-normal closure. Moreover,

since the anticipated domain of operation is the inner shelf and shallow coastal areas, we

omit cubic nonlinear interactions from the model; they are assumed negligible over the

typical length scales over which waves propagate in such regions. Also the wave-driven

mean flow and its effect on the attendant wave field evolution is omitted; there is no

fundamental (or even practical) difficulty with including the flow-induced forcing on the

wave field [see also Kennedy & Kirby, 2003], however, the computation of the near-shore

wave-induced current field on a natural beach is certainly not trivial [e.g. Reniers et al.,

2002; Van Dongeren et al., 2003] and well outside the scope of the present work.

The resulting stochastic model describes directionally spread waves over topography,

including the effects of quadratic nonlinearity and is accurate over distances O(ε−1).

Depth-induced wave breaking is parameterized and a heuristic closure modification

is included to support wave propagation through dissipative and strongly nonlinear

regions, thus including the surf zone. Additional forcing terms that account for the
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processes of e.g. wind forcing and dissipation due to steepness instability can be added;

such extensions are not pursued in the present work. Instead, we focus on the linear

and nonlinear wave processes over two-dimensional topography, including the spatial

structure and correlations in heterogeous wave fields.

This chapter is organized as follows. In §4.1 we derive stochastic model equations

based on the deterministic model presented in Chapter 2. In §4.2 we discuss interpre-

tation of the model-predicted spectra in terms of geometrical optics. Parameterizations

of closure relaxation and surf zone dissipation are given in §4.3 and §4.4.
Empirical verification through comparison with laboratory and field observations, is

presented in Chapter 5.

4.1 Derivation of the stochastic model
The starting point of the derivation is the deterministic angular-spectrum model pre-

sented in Chapter 2, without terms accounting for cubic interactions and wave-induced

mean flow, written here as
[
d

dx
− iκ1

1

]
Ã1

1 =
1

Ly

∫ Ly/2

−Ly/2

∑

λ2

S1
1(x, y)√
V 2

1

Ã2
1 exp [i (λ2 − λ1)] dy

− 1

2Ly

∫ Ly/2

−Ly/2

∑

λ2

√
V 1

1

V 2
1

D1(x, y)Ã
2
1 exp [i (λ2 − λ1)] dy

+ i
∑

v2

W (1−2)2
(1−2)2 Ã

(1−2)
(1−2)Ã

2
2. (4.7)

For the purpose of presentation, instead of using a single-index notation as in Chapter

2, we choose to split up the numeric subscripts into sub- and superscripts, denoting the

frequency and alongshore wavenumber index respectively; this is done in anticipation of

lateral heterogeneity of the wave field for which, in the stochastic description, a single

index would be ambiguous. Further, we have introduced the wave field variable Ã1
1 =

A1
1 exp

[
i
∫ x

κ
1
1 dx

]
†. The numeral superscripts on variables should not be confused with

an exponent; thus Ã2
1 denotes the amplitude Ã pertinent to the frequency/wavenumber

pair (ωp1 , λq2), while operations on such variables that are usually placed in the super-

script position are preceded by brackets, e.g. the conjugate of Ã2
1 is denoted as (Ã2

1)
∗,

and likewise its square reads (Ã2
1)

2. We will omit commas separating numeral subscripts

on the interaction coefficients, such that W12
12 denotes the weighting coefficient of the

product Ã1
1Ã

2
2 ; the coefficient W12 =

√
V 1

1 /(V
2
2 V

3
3 )Z(g)

12 with Z (g)
12 given in Table 3.1. For

brevity we have gathered the (linear) terms accounting for the lateral depth variations

†Recall that the (complex) spectral amplitudes, A1
1 are related to the surface elevation, η, through

η(x, y, t) =

∞∑

p1,q1=−∞

A1
1√
V 1

1

exp

[
i

(∫ x

κ
1
1 dx + λ1y − ω1t

)]
,

with V 1
1 = (κ1

1/k1)Cg,1, λ1 = q1∆λ and ω1 = p1∆ω. See also §2.1.1 and §3.1.2.
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in a single forcing term, denoted by the S1
1(x, y), which can accordingly be decomposed

as

S1
1(x, y) = S

1,(wb)
1 (x, y) + S

1,(wbb)
1 (x, y). (4.8)

Here the wb and wbb superscripts denote the forcing due to interaction with the

laterally varying depth, linear and quadratic in the bottom perturbation respectively.

The expressions for S
1,(wb)
1 and S

1,(wbb)
1 can be derived from the expressions given in the

Appendix B and read

S
1,(wb)
1 (x, y) =i

g

2ω1

√
V 1

1

(
1 − T 2

1

) [
k2

1h̃+ iκ1
1P

1
1 h̃x + iλ1 (q1T1 − 1) h̃y

]
, (4.9a)

S
1,(wbb)
1 (x, y) =i

g

2ω1

√
V 1

1

(
1 − T 2

1

)
k3

1

C1

2Cg,1

(1 − T 2
1 )

2

T1

[
1

(1 − T 2
1 )

− P 1
1

]
h̃2. (4.9b)

Here the C1 and Cg,1 represent phase and group speed respectively for frequency ω1; the

V 1
1 = (κ1

1/k1)Cg,1 is the principal (cross-shore) component of the group speed vector,

and T1 = tanh(k1h); the P 1
1 is given in Appendix B. The D1(x, y) in the second term

on the RHS of (4.7) represents a sink term associated with dissipation due to depth-

limited wave breaking; it is considered here a (real) function of frequency (through the

subscript) in anticipation of a frequency weighting of the dissipation distribution over

the spectrum [see e.g. Chen et al., 1997; Herbers et al., 2000]; details and rationale for

the D1 are deferred to §4.3.
Through multiplying (4.7) by (Ã2

1)
∗, summing with the transport equation for (Ã2

1)
∗

multiplied by Ã1
1, applying the ensemble averaging operator and letting ∆λ,∆ω → 0,

we obtain the evolution equation
[
d

dx
− iΛ1;2

1

]
E12

1

=
1

2π

∫∫
dy dλ3

[
S1

1√
V 3

1

E32
1 exp [i (λ3 − λ1) y] +

(
S2

1√
V 3

1

E31
1

)∗

exp [−i (λ3 − λ2) y]

]

− 1

4π

∫∫
dy dλ3D1

√
V 1

1

V 3
1

[√
V 2

1

V 1
1

E32
1 exp [i (λ3 − λ1) y] +

(
E31

1

)∗
exp [−i (λ3 − λ2) y]

]

+ i

∫∫
dλ3dω3

[
W (1−3)3

(1−3)3C
(1−3)32
(1−3)3 −W (2−3)3

(1−3)3

(
C(2−3)31

(1−3)3

)∗]
. (4.10)

Here the integrals should be taken from −∞ to ∞, the wavenumber mismatch is denoted

by the shorthand Λ1..N ;M
1..N = κ

1
1+. . .+κ

N
N−κ

MPN
1

, and the spectral and bi-spectral density

functions are defined as

E12
1 (x) = E(ω1, λ1, λ2, x) = lim

∆λ,∆ω→0

〈Ã1
1(Ã

2
1)

∗〉
∆λ2∆ω

, (4.11)

C123
12 (x) = C(ω1, ω2, λ1, λ2, λ3, x) = lim

∆λ,∆ω→0

〈Ã1
1Ã

2
2(Ã

3
(1+2))

∗〉
∆λ3∆ω2

. (4.12)
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Note that the spectrum E12
1 and bi-spectrum C123

12 are two- and three dimensional in

lateral wavenumber space respectively. The dimensional extension by one (with respect

to the laterally homogeneous case) reflects the dimensional extension of the wave co-

variance function (of which the spectrum is the Fourier transform) in a heterogeneous

wave field. After all, the covariance function for an inhomogeneous (or non-stationary,

if the heterogeneity is in time) process depends on the separation and location, whereas

for homogeneous/stationary processes it is merely a function of the separation (or

lag). The dimensional extension of the (bi-)spectrum accounts for the phase coupling

(or directional coherence) between couples of non-collinear wave components and the

topography, thus resolving the interference patterns of e.g. crossing wave trains in

topography-induced caustic regions. We return to this in §4.2 where we relate the he-

terogeneous description of the wave evolution and the associated dimensional extension

of the spectral density functions to the concepts of geometrical optics.

Through similar operations that lead to eq. (4.10) we obtain the evolution equation

for the bi-spectrum:

[
d

dx
− i
(
Λ12;3

12 + iµ123
12

)]
C123

12 =
1

2π

∫∫
dy dλ4

[
S1

1√
V 4

1

C423
12 exp [i (λ4 − λ1) y]

+
S2

2√
V 4

2

C143
12 exp [i (λ4 − λ2) y] +

S3∗
(1+2)√
V 4

(1+2)

C124
12 exp [−i (λ4 − λ2) y]




− 1

4π

∫∫
dy dλ4

[
D1

√
V 1

1

V 4
1

C423
12 exp [i (λ4 − λ1) y]

+D2

√
V 2

2

V 4
2

C143
12 exp [i (λ4 − λ2) y] +D(1+2)

√√√√V 3
(1+2)

V 4
(1+2)

C124
12 exp [−i (λ4 − λ2) y]




+ 2i

∫
dλ4

[
W (1+4)(−4)

(1+2)(−2)E24
2 E (1+4)3

(1+2) + W (2+4)(−4)
(1+2)(−1)E14

1 E (2+4)3
(1+2) −W (3−4)(4)

12 E14
1 E2(3−4)

2

]

(4.13)

where – following Holloway & Hendershott [1977]; Holloway [1979]; Herbers et al. [2003]

– the fourth cumulant contribution is tentatively written as a linear damping term

C(4) = −µ123
12 C

123
12 ; expressions and rationale for this heuristic damping term are given

in §4.4. Suffice it to remark here that this contribution provides a means of relaxation

toward Gaussian statistics in regions of strong nonlinearity, where the quasi-normal

closure (C(4) = 0) generally predicts statistics too far from Gaussian [e.g. Orszag, 1970].

The stochastic evolution equations (4.10) and (4.13) are the main result of this

section. They represent a set of coupled evolution equations for the spectrum E 12
1 and

bi-spectrum C123
12 . In the linear approximation, the stochastic model equations are closed

(i.e. no additional assumptions are required), so that the set (4.10) describes the linear

effects of shoaling, refraction and diffraction with the same accuracy as the underlying
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deterministic theory; we return to this in §4.2. To extend modeling capability to the

surf zone, dissipation due to depth-induced wave breaking is accounted for through a

parameterization of the associated macro effects (the details of which are presented

in §4.3). The moment hierarchy is closed by means of a modification of quasi-normal

closure hypothesis; a heuristic relaxation is proposed to support a return to Gaussian

statistics in strongly nonlinear regions (see §4.4 for discussion and details).

4.2 Lateral inhomogeneity and geometrical optics
In the deterministic model (eq. (4.7)), laterally heterogeneous topography is accounted

for through a scattering term that redistributes the (complex) amplitudes across the

angular components. The stochastic formalism accounts for the topography-induced

coupling through the evolution of the correlations between non-collinear wave compo-

nents, which resolves the lateral heterogeneity of the wave field. The spectral quantities

evolved in the stochastic model are not ‘local’ in the lateral sense and as such not readily

interpretable in terms of geometrical optics. However, these spectra can in fact be readily

brought into a geometrically interpretable form; this is discussed in §4.2.1. Although

the present stochastic formalism is not uncommon in other fields such as e.g. optics

[Papoulis, 1968; Bastiaans, 1979], it has – to the author’s knowledge – not been applied

before in the context of gravity wave propagation over topography. A numerical example

in §4.2.2 illustrates the embedded modeling capability of random, directionally spread

waves over topography, including a caustic region. The stochastic model predictions are

compared to Monte-Carlo simulations with the deterministic model.

4.2.1 A local spectrum: the Wigner distribution

The spectrum E12
1 and bi-spectrum C123

12 are two- and three-dimensional in the lateral

wavenumber space respectively, but they are not a function of the lateral coordinate.

However, a geometrically interpretable ‘local’ (in the lateral sense) spectrum takes the

form of a Wigner distribution [e.g. Wigner, 1932; Alber, 1978; Bastiaans, 1979; Mallat,

1998] and is related to E(ω1, λ1, λ2, x) through the Fourier transform relation

Ê(ω, λ, x, y) =

∫
E(ω, λ+ λ′/2, λ− λ′/2, x) exp [iλ′y] dλ′. (4.14)

The quantity Ê(ω, λ, x, y) dωdλ can then be given the usual interpretation of a contri-

bution to the variance at the location (x, y) for the ‘ray’ pertinent to component (ω, λ)

with vector wavenumber (
√
k2
ω − λ2, λ). However, as such it does not constitute the

contribution to the variance associated with the surface elevation; after all, Ê(ω, λ, x, y)

carries dimensions [(m3/s)/(rad2/(s m))] and is best regarded as a ‘flux-spectrum’. The

transformation to a flux-spectrum was pursued with the purpose of simplifying the

governing equations. Of course the back-transformation to a surface elevation variance

spectrum is readily obtained by substituting E 12
1 /
√
V 1

1 V
2
1 for E12

1 in (4.14). However,
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to elucidate the notion of the ‘local’ spectrum and its relation to the spectrum E 12
1

we consider the surface elevation, η(x, y, t), as a realization of a zero-mean, stationary

random process such that the corresponding correlation function reads

〈η(x, y + υ/2, t+ τ/2)η(x, y − υ/2, t− τ/2)〉

=

∫∫∫
dλ dλ′ dω

E(ω, λ+ λ′/2, λ− λ′/2, x)√
V
λ+λ′/2
ω V

λ−λ′/2
ω

exp [i (λυ + λ′y − ωτ)], (4.15)

where τ and υ denote the temporal and lateral separation. The variance at location

(x, y), denoted by 〈|η(x, y)|2〉, is obtained by setting τ = 0 and υ = 0 so that

〈|η(x, y)|2〉 =

∫∫
dλ dω



∫ E(ω, λ+ λ′/2, λ− λ′/2, x)√

V
λ+λ′/2
ω V

λ−λ′/2
ω

exp [iλ′y]dλ′




=

∫∫
S(ω, λ, x, y) dλdω (4.16)

and the quantity

S(ω, λ, x, y) =

∫ E(ω, λ+ λ′/2, λ− λ′/2, x)√
V
λ+λ′/2
ω V

λ−λ′/2
ω

exp [iλ′y]dλ′ (4.17)

is thus interpretable in the usual sense as the surface elevation variance density spectrum

of spectral component (ω, λ) passing through location (x, y). The spectrum S(ω, λ, x, y)

is a density function in angular frequency and lateral wavenumber space. A more com-

monly used representation of the directional wave spectrum is in frequency-directional

space, which is readily obtained through the appropriate Jacobian transformations; for

later use we note

S(f, θ, x, y) = 2πkω cos θ S(ω, λ, x, y). (4.18)

This reasoning can be extended to the bi-spectral density function. Consider the triple

correlation

〈η(x, y + υ1, t+ τ1)η(x, y + υ2, t+ τ2)η(x, y − υ1 − υ2, t− τ1 − τ2)〉 =

∫
· · ·
∫

dλ1 dλ2 dλ
′ dω1 dω2


C(ω1, ω2, λ1 + λ′/3, λ2 + λ′/3, λ1 + λ2 − λ′/3, x)√

V
λ1+λ′/3
ω1 V

λ2+λ′/3
ω2 V

λ1+λ2−λ′/3
ω1+ω2

· exp [i (λ1 (2υ1 + υ2) + λ2 (2υ2 + υ1) + λ′y − ω1 (2τ1 + τ2) − ω2 (2τ2 + τ1))]

]
. (4.19)

For zero separation (τ1 = τ2 = υ1 = υ2 = 0), the expected value of the surface elevation

cubed 〈η(x, y)3〉 reads
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〈η(x, y)3〉 =

∫∫∫∫
B(ω1, ω2, λ1, λ2, y, x) dλ1 dλ2 dω1 dω2 (4.20)

with

B(ω1, ω2, λ1, λ2, y, x) =

∫
dλ′

C(ω1, ω2, λ1 + λ′/3, λ2 + λ′/3, λ1 + λ2 − λ′/3, x)√
V
λ1+λ′/3
ω1 V

λ2+λ′/3
ω2 V

λ1+λ2−λ′/3
ω1+ω2

exp [i (λ′y)].

(4.21)

4.2.2 Linear waves over topography: a numerical example

To illustrate the representation of lateral heterogeneity in the stochastic formalism

derived in §4.1, and the associated spectral transformations over topography, we consider

simulations with a numerical implementation of the stochastic model which – in the

linear approximation – is written as

[
d

dx
− iΛ1;2

1

]
E12

1

=
1

2π

∫∫
dy dλ3

[
S1

1√
V 3

1

E32
1 exp [i (λ3 − λ1) y] +

(
S2

1√
V 3

1

E31
1

)∗

exp [−i (λ3 − λ2) y]

]
.

(4.22)

Here the RHS accounts for the lateral depth variability (see eq. 4.9). For our present

purpose we omit the effects of depth-induced breaking.

We consider wave propagation over a topography as described in §3.4.2, consisting

of a shoal placed on an otherwise horizontal bottom (see Figure 3.23). As in §3.4.2, the

model domain (basin) measures 18 m by 18 m; x and y coordinates are defined as in

Figure 3.23, with x positive along the mean incident wave direction and y representing

the lateral coordinate. The depth at the center of the shoal measures 0.11 m; away

from the shoal the water depth is 0.50 m. Shoal center coordinates are xc = 5 m and

yc = 9.14 m respectively. The spatial coordinates are discretized with ∆x = 0.2 m

and ∆y = 0.2857 m. The frequency array consists of 20 (positive) frequencies with

∆ω = 0.2π rad/s; the discrete lateral wavenumber increment is ∆λ = 2π/Ly and

the lateral wavenumber array is ∆λ [−M . . .M ], with M = Ly/(2∆y) = 32; in the

computations evanescent modes (λ1 > k1) are omitted.

We parameterize the incident, directionally spread random wave field as

S(ω, θ) = S(ω)D(θ) (4.23)

with a (double-sided) Gaussian variance density spectrum S(ω) given for positive fre-

quencies as

S(ω) =
H2
m0

32σ
√

2π
exp

[
−(ω − ωp)

2

2σ2

]
. (4.24)

Here Hm0 denotes the zeroth-moment significant wave height of the incident waves

(Hm0 = 4
√
m0), and ωp is the peak (angular) frequency. The directional spreading is



86 A stochastic model for nonlinear waves over topography

parameterized as a wrapped normal distribution [e.g. Vincent & Briggs, 1989; Mardia

& Jupp, 2000]

D(θ) =
1

2π
+

1

π

N∑

n=1

exp

[
−1

2
(nσD)2

]
cosn (θ − θm). (4.25)

Here θ represents the wave angle, θm is the mean wave angle, N is the number of

harmonics in the series (set at 100 in the present example), and σD is the directional

spreading parameter in radians. Waves are incident with θm = 0 and frequency spectra

defined by Hm0 = 1 cm, ωp = 1.2π rad/s, and σ = 1/2
√

2 rad/s. We consider two

directional distributions: a relatively narrow and wide aperture, parameterized with

σD = 0.05 rad and σD = 0.25 rad respectively†.

In Figure 4.1 we show the variance density spectra S at discrete locations along a

transect across the center of the shoal (y = 9.14 m). These local spectra are obtained

though the relation (4.17). The spectral evolution along this transect shows a directional

broadening over the shoal, i.e. the scattering on the topography results in energy at large

angles.

To validate the stochastic model, we compare wave height estimates obtained from

Monte-Carlo simulations with the deterministic model to those computed with the

stochastic model; the wave heights from the respective models are derived through

H2
m0(x, y) =





32
∑

p1
〈
∣∣∣∣
∑

q1

eA1
1
(x)√
V 1
1

exp [iλ1y]

∣∣∣∣
2

〉, Deterministic model

32
∑

p1,q1
S1

1 (x, y)∆ω∆λ, Stochastic model

(4.26)

where the 〈 〉 indicate averaging over the ensemble of realizations. Summations are

over the longshore wavenumber array (q1 ∈ [−M . . .M ]) and the positive frequencies

(p1 ∈ [1 . . . 20]).

The wave height patterns (Figure 4.2) predicted by the stochastic model for the

narrow- and wide-aperture incident wave field are quite distinct. The narrow-aperture

case features rather strong lateral wave height variations (associated with laterally

standing waves) in the refractive focus behind the shoal, which are sustained over

long distances. In contrast, for the wide-aperture incident wave field, the wave heights

are primarily affected in the direct vicinity of the shoal whereas in the far-field they

are fairly homogeneous. The wave height predicted by the Monte-Carlo simulations

(64 realizations) with the deterministic model are nearly identical to the stochastic

model (Figure 4.2 and Figure 4.3), particularly so for the narrow directional spreading.

Generally, for a given aperture, the level of agreement between stochastic and Monte-

Carlo predicted wave height variations increases with increasing number of realizations,

consistent with the fact that the stochastic model is closed in the linear sense. In the limit

†Note that σD carries dimensions radians, not degrees as e.g. in Vincent & Briggs [1989] and Chawla

et al. [1998].
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Figure 4.1: Wave spectrum evolution over submerged mound. Incident wave field Hm0 =

1.0 cm and ωp = 1.2π rad/s. Spectra shown at discrete x-locations (see sub-captions) along

y = yc = 9.14 m. Left panel: narrow directional distribution (σD = 0.05 rad). Right panel:

wide directional distribution (σD = 0.25 rad).

of unidirectional wave incidence, the lateral wave height variability is entirely depth-

controlled and, as a consequence, the normalized wave height variability predicted by

the stochastic model is exactly equivalent to that predicted by a single realization of its

deterministic counterpart [Papoulis, 1968].

The present stochastic formalism inherits the diffraction capability embedded in the

deterministic model (Chapter 3), and fully accounts for phase-coupling in laterally cros-

sing wave trains and strong lateral diffractive effects in the half-plane without aperture

limitation [e.g. Stamnes, 1986; Dalrymple & Kirby, 1988]. This is in marked contrast to

conventional spectral models [Komen et al., 1994; Booij et al., 1999] where directional

components are treated as statistically independent. Although phase-decoupled diffrac-

tion approximations have been implemented for such models [Holthuijsen et al., 2003],

the premise of statistical independence of directional components eradicates phase-

coupling information between non-collinear components from the model and therewith

its ability to accurately resolve wave height variations in heterogenous wave fields, such

as those associated with the crossing wave trains in a refractive focus [see O’Reilly

& Guza, 1991, who present a detailed comparison between refraction-diffraction and

refraction approximation in focal regions]. The present formalism, with its inherent
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(a) Stochastic model prediction
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(b) Monte-Carlo simulation (64 realizations)
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Figure 4.2: Comparison of normalized wave heights (H/H0, H is zeroth-moment wave height)

predicted by stochastic model (top panels) and Monte-Carlo simulation with deterministic

model (bottom panels). Contours drawn at ∆H/H0 = 0.1. Left panels: narrow-aperture

incident wave field (σD = 0.05 rad). Right panels: wide-aperture incident wave field (σD =

0.25 rad).

ability to account for strong diffraction and lateral heterogeneity, appears also well

suited to model spectral evolution around breakwater tips and harbor entrances; an

application hereof is presented and discussed in §5.5.
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Figure 4.3: Comparison of normalized wave heights (H/H0, H is zeroth-moment wave height)

along transects indicated in sub-captions for stochastic model (circles), and Monte-Carlo

simulation (thick solid line). Left panels: narrow-aperture incident wave field (σD = 0.05 rad).

Right panels: wide-aperture incident wave field (σD = 0.25 rad).

4.3 Parameterization depth-induced wave breaking
Of all the processes affecting waves propagating in the nearshore across a surf zone, the

instability process, generally referred to as the ‘breaking’ of the wave, is cumulatively

by far the most important, and at the same time probably least understood. The wide

variety of appearances of breaking waves, from the gentle ‘spilling’ breaker on mildly

sloping beaches to the violent ‘shore-break’ on steep slopes, and the sheer complexity

involved in a detailed description of the transition from smooth-surfaced macro-scale

motion to one that is increasingly chaotic and involves micro-scale turbulent motions

[see e.g. Peregrine, 1983a], hampers a first-principle-based modeling on any operational

scale. Instead, a parametrization of the processes, accounting for the macro-scale effects

of the instability, is pursued.

Assuming all the waves above a certain height to be broken, Battjes & Janssen [1978]

describe surf zone wave height statistics by a clipped Rayleigh-type distribution, from

which the fraction of breaking waves is derived. Utilizing the analogy with dissipation

in turbulent bores [e.g. Lamb, 1932, article 187], these authors estimate the bulk rate of

energy dissipation per unit area for a random wave field, which is subsequently included

as a sink term in the energy balance equation for shoaling waves. By considering the

evolution of the wave field’s energy, Battjes & Janssen [1978] account for the history of

the shoaling process, thus relaxing an overly strong dependence on local bed variations as
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inherently present in previous approaches [that consider the wave height as algebraically

dependent on the local depth alone, see e.g. Battjes, 1972; Goda, 1975], and extending

application to topography involving non-monotonically decreasing depth.

The model by Thornton & Guza [1983] follows much the same reasoning but instead

of the clipped Rayleigh distribution, an empirically motivated distribution function for

the heights of the broken waves is proposed. Their model is algebraically simpler, since

it does not involve a transcendental equation for the portion of broken waves as in

Battjes & Janssen [1978], but the distribution function is induced from observations

and – in contrast to the Rayleigh distribution – lacks a theoretical basis. Baldock et al.

[1998] (BHBW hereafter), motivated by empirical evidence that wave height statistics

– even in the surf zone – are generally well described by a Rayleigh distribution [e.g.

Thornton & Guza, 1983], propose a Rayleigh distribution for the wave heights in the

surf zone, regardless whether they are smaller or larger than some breaker height,

above which height we consider the wave broken. The resulting model is thus based

on a well-established and theoretically founded distribution function, is supported by

empirical evidence, and has the convenience of providing an explicit expression for the

bulk dissipation rate. Here we derive a dissipation function following BHBW’s approach,

while correcting for an inconsistency in their derivation.

4.3.1 An alternative parameterization

Following the reasoning of BHBW we assume the probability of wave heights, regard-

less whether the waves are broken or unbroken, described by a single Rayleigh-type

distribution, expressed as

p(H) =
2H

H2
rms

exp

[
−
(

H

Hrms

)2
]
, (4.27)

whereH andHrms represent the wave height and its root-mean-square value respectively.

After Battjes & Janssen [1978], based on a bore analogy, the power dissipated per unit

area in the breaking process for a wave of height H is written as

℘ =
B

8π
ωρg

H3

h
, (4.28)

where ω is the angular frequency of the wave, ρ represents the fluid density, and B is

a (tunable) parameter that controls the intensity of the dissipation. For application to

random waves, the ω is replaced by a representative measure such as a mean or peak

frequency [Battjes & Janssen, 1978; Battjes & Stive, 1985], denoted in the following by

ω. The expected value of ℘ is obtained from 〈℘〉 =
∫∞

Hb
℘p dH, where Hb represents the

wave height above which the waves are assumed to break. However, prior to taking the

expected value of ℘, BHBW substitute H2 for H3/h, for which they seek justification

in Battjes & Janssen [1978]. The result is an explicit expression for 〈℘〉 reading

〈℘〉(BHBW) =
B

8π
ωρg

∫ ∞

Hb

H2p(H) dH =
B

8π
ωρgH2

rms

(
1 +H2

r

)
exp

[
−H2

r

]
, (4.29)
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where Hr = Hb/Hrms. However, substituting H2 for H3/h is inconsistent and no justifi-

cation is given in Battjes & Janssen [1978]. Although these authors do assert H 3
b /h ∼ H2

b

(b in the subscript designating the height above which waves are assumed broken) as

‘an order-of-magnitude relationship’, which – in the deterministic context of determining

the dissipation rate in a shallow-water wave of a given height – is entirely reasonable,

a similar reasoning does not apply if H is a stochastic variable, which is the case in

Baldock et al. [1998]. In the latter case this substitution implies that 〈H 3/h〉 equals

〈H2〉, which is generally incorrect. Although algebraically convenient, this simplification

is wholly unnecessary, and for our present purpose we thus derive the average power

dissipated, 〈℘〉, from

〈℘〉(CRAD) =
B

8π

ωρg

h

∫ ∞

Hb

H3p(H) dH

=
B

8π

ωρg

h
H3

rms

[(
H3
r +

3

2
Hr

)
exp

[
−H2

r

]
+

3

4

√
π (1 − erf (Hr))

]
. (4.30)

The erf represents the error function, a contribution due to the odd power of the wave

height in the dissipation function; for even powers no such contribution is present [as in

BHBW]. In what follows, we refer to the present formulation as the Consistent Rayleigh

Dissipation (CRAD) model. Collectively the CRAD and BHBW formulation constitute

what we will refer to as Rayleigh-type dissipation models, reflecting the underlying

premise of a Rayleigh distribution to describe the wave heights for all waves in the

surf zone, irrespective of the fact that they are breaking or not. Note that for these

formulations, the fraction of breaking waves, Q, is simply given as

Q = exp

[
−
(
Hb

Hrms

)2
]
. (4.31)

The average dissipation is then determined, apart from a value for Hb and B. Unless

explicitly stated otherwise we set B = 1 and obtain the ratio γ = Hb/h from [Battjes &

Stive, 1985]

γ =
Hb

h
= 0.5 + 0.4 tanh (33S0). (4.32)

Here S0 denotes the offshore wave steepness, defined as Hd
rms/L

d, the superscript d

indicating that the deep-water value is implied.

For saturated surf zone conditions (Hrms = Hb), the present formulation predicts a

dissipation rate of around 3γ/2 times the BHBW-predicted dissipation rate; for common

γ values (say γ ∼ 0.7) predictions of dissipation rates are thus of comparable magnitude.

However, on steep beaches – where the inner surf zone is generally over-saturated

(Hrms > Hb) – there are differences. The CRAD model formulation consistently includes

the dissipation due to the breaking of waves that are considerably higher than the

saturation height, resulting in enhanced dissipation under such conditions; this effect is

only partially accounted for in BHBW. Generally, over-saturated surf zone conditions
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occur in the very nearshore (or on steep slopes) and it is illustrative to consider the

shallow-water asymptote of the dissipation formulation. In order to relate this to the

wave height evolution in the inner surf zone we consider the one-dimensional energy

balance equation with the parameterization of dissipation due to depth-induced wave

breaking included as a sink term

d

dx

(
1

8
CgρgH

2
rms

)
= −〈℘〉. (4.33)

Here Cg is the group speed corresponding to ω , in the linear approximation. For breaking

waves on a plane slope in shallow water (kh¿ 1) and over-saturated surf zone conditions

(Hr ¿ 1), the Hrms evolution can be expressed analytically as

Hrms = Hrms,0

(
h0

h

)1/4

exp

[
− ωB

π
√
ghx

(√
h−

√
h0

)]
(BHBW) (4.34)

for the BHBW dissipation formulation and

Hrms = h−1/4

[
(h

1/4
0 Hrms,0)

−1 − ωB

2
√
gπhx

(
h(−3/4) − h

(−3/4)
0

)]−1

(CRAD) (4.35)

for the CRAD formulation proposed in the present work. Here the 0 as a subscript

indicates the value at the offshore boundary and, in order for (4.34) & (4.35) to represent

proper asymptotes of the wave evolution predicted by the more general eq. (4.33), this

boundary needs to be chosen such that the premises for the analytical description (viz.

kh ¿ 1 and Hr ¿ 1) are warranted. From (4.34) & (4.35) we can observe that for an

over-saturated inner surf zone the CRAD formulation (viz. (4.30)) predicts wave heights

varying according to the proportionality Hrms ∼ h1/2, thus diminishing wave height

as h → 0. In marked contrast, the shallow-water asymptote of the BHBW shallow-

water expression (viz. (4.34)) implies Hrms ∼ h−1/4, which is Green’s shoaling law.

This indicates that for the latter model, dissipation is insufficient to counter shoaling

effects so that in the limit of shallow water, shoaling governs the wave height variations

(Green’s law). Clearly, this implies – as noted by Battjes & Janssen [1978] – a shoreline

singularity reminiscent of the classical breakdown of conservative WKB theory. The

normalized wave height and Q evolution over a 1 : 10 slope predicted by eq. (4.33) is

shown in Figure 4.4, along with the shallow-water asymptotes (4.34) & (4.35). It can be

seen that in shallow water the predictions diverge, with the BHBW model predicting a

wave height increasing with decreasing depth. In fact the shallow-water limit for over-

saturated surf zone conditions for this model predicts increasing wave heights wherever

|dh/dx|
ω

√
g

h
> 2

B

π
, (4.36)

where the LHS is recognized as a normalized bed slope.
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Figure 4.4: Comparison of predicted wave height (top panel) and fraction of breaking waves

Q (bottom panel) by CRAD model (thick solid line) and BHBW formulation (thick dashed

line) for waves with Hd
rms = 1.0 m, ω = 0.4π rad/s (γ = 0.78 from (4.32)) incident on a 1 : 10

slope. Dash-dot and dotted line in top panel represent Hr values for CRAD and BHBW model

respectively (right axis). The circles (o) and asterices (*) denote the wave height predictions

according to the asymptotes (4.34) & (4.35) respectively, initiated at Hr = 0.75.

Clearly, the argument can be made that this shallow-water limit is well outside the

validity of the physical principles implied in the derivation of the dissipation model

(among others: uni-directional, linear WKB-type wave propagation) in the first place,

and therefore the unphysical behavior in that region certainly need not be disqualifying.

However, no first-principle modeling of the surf zone physics is pursued. Instead we seek

a parameterization of the nearshore wave height statistics, that predicts wave heights in

agreement with what is invariably observed in reality. The occurrence of a nearshore

singularity is disqualifying for such a parameterization and needs amelioration [see
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Battjes & Janssen, 1978]. The fact that the present CRAD formulation is internally

consistent and predicts a vanishing wave height in the very nearshore as h → 0, makes

it a suitable candidate for parameterization of the dissipation due to depth-induced

breaking.

Although the models are quite disparate in the nearshore for steep beaches, for typical

field conditions of waves incident on gently sloping sandy beaches, the differences are

less conspicuous. In general, for such conditions, dissipation rates implied by the present

Rayleigh formulations are similar to that predicted by the Battjes-Janssen model [not

shown here, see Baldock et al., 1998]. For instance, for waves impinging on a plane 1 : 20

slope (left panels Figure 4.5) wave height and Q variations are very similar throughout

the surf zone except for the very nearshore, where the predictions diverge. For the 1 : 100

slope, considered in the right panels of that figure, predictions are similar for the BHBW

and CRAD model, throughout the surf zone and including the very nearshore.
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Figure 4.5: Comparison of predictions of wave height (top panels) and fraction of breaking

waves Q (bottom panels) by CRAD model (thick solid line) and BHBW formulation (thick

dashed line) for waves with Hd
rms = 1.0 m, ω = 0.2π rad/s (γ ≈ 0.5 from (4.32)) incident on

a 1 : 20 (left panels) and 1 : 100 (right panels) slope. Dash-dot and dotted line in top panels

represent Hr values for CRAD and BHBW model respectively (right axis).
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4.3.2 A quasi-homogeneous approximation

Although the analogy with dissipation in turbulent bores, combined with a reasonable

assertion with respect to statistics of wave heights in the surf zone, provides a measure

of bulk dissipation rate for random waves, it provides no information on how this dissi-

pation is distributed across the spectrum; nor is it clear how such a spectral distribution

can be deduced from physical principles. As a consequence the spectral distribution of

dissipation due to depth-induced wave breaking is induced from observations.

Based on laboratory observations and simulations with a KdV-type model, Mase

& Kirby [1992] suggested that the dissipation rate is proportional to the local energy

density weighted by the square of the frequencies. In contrast, induced from observations

by Battjes & Beji [1992] who compare spectral evolution for breaking and non-breaking

waves, Eldeberky & Battjes [1996] propose a spectral distribution of the bulk dissipation

proportional to the local spectral density. The finding that the dissipation in random

waves exhibits a preference toward higher frequencies [Mase & Kirby, 1992] is further

consolidated by empirical evidence reported by Chen et al. [1997]. These authors find

that, although the frequency-weighting of the dissipation distribution does not greatly

affect the spectral shape – a finding consistent with the inference by Eldeberky & Battjes

[1996] – it does strongly affect the intricate balance between nonlinearity and dissipation

in the shallow nearshore [see also Elgar et al., 1997]. As a consequence, the non-uniform

weighting of the dissipation across the spectrum is reflected in the higher-order bulk

statistics such as skewness and asymmetry, which are generally in much better agreement

with observations when frequency-squared weighting of the dissipation is applied [Chen

et al., 1997]. These findings are further substantiated by Herbers et al. [2000] who analyze

observations along a closely spaced cross-shore array, relating the observed cross-shore

energy flux gradient to the spectral redistribution due to nonlinear interactions (based

on a Boussinesq model), which demonstrates the concomitant action of wave breaking

and (conservative) nonlinear processes in the surf zone.

The remaining task is to relate the dissipation term D1(x, y) in (4.10) to the bulk

average rate of energy dissipation 〈℘〉. For a two-dimensional, heterogeneous wave field

this is not trivial. Given the overall crudeness of the present representation of the

dissipation processes, and the fact that directionality of the wave field is generally very

limited in the surf zone [see e.g. Elgar et al., 1993], we propose what is best referred

to as a ‘quasi-homogeneous’ approximation. It consists of treating the ‘local’ spectra

Ê(ω1, λ1, x, y) (see §4.2) as mutually (laterally) independent, thus evolving them as

dÊ1
1

dx
= −D1(x, y)Ê1

1 +R.T. (4.37)

essentially considering the wave field ‘locally’ as if it was laterally homogeneous. The

R.T. symbolically denotes the remaining terms accounting for the quadratic nonli-

nearities (that are cumulatively conservative). We omit the interaction with the lateral

depth variability here; as such, relating the D1 to 〈℘〉 through (4.37) ignores the (two-

dimensional) divergence/convergence of the wave field. We stress that we solely make
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this approximation to relate D1(y) to 〈℘〉, whereas no such simplification is implied in

the remaining model equations. For laterally homogeneous wave conditions (4.37) is not

an approximation but is similar – in form – to the dissipation formulation in Herbers

et al. [2003] (although the underlying models differ).

The dissipation factor D1 is decomposed in a frequency weighted and a frequency-

independent part

D1(x, y) =

(∑

n

rn
m̃n

|ω1|n
)
D(x, y), (4.38)

where the rn are positive fractions, included to keep the frequency weighting fairly

general, provided that
∑

n rn = 1; the m̃n represent the spectral moments defined as

m̃n(x, y) =

∫∫
|ω1|nÊ1

1 (x, y) dλ1dω1. (4.39)

The cross-shore gradient of the bulk energy flux is obtained by integrating (4.37) over

all frequencies and alongshore wavenumbers, and multiplying the result by ρg which

yields

d

dx
ρgm̃0 = −ρgD = −〈℘〉. (4.40)

Thus from the expression for the averaged bulk dissipation 〈℘〉 (viz. (4.30)) we obtain

D =
2B

π

m1

h

√
2m0

[(
H3
r +

3

2
Hr

)
exp

[
−H2

r

]
+

3

4

√
π (1 − erf (Hr))

]
. (4.41)

Here we substituted ω = m1/m0 and Hrms =
√

8m0. The moments mn are given as

mn(x, y) =

∫∫
|ω1|nS1

1 (x, y) dλ1dω1, (4.42)

with S1
1 (x, y) the surface elevation variance density spectrum defined in §4.2. Upon

back-substituting into (4.10), the evolution of the spectral density is described by

[
d

dx
− iΛ1;2

1

]
E12

1 = − 1

4π

∫∫
dydλ3

(∑

n

rn
m̃n

|ω1|n
)
D

√
V 1

1

V 3
1

[√
V 2

1

V 1
1

E32
1 exp [i (λ3 − λ1) y]

+
(
E31

1

)∗
exp [−i (λ3 − λ2) y]

]
+R.T. (4.43)

with D given in (4.41). The dissipation terms in the bi-spectral evolution equation can

likewise be written as
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[
d

dx
− i
(
Λ12;3

12 + iµ123
12

)]
C123

12

= − 1

4π

∫∫
dydλ4D

[√
V 1

1

V 4
1

(∑

n

rn
m̃n

|ω1|n
)
C423

12 exp [i (λ4 − λ1) y]

+

√
V 2

2

V 4
2

(∑

n

rn
m̃n

|ω2|n
)
C143

12 exp [i (λ4 − λ2) y]

+

√√√√V 3
(1+2)

V 4
(1+2)

(∑

n

rn
m̃n

|ω(1+2)|n
)
C124

12 exp [−i (λ4 − λ3) y]


+R.T. (4.44)

4.4 Cumulant-discard parameterization
For surface gravity waves in shallow water, the lack of frequency dispersion and the non-

isolated occurrence of near-resonances, precludes a natural asymptotic stochastic closure.

The stochastic description thus requires a suitable closure approximation, reminiscent

of the closure problem in turbulence [Orszag, 1970; Lesieur, 1997; Salmon, 1998].

It is evidently impossible to model wave propagation with the full infinity of moment

(or cumulant) equations, and at some order the cumulants need to be discarded or

approximated in terms of the lower-order results. A common closure is the so-called

quasi-normal (QN)† closure which essentially discards the fourth and higher cumulants.

The wording quasi-normal indicates that the closure implies an inconsistent use of

the assumption of normality (Gaussianity). After all, when we strictly adhere to the

Gaussian assumption, the triple moment (or third cumulant) must also vanish, rendering

the set closed but eradicating any form of nonlinear re-distribution of the energy in the

system.

The neglect of the fourth and higher cumulants generally results in wave field statistics

that are, somewhat counterintuitively, too far from Gaussian [Orszag, 1970], implying

nonlinear couplings that are unrealistically strong. This results in overshoot behavior

in regions of strong nonlinearity, in turn causing a rapid deterioration of the predictive

capability of the model. To ameliorate the unsatisfactory performance of the QN closure

in such regions we propose a relaxation term (§4.4.3) for the bi-spectral evolution equa-

tion, allowing a return to Gaussian statistics when the wave field encounters regions of

enhanced nonlinearity. From the outset we emphasize that, although the general form of

this relaxation is inspired by considerations of the relevant physics, the parameterization

of the de-correlation effect is based on heuristic arguments. The relaxation allows the

nonlinear couplings to develop locally, while attenuating the system’s memory over long

distances and in regions of strong nonlinearity, with the aim to prevent the breakdown

of the QN approximation in shallow water (the surf zone). We first discuss the nature

of the quasi-normal approximation, its idiosyncrasies and limitations, and outline some

†Also referred to as ‘quasi-Gaussian’ or ‘cumulant-discard’ closure for obvious reasons.
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of the prevalent approaches in the literature to provide context and rationale for our

modeling choices.

4.4.1 Quasi-normal closure and relaxation

To substantiate the discussion we will consider the one-dimensional ‘prototype’ set

dE1

dx
= −2

∑

p2,p3

W23={C23}δω23;1, (4.45a)

dC12

dx
= iΛ12C12 + 2iQ12 + C

(4)
12 , (4.45b)

where the E1 and the C12 are the discrete spectrum and bi-spectrum defined as

E1 = 〈|Ã1|2〉, C12 = 〈Ã1Ã2(Ã(1+2))
∗〉, (4.46)

and Q12 = E(1+2)

(
W(1+2)(−2)E2 + W(1+2)(−1)E1

)
−W12E1E2; the C

(4)
12 denotes the fourth

cumulant contribution. For ease of discussion we restrict ourselves to unidirectional wave

propagation and momentarily discard effects of dissipation; we consider discrete, rather

than continuous, spectral variables to facilitate comparison to (discrete) expressions from

the literature. The one-dimensional, discrete considerations with respect to the closure

approximation are believed, mutatis mutandis, to apply to the more general description

of the evolution of continuous spectral variables over two-dimensional topography.

We refer to (4.45) as a ‘prototype’ set since we will use it as a basis for discussing

the closure approximations without giving too much thought about the details of the

coefficients, which merely reflect the nature of the underlying deterministic model and

are of little concern here. In fact, where we refer to approaches presented in the literature,

we refer to the form of the solution, rather than the details of coefficients as they appear

in the governing equations themselves, which may differ on account of the deterministic

framework.

Formally, the ‘closure’ implies simply the act of replacing the (unknown) C
(4)
12 , by a

known value or variable, thus ‘closing’ the set. Closure by means of setting C
(4)
12 = 0,

generally referred to as the quasi-normal (QN) approximation, leaves the set (4.45) in

the form of models by e.g. Herbers & Burton [1997]; Kofoed-Hanssen & Rasmussen

[1998] and Eldeberky & Madsen [1999]. To illustrate the characteristics of this closure

the spectral evolution implied in (4.45) with C
(4)
12 = 0 is written as

dE1

dx
= −4

∑

p2,p3

W23<{
∫ x

0

Q23(x
′) exp

[∫ x

x′
iΛ23 dx

′′

]
dx′}. (4.47)

The integral on the RHS of (4.47) can be viewed upon as a ‘memory’ integral through

which past states of the spectrum affect its evolution. In the off-resonant case (Λ ∼
O(1)), past states are unimportant due to the scrambling effect of the rapidly varying

exponential function, inducing rapid loss of memory. However, if the system approaches
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Figure 4.6: Sketch of slingshot effect. Solid line initial spectrum; dashed line, resulting

spectrum with negative ‘energies’ due to exaggeration of nonlinear couplings. Left panel:

anticipated spectral evolution on a beach. Right panel: anticipated spectral evolution of waves

on the down-slope of a submerged obstacle.

resonance (Λ → 0) the system’s memory increases and initial tendencies tend to persist.

The exaggeration of this persistence is an idiosyncrasy of the quasi-normal closure [see

e.g. Orszag, 1970] and causes what is sometimes referred to as the ‘slingshot effect’

[Salmon, 1998]. Consider for instance a fairly narrow-band wave field incident onto a

sloping beach. As the water depth decreases, nonlinear interactions are enhanced and

at some point, for small Λ, the primary peak will start feeding energy to harmonic

frequencies causing the main peak to decrease. The unrealistic persistence of this initial

tendency can cause the main peak to plunge through zero, resulting in the occurrence of

negative ‘energy’ (see left panel Figure 4.6). When traversing a submerged shoal similar

effects can cause the spectrum at harmonic frequencies to plunge through zero on the

down-slope where energy is fed back into the primary peak (right panel Figure 4.6).

Although the occurrence of negative ‘energies’ violates the so-called realizability of the

model and is clearly unphysical (E1 = 〈|Ã1|2〉 is non-negative by definition), it need not

disqualify the approach as a whole. After all, the QN model is an approximation. Would

such negative energies exclusively occur in spectral regions with low energy levels, far

away from the spectral regions of primary interest, the closure may have been tenable.

However, this is not the case [e.g. Orszag, 1970]. In regions of strong nonlinearity the

shortcomings of the QN closure generally result in a complete breakdown of the modeling

capability through the exaggeration of nonlinear couplings (this will be substantiated

in §4.4.3 and Chapter 5).

In turbulence literature the poor behavior of QN closure, in particular for high

Reynolds numbers where viscous damping is weak, has led to relaxation modifications

– sometimes referred to as eddy-relaxation [Orszag, 1970] – that attenuate initial ten-

dencies. Such relaxation, or damping terms, can be physically motivated on the grounds

that by discarding the higher-order cumulants we are isolating the triple correlations
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from their environment. The interaction with the background (eddies in turbulence)

is represented, in the (un-closed) hierarchy, by the (omitted) higher-order cumulants,

resulting in a loss of coherence for the triple moments and a relaxation toward a Gaussian

state [Orszag, 1970]. The damping term thus represents a parameterization of this

scrambling effect, which checks the triple moments.

Applying a similar reasoning to shallow-water waves, where the triple moments reside

on a background of random, nonlinear waves, we tentatively write C
(4)
12 = −µ12C12, with

µ12 positive and real, thus introducing a linear damping term to the RHS of the bi-

spectral evolution equation (4.45b). For this closure the spectral evolution reads

dE1

dx
= −4

∑

p2,p3

W23<{
∫ x

0

Q23(x
′) exp

[∫ x

x′
(iΛ23 − µ23) dx

′′

]
dx′}. (4.48)

We anticipate that µ23 is very small compared to Λ23 in off-resonant regimes (Λ23 ∼
0(1)), while increasing if the interaction approaches resonance (Λ23 → 0). Thus if

resonance is approached (Λ23 → 0), the real and positive µ23 attenuates the effect of past

states on the local evolution, thus suppressing the slingshot effect illustrated in Figure

4.6. In the modified closure hypothesis by Herbers et al. [2003] µ23 is governed by the

intensity of dissipation due to depth-induced wave breaking. The use of the attendant

dissipation as an (indirect) measure for the strength of nonlinear couplings appears quite

suitable for fairly monotonic, natural sandy beaches where strong nonlinearity usually

coincides with intense dissipation (surf zone); this is substantiated in Herbers et al.

[2003]. However, for waves propagating in relatively shallow water over a (near–)uniform

bottom, strong nonlinear coupling may occur in absence of dissipation; for such a case,

energy loss due to wave breaking is not a suitable measure of the length scale that

governs the stochastic relaxation. An alternative approach is considered in §4.4.3.

4.4.2 Markovian approximation

On the premise that µ23 is sufficiently large, so that only very recent states contribute

to the integral on the RHS of (4.48) and assuming, which is not without controversy –

alike in turbulence and shallow-water waves – that over such recent states the Q23 are

approximately invariant, the latter can be taken from under the integral as in

dE1

dx
= −4

∑

p2,p3

W23Q23(x)<{
∫ x

0

exp

[∫ x

x′
(iΛ23 − µ23) dx

′′

]
dx′} (4.49)

which, borrowing semantics from turbulence, is a so-called Markovian form, indicating

that the wave field’s future states depend only on the present, not its past states [Salmon,

1998].

In the surface gravity wave context, Markov-type forms were pursued by e.g. Elde-

berky [1996], Eldeberky et al. [1996] and Becq et al. [1998]. Their approaches follow

a suggestion by Holloway [1979] who, in the context of mixed RI-turbulence† closure

†RI stands for Resonant Interaction, see pp. 76 for definition.
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for Rossby waves, proposed a modification of the RI-closure to account for frequency

uncertainty, originating from the presence of the background wave field. In line with the

RI closure formalism, these shallow-water wave models consider the asymptotic response

of the modified closure by evaluating the integral over the exponential function in (4.49)

for large x yielding approximately

dE1

dx
≈ lim

x→∞
−4
∑

p2,p3

W23Q23(x)<{
∫ x

0

exp

[∫ x

x′
(iΛ23 − µ23) dx

′′

]
dx′}

≈ −4
∑

p2,p3

W23Q23(x)

[
µ23

Λ2
23 + µ2

23

]
, (4.50)

where µ23 is assumed a tuneable (and – unfortunately – dimensional) constant [Elde-

berky, 1996; Eldeberky et al., 1996; Becq et al., 1998]. From a numerical point of view, the

form eq. (4.50) is much preferred over e.g. (4.48) since it requires only a single integration

and, moreover, the grid size restrictions can be relaxed since the resonance mismatch

(Λ12) need not be resolved. However, the closure assumes separable length scales for the

evolution of the wave energy terms in Q23 and the wavenumber mismatch Λ23, which –

although a proper deep-water closure assumption [see e.g. Benney & Saffman, 1966] – is

not valid in shallow water. As the water depth decreases, and the interactions approach

resonance, substantial energy exchanges can occur over a single recurrence length, such

that the Q23 and Λ23 must necessarily vary on the same length scale, i.e. there appears

no justification for the asymptotic treatment of the integral [e.g. Bryant, 1973; Elgar

et al., 1990].

The Markovian form pursued by Agnon & Sheremet [1997] is distinct in that they do

not invoke the asymptotic limit as in (4.50). However, they also do not introduce any

form of relaxation (viz. µ12 = 0), and instead simply postulate the slow variation of Q12

relative to the phase variations on account of the resonance mismatch Λ12. On the basis

of that assumption the governing equation (4.48) can be reduced to

dE1

dx
= −4

∑

p2,p3

W23Q23(x)<{P12}, (4.51)

where

P12 =

∫ x

0

exp

[∫ x

x′
iΛ12 dx

′′

]
dx′. (4.52)

The integral representation of (4.52) can equivalently be written in differential form

dP12

dx
= iΛ12P12 + 1. (4.53)

The set (4.51) and (4.53) represents a one-way coupled set. Although (4.51) involves

P12, the eq. (4.53) can be solved independent from (4.51). This partial decoupling is on

account of the Markovanization. From a numerical point of view, the set (4.51) & (4.53)
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is very similar to the original set (4.45). The decoupling of eq. (4.53) can be advantageous

if e.g. the model is applied on a given domain multiple times with varying incident wave

fields, in which case P12 needs only be computed once. Although Agnon & Sheremet

[1997] suggest that this modeling approach also eases grid restrictions, this is unlikely.

After all, the evolution of P12 is typified by the same rapid oscillations due to resonance

mismatch as the bi-spectral equation and therefore similar grid size restrictions must be

anticipated.

Arguably, P12 can be initialized as P12 = i/Λ12 which, for a horizontal bottom, will

result in dxP12 = 0 and – on account of the P12 being imaginary – no spectral energy

transfers occur; consequently, grid restrictions are practically absent. However, this is a

special (and trivial) case. Moreover, this trivial case can likewise be modeled with the set

(4.45) (for C
(4)
12 = 0) by simply initializing C12 = −2Q12/Λ12. These initializations are

entirely equivalent and correspond to second-order Stokes theory, implying symmetrical,

skewed wave profiles of permanent shape and interactions in quadrature (no energy

transfers). In general however, these are merely initial conditions; over variable depth the

interactions will be forced away from exact quadrature, which induces – for interactions

far from resonance – rapid oscillations that reflect the mixed free/bound wave character

of the wave field, and restrict grid sizes (see also discussion in §5.5).
The assumed slow variation of Q23 with respect to the exponential function is reason-

able where the interactions are off-resonant but cannot be expected to hold in regions

where quadratic interactions are nearly secular, in which case the anticipated separation

of scales is not tenable; a limitation also noted by Agnon & Sheremet. This is unfortunate

for two reasons. Firstly, it excludes the dynamically most interesting region, where these

interactions result in leading-order cross-spectral energy transfers over relatively short

distances. Secondly, it contradicts the basic premise in the derivation of the underlying

deterministic model, namely the assumption that the quadratic interactions are in fact

close to resonance. This Markovian approach is further expanded upon in Agnon &

Sheremet [2000], but without altering the fundamental approach outlined here.

It is noteworthy that the Markovian approaches do not suffer from what we described

as the ‘slingshot’ effect. In fact, by definition, the Markovian closure completely rids

the system of its dependency on past states. Although it is clear that the QN closure

exaggerates the persistence of initial tendencies, it is questionable whether a complete

memory loss at each integration step, for which there appears no theoretical justification,

provides a better description of the ensuing physics.

4.4.3 A cumulant-relaxation parameterization

The propagation of surface gravity waves across a surf zone is generally typified by

strong dissipation on account of depth-induced wave breaking, and enhanced non-

linear effects (high Ursell numbers). Modeling capability in this region thus particularly

depends on both the robustness of the breaking parameterization, and the stochastic

closure. The most commonly applied closure approximation is the QN closure, which
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– unfortunately – has proven unreliable at Ursell numbers typically encountered close

to and inside the surf zone. Herbers et al. [2003] propose a modified closure with a

dissipation-controlled de-correlating mechanism to check the triple-correlations, and

enforce a return to Gaussian statistics. To account for nonlinear surf-zone dynamics and

provide statistical relaxation even when breaking is absent but nonlinearity is strong, we

propose a similar damping term that is controlled by the strength of both the nonlinear

coupling and the dissipation.

For ease of presentation we present the closure modification in the context of a one-

dimensional stochastic model. The same reasoning is then applied to the more general

laterally heterogeneous case, for which the results are given later.

The one-dimensional (in frequency space) reduction of the set (4.10) and (4.13) reads

dE1

dx
= −D1E1 − 2

∫
W(1−2)2={C(1−2)2} dω2, (4.54a)

dC12

dx
= −1

2

(
D1 +D2 +D(1+2)

)
C12 + i (Λ12 + iµ12) C12 + 2iQ12, (4.54b)

where Q12 = E(1+2)

(
W(1+2)(−2)E2 + W(1+2)(−1)E1

)
− W12E1E2. For the linear damping

term µ12 we propose

µ12 = β

[
|N (D)

1 + N (D)
2 + N (D)

(1+2)| + |N (NL)
1 + N (NL)

2 + N (NL)
(1+2)|

E1 + E2 + E(1+2)

]
(4.55)

with β a tuneable non-dimensional constant, anticipated real and positive. The

N (D)
i = −DiEi, N (NL)

i = −2

∫
W(i−j)j={C(i−j)j} dωj, (4.56)

and represent the net energy loss rates of component i resulting from dissipation and

nonlinear interactions respectively. The relaxation term in (4.55) is of a composite

nature. It measures the strength of the random-wave background through the non-

linearly driven net flux of energy across a triad, and losses through dissipation. With

respect to the former, if the background wave field is sufficiently weak then a triad

can in fact be considered in isolation from it (as implied by the QN closure), and the

|N (NL)
1 + N (NL)

2 + N (NL)
(1+2)| is very small. However, in shallow water, where the quadratic

interactions approach resonance and strong nonlinear transfers occur, generally |N (NL)
1 +

N (NL)
2 +N (NL)

(1+2)| increases, i.e. there is a net gain/loss of energy over the triad (although

cumulatively over the spectrum energy is still conserved). Through µ12 this then provides

a means to check triple correlations and enforce a return to Gaussianity.

Whereas the nonlinearly-driven part of the relaxation is motivated by the truncation

of the hierarchy of moment-equations, the dissipative contribution to the statistical

relaxation is based on the notion that the breaking-associated increase of chaos in the

fluid mass provides a background of turbulent eddies; the anticipated de-correlation
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effect of this chaotic background on the wave field is parameterized by weighting cu-

mulative energy losses over the triad. The latter contribution is thus external to the

inviscid theory on which the model is based and results from heuristic, macro-scale

considerations of the ensuing physical phenomena anticipated in breaking waves.

The relaxation is normalized by the total density content in the triad. This in effect

implies that, if β ∼ O(1), the length scale on which relaxation takes place is of the same

order as the length scale over which the triad exchanges energy with its environment,

either through the interaction with the random background field or through losses to

wave breaking.

The complex interaction with a random background – which is lacking in the model

due to the truncation of the hierarchy – is thus modeled through a heuristic damping

term. In what follows we refer to this closure approximation (β > 0) as the Relaxed

Quasi-Normal (RQN) closure.

In order to asses the effect of the proposed stochastic closure modification we com-

pare the QN and RQN model to Monte-Carlo (MC) simulations of the underlying

deterministic model over long evolution distances (O(100) peak wavelengths). In this

comparison the effects of dissipation are momentarily omitted since the anticipated

turbulent background in the surf zone is external to the inviscid deterministic theory

considered here. The MC simulation serves as a benchmark, with – for sufficiently large

ensembles – a ‘perfect’ closure implying convergence of the stochastic model-predicted

wave field statistics to the MC predictions.

Stochastic simulations are performed with the set (4.54), with β = 0 (QN) and

β = 1.5 (RQN) respectively. The Monte-Carlo simulations are performed with the one-

dimensional version of (4.7), viz.

d

dx
Ã1

1 = iκ1
1Ã

1
1 + i

∑

v2

W(1−2)2Ã(1−2)Ã2. (4.57)

The (double-sided) variance spectrum at x = 0 for positive frequencies is given by

S(ω, x = 0) =
H2

m0

32σ
√

2π
exp

[
−(ω − ωp)

2

2σ2

]
, (4.58)

with σ =
√

0.2 rad/s. The initial flux spectrum is E(ω) = Cg(ω)S(ω), which is discretized

into 64 equidistant, positive frequencies with ∆ω = 0.05π rad/s; the bi-spectrum is

initialized with C12 = 0. The Monte-Carlo ensemble consists of 128 realizations initialized

with phases selected from a uniform distribution and appropriate Rayleigh-distributed

amplitudes [see Tucker et al., 1984].

We consider three cases. Two cases involve waves over uniform depth with kph = 0.3

(kp being the peak wavenumber), with incident wave heights Hm0 = 0.25 cm and

Hm0 = 1.25 cm, and corresponding Stokes numbers (defined here as Hm0/(2k
2
ph

3))

0.15 and 0.75 respectively. Additionally we consider a case involving waves traversing a

submerged bar as sketched in Figure 4.7, with the depth varying from 0.7 m (kph = 0.84)
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in the deep part of the profile to 0.1 m (kph = 0.3) over the bar. With incident wave

height Hm0 = 0.63 cm, the Stokes number varies approximately from 0.006 at x = 0 to

0.54 over the bar.
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Figure 4.7: Submerged bar profile used in numerical bar-experiment. Depth away from bar

is 0.7 m, whereas over the top of the bar it measures 0.1 m. The up-slope starts at x = 70 m

ending at x = 140 m; the down-slope starts at x = 180 m and extends to x = 250 m.

The MC simulations of the uniform-depth cases, show rapid initial amplification of

harmonics (Figure 4.8). For the lower-Stokes-number case (left panel) harmonic peaks

are sustained over the distances considered here, whereas the stronger nonlinear case

(center panels) exhibits a rapid evolution toward a near-featureless spectral shape. For

the case involving the submerged bar, MC-predicted spectra show harmonic amplifica-

tion on the up-slope, strong nonlinear evolution over the bar, and a partial feedback of

energy to the primary peak on the down-slope and region behind the bar.

In general, the QN model tends to over-predict nonlinear coupling strength and

associated energy transfers, resulting in quite erratic spectral shapes, in particular in the

harmonic ranges, which become highly irregular and at considerable variance with the –

much smoother – MC predictions. This loss of agreement is aggravated with increasing

nonlinearity as seen from the higher-nonlinear, uniform-depth case, and the submerged

bar case (where the nonlinear couplings are enhanced in the shallow area). In contrast,

the RQN model predicts much smoother spectra, generally in much better agreement

with the MC predictions; however, nonlinear couplings appear underestimated (over-

damping) such that feedback of energy at higher harmonics to the primary peak is

hampered; this is particularly noted behind the submerged bar, where energy levels at

harmonic ranges are overestimated by the RQN model; also, with the added damping of

triad coupling in the RQN model, the drop-off of the high-frequency tail toward higher

frequencies is systematically less than found from the Monte-Carlo predictions.

In Figure 4.9 we compare – for each of the cases considered – the model-predicted

third-order bulk statistics of skewness and asymmetry defined as [see e.g. Elgar & Guza,

1985]

Skewness =
6
∫∫∞

0
dω1dω2 <{B(ω1, ω2)}(∫∞

−∞
S(ω) dω

)3/2
(4.59)

and
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(b) x = 140 m
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(c) x = 180 m
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Figure 4.8: Comparison of predictions of spectral evolution over long evolution distances

for Monte-Carlo simulation (circles), quasi-normal (QN) closure (dash-dot line, β = 0) and

relaxed quasi-normal (RQN) closure (solid line, β = 1.5). The spectra, S, are given at discrete

locations indicated in the sub-captions. Left panels: uniform depth, kph = 0.3 (Stokes number

0.15). Middle panels: uniform depth, kph = 0.3 (Stokes number 0.75). Right panels: submerged

bar bottom profile kph|deep = 0.84, kph|shallow = 0.36 (Stokes number 0.006 and 0.54 in deep

and shallow part respectively).

Asymmetry =
6
∫∫∞

0
dω1dω2={B(ω1, ω2)}(∫∞

−∞
S(ω) dω

)3/2
, (4.60)
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(a) Uniform depth, Stokes number = 0.15.
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(b) Uniform depth, Stokes number = 0.75.
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(c) Submerged bar, Stokes number 0.006 and 0.54 in deep and shallow part respectively.

Figure 4.9: Comparison of predictions of skewness and asymmetry over long evolution

distances for Monte-Carlo simulation (circles), quasi-normal (QN) closure (dash-dot line,

β = 0) and relaxed quasi-normal (RQN) closure (solid line, β = 1.5). Top and middle panels:

uniform depth. Bottom panels: submerged bar profile.

where B(ω1, ω2) = C(ω1, ω2)/
√
Cg,1Cg,2Cg,(1+2). These third-order bulk quantities mea-

sure ‘peakedness’ and ‘pitching forward/backward’ of the waves respectively.

The MC, QN and RQN models predict quite similar evolution of the third-order

bulk statistics in weakly nonlinear waves (Figure 4.9, top panels), although over long

distances, spatial variations in the QN predictions are somewhat stronger than the MC

and RQN model. In the presence of stronger nonlinearity, the damping in the RQN

model causes the model-predicted asymmetry to reduce to zero faster than predicted by

the MC model, and converge to a skewness that is lower than the MC-predicted values.

In the present simulations we have chosen β = 1.5 (on the basis of a few trial runs)

such that the development of the highly irregular spectral shapes as seen in the QN

model predictions are suppressed. Larger β-values result in a more rapid damping, a

smaller steady-state skewness and a further reduction of nonlinear feedback.
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The present closure modification thus allows the stochastic model to smoothly tra-

verse regions of strong nonlinearity without the unrealistic strong cross-spectral energy

transfers as present in the QN model. The damping in the RQN model appears ex-

aggerated in these idealized tests; although over short distances the evolution of the

third-order statistics is in fair agreement with the MC predictions, over long distances it

results in underestimation of skewness values. Further verification of the closure approxi-

mation over variable depth and for less idealized conditions, by means of comparison to

observational data, is considered in Chapter 5.

Although for the sake of clarity the discussion so far was limited to unidirectional

wave propagation, the same reasoning can be extended to the more general case of

directional wave propagation over cylindrical beaches and over laterally heterogeneous

topography. For the latter case, the proposed relaxation term reads

µ123
12 = β

[
|N 11,(D)

1 + N 22,(D)
2 + N 33,(D)

(1+2) | + |N 11,(NL)
1 + N 22,(NL)

2 + N 33,(NL)
(1+2) |

E11
1 + E22

2 + E33
(1+2)

]
, (4.61)

with

N jj,(D)
i = − 1

2π

∫∫
dy dλnDi

√
V j
i

V n
i

<{Enji exp [i (λn − λj) y] },

N jj,(NL)
i = −2

∫∫
dλn dωmW (j−n)n

(i−m)m={C
(j−n)nj
(i−m)m }, (4.62)

and β, as before, a (dimensionless) tuning constant.

The stochastic model equations derived in §4.1, augmented with the expressions for

dissipation due to depth-induced wave breaking presented in §4.3 and the cumulant-

relaxation closure modification discussed here, present a closed set of evolution equations

for the propagation of random wave fields over topography, including the surf zone. The

robustness and limitations of the present model are assessed through comparison to

observational data in Chapter 5.



5Random waves over topography:

empirical verification

In Chapter 4 a set of stochastic evolution equations is derived (§4.1), suitable for

prediction of the evolution of the statistics of random, directionally spread wave fields

propagating over topography. These equations account for quadratic (triadic) nonli-

nearities and, through parameterization of the effects of depth-induced wave breaking

(§4.3) and a heuristic relaxation of the quasi-normal closure (§4.4), are made suitable

for shallow, dissipative regions, such as the surf zone. In the present chapter these

formulations are verified through the comparison of model predictions to both laboratory

and field observations.

The evolution of unidirectional waves over variable depth, including localized nonli-

nearity enhancement and dissipation, is considered in §5.2. Directionally spread, random

waves over two-dimensional topography are modeled in §5.3, and comparison is made

to laboratory observations. The latter observations encompass (very) weakly nonlinear

wave fields and the comparison mostly assesses the two-dimensional capability of the

model and its inherent limitations. Lastly, the model is compared to observations of

directional waves incident on a natural beach with nearly shore-parallel depth contours,

at Duck (NC) (§5.4). Comparison is made to observations from two campaigns (fall of

1994 and of 1997), with incident wave conditions ranging from low-energetic, narrow-

band swell to strongly dissipative conditions with wide-aperture wave incidence. Detailed

comparison is made to spectra and bulk statistics derived from measurements across

the beach. Through comparison of predictions to observations for a wide range of wave

conditions, we assess the model’s robustness and its potential for application to the scale

of a typical coastal zone or inner shelf, including the surf zone.

The observations are compared to numerical implementations of reduced forms of

the general equations presented in Chapter 4. These comparisons provide insight in the

model performance for a wide range of scales and conditions, and verifies its robust-

ness and suitability for application in typical coastal areas. Details of the numerical

implementation are given in the following.
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5.1 Numerical implementation and initialization
Numerical simulations are performed with implementations of the nonlinear stochastic

angular-spectrum model derived in Chapter 4. The model equations for directional waves

over topography (see §5.3) on a finite domain in space and time are

[
d

dx
− iΛ1;2

1

]
E12

1 =
1

Ly

∫
dy
∑

λ3

[
S1

1(y)√
V 3

1

E32
1 exp [i (λ3 − λ1) y]

+

(
S2

1(y)√
V 3

1

E31
1

)∗

exp [−i (λ3 − λ2) y]

]

− 1

2Ly

∫
dy
∑

λ3

D1

√
V 1

1

V 3
1

[√
V 2

1

V 1
1

E32
1 exp [i (λ3 − λ1) y] +

(
E31

1

)∗
exp [−i (λ3 − λ2) y]

]

+ i
∑

v3

[
W (1−3)3

(1−3)3C
(1−3)32
(1−3)3 −W (2−3)3

(1−3)3

(
C(2−3)31

(1−3)3

)∗]
∆ω∆λ,

(5.1a)

[
d

dx
− i
(
Λ12;3

12 + iµ123
12

)]
C123

12 =


 S

1

1√
V 1

1

+
S

2

2√
V 2

2

+
S

3∗

(1+2)√
V 3

(1+2)


 C123

12

− 1
2

[
D1 +D2 +D1+2

]
C123

12 + 2i
∑

λ4

[
W (1+4)(−4)

(1+2)(−2)E24
2 E (1+4)3

(1+2)

+W (2+4)(−4)
(1+2)(−1)E14

1 E (2+4)3
(1+2) −W (3−4)(4)

12 E14
1 E2(3−4)

2

]
∆λ, (5.1b)

where the overbar denotes the lateral average (1/Ly
∫
dy) and the S1

1 given in §4.1 (eq.

4.9). The spectrum E12
1 and bi-spectrum C123

12 are density functions (see §4.1), discretely

sampled on an equidistant grid with spacing ∆ω and ∆λ.

Note that (5.1b) is a simplified form of the governing equation for the bi-spectral

density function derived in Chapter 4 (eq. (4.13)), in the sense that the convolution of

the bi-spectrum with the laterally varying depth and dissipation function is replaced by

a multiplication with the lateral average of these contributions. This approximation im-

plies the assumption that the lateral heterogeneity of the bi-spectral density function is

primarily caused by the laterally heterogeneous spectrum; we ignore the interaction with

the lateral depth variations, and lateral variability of the dissipation function as sources

of heterogeneity in the description of the bi-spectrum evolution. This approximation

simplifies the numerical implementation, without depriving the model of its principal

source of heterogeneity for the triple moments, namely the laterally inhomogeneous

energy density function. Although the simplified model is shown here to agree well

with observations, a thorough evaluation of the neglected terms awaits a numerical

implementation of the complete model.
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This implementation, suitable for laterally heterogeneous wave fields and topogra-

phies, is refered to by the acronym SAM2D†. For a cylindrical topography (see §5.4)

the spectral and bi-spectral density are two- and four-dimensional in spectral space

respectively; a dimensional reduction by one with respect to the heterogeneous case.

This implies a substantial simplification of the governing equations, yielding

dE1
1

dx
= −D1E1

1 − 2
∑

v2

W (1−2)2
(1−2)2C

(1−2)2
(1−2)2∆ω∆λ, (5.2a)

dC12
12

dx
= i
(
Λ12

12 + iµ12
12

)
C12

12 −
1

2

(
D1 +D2 +D(1+2)

)
C12

12

+ 2i
[
W (1+2)(−2)

(1+2)(−2)E2
2E (1+2)

(1+2) + W (1+2)(−1)
(1+2)(−1)E1

1E (1+2)
(1+2) −W12

12E1
1E2

2

]
. (5.2b)

This implementation, suitable for directional waves over one-dimensional depth vari-

ations, is referred to as the SAM1D model implementation. For unidirectional wave

propagation the model reduces to the model of §4.4.3, which, repeated here for com-

pleteness, in the present, semi-discrete notation reads

dE1

dx
= −D1E1 − 2

∑

p2

W(1−2)2C(1−2)2∆ω, (5.3a)

dC12

dx
= i (Λ12 + iµ12) C12 −

1

2

(
D1 +D2 +D(1+2)

)
C12

+ 2i
[
W(1+2)(−2)E2E(1+2) + W(1+2)(−1)E1E(1+2) −W12E1E2

]
, (5.3b)

which will be referred to as the SAMuD model.

The parameterization of the closure relaxation and depth-induced breaking dissipa-

tion involve a number of free parameters for which sensible choices need to be made.

Moreover, with the objective of assessing the robustness of the parameterizations in-

volved, we choose a single set of parameters which is kept constant for all cases consi-

dered. The parameter values are determined ad hoc, and no systematic optimization of

these empirical coefficients is pursued here.

Based on inspection of a few trial numerical experiments we have set the free parame-

ter β, controlling the closure relaxation, at 1.5 throughout. Depth-induced breaking is

modeled utilizing B = 1 (a measure of breaker intensity) and γ values are derived from

eq. (4.32) after Battjes & Stive [1985]. Lastly, the frequency weighting of the dissipation

function is predominantly quadratic with a small uniformly weighted contribution

D1 =
1

m0

(
r0 + r2ω

2
1

m0

m2

)
D, (5.4)

with the weights r0 = 1/10 and r2 = 1 − r0 = 9/10 respectively. The frequency-

independent dissipation function D is given in (4.41).

†SAM: Stochastic Angular-spectrum Model
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Although it is possible to initialize the SAM2D model with a laterally inhomogeneous

wave field (see e.g. discussion in §5.5), here we assume the wavefield initially laterally ho-

mogeneous, with the heterogeneity developing through interaction with the topography

as the waves propagate through the domain. The energy equation is initialized with a

discretized flux spectrum at the offshore boundary (E 1
1 = V 1

1 S1
1 , with S1

1 the discretized

surface elevation variance density spectrum), either available from observations or in

parameterized form. The corresponding initial bi-spectral density function is obtained

from considering the SAM1D bi-spectral equation (eq. (5.2b))

d

dx
C12

12 = iΛ12
12

[
C12

12 + 2
Q12

12

Λ12
12

]
, (5.5)

with

Q12
12 = W (1+2)(−2)

(1+2)(−2)E2
2E (1+2)

(1+2) + W (1+2)(−1)
(1+2)(−1)E1

1E (1+2)
(1+2) −W12

12E1
1E2

2 . (5.6)

It is readily seen that

C12
12 = −2

Q12
12

Λ12
12

(5.7)

is a steady solution for the laterally homogeneous case and is used here to initialize the bi-

spectral integration both for the SAM2D and SAM1D model (since lateral homogeneity

was assumed at the offshore boundary, the SAM1D and SAM2D can be initialized with

the same – homogeneous – boundary conditions). Likewise (5.7) is used as an initial

condition for the bi-spectral evolution equation pertinent to the SAMuD model, where

the omission of the lateral wavenumber space is understood.

The bi-spectral initialization (5.7) corresponds to Stokes’ second-order theory [see e.g.

Hasselmann et al., 1963; Herbers & Burton, 1997] and implies a skewed, symmetrical

wave field at the offshore location. This initialization is reasonable if the offshore boun-

dary is in sufficiently deep water and the depth is (near-)uniform, so that uniform-depth

second-order wave theory is a good approximation.

For a given computational domain, with lateral extent Ly and discretization ∆y,

the alongshore wavenumber array is given as ∆λ [−Ly/(2∆y) . . . Ly/(2∆y)], with ∆λ =

2π/Ly. Since the derivation does not include evanescent modes (|λ| > kω), these are

consistently omitted from the computation, including such modes that are evanescent

at the offshore boundary but become propagating inside the domain on account of

the variable depth. The spatial and spectral discretizations differ for the various cases

considered, and are specified were needed.

The constituent ordinary differential equations of the SAM2D, SAM1D and SAMuD

implementations (viz. (5.1), (5.2) and (5.3)) are integrated utilizing a standard, fixed

step-size, fourth-order Runge-Kutta scheme.

5.2 One-dimensional wave propagation
The occurrence of multiple crests (or ‘frequency-doubling’) behind submerged obstacles

is a common phenomenon in shallow coastal waters [Munk & Traylor, 1947; Johnson



5.2 One-dimensional wave propagation 113

et al., 1951]. From laboratory observations, Jolas [1960]† deduced that the shorter waves

appearing on the lee side of the obstacle were due to the the amplification of harmonics

over the shallow part of the obstacle; an hypothesis consistent with later advances in

near-resonant interaction theory [Mei & Ünlüata, 1972; Bryant, 1973].
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Figure 5.1: Bottom profile experiments Beji & Battjes [1993]. Circles indicate wave gauge

locations.

However, harmonic generation over obstacles in regular, unbroken waves (see e.g.

Chapter 3, §3.2.2) is the exception rather than the rule. In most field situations, (ran-

dom) wave propagation over shallow sandbars, and the associated amplification of har-

monic motion, is accompanied by wave breaking [Byrne, 1969; Young, 1989; Elgar et al.,

1997]. With the purpose of empirically investigating the concomitant action of nonlinear

harmonic generation and dissipation in breaking waves over a localized obstacle, Beji &

Battjes [1993] performed laboratory experiments including random waves impinging on

a submerged, trapezoidal obstacle (Figure 5.1). The experiments were performed in a

37.5 m long flume, 0.8 m wide and 0.75 m deep (Figure 5.1). Observations are available

at 7 locations over the shoal as indicated in the figure. The wave generation is first-

order accurate (thus second-order spurious waves must be anticipated); reflections are

minimized through the presence of an absorbing beach at the far end of the flume (Figure

5.1). The incident wave field has a Jonswap spectral shape, peak frequency fp = 0.5 Hz

and Hm0 = 4
√
m0 = 2.3 cm.

Simulations are performed with the SAMuD model (viz. the set (5.3)). The observed

frequency spectrum at x = 6 m at the toe of the up-slope (with x = 0 at the wave

generator, and x positive in the direction of wave propagation) is discretized into an

equidistant frequency array consisting of 135 frequencies with ∆ω = 0.05π rad/s and

used to initialize the model. The initial bi-spectrum is obtained from second-order wave

theory (see §5.1). The spatial step size ∆x = 0.10 m.

†Jolas [1960] derives an N-point least-squares algorithm (N being an integer ≤ 2) for the directional

decomposition of one-dimensional wave trains. Such a least-squares approach has been advanced much

later by Mansard & Funke [1980], as a three-point method, improving the earlier 2-point method by

Goda & Suzuki [1976]. The more general N -point approach described by Jolas [1960] was later presented

by Zelt & Skjelbreia [1992], who were presumably unaware of the work by Jolas that appeared in French.
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Figure 5.2: Comparison of observed (circles) [Beji & Battjes, 1993], RQN-predicted (solid

line) and QN-predicted (dash-dotted line) frequency spectra at four observation locations

(sub-captions); dashed line indicates the initial wave spectrum at x = 6 m. Incident wave field

with Jonswap spectrum (fp = 0.5 Hz, Hm0 = 2.3 cm).

As the wave field propagates on the up-slope and over the obstacle, energy is trans-

ported from the initial peak to harmonic frequency ranges (Figure 5.2); on the down-

slope some of this energy is subsequently returned to the main peak through a phase

reversal of the nonlinear coupling. Overall the model predictions are in very good

agreement with the observations. A notable exception is a systematic overestimation

of energy levels beyond f ≈ 1.5 Hz for locations x = 16 m and x = 17.6 m, in particular

for the simulation including relaxation (RQN). This is consistent with the finding in

Chapter 4 (§4.4.3) that the relaxation of the bi-spectrum tends to under-predict the

spectral slope of the high-frequency tail. In contrast, the evolution of the low-frequency

regions of the spectrum (beat frequencies) are very well predicted throughout the interval

of propagation (note that the assumed unidirectionality is not necessarily warranted for

the low-frequency waves in the spectrum; see Chapter 6).
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Figure 5.3: Comparison of observed (circles), RQN-predicted (solid line) and QN-predicted

(dash-dotted line) wave height (top panel), skewness (middle panel), and asymmetry (bottom

panel). Incident wave field with Jonswap spectrum (fp = 0.5 Hz, Hm0 = 2.3 cm).

The model-predicted bulk statistics for the wave height, skewness and asymmetry

(see eq.’s (5.14) and (5.15) for definitions) are in good agreement with the observed

values (Figure 5.3). The RQN model underestimates skewness levels slightly over the

bar, and the negative asymmetry occurring on the down-slope is not resolved entirely

accurate. In contrast, the QN model over-predicts skewness in the shallow part of the

flume, but the predicted asymmetry is in better agreement than RQN-predicted values.

Overall, for this case, involving only localized (over the obstacle) enhancement of

nonlinearity and dissipation, agreement between predictions and observations is good;

the QN model predictions are overall in slightly better agreement but predictions from

the RQN en QN model differ only in details. The similarity between RQN- and QN-

predicted spectral evolution is consistent with the anticipated behavior of the RQN

closure modification. After all, these closure modifications should only be operative

where the QN model, on account of high Ursell numbers and intense dissipation over

extended regions, becomes highly inaccurate (see e.g. §5.4). Since the latter does not
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occur in the present case, relaxation should be rather ineffective and consequently result

in minor modifications of the wave field evolution.

5.3 Directional waves over topography
Vincent & Briggs [1989] performed experiments including random, directionally spread

waves over a submerged, elliptic shoal. These experiments were performed with the

primary aim to assess the adequacy of modeling refraction-diffraction effects in random

waves through representation of the wave field by a characteristic monochromatic wave

train, a common practice in many engineering applications.
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Figure 5.4: Bottom profile experimental set-up Vincent & Briggs [1989]. Depth is in meters;

instrumented transects are indicated by dashed lines.

The experiments were performed in a wave basin, 35 m wide and 29 m long. The

topography consists of an elliptic shoal (moulded after Berkhoff et al. [1982]), placed on

an otherwise horizontal bottom (Figure 5.4). The shoal area is conveniently described in

shoal-coordinates (x′, y′) with the origin at the shoal center, which – in computational

coordinates (x, y) – is located at (xc, yc) = (6.10, 13.72) m. The area occupied by the

shoal is (
x′

3.05 m

)2

+

(
y′

3.96 m

)2

≤ 1, (5.8)

where the depth is given by

h = 0.914 m − 0.762 m

[
1 −

(
x′

3.81 m

)2

−
(

y′

4.95 m

)2
]1/2

. (5.9)

The depth at the shoal center is 15.24 cm; outside the shoal area the water depth is

h = 45.72 cm. The shoal-coordinates are related to the computational coordinates (x

and y in Figure 5.4) through

x′ = x− xc, y′ = y − yc. (5.10)
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Waves are generated with a 27.43 m long, segmented wave generator, situated along

the line x = 0. To suppress adverse reflections, wave absorbers are installed along the

perimeter of the basin.

For the cases considered, the computational domain measures Ly = 30 m by Lx =

20 m in lateral and principal direction respectively. Consequently, the alongshore wavenum-

ber spacing is ∆λ = 2π/Ly = 1/15π rad/m. Comparison is made to wave heights

observed along the instrumented transects 1-8 that are indicated in Figure 5.4; transects

1, 7 and 8 are longitudinal, whereas transects 2-6 extend in the lateral direction.

5.3.1 Monochromatic unidirectional waves

To illustrate the diffraction modeling capability embedded in the SAM2D model, we

compare observations of a normally incident monochromatic wave train to simulation

results. Although the stochastic angular-spectrum modeling approach is particularly well

suited for the modeling of the propagation of directionally-spread random waves, there is

no fundamental difficulty in modeling unidirectional, monochromatic waves as the limit

of a narrow-band incident wave field. The topography acts as a lens, causing strong

cross-directional correlations (standing waves in the lateral direction) in the refractive

convergence zone behind the shoal.

The incident wave field has angular frequency ω = 1.45π rad/s and waveheight

Hm0 = 4.4 cm. The model is initialized with

E(ω1, λ1, λ2, 0) = δ(ω1 − ω)δ(λ1)δ(λ2)Cg,1
H2
m0

32∆ω∆λ2
(5.11)

and the appropriate bi-spectral density (viz. §5.1). The spatial domain is discretized

with ∆x = 0.1 m, ∆y = 0.24 m; the spectral discretization consists of three, equidistant

frequency components with ∆ω = 1.45π rad/s.

Transect Index values

1 0.93869

7 0.97414

8 0.88327

2 0.44531

3 0.59936

4 0.96234

5 0.98548

6 0.94567

Table 5.1: Willmott index values for monochro-

matic wave [Vincent & Briggs, 1989] with

Hm0 = 4.4 cm, and ω = 1.45π rad/s; transects

are indicated in Figure 5.4.
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The observed and computed wave height evolution are in close agreement (Figure

5.5), quantitatively confirmed by the high Willmott-index values (definition: see §3.4.2,
eq. (3.50); values in Table 5.1). The low Willmott score for transect 2 & 3 (not shown

in figure) is on account of the (very) small variations along these transects, both in

the observations and predictions, resulting in heavily penalized mismatches (see also

§3.4.2). The stochastic model, apart from local details, faithfully resolves the refraction-

diffraction wave height patterns, including the refractive focus behind the shoal. The

latter illustrates that the combined refraction-diffraction effect on the wave field trans-

formation can be accurately described utilizing the SAM formalism, which captures the

lateral heterogeneity through evolving – in one-dimensional physical space – the off-

diagonal spectral components, which represent the correlations between non-collinear

wave components (see also §5.5).
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Figure 5.5: Comparison of observed (circles) [Vincent & Briggs, 1989] and predicted (solid

line) wave heights; monochromatic, normally incident waves with Hm0 = 4.4 cm and frequency

ω = 1.45π rad/s.
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5.3.2 Directionally spread waves over topography

The experiments with random, directionally-spread waves by Vincent & Briggs [1989]

were performed utilizing frequency spectra of the TMA-type [Bouws et al., 1985] and

a wrapped-normal spreading function [Mardia & Jupp, 2000]. The two-dimensional

spectra are written as

S(ω, θ) = S(ω)D(θ), (5.12)

with the TMA frequency spectrum S(ω) defined by the free parameters: peak frequency

ftma, αtma constant, and peak enhancement factor γtma. The directional distribution,

D(θ), is parameterized by a wrapped normal spreading function (see eq. (4.25)) with

the mean wave direction θm = 0 and N = 100, which is the (arbitrary) number of terms

in the series (see eq. (4.25)).

We consider two cases, labeled as in Vincent & Briggs [1989]. The values for the

parameters defining the incident wave field are listed in Table 5.2 (wave heights are

taken from observations). Both cases have the same frequency distribution but case B1

exhibits a wider directional distribution than N1.

Case ftma [Hz] αtma [-] γtma [-] σD [rad] Hm0 [cm]

N1 0.77 0.01440 2 0.175 7.5

B1 0.77 0.01440 2 0.5236 7.1

Table 5.2: Parameters for target spectra directionally

spread incident waves [Vincent & Briggs, 1989]. Parameters

listed as as in Vincent & Briggs [1989] but wave heights from

observations.

The computational domain is discretized with ∆x = 0.1 m and ∆y = 0.48 m. The

frequency spectrum is discretized into 20 equidistant positive frequencies, with ∆ω =

0.2π rad/s. Directional spectra are generated using the parameters listed in Table 5.2,

interpolated onto the frequency-lateral wavenumber grid at x = 0, and converted to the

flux spectrum E to initialize the SAM2D model (§5.1). The bi-spectrum according to

Stokes’ second-order theory is used to initialize the bi-spectral evolution equations (viz.

§5.1).

On account of the finite bandwidth of the wave field, in particular the directional

aperture [Vincent & Briggs, 1989], correlation between directional components in the

refractive focus are sustained over much shorter distances than for unidirectional incident

waves (§5.3.1), and the characteristic standing wave height pattern throughout the

refractive focus is suppressed owing to directional phase mixing (Figure 5.6 & Figure

5.7), in particular for B1 (widest aperture). The model faithfully captures the wave

height evolution, including the enhanced attenuation of phase coupling with increasing

directional spreading of the incident wave field. Overall, the agreement between model-

predicted wave height evolution and observations is good.
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Figure 5.6: Comparison of observed (circles) [Vincent & Briggs, 1989] and predicted (solid

line) normalized zeroth-moment significant wave heights for case N1 (see Table 5.2).

The spectral evolution for case N1 (Figure 5.8) shows an initial directional widening,

primarily on account of the interaction with the lateral depth variations and to a lesser

extent related to the effects of laterally varying dissipation. After the initial widening,

the spectrum narrows somewhat again and evolves toward what could be considered a

tri-modal shape (in directional space), consisting of main center lobe and two side-lobes.

Apart from the wider initial shape, the computed spectral evolution for B1 exhibits

qualitatively similar characteristics (not shown).

The spectra in Figure 5.8 are local spectra along y = 13.8 m approximately crossing

the shoal center (y = 13.72 m), obtained through a discrete approximation of the trans-

form relations detailed in §4.2 (eq. (4.17)). It is seen from Figure 5.8 that enhancement

of energy levels at harmonic ranges is not visible, indicating that nonlinear effects, at

least in the numerical simulations (no observations of spectra were available), are weak.
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Figure 5.7: Comparison of observed (circles) [Vincent & Briggs, 1989] and predicted (solid

line) normalized zeroth-moment significant wave heights for case B1 (see Table 5.2).

Given these moderate levels of nonlinearity and dissipation, the present comparison does

not represent a decisive test with respect to the accuracy of the combined representation

of nonlinearity, dissipation and topographical focusing, for which further verification is

needed. Nevertheless, the good agreement with these observations in terms of the wave

height evolution does indicate that, given the restrictions on lateral depth variations

implied by the underlying deterministic model, the SAM formalism is capable of accu-

rately predicting the propagation of random directionally-spread wave evolution over

two-dimensional topography, including localized wave breaking.
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Figure 5.8: Computed spectra condition N1 (see Table 5.2) along y = 13.8 m (near center

shoal) at positions in front and behind the shoal (see captions).

5.4 Directional waves on a near-cylindrical beach: field obser-

vations
During field campaigns in the fall of 1994 (Duck94) and 1997 (Sandyduck), extensive

measurements of shoaling waves across a natural beach were collected at the U.S. Army

Corps of Engineers’ Field Research Facility (FRF), located near Duck, North Carolina

[see e.g. Elgar et al., 1997; Feddersen et al., 1998; Ruessink et al., 2001; Herbers et al.,

2003]. Figure 5.9 shows the instrument locations and depth contours in the local beach

coordinate system. The y coordinate is aligned with the alongshore, oriented 20o West

of true North and positive in Northerly direction; the x is the cross-shore coordinate,

oriented 70o East of true North and increasing in offshore direction (Figure 5.9).

During the Duck94 campaign, 14 co-located pressure gauges, current meters and

downward-looking sonar altimeters were deployed at cross-shore locations ranging from

the shoreline to around 5 m depth (bottom panel Figure 5.9). Seafloor locations were

derived from the altimeter radar measurements at the instrument locations [Elgar et al.,

1997; Gallagher et al., 1998]; the (one-dimensional) profile along the instrumented

transect is estimated through linear interpolation (Figure 5.9). Directional spectra of the

incident wave field were estimated from measurements at a linear alongshore array of

pressure sensors (9 elements) located in 8 m water depth (approximately 800 m offshore),
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indicated as FRF in the figure. For further details with respect to the instrumentation

and wave conditions we refer to e.g. Elgar et al. [1997] and Herbers et al. [2003].

During Sandyduck (1997), four linear alongshore arrays (indicated by B, C, E and F in

Figure 5.9) of co-located pressure gauges and current meters were deployed [Elgar et al.,

2001], from which directional spectra are derived at the discrete cross-shore locations

[Herbers et al., 2003]. In addition to the arrays, three additional pressure sensors were

placed (two between array E and C and one just shoreward of array B) to improve the

cross-shore resolution of the observational array for frequency spectra and bulk statistics.

The bathymetry, extending from the beach up to x = 950 m (approximately 8 m water

depth), is obtained from regular surveys conducted by the FRF staff (Figure 5.9).

Seaward of x = 950 m, bathymetry data is obtained from ship-based depth soundings

in that area (Herbers 2005, personal communication). A one-dimensional profile is

estimated by laterally averaging the depth over 700 m < y < 1000 m. Directional spectra

of the incident wave conditions are available at the FRF array (located approximately

800 m, indicated in Figure 5.9) and at an array installed at approximately 5 km offshore

(20 m depth, not shown in figure).

The nearshore bottom topography at Duck is nearly laterally homogeneous [see also

Ruessink et al., 2001; Elgar et al., 2001] and thus we compare observations to predictions

with the alongshore-uniform SAM1D model (§5.1). Unless stated otherwise, the model is

initialized at the FRF array with the observed spectrum, discretized into 60 frequencies

(∆ω = 0.0137π rad/s) and 128 alongshore wavenumbers (∆λ = 0.0018π rad/m). Note

that, although the model has no inherent angle limitation, the inclusion of propagating

modes only, and the discretization, implies an aperture limitation for locations shallower

than the offshore boundary, given as

θmax(ω, x) = arcsin

(
min{k(ω, 0), λmax}

k(ω, x)

)
. (5.13)

For instance, when considering the offshore boundary at the FRF array at 8 m depth, the

aperture at 2 m depth (the shallow end of the beach) is restricted to ±30o and ±29o for

the lowest and highest frequencies respectively. The aperture is wider for intermediate

frequencies with a maximum around 0.3 Hz (θ = ±49o).

A relatively fine, cross-shore step size, ∆x = 0.5 m, is required to resolve the an-

ticipated rapid bi-spectral modulations. These contributions indicate the presence of

a mixed free-bound wave field, and although cumulatively of little consequence to the

wave field evolution, such oscillations restrict grid size spacing in relatively deeper water

(see also discussion on outlook and applicability in §5.5).
The cases considered here are the same as considered by [Herbers et al., 2003], who

compare observations to predictions with a stochastic Boussinesq model. We initialize

the present model at greater depth (FRF- and 20m-array, whereas Herbers et al. initialize

at the F- and FRF-array respectively) to exploit and verify the deep-water capability

of the present model with respect to shoaling, refraction and (linear) dispersion.
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Figure 5.9: Bottom profiles and sensor locations in local beach coordinate system of Field

Research Facility. Top panel: plan view of FRF array and four alongshore arrays (F,E,C,B) of

co-located pressure sensors and current meters deployed during Sandyduck; solid lines indicate

depth contours. Bottom panel: representative depth profiles for Sandyduck (solid line, array

locations indicated) and DUCK94 (dashed line; each marker shoreward of the FRF array

indicates a co-located pressure and velocity sensor).

5.4.1 Moderate conditions: conservative nonlinear shoaling

During Sandyduck, the nearshore sandbar was further offshore, in deeper water with

a lower crest elevation, than during Duck94 (see Figure 5.9). For moderate incident

wave conditions, generally no breaking occurs over the bar so that the observational
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arrays are outside the surf zone. Although intermittent breaking occurs between arrays

C and B for the larger sets of waves, wave breaking is primarily confined to the steep

foreshore shoreward of the B-array [Herbers et al., 2003]. Therefore, the comparison of

predictions to observations for moderate energetic incident swell mainly verifies the

model representation of the conservative processes such as refraction, shoaling and

quadratic nonlinear interactions; dissipation on account of depth-induced wave breaking

is very weak for these cases.

For the cases considered here, the model is initialized with discretized directional wave

spectra observed at the FRF array (8 m depth) and with the bi-spectrum in accordance

with Stokes’ second-order theory (see §5.1).

August 10, 1997

On August 10, a narrow-band wave field is incident at the FRF array, with fp = 0.09

Hz and Hm0 = 0.85 m (Figure 5.10). Here and throughout this section, the direc-

tional convention is as follows. The directions, θ, indicate the arrival directions of the

wave energy with θ = 0 indicating shore-normal wave incidence, corresponding to 70o

clockwise from true North. The direction θ is positive(negative) for waves approaching

from Northerly(Southerly) directions with respect to the shore-normal. The mean wave

direction is indicated by θm. In this convention, the swell on August 10 is arriving from

a slightly southerly direction (θm ≈ −5o, Figure 5.10).
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Figure 5.10: Observed two-dimensional spectrum at the FRF array on August 10, 1997.

Unimodal wave field incident from the Southerly direction (θm = −5o) , fp = 0.09 Hz and

wave height Hm0 = 0.85 m.

The propagation from the offshore array (FRF) to the F and E array (Figure 5.11)

is typified by enhancement of energy at super-harmonic frequencies and a considerable

amplification of low-frequency motion (difference interactions), qualitatively consistent

with the interaction rules for quadratic nonlinear interactions. Over the bar and upon
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reaching array C, energy levels at harmonic frequencies are further amplified (Figure

5.12), at the expense of the main peak. At array B, located right behind the trough,

the distinct harmonic peak around 2fp is somewhat reduced, which is attributed to a

reversal of the energy flow toward the peak when traversing the trough (right panels

Figure 5.12).

Model predictions are in overall good agreement with the observations, both for

harmonic frequencies and at the low-frequency end of the spectrum; in particular for the

F and E array, where the agreement is excellent. We note that generally the agreement

at low frequencies, say below 0.03 Hz, is less good; in part this can be attributed to the

fact that these long-wave components are likely to include reflected components [e.g.

Elgar et al., 1997; Battjes et al., 2004], for which the model does not account. Moreover,

for very low frequencies, the assumed slow variation of the topography, relative to the

wavelength, may be violated.

For the C- and B-array, model-predicted spectra are somewhat narrower in directional

space than the observed ones, and the model predicts waves at a slightly smaller angle

with the shore-normal, than those observed (Figure 5.12).

Also notable is the fact that reversal of the cross-spectral transport of energy toward

the peak is not accurately represented in the model, resulting in what appears a ‘smear-

ing out’ of energy over frequency space at harmonic ranges, and an underestimation of

energy levels at the peak (Figure 5.12). In part we attribute this to an artifact of the

relaxation term; turning it off produces a slightly more featured spectral shape at B

(not shown) but the overall agreement is similar.

The third-order bulk statistics of skewness and asymmetry are obtained from [see e.g.

Elgar & Guza, 1985]

Skewness =
6
∫∫∞

0
dω1dω2

∫∫∞

−∞
dλ1dλ2 <{B(ω1, ω2, λ1, λ2)}

(∫∫∞

−∞
dωdλS(ω, λ)

)3/2
(5.14)

and

Asymmetry =
6
∫∫∞

0
dω1dω2

∫∫∞

−∞
dλ1dλ2 ={B(ω1, ω2, λ1, λ2)}

(∫∫∞

−∞
dωdλS(ω, λ)

)3/2
, (5.15)

where B(ω1, ω2, λ1, λ2) = C(ω1, ω2, λ1, λ2)/
√
V 1

1 V
2
2 V

(1+2)
(1+2) . These quantities measure what

is intuitively best described as the ‘peakedness’ of the wave forms and ‘pitching for-

ward/backward’ of the waves respectively. The latter is often observed on natural

beaches at the onset of breaking, where the waves are generally strongly pitched-forward

and saw-tooth shaped.

The computations predict the waves to evolve from symmetrical, slightly peaked

waves at the FRF array (Figure 5.13) to skewed, pitched-forward waves over the bar

(just offshore of x = 300 m). In the trough (around 200 m < x < 300 m) the waves

lean back (negative asymmetry values) somewhat, an effect underestimated by the
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Figure 5.11: Comparison of observed and predicted spectra for August 10, 1997, at F- (left

panels) and E-array (right panels). Top panels: observed (circles) and predicted (solid line)

frequency spectra; dashed line represents offshore spectrum (FRF). Middle and lower panels

are observed and predicted directional spectra respectively.

model. With the depth further decreasing shoreward of x ≈ 200 m, skewness drops

and asymmetry increases rapidly. The rapidly increasing wave asymmetry in this region

indicates the onset of breaking. Apart from the noted discrepancy for the negative

asymmetry in the trough, the agreement between predicted and observed third-order

bulk statistics in the nearshore is good, particularly if we consider that prediction of

such higher-order statistics represents a severe test to the model. We remark that the
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Figure 5.12: Comparison of observed and predicted spectra for August 10, 1997, at C- (left

panels) and B-array (right panels). Top panels: observed (circles) and predicted (solid line)

frequency spectra; dashed line represents offshore spectrum (FRF). Middle and lower panels

are observed and predicted directional spectra respectively.

dissipation and relaxation term are practically ineffective until shoreward of array B.

These comparisons, and in particular those at the F, E and C array, thus verify the

first-principle based model-representations of the relevant conservative processes.
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Figure 5.13: Comparison of observed (circles) and predicted (solid line) wave skewness (top

panel) and asymmetry (lower panel) for August 10, 1997.

September 9, 1997

On September 9, 1997 a bi-modal wave field (Hm0 = 0.95 m), consisting of a main swell

arriving from a Southerly direction (θm = −28o, fp = 0.08 Hz) and a Northerly (34o),

higher-frequency (fp = 0.18 Hz) sea, is incident at the FRF array (Figure 5.14).

The model-predicted spectral transformation is in very good agreement with obser-

vations (Figure 5.15 & 5.16), with the notable exception that at C and B the main

peak is somewhat underestimated (Figure 5.16), which suggests that the model does

not transfer sufficient energy back to the main peak. This is consistent with what was

found in the comparison to the August 10 case, and – at least in part – attributable to

relaxation being too strong, for such moderate conditions.

Although from the interaction rules for quadratic interactions we anticipate a cross-

interaction between the non-collinear seas, such interactions are apparently very weak
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for the present case, and do not result in noticeable energy transfers, neither in the

observations nor in the model predictions (Figure 5.15 & 5.16). The weakness of these

interaction configurations is attributed to the low energy levels of the Northerly sea,

and the fact that generally the interaction between such widely separated (in directional

space) spectral components is relatively farther from resonance than if they were near-

collinear.
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Figure 5.14: Observed two-dimensional spectrum at the FRF array on September 9, 1997.

Bimodal wave field (Hm0 = 0.95m), consisting of primary swell (fp = 0.08 Hz) from Southerly

(θm = −28o) directions, and a shorter-period sea (fp = 0.18 Hz) arriving from the North-East

(θm = 34o).

The model-predicted spectra are directionally narrower than the observed ones, in

particular those at the shallowest observational locations (Figure 5.16). Moreover, we

note that the directions appear – on average – somewhat closer to shore-normal, indica-

ting an overestimation of refraction effects. This is substantiated in Figure 5.17 showing

directional spectra at f = fp = 0.08 Hz, f = 2fp = 0.16 Hz and f = 3fp = 0.24 Hz;

at 2fp and 3fp the offshore-observed bimodal structure evolves, under the combined

effects of nonlinear interactions and refraction, into a near unimodal distribution at the

nearshore array B. Apart from a noticeable overly narrowing of the distribution, and

prediction of energy at directions that are generally somewhat too close to shore-normal,

the redistribution of energy over the directions is well represented by the model.
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Figure 5.15: Comparison of observed and predicted spectra for September 9, 1997, at F- (left

panels) and E-array (right panels). Top panels: observed (circles) and predicted (solid line)

frequency spectra; dashed line represents offshore spectrum (FRF). Middle and lower panels

are observed and predicted directional spectra respectively.
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Figure 5.16: Comparison of observed and predicted spectra for September 9, 1997, at C- (left

panels) and B-array (right panels). Top panels: observed (circles) and predicted (solid line)

frequency spectra; dashed line represents offshore spectrum (FRF). Middle and lower panels

are observed and predicted directional spectra respectively.
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Figure 5.17: Evolution of observed (September 9, 1997) and predicted directional spreading

(S(θ) = S(θ, f)/S(f)) function at F-array (left panels) and B-array. Distributions shown for

fp(= 0.08 Hz) (top panel), 2fp (middle panel), and 3fp (bottom panel). Dashed line indicated

offshore (FRF) spreading function, the circles and solid line are observations and predictions

respectively.
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5.4.2 Energetic conditions: dissipative nonlinear shoaling

For moderate conditions, in the absence of wave breaking in the observational area, the

quasi-normal closure is accurate (relaxation is negligible) and the model is first-principle

based, not involving tuneable, empirical parameters. For more energetic incident wave

conditions, such considerations do not apply. With increasing nonlinearity and extended

dissipative regions, closure relaxation and dissipation become important and may even-

tually dominate the nearshore evolution, introducing a dependency on parameterized

physics and empirical coefficients. Comparison to observations of waves on the inner

shelf under such storm conditions tests the transition from first-principle based modeling

of the ensuing conservative processes, to a parametrized modeling of the inner surf zone.

October 15, 1994

On October 15 1994, an energetic, unimodal swell (Hm0 = 3.4 m, fp = 0.09 Hz) is

incident at the FRF array (Figure 5.18); the waves are nearly shore-normally incident

and exhibit moderate directional spreading. The incident wave energy is such that most

instrument locations are well inside the surf zone.

Wave heights (Figure 5.18) decay gradually on the outer slope (seaward of the

nearshore bar), followed by a fairly abrupt drop in wave height over the nearshore bar –

indicating strong energy losses due to intense wave breaking – and a moderate decrease

shoreward of the bar. Model-predicted wave height evolution is in good agreement with

observations, although the breaker parameterization is unable to capture the abrupt

decay across the sandbar.

Under the concomitant action of dissipation and nonlinear interactions, the spectrum

evolves from fairly peaked at the offshore location, to a near-featureless spectrum at

nearshore positions (Figure 5.19). The model-predicted evolution is generally in good

agreement with observations. Notable exception is the fact that, at the most shoreward

location (x = 161 m), the main peak is reduced to a local minimum, which is at

variance with the observed spectra where the (initial) peak remains a local maximum. We

hypothesize that this is due to an insufficient return of energy to the main peak when the

waves traverse the trough (200 m < x < 300 m), indicating that the nonlinear coupling

may be overly damped. In Figure 5.19 also predictions for β = 0 (QN, no relaxation)

and β = 2.5 (RQN, stronger relaxation) are shown. Relaxation has a particularly

large effect on model predictions in the very nearshore; omitting relaxation altogether

(β = 0) renders the nearshore spectra quite irregular and at considerable variance with

observations (e.g. x = 161 m in Figure 5.19). Stronger relaxation (β = 2.5) tends to

produce smoother spectra.

Predicted skewness and asymmetry evolution is in good agreement with observations,

although notably, on the outer slope, seaward of the bar, skewness values appear overesti-

mated (Figure 5.20). Variations in β affect the higher-order statistics. Without relaxation

(β = 0) skewness is grossly over-estimated, while asymmetry ranges are considerably

larger than observed. Increasing relaxation strength from β = 1.5 to β = 2.5 further
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Figure 5.18: Observed two-dimensional spectrum at the FRF array on October 15, 1994

(top panel). Unimodal wave field, shore-normally incident (θm ≈ 0), with fp ≈ 0.09 Hz and

Hm0 = 3.4 m. Lower panel shows comparison of observed (circles) and model-predicted zeroth-

moment wave heights (solid line, left axis); dashed line indicates the depth profile (right axis).

suppresses nonlinear coupling, resulting in lower skewness values and somewhat smaller

asymmetry ranges.

Generally the agreement is fair and the improvements on account of the coupling

relaxation are considerable when compared to model predictions utilizing the QN closure

without relaxation. However, there remain some discrepancies in spectral shape, in

particular the fact that spectra are overly smoothed, and skewness on the outer slope is

over-predicted. The latter findings indicate that further refinement, either of the tuning

parameter or – more fundamentally – the scaling of the relaxation term as a whole,

is needed. The present work merely explores the potential of the approach, without

performing a sensitivity analysis to determine optimal values of the empirical tuning

coefficients [Herbers et al., 2003]. Instead, we have used reasonable, and widely accepted,

values for B and γ (tuning parameters for the dissipation terms), and an ad hoc choice

for β. The fact that with a single O(1) choice for β (β = 1.5), kept constant for a wide

range of conditions (computations with different values of β are given solely for the

purpose of illustration), good agreement to observations is generally found, evidently

illustrates the robustness of the approach.
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Figure 5.19: Comparison of observed (circles) and predicted spectra for October 15, 1994

at discrete cross-shore locations (see panel captions). Model predictions for β = 0 (dash-dot),

β = 1.5 (solid line), and β = 2.5 (dotted line) are shown. The thin dashed line represents the

offshore spectrum (FRF).
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Figure 5.20: Comparison of observed (circles) and predicted skewness (top panel) and

asymmetry (lower panel) for conditions October 15, 1994. Model predictions for β = 0 (dash-

dot), β = 1.5 (solid line), and β = 2.5 (dotted line) are shown.
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October 19, 1997

Observations on October 19 1997, recorded during Sandyduck, include measurements

obtained at 20 m water depth (5 km offshore), which – when used as an offshore boundary

– provides a means to assess the model’s applicability on the scale of the extended coastal

zone or inner shelf. The incident wave field consists of an energetic (Hm0 = 3.4 m)

unimodal (in frequency space) swell arriving from Northerly directions, including waves

coming at very large angles (Figure 5.21). For these conditions the nearshore instruments

– apart from the FRF array at 8 m depth – are well inside the surf zone.
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Figure 5.21: Observed two-dimensional spectrum at 20m-array on October 19, 1997. Wide-

aperture incidence at extremely large angles (coming from Northerly directions) with Hm0 =

3.4 m and fp ≈ 0.13 Hz.

The computations for this case are performed with a coarser spectral discretization

than the previous cases; as before, 60 frequencies (∆ω = 0.0137π rad/s) are consi-

dered but the alongshore wavenumber array is reduced to 64 components with ∆λ =

0.0021π rad/m. Cross-shore step size is the same as before (∆x = 0.5 m).

To illustrate the effect of inclusion of the nonlinear terms, two additional linear

model runs are performed, with distinct frequency-weighting of the dissipation: one

with r0 = 0.1 (see eq. (5.4) for definition) as in the nonlinear model, and another

with r0 = 1, implying distribution of the bulk dissipation in proportion to the local

spectral density. The latter (r0 = 1) is expected more realistic for a linear model since,

in absence of nonlinearity, there is no cascade mechanism to sustain energy levels at

higher frequencies.

Although observations along the cross-shore transect are sparse in most of the domain

(only two observations over nearly 4 km in the offshore region), the comparison of

computations to observations are useful to qualitatively assess shelf-scale application

potential of the present modeling approach.
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Figure 5.22: Observations October 19, 1997. Comparison of observed (circles) and predicted

zeroth-moment wave heights (top panel) and mean periods (Tm01 = 2πm0/m1, bottom panel).

Solid line is nonlinear model prediction; dotted and dash-dot line represent linear model

predictions with r0 = 0.1 and r0 = 1 respectively. The bottom profile is indicated with a

dashed line.

Model-predicted wave heights are in good agreement with observations at the discrete

locations where observations are available (Figure 5.22). In particular, wave heights are

nearly constant seaward of the FRF array (x = 900 m) and decay rapidly shoreward of

this location, indicative of intense dissipation due to depth-induced wave breaking (surf

zone). The linear model predicts quite similar, but overall slightly larger, wave heights

in the surf zone, for both values for r0.

The nearshore evolution of the mean period Tm01 = 2πm0/m1 is markedly different for

the various model settings (lower panel Figure 5.22). In the linear model, without spec-

tral redistribution due to nonlinearity, the mean periods increase with decreasing depth

on account of the shoaling effects being strongest for the lower frequency components; for

lower r0 values this increase of the mean period is further amplified (more energy being

dissipated at higher frequencies). This linear behavior contradicts the observed decrease

of the mean period values in the nearshore. The decrease in mean period predicted by

the nonlinear model, on account of the re-distribution of energy from the main peak to

harmonic ranges, is in fair agreement with observations (Figure 5.22) .

The directionally integrated frequency spectra (Figure 5.23 & 5.24) predicted by the

nonlinear model are in fair agreement with the observations, but do not fully resolve

all the spectral features present in the observed spectra. In particular, the spectral

trough in the observations around 0.04 Hz is lacking in the model predictions at the

F-, E- and B-array. In contrast, the spectral shapes predicted by the linear model –

although in reasonable agreement at the FRF array – are at considerable variance with

the observations in shallow water. This comes as no suprise. After all, in the linear

approximation, the spectral components evolve in isolation from their environment and

the associated lack of spectral coupling deprives the model of a means to redistribute

energy, causing the resulting frequency spectra to be overly peaked compared with the
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near-featureless shapes (invariably) observed in shallow water [e.g. McKee Smith &

Vincent, 2003].

The directional spectra (Figure 5.23 & 5.24) predicted by the nonlinear model are in

fair agreement at the FRF, F- and E-array. However, for the nearshore C- (not shown)

and B-arrays, the agreement is at best qualitative. The observed spectra have a wider

support in directional space, while in frequency space they exhibit more variability

than their model-predicted counterparts. The observed variance between predicted and

observed spectral distributions can originate from various sources. Firstly, we have

assumed a laterally uniform topography, which – given the present topography – is

reasonable over short distances but may not be tenable when considering such long

propagation distances. On a similar note, even when lateral depth variations were

included, the model does not include resonant scattering on smaller-scale topography

(Bragg scattering on topography with length scales of roughly half the surface wave

length), the forward scattering component of which is known to attribute to an increase

in directional width of the spectrum [Ardhuin & Herbers, 2002]. Secondly, including

only the propagating modes at the offshore boundary implies an aperture limitation

that is expected to contribute to the overly narrow (in the directional sense) predicted

spectral shapes. Thirdly, the assumption of spatial homogeneity of the wave field at

the 20 m location may not be warranted. Seaward of the 20 m array large scale topo-

graphical features are present, which may invalidate the assumed homogeneity of the

wave field, both in the analysis of the data and the initiation of the model. Lastly,

the omission of relevant physical mechanisms that may contribute to an increase in

directional spreading. For such long propagation distances cubic resonances (quadruplet

interactions), wind generation and e.g. steepness breaking (‘whitecapping’) may have

to be accounted for. However, although the differences in directional spreading between

predicted and observed spectra are most evident from the present case, similar differences

were found in the comparison with observations from August 10 and September 9, which

involved only moderate propagation distance and relatively shallow water. Therefore, we

attribute the model-data variance primarily to a lack of model-representation of certain

nearshore processes such as directional effects in breaking waves [Herbers et al., 1999] or

anomalous refraction due to the presence of shear instabilities in the nearshore current

field [Henderson et al., 2006].

Although the model-predicted directional spreading in the nearshore appears overly

narrow in directional space and too spread out in frequency space, the overall agreement

between observations and predictions is encouraging considering the large propagation

distances and highly dissipative surf zone, which represents a severe test for the para-

meterizations of the stochastic closure and depth-induced breaking.
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Figure 5.23: Comparison of observed and predicted spectra for October 19, 1997 at FRF-

(left panels) and F-array (right panels). Top panels: observed (circles) and predicted (solid line)

frequency spectra; dotted and dash-dot line represent linear model predictions with r0 = 0.1

and r0 = 1 respectively; dashed line represents offshore spectrum (20m-array, 5 km offshore).

Middle and lower panels are observed and predicted directional spectra respectively.
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Figure 5.24: Comparison of observed and predicted spectra for October 19, 1997 at E- (left

panels) and B-array (right panels). Top panels: observed (circles) and predicted (solid line)

frequency spectra; dotted and dash-dot line represent linear model predictions with r0 = 0.1

and r0 = 1 respectively; dashed line represents offshore spectrum (20m-array, 5 km offshore).

Middle and lower panels are observed and predicted directional spectra respectively. Note

difference in color scaling between left and right panels.
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5.5 Discussion stochastic modeling approaches

5.5.1 Outlook on applicability

The stochastic angular spectrum formalism describes the propagation of random, di-

rectionally spread waves over laterally heterogeneous topography through a set of ODE’s

in one-dimensional, physical space (x) for the three-dimensional (in spectral space)

spectrum and five-dimensional bi-spectrum. The lateral heterogeneity thus comes at the

expense of a dimensional extension by one in the lateral wavenumber space, consistent

with the notion of a correlation function of a heterogeneous (or ‘non-stationary’ if the

heterogeneity is in time) process, of which the spectrum is the (multi-dimensional)

Fourier transform.

With the embedded parameterization of surf zone dynamics, the present modeling

approach is applicable to typical operational scales in coastal engineering practice,

including the very nearshore. However, through the omission of third-order interactions,

it is implicitly restricted to relatively shallow water or relatively short length scales, over

which higher-order contributions (e.g. cubic/quadruplet interactions) are ineffective.

Moreover, for extended domains, physical processes other than those accounted for in the

present model can contribute significantly to the wave field evolution. Likely candidates

are the action of the wind on the fluid surface [Phillips, 1957; Miles, 1957] and the

scattering of waves on meso-scale topography, or Bragg scatter [Mei, 1985; Ardhuin &

Herbers, 2002]. However, stochastic formulations to account for e.g. wind, higher-order

nonlinearity and bottom scatter are well established [e.g. Hasselmann, 1962; Cavaleri &

Malanotte-Rizzoli, 1981; Ardhuin & Herbers, 2002] and if needed they can be added to

the present stochastic evolution model in the form of additional forcing (source) terms.

In the nearshore, and in particular for highly energetic conditions, predicted spectra

are narrower in directional space than observed spectra (§5.4). The fact that these mis-

matches occur consistently in the very nearshore, suggests that it is related to a nearshore

scattering process for which the model does not account, such as directional scattering of

breaking waves [Herbers et al., 1999, 2003] and the interaction with nearshore currents

[Henderson et al., 2006].

Comparisons to observations indicate that the parameterization of depth-induced

breaking and the stochastic closure approximation, to support wave propagation at high

Stokes numbers, are robust. However, it is noted that spectra tend to be over-smoothed,

and the decay of energy levels at the high-frequency spectral tail is too gradual. A

possible remedy for the latter can be conceived through relaxation of the spectral tail to

an equilibrium shape, the existence of which is indicated by recent empirical evidence

[McKee Smith & Vincent, 2003].

Although the model is a stochastic one and does not resolve the individual waves,

it must resolve the resonance mismatch, which – in relatively deeper water – implies

variations on the intra-wave length scale. These rapid modulations are of no dynamical

consequence, but constrain the grid spacing, a restriction that becomes particularly

prohibitive when applied to larger domains, e.g. a typical coastal scale. This situation can
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effectively be alleviated through a twofold extension. Firstly, the addition of a relaxation

term to the transport equation for the bi-spectrum which is effective only in the off-

resonant region (in contrast to the relaxation discussed in §4.4.3 which only acts close to

resonance), and which enforces a return to the real bi-spectrum (quadrature), correspon-

ding to the steady, Stokes solution (‘Stokes relaxation’); secondly, the implementation of

an adaptive step size algorithm in the numerical integration. Although adaptive step size

algorithms are abundant and implementation is straightforward [Press et al., 1986, and

many others], they are wholly ineffective if the wave field evolution is characterized by

incessant oscillations (of roughly the same length scale) throughout most of the domain.

By means of the aforementioned damping these oscillations are made transient so that

the use of a variable step size then provides a means to more efficiently advance the

solution in space.

The abovementioned ‘Stokes relaxation’ can be formulated as follows. Starting from

the one-dimensional bi-spectrum equation of §4.4.3, without dissipation and the relaxa-

tion, written as
dC12

dx
= iΛ12C12 + 2iQ12 = iΛ12

[
C12 +

2Q12

Λ12

]
. (5.16)

For off-resonant conditions and a horizontal bottom, the solution reads

C12(x) = −2
Q12

Λ12

(1 − exp [iΛ12x]) + C12(0) exp [iΛ12x]. (5.17)

Clearly, when initialized with C12(0) = −2Q12/Λ12, the bi-spectrum will take a real,

constant value, placing the interactions in quadrature, rendering the trivial case where

energy transfers are absent. However, in anticipation of spectral evolution, which –

irrespective of the choice of initialization – will occur when traversing topography, it

is more instructive to consider the case C12(0) = 0. This case is typified by (rapid)

modulations on account of the exponential function exp [iΛ12x], which represents the

sort of modulations we wish to suppress. The Stokes relaxation is obtained by adding

damping to (5.16) in the form

dC12

dx
= (i− sgn (Λ12)α)Λ12C12 + 2(i− sgn (Λ12)α)Q12

= (i− sgn (Λ12)α)Λ12

[
C12 +

2Q12

Λ12

]
, (5.18)

with α a real and positive tunable constant, the solution relaxes to

lim
x→∞

C12(x) = lim
x→∞

−2
Q12

Λ12

(1 − exp [(i− sgn (Λ12)α)Λ12x]) = −2
Q12

Λ12

. (5.19)

This form of damping, through the scaling with |Λ12|, is effective only in the off-resonant

region and enforces a return to the steady, quadrature bi-spectrum, which corresponds

to Stokes second-order theory.
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Note that when considering the bi-spectral evolution equation in isolation of the

energy equation, and considering Q12 a constant, it can be argued that similar damping

characteristics can be obtained by simply adding a linear damping term of the form

−α|Λ12|C12. Although internally consistent, this would imply a phase-shifted (thus com-

plex) steady state, consequently resulting in a continuous energy transfer across the

triad constituents, which must be rejected on physical grounds.

5.5.2 Diffraction of random wave fields around thin barriers

The stochastic angular spectrum approach has been shown successful at modeling the

physics of a refractive focus (§5.3.1), including the effects of diffraction and coherence

in crossing wave trains behind a topographical lens. In fact, the present stochastic

modeling approach inherits its wide-aperture diffraction capability from the underlying,

deterministic framework [Stamnes, 1986; Dalrymple & Kirby, 1988]. Consequently it is

expected to be particularly well-suited for wide-angle diffraction in random, directionally

spread waves as typically encountered around thin barriers such as e.g. breakwater tips

or harbor entrances.

Conventional stochastic models [e.g. Komen et al., 1994; Booij et al., 1999] are

generally of limited use in such regions. Firstly, this class of models assumes homogeneity

of the wave field, a premise, which – for the conditions mentioned – is invalid [see

e.g. O’Reilly & Guza, 1991]. Secondly, they are based on the refraction or geometrical

optics approximation that does not account for the effects of diffraction. Although

phase-decoupled (homogeneous) diffraction approximations can improve the predictive

capability around harbor mouths and breakwaters [e.g. Holthuijsen et al., 2003], the

heterogeneity of the waves remains unaccounted for.

To illustrate how the present formalism – in the linear approximation – can be applied

around thin barriers we consider an idealized breakwater gap problem, with the depth

momentarily assumed uniform and the breakwater represented as a thin, impermeable

barrier along the line x = 0. A gap through which the waves can penetrate extends over

−G1 < y < G2. Waves originate from sources in the half plane x < 0, in which region the

spectrum is known. The objective is to determine the spectrum in the half plane x > 0

from the matching condition at x = 0; the latter is obtained from geometrical optics,

an approximation which is commonly referred to as the physical optics or Kirchhoff

approximation, and reads

dΦ

dx

∣∣∣
0+

=





dΦ
dx

∣∣∣
0−
, −G1 < y < G2

0, −G1 > y > G2

(5.20)

where x = 0+/− denotes locations just inside/outside the domain x > 0. Say that the

potential function at x = 0− is written as

Φ(0−, y, z, t) =
∑

v1

ϕ̃1
1,i(x)

ChQ1

Ch q1
exp [i(λ1y − ω1t)];

dϕ̃1
1,i

dx
= iκ1

1ϕ̃
1
1,i, (5.21)
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where the subscript i on ϕ̃1
1,i designates the incident wave field. Through the matching

at the gap (viz. (5.20)), we find

S(ω1, λ1, λ2, x
+) =

1

π2

∫
dλ3

(κ3
1)

2

κ
1
1κ

2
1

S(ω1, λ3, 0
−)

sin ((λ3 − λ1)Gm)

(λ3 − λ1)

sin ((λ3 − λ2)Gm)

(λ3 − λ2)

· exp
[
i
(
(κ1

1 − κ
2
1)x+ (λ1 − λ2)G∆

)]
, (5.22)

where Gm = (G1 + G2)/2 and G∆ = (G1 − G2)/2. The S are surface elevation spectra

defined as

S(ω1, λ1, λ2, x
+) = lim

∆ω,∆λ→0

〈ζ̃1
1 (ζ̃2

1 )∗〉
∆ω∆λ2

, S(ω1, λ3, 0
−) = lim

∆ω,∆λ→0

〈|ζ̃3
1,i|2〉

∆ω∆λ
. (5.23)

The ζ̃1
1 denotes the surface elevation amplitude which, in the present linear approxima-

tion, is related to the potential amplitude through ζ̃1
1 = −iω1/gϕ̃

1
1. Local spectra (in the

lateral sense) in the half plane x+ are readily obtained through (viz. §4.2)

S(ω1, λ, y, x
+) =

∫
S(ω1, λ+ λ′/2, λ− λ′/2, x+) exp [iλ′y] dλ′. (5.24)

For the present, uniform depth case, the algebraic relations (5.22) and (5.24) deter-

mine the wave spectrum at any location in the half plane x+ from the known spectrum

at x = 0−.

This solution is not exact. Its approximate nature, even apart from the simplifications

implied by the use of an inviscid theory, originates from the use of geometrical optics for

the matching condition (5.20), and the neglect of evanescent modes [Stamnes, 1986].

Nevertheless, it is a first-principle based description of the evolution of directional

spectra, including the effects of diffraction in laterally heterogeneous wave fields, which

– as such – may be suitable for engineering purposes e.g. for determining wave-induced

forces on mooring systems in sheltered areas.

To verify the present stochastic representation of diffraction around thin barriers,

we compare our stochastic model to analytical expressions for wave diffraction around

obstacles [Penney & Price, 1952]. We consider two cases: a semi-inifinite screen (G1 =

Ly/2, G2 = 0, Ly is the lateral extent of the domain) and a breakwater gap (G1 =

G2 = 2.65 wavelengths ¿ Ly). The expressions in Penney & Price [1952] for the semi-

infinite screen represent the exact solution by Sommerfeld [1896]. The expressions for the

breakwater gap (their eq.’s (39-40) and (43)) are not exact as the secondary diffraction

waves are omitted; however, the approximation is very good for gaps wider than a

wavelength. To be consistent with the angular spectrum model, which considers solely

wave components that propagate into the positive half plane, we omit the contribution

from the reflected waves in the Penney & Price expressions.

For both cases we consider a monochromatic wave field incident in the outer domain

(x−) with angular frequency ω = π rad/s; the relative water depth kh = 1.2. Since we
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(a) Semi-infinite breakwater
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Figure 5.25: Contours of (normalized) wave height behind semi-infinite breakwater (top

panels) and breakwater gap (lower panels). Comparison between stochastic angular spectrum

model (left panels) and analytical expression [Penney & Price, 1952] (right panels).

presently consider the stochastic model in the linear approximation the wave height is

arbitrary. The discrete spectrum predicted by the stochastic angular spectrum model

(SAM) can be written as

S(ω, λ1, λ2, x) =
∆λ

π2

(κλ=0
1 )2

κ
1
1κ

2
1

S(ω, 0, 0−)
sin (λ2Gm) sin (λ1Gm)

λ1λ2

· exp
[
i
(
(κ1

1 − κ
2
1)x+ (λ1 − λ2)G∆

)]
, (5.25)

with sin (λjGm)/λj replaced by Gm if λj = 0. Since the discrete SAM formalism

implies laterally periodic boundary conditions we consider a domain sufficiently wide

such that the boundary periodicity does not affect the region of interest. Accordingly

we set ∆λ = k/80 and the discrete lateral wavenumber arrays for λ1 and λ2 range

[−79 . . . 79]∆λ. The spatial domain is discretized as ∆x = ∆y = 1 m.

In Figure 5.25 we show normalized, two-dimensional wave height variations predicted

by the SAM model and the analytical model in the diffraction area for the semi-infinite

breakwater and the breakwater gap case. Apart from minor differences in the near

field of the line x = 0, attributed primarily to the neglect of evanescent modes in the

SAM formalism, the wave height variations are in good agreement. The quantitative



5.5 Discussion stochastic modeling approaches 147

PSfrag replacements

y/L [-]

H
/H

0
[-
]

−6 −30 0 3 6

0.5

1

1.5

x/L = 4

PSfrag replacements

y/L [-]

H
/H

0
[-
]

−6 −30 0 3 6

0.5

1

1.5

x/L = 4

x/L = 15

(a) Semi-infinite breakwater

PSfrag replacements

y/L [-]

H
/H

0
[-
]

−6 −30 0 3 6

0.5

1

1.5

x/L = 4

PSfrag replacements

y/L [-]

H
/H

0
[-
]

−6 −30 0 3 6

0.5

1

1.5

x/L = 4

x/L = 15

(b) Breakwater gap

Figure 5.26: Comparison of normalized wave height along transects (transects indicated in

figures); solid line represent analytical model predictions [Penney & Price, 1952], circles are

predictions stochastic angular spectrum model.

agreement along transects is excellent (Figure 5.26), in particular along the transect

farthest away from x = 0. This confirms that the SAM model accurately accounts for

wide-angle diffraction and coherence in heterogeneous wave fields.

For illustrational purposes we have considered the simplest non-trivial cases and

verified the stochastic model’s diffraction capability through comparison to well-known

analytical expressions for pure diffraction of a monochromatic wave field. Naturally,

the stochastic model is not restricted to such narrow-band wave fields but is suited

for arbitrary spectral shapes in frequency and directional space from which, through

similar operations, the diffracted, nonhomogeneous wave spectrum can be computed.

Moreover, this reasoning can be extended to less trivial cases involving shoaling, lateral

depth variations, nonlinearity and potentially even breaking waves. For such cases, the

matching condition (5.20) provides a boundary condition for the domain x+, on the

basis of which the spectral evolution inside the domain of interest can be computed

utilizing the more general SAM2D implementation (§5.1).





6Wave-group induced long waves

over varying depth

In shallow coastal waters, near-resonant quadratic interactions enhance harmonics,

and amplify wave motion at beat-frequency ranges (typically 0.004 − 0.04 Hz). The

latter are an important factor in the driving of nearshore morphological evolution [e.g.

Symonds et al., 1982; Roelvink & Stive, 1989]. The depth modulations associated with

these long waves affect design wave height on coastal structures and the excitation of

resonant modes can be important for the design of harbors and large-vessel mooring

systems.

Munk [1949] was the first to report observations of this class of low-frequency (lf)

motion which – based on his inference that these waves are induced by the variability of

wave-induced mass transport into the surf zone – he coined surf beat†. Observations by

Tucker [1950] confirmed the linear relation between the amplitude of the incident swell

and the amplitude of the attendant beat motion reported by Munk. Also, Tucker cross-

correlated the short-wave envelope and the local low-frequency motion, one thousand

yards offshore, and found a distinct peak of negative correlation at a lag approximately

equal to the sum of the travel times of a wave group travelling to the shoreline and of a

free wave, reflected from the shoreline, returning to the position of observation. Although

the conceptual notion of variable mass-transport into the surf zone is consistent with

the observed time lag, it is at variance with the observed linear dependence on incident

wave height and the correlation being negative at the appropriate time lag.

By solving the governing equations to second-order in nonlinearity, Biésel [1952] and

later Longuet-Higgins & Stewart [1962] showed that the modulations in the primary

wave field induce water level variations, usually referred to as bound or forced long

waves, such that the water level is depressed under groups of high waves. The conceptual

model of radiation-stress variations forcing beat-frequency waves [Longuet-Higgins &

Stewart, 1962] is consistent with the negative correlation reported by Tucker, however,

†In the literature these lf wave motions, occurring at beat frequencies of the primary waves, are

often referred to by the synonyms ‘infragravity waves’ [e.g. Reniers et al., 2002; Van Dongeren et al.,

2003; Janssen et al., 2003], ‘surfbeat’ [Munk, 1949] and ‘subharmonics’ [Janssen et al., 2003; Battjes

et al., 2004]. We will refrain from their use here. This is a matter of preference, substantiated somewhat

by the following considerations. The term ‘infragravity’ suggests that gravity is not the restoring force,

which is at variance with our conceptual understanding of their physics. Although historically justified,

‘surfbeat’ reflects the (incomplete) inference that these beat motions solely originate from surf zone

processes. The wording ‘subharmonics’ is ambiguous as it is extensively used in various fields of physics

to indicate motion at integer fractional frequencies of the primary harmonic frequencies [Guza 2005,

personal communication].
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the antinomy with the observed linear dependence on incident swell amplitude remains.

With respect to the latter, Longuet-Higgins and Stewart argued (similar to an argument

used by Tucker) that, since waves of smaller amplitude are allowed to propagate into

shallower water, and thus are amplified more strongly, the relation between swell and

low frequency is at least weaker than quadratic (and thus closer to the observed linear

one).

The shallow-water asymptote of the equilibrium response derived by Longuet-Higgins

& Stewart [1962], upon substituting Green’s law for the primary wave amplitude vari-

ation, predicts an amplitude variation of the bound wave proportional to h−5/2; the

latter is often interpreted as a shoaling law (although Longuet-Higgins and Stewart do

make reservations about this). This interpretation is generally incorrect. After all, the

uniform-depth solution does not account for the depth variability. Moreover, the premise

of the primary waves being in shallow water (Green’s law shoaling), is inconsistent with

the notion of an (off-resonant) bound wave and instead the wave evolution should be

described by near-resonant interaction theory [e.g. Mei & Ünlüata, 1972; Bryant, 1973,

see also Chapter 2].

In a saturated surf zone, a modulated incident wave train gives rise to excursions of

the initial point of wave breaking at the time and length scale of the wave modulation.

Symonds et al. [1982] show that for a weakly-modulated incident wave train this results

in radiation of free long waves away from the region of initial breaking. Symonds

& Bowen [1984] extend this model to include a barred depth profile shoreward of

the breaking region, allowing a half-wave resonance in that region; in particular they

investigate the coincidence of this resonance condition with that of the quarter-wave

resonance of the moving breakpoint mechanism. Both models neglect incident forced lf

wave motion, but since the description of the low frequency motion is linear, solutions

may be superposed.

Schäffer [1993] presents a semi-analytical model that combines long wave generation

due to variations in the initial breakpoint position, with local forcing due to modulations

of the primary waves both inshore (partial transmission of modulation) and offshore of

the breakpoint for a plane sloping beach. Various numerical models, capable of modeling

the forcing of lf wave motion by considering spatial gradients in the radiation stress

function, were developed [e.g. Van Leeuwen & Battjes, 1990; Van Leeuwen, 1992; List,

1992; Roelvink, 1993; Reniers et al., 2002; Van Dongeren et al., 2003].

Several experimental laboratory studies of the generation and propagation of lf mo-

tion on beaches, have been conducted [e.g. Mansard & Barthel, 1984; Kostense, 1984;

Van Leeuwen, 1992; Janssen et al., 2000; Baldock et al., 2000]. Kostense [1984] per-

formed experiments on a relatively steep beach (1 : 20) and found qualitative but poor

quantitative agreement with predictions of the Symonds et al. model. Observations by

Mansard & Barthel [1984] on a 1 : 40 beach and those reported by Janssen et al. [2000]

on a 1 : 50 beach, indicate a dominance of the group-bound long waves accompanying

(but lagging) the short-wave groups over the varying depth. In contrast, Baldock et al.
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[2000], performing experiments on a 1 : 10 slope, attribute the attendant lf wave motion

mainly to the time variation of the initial breakpoint. The prevalence of either breakpoint

radiation of long waves or shoaling enhancement of group-forced waves is related to the

relative bed slope by Battjes et al. [2004]; this supports earlier suggestions by e.g. List

[1992] and is consistent with empirical evidence.

In the field, the generation and propagation of lf motion in the nearshore region is

complicated due to the two-dimensional nature of the wave field and bed topography.

Refractive trapping of long waves may occur, resulting in edge waves [e.g. Gallagher,

1971; Bowen & Guza, 1978]. Field observations [e.g. Elgar et al., 1992; Okihiro et al.,

1992; Herbers et al., 1994; Ruessink, 1998] show that the attendant lf motion seaward of

the surf zone is a combination of forced components and locally or remotely generated

free waves. Also, these observations support an increasing dominance of forced waves

(relative to the total lf wave field) with more energetic seas and swell.

The effects of a varying bathymetry on the low-frequency response, in particular the

radiation of free waves away from a local region of varying depth, is studied by Molin

[1982] for normal wave incidence and deep water conditions for the primary (forcing)

waves. This is extended by Mei & Benmoussa [1984] for obliquely incident waves and

intermediate water depth for the forcing waves, based on a WKB expansion described by

Chu & Mei [1970]; part of this is re-examined by Liu [1989]. The forcing and radiation of

long waves by a wave group over variable depth is investigated by Dingemans et al. [1991]

based on a numerical implementation of the third-order evolution equations presented

in Liu & Dingemans [1989].

The effect of a variable depth on the forcing of beat-waves is considered by Bowers

[1992], Van Leeuwen [1992] and Janssen et al. [2003]. These authors analytically express

the effect of the depth gradient on the local, forced response as a perturbation of the flat

bottom situation and show that the depth variability results in a phase shift between

the local response and the forcing short-wave groups away from the π radians phase

difference implied by uniform depth theory; it provides a theoretical explanation for

the changing phase relation observed in the laboratory [e.g. Mansard & Barthel, 1984;

Van Leeuwen, 1992; Janssen et al., 2000], in the field [e.g. Elgar & Guza, 1985; List, 1992;

Masselink, 1995] and in numerical studies [e.g. List, 1992; Herbers & Burton, 1997].

The phase shift between the primary wave envelope and forced lf waves on a slope

(away from the π radians phase difference) affects the shoaling of these components; it

results in an off-quadrature interaction and is therefore a necessary condition for net

energy exchanges to occur. In the present chapter we address in particular the phase

relation between the short-wave envelope and ensuing forced low-frequency wave motion.

To that end, we analyze the experimental data reported by Boers [1996, 2005]. The high

spatial resolution of the observational array allows for a detailed investigation of the wave

field evolution. Utilizing the cross-correlation function between high-frequency envelope

and forced low-frequency modes [e.g. List, 1992; Roelvink, 1993], it allows visualization

of the phase relations between the wave groups and accompanying bound wave motion.
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Model simulations are performed based on the stochastic model derived in Chapter 4,

and predictions are compared to observations.

This chapter is organized as follows. In §6.1 we describe the experimental set-up by

Boers [1996] and outline our cross-correlation analysis. The data analysis and interpre-

tation is given in §6.2. We compare model predictions to observations in §6.3, and in

§6.4 present an analysis of the shoaling behavior of group-induced long waves embedded

in the stochastic model, with particular consideration of the depth-induced phase shift.

Main findings are discussed in §6.5.
The analysis of experimental data (§6.1) and interpretation thereof (§6.2) is a selection

of the more elaborate analysis results presented in Janssen et al. [2003] with minor

textual and notational modifications.

6.1 Experimental arrangement and method of analysis

6.1.1 Experimental set-up

Boers [1996] conducted experiments in a 40 m long, 0.8 m wide wave flume of the Fluid

Mechanics Laboratory at Delft University of Technology. The flume was equipped with a

hydraulically driven, piston-type wave generator. The bottom profile was adopted from

an actual barred sandy beach (Figure 6.1). The origin of the x-axis is at the beginning of

the slope, where also the wave gauge nearest to the wave board was positioned (Figure

6.1). The mean position of the wave generator is at x = −4.5 m. The observational

transect consists of 70 wave gauge positions, with the highest spatial resolution (0.2 m)

in the nearshore region (19 m ≤ x ≤ 28.5 m).

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | || |
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Figure 6.1: Beach profile Boers [1996], positive x-direction from left to right. Circles at SWL

and x-axis ticks indicate wave gauge positions.

The control signal for the wave board consists of a relatively short duration, irregular

wave signal repeated several times. Significant wave height, Hs, peak period, Tp, and

signal cycle periods (signal is repeated approximately 75 times) of the cases considered

are given in Table 6.1. To avoid confusion we use the labels of the experiments as given
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Name Hs [m] Tp [s] Cycle Period [s]

1A 0.16 2.05 157.079

1C 0.10 3.33 245.441

Table 6.1: Wave height and peak period as observed at x = 0 for experiments considered.

Experiment labels as in Boers [1996].

by Boers [1996], but since the phenomena we want to emphasize are most prominent in

experiment 1C (low wave steepness), we focus on those results in the data analysis and

refer to 1A mainly where they differ significantly.

Second-order theory is used for the wave generation [Klopman & Van Leeuwen, 1990]

to suppress generation of spurious harmonics. Re-reflections off the wave board are

reduced through active reflection compensation (ARC) at the wave board. However, in

view of restrictions imposed by the limited excursion of the wave board, the signals

used in the ARC were high-pass filtered at fp/10 for experiment 1A and 1C. The

deterministic wave board control signal was used for multiple repetitions of runs with

identical input signals so as to cover a wide cross-shore interval with high spatial

resolution (70 positions) using a limited number of wave gauges. Surface elevation records

were approximately 30 minutes long and acquired at 20 Hz.

6.1.2 Method of analysis

We decompose the surface elevation observed at each measurement location xi, i =

[1 . . . 70] in low-frequency (lf) and high-frequency (hf) components

η(t, xi) = ηlf(t, xi) + ηhf(t, xi). (6.1)

Here x1 corresponds to the offshore boundary at x = 0 (the origin) and the index

i increases shoreward (see Figure 6.1). The superscripts lf and hf relate to frequency

ranges f < fp/2 and f ≥ fp/2, where fp denotes the peak frequency. This somewhat

arbitrary distinction between hf and lf motion is motivated by the observation that

variance spectra at x1 exhibit a fairly distinct local minimum around fp/2.

We define the hf envelope as

A (t, xi) =
∣∣ηhf + iη̃hf

∣∣lf , (6.2)

where η̃hf denotes the Hilbert transform of ηhf. On the premise that the hf motion, ηhf,

is fairly narrow-banded, A (t) can be interpreted as the envelope function (Figure 6.2).

The superscript lf on
∣∣ηhf + iη̃hf

∣∣ in (6.2) indicates the operation of low-pass filtering at

fp/2.

In our analysis of the experimental data we will make extensive use of correlation

functions between various signals. For two (real) realizations V (t, xi) and Y (t, xj) of a

random, stationary process, observed at location xi and xj respectively, the correlation
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Figure 6.2: Example of short-wave envelope, A(t), obtained through Hilbert transform (see

eq. (6.2)). Envelope function is plotted as thick solid line; short waves are shown as thin solid

line.

coefficient function can be defined as† [e.g. Bendat & Piersol, 1986; Oppenheim &

Schafer, 1989]

ρV Y (τ, xi, xj) =
〈(V (t+ τ, xi) − µV (xi))(Y (t, xj) − µY (xj))〉

σV (xi)σY (xj)
, (6.3)

where 〈. . .〉 denotes a time averaging operator which, on the premise of weak ergodicity

of the signals, replaces the operation of ensemble averaging; τ is the time separation

(lag). The µ(xi) and σ(xi) are the mean and standard deviations at position xi of the

signal indicated by the subscript, so that −1 ≤ ρV Y ≤ 1.

We cross-correlate various combinations of signals at different positions and use a

corresponding notation to distinguish between them. For example, the sequence of cross-

correlations between the lf-signal, ηlf (t, xi), and the squared envelope signal at the same

location, A2 (t, xi), with i = [1 . . . 70] is denoted by ρηA (τ, xi), in which the subscripts η

and A correspond to ηlf(t, xi) and A2 (t, xi) respectively (the square is omitted from the

subscript for readability). Alternatively, the set ρV Y (τ, xi;xr) denotes the set of cross-

correlation functions obtained by cross-correlating signals V (t, xi) observed at locations

xi, i = [1 . . . 70] and Y (t, xr) observed simultaneously at a fixed reference position xr.

The values of each of these correlation functions are plotted in the (x, τ)-plane at

the discrete values of x and τ where they are available. By presenting the results in

such a manner we exploit the high resolution in space and time in the sense that local

correlation maxima/minima that are sustained in cross-shore direction appear as quasi-

continuous, two-dimensional ridges/troughs. Since a consistent pattern in the (x, τ)-

plane of the cross-correlation function is likely to be caused by a physical phenomenon,

rather than by noise, this quasi-continuous presentation supports the identification of

†The present notation differs from that in Janssen et al. [2003] in that the signals are not necessarily

zero mean (the envelope function generally is not). Moreover, the sign on τ in eq. (2) in Janssen et al.

[2003] is inconsistent with the presentation of their analysis results.
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relevant correlation variations and their cross-shore evolution, that may not have been

identified from the individual cross-correlation functions.

6.2 Correlation analysis experimental data

6.2.1 Evolution high-frequency envelope
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Figure 6.3: Cross-correlation functions of the squared short-wave envelope,

ρAA (τ, xi; xr = 0 m), for experiment 1C. Dashed line with crosses indicates time lag

values for signal propagating at group speed, Cg, corresponding to fp.

Figure 6.3 shows the cross-correlation ρAA (τ, xi;xr = 0), which correlates the squared

envelope signal, A2 (t, x = 0), observed at x = 0, with those (simultaneously) observed at

each of the individual locations xi. The presence of a single dominating ridge of positive

correlation indicates that the wave groups propagate shoreward, and are destroyed in

the breaking process with negligible reflection from shore. The dashed marker line in the

figures indicates time lag values for a signal propagating at the (linear) group velocity,

Cgp, corresponding to the peak frequency, fp (water depth corrected for measured

steady set-up). The computed lags agree very well with the observed lags of maximum

correlation, indicating that Cgp is indeed a fair approximation of the celerity at which

the squared envelope (i.e. the short-wave energy) is propagated.

6.2.2 Evolution long waves

In Figure 6.4, the cross-correlation functions of the lf surface elevation, ρηη (τ, xi;xr),

for experiment 1C are shown for xr = 0. Comparison is made to time lag values

corresponding to an incident signal propagating with Cgp, reflected at the still-water

line at x = 30 m and propagating in the offshore direction at the free shallow-water

wave celerity (
√
gh). The asymmetry of the curves in Figure 6.4 is due to the fact that

Cgp (for fp) is less than the long-wave velocity, except for the limit of shallow water. The

difference in gradient (dx/dτ) between the ridge of positive correlation associated with
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the incident lf-signal and the curve corresponding to Cgp, indicates that the lf-signal

propagates at a celerity that is somewhat smaller than Cgp. The celerity of the outgoing

lf-waves is well approximated by
√
gh (Figure 6.4).
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Figure 6.4: Correlation functions of the low frequency surface elevation, ρηη (τ, xi; xr = 0)

experiment 1C. Line with circles indicates time lag values for signal propagating in shoreward

direction at group speed, Cg (for fp). Line with squares indicates time lag values corresponding

to signal reflected at x = 30 m propagating in offshore direction at
√

gh.

6.2.3 Concomitant wave-group and long-wave evolution

Figure 6.5 shows the cross-correlations ρηA (τ, xi) between the observed lf surface ele-

vation and squared envelope at the same position (no fixed reference location). This

analysis visualizes the evolution of the local relation between the envelope and lf waves.

In the shoaling regime (0 ≤ x ≤ 21 m), i.e. in absence of significant wave breaking,

the correlation functions form a ridge of negative correlation near zero time lag (Figure

6.5), consistent with the notion of bound wave motion being locally forced by short-

wave groupiness [Longuet-Higgins & Stewart, 1962]. However, this ridge of negative

correlation shifts toward positive time lag as the depth decreases (Figure 6.5), which is

at variance with uniform-depth theory [Longuet-Higgins & Stewart, 1962]. The observed

lag is consistent with inferences regarding the envelope and lf wave celerities in the

shoaling region (see Figures 6.3 & 6.4). Moreover, such a phase shift away from π radians

(implied by the time lag shift of the bar of negative correlation) agrees with earlier field

and laboratory observations [Elgar & Guza, 1985; List, 1992; Masselink, 1995; Mansard

& Barthel, 1984; Van Leeuwen, 1992; Janssen et al., 2000], where such a phase lag was

invariably observed.
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Figure 6.5: Cross-correlation function ρηA (τ, xi) between squared short-wave envelope, A2,

and lf surface elevation, ηlf(t) (at the same location) observed in experiment 1C. Line with

circles indicates (x, τ) trajectory for summed travel times (τ) for wave signal propagating

shoreward from x at the group celerity Cg (corresponding to fp), reflected at the shoreline

(x = 30 m), and returning to x propagating seaward at celerity
√

gh.

6.3 Stochastic modeling of group-induced low-frequency motion
The cross-correlation analysis of observations of random waves over variable depth

reveals a spatially varying phase shift between the squared hf envelope and the en-

suing lf wave motion, away from the π radians phase difference predicted by uniform-

depth, second-order theory [e.g. Biésel, 1952; Longuet-Higgins & Stewart, 1962, 1964;

Hasselmann, 1962]. This finding is consistent with earlier observations in the field [e.g.

Elgar & Guza, 1985; List, 1992; Masselink, 1995] and in the laboratory [e.g. Mansard

& Barthel, 1984; Van Leeuwen, 1992; Janssen et al., 2000]. Bowers [1992], Van Leeuwen

[1992] and more recently Janssen et al. [2003], have shown analytically that the varying

depth, when considered as a perturbation of a horizontal bottom, induces a phase shift

between the primary wave envelope and lf response that is qualitatively consistent with

observations. However, these approaches invariably consider the nonlinear coupling as

a one-way forcing of long waves, assuming that the long wave presence may be ignored

for the evolution of the primary waves; this is reasonable in the shoaling regime if the

water is sufficiently deep, and we will apply similar reasoning in the analysis presented

in §6.4, but in shallow regions (such that also the forcing waves are in fairly shallow

water), where the interaction approaches resonance and the long waves are potentially

of the same order as the forcing waves, this perturbation breaks down [Janssen et al.,

2003]. In such regions wave evolution must instead be described through near-resonant
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interaction theory [see e.g. Mei & Ünlüata, 1972; Bryant, 1973; Freilich & Guza, 1984;

Madsen & Sørensen, 1993], which takes full account of the mutual interactions between

the spectral components.

In the present work we model the wave evolution with the stochastic model of Chapter

4. The emphasis in the modeling effort is – in line with the analysis of the experimental

data – on the spatially varying phase lag between hf envelope and lf surface elevation in

the shoaling region. The reduced set of stochastic equations, suitable for unidirectional

wave propagation, consists of coupled equations for the one-dimensional (in frequency

space) spectrum (E) and two-dimensional bi-spectrum (C). For convenience we repeat

the governing equations here (see also §5.1)
dE1

dx
= −D1E1 − 2

∫
W(1−2)2={C(1−2)2} dω2, (6.4a)

dC12

dx
=

[
iΛ12 − µ12 −

1

2

(
D1 +D2 +D(1+2)

)]
C12 + 2iQ12. (6.4b)

Definitions of Λ12, µ12, D1,Q12 and the nonlinear coupling coefficient W12 are detailed

in Chapter 4 and references therein; for brevity they will not be repeated here.

The stochastic model (6.4) assumes unidirectional wave propagation, whereas the

observed evolution of the lf waves shows significant reflections at the shoreline (see

§6.2.2). In order to properly initialize the model at the seaward boundary and allow for

a meaningful comparison to local spectra and bulk statistics, a decomposition of the lf

wave motion into incoming and outoing (reflected) components is pursued. To that end

we write the observed lf wave motion at location xi as

ηlf(t, xi) =

UL∑

n=1

ζ̃n,i exp [−iωnt] + ∗ =

UL∑

n=1

∑

s

ζ̃sn,i exp [−iωnt] + εn,i + ∗, (6.5)

with UL corresponding to the upper frequency limit of the lf motion fp/2; the εn,i is the

signal residue (noise), and s = ± is a sign index to distinguish incoming/outgoing wave

components propagating in the positive/negative x direction.

The directional decomposition, applied to the surface elevation records, is based on

a standard array method [e.g. Jolas, 1960; Mansard & Funke, 1980; Zelt & Skjelbreia,

1992; Janssen et al., 2001; Battjes et al., 2004], each array consisting of M gauges so

that the decomposition of the signal at location xi for each frequency ωn can be written

in matrix form as


Q+
n,1,i Q−

n,1,i
...

...

Q+
n,M,i Q−

n,M,i



[
ζ̃+
n,i

ζ̃−n,i

]
=




ζ̃n,1
...

ζ̃n,M


+




εn,1
...

εn,M




︸ ︷︷ ︸
ε

. (6.6)

A least-squares solution for ζ̃+
n,i and ζ̃−n,i (minimizing |ε|2) is obtained by means of a

singular value decomposition [Press et al., 1986; Janssen et al., 2001; Battjes et al.,

2004].
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The (complex) amplitudes ζ̃sn,j across the array are related to those at xi through the

Qs
n,j,i which account for the shoaling and propagation across the array, given as

Qs
n,j,i =

√
Cs
g,n,j

Cs
g,n,i

exp

[
is

∫ xj

xi

ksn(x
′) dx′

]
. (6.7)

We tentatively set C+
g,n (group speed for the incident waves) equal to the group speed

(in the linear approximation) corresponding to the peak frequency fp. For the offshore

directed components we assume C−
g,n = Cg,n, thus the linear group speed corresponding

to frequency ωn. The wavenumber k+
n = ωn/C

+
g,n and k−n is the linear wavenumber

corresponding to ωn. This description of the lf wave evolution is particularly approximate

for the incident long waves that are assumed bound waves, locked to the incident waves

groups that propagate at the group speed corresponding to the peak of the spectrum,

while in fact we are unsure of the celerity and shoaling rate of these components (that

is why we consider numerical simulation with the evolution-type stochastic model in

the first place). Although more accurate approximations, such as further decomposing

the incident wave signal into free and bound components [Bakkenes, 2002] or multi-

step predictor-corrector type methods [Van Dongeren et al., 2004; Steenbergen, 2005;

Van Dongeren et al., 2005] are possible, we do not pursue such refinements here. The

accuracy of the present approach is acceptable for eliminating seaward propagating

waves from the observations in the shoaling region [Battjes et al., 2004; Steenbergen,

2005], which suffices for our present purpose.

From the time series for the incident wave field the incident spectrum E+ is estimated,

which is used to initialize the model (viz. (6.4a)) at x1. The bi-spectral evolution equation

(6.4b) is initialized at that location with the steady form as in §5.1, corresponding to a

skewed, symmetrical wave field. The spectral discretization consists of 256 equidistant

frequencies with ∆ω = 0.02π rad/s. Further, with respect to the model settings, the

relaxation constant β = 1.5 and the dissipation frequency weighting is determined by

r0 = 1/10 and r2 = 9/10 (these settings are the same as in Chapter 5). The breaker

index γ is set at a fixed value γ = 0.85, instead of using the relation (4.32) as proposed by

Battjes & Stive [1985] (as done in Chapter 5). Although the values prescribed by (4.32)

[which are lower, see Boers, 2005] render good agreement to observed wave heights for

linear wave model simulations (not shown), they result in under-prediction of surf zone

wave heights for nonlinear simulations. The value γ = 0.85 is chosen ad hoc on the basis

of comparison of model-predicted and observed (bulk) wave height (Hm0
) evolution.

Model-predicted hf and lf wave heights (Hm0
) for cases 1A and 1C (Figure 6.6)

are in good agreement with observed wave heights (of shore-directed components) in

the shoaling region (up to x ≈ 20 m). For case 1A both lf and hf wave heights are

somewhat overestimated for x > 10 m, in particular for lf waves shoreward of the

breaker bar. Although the directional decomposition is expected less accurate in the

nearshore region (shoreward of the breaker bar) on account of inhomogeneity of the

wave field over the array (due to e.g. dissipation and potentially even local reflections),
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the mismatch between observations and predictions is at least in part ascribed to

inaccuracies in the modeling. Firstly, we apply a (nearly) frequency-squared dissipation

weighting, which provides only very weak dissipation to the lower-frequency spectral

regions and may not be physically realistic in shallow water where dissipation due

to breaking may be significant, even for such long waves [Van Dongeren et al., 2004,

2005]; secondly, alternative dissipative processes such as bottom friction [Henderson

& Bowen, 2002; Van Dongeren et al., 2004], which are not represented in the present

model, may be important. However, since the directional decomposition we applied is

of limited accuracy in the very nearshore, we refrain from further discussion of the

relative importance of competing dissipation mechanisms. More accurate approaches to

the directional decomposition are needed [Steenbergen, 2005; Van Dongeren et al., 2005]

which is outside the scope of the present work.

The model-predicted third-order bulk statistics (Figure 6.6) are overall in fair agree-

ment with observations in most of the shoaling region and even shoreward of the breaker

bar. For case 1A (steeper waves) the observed skewness and asymmetry exhibit rapid

spatial variations in the deeper part of the flume, suggesting spurious free wave motion

owing to inaccuracies in the wave generation or re-reflections originating from the wave

board; these are not accounted for in the boundary condition of the model and therefore

not found in the simulations.

The spatial evolution of the wave spectra (Figure 6.7 & Figure 6.8) is characterized by

an initial amplification of spectral levels at harmonic- and beat-frequency ranges, con-

sistent with three-wave interaction rules, followed by a transformation toward a broad,

almost featureless shape in the very nearshore, attributed to the concomitant action of

sustained nonlinear couplings and dissipation. Although model-predicted spectra are ge-

nerally somewhat smoother, the model captures the dominant features of the attendant

spectral evolution, both in the shoaling regime and the surf zone. However, consistent

with the observation that the model over-predicts lf variances in the nearshore, the lf

spectral levels are generally overestimated in this region, in particular for experiment

1A (Figure 6.7). Also for 1A, the model-predicted spectral shape around the (initial)

peak is at variance with observations at locations well inside the surf zone (for instance

x = 24.8 m Figure 6.7), which is ascribed mainly to the approximate nature of the

stochastic closure (see also Chapter 5).

The comparison of model-predicted spectra and bulk statistics to observations vali-

dates the stochastic modeling approach of the experimental data. However, our main

objective is to asses the ability of the present stochastic approach to model the phase

relation between squared hf envelope and the lf surface elevation. Thereto, we first

derive an expression for the correlation between the lf surface elevation and the squared

hf envelope in terms of the spectral and bi-spectral densities. This is achieved by writing

the incoming† hf and lf wave field as

†Although we do not use explicit notation here to distinguish incoming from outgoing modes, only

incoming modes are included in (6.8) and (6.9).
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Figure 6.6: Observed and predicted evolution of shoreward propagating waves for case 1A

(left panels) and 1C (right panels) of Boers [1996] . Top panels: observed Hm0,hf (left axis)

and Hm0,lf (right axis) indicated by circles and asterices respectively; corresponding model

predictions shown as solid and dashed line respectively. Middle & bottom panels: observed

(circles) and predicted (solid line) asymmetry & skewness.
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Figure 6.7: Observed (circles) and predicted (solid line) spectra of shoreward propagating

waves at discrete locations (sub-labels) for case 1A [Boers, 1996]. Dashed line is spectrum at

x = 0 m.
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Figure 6.8: Observed (circles) and predicted (solid line) spectra of shoreward propagating

waves at discrete locations (sub-labels) for case 1C [Boers, 1996]. Dashed line is spectrum at

x = 0 m.
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ηhf(t) =

UH∑

p1=LH

ζ̃1 exp [−iω1t] + ∗ (6.8)

and

ηlf(t) =

UL∑

p1=1

ζ̃1 exp [−iω1t] + ∗ (6.9)

respectively. The LH and UH denote the high- and low-pass band limits for the hf band

respectively, whereas UL represents the upper frequency limit of the lf wave motion†.

By expressing the squared envelope in terms of the hf wave field decomposition, the

covariance function between the latter and the lf motion can be expressed as

CovηA(τ) =<
(
ηlf(t+ τ) − µη

) (
A2(t) − µA

)
> (6.10)

= 4

UL∑

p1=1

(
UH−p1∑

p2=LH

< ζ̃1ζ̃2ζ̃
∗
(1+2) >

)
exp [−iω1τ ] + ∗,

where τ denotes the time separation (lag); µη and µA denote the mean of ηlf(t) and A2(t)

respectively. Applying the appropriate normalization, and taking the limit to continuous

variables, the correlation coefficient function can be written as

ρηA(τ) =

∫ ωul

0
dω1

(∫ ωuh−ω1

ωlh
dω2B12

)
exp [−iω1τ ] + ∗

2
[∫∫ ωul

0
dω1dω2

(∫ ωuh−ω2

ωlh
dω3S1S2S(2+3)

)]1/2 , (6.11)

with B12 = C12/
√
Cg,1Cg,2Cg,(1+2) and S1 = E1/Cg,1. The integration limits coincide with

the discrete summation ranges in (6.8) and (6.9), such that ωul = UL∆ω, ωlh = LH∆ω

and ωuh = UH∆ω. To support meaningful comparison to the analysis of the experimental

data we let ωul = ωlh = fp/2, and the upper band limit of the hf waves ωuh is set at 2fp.

Substitution of model-predicted values for the spectral and bi-spectral densities in

the RHS of (6.11) yields what we refer to as the ‘predicted’ correlation function which

is to be compared to the correlation function estimated directly from the time series of η

and A2 (the ‘observed’ correlation function). Since in the shoaling region (0 ≤ x ≤ 20 m)

the incoming and outgoing lf waves are well separated in time, the observed correlation

function is obtained from the original bi-directional data, without preprocessing through

the directional decomposition. Although small differences may occur on account of

the normalization (after all the model considers only the incident lf wave motion),

this is preferred over the potential errors implied when applying the (approximate)

†Note that, as before, the summations are over p1 and the numeral subscripts on frequency

and surface elevation components should be interpreted as a shorthand for p1. We again utilize this

convention here since it allows for a compact representation of mixed subscripts in multi-dimensional

summations and/or integrations as present in the following (see also §2.1 where a similar convention is

introduced which has been used throughout this thesis).
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directional decomposition on the experimental data prior to cross-correlating the signals

[e.g. Steenbergen, 2005].

In Figure 6.9 and Figure 6.10 the observed and predicted cross-correlation between

squared envelope and lf surface elevation are compared at discrete locations. Of par-

ticular interest are the values of the correlation function close to τ = 0 as these are

associated with the local forcing relation between the lf waves and the squared envelope.

From Figure 6.9 and Figure 6.10 we see overall, in the vicinity of τ = 0, good agreement

between model-predicted and data-derived correlation functions (Figure 6.9 and Figure

6.10). The observed and model-predicted correlation both exhibit a shift of the main

peak of negative correlation toward positive time lag as the waves propagate toward the

shoreline (particularly for experiment 1C), indicating a lagging of the lf wave motion

with respect to the envelope, consistent with the findings in §6.2. This time lag is

substantiated in Figure 6.11, where the time lags corresponding to the local minimum

of the correlation function closest to τ = 0 are plotted as a function of x over the interval

0 ≤ x ≤ 20 m (the shoaling region); model-predicted positive time lag values, associated

with the local minimum of the correlation function, agree quite well with the observed

lags.
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Figure 6.9: Observed (circles) and predicted (solid line) correlation function ρηA at discrete

locations (sub-captions) for case 1A [Boers, 1996].
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Figure 6.10: Observed (circles) and predicted (solid line) correlation function ρηA at discrete

locations (sub-captions) for case 1C [Boers, 1996].
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Figure 6.11: Observed (circles) and predicted (solid line) time lag corresponding to maximum

negative correlation for case 1A (top panel) and 1C (bottom panel) of Boers [1996].

6.4 Dynamics of shoaling forced waves
Comparison to observational data (see §6.3) indicates that the stochastic formalism is

well suited to predict the shoaling of long waves driven by nonlinear quadratic difference

interactions. Here we present an analysis of the governing equations in what we refer

to as the shoaling regime, typified by a slowly varying depth, off-resonant forcing and

relatively low energy levels in the lf forced modes. The objective of this analysis is to

investigate the shoaling behavior of forced lf modes while traversing a (very) mild slope;

to that end we derive explicit expressions for energy and phase-coupling evolution of

the lf spectral range. From the outset, we consider the primary waves narrow-banded,

and momentarily reduce the mutual interaction description to a one-way forcing relation,

thus ignoring the presence of the (presumed small) forced components on the evolution of

the primary waves. In particular, we consider (dis-)similarities to uniform-depth theory

[Longuet-Higgins & Stewart, 1962, 1964] and discuss the occurrence of the bottom-

induced phase shift between forcing and response on a slope.

In accordance with these assumptions the primary waves shoal conservatively, i.e.

such that in the primary wave band ωlh ≤ ω1 ≤ ωuh, the evolution is governed by the

homogeneous set
dE1

dx
= 0. (6.12)

In the lf band the wave motion is forced and the spectral evolution is given by the

(de-coupled) set

dE1

dx
= −4

∫ ωuh−ω1

ωlh

W(1+2)(−2)={C∗
21} dω2, 0 < ω1 ≤ ωul (6.13a)

dC∗
21

dx
= −iΛ21C∗

21 − 2iW(1+2)(−2)E(1+2)E2, ωlh ≤ ω2 ≤ ωuh − ω1 (6.13b)

with ωul the upper limit of the lf band. The decoupling of the equations (6.13a) and

(6.13b) is on account of the fact that the products E(1+2)E2 in the RHS of (6.13b)

involve only spectral components in the primary spectral range which, on account of the

presumed conservative shoaling, are constant. Products involving lf spectral components

are neglected in (6.13b).



6.4 Dynamics of shoaling forced waves 169

Assuming narrow-band primary wave motion with a center-frequency ω0 and using

the long-wave approximations for the forced lf waves yields the expressions

Λ21 ≈ Λ10 =
ω1

Cg0

(
Cg0√
gh

− 1

)
, (6.14a)

W(1+2)(−2) ≈ W10 =
g5/4h1/4Λ10

Cg0
(
gh− C2

g0

)
[
2
Cg0
C0

− 1

2

]
. (6.14b)

Back-substituting these expressions into the governing equations for the lf range (viz.

the set (6.13)) yields the (de-coupled) set

dE1

dx
= 8W10F1<{P1}, (6.15a)

dP1

dx
= −iΛ10P1 + W10, (6.15b)

with 0 < ω1 ≤ ωul and the variables P1 and F1 defined as

P1 =
i

2F1

∫ ωuh−ω1

ωlh

C∗
21 dω2, F1 =

∫ ωuh−ω1

ωlh

E1+2E2 dω2, (6.16)

where F1 is a constant on account of the presumed conservative shoaling in the hf range.

The set (6.15) can be integrated numerically. Here we consider further simplifications to

obtain analytical expressions that provide insight in the long wave behavior over variable

depth.

The set (6.15) is implicitly restricted to off-resonant conditions, requiring Λ10 ∼ O(1).

After all, the one-way forcing model assumes the energy in the forced lf modes is small

relative to the driving modes. This is valid only for off-resonant interactions, or very

short propagation distances such that the loss of energy to the hf modes can be neglected.

Upon integrating eq. (6.15b) by parts once we can write P1 as

P1(x) =

[(W10(x)

iΛ10(x)
+

1

Λ10(x)

d

dx

(W10(x)

Λ10(x)

))
exp

[
i

∫ x′

x

Λ10 dx
′′

]]x

0

−
∫ x

0

d

dx

(
1

Λ10(x)

d

dx

(W10(x)

Λ10(x)

))
exp

[
i

∫ x′

x

Λ10 dx
′′

]
dx′

+ P1(0) exp

[
−i
∫ x

0

Λ10 dx
′

]
. (6.17)

Assuming that the depth is (very) slowly varying, we omit the integral on the RHS

of (6.17), thus neglecting terms that are of the order of the bottom slope squared and

smaller. This approximation is reasonable if the depth variation over a lf wave length

is small relative to the depth. Further, if we omit the oscillatory part of the solution

on account of the initial conditions, which, cumulatively, do not contribute to the net

spectral evolution in (6.15a), we can approximate the P1 by
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P1 ≈
W10

iΛ10

+
1

Λ10

d

dx

(W10

Λ10

)
. (6.18)

The variable depth thus results in a real contribution to P1. In terms of the spectral

evolution, governed by (6.15a), this phase shift implies that the forcing is pushed away

from exact quadrature (imaginary P1) such that the lf range is permitted to shoal non-

conservatively.

Through back-substitution of the approximate expression for P1 (viz. (6.18)) into

(6.15a) and, omitting constants on account of the integration, the forced long-wave

energy flux in a mildly sloping region is given by

E1(x) = 4F1

(W10(x)

Λ10(x)

)2

. (6.19)

To illustrate the significance of the expression (6.19) for the lf fluxes, we momentarily

consider the equilibrium solution by Longuet-Higgins & Stewart [1962, 1964] written for

the ω1 component of the low-frequency spectral range as

ζ̃1 = − RS 1

ρ
(
gh− C2

g,0

) , p1 ∈ [1, 2, . . . , UL] (6.20)

where RS 1 is the ω1 Fourier component of the radiation stress function, and the ζ̃1 are

the lf surface elevation components as in (6.9). The radiation stress component can be

written in terms of the narrow-band hf surface elevation (see (6.8)) as

RS 1 = 2ρg

[
2Cg,0
C0

− 1

2

] UH−p1∑

p2=LH

ζ̃(1+2)ζ̃
∗
2 = 2

ρg

Cg,0

[
2Cg,0
C0

− 1

2

] UH−p1∑

p2=LH

Ã(1+2)Ã
∗
2, (6.21)

where Ã1 =
√
Cg,0ζ̃1. Multiply both sides of (6.20) by their complex conjugates, ensem-

ble average the result, multiply by
√
gh/∆ω, and upon letting ∆ω → 0 we obtain the

expression

E1 =

√
gh

ρ2
(
gh− C2

g,0

)2 lim
∆ω→0

< |RS 1|2 >
∆ω

= 4F1
g(5/2)h(1/2)

C2
g,0

(
gh− C2

g,0

)2
[
2Cg,0
C0

− 1

2

]2

= 4F1

(W10(x)

Λ10(x)

)2

, (6.22)

were we have used (6.21) and (6.14). Note that (6.22) is identical to the prediction of

the stochastic model (6.19).

Thus, for off-resonant forcing on a very mild slope, the evolution of the forced lf

spectrum is faithfully represented by the local uniform-depth solution. To sustain such

a solution over variable depth, energy must be passed to (or from, depending on whether

the depth is in- or decreasing) the long-wave spectral range, which requires a phase shift

(i.e. the real contribution to P1 (see (6.15a)) between forcing and response away from
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the quadrature relation associated with the equilibrium solution in uniform depth. Such

a phase shift is not predicted if the problem were treated with uniform-depth theory

from the outset but is implicit in the evolutionary-type description used here.

To relate the model-predicted phase shift to a time lag between the lf surface elevation

and the squared hf envelope, we express the covariance function as (see (6.10))

CovηA(τ, x) = − 16

Cg0 (gh)1/4

∫ ωul

0

F1|P1| cos (ω1τ + θ1) dω1, (6.23)

with

θ1 = arg{iP1}. (6.24)

From (6.23) and (6.24) we see that the equilibrium solution in uniform depth yields

θ1 = 0 and the covariance function has a negative peak at τ = 0, corresponding to the

bound wave motion being π radians out of phase with the forcing envelope (see §6.2.3).
For the off-resonant mild-slope conditions (viz. (6.18)) the bottom-induced phase shift

is (for small θ) given as

θ1 ≈
hx
W10

d

dh

(W10

Λ10

)
. (6.25)

Since (W10/Λ10)h /W10 > 0 we note from (6.25) that θ1 < 0 on an up-slope (hx < 0).

Consequently, on an up-slope, the minimum of the correlation function, associated with

the bound motion, is pushed toward positive time lag, which indicates a lagging of

the forced waves with respect to the envelope. This is qualitatively consistent with the

analysis results presented in §6.2 where indeed we found a positive time lag on the up-

slope in the experimental set-up. From similar reasoning we see that on a down-slope

(hx > 0) the minimum of the covariance function is shifted to negative time, physically

interpretable as the lf response leading the short-wave envelope. The latter prediction

cannot be verified on the basis of the present data set but requires observations of

wave-groups on a mildly declining bottom.

6.5 Discussion
A detailed analysis has been made of a data set for one-dimensional shoaling and

breaking random surface waves on a slope, and the attendant forced and free low-

frequency motions. The high cross-shore resolution allowed a quasi-continuous space-

time visualization of the propagation of the incident short-wave envelope as well as

the incoming (bound) and outgoing lf-waves, with a spatial detail that has not been

available before. The analysis of the experimental data largely confirms existing notions

concerning the propagation characteristics of the system of primary wave groups and

forced lf waves, in particular the lagging of the lf waves behind the group envelope on a

sloping beach.

Stochastic simulations are performed and model predictions of spectral evolution

and third-order bulk statistics compare favorably to the observations. To relate the
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model predictions to the cross-correlation analysis of the experimental data, we have

derived an expression that relates the spectral and bi-spectral densities (which constitute

the typical output of a nonlinear stochastic model) to the cross-correlation function

between the squared short-wave envelope and lf motion. The model-predicted correlation

functions thus obtained compare favorably to correlation functions derived directly from

the observed time series. In particular, the model-predicted phase lag between the lf

wave motion and the forcing groups in the shoaling regime is in very good agreement

with observations, which indicates that the stochastic model representation faithfully

captures the characteristics of the nonlinear phase coupling over variable depth.

In the nearshore, the model over-predicts incoming lf wave heights consistently.

Although uncertainty remains with regards to the accuracy of the array decomposition

technique in this region, the overestimation does seem to indicate insufficient dissipation

in the low-frequency spectral regime. We attribute the latter primarily to the frequency

weighting of the dissipation due to depth-induced breaking. Although arguably other

effects such as e.g. bottom friction [Henderson & Bowen, 2002; Van Dongeren et al.,

2004] also affect the long wave evolution, their contributions are usually secondary in

magnitude [Van Dongeren et al., 2004, 2005]. The frequency-squared weighting of the

breaking dissipation is applied to improve predictions of the third-order bulk statistics

[Chen et al., 1997], but this weighting deprives the long-wave spectral regime of its

primary dissipation mechanism. In fact, applying a near-uniform weighting of the breaker

dissipation greatly improves the predicted wave height evolution (not shown) but at the

expense of a deterioration of the model-predicted third-order statistics.

In the shoaling regime, where the forced long waves are secondary in magnitude

relative to the primary waves, the stochastic model equations can be simplified. Upon

assuming the forced waves long relative to the water depth and the primary waves as

narrow-band, we have shown that the varying depth induces a phase shift between

forcing and response and that – on a very mild slope and off-resonant conditions–

the stochastic evolution model predicts a spectral evolution in the long wave range

that maintains the local equilibrium solution by Longuet-Higgins & Stewart [1962,

1964]. However, in contrast to uniform-depth theory, the present evolution-type model

also predicts a phase shift between the low-frequency response and the short-wave

envelope, a necessary condition for the growth of shoaling lf waves associated with

the local equilibrium solution, even on very mild beaches. Without it there can be no

energy exchange between the hf and lf frequency ranges and the waves would shoal

conservatively (Green’s law).
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With the present work we have aimed at developing and validating a stochastic model

suitable for the prediction of the nonlinear evolution of random surface gravity waves

over two-dimensional topography in shallow coastal waters.

Thereto, we have derived a deterministic, discrete spectral model based on an angular

spectrum decomposition of the sea surface elevation (Chapter 2); in turn, based on

the deterministic transport equations, we derived evolution equations for the statistical

moments, i.e. a stochastic model (Chapter 4).

The deterministic model and its stochastic counterpart have been verified, both

analytically, through comparison of asymptotic limits to established expressions in the

literature, and empirically, by means of comparison to observations (Chapters 3 & 5).

Our main findings with respect to the development and verification of the respective

models are summarized below.

A generalized deterministic evolution model

On the premise of weak lateral depth variability, we derived a discrete spectral evolution

model, based on an angular-spectrum decomposition of the wave field, while accounting

for two-dimensional topography through a scattering mechanism. The resulting model

consists of a set of coupled-mode transport equations that account for the linear effects

of refraction, shoaling, diffraction and non-stationarity as well as quadratic and cubic

nonlinear effects. It is a generalization and extension of previous work in the sense that:

(i) arbitrary resonance mismatch for quadratic interactions in a multi-frequency, multi-

directional wave field propagating over weakly two-dimensional topography is included,

with exact correspondence to well-known deep-intermediate (Stokes) and shallow water

(Boussinesq) limits; (ii) it accounts for cubic near-resonances in deep-intermediate water

without suffering the breakdown in shallow water typically associated with Stokes-type

expansions.

The equivalence with well-known expressions for nonlinear wave propagation in deep-

intermediate and shallow water is shown (§3.1); by taking appropriate limits, the model

is shown to include both narrow-band cubic Schrödinger-type equations (§3.1.1) and

models for quadratic resonant interactions as special cases, while reducing to a classical

Boussinesq formulation in shallow water (§3.1.2).
The representation of the quadratic nonlinear interactions in the present formulation

is in exact agreement with second-order theory, both for sum- and difference-interactions

[e.g. Stokes, 1847; Hasselmann, 1962; Longuet-Higgins & Stewart, 1964]; in that sense
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it is a generalization of more approximate, so-called resonant and quasi-resonant formu-

lations [e.g. Kaihatu & Kirby, 1995; Eldeberky & Madsen, 1999]. However, differences

between the respective formulations for quadratic interactions are mostly for off-resonant

configurations that force non-secular components, necessarily of small amplitude, with-

out affecting the dynamical evolution of the wave field.

Comparisons of numerical simulations to laboratory observations of one-dimensional

wave propagation demonstrate that the model accurately predicts both cubic nonlinear

effects on the evolution of wave groups in relatively deep water, and harmonic genera-

tion in waves propagating in relatively shallow water over a submerged obstacle. The

successful modeling of such disparate nonlinear cases with a single model illustrates the

general validity of the present formulation (§3.2).
Comparisons to laboratory observations of two-dimensional wave propagation over

a convex beach confirm the robustness of the weakly two-dimensional approximation

of topographical features to describe the combined effects of refraction, diffraction and

harmonic generation in a realistic focusing region on a beach (§3.4).

A stochastic model for heterogeneous, nonlinear shallow-water waves

Based on the deterministic angular spectrum model we have derived transport equations

for the statistical moments, while accounting for the effects of quadratic nonlinearity

and lateral heterogeneity over topography.

In the linear approximation the stochastic model is closed, so that it accounts for shoa-

ling, refraction and diffraction with the same accuracy as the underlying deterministic

model. Two-dimensional topography is accounted for through a scattering mechanism,

whereas the topography-induced phase coupling in the wave field is resolved through

the explicit evolution of correlations between non-collinear wave components. Combined

with the wide-angle capability inherited from the angular spectrum formalism, this

renders the model particularly well suited for the modeling of wave propagation across

e.g. focal regions behind topographical lenses or around thin barriers such as breakwater

tips, where the effects of diffraction and lateral heterogeneity are important.

Dissipation associated with depth-induced wave breaking is parameterized through a

bore-analogy and, after Baldock et al. [1998], assumes surf-zone wave heights Rayleigh-

distributed, regardless whether they are broken or not; an inconsistency in the derivation

by Baldock et al. is corrected. This parameterization results in an explicit expression

for the bulk rate of dissipation and is shown robust, even on steep slopes (§4.3).
Nonlinear closure of the stochastic hierarchy is obtained by means of replacing the

fourth cumulant contribution by a linear damping term in the bi-spectral evolution

equation, to enable relaxation toward Gaussian statistics in the presence of strong

nonlinearity. The length scale over which the triple correlations are relaxed is governed

by both the intensity of cross-spectral energy transfers associated with nonlinearity, and

the intensity of energy losses through depth-induced wave breaking (§4.4).
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Comparison to laboratory observations of one-dimensional random wave propagation,

confirms that the stochastic model accurately predicts the evolution of bulk second- and

third-order statistics over variable depth. Model-predicted spectra compare favorable

to observations, although the high-frequency tail of model-predicted spectra generally

exhibit a somewhat slower drop-off toward higher frequencies than the observed spectra

(§5.2). The predicted energy levels in the low-frequency spectral ranges, associated with

group-forced long wave motion, are predicted quite accurately (§5.2 and §6.3). The

predicted phase relation between forcing primary waves and low-frequency response

over variable depth is in good agreement with what was found from the cross-correlation

analysis of observations (§6.3).
The two-dimensional capability of the stochastic model is verified through comparison

of simulation results to laboratory observations of random, directionally spread waves

over two-dimensional topography. The agreement between predicted and observed wave

heights along instrumented transects is generally good, both for relatively narrow-

and wide-aperture incident wave fields. Since the wave fields considered were of low

steepness, this two-dimensional verification confirms the model’s 2D-capability in the

linear sense (including dissipation) but further verification is needed to verify the model-

representation of the combined topography-nonlinear effects (§5.3).
Empirical verification of the stochastic model through comparisons to field observa-

tions on a near-cylindrical beach indicates that: (i) the conservative processes of shoaling,

refraction and quadratic nonlinear coupling are accurately presented by the model,

(ii) surf zone parameterizations are robust; the model faithfully captures the dominant

features of the spectral evolution in the presence of strong nonlinearity and dissipation;

notable however is the fact that – in such regions – the predicted spectra generally tend

to be overly smooth in frequency space; (iii) over long propagation distances, model-

predicted bulk statistics are predicted accurately but the details of the spectral evolution

– in particular in the very nearshore and inside the surf zone – are not fully resolved,

rendering the agreement with observations more qualitative; in particular, the predicted

spectra tend to be too narrow in directional space and overly smeared out in frequency

space.

Overall, the level of agreement between stochastic model predictions and observations

in the empirical verification of the stochastic model is quite favorable, particularly in

view of the fact that a wide range of wave conditions and topographies were modeled,

including strongly nonlinear waves across surf zone regions, utilizing a single set of

empirical constants for the surf-zone parameterizations (which were chosen in an ad hoc

manner). The present modeling approach, although based on the assumption that both

nonlinearity and lateral depth variations are weak, is robust and well suited to wave

prediction on the continental shelf and beaches, including the surf zone.
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Outlook on applicability and future developments
The stochastic angular-spectrum model derived in the present work inherits full fre-

quency dispersion and wide-angle diffraction capability from the underlying determinis-

tic framework; moreover, it accounts for arbitrary resonance mismatch in the quadratic

nonlinear coupling coefficient. Notwithstanding the deep-water capability in the linear

and quadratic nonlinear sense, the model is limited to relatively shallow water on account

of the omission of cubic resonances; after all, the nonlinear dynamics in deeper water

is governed by cubic, not quadratic interactions. Therefore, in its present form, the

anticipated domain of operation is the nearshore region, either in stand-alone form,

with boundary conditions derived from observations, or nested at the shallow-end of a

larger domain, with boundary conditions provided by a model that does account for the

relevant deep-water physics.

Alternatively, instead of nesting the model, extension to deeper water and longer

propagation distances can be pursued through addition of the relevant deep-water

physics to the present stochastic formalism. With respect to the nonlinear evolution,

this requires accounting for the effects of quartet resonances through extension of the

stochastic model, essentially following the lines of Hasselmann [1962]. On larger scales of

operation, apart from the higher-order nonlinearity, additional physics such as e.g. wind

forcing and steepness-breaking [e.g. Cavaleri & Malanotte-Rizzoli, 1981; Hasselmann,

1974] should generally also be taken into account; such effects can – in principle – be

accounted for through a posteriori inclusion of existing source terms, where these are

available.

For operational use at larger scales, numerical efficiency needs to be addressed.

Particular consideration should be given to the rapid modulations that occur on account

of the resonance mismatches for the quadratic interactions, and the numerically intensive

convolution-type forcing terms in the governing equations, which are typical for nonli-

near spectral models. The former require phase-resolving grid sizes, a restriction that

can be relaxed through adding damping toward a quadrature bi-spectrum in off-resonant

regions combined with an adaptive step size algorithm for the numerical integration (see

§5.5). Efficiency gain with respect to the convolution operators can be achieved through

application of common pseudo-spectral techniques [Canuto et al., 1987].

We remark that in the present work emphasis has been on the development of the

stochastic model formulation, and consequently the deterministic model was considered

primarily an intermediate result. However, Monte-Carlo simulations with the underlying

deterministic model (Chapter 2) may in some cases be preferred over – more approximate

– stochastic simulations. After all, for sufficiently large ensemble size, the Monte-Carlo

approach is generally the more accurate, since (i) the deterministic model includes both

quadratic and cubic interactions, which extends the applicability to deeper water; (ii) the

stochastic model relies on a parameterized stochastic closure, which may be inaccurate in

the presence of strong (shallow-water) nonlinearity. With efficiency of the deterministic

model improved through pseudo-spectral evaluation of the multi-dimensional nonlinear
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convolutions, the additional cost in computational effort associated with Monte-Carlo

simulations, may be an acceptable investment for the gain in predictive value.

Numerous models exist for nonlinear wave propagation, from detailed, time-domain

Navier-Stokes models and high-order Boussinesq implementations, to operational phase-

averaged models, suitable for ocean-scale operation, such as e.g. SWAN and WAVE-

WATCH [Tolman, 1991; Booij et al., 1999]; the evolutionary-type deterministic and

stochastic model developed in the present work hold the middle ground somewhere

between these two classes of models. The sheer variety of numerical model implemen-

tations, suitable for surface wave modeling, will – as a consequence of advances in our

theoretical understanding of the ensuing physics and development of more accurate

and efficient numerical techniques – only increase, not decrease. Furthermore, with the

staggering rate at which capacity of present-day computers increases, more and more

of such models will become operational at ever larger scales, while others – on the

same account – may at some point become obsolete or considered overly parameterized.

Nonetheless, the various approaches are often complementary, each carrying its own

merits and limitations, and it would be illusory to pursue the ‘best’ model in a general

sense. Instead, for particular engineering or science problems we should choose models

that are ‘optimal’ with respect to the specifics of the ‘reality’ that is being modeled,

and to a myriad of practical considerations among which there is usually time and – of

course – money.





Appendix A

Wave-wave interaction coefficients

A.1 Quadratic coefficients
The quadratic wave–wave interaction coefficients are

D1,2 = −1

2

[
ω1k

2
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(
1 − ω2

2
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)
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2
1
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]
,

and

R1,2 =
1

2g
[ω1ω2 (k1T1 + k2T2) + g (k1k2T1T2 − k1 · k2)] .

A.2 Cubic coefficients
For the cubic wave–wave interaction coefficient we have

D1,2,3 = 1
3

[
D̂1,2,3 + D̂2,1,3 + D̂3,1,2

]
,

where

D̂1,2,3 =
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)
R2,3.

Note that the D̂1,2,3 are symmetrical in the last two indices so that D1,2,3 is symmetrical

in all three indices.
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Forcing terms amplitude evolution equations

The forcing terms on the transport equation (2.42) in physical variables and coordinates

are

ξ
(wb)
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) [
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where the aj are dummy variables used for convenience and should be replaced with the

appropriate operand. Further we have

H1,2,3 = 1
3

[
Ĥ1,2,3 + Ĥ2,1,3 + Ĥ3,1,2

]
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The quadratic and modified cubic nonlinear term in (2.44) are
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where in (B.7)
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The forcing operators on the transport equation for a stationary wave field, (3.29),

are
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Appendix C

Wave-driven mean flow and set-down

Governing equations for the wave-driven mean flow are given to facilitate comparison

to experimental (flume) data. Results are presented directly in physical variables and

coordinates and we use the actual, two-dimensional depth h instead of the decomposition

applied to derive the wave field evolution. The current-related quantities are assumed

to depend on the slow scales in x, y and t:

[
Φ(n,0)

η(n,0)

]
=

[
Φ(n,0)(z, x1, y1, t1, x2, y2, t2)

η(n,0)(x1, y1, t1, x2, y2, t2)

]
. (C.1)

To the order of approximation required we obtain from the kinematic and dynamic free

surface boundary condition:
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g
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where Φ = εΦ(1,0) and η = εη(1,0) +(ε2/µ) η(2,0). The wave-induced, depth-averaged mass

flux L and the wave-induced water level correction B are given by
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where ϕ1 = εϕ
(1,1)
1 + (ε/µ)2ϕ

(2,2)
1 . For a stationary wave field the depth-averaged, wave-

driven mean flow and water level corrections are given by
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Verification of third order interaction

coefficient

We have
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2g2

(
ω2k

2
3 + ω3k

2
2

)
.

After some manipulation the interaction coefficient can be written as

Ĥ1,2,3 = − D2,3

g∆2,3

[2 (ω1 + ω2 + ω3) (k1T1k2,3T2,3 − k1 · (k2 + k3)) (D.1)

−ω1k
2
2,3

(
1 − T 2

2,3

)
− ω2,3k

2
1

(
1 − T 2

1

)]
+ D2,3

ω1

g

(
ω2

1

g
+ k2,3T2,3

)

+ R2,3

(
k2

1

(
1 − T 2

1

)
+ k1 · (k2 + k3) −

ω3
1

g2
(ω2 + ω3)

)

+
ω1

2g
k2 · k3

(
(ω1 + ω2 + ω3)

(
ω2

3 + ω2
2

)
+ ω2ω3 (ω2 + ω3)

)

− ω1k
2
3ω

2
2

2g2
(ω1 + ω2 + 2ω3) −

ω1k
2
2ω

2
3

2g2
(ω1 + 2ω2 + ω3) ,

which is equivalent to Herterich & Hasselmann [1980] eq. (B 2) applied to the present

wave field decomposition (the original derivation due to Hasselmann [1962] lacks two

finite depth terms as noted by Herterich & Hasselmann [1980]).



186 Verification of third order interaction coefficient

If – after Longuet-Higgins & Phillips [1962] – we consider the directional interaction

of a couple of waves in deep water then the evolution of ϕ2 say, as a consequence of

pair-wise, third-order interaction with ϕ1 reads:

dϕ2

dt
= −iK1,2|ϕ1|2ϕ2 − 2i

k4
2

ω2

|ϕ2|2ϕ2, (D.2)

where

K =
2ω1k1k2

gω2


ω1


k1 − k2 + 2k2

(
sin

θ1,2

2
cos

θ1,2

2

)2

︸ ︷︷ ︸


+ ω2 (k1 + k2) cos θ1,2

+ (ω1 − ω2) |k1 − k2| cos2 θ1,2

2

[
1 − 4ω1ω2 sin2 θ2−1,1

2

g∆2,−1

]

+ (ω2 + ω1) |k1 + k2| sin2 θ1,2

2

[
1 +

4ω1ω2 cos2 θ2+1,1

2

g∆2,1

]]
(D.3)

and

cos θ1,2 =
k1 · k2

k1k2

, cos θ2+1,1 =
(k2 + k1) · k1

|k2 + k1|k1

, cos θ2−1,1 =
(k2 − k1) · k1

|k2 − k1|k1

. (D.4)

Note that (D.3) is entirely consistent with equation (2.8) of Longuet-Higgins & Phillips

[1962] in their work except the underbraced term which differs by a factor 2; this

discrepancy in expressions does not affect the interaction of mutually perpendicular,

opposing and parallel propagating wave trains but indeed that of any other mutual angle.

Internal consistency of the present derivation was confirmed from many re-derivations,

all leading to the same result. Corroboration of the present expressions was found in

Willebrand [1973, 1975], and Hogan et al. [1988]. The latter authors also find this factor

2 missing in Longuet-Higgins & Phillips [1962].



References

Ablowitz, M. J., Kaup, D. J., Newell, A. C. & Segur, H. 1973a Method for

solving the sine-Gordon equation. Phys. Rev. Lett. 30, 1262–1264.

Ablowitz, M. J., Kaup, D. J., Newell, A. C. & Segur, H. 1973b Nonlinear

evolution equations of physical significance. Phys. Rev. Lett. 31, 125–127.

Ablowitz, M. J., Kaup, D. J., Newell, A. C. & Segur, H. 1974 The inverse

scattering transform – a fourier analysis for nonlinear problems. Stud. Appl. Math.

53, 249–315.

Ablowitz, M. J. & Segur, H. 1981 Solitons and the inverse scattering transform.

Philadelphia, USA: Siam.

Abreu, M., Larazza, A. & Thornton, E. 1992 Nonlinear transformation of

directional wave spectra in shallow water. J. Geophys. Res. 97 (C10), 15,579–15,589.
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