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Executive Summary

This thesis investigates the development and evaluation of a dynamic scheduling model for rail freight
in the Netherlands, aiming to improve scheduling by balancing forecasted network congestion and de-
parture time deviations. The research focuses on analyzing ProRail’s current scheduling limitations,
constructing a deterministic demand forecasting model, and developing a mathematical model to op-
timize freight train scheduling. While the proposed approach shows promise in some scenarios, it
does not consistently outperform ProRail’s existing methods. This summary outlines the objectives,
methodology, and key findings of the research.

The thesis begins by addressing the increasing demand for rail freight transport in the Netherlands
and the challenges of meeting this demand while maintaining customer satisfaction. ProRail’s cur-
rent scheduling approach, which prioritizes requests on a first-come, first-served basis, often results
in significant time deviations for later requests, harming customer trust. This research proposes a
dynamic scheduling model that evaluates each request individually, determining whether to minimize
the departure time deviation for the current request or account for forecasted congestion by offering
an alternative departure time. The goal is to reduce extreme departure time deviations and distribute
themmore evenly across the planning horizon, while ensuring total deviations remain comparable. The
primary research question guides the study:

”How can a dynamic scheduling model that balances minimizing forecasted congestion and departure
time deviations per customer request, improve rail freight scheduling in the Netherlands?”

In the system overview, ProRail’s existing scheduling practices and their limitations are analyzed. The
manual, trial-and-error approach to freight train scheduling leads to suboptimal utilization of network ca-
pacity. Customers often reserve itineraries prematurely, due to uncertainty of receiving their preferred
departure time, which results in cancellations and inefficiencies in the scheduling. This chapter high-
lights the importance of a more automated and customer-centric scheduling system that can improve
operational efficiency and trust.

The thesis constructs a deterministic demand forecasting model to estimate section-specific network
congestion. Using the C-Logit model, demand is distributed across paths based on factors like overlap
distances. A mathematical scheduling model is developed, combining the dual objectives of minimiz-
ing departure time deviations and forecasted congestion. The weight parameter (w) enables trade-offs
between these objectives, creating the base for the sensitivity analysis. Key assumptions, including
uniform train speeds and simplified capacity constraints, are necessary to manage computational com-
plexity but reduce real-world applicability.

The case study evaluates the dynamic scheduling model through experiments, a sensitivity analysis,
and a repeated sensitivity analysis, aiming to identify a weight parameter (w) that consistently improves
results compared to the baseline. The experiments tested the model under low, moderate, and high
network capacities, exploring how different values of w influence the trade-off between minimizing
departure time deviations and forecasted congestion. Sensitivity analysis further examined the impact
of w on performance, while repeated sensitivity analysis randomized the order of requests to assess
the model’s robustness across different input scenarios.

Results showed that in low-capacity networks, smaller values of w could reduce extreme deviations
but often increased total time deviations, presenting a trade-off question of what is desired overall
by the customers. In high-capacity networks, the model’s performance became insensitive to w, as
requests were easily accommodated. The repeated sensitivity analysis highlighted significant variability
in outcomes, especially in constrained networks, and no single value of w consistently and reliably
improved results across all scenarios. These findings reveal that while the model can improve specific
metrics under certain conditions, it lacks the robustness and reliability needed to outperform ProRail’s
current scheduling approach consistently.
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The proposed scheduling model offers insights into balancing time deviations and network congestion
but falls short of consistently improving results. The sensitivity of the results to weights, request order,
and network conditions limits the model’s reliability. While reducing extreme deviations is achievable,
practical implementation challenges such as data limitations, pre-existing schedules, and the variability
of real-world demand undermine its effectiveness. Nevertheless, the research contributes valuable
knowledge on dynamic scheduling methodologies and congestion management.

The discussion situates the findings within the context of existing literature, emphasizing the novelty
of integrating congestion and time deviation minimization without pricing mechanisms. Unlike previ-
ous studies focused on static timetables or dynamic pricing, this research introduces dynamic itinerary
allocation to enhance operational flexibility. However, limitations, including simplified capacity assump-
tions, uniform train speeds, and reliance on deterministic demand forecasting, constrain the model’s
applicability. The research highlights the complexity of designing a robust scheduling system and iden-
tifies areas for further refinement.

The recommendations focus on enhancing ProRail’s scheduling practices and future research direc-
tions. ProRail could improve demand forecasting tools to predict and manage future requests more
accurately and explore the trade-offs between minimizing average and extreme time deviations to align
with customer satisfaction goals. Refining congestion factor calculations and testing alternative penalty
adjustments, such as exponential or scenario-specific scaling, could enhance scheduling decisions.
Future studies should also incorporate dynamic adjustments to the weight parameter (w) using AI to
optimize outcomes for varying request orders and network conditions. Addressing limitations such as
uniform velocity assumptions, predefined paths, and simplified capacity constraints would improve the
model’s realism and applicability, enabling better alignment with ProRail’s operational challenges and
providing a foundation for scalable, customer-centric solutions.

This thesis underscores the potential of dynamic scheduling to improve rail freight operations but re-
veals the challenges of balancing competing objectives in a complex network. While the proposed
model demonstrates some success in reducing extreme deviations, its inconsistent performance high-
lights the need for further research and refinement to achieve practical applicability and overall schedul-
ing improvements.
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1
Introduction

In a world driven by economic growth and globalization, the demand for freight transportation contin-
ues to surge (Lucía Morales, 2020; Statista, 2023). This increasing demand poses a challenge for
transportation systems worldwide, especially in densely populated regions like the Netherlands. With
projections indicating a staggering 50–93% increase in rail freight demand in the Netherlands by 2050
(Centraal Bureau voor de Statistiek, 2024; ProRail, 2021), the Dutch railway network is at a cross-
roads. How can the current infrastructure accommodate this growth while maintaining efficiency and
reliability?

Among the various modes of freight transportation—road, rail, maritime, and air—rail transport stands
out as one of the most sustainable options. It offers significantly lower emissions per tonne-kilometer
compared to other modes, contributing to the global fight against climate change (European Environ-
ment Agency (EEA), 2023; Office of Rail and Road (ORR), 2023). As a society, making more use of rail
freight is crucial not only for reducing environmental impact but also for alleviating highway congestion
and fostering economic resilience.

Despite its advantages, the Dutch rail freight system is under pressure. ProRail, the Netherlands’
infrastructure manager, faces the task of balancing the growing freight demands with a limited and
highly utilized network. Even with annual investments of approximately €1.2 billion in infrastructure
expansion (ProRail, 2020), the question remains: is expanding infrastructure alone sufficient to address
the surge in demand? Or is a more dynamic and strategic scheduling approach needed?

This thesis seeks to address these challenges by exploring whether a dynamic scheduling model, de-
signed to improve the current scheduling methods while meeting customer preferences, can offer a
sustainable and efficient solution for rail freight logistics in the Netherlands.

1.1. Problem Statement
ProRail, the infrastructure manager of the Netherlands, currently adopts a first-come, first-served ap-
proach to handling freight requests (Infrasite, 2023). While straightforward, this method may not be
best suited for managing the complexities of rising demand and peak freight periods. Requests are
allocated as they arrive, filling preferred time slots early and leaving subsequent requests to face sig-
nificant delays. This approach prioritizes early requests without considering the broader impact on the
network or future requests, leading to inefficiencies and customer dissatisfaction.

Conversations with ProRail planners reveal that some freight requests experience departure time de-
viations ranging from multiple hours to several days from their preferred departure times. These devi-
ations arise because the current system lacks the adaptability to balance network capacity utilization
with meeting customer preferences. As the scheduling horizon progresses, customers submitting re-
quests later face increasingly larger deviations from their preferred departure times, the question arises
whether the current scheduling method can be improved, accounting for the dynamic and time-sensitive
nature of rail freight logistics.

1
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Despite ProRail’s annual investment of approximately €1.2 billion in infrastructure expansion (ProRail,
2020), the challenge of managing rising freight volumes persists. Expanding infrastructure alone might
not be enough to address the underlying inefficiencies of the scheduling process. This raises a critical
question: could an improved dynamic scheduling approach, which considers forecasted demand to
distribute departure time deviations more evenly throughout the scheduling horizon, help reduce the
frequency and severity of large departure time deviations?

This thesis seeks to explore whether rescheduling earlier requests with small departure time devia-
tions could reduce large time deviations (in size and quantity) for later requests. By developing a
dynamic scheduling model that focuses on preventing forecasted congestion while meeting customer
preferences, this research aims to improve the limitations of the current first-come, first-served ap-
proach. Drawing on insights from Kraft (2002), where smaller, distributed delays are found to be more
acceptable to customers than larger, concentrated ones. This thesis investigates the effects of a dy-
namic scheduling system that offers alternative departure time deviations more evenly throughout the
scheduling horizon, with a specific focus on reducing extreme deviations in size and quantity.

1.1.1. Request Handling Process
Understanding the current decision-making processes of ProRail for allocating freight requests onto
the Dutch railway infrastructure is essential for identifying areas of improvement. ProRail manages a
planning process that begins well before any freight requests are submitted, involving strategic, tactical
and operational planning phases (ProRail, 2024a).

In the tactical planning phase, approximately 18months prior to the timetable coming into effect, ProRail
collaborates with freight customers to develop a base timetable. This phase involves calculating the
maximum number of trains that can use specific tracks per hour, considering track capacity, station
capacity, maintenance schedules and expected passenger and freight train operations.

During the tactical planning phase, from April to August, customers submit their freight train requests
for the upcoming year. ProRail collects these requests and creates a first draft of the annual service
timetable. Planners manually fit all requests into a conflict-free timetable, involving trial and error to
accommodate as many requests as possible. The manual trial-and-error approach used for allocation
is time-consuming and inefficient, limiting the ability to explore optimal solutions. This inflexibility also
leads to underutilization of the network’s capacity.

After the timetable is finalized, customers can still submit new requests or modifications, but acceptance
depends on the remaining network capacity. ProRail’s first-come, first-served system creates several
issues. Customers who submit requests later face fewer options due to reduced network capacity,
sometimes resulting in significant deviations from their preferred schedules. To avoid this uncertainty,
customers tend to reserve itineraries early, even if they may not need them, leading to frequent cancel-
lations or changes.

This section summarizes the key issues from the system analysis in Chapter 2, highlighting the prob-
lems ProRail experiences and leading into the need for a solution.

1.2. Actors & stakeholders
Understanding the stakeholders involved is essential to assessing the broader impact of this research.
The stakeholders represent the groups or entities directly or indirectly influenced by the findings and
proposed changes. These include ProRail and its customers.

The key actors involved in addressing the problem are:

InfrastructureManager of theNetherlands (ProRail): ProRail is responsible for managing the railway
infrastructure, optimizing track utilization, and planning train schedules. ProRail plays a crucial role in
ensuring the efficient operation and capacity management of the rail network.

Customers: Customers include railway companies or other entities that operate or own freight trains
and rely on the network for transportation. Their primary focus is on timely and efficient delivery of
goods, often requiring coordination with other modes of transport.
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Addressing the scheduling challenges discussed in Section 1.1 provides distinct benefits to these stake-
holders. ProRail could optimize track utilization, reduce manual labor in scheduling, and foster trust
among its customers, all within the constraints of the existing infrastructure. Customers, in turn, would
experience greater alignment with their preferred time slots and paths, improving their satisfaction.
However, increased flexibility might be required from customers submitting early requests, as they
may need to adjust to rescheduling for the broader benefit.

The desired result of this research is to improve satisfaction for all stakeholders by designing and testing
a new scheduling system that accounts for their needs and priorities.

1.3. Literature overview
To tackle the problem described in Section 1.1, literature research was conducted to critically examine
current knowledge and limitations in the field, thereby identifying the research gap. This review draws
on sources from databases such as Scopus, Google Scholar, Mendeley, and Scite, supplemented by
snowballing methods to ensure comprehensive coverage. The central focus of this thesis is dynamic
scheduling for rail freight transport, specifically leveraging demand prediction to decrease extreme
departure time deviations.

The foundation of this work builds on concepts from revenue management, a field that has been exten-
sively explored in passenger and freight transportation. Armstrong and Meissner (2010) conducted a
detailed review of revenue management in railway planning, concluding that rail freight would benefit
significantly from pricing optimization systems that learn from historical demand to predict future de-
mand more accurately. While their study highlights the potential of these systems, it also identifies a
significant research gap in network revenue management specifically tailored to freight railway systems.
The general field of revenue management is important to take into account where the papers from Tal-
luri and Ryzin (2006) and Gallego and Topaloglu (2019) are seen as the most detailed and important in
this topic. Although revenue management traditionally emphasizes pricing and costs, its principles can
be adapted for scheduling by assigning value or worth to itineraries and making decisions based on
these values. This shift focuses on determining whether to allocate an itinerary immediately or reserve
it for future requests, optimizing the overall use of network capacity.

In addition to revenue management, stochastic models have been employed to address allocation chal-
lenges in various industries. Van Slyke and Young (2000) discuss a stochastic knapsack problem that
evaluates whether to accept or reject customer requests based on predefined criteria. While primar-
ily applied to industries such as hospitality and aviation, this approach has potential in railway freight,
where it can be adapted to evaluate whether offering an alternative itinerary is more beneficial than
assigning a preferred option. Further insights are drawn from Kraft (2002), who examined dynamic car
scheduling combined with stochastic train segment pricing to forecast demand, and also researched
the effects of customer acceptance based on departure time deviations, thereby emphasizing the im-
portance of minimizing such deviations. Although their study focuses on allocating cars to trains, the
flexibility inherent in allocating trains to itineraries offers additional opportunities for dynamic realloca-
tion. Unlike cars, trains can be rescheduled with minor departure time adjustments, enhancing the
feasibility of real-time optimization.

Network allocation and capacity management are also critical aspects of this research. Li et al. (2024)
explored train allocation to itineraries within a network, focusing primarily on revenue maximization
through pricing. However, their approach does not consider offering alternative itineraries, which is
central to this thesis. Meanwhile, integrated models combining operations planning and revenue man-
agement, as formulated by Crevier et al. (2012), provide a more holistic perspective. These models
allocate trains and car blocks, yielding complex but accurate representations of network operations.
While revenue remains their primary focus, the breadth of these studies offers valuable insights for
developing more adaptable scheduling systems.

Path-based scheduling techniques further contribute to this thesis. Cacchiani and Toth (2012) devel-
oped models for single one-way lines, while Cacchiani et al. (2010) expanded this work to entire net-
works. These studies incorporate expected and already accepted demand, highlighting the trade-offs
involved in balancing current requests with future expectations. The modeling of these trade-offs will
be particularly useful for addressing the challenges identified in this thesis.
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Despite the breadth of existing research, a significant knowledge gap remains in integrating demand
prediction with dynamic scheduling to offer alternative itineraries. Current studies primarily focus on net-
work revenue management or operational efficiency, with limited emphasis on how dynamic scheduling
can be used to distribute departure time deviations more evenly across the scheduling horizon. Fur-
thermore, the constraints of fixed pricing agreements in the Netherlands (Janssen, 2023) eliminate the
feasibility of dynamic pricing as a tool to influence customer behavior. This thesis aims to bridge this
gap by developing a dynamic scheduling model that processes requests sequentially, calculates the
best itinerary to offer, and prioritizes reducing extreme departure time deviations in size and frequency.
By providing alternative scheduling options tailored to forecasted demand, the proposed model seeks
to enhance the utilization of the Dutch railway infrastructure while addressing the critical inefficiencies
of the current scheduling approach.

1.3.1. Contribution Comparison
To provide a clear overview of the differences between the state-of-the-art knowledge presented in
these papers and identify the research gap, table 1.1 is constructed. This table highlights the distinc-
tions and demonstrates the unique contribution of this research.

Table 1.1: Comparison of literature against thesis topics

Papers / Topics Dynamic
Scheduling

Demand
Prediction

Offering Al-
ternatives

Reducing
Extreme
Deviations

(Armstrong & Meissner,
2010)

✓

(Van Slyke & Young,
2000)

✓

(Kraft, 2002) ✓ ✓ ✓
(Li et al., 2024)
(Crevier et al., 2012) ✓
(Cacchiani et al., 2010) ✓ ✓
(Cacchiani & Toth, 2012) ✓ ✓
This Study ✓ ✓ ✓ ✓

While previous research has explored aspects of rail freight logistics such as stochastic optimization and
capacity allocation, a significant gap remains in integrating demand forecasting with dynamic schedul-
ing to reduce extreme departure time deviations. Studies such as Armstrong and Meissner (2010)
and Kraft (2002) highlight the potential of demand prediction and minimizing departure time deviations,
but do not address its application to dynamic scheduling decisions. Similarly, research on path-based
scheduling by Cacchiani and Toth (2012) and Cacchiani et al. (2010) provides valuable insights but
does not consider the sequential handling of requests or the distribution of time deviations across the
scheduling horizon. Also, the stochastic models and optimization techniques discussed by Van Slyke
and Young (2000) and the network allocation methods by Li et al. (2024) focus on different industries
or do not consider offering alternative schedules to customers.

This research will bridge this gap by developing a dynamic scheduling model that integrates demand
forecasting to determine the best itinerary to offer to each individual customer. The model focuses
specifically on reducing extreme departure time deviations in size and frequency, within the existing
railway infrastructure. Unlike previous work, this thesis prioritizes adapting the scheduling process to
requests as they come in, while using forecasted demand to enhance the adaptability and efficiency of
rail freight logistics.

1.4. Objective
The objective of this thesis is to contribute to the scientific understanding of rail freight scheduling by
developing a dynamic scheduling model that focuses on reducing extreme departure time deviations
in size and frequency. The model introduces a new approach by incorporating forecasted demand to
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distribute small deviations more evenly throughout the scheduling horizon with the goal of reducing the
size and frequency of extreme departure time deviations at the end of the scheduling horizon.

Unlike previous research, which often emphasizes network revenue management or operational effi-
ciency, this study specifically addresses the challenge of handling sequential requests in real-time while
accounting for the dynamic nature of rail freight operations. By offering alternative itineraries based on
forecasted demand, the model provides a fairer distribution of deviations, providing a structured method
to handle congestion without introducing dynamic pricing or denying requests.

This research fills a critical gap in the literature by focusing on reducing extreme departure time devia-
tions, an area that has not been thoroughly explored in rail freight logistics. The results aim to advance
the theoretical foundation of demand-driven scheduling, providing insights that can be applied to im-
prove the adaptability and reliability of freight rail networks.

1.5. Research questions
The main research question addressed in this thesis is:

“How can a dynamic scheduling model that balances minimizing forecasted congestion and departure
time deviations per customer request, improve rail freight scheduling in the Netherlands?”

To answer the main research question, the following subquestions are formulated:

1. What are the limitations of the current scheduling approach used by ProRail, and how do they
impact customer satisfaction?

2. How can a deterministic demand forecasting model be created using request data, and how can
this information be integrated into the scheduling model?

3. How can a mathematical model be developed to dynamically schedule freight train requests while
balancing the two objectives on forecasted congestion and departure time deviation?

4. How does the proposed dynamic scheduling model perform compared to the current approach?

1.6. Methodolgy
This section outlines the methodologies that will be used to develop a dynamic scheduling model for
distributing rail freight requests. The methods are designed to address the research questions by
integrating system analysis, data collection, mathematical modeling, and comparative analysis.

1.6.1. System Analysis and Interviews
What are the limitations of the current scheduling approach used by ProRail, and how do they impact
customer satisfaction?

To answer the first subquestion, a detailed system analysis of ProRail’s current scheduling processes
will be conducted to understand the existing decision-making mechanisms and identify areas for im-
provement. This involves:

• Interviews with ProRail Planners: Engage with planners to gain insights into the entire planning
process, including the structure of requests, timeline for the process, decision-making criteria and
challenges encountered.

• Mapping Current Processes: Use information from the interviews to document the planning
process, such as the overview of the planning process, freight train requests, request handling
process, railway network and path allocation, decision-making by planners, problems, and oppor-
tunities for improvement.

• Identifying Key Factors: Analyze the collected information to determine useful factors affecting
scheduling efficiency and customer satisfaction.

This method provides qualitative insights into the issues faced by ProRail and its customers, forming the
foundation for accurately depicting the current scheduling process and from there develop an improved
scheduling model.
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1.6.2. Data Collection and Demand Forecasting
How can a deterministic demand forecasting model be created using request data, and how can this
information be integrated into the scheduling model?

To answer the second subquestion, request data from customers, gathered over multiple months, for a
specific day will be collected from ProRail. Focusing on essential elements such as origin, destination,
and preferred departure times of freight train requests, the model remains manageable and allows for
a clear demonstration of the scheduling approach’s potential. Additional data will include:

• Freight Paths: Information on the predefined paths used by ProRail to plan requests within the
network.

• Distance Matrix: Data to calculate distances between adjacent stations, aiding in travel time
estimations.

• Station Coordinates: Geographical coordinates of stations for visualizing allocated orders.
• Capacity network: Capacity, per station and rail segment, defined in the amount of trains that
can leave from a station to travel over a rail segment per hour.

A deterministic demand forecasting model will be developed using this data, which will be based on
capacity and forecasted demand in the network. By using a combination of capacity and forecasted
demand, a prediction can be made on whether there will be a high likelihood of congestion or not
at certain sections in the network. By using a deterministic demand model, the approach simplifies
demand prediction without the need for complex historical data analysis, which is beyond the scope of
this thesis.

1.6.3. Mathematical Modeling and Literature Review
How can a mathematical model be developed to dynamically schedule freight train requests while
balancing the two objectives on forecasted congestion and departure time deviation?

To address the third subquestion, this study begins by thoroughly analyzing ProRail’s current scheduling
system and translating its components into sets, parameters, and variables. Building on this analysis, a
conceptual framework is designed to capture the goals of this thesis. The framework is then formalized
into a mathematical model that dynamically schedules freight train requests while aiming to reduce
extreme departure time deviations. The dynamic scheduling model processes requests sequentially,
updating the model after each handled request. The development process includes:

1. Problem Description: Define the scheduling problem by specifying variables and parameters,
simplifying the train scheduling model and network for mathematical modeling.

2. Conceptual Model: Outline the framework and objectives of the model, detailing how variables
interact and setting the stage for mathematical formulation.

3. Definition of Variables and Parameters: Translate the conceptual framework into a structured
mathematical format by specifying all sets, variables, and parameters.

4. Formulation of Constraints and Objective Function: Develop constraints representing opera-
tional limits such as capacities, train speeds and request fulfillment. Formulate a multi-objective
optimization function to maximize network utilization and minimize time deviation per customer.

5. Implementation and Solving: Implement the model in Python using the Gurobi optimization
engine. This involves coding the mathematical expressions, running the optimization algorithm
and refining the model based on initial results.

An extensive literature review will support the model development, focusing on existing mathematical
models in freight train scheduling and related fields. Insights from the literature will inform the selec-
tion of appropriate scheduling techniques, constraints, and objective functions, ensuring the model
addresses the specific requirements of this research.

1.6.4. Comparative Analysis
How does the proposed dynamic scheduling model perform compared to the current approach?
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To evaluate the performance of the proposed dynamic scheduling model, a comparative analysis will
be conducted. This analysis will assess how the new model improves rail freight scheduling compared
to ProRail’s current first-come, first-served approach. The evaluation will focus on quantifying potential
benefits and identifying improvements in handling rail freight requests.

Table 1.2: Key Performance Indicators for Comparative Analysis

KPI Description
Cumulative Departure Time
Deviation

The overall difference in departure time between preferred and ac-
tual scheduled departure times.

Cumulative Departure Time
Deviation Squared

The overall difference in departure time squared between preferred
and actual scheduled departure times. A decreasemeans there will
be less extreme departure time deviations.

Average Cumulative
Departure Time Deviation

For multiple experiments, gather the average overall difference in
departure time between preferred and actual scheduled departure
times.

Average Cumulative
Departure Time Deviation
Squared

For multiple experiments, gather the average overall difference in
departure time squared between preferred and actual scheduled
departure times.

Load Distribution Analyzes how evenly requests are distributed across the network
over time. Measured by how many trains are using the network at
each point in time.

Average Departure Time
Deviation per Request

The average departure time deviation per request across all experi-
ments, providing an indicator of the average deviation experienced
by requests.

Maximum Departure Time
Deviation

The largest single departure time deviation observed across all
requests, highlighting the most extreme delay experienced in the
scheduling process.



2
System Analysis

Understanding the current decision-making processes of ProRail for allocating freight requests onto
the Dutch railway infrastructure is essential for identifying areas of improvement. This chapter pro-
vides an analysis of the existing system, from the initial preparation of the network to the execution of
train schedules. By examining each stage: network preparation, request handling, decision-making
by planners, and the levels of decision-making, specific challenges and opportunities for improvement
can be identified. This analysis sets the foundation for the problem description and the development
of a more efficient scheduling model in later chapters.

2.1. Overview of the Planning Process
ProRail manages a planning process that begins well before any freight requests are submitted. The
timeline for this process is illustrated in Figure 2.1, depicting the milestones from initial network evalu-
ation to the day trains operate on the network.

Figure 2.1: Timeline of ProRail’s Annual Service Planning (ProRail, 2024a)

2.1.1. First Planning Phase (18 Months Prior)
Approximately one and a half years before the annual service timetable comes into effect, ProRail
collaborates with freight customers to develop a base timetable. This phase involves calculating and

8
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optimizing the maximum number of trains that can use specific tracks per hour, considering track ca-
pacity, maintenance schedules, and expected passenger train operations. This results in the formation
of a set of predefined freight paths and an ’ideal’ time-table which considers

2.1.2. Second Planning Phase (April to August)
Starting in April, customers submit their freight train requests for the upcoming year. ProRail collects
these requests and creates a first draft of the annual service timetable. Between April and July, planners
fit all requests into a conflict-free timetable. This process is manual and involves trial and error to
accommodate as many requests as possible.

In July, the first concept of the timetable is presented to customers. While most requests are accommo-
dated, some require adjustments, prompting further negotiations. From July to August, ProRail finalizes
the timetable and incorporates additional requests or changes. During this period, ProRail responds to
new requests faster due to the increasing rigidity of the timetable.

2.1.3. Third Planning Phase and Execution (Post-August)
After the timetable is finalized in August, customers can still submit new requests or modifications, but
acceptance depends on the remaining network capacity. From December onward, the timetable is
executed, and the freight trains operate according to the established schedule. Officially, new requests
can be submitted up to two weeks before the desired departure date, but availability is limited by the
existing capacity.

2.2. Freight Train Requests
Freight train requests submitted to ProRail vary based on customer needs. At a minimum, a request
includes the origin and destination, departure date and time, and train characteristics such as length,
weight, and maximum speed.

Customers can also specify additional details. Such as intermediate stations for loading or unloading,
breaks or crew changes. Recurring schedules (e.g., every Monday, or the first day of each month)
or a range of dates. Customers may also specify a time window for departure, such as the earliest
and latest acceptable departure time, or they may define preferred arrival times at the destination.
Furthermore, specific arrival and/or departure times can be provided for intermediate stations along
the route, which could induce waiting times or enforce travel times to go from one station to the next,
which leaves less flexibility for ProRail in the planning process. While these details allow customers
to better align their logistics with ProRail’s operations, they add significant complexity to the planning
process. Implementing all these specifics is beyond the scope of this research, which focuses on
developing a more generalized scheduling model. However, it is important to highlight these details so
they can be considered in future research to further refine and improve scheduling systems.

2.3. Request Handling Process
The handling of freight train requests depends on the timing of the submission. Requests submitted
between April and July must wait for the first draft of the annual service timetable, which is released
in July, to see whether they have been accepted, modified, or denied. During this period, ProRail’s
planners focus on incorporating as many requests as possible without conflicts.

After the first draft is published, customers can submit new requests or modifications. ProRail usually
responds within a day due to the timetable’s relative stability at this stage. Accepted requests are fixed
in the timetable and cannot be altered by ProRail without customer consent. However, the customer
retains the freedom to modify or adjust the request, such as changing the departure time, origin, or
destination, even after the timetable has been fixed. These changes can be accommodated if there is
remaining capacity in the network.

Following the finalization of the timetable, new requests are only accommodated if sufficient capacity
remains. Planners assess availability and offer alternatives if the preferred itinerary is not feasible.
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2.4. Railway Network and Path Allocation
ProRail uses a predefined set of freight paths, developed during the first planning phase, which includes
defined routes with specific departure times. These paths take into account the physical network, track
capacities, station capacities, and ongoing rail work.

Each freight path specifies the sequence of stations, available departure times, and capacity constraints
for a given time frame. For example, a path from Station A to Station D via Stations B and C might
have departures at 09:10, 09:35, and 09:50, allowing three trains to use the path between 09:00 and
10:00.

In cases where a unique request requires a path that is not predefined, such as traveling from Station
A to Station F via B, C and E, planners may merge existing itineraries to form a feasible route. For
example, if two paths, A-B-C-D and G-C-E-F, share a common station (C), they can be merged to form
a single itinerary from A to F. (For 60% of the requests which need to be allocated to the network, a
newly formed unique path needs to be computed, see Section 7.3.)

Some tracks are bidirectional, allowing trains to travel in both directions. While this offers flexibility,
careful coordination is needed to prevent conflicts.

2.5. Decision-Making by Planners
ProRail’s planners play a key role in allocating requests, operating primarily on a tactical decision level.
During the first stage, from April to July, planners manually adjust schedules to accommodate customer
preferences (e.g. preferred departure time), often experimenting with different configurations to resolve
conflicts.

Once the timetable is finalized, further changes can only be made if sufficient capacity remains. Plan-
ners offer alternatives when necessary, and customers are notified of small changes automatically. In
cases of significant conflicts, planners call customers to discuss possible solutions, such as adjusting
departure times or changing origin or destination stations.

Currently, ProRail does not maintain systematic data on the acceptance rates for rescheduled freight
requests. This is difficult to store due to some rescheduling happening over the phone. Currently, when
a request is changed, the original request gets canceled and a new request is made. However, with
just information saying, request is canceled, from the data can not be concluded whether a new request
is made from this, departure time is altered, path is changed or that the whole request is canceled with
no alternative. From this limited data storage it is difficult to pinpoint how many request are deleted or
simply altered.

2.6. Decision Levels in Scheduling
Time scheduling optimization can be performed at three different decision levels: strategic, tactical, and
operational. This model focuses on the tactical decision level, which is appropriate for the medium-
term planning horizon relevant to freight train scheduling:

• Strategic Level: Involves long-term planning over multiple months or years. Planners optimize
the network to determine the maximum theoretical capacity, considering infrastructure invest-
ments and long-term demand trends. This level is addressed before requests can be submitted
and is outside the scope of this model.

• Tactical Level: Pertains to medium-term planning, where planners allocate capacity to requests
over the submission time horizon. This level focuses on balancing current requests with antici-
pated future demand, making decisions that affect scheduling over weeks or months.

• Operational Level: Deals with short-term, detailed planning, typically on a daily basis. It in-
volves precise scheduling, including train movements, acceleration and deceleration, platform
assignments at stations, and real-time adjustments. This level goes into too much detail for the
scope of this thesis.

By focusing on the tactical level, the model aligns with the primary decision-making processes of Pro-
Rail’s planners, allowing for relevant and practical insights into improving the scheduling system.
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2.7. Problems
From July onwards, ProRail uses a first-come, first-served approach for requests being handed in.
The result of this approach is that, customers who submit requests later will have fewer options due
to reduced network capacity, which sometimes results in significant deviations from their preferred
schedules. To avoid this uncertainty, customers tend to reserve itineraries early, even if they may not
need them, leading to frequent cancellations or changes (some itineraries get changed up to 20 times).
On top of this, the manual trial-and-error approach used for allocation is time-consuming and inefficient,
further limiting the ability to explore optimal solutions, whichmay lead to underutilization of the network’s
full capacity.

2.8. Opportunities for Improvement
An opportunity for improvement, is to implement a dynamic scheduling model as an alternative for
the first-come, first-served approach for the period after July. The idea here is to tactically offer early
requests slight departure time deviations, to leave more room in the network for later requests. This ap-
proach would distribute small departure time deviations evenly throughout the planning horizon, rather
than imposing large delays at the end to a few customers. By implementing dynamic scheduling, each
request is handled individually before moving onto the next one which results in customers getting quick
feedback on their implemented train schedule.

Demand forecasting could play a more prominent role in anticipating future demand and managing
capacity accordingly. Automation of the scheduling process, would reduce manual labor and could
increase efficiency, allowing for better network utilization and a higher customer satisfaction. Also, if
customers trust the system’s ability to provide their preferred departure times, they may be less inclined
to reserve itineraries early out of a precaution. This could then lead to less cancellations or changes to
the schedule.

In Chapter 4, the focus shifts to outlining the proposed system improvements. An analytical model is
introduced to simulate the network, requests and decision making in a realistic yet simplified way. This
approach aims to improve the system using mathematical methods, ensuring faster computation and
easier model development, while still maintaining enough realism for this study. The model will be fully
automated, with the human decision maker remaining external to the process.
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Literature

This chapter presents a review of the existing literature relevant to dynamic rail freight scheduling,
demand forecasting, congestion minimization, and customer satisfaction in the railway sector. The
review highlights methodologies, findings, and research gaps that inform the objectives and methods
of this thesis. A summary of the reviewed literature is presented in Table 3.1, followed by an analysis
of key themes and the identified research gap.

Table 3.1: Summary of Literature Reviewed

Source Topic/Goal Main Findings Context Model Data Uniqueness/
Transfer Attributes

(Caprara et
al., 2007)

Passenger
Railway Opti-
mization

Discusses optimization
in passenger railway,
lacking focus on cargo
transportation.

European
railways

Mathematical
Models

Not speci-
fied

Shift from detailed
planning to effective
real-time control.

(Yue et al.,
2024)

High-Speed
Railway
Timetabling

Developed heuristic
based on Lagrangian
relaxation for timetable
optimization.

High-speed
railways in
China

Heuristic Al-
gorithm

Beijing-
Shanghai
HSR data

Efficient in handling
complex timetable
challenges with a
minimal duality gap.

(Brännlund
et al., 1998)

Railway
Timetabling

Novel optimization
approach using La-
grangian relaxation.

Swedish
railway

Integer Pro-
gramming

Realistic
Swedish
rail exam-
ple

Tested on passen-
ger and freight
trains, focuses on
maximizing profit
while respecting
track capacities.

(Crainic
et al., 1984)

Tactical Plan-
ning Model for
Rail Freight

Optimizes routing,
scheduling, and allo-
cation of freight on rail
networks.

Canadian
National
Railroads

Mixed
Integer Mul-
ticommodity
Flow

Canadian
rail network
data

Integrates several
operational activ-
ities to develop
global management
strategies.

(Ghoseiri et
al., 2004)

Multi-Objective
Train Schedul-
ing

Develops a model
for passenger train
scheduling optimizing
fuel consumption and
passenger-time.

Generic rail
networks

Multi-
Objective
Optimiza-
tion

Not speci-
fied

Uses ε-constraint
method and
distance-based
optimization, not
focused on freight.

(Yan &
Goverde,
2019)

Train
Timetabling
and Line Plan-
ning

Combines LPP and
TTP to optimize both
line planning and
timetabling.

Generic rail
networks

Mixed Inte-
ger Linear
Program-
ming

Not speci-
fied

Focuses on robust-
ness, regularity,
and minimizing
travel time for
passengers.

(Caprara et
al., 2006)

Real-World
Train
Timetabling

Addresses practical
constraints in train
timetabling using a
Lagrangian heuristic.

Italian
railways

Lagrangian
Heuristic

Italian
railway data

Incorporates real-
world constraints
like station capac-
ities and mainte-
nance operations.
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Table 3.1: Summary of Literature Reviewed

Source Topic/Goal Main Findings Context Model Data Uniqueness/
Transfer Attributes

(Alaghband
& Farhang
Moghadam,
2019)

Scheduling
Freight Trains
on Single
Tracks

Examines schedul-
ing and allocation of
freight, optimizing train
travel time and freight
tardiness.

Single
line rail
networks

Integer
Linear Pro-
gramming

Generated
dataset

Heuristic algo-
rithm designed to
solve large-scale
problems efficiently.

(Jovanovic
& Harker,
1991)

Tactical
Scheduling
of Rail Opera-
tions

Presents a decision-
support model (SCAN I)
for the tactical schedul-
ing of freight railroad
traffic.

Rail opera-
tions

Simulation
and Com-
binatorial
Optimiza-
tion

Major
railroad
examples

Introduced the
SCAN system,
enhancing decision-
making in rail
scheduling.

(Gallego &
Topaloglu,
2019)

Revenue Man-
agement and
Pricing Analyt-
ics

Provides an in-depth
analysis of revenue
management tech-
niques and their appli-
cations across various
industries.

Global Revenue
Manage-
ment Mod-
els

Not speci-
fied

Extends revenue
management prin-
ciples to complex
service industries
including transporta-
tion.

(Talluri
& Ryzin,
2006)

The Theory
and Practice
of Revenue
Management

Discusses the compre-
hensive applications of
revenue management,
unifying theoretical and
practical aspects.

Multisector Theoretical
Framework

Industry
data

Bridges gap be-
tween theory and
practice in revenue
management, in-
fluencing multiple
industries.

(Davis et al.,
1987)

Optimal Capac-
ity Expansion
under Uncer-
tainty

Introduces a mathemat-
ical model for capac-
ity expansion with un-
certain demand, incor-
porating stochastic con-
trol theory.

Capacity
Expansion

Stochastic
Control
Theory

Not speci-
fied

Addresses the com-
plexity of planning
under uncertainty
with numerical opti-
mization methods.

(Armstrong
& Meissner,
2010)

Revenue Man-
agement in
Railways

Reviews gaps and op-
portunities in applying
revenuemanagement to
rail freight.

Freight and
passenger
railways

Descriptive
Review

Not speci-
fied

Highlights the
lack of customer-
focused dynamic
scheduling.

(Li et al.,
2024)

Network Rev-
enue Man-
agement in
Railways

Explores bi-level opti-
mization for maximiz-
ing itinerary revenue
through pricing mecha-
nisms.

UK Rail
Freight

Bi-Level Op-
timization

Industry
data

Focus on profit-
maximizing al-
location of train
itineraries.

(Crevier
et al., 2012)

Integrated
Operations
and Revenue
Management

Combines network plan-
ning with pricing strate-
gies for rail freight.

Rail freight
networks

Mixed Inte-
ger Linear
Program-
ming

Simulated
data

Provides an inte-
grated model for
network yield and
revenue optimiza-
tion.

(Kraft,
2002)

Dynamic Car
Scheduling

Combines dynamic
scheduling and train
segment pricing to
forecast demand.

Rail freight
networks

Multi-
Commodity
Network
Flow

Simulated
demand
data

Introduces bid-price
approaches for rail
freight allocation.

(Feng et al.,
2015)

Dynamic Model
for Freight Over-
booking

Uses Markov Decision
Processes to manage
overbooking in rail
freight.

Chinese
railways

Dynamic
Program-
ming

Simulated
demand
data

Focuses on bal-
ancing capacity
allocation and
demand variability.

(Cascetta et
al., 1996)

C-Logit Route
Choice Model

Improves path choice
modeling by addressing
overlapping paths.

Interurban
road net-
works

C-Logit
Model

Italian road
network
data

Enhanced realism in
demand distribution
for shared-path net-
works.

3.1. Revenue Management
Revenue management has traditionally emphasized maximizing profits through pricing strategies, as
detailed in Armstrong and Meissner (2010), which provides an extensive review of revenue manage-
ment in railways. However, these models often prioritize passenger services or rigid pricing struc-
tures over flexible freight operations. The seminal works of Talluri and Ryzin (2006) and Gallego and
Topaloglu (2019) outline frameworks for maximizing resource utilization but rely heavily on price as the
primary lever for optimization.

In the context of freight railways, Li et al. (2024) explores revenue management using a bi-level opti-



3.1. Revenue Management 14

mization model to maximize revenue through train itinerary allocation. While this approach effectively
allocates resources, it lacks a customer-centric perspective that prioritizes minimizing extreme devia-
tions in departure times. Similarly, Crevier et al. (2012) integrates operational planning and revenue
management but remains focused on profitability rather than operational flexibility or customer satisfac-
tion.

This thesis builds on the principles of network revenue management, reinterpreting them to prioritize
customer satisfaction by offering alternatives when necessary, as opposed to solely maximizing rev-
enue. By assigning intrinsic value to itineraries based on their alignment with customer preferences,
this approach shifts the focus from pricing to operational efficiency and adaptability.

Figure 3.1 illustrates three examples of a hotel, airline, and railway network. All consisting of product
and of the resources needed to form the product.

(a) Product & resource example hotel & airline (Talluri & Ryzin,
2006) (b) Product & resource example railway network

Figure 3.1: Network revenue management visualization

3.1.1. Assortment optimization
Assortment optimization in revenue management involves the strategic selection of which products, in
this context railway path time slots, to offer at any given time to maximize revenue. This may result in
withholding certain products that could generate more revenue at a later time, rather than offering them
at lower value moments. For example, during peak operational times, it may be beneficial to hold back
certain slots on a freight path to better manage demand surges, thereby optimizing network utilization
or revenue. Assortment optimization or management is an important topic for this thesis, for whether
to offer an itinerary to a customer or withholding the itinerary for customers who hand in requests later.

3.1.2. Capacity management
Capacity management in railway operations involves planning and controlling the resources needed to
meet both current and future demand, particularly under conditions of uncertainty. This encompasses
decisions about when and how to expand infrastructure capacities, which must often be made amid
fluctuating demand and limited resources. The study by Davis et al. (1987), which utilizes stochastic
control theory to model capacity expansion, offers important insights into managing these challenges.
It demonstrates how strategic investment decisions can be timed and scaled to optimize resource
allocation efficiently.

For railway logistics, thismeansmanaging not just the physical tracks but also the allocation of time slots
(the ’products’ in this scenario), ensuring that capacity aligns with demand in both short-term operations
and long-term infrastructure planning. By applying these principles, the railway infrastructure manager
could improve their adaptability and responsiveness to changes in freight demand.
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3.2. Stochastic Models and Dynamic Scheduling
Stochastic optimization has provided valuable tools for decision-making under uncertainty in various
industries. The knapsack problem framework described by Van Slyke and Young (2000) offers insights
into resource allocation by dynamically deciding whether to accept or reject incoming requests. Al-
though primarily applied in sectors such as hospitality and airlines, this model highlights the potential
of adapting stochastic methods to manage rail freight itineraries dynamically.

Kraft (2002) provides a pioneering approach by integrating dynamic car scheduling with train segment
pricing. This model accounts for both accepted and forecasted demand, offering a framework that
could be extended to manage freight requests on a network level. Similarly, Feng et al. (2015) applies
Markov Decision Processes to overbooking in rail freight, illustrating how dynamic programming can
optimize capacity under fluctuating demand.

The SCAN system introduced by Jovanovic and Harker (1991) further emphasizes the role of tactical
scheduling in rail operations. By combining simulation with combinatorial optimization, SCAN supports
interactive decision-making, showcasing how simulation-based models can enhance tactical freight
train scheduling. While SCAN is focused on weekly or monthly scheduling, its methodology could
inform real-time dynamic scheduling models, particularly in balancing conflicting objectives such as
capacity constraints and customer satisfaction.

The current research adapts these stochastic frameworks to real-time freight scheduling, leveraging
demand forecasting to predict bottlenecks and prioritize itineraries that minimize extreme deviations.
This novel application addresses the limitations of static models in handling dynamic and uncertain
demand patterns.

3.3. Network Allocation and Path-Based Scheduling
Path-based scheduling, as explored in Cacchiani and Toth (2012) and Cacchiani et al. (2010), provides
a simplified yet effective approach to train scheduling, particularly in scenarios where fixed timetables
must accommodate additional freight requests. Cacchiani et al. (2010) extends the problem from single-
line to network-wide scheduling, incorporating existing passenger train timetables as constraints. While
these models focus on maximizing network throughput, they do not integrate customer satisfaction
metrics or real-time demand forecasting.

In contrast, Ghoseiri et al. (2004) introduces a multi-objective optimization model for train scheduling,
balancing fuel consumption and passenger satisfaction by minimizing travel times. Although designed
for passenger railways, this model demonstrates the feasibility of incorporating multiple objectives into
scheduling frameworks. The e-constraint method used in this work could be adapted for freight opera-
tions to balance time deviations and congestion penalties, which are central to this thesis.

This thesis builds on these models by incorporating a deterministic demand forecasting framework,
such as the C-Logit model outlined in Cascetta et al. (1996), to estimate section-specific congestion and
improve path allocation dynamically. Unlike traditional methods that prioritize throughput, this approach
balances operational efficiency with customer satisfaction by minimizing extreme time deviations.



4
Problem Description

Building upon the system analysis in Chapter 2, this chapter introduces the foundation for a new
scheduling model for freight trains in the Netherlands.

Currently, requests submitted later in the scheduling horizon can face fewer options for allocation within
the network, sometimes leading to significant departure time deviations. To address this, the proposed
idea involves using forecasted future demand to tactically manage network capacity. By predicting
where and for what time requests are likely to occur, itineraries with small deviations can be offered
to early requests, preserving space in the network for anticipated future demand. This approach tries
to keep capacity open for later requests and prevent possible congestion, reducing the risk of large
deviations. The strategy makes use of the principle that it is better to offer a small time deviation to
multiple customers compared to a large time deviation to a few customers (Kraft, 2002).

The goal of this research is to develop a scheduling model, that incorporates forecasted demand, with
the objective of decreasing extreme departure time deviations without increasing the overall cumula-
tive departure time deviations after scheduling all requests, compared to the current scheduling method.
The model’s decision-making involves determining which itinerary to offer a customer: either their pre-
ferred departure time or an alternative with a departure time deviation. The main challenge is deciding,
for each incoming request, whether to prioritize reserving capacity for future requests by offering a
deviating itinerary or to minimize the departure time deviation for the current request.

This section will also address the necessary simplificationsmade to themodel in order to ensure that the
thesis remains within a feasible scope while still maintaining its meaningfulness. The model is created
at an analytical level, thereby reducing the complexities of the real world. This enables the model to
illustrate potential improvements for the scheduling of freight trains without the need to simulate every
detail of freight logistics.

The following sections will present the core structure of the schedulingmodel, focusing on the processes
involved in request allocation, network capacity management, demand forecasting, graph representa-
tion and customer interactions.

4.1. Overview
For the dynamic scheduling model an infrastructure manager that owns and operates the railway net-
work in the Netherlands is considered. The network is partially connected and consists of a set of nodes
(stations) linked by railway infrastructure (arcs) (in section 4.2 the network graph is explained further).
Customers of the infrastructure manager are railway companies or other entities that operate freight
trains and wish to use the network to transport commodities.

The planning process involves two distinct phases: a submission period spanning several months and
a single day of operation. During the submission period, customers submit freight train requests r ∈ R
sequentially, one at a time (batch requests are excluded), in the order τ1 < τ2 < · · · < τR. While the
exact submission time is not relevant for this thesis, the order of the requests is important.

16
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Each request corresponds to a single, unique train whose commodities cannot be combined with those
of other trains. A request r ∈ R is represented by a tuple τr containing information on the origin,
destination and desired departure time t. The infrastructure manager processes these requests and
allocates network capacity to the request of a customer but does not own the trains, the trains are
owned by the customers.

The submission period ends with a cutoff point, after which no further requests can be made. The
scheduled operations occur on a single day, referred to as the day of operation. Time within the day of
operation is divided into two levels: hours (h ∈ H, where H = 0, 1, . . . , 23) and minutes (t ∈ T , where
T = 0, 1, . . . , 1439). Minutes within an hour are indexed as t = 60h+m, where m ranges from 0 to 59.
t ∈ Th are the minutes corresponding to hour h, where Th ⊂ T .

The assumption is that the infrastructure manager has knowledge of future demand, expressed as the
expected number of requests for origin-destination pairs for specific time intervals (e.g., an expected
demand of five requests going from station A to station B departing at 12:00). This demand forecasting
is based on historical data. However, in this thesis, demand will be established deterministically (see
Chapter 7). While this introduces a certain level of simplification, it results in using ’perfect’ forecasting,
which is unrealistic. Perfect forecasting would raise questions about the trustworthiness of the results.
To still keep a level of uncertainty in the forecasting, the demand model uses a deterministic number
of requests per hour for an OD pair, which are then distributed across all possible paths connecting
the origin and destination pairs. This way the model still uses a level of approximation, rather than a
precise prediction. The detailed approach and calculation for forecasting demand is further explained
in Section 5.1.

This goal of this thesis is to develop a dynamic scheduling model that processes requests sequentially,
updating the network state after a request has been scheduled. Forecasted demand is used to pre-
dict how busy sections of the network are likely to become, allowing the model to strategically offer
alternatives with small time deviations to requests early in the horizon. This preserves flexibility in the
network for later requests, with the idea of reducing the likelihood of large departure time deviations.
The objective is to improve customer satisfaction by minimizing large deviations for late requests while
making sure the total time deviation (after allocating all requests) does not increase compared to the
baseline scenario.

4.2. Graph Representation
The graph represents the railway network of the Netherlands. The railway network is represented using
a time-space directed graphG = (Nt, S, I), which models train movements and network utilization over
discrete time steps. This approach defines a non-cyclic graph representing stations, arcs, and paths in
both space and time. Accepted itineraries are allocated on this graph, representing paths from origin
to destination with departure and arrival times at all nodes along the way.

• Nodes (N ) and Time-Expanded Nodes (Nt): N is the set of all stations in the network. Nt =
(n, t)|n ∈ N, t ∈ T represents each station at a specific time within the day. Each hour h relates
to a set of 60 consecutive minutes t = 60h+m, where m = 0, 1, . . . , 59.

• Arcs (A) and Sections (S): A is the set of physical links between stations. Sections are time-
dependent arcs, defined as S = {(a, t) | a ∈ A, t ∈ T}, representing the specific departure time
from the first node of the arc. The sections S can be evaluated and managed on both an hourly
basis (h) and a minute-level basis (t).

• Paths (P ) and Itineraries (I): P is the set of predefined paths, which are a combination of nodes
n ∈ N and arcs a ∈ A without considering time. Each path p ∈ P becomes time-dependent by
assigning a departure time t, forming itineraries I = {(p, t) | p ∈ P, t ∈ T}. Itineraries consist of
both a path and a specific departure time. Itineraries can be used interchangeably with a path +
departure time combination. Where each itinerary i ∈ I has a link to a path and departure time,
expressed as: (pi, ti).

Each section s ∈ S has a headway time hs, representing the minimum time interval required between
two trains departing from a time-expanded node over that section. This capacity constraint ensures
that safety and operational requirements are met.
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4.3. Dynamics of System and Offer Strategy

Figure 4.1: Request handling process

Figure 4.1 illustrates the dynamic scheduling process of a single request. Upon the arrival of request
r, the state of the network is represented by Yr. The state of the network includes the current capacity
status for all arcs a ∈ A and hours h ∈ H in the network, which is defined as the maximum number
of requests which can be allocated to an arc a at hour h: Ca,h, minus the actual allocated number of
requests to arc a at hour h when request r comes in (so at time Yr), defined as: Ura,h (Ca,h − Ura,h

Subsection 5.1.2). Additionally, the network state incorporates the forecasted future demand, which
is a prediction of the left over expected number of freight train requests which will arrive on each arc
a during the hour h during request r (at time Yr), represented by Dra,h (see Subsection 6.1.4 for the
explanation on how to compute this parameter). This estimate is crucial for making informed decisions
about allocating requests to itineraries while considering potential future constraints. How the network
capacity and forecasted demand are portrayed and calculated as a whole, is explained in Section 5.1.
After the model accepts the request by allocating it to an itinerary in the network, the updated state of
the network is represented by Zr. The notation Z contains the same information as Y , but is used to
distinguish the state before (Yr) and after (Zr) processing request r.

The model aims to determine the best option to present to each customer upon receiving a new request
τr. The process involves:

1. Path matching: From the list of predefined paths p ∈ P all feasible paths are identified that
fulfill the request’s requirements p ∈ Pordr , which means the origin and destination of the request
are matched to a path which contains the same origin and destination. The set Pordr is request
dependent. This is explained in more detail in Subsection 5.2.

2. Itinerary generation: From the set of feasible paths, generate a set of itineraries i ∈ Ir consisting
of a path and departure time (p, t). The set Ir is request dependent. How to compute this set per
request is shown in more detail in Subsection 6.1.1. Methods to reduce this set of itineraries to a
manageable number which is computationally feasible are explained in Subsection 5.3.

3. Offer decision: From the set Ir, which already complies with the preferred origin and destination
from the customer, the scheduling model decides whether to present the customer with:

• Exact match: A single itinerary that matches the customer’s preferred departure time. The
customer must accept this itinerary.

• Offer alternative itinerary: An single alternative itinerary is offered with a deviating depar-
ture time from the customers preference. The customer must accept this itinerary.

The offered itinerary to the customer with request r, includes the following details: origin, desti-
nation, all intermediate stations, departure and arrival times of all stations. The offered itinerary
satisfies capacity constraints and customer preferences regarding the origin and destination.
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The mathematical formulation of the decision-making process of what to offer to the customer is
presented in Chapter 6.

In this thesis, for simplicity, each customer is offered a single itinerary, which is assumed to be
accepted. While offering multiple options or discussing alternatives with the customer would be
more realistic, especially when deviations from the preferred departure time are necessary, this
would introduce customer choice probabilities and additional uncertainties into the scheduling
model. Similar research by Cacchiani et al. (2010) explores offering three alternatives, allowing
customers to choose one. However, this thesis focuses on testing a scheduling algorithm by
identifying what the best possible itinerary would be for each customer and evaluating those
results. This approach ensures that the results of the experiment (Chapter 7) relate directly to the
newly proposed scheduling model, without being influenced by customer choices or uncertainties.

Currently, ProRail does not store data on the acceptance rates for rescheduled freight requests,
see Section 2.5. This would have been interesting to take into account to make a prediction on
whether a customer would accept an alternative offer from their original request. Due to this lack
of data, the choice is now made that customers will always accept an offered request.

4. System update: After the itinerary is offered, the system is updated (Zr) for the entire network,
reflecting changes in network utilization and future demand forecasting. How the network is up-
dated is explained in more detail in Subsection 6.1.4.

The customer interaction is limited to two occasions, when the customer hands in the request and
when an itinerary is offered to the customer. Once the request is allocated onto the network, and thus
an itinerary is offered to the customer, neither party can change their decision or offer. The allocated
itinerary is fixed in the schedule.

4.4. Scope and Limitations
To reduce the complexity of real-world scheduling while ensuring the research remains meaningful,
several assumptions are made:

1. Restricted paths: The system only considers predefined, frequently used freight paths. These
paths avoid detours and cyclic routes. This reduces computational complexity and reflects Pro-
Rail’s current operations.

2. Similar travel time: All freight paths between the same origin-destination pairs are assumed to
have similar distances and are treated as equally favorable from a customer perspective. In this
thesis, the focus is exclusively on departure time deviation and its impact on customer satisfaction.
Considering travel time differences would introduce a trade-off between travel time and departure
time deviation from a customer satisfaction perspective, which is outside the scope of this study.

3. Non-stop train movements: Trains pass through intermediate stations without stopping for load-
ing or unloading. Although including waiting times would add realism, it significantly increases
the number of choices the system must evaluate, making the problem too computationally chal-
lenging for this study.

4. Uniform train speeds: All trains are assumed to travel at a fixed speed of 80 km/h, creating ho-
mogeneous paths. While variable speeds would introduce more realism by reflecting overtaking
and differing travel times, it adds too much complexity for this research and is left open for future
work.

5. Empty initial network: The network is assumed to be empty at the start of scheduling. Although
in reality the network already contains pre-scheduled trains, excluding them still allows for a fo-
cused analysis of the objective of this research, where a change can still be measured between
the newly proposed scheduling model versus the current scheduling method of the infrastructure
manager. While the simplification of an empty initial network reduces accuracy portraying the
real world scenario, the impact of a potential improvement remains valid.

6. Single tracks: Each arc between two stations represents a single railway track, regardless of
the actual number of tracks in reality. Reverse arcs between the same two stations are treated
independently as single tracks, and bi-directional tracks are not considered. While this simplifies
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the railway network to an unrealistic scenario, this thesis focuses on comparing time deviations
in the scheduling process between multiple scenarios, not on replicating real-life conditions.

4.5. Conclusion
This chapter established the foundation for a dynamic scheduling model aimed at improving the alloca-
tion of freight train requests in the Netherlands. The current schedulingmethod often leads to significant
departure time deviations for requests submitted later in the planning horizon. By incorporating fore-
casted demand into the scheduling process, the proposed model seeks to mitigate these deviations by
strategically reserving capacity for future requests while ensuring that total cumulative time deviations
do not increase.

Key elements of the model were introduced, including the representation of the railway network as
a time-space graph and the sequential request handling process. The model’s ability to dynamically
update the network state after each request, leveraging forecasted demand and capacity constraints,
forms the core of its decision-making strategy. Simplifications such as restricted paths, uniform speeds,
and a deterministic demand forecast were introduced to balance the model’s analytical focus with com-
putational feasibility.

These foundations provide a clear framework for analyzing whether the proposed approach can im-
prove scheduling efficiency and customer satisfaction. These elements set the stage for the conceptual
framework 5, mathematical formulation 6, and case study 7, of the proposed scheduling approach.



5
Conceptual Model

Building upon the foundation laid in the problem description, this conceptual model elaborates on the
key components of the proposed scheduling system. It shows how variables and parameters interact
and provides preliminary mathematical formulations to illustrate implementation strategies. The sec-
tions follow the sequence structure depicted in Figure 5.1, showing the process of handling the requests
of the customers. The scheduling process is split up in the state of the system (1 & 2), customer request
(3), path matching (4), itinerary generation (4), objective function (4), allocating request (4 to 5) and
finally updating the system state (5).

Figure 5.1: Scheduling process

5.1. State of the system
The state of the system consists of two main elements: forecasted demand and network utilization.
From these two elements, congestion factor values for all sections in the network can be calculated,
which are needed for the objective function to predict how busy certain sections will become.

5.1.1. Forecasted Demand
Forecasting demand for freight trains presents a challenge due to the lack of information about the
specific paths that trains will take between their origin and destination. While the number of requests
per hour for each origin-destination (OD) pair is known, the distribution of these requests across the
paths in the network is still to be decided. This is due to the possibility of multiple paths connecting the
same OD pair, and these paths can also share overlapping sections, making it difficult to predict the
demand for individual paths and their sections accurately.

21
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To address this issue, this subsection introduces the Commonality Factor Logit (C-Logit) model, which
adjusts demand allocation by accounting for path overlaps to ensure accurate demand estimation
across the network and provide a robust framework for integrating these demand forecasts into the
scheduling model.

Demand Distribution Problem
Distributing the forecasted demand for freight trains is challenging because only the origin and destina-
tion are known for each request per hour, while the specific paths taken remain unknown.

Figure 5.2 shows a simple railway network connecting an origin to a destination. Multiple paths can be
used to travel from the origin to the destination. How can one make an accurate prediction on how to
distribute the demand over the sections in the network?

Figure 5.2: Railway network connecting Origin and Destination

Figure 5.3 illustrates the four possible paths for the network in 5.2. Note that some paths, such as the
blue path, overlap with the yellow and red paths. This overlap complicates estimating the probability of
requests being assigned to specific paths.

Figure 5.3: All possible paths connecting Origin and Destination

Overlapping paths create challenges in accurately distributing forecasted demand across the network.
For example, if arc A-B did not exist, there would be three possible paths, and when all paths have equal
utility (e.g. the same length), requests could be distributed equally. However, with overlapping paths,
as shown in Figure 5.3, dividing demand equally over all possible paths would lead to an overestimation
of demand on overlapping sections such as O-A and B-D. The Tables in 5.1 show the results of an equal
distribution of demand across the paths and the results of what percentage of the requests would be
allocated to the according sections.

To address this, an alternative method should consider the extent of overlap between paths and ad-
just the distribution accordingly. The Tables in 5.2 present a possibility for a more refined distribution,
reducing requests sent over paths with significant overlap and increasing the amount of requests on
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paths with less overlap (these tables present an example of a possible improvement and are not based
on any calculations).

Table 5.1: Distributing requests over paths using MNL

(a) Request distribution per path

Path Requests
Yellow 25%
Blue 25%
Red 25%
Green 25%

(b) Request distribution per section

Section Requests
O-A 50%
O-B 25%
O-D 25%
A-D 25%
A-B 25%
B-D 50%

Table 5.2: Improved request distribution accounting for path overlap

(a) Request distribution per path

Path Requests
Yellow 25%
Blue 20%
Red 25%
Green 30%

(b) Request distribution per section

Section Requests
O-A 45%
O-B 25%
O-D 30%
A-D 25%
A-B 20%
B-D 45%

Figure 5.4: Path overlap example used by Ben-Akiva and Bierlaire (1999)

Another example showing the problem with the incorrect handling of path overlap by using Multinomial
Logit Model (MNL) is shown in Figure 5.4 and an example is given based on the paper by Ben-Akiva
and Bierlaire (1999). When the probability of choosing an alternative i from a choice set {1, 2a, 2b} is
calculated as:

P (i|{1, 2a, 2b}) = eµTi∑
j∈{1,2a,2b} e

µTj

where T is the travel time of alternative i and µ is a scale parameter. In this example for Multinomial
Logit, if U1 = U2a = U2b, the probabilities are equal:

P (1|{1, 2a, 2b}) = P (2a|{1, 2a, 2b}) = P (2b|{1, 2a, 2b}) = 1

3
.

This result is independent of δ, a parameter representing small utility differences. When δ is much
smaller than the total travel time T , the probabilities intuitively should reflect the correlation between
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alternatives, such as P (1) ≈ 50% and P (2a) ≈ P (2b) ≈ 25%. However, the MNL model assumes
independent and identically distributed random utilities, which is invalid for correlated alternatives (e.g.,
2a and 2b), leading to unintuitive results in such cases. To get more accurate results which account for
path overlap, the C-Logit model is used.

C-Logit model
To distribute the forecasted demand between origin-destination (OD) pairs accurately across the net-
work, the Commonality Factor Logit (C-Logit) model can be applied, as presented in the paper from
Cascetta et al. (1996). The C-Logit model builds upon the Multinomial Logit (MNL) model, which as-
sumes all options are independent and distributes demand equally among alternatives based on their
utilities (as shown in Table 5.1). However, the MNL model fails to account for shared characteristics
between alternatives, such as overlapping rail infrastructure. The C-Logit model addresses this issue
by incorporating a commonality factor, which penalizes paths that share significant rail infrastructure.
This concept is based on the Nested Logit model (Ben-Akiva & Bierlaire, 1999), where alternatives
with shared attributes are grouped to reflect correlations. By applying this principle specifically to over-
lapping paths, the C-Logit model provides a more realistic prediction of the demand distribution in the
network and avoids over- or underestimating sections.

The forecasted future demand is based on historical data and provided as the expected number of
requests for each OD pair with departure time t, denoted as Dod,t. The goal is to approximate the
demand per arc per hour Da,h in the network by distributing the OD demand across the network using
the C-Logit model.

Accounting for Overlap
To accurately represent the shared usage of infrastructure between different paths, the overlap is mea-
sured in terms of the total distance shared by two paths (Cascetta et al., 1996).

To distribute the OD demand across the network sections using the C-Logit model, the following steps
are taken:

1. Identify Feasible Paths: For each OD pair (o,d), determine the set of feasible paths Pod con-
necting origin and destination p ∈ Pod. This path matching process is elaborated on further in
Section 5.2.

2. Calculate Commonality Factors: For each path p ∈ Pod, calculate the commonality factor Cp:

Cp = ln

 ∑
q∈Pod
q ̸=p

(
Lpq√
Lp · Lq

) ∀p ∈ Pod (5.1)

where:

• Lp is the total length of path p.
• Lq is the total length of path q.
• Lpq is the length of the overlapping arcs between paths p and q.

3. Adjust Utilities: Calculate the adjusted utility Up for each path p:

Up = Vp − θ · Cp ∀p ∈ Pod (5.2)

where:

• Vp is the observed utility of path p. Since travel times are similar across paths, Vp can be
assumed to be zero.

• θ is a scaling parameter reflecting the influence of the commonality factor (set to 1 in this
context).
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4. Compute Path Probabilities: Determine the probability Pp of assigning demand to path p:

Pp =
exp(Up)∑

k∈Pod
exp(Uk)

(5.3)

5. Distribute Demand Across Paths: Allocate the OD demand Dod,t with departure time t among
the paths p ∈ Pod based on the calculated probabilities:

Dp,t = Dod,t × Pp ∀p ∈ Pod, t ∈ T (5.4)

6. Linking Arcs to Itineraries To streamline the representation of itineraries and their interaction
with arcs in the network, the parameter δri,a,t is introduced. This binary parameter indicates
whether a specific itinerary i for request r uses arc a with departure time t. It is defined as:

δri,a,t =

{
1 if itinerary i for request r departs on arc a at time t,

0 otherwise.

This parameter contains the temporal and spatial allocation of an itinerary, with its used arcs
plus departure times, within the network, simplifying subsequent calculations. For any itinerary i,
the sequence of arcs a it traverses and their corresponding departure times t are precomputed
based on the path p and its departure time ti (forming an itinerary i). This eliminates the need
for recalculating which section is used in an itinerary, based on train velocity, for every step in the
scheduling process.

The parameter δri,a,t is calculated by determining the departure and arrival times along the arcs
of a path, considering the constant velocity v of the train. For an itinerary i with a departure time
ti and path p, the travel time tta over an arc a = (nj , nj+1) is given by:

tta =
dnj ,nj+1

v
,

where dnj ,nj+1 is the distance between nodes nj and nj+1. The train departs node nj at tri,nj

and arrives at node nj+1 at:

tri,nj+1
= tri,nj

+ tta.

For each arc a in the path, δri,a,t = 1 if t matches the departure time tri,nj . This ensures δri,a,t
accurately represents the use of arc a at time t for the given itinerary.

Using the parameter δri,a,t, the demandDa,t for each arc a at time t can be calculated by summing
the forecasted path demand Dpi,ti ∀i ∈ I over all itineraries i that contribute to the utilization of
a at t. This is expressed as:

Da,t =
∑
i∈I

Dpi,ti · δri,a,t, ∀a ∈ A, r ∈ R, t ∈ T (5.5)

Da,h =
∑
t∈Th

Da,t ∀a ∈ A, h ∈ H (5.6)

where δri,a,t determines whether itinerary i for request r uses arc a at time t. This formulation
aggregates the contributions of all itineraries to the demand on a specific arc at a specific time,
accounting for the allocation of forecasted demand across the network.

The demand values Dp,t and Da,t represent the forecasted demand before any requests are
allocated in the network. As requests are processed, this demand decreases. To track the re-
maining demand in the network after each request, the parameters Drod,t, Drp,t, and Dra,t are
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introduced. These represent the forecasted demand for each origin-destination pair, path, and
arc, respectively, at departure time t in the network state Zr.

Calculating Overlapping Distances
To determine the overlapping distance Lpq between two paths p and q:

• Represent each path as an ordered sequence of arcs and nodes, including the length of each arc
between those nodes.

• Compare the sequences for paths p and q.
• Sum the lengths of the arcs that are common to both paths.

By doing so, the model accurately quantifies the extent of overlap, ensuring that the commonality factor
reflects the true shared infrastructure length. This calculation will be used for the coding part in the case
study in Subsection 7.3.9.

5.1.2. Network Capacity
Each section s or arc a has a minimum headway time hs required between consecutive trains. When a
train is scheduled over section s at time t, the section becomes unavailable for any other train departures
during the interval [t, t+ hs).

The theoretical maximum capacity Ca,h of arc a during hour h is:

Ca,h =

⌊
60

hs

⌋
where hs is in minutes. The actual utilization Ua,h is the number of trains scheduled over arc a during
hour h. Ua,h represents the amount of requests which make use of arc a during hour h. This will be
recalculated for the whole network for each arc a and hour h, after handling a request r. This is shown
in Subsection 5.5 which is part of the system update. The calculation for Ua,h is shown in 6.1.4. The
remaining capacity for each arc a and hour h is represented by subtracting the amount of allocated
requests from the maximum capacity Ca,h − Ua,h.

5.1.3. Section Congestion Factor
To identify which sections of the network will likely become congested, a congestion factor value Va,h

is calculated for each arc a during hour h:

Va,h =
Da,h

Ca,h − Ua,h + ϵ
, ∀a ∈ A, h ∈ H

where ϵ is a small positive constant to avoid division by zero. Da,h is the accumulated demand for
arc a during hour h, as calculated using the C-Logit model in Subsection 5.1.1. Ca,h is the theoretical
maximum capacity on arc a during hour h. Ua,h is the amount of requests allocated to arc a during hour
h.

By incorporating the C-Logit model into the demand distribution calculation, Va,h accurately reflects the
expected congestion levels for each section, while considering the overlap of paths. However, this is
just a prediction and does not reflect actual demand distribution.

The value Va,h helps to make a choice on how to schedule requests more evenly, in space and time,
early on in the planning horizon. By identifying sections with a high value congestion factor (future
expected busy), the system could focus on avoiding these sections. Va,h only represents arcs and
hours, in equation 6.4 is shown how the congestion factor can be calculated for itineraries. This can
then be used by the algorithm to prioritize scheduling on less congested paths (with a low congestion
factor) by offering those as an alternative to customers.
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5.1.4. Summarizing Parameters
The parameters for demand, maximum capacity, and used capacity are used often and may seem simi-
lar, but can sometimes mean something entirely different. Therefore additional clarification is needed to
make sure no confusion arises. Demand parameters, such as Dod,t, represent the forecasted number
of requests for an origin-destination pair with departure time t, whileDa,t andDa,h reflect the forecasted
number of requests on specific arcs a with departure time t or departing during hour h, respectively.
Dp,t represents the forecasted demand for path p departing at time t.

During the scheduling process, when scheduling request r (so before allocating the request r, at time
Yr), the leftover demand before allocating this request is denoted by Drod,t, Drp,t, Dra,t or Dra,h, de-
pending on the context. These parameters aremostly the same, but are request dependent and change
during the scheduling process.

The maximum capacity, Ca,h, represents the total number of requests that can be allocated to an arc
a during hour h, constrained by operational headway limits hs . Used capacity, Ura,h represents the
cumulative number of requests allocated to an arc during hour h, up to the arrival of request r. Ura,h(i)
represents the cumulative number of requests allocated to an arc during hour h, if request r is allocated
to itinerary i. Ura,t, is a binary variable indicating whether arc a with departure time t is used or not at
time Yr.

The congestion factor parameters Vra,h and Vra,h(i) are used to quantify the level of congestion on
specific arcs a during hour hwhen processing request r. The parameter Vra,h represents the congestion
factor for arc a at hour h, considering all requests allocated up to request r. The parameter Vra,h(i)
extends this by including the allocation of itinerary i to request r, reflecting how the allocation impacts
the congestion level. To evaluate congestion for an entire itinerary, the congestion factors across all
arcs and hours used by an itinerary are combined to calculate CFri (calculation shown in equation 6.4).
This aggregated congestion factor, CFri, represents the cumulative congestion impact of assigning
itinerary i to request r, taking into account all sections and time intervals involved in the itinerary.

To avoid confusion, it is essential to carefully observe the indices of these parameters: demand parame-
ters are indexed by combinations of o, d, p, a, t, and h to specify origin-destination, path, arc, departure
time, or hour; maximum capacity focuses on arc a per hour; used capacity involves request r to high-
light its dynamic nature; and congestion factors add further granularity with respect to itineraries. These
distinctions ensure accurate interpretation and application within the scheduling model.

To distinguish between these parameters, observe their indices carefully: parameters for demand often
include indices such as o, d, p, a, t, and h, representing origin-destination pairs, paths, arcs, departure
times, or hours, respectively. Parameters for maximum capacity use indices like a and h, referring to
capacity on specific arcs per hour. Parameters for used capacity incorporate the index r, indicating
their dynamic nature as they depend on the state of the network when processing request r. While the
parameters may seem similar in form, their indices provide critical context to distinguish their specific
meanings and roles within the scheduling model. These distinctions are essential to ensure clarity and
avoid confusion when interpreting the network’s state and scheduling decisions.

5.2. Path matching
For each request r, the system first attempts to match the origin and destination using the predefined
freight paths provided by ProRail. In this research the solutions are dependent on the predefined
freight paths provided by ProRail, creating new paths through a path optimization algorithm is beyond
the scope of this study.

Each customer request r is represented by τr = (or, dr, tr), where:

• or: origin station.
• dr: destination station.
• tr: preferred departure time.

Feasible paths Pordr
⊂ P are identified, where Pordr

is the set of predefined paths between o and d for
request r. Each path p ∈ Pordr

is a sequence of arcs A and nodes N .
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Additionally, the parameter qr(o, d, t) is introduced to represent whether request r contributes to the
demand for a specific origin o, destination d, and departure time t. This binary parameter equals 1 if
the request aligns with the given origin, destination, and time, and 0 otherwise.

The inclusion of qr(o, d, t) ensures a clear representation of how individual requests influence the de-
mand model, aiding in the identification of feasible paths for a given request.

5.3. Itinerary generation
For each path p ∈ Pordr , itineraries are generated by varying the departure time t within acceptable
limits (only options within the same day for this thesis). The set of departure times for each path is
discretized into the time steps from that day. An itinerary i ∈ I is feasible if all sections si ∈ i in
the itinerary are available, capacity wise, at the corresponding times, respecting previously allocated
requests in the network with their corresponding headway times.

Important to mention is that there is a total set of itineraries i ∈ I, but per incoming request r the set
of itineraries is also formed for that request noted by i ∈ Ir. This is explained further in Subsection
6.1.1. This set of itineraries is request dependent and will be used in the decision-making process to
determine the best option to offer the customer. The scheduling model evaluates the itineraries in Ir
based on the departure time deviation and forecasted congestion.

To reduce computational complexity for the case study, the focus there will be on key time points, such
as hourly intervals. The process involves an outer for-loop over the hours h, followed by an inner loop
that iterates over the finer time steps t (e.g., minutes) within each hour starting from the customer’s
preferred departure time. For each hour h, the system explores departure times t ∈ {(h − 1) × 60 +
1, . . . , h× 60} to identify a feasible itinerary.

If a feasible itinerary is found at time step t in hour h, the system makes use of the assumption that the
other itineraries within the same hour will have similar or worse characteristics. This assumption holds
because the congestion factor values for arcs Va,h are calculated as an average per hour, making the
values similar for every minute within that hour. Additionally, selecting the earliest feasible time within
the hour minimizes the time deviation for the customer. Therefore, once a feasible itinerary is found, the
system proceeds to the next hour h+1 without checking additional minutes for that hour. This approach
ensures that all important feasible options are explored without making unnecessary calculations which
would make the model computationally more complex.

5.4. Objective function
The objective function in this scheduling model seeks to balance two potentially conflicting goals: min-
imizing departure time deviations for customers and minimizing the congestion factor per request.
These objectives may conflict because scheduling requests close to their preferred departure times
could potentially increase congestion on certain network sections, especially during peak hours. On
the other hand, prioritizing less congested paths may require deviating from preferred departure times,
impacting customer satisfaction. Important to mention is these two objectives both serve the main goal
of minimizing extreme departure time deviations. So when looking at all requests as a whole they both
share the same objective.

5.4.1. Minimize Time Deviation
The first objective is to minimize the time difference between the preferred departure time tr of request
r and the scheduled departure time ti of itinerary i. This ensures that customers experience minimal
departure time deviations, improving their satisfaction with the scheduling process. The departure time
deviation is expressed as:

∆tir = |ti − tr|

and one of the goals is to minimize ∆tir for each request.

This does make use of the assumption that scheduling requests earlier or later to their preferred depar-
ture time is experienced as similarly preferable by the customer.
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5.4.2. Minimize the Congestion Factor
The second objective focuses on reducing congestion on future expected heavily used sections. This
is done by penalizing itineraries that include sections with high congestion factors. The congestion
factor for an arc a during hour h, denoted as Va,h, is a value of expected utilization based on forecasted
demand and capacity. Higher values of Va,h indicate greater congestion, while lower values suggest
that the section is less utilized.

For each request, the system evaluates itineraries and prioritizes those that use sections with lower
Va,h values. This approach helps distribute demand more evenly across the network in space and time,
preventing bottlenecks and preserving capacity for future requests. By reducing future congestion,
more capacity is reserved in the network, which results in requests being handed in at the end of the
time horizon to have more flexibility and potentially have smaller departure time deviations. This could
improve the overall decrease of departure time deviation after allocating all requests.

The congestion factor is minimized by selecting itineraries that avoid sections with a high Va,h whenever
possible, while still meeting operational constraints. How to calculate the congestion factor for the whole
itinerary CFri with its corresponding sections is shown in 6.1.2.

5.4.3. Trade-off Between Objectives
The two objectives, minimizing time deviation and minimizing the congestion factor, are potentially
conflicting. A balance between them must be achieved to improve the scheduling system’s overall
performance. Focusing too heavily on minimizing time deviations can lead to excessive congestion
on key network sections, potentially causing substantial departure time deviations for later requests.
On the other hand, focusing too much on minimizing congestion reduction might result in significant
departure time deviations, negatively impacting customer satisfaction.

To manage this trade-off, a weighted parameter is introduced, allowing flexibility in determining their
relative importance. The weighted objective function is defined as:

Minimize Z = w · Normalized Time Deviation+ (1− w) · Congestion Factor,

where w represents the weights assigned to time deviation and the congestion factor. When w = 1 the
focus is only on minimizing time deviation and if w = 0 the focus is only on minimizing the congestion
factor. The mathematical model for the objective function is presented in Section 6.1.3.

To ensure the two objectives are comparable in the weighted objective function, the time deviation is
normalized. The normalization is an approximation to bring the values in a similar range and is not
based on any calculations:

• Time deviations ∆tir are normalized by dividing the value by 120 minutes. This means a time
deviation of 60 minutes corresponds to a normalized value of 0.5. This creates a scenario where
the difference between two itineraries with a departure time deviation of 0 and a departure time
deviation of 60 minutes becomes equal to 0.5 (when only taking departure time deviation into
account).

If the value for time deviation would be normalized the normal way, dividing it by the maximum
time deviation, it would have to be divided by 1440 (the maximum amount of minutes in a day).
This would always form an extremely small value for time deviation. Especially due to the fact
that the time deviation will be close to zero most of the time. This would create a big unbalance
in the objective and not produce desired results.

• Congestion factors are left as-is as a benchmark. This implies that, for example, when w = 0.5,
the difference between the congestion factors of two itineraries must be greater than 1 for it to be
favorable to offer the itinerary with a time deviation of 120 minutes with a less congested option.

Example of Trade-Off
To demonstrate the trade-off, consider two itineraries with the following properties:

• Itinerary 1 (Path A): Time deviation ∆t = 0 minutes, congestion factor CF = 1.5.
• Itinerary 2 (Path B): Time deviation ∆t = 60 minutes, congestion factor CF = 0.5.
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The penalty calculation is defined as:

Z = w · ∆t

120
+ (1− w) · CF,

where w is the weight balancing time deviation and congestion.

Case 1: w = 0.9 (high priority on time deviation)

ZPath A = 0.9 · 0 + 0.1 · 1.5 = 0.15, ZPath B = 0.9 · 60

120
+ 0.1 · 0.5 = 0.50.

Path A is preferred.

Case 2: w = 0.5 (balanced)

ZPath A = 0.5 · 0 + 0.5 · 1.5 = 0.75, ZPath B = 0.5 · 60

120
+ 0.5 · 0.5 = 0.50.

Path B is preferred.

Case 3: w = 0.1 (high priority on congestion)

ZPath A = 0.1 · 0 + 0.9 · 1.5 = 1.35, ZPath B = 0.1 · 60

120
+ 0.9 · 0.5 = 0.50.

Path B is preferred.

Insights: For w close to 1, time deviation dominates. For w close to 0, congestion factor dominates.
A balanced w results in a trade-off between the two objectives.

The goal of this normalization is to allow both objectives in the objective function to be in the same
desired range of value, which is illustrated in Subsection 5.4.5. The weight parameter w can then be
used to find the ’optimal’ ratio between these two objectives by conducting a sensitivity analysis.

5.4.4. Time Sensitive Congestion Factor
The congestion factor is progressively scaled down for each request TFr , placing greater emphasis on
offering alternative itineraries earlier in the scheduling horizon. The rationale for implementing this time
fraction is that, as the scheduling horizon progresses, actively offering alternatives becomes less critical.
By this point, much of the network’s capacity is already utilized, naturally increasing congestion factors
on many arcs (see formula in Subsection 5.1.3). When nearing the end of the scheduling horizon,
decisions are better focused on minimizing time deviations rather than attempting to tactically manage
congestion.

For instance, consider a scenario where there is still enough capacity available on an arc for one train
during a specific hour, and the forecasted demand predicts that two additional requests are still ex-
pected to be handed in for that arc. With deterministic forecasting, the model can reliably estimate the
likelihood of these requests. If an alternative is offered to the first request, the second request can
be accommodated with minimal deviations, as the forecasted demand is known with high accuracy.
However, under uncertain forecasting conditions, the risks increase. If the second request never mate-
rializes, reserving capacity unnecessarily for it results in suboptimal utilization of the network. Scaling
down the congestion factor penalty as requests are processed reduces the likelihood of such inefficien-
cies, ensuring that decisions are more focused on immediate needs as the horizon nears completion.

To implement this, a simple linear scaling function is used:

TFr = 1− r

|R|

Where r is the request being currently handled and |R| is total amount of requests. This function
ensures that the congestion factor penalty in the objective function has greater influence early on and
decreases as scheduling progresses.
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Besides linearly scaling down the congestion function penalty, other approaches could be considered.
Such as an abrupt cutoff where the congestion factor is applied only for the first half of the requests
and then completely ignored, or an exponential decay for a more rapid reduction and equal importance
in the beginning of the scheduling horizon, these alternatives were not explored in this thesis and left
for future research. Testing all these possibilities would require significant additional implementation
and experimentation, which was beyond the scope of this thesis. Instead, this research focuses on
implementing a simple linear scaling function or leaving it out to evaluate their relative effectiveness.
The results of this comparison are presented in Chapter 7.

5.4.5. Sensitivity Analysis
A weighted sensitivity analysis explores the impact of varying w on scheduling decisions. By system-
atically adjusting w, the model identifies the optimal value w∗ that achieves the best balance between
minimizing time deviations and reducing congestion for a given set of requests R.

Illustrating the Trade-off Using the Objective Function
To understand how the objective function operates with the weights, consider the table below, which
shows example values for time deviations and congestion factors for two itineraries along two paths.

Table 5.3: Example of departure time deviation and congestion factor for itineraries of two paths

Departure Time
Deviation (minutes)

Congestion
Factor (Path 1)

Congestion
Factor (Path 2)

0 1.2 1.5
60 1.6 0.04
120 0.01 0.7
180 0.9 0.1
240 0.4 0.4

Using this table, consider the following example:

• For a departure time deviation of 60 minutes, Path 2 has a significantly lower congestion factor
(0.04) compared to Path 1 (1.6). This makes Path 2 a logical choice, as the congestion factor
heavily favors it, even with a slight deviation from the preferred departure time.

• Now, suppose the congestion factor for Path 2 with time deviation 60 increases from 0.04 to 0.8.
The trade-off now becomes more complex, as the congestion factor is no longer extremely low.
Here, the weight w in the objective function plays a critical role in determining what the scheduling
model will prioritize. Either the itinerary with time deviation 0 on Path 1 with congestion factor 1.2,
or the itinerary on path 2 with time deviation 60 and congestion factor 0.8, or maybe the itinerary
with time deviation 120 on Path 1 with a congestion factor of 0.01.

In Section 5.4 mathematical formulation for the objective function is shown.

Parameter sensitivity analysis
A parameter sensitivity analysis offers an alternative to avoid the problem of finding the optimal w in
the weighted sensitivity analysis. In this approach, the model minimizes only for the departure time
deviation, while the congestion factor is treated as a constraint. For example only accepting itineraries
which have a congestion factor below 1. This also eliminates the need for normalization, as the two
objectives are handled separately.

However, this approach is too simplistic for this thesis. Unlike the weighted sensitivity analysis, which
evaluates a trade-off between time deviation and congestion, the parameter sensitivity analysis forces
the selection of itineraries based solely on one factor, ignoring the interplay between the two objectives.



5.5. Updating the system 32

Table 5.4: Example of departure time deviation and congestion factor for itineraries of two paths

Departure Time
Deviation (minutes)

Congestion
Factor (Path 1)

Congestion
Factor (Path 2)

0 1.1 1.5
60 1.6 1.3
120 0.9 2.1
180 1.05 1.0
240 0.9 0.8

Take the example in Table 5.4. The paths connecting the origin and destination are popular and heavily
used throughout the day. Most itineraries have a congestion factor around or above 1. If the constraint
for the congestion factor forces the model to select an itinerary below 1, while minimizing for departure
time deviation, it would choose the itinerary with a 120-minute deviation for Path 1. However, this
is a substantial time deviation, and the congestion factor difference between the itineraries with a 0-
minute and 120-minute deviation is relatively small. In this case, little is gained by offering such a large
deviation.

If the weighted sensitivity analysis were applied to Table 5.4, it would likely choose the itinerary for Path
1 with a 0-minute time deviation and a congestion factor of 1.1. This approach considers the trade-off
between time deviation and congestion, avoiding drastic decisions that prioritize one objective entirely.

For this reason, parameter sensitivity analysis is not pursued, and the weighted sensitivity analysis is
preferred.

5.5. Updating the system
After an itinerary is offered to the customer, the system updates both the forecasted demand and
network utilization to reflect the new state of the network.

The demand for the chosen OD pair and associated sections is reduced. Since the initial demand was
equally divided among all feasible paths, the demand should also be subtracted from all these paths it
was divided over. In Section 6.1.4 this is explained in more detail.

The sections which are used by the accepted itinerary are marked as occupied in the time-space graph
G = (Nt, S, I). Additionally, the section is marked as occupied not only during the scheduled time but
also for the headway period hs after, enforcing capacity constraints.

Sequential Processing The model processes each request r sequentially. After handling request r
and allocating an itinerary onto the network, the network state is updated. With the next request r + 1
the whole process starts over again using the updated network state.

5.6. Conclusion
This chapter has developed a conceptual framework for the dynamic freight train scheduling system.
It outlined the key components, including forecasting demand, managing network capacity, generating
feasible itineraries, and formulating an objective function to balance minimizing time deviations and
mitigating congestion. The use of advanced models, such as the C-Logit, ensures accurate demand
distribution by accounting for path overlaps, while the system’s sequential processing framework dy-
namically updates network states after each request.

By integrating these elements, the conceptual model lays a robust foundation for addressing the dual
objectives of improving scheduling efficiency and enhancing customer satisfaction. The next steps
involve implementing this framework in the mathematical model and validating its effectiveness through
a case study.
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Mathematical Model

This chapter presents the mathematical model developed to improve the dynamic scheduling of freight
trains. The model sequentially processes incoming train requests, balancing customer preferences
with network constraints and future demand. It integrates sets, parameters, and variables to represent
the railway network and its time-dependent dynamics. The formulation captures the trade-offs between
minimizing departure time deviations and mitigating network congestion per request, using an objective
function and constraints designed to ensure efficient allocation of resources per request. Network
state updates reflect the real-time impact of each scheduling decision, enabling the model to adapt to
changing conditions throughout the scheduling process.

6.1. Mathematical Formulation
The mathematical model processes each freight train request sequentially. Each request is handled
one at a time, updating the network state after processing each request. In table 6.1 all the sets,
parameters and variables used for the scheduling model are presented.

6.1.1. Itinerary Generation
Freight train requests, denoted as r ∈ R, arrive sequentially, each represented as a tuple {or, dr, tr},
where or ∈ N and dr ∈ N indicate the origin and destination stations, and tr ∈ T specifies the preferred
departure time. Here, N represents all possible stations, and T consists of discrete time points within
a day.

The railway network is modeled using a set of predefined paths, p ∈ P , each representing a sequence
of nodes connecting an origin to a destination. In the set of predefined paths there are subsets which
consist of all paths connecting an origin to a destination, noted by Pod ⊂ P . Formally, a path p ∈ P
is represented as p = (n1, n2, . . . , nL), where each consecutive pair (nℓ, nℓ+1) corresponds to an arc
aℓ ∈ A. Given a request r, the subset of paths Por,dr

= {p ∈ P : origin of p = or, destination of p = dr}
is identified, containing all paths satisfying the request’s origin-destination pair.

To generate itineraries, each path p ∈ Por,dr
is paired with a departure time t ∈ T , creating a set of

itineraries, Ir = {(p, t) | p ∈ Por,dr
, t ∈ T}. These itineraries consider all possible combinations of

paths and departure times that comply with the request. Each itinerary (pi, ti) ∈ Ir specifies the path
pi and the departure time ti from the origin or.

The following example shows this process. Suppose the network consists of stationsN = {A,B,C,D}
with predefined paths P = {p1 = (A,B,D), p2 = (A,C,D)}. A request r with {or = A, dr =
D, tr = 100} leads to the paths Por,dr = {p1, p2}. If T = {0, 1, . . . , 1439}, then itineraries for p1 in-
clude {(p1, 0), (p1, 1), . . . , (p1, 1439)}, and similarly for p2. Thus, Ir combines these sets, resulting in a
comprehensive list of feasible options.
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6.1.2. Congestion Factor Calculation
In Subsection 5.1.3, the formula for calculating the congestion factor for an arc a and hour h is intro-
duced. This formula is used to determine the congestion factor before allocating requests to the net-
work. However, as requests are allocated, the network’s capacity usage increases and the forecasted
demand decreases, necessitating updates to the congestion factor.

During the allocation process, it is smart to account for not only the current congestion factor up to
request r (see Equation 6.17), but also the anticipated changes resulting from allocating itinerary i to
request r. This requires calculating the congestion factor for every itinerary in the set Ir for request r,
incorporating the capacity and demand across all arcs and hours in the network up to and including the
current request.

Currently, Ura,h represents the number of requests allocated on arc a during hour h up to request r,
i.e., before deciding how to handle request r. To represent usage after allocating request r to itinerary
i, define:

Ura,h(i) = Ura,h +
∑
t∈Th

δri,a,t, ∀h ∈ H, r ∈ R, a ∈ A, i ∈ Ir (6.1)

where:

• Ura,h is the capacity usage in state Yr (i.e., before request r is allocated, see Figure 4.1 for
explanation on Yr)

• δri,a,t = 1 if itinerary i uses arc a at departure time t

• Th is the set of all minute-level departure times within hour h.

Hence, Ura,h(i) is the usage in the new state Zr, if request r is allocated to itinerary i (see Figure 4.1
for explanation on state Yr and state Zr).

The forecasted demand is also updated when a request is allocated. This update is independent of
the specific itinerary chosen and depends solely on whether the request is allocated. By increasing
the request number by +1, the forecasted demand decreases accordingly for the corresponding origin-
destination pair and departure time. The exact mathematical calculations on how to update the demand
is shown in Subsection 6.1.4.

The congestion factor for arc a during hour h, for when itinerary i would be allocated to request r, is
defined as:

Vra,h(i) =
Dr+1,a,h

Ca,h − Ura,h(i) + ϵ
, ∀h ∈ H, r ∈ R, a ∈ A, i ∈ Ir (6.2)

where:

• Dr+1,a,h is the forecasted demand for arc a at hour h in state Zr

• Ca,h is the capacity on arc a for hour h
• ϵ is a small constant to avoid division by zero

By including
∑

t∈Th
δri,a,t inside Ura,h(i) and looking at the next request for Dr+1,a,h, the algorithm is

effectively “thinking ahead,” i.e., computing how congested arc a and hour h would be once request r
has actually been assigned to itinerary i.

Once the congestion factor for all arcs is calculated, the congestion factor for an itinerary can be deter-
mined. Two methods are evaluated in this thesis, as presented in Chapter 7. These methods differ in
whether the congestion factor per section is squared (Equation 6.3) or not (Equation 6.4). Squaring the
congestion factor magnifies the effect of highly congested sections, ensuring that heavily used sections
receive higher penalties compared to less congested ones. This approach, inspired bymulti-commodity
network flow (MCNF) problems, prevents the sum of many small penalties from overshadowing the im-
pact of a few large ones.

By adding everything together, the congestion factor for an itinerary is calculated as follows:
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Squared Congestion Factor

CFri =

∑
a∈A

∑
h∈H (Vra,h(i))

2∑
t∈Th

δri,a,t∑
a∈A

∑
h∈H

∑
t∈Th

δri,a,t
, ∀r ∈ R, i ∈ Ir. (6.3)

Non-Squared Congestion Factor

CFri =

∑
a∈A

∑
h∈H Vra,h(i)

∑
t∈Th

δri,a,t∑
a∈A

∑
h∈H

∑
t∈Th

δri,a,t
, ∀r ∈ R, i ∈ Ir. (6.4)

The
∑

t∈Th
is placed after Vra,h(i) because this applies exclusively to δri,a,t. This placement follows

standard mathematical notation and does not imply any dependence of Vra,h(i) on t.

6.1.3. Algorithm
The algorithm acts dynamically and handles each request sequentially as they come in. Per request
the algorithm handles the best approach with the knowledge the algorithm currently has.

Objective for each Request
Minimize

∑
i∈Ir

xriPenaltyri, ∀r ∈ R (6.5)

Minimizes the total penalty for selecting itineraries for all requests.

Constraints:

1. Penalty Function:

Penaltyri = w

(
∆tri
120

)
+ (1− w) (CFri ∗ TFr) , ∀r ∈ R, i ∈ Ir (6.6)

Combines penalties for time deviation and congestion factor, weighted by w, to calculate the
penalty for each itinerary.

2. Itinerary selection for each request:

Ensure that exactly one option is selected for each request.

xri =

{
1, if itinerary i is selected for request r,
0, otherwise,

∀i ∈ Ir, r ∈ R. (6.7)

Defines xri as a binary variable indicating whether an itinerary is selected.

∑
i∈Ir

xri = 1, ∀r ∈ R (6.8)

Ensures exactly one itinerary is selected for each request.
3. Capacity Constraints for Each Arc a with Departure Time t when handling request r:

Ensure that the capacity constraints are not violated, including the headway time hs:

r∑
b=1

∑
i∈Ib

xbiδbi,a,t = Ura,t′ ∀r ∈ R, a ∈ A, t ∈ T, t′ ∈ [t, t+ hs) (6.9)

Updates arc usage by summing allocated itineraries over all previous requests.

Ura,t ≤ 1 ∀r ∈ R, a ∈ A, t ∈ T (6.10)
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This constraint accumulates the usage of each arc awith departure time t up to request r, ensuring
that once a section is occupied, it cannot be used by subsequent requests beyond its capacity.

4. Binary Decision Variables:

xri ∈ {0, 1} ∀i ∈ Ir, r ∈ R (6.11)

Defines xri as binary variables indicating the selection of itineraries.

6.1.4. Network State Update
After offering an itinerary i to the customer with request r, the network state is updated to reflect the
changes in Ura,t, Ura,h, Dra,h, Dr,od,t, Dra,t, Drp,t, Vra,h before moving on to the next request r + 1.

1. Update Number of Trains Departing over Arcs per Hour
Update Ura,h to reflect the new number of trains allocated on arc a during hour h:

r∑
b=1

∑
i∈Ib

xbi

∑
t∈Th

δbi,a,t = Ura,h ∀a ∈ A, h ∈ H, r ∈ R (6.12)

where Th is the set of times within hour h.

2. Update Forecasted Demand

Dod,t −
r∑

b=1

qb(o, d, t) = Dr,od,t ∀o, d ∈ N, t ∈ T, r ∈ R (6.13)

Calculates the remaining origin-destination demandDr,od,t for o, d at time t after processing all requests
up to r.

From the updated Dr,od,t recalculate the demand per section in the network:

Distribute Demand Across Paths: Allocate the OD demand Dr,od,t with departure time t among the
paths p ∈ Pod based on the calculated probabilities:

Drp,t = Dr,od,t × Pp ∀r ∈ R, o ∈ N, d ∈ N, p ∈ Pod, t ∈ T (6.14)

Update Forecasted Demand per Arc: Decompose each path p into its constituent arcs a ∈ Ap. Re-
membering from Section 4.2, itinerary i is a combination of pi and ti. The set i ∈ I is built from a
combination of the sets p ∈ P and t ∈ T . So when iterating through all the i ∈ I, would provide the
same iteration as doing this separately for p ∈ P and t ∈ T . This is an important distinction to make so
there is no confusion between the departure time t for a path and the departure time t for an arc.

With all trains traveling at a fixed speed v and not stopping at intermediate stations, the arrival time at
each node n ∈ Np along path p for departure time t can be calculated by:

∑
i∈I

Drpi,tiδri,a,t = Dra,t ∀r ∈ R, a ∈ A, t ∈ T (6.15)

Calculates the demandDra,t for each arc a at time t by summing the contributions of all itineraries i that
use the arc, accounting for the demand Drpi,ti and whether the itinerary traverses the arc (δri,a,t = 1).

Convert Minute-Level Demand to Hour-Level Demand:

Dra,h =
∑
t∈Th

Dra,t ∀r ∈ R, a ∈ A, h ∈ H (6.16)

Aggregates the minute-level demandDra,t across all minutes t in hour h to compute the hourly demand
Dra,h for each arc.
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3. Update Congestion Factors

Vra,h =
Dra,h

Ca,h − Ura,h + ϵ
∀a ∈ A, h ∈ H, r ∈ R (6.17)

Recalculates the congestion factor Vra,h for arc a during hour h based on updated demand Dra,h,
available capacity Ca,h − Ura,h, and a small constant ϵ to avoid division by zero.

4. Update Time Fraction for Request

TFr =

(
1− r

|R|

)
∀r ∈ R (6.18)

Calculates the time fraction TFr, which decreases linearly as the request index r approaches the total
number of requests |R|, reducing the weight of congestion over time.

6.1.5. Explanation
The network state update ensures that the allocation of the current request to an itinerary affects the
availability and congestion of the network for subsequent requests. By updating Ura,t, future itineraries
are prevented from using arcs marked as occupied at those times. Updating Da,t and Da,h with Dra,t

and Dra,h reflects the decreased demand over the network due to allocated requests, and updating
Vra,h allows themodel to update the congestion factor, forecasting how congested arcs will be for certain
hours. By updating all these parameters, the model can adapt to the changing network conditions
throughout the scheduling process.

6.2. Conclusion
This mathematical model provides an algorithm for scheduling requests onto the railway network, form-
ing the basis for the experiments in Chapter 7, where the effects for different values of w are evaluated
against ProRail’s current system. The model integrates key components such as feasible itinerary gen-
eration, congestion factor calculation, and network state updates to dynamically process requests in
real-time as they come in.

By introducing an objective function that minimizes both departure time deviations and forecasted con-
gestion and a weight w balancing priority between the two, the model captures the trade-offs inherent
in managing limited railway network capacity. By using deterministic demand forecasting, it estimates
section-level congestion and provides a predictive framework for allocating requests while maintaining
flexibility for future scheduling. By sequentially processing requests and updating the network state
after each decision, the model ensures adaptability to real-time changes and lays the foundation for
testing scenarios aimed at improving scheduling efficiency and network utilization.
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Table 6.1: Notation sets, parameters and variables

Sets Description Indexing
N Set of nodes (stations) in the network n ∈ N
A Set of arcs (links between stations) a ∈ A
P Set of predefined paths (sequences of nodes) p ∈ P
Pod Pod is the subset of P containing all paths connecting origin o

and destination d
p ∈ Pod

T Set of discrete time points (minutes) within a day t ∈ T
Th Set of discrete time points (minutes) within hour h t ∈ Th

H Set of hours within the day h ∈ H
r Set of requests r = 1, 2, . . . , R
I Set of itineraries i ∈ I
Ir Set of itineraries for request r (Ir ⊂ I) i ∈ Ir
S Set of sections (time-dependent arcs) s ∈ S

Parameters Description
or Origin station for request r
dr Destination station for request r
tr Preferred departure time for request r
ti Departure time for itinerary i
pi Path used for itinerary i
v Fixed speed of trains (e.g. 80 km/h)
hs Minimum headway time for section s
w A value between [0,1] for the weight
qr(o, d, t) A binary parameter which is 1 if request r contributes to the demand for origin o,

destination d, and departure time t; 0 otherwise
Pp Probability a request travels over path p
∆tri Time deviation for itinerary i of request r
CFri Congestion factor for itinerary i of request r
TFr A given time fraction for request r
Penaltyri The penalty for itinerary i for request r
Dod,t Future demand between o and d with departure time t
Drod,t Left over future demand between o and d with departure time t when scheduling

request r
Da,t Forecasted demand in number of requests preferring arc a with departure time t
Dra,t Left over forecasted demand in number of requests preferring arc awith departure

time t when scheduling request r
Da,h Forecasted demand in number of requests on arc a during hour h
Dra,h Left over forecasted demand in number of requests on arc a during hour h when

scheduling request r
Drp,t Left over forecasted demand in number of requests for path p with preferred de-

parture time t when scheduling request r
Vra,h Congestion factor for arc a during hour h up to request r
Vra,h(i) Congestion factor for arc a during hour h up to request r, including the allocation

of itinerary i to request r
Ura,t Indicator if arc a with departure time t is occupied when scheduling request r;

Ura,t = 1 if occupied, 0 otherwise
Ura,h Value representing number of requests allocated to arc a during hour h up to

request r
Ura,h(i) Value representing number of requests allocated to arc a during hour h up to

request r, including the allocation of itinerary i to request r
δri,a,t 1 if itinerary i for request r uses arc a with departure time t, 0 otherwise
dn,n′ Distance between node n and node n′

ϵ Small value to avoid division by 0
Variables Description
xri ∈ {0, 1} Binary decision variable that equals 1 if itinerary i is offered to request r, 0 other-

wise
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Case study

This chapter presents a case study to evaluate the proposed dynamic schedulingmodel for freight trains
in the Netherlands. Real-world data is used to simulate the scheduling process, and the performance
of the new model is compared with the current scheduling method used by ProRail. Key performance
indicators (KPIs) detailed in 1.2 are used to assess the effectiveness of the proposed model.

The primary objective of the case study is tomeasure the impact on the total time deviation squared after
allocating all requests onto the network under various scenarios, including different network capacities,
squaring congestion factor values, scaling the congestion penalties over time and altering the request
order.

The case study applies the dynamic scheduling model across these varied conditions and for each
condition, determines the optimal value of w for the objective function 6.6. The goal is to identify the
optimal value of w which minimizes total departure time deviation squared after allocating all requests
onto the network.

This chapter is structured as follows: the data gathered for the model is first introduced, along with
its role in the algorithm. This is followed by a description of the preprocessing steps, transforming the
data into the necessary sets and parameters. Next, the experimental setup is outlined, covering the
formulas used for calculating travel times, generating feasible itineraries, and determining penalties.
The algorithm then sequentially processes each request, simulating real-time scheduling. Multiple
experiments are executed, with results displayed in tables and graphs. The chapter concludes with an
analysis of these results and potential applications for optimizing scheduling.

7.1. General description
The case study evaluates the proposed dynamic scheduling model for freight trains in the Netherlands
using real-world data. It examines the model’s ability to allocate train requests onto a constrained
network while balancing customer departure preferences and network congestion. The study simulates
scheduling under varying network capacities and parameter configurations to test the robustness and
efficiency of the model. Results are analyzed to assess the impact of different weights in the objective
function, providing insights into the trade-offs between minimizing total time deviation and mitigating
congestion.

7.1.1. Coding
The coding for this project is all done in Python, using Spyder IDE (version 3.11) (Raybaut, 2009).

For the implementation of the model, several libraries were used. The algorithm was carried out using
Gurobi, a powerful optimization solver designed for integer programming problems (Gurobi Optimiza-
tion, 2024). Data manipulation and preprocessing were handled using the Pandas library (pandas
development team, 2020). Numerical computations relied on NumPy, which provides efficient array
operations and mathematical functions (Harris et al., 2020). Visualizations of the results were done us-

39



7.2. Data description 40

ing Matplotlib and its 3D toolkit Axes3D (Hunter, 2007), as well as Plotly for creating interactive graphs
(Inc., 2024). Data serialization and storage were performed using Python’s built-in pickle module.

7.2. Data description
This section introduces the datasets used in the case study and their role in constructing the scheduling
model. The data includes freight train requests, predefined freight paths, and a distance matrix repre-
senting the railway network. Each dataset is preprocessed to address missing information and ensure
compatibility with the model. These inputs form the foundation for creating the sets, parameters and
demand distribution required for the scheduling algorithm.

7.2.1. Requests
The main data used in this case study consists of freight train requests submitted for an average week-
day with minimal track maintenance activities (ProRail, 2024b), specifically on 12 March 2024. There
are a total of 953 requests handed in for this day. The requests were collected over a submission
horizon spanning multiple months. A small section of the data is pasted in Table 7.1 where the first four
requests are shown.

Each request includes the following information:
Order number and train number: Used to distinguish between different requests. Each request has
a unique combination of order number and train number. Multiple requests may share the same order
number or train number, so both numbers are taken into account to differentiate between requests.
Date: Preferred departure date.
Follow number: Defines the sequence of stops in the train’s route, where the smallest and largest
numbers indicate the origin and destination. Intermediate values denote additional stops, either speci-
fied by the customer for route constraints or for picking up/dropping off containers. The starting value
of the follow number (either 0 or 1) depends on the portal through which the request was submitted.
Service point: The abbreviated names of the stations. The corresponding station names are listed on
the website (Spilt, n.d.).
Plan time: Indicates the preferred departure time in seconds from 00:00, with the final station’s time
indicating preferred arrival. In this thesis only the starting departure time is taken into account.
Offset: A value of 1 indicates that the plan time crosses over into the next day (13-3-2024), otherwise
this value is set to 0.

Table 7.1: Raw Train Request Data

Order number Train number Date Follow number Service point Plan time Offset
495740 40065 12-3-2024 1 Whz 48360 0
495740 40065 12-3-2024 2 Kfhn 49200 0
495740 40065 12-3-2024 3 Brmet 51720 0
495740 40065 12-3-2024 4 Zvg 54360 0
495740 40065 12-3-2024 5 Zvg 54960 0
495740 40065 12-3-2024 6 Zvg 55080 0
504604 55561 12-3-2024 0 Wgm 3600 0
504604 55561 12-3-2024 1 Wgm 3600 0
505667 55565 12-3-2024 0 Whz 39631 0
505667 55565 12-3-2024 1 Ps
505667 55565 12-3-2024 2 Mvtww 45037 0
515226 51026 12-3-2024 0 Vl 81881 0
515226 51026 12-3-2024 1 Lutdsm

Some irregularities are observed in the data, which occur frequently enough to be treated as standard
cases in the model. For example, repetitive intermediate stations (e.g., ’Zvg’ listed three times consec-
utively for a single request), however, only the origin and destination (smallest and biggest number in
the follow number column) are used in the model so no action has to be taken to fix this. Requests with
identical origin and destination points are discarded. Additionally, only the preferred departure time is
used, as arrival times are inconsistently provided. With a fixed uniform speed for all trains, using the
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departure time is sufficient, as travel time remains constant regardless of the specified arrival time.

7.2.2. Freight paths
A list of the most frequently used freight paths is provided by ProRail. Between the most used origin-
destination pairs, ProRail computed (the best) options to connect an OD pair. This saves computation
time and gets rid of any cycle paths or paths with big detours. The multiple options of freight paths
which can be used between an OD pair are also expected to be similar in travel time. Each path
consists of a list of every single station a train would need to pass to reach its destination. In Table
7.2, two different and independent predefined paths are shown. The ’Service Point’ column shows
the abbreviated station names of the path. The ’Activity’ column shows the origin (V) of a station, the
stations the path passes (D), and the destination (A) of a station.

Table 7.2: Train Service Points and Activities

Service Point Activity
Rtd V
Rhsla D
Hsrtdt D
Hsvbw D
Hsrtdv D
Hsghtz D
Hsghtn D
Hshmdo D
Hshfdo D
Hfdm D
Hfd D
Shl A
Shl V
Asra D
Asdl D
Aeg D
Ass D
Asdta D
Sgra D
Sgbr D
Asd A

7.2.3. Distance Matrix
In Table 7.3, a small section of the first ten stations with corresponding distances are shown. The
distance matrix shows the distance between every pair of stations in the Netherlands. It represents the
shortest possible distance between two stations in kilometers. This data is gathered from the website
(Rijdende Treinen, 2022).
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Table 7.3: Station Distance Matrix

Station AC AH AHP AHPR AHZ AKL AKM ALM ALMB ALMM
AC XXX 82 83 85 90 71 188 32 38 31
AH 82 XXX 1 3 8 77 153 98 104 97
AHP 83 1 XXX 2 9 78 152 99 105 98
AHPR 85 3 2 XXX 11 80 150 101 107 100
AHZ 90 8 9 11 XXX 69 161 106 112 105
AKL 71 77 78 80 69 XXX 211 96 102 95
AKM 188 153 152 150 161 211 XXX 158 152 159
ALM 32 98 99 101 106 96 158 XXX 6 1
ALMB 38 104 105 107 112 102 152 6 XXX 7
ALMM 31 97 98 100 105 95 159 1 7 XXX

The problem with the data is that this is meant mostly for passenger trains and stations. Freight trains
may use different stations and paths which are not specified in this matrix. I was not able to gather a
distance matrix which contained distances between all the stations in the Netherlands, so to bypass
this problem, whenever the distance between two subsequent stations is not known, a default distance
is implemented of 5.1 kilometers. This is based on the average distance between two train stations in
the Netherlands (Compendium voor de Leefomgeving, 2018).

7.2.4. Station Coordinates
Geographic coordinates for most known stations are gathered from the same website as the distance
matrix (Rijdende Treinen, 2022). The coordinates are used only for visualization purposes to plot the
stations and are not needed for the actual experiment conducted in this thesis. Also the same problem
is present for the list of coordinates, where the coordinates are not known for all the stations used in
this research.

7.2.5. Missing Data
Rail Capacity: Due to data limitations, specific capacity data for each arc could not be obtained for this
thesis. Rail capacity is influenced by various factors and is challenging to calculate for individual arcs.
It is primarily determined by headway time, the safety interval required between two consecutive trains
traveling in the same direction from the same station. Headway time varies based on factors such as
train speed, station size, number of connecting tracks, and whether tracks are single or bi-directional.
For example, the theoretical maximum capacity of the London Underground is 33 trains per hour, while
in the Netherlands, eight trains per hour over an arc can already be considered as high (OVNet, 2023).
At least a minimum interval of three minutes between consecutive trains on the same track is required
(Treinreiziger, 2020), which would result in a maximum of twenty trains per hour. In practice, this interval
is almost never achieved. On the betuweroute the amount of trains passing per hour is closer to three
trains per hour (RTV Dordrecht, 2024).

In this thesis, a uniform headway time is applied across all sections, simplifying capacity to a constant
value for each station or arc. This approach removes natural variations in capacity across routes, such
as the higher capacity around the port of Rotterdam compared to less-used sections in the north-east of
the Netherlands, but is necessary due to the missing data. Since the exact headway time is unknown,
multiple scenarios with different headway times are tested to evaluate the model’s performance under
varying conditions.

Velocity In this thesis a uniform velocity is used. The velocity which is used is set to an average of 80
km/u. This is based on the websites (ProRail, n.d.) and (Compendium voor de Leefomgeving, 2018).

7.3. Data Preprocessing
The data preprocessing section addresses the data gaps and formatting issues encountered during
the preparation of the freight scheduling model. Each preprocessing step uses the data inputs from
Section 7.2 to help construct the sets and parameters mentioned in the Chapter 6. This consists of
defining the paths, structuring requests, estimate demand distribution, and distance calculation.
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7.3.1. Data Loading and Initial Processing
The datasets consist of freight train orders, paths used by infrastructure managers, and distance data,
loaded from separate Excel files. Paths are sourced from multiple data files, with each one containing
specific routes or segments used for freight transport. These paths, along with order requests and
distance data, are imported and initialized to begin constructing the model’s parameters.

7.3.2. Node Identification
Unique nodes or stations are derived from the path data to create a foundational list of locations in the
network. This list of nodes serves as a reference for constructing paths and allocating orders, ensuring
that all nodes included in the dataset are accounted for and identifiable.

7.3.3. Path Extraction
The path processing function transforms sequences of ”Dienstregelpunt” (service points) into unique
paths with a clear starting station (’V’), intermediate stations (’D’), and end stations (’A’) as can be seen
in Table 7.2. The function iterates through each row of the path data to construct paths by: Starting a
path when an activity marker is ’V’, appending intermediate nodes, ensuring no consecutive duplicates,
and ending the path when ’A’ is encountered. Then convert the resulting list into a tuple for uniqueness.
After processing each data file, the unique paths are combined across datasets to avoid redundancy.
This results in a set of freight paths, denoted as P , which serves as the foundation for route options to
fulfill requests.

7.3.4. Structure Requests
From the request dataset (see Table 7.1), all data is gathered, stored and labeled in a dictionary. The
requests are grouped by ”ordernumber” and ”trainnumber”. Each request consists of multiple stations,
of which there is at least an origin and a destination, and a preferred departure time (noted in seconds
from midnight). Each processed request is then stored in a dictionary list of requests: R, which can
then be used for the demand forecast calculation, testing the path allocation and later on to conduct
the actual experiment with.

7.3.5. Demand Calculation
Demand is calculated by counting each OD pair’s frequency from all the requests R and also storing
the time: denoted as D_od_t. This dataset maps the expected number of requests for each OD pair
across different time intervals. This list will be used to check which paths can be used to connect the
OD pairs, and for the calculation of the demand forecast over the whole network.

7.3.6. Path Extension and Creation
From the initial data analysis, it became clear that a significant number of requests (approximately 64%)
could not be allocated to the predefined freight paths stored in P . This means there is a substantial
lack of paths to satisfy origin-destination (OD) pairs. From meetings with employees from CGI and
ProRail, I was already warned for this. Also in the real life scheduling process, approximately 40%
of the requests can be allocated directly to a path. The other 60% needs to be manually created by
employees.

To increase the number paths which can fulfill requests, three steps are taken:

1. Subpath Extraction: For OD pairs lacking direct paths, subpaths are created by extracting seg-
ments from existing paths where both origin and destination nodes appear. If a suitable segment
exists, it is included as a path for the OD pair. OD pairs which can still not be matched to a
(sub)path are flagged for additional processing.

2. Path Reversal: For the flagged OD pairs, paths are reversed to assess suitability in the opposite
direction. Reversing paths provides additional path options by allowing request to travel in reverse
order. This is not possible in real life due to some rail sections being one-directional. For this study,
reversing paths is (somewhat) justified as the primary aim is to test an algorithm to examine total
departure time difference, rather than trying to perfectly simulate a real world scenario.

3. Path Combination: For OD pairs that still can not be allocated to a path after subpath extraction
and reversal, the model combines paths to create extended, non-cyclic routes between endpoints.
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This method involves merging paths that share either the same start or end points. Although
some combined paths may not be optimal and could involve detours, they provide a necessary
alternative to allow the train to reach its destination. In this context, ensuring connectivity takes
precedence over routing efficiency, as the primary goal is to fulfill the request even if the resulting
path is longer than ideal. If multiple paths are possible to fulfil an OD pair, only the shortest
feasible path is used.

The result after executing these steps is an expanded path set P that can fulfill more OD pairs, allowing
for a more comprehensive allocation of paths to requests.

After generating the new paths, the model assesses each OD pair to determine matching status. OD
pairs which can still not be fulfilled to one of the available paths are flagged and removed from the
demand and request datasets, reducing computational complexity by retaining only feasible requests
for allocation.

The path expansion steps significantly increase the number of matched requests. Of the original 953
requests, 767 can now be allocated to one or more paths. The remaining 186 requests, for which no
path is available, are removed from the request set R.

7.3.7. Arc Creation
Unique arcs, representing individual segments between sequential nodes, are identified by iterating
through the final path set P . Each arc is defined as a direct connection between two consecutive
nodes within a path. These arcs are stored as unique entries in A.

7.3.8. Distance Matrix Filtering
Using the provided distance matrix, known distances between stations are stored in a filtered dictionary.
For arcs without distance data, a default value of 5.1 km is assigned to maintain continuity.

7.3.9. Demand Distribution by Section
The distribution of demand across network sections is handled by applying the Commonality Factor
Logit (C-Logit) model, as explained in Subsection 5.1.1. This method accounts for path overlap by as-
signing probabilities to each path based on utilities derived from path attributes, in this case specifically
the total overlap distance between paths. For all paths which can connect an origin-destination (OD)
pair, a utility score that reflects their degree of overlap with the other paths is calculated. Overlapping
parts are identified using the algorithm in Subsection 5.1.1.4, quantifying overlap by measuring the
distance between shared arcs. This approach ensures that the demand is distributed fairly over the
available paths in the network, by penalizing paths with high overlap.

After calculating the path probabilities, demand for each OD pair is distributed across the feasible paths
based on these probabilities. For the forecasted demand assigned to a single path, demand is allocated
in more detail when zooming into the sections in the path. The sections are also time dependent, so the
demand allocated to a path should also account for the travel time as trains may span multiple hours
in transit. This is simplified in hour-by-hour occupancy per section. (This is explained in more detail in
5.1.1.) Demand for each section along a path is accumulated based on the hour during which a train
is expected to occupy that section. After executing this process for all OD pairs, the total expected
demand for each section in the network for each hour is known.

This demand distribution model considers both route overlap and travel time, ensuring that demand is
distributed over paths/sections in a way that is simple, yet reliable. In Table 7.4a the top 30 forecasted
busiest arcs are shown. With the busiest arc being (Whzan, Brdv) with a forecasted demand of 86
trains for one day. When using the website of Spilt (n.d.), the arc (Whzan, Brdv) is translated to the arc
going from station ’Rotterdam Waalhaven Zuid Aansluiting’ to ’Barendrecht Vork’. When looking at the
railway map provided by ProRail (ProRail, 2025) it becomes clear why this is the forecasted busiest
arc for freight trains on a day: all trains leaving the port of Rotterdam, travel over this arc.

7.3.10. Data Storage
All preprocessed data, including nodes, arcs, paths, requests, demand distribution, commonality factors
and distance per arc is stored in a dictionary and saved as a pickle file. This final storage step preserves
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the processed data for efficient retrieval and model execution, ensuring that the algorithm can be run
on a fully preprocessed dataset.

7.3.11. Computation time
Computation time is approximately 35 seconds.

7.4. Model Implementation
The following section shows how the algorithm used for freight train scheduling is implemented using
python, linking each coding step to the corresponding mathematical or conceptual model. Choices or
simplifications made during the coding are explained or justified in this Section.

7.4.1. Data loading and preprocessing
The algorithm starts by loading the preprocessed data stored in a pickle file from Section 7.3. The
data includes the sets of nodes (N ), arcs (A), predefined paths (P ), and freight train requests (R).
Time intervals are represented in hours (H) and minutes (T ). Demand data includes Dod,t for origin-
destination pairs and departure time in minutes and Da,h for the demand per arc per hour. Also the
C− logit data is imported so during the scheduling process the forecasted demand can be recalculated
easily. Additionally, a distance matrix (dm) and precomputed travel times for paths (path_travel_times)
are loaded.

A constant train speed (v = 80km/h) is assumed for simplicity, ensuring uniform travel times across all
paths. This assumption aligns with the mathematical model, where operational variations in speed are
disregarded to focus on improving the departure time deviation during scheduling. The initialization also
includes a minimum follow up time (hs) which is used to calculate capacity constraints for sections in
the railway network. The headway time will be altered for multiple experiments to see how the algorithm
performs under different capacity constraints in the network.

The maximum network capacity for each arc per hour Ca,h and the congestion factor for each arc per
hour Va,h are calculated during initialization to represent the availability and anticipated congestion
levels for each arc per hour. These values are based on the preprocessed data and provide inputs for
scheduling decisions. These values are calculated in the same way as presented in subsections 5.1.2
and 5.1.3.

7.4.2. Function definitions
For the algorithm, three functions are coded which can be called for when needed.

1. Travel time calculation: The function compute_travel_times calculates travel times between
stations along a path using the distance matrix dm and the speed v. Travel times are expressed
in minutes, ensuring consistency with the scheduling time units.

2. Feasible itinerary generation: The function generate_feasible_itineraries identifies and re-
turns all feasible itineraries for a given request r, considering paths that match the request’s
origin and destination and checking their capacity availability in Ura,t. Feasibility is evaluated for
departure times within hourly increments forward and backward from the preferred departure time,
making use of the fact that penalties are the same across the hour. Each itinerary is validated
by iterating through its sections and ensuring sufficient capacity is available during the train’s
traversal, accounting for headway times and the velocity of the train. When a feasible itinerary is
found within an hour, the algorithm skips to the next hour to save computation time. The function
efficiently handles forward and backward searches by iterating through all time increments until
the options are explored or the time range is exhausted.

3. Congestion factor calculation: The function calculate_congestion_factor computes the con-
gestion factor for an itinerary by using the penalties for all sections in the itinerary, considering
the departure time and train velocity to determine the specific hours for when each section is
traversed. The congestion factor for each arc is retrieved from Vra,h, with the arc-hour pair as the
key and the request r referring to the request in question. The function supports two methods
for calculating the congestion factor: one computes the average congestion by summing all the
congestion values for all sections in the itinerary and dividing by the total number of sections. The
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other method squares the congestion factor before summing them, creating a bigger difference
between large and small congestion factors. The division by the total number of sections remains
the same in both methods. These approaches are based on the equations presented in Subsec-
tion 6.1.2, and experiments in 7.5.3 compare their impact on algorithm performance. The output
of the function is a single value for the congestion factor of the given itinerary.

7.4.3. Request processing algorithm
Each request is processed sequentially, updating the network state (Ura,t, Ura,h, Drod,t, Dra,h & Vra,h)
after each allocation. This approach mimics real-time scheduling and ensures that future decisions
account for previously allocated requests. The process of handling a request follows the same steps
as seen in Figure 4.1.

Once a request r gets handed in, the first step is generating all feasible itineraries for the request using
the function generate_feasible_itineraries. For each feasible itinerary its time deviation from the pre-
ferred departure time and the congestion factor corresponding to the capacity, network utilization and
forecasted demand are calculated. All the feasible itineraries with their time deviation and congestion
factor are used as an input for the objective function.

The algorithm uses the binary decision variable (xir) to indicate whether an itinerary is selected for a
request (r). The objective function minimizes the penalty resulting from a weighted sum of normalized
time deviation and the congestion factor. A weight parameter (w) determines the trade-off between
these two components. The objective function is expressed as:

Minimize
∑

xirPenaltyir, ∀r ∈ R

For the experiments, two variations of the congestion factor are tested. In one variation, the congestion
factor remains constant throughout the scheduling horizon. In the other, the congestion factor penalty
decreases over time, reducing its impact for later requests. The penalty for each itinerary, where the
congestion factor stays the same, is calculated as:

Penaltyri = w

(
∆tri
120

)
+ (1− w) (CFri) , ∀r ∈ R, i ∈ Ir

For scenarios where the congestion factor decreases over time, the model incorporates a time fraction
(TFr) to adjust the relative importance of congestion penalties for later requests. The weight (w) still
balances the trade-off between time deviation and network utilization. This variant modifies the penalty
calculation as follows:

Penaltyri = w

(
∆tri
120

)
+ (1− w) (CFri ∗ TFr) , ∀r ∈ R, i ∈ Ir

The model includes constraints ensuring that exactly one itinerary is selected per request. Capacity
constraints are enforced by checking the availability of sections at all required times, including head-
way periods. If a section turns out to be unavailable, the corresponding itinerary is excluded from the
solution.

Once the model is solved, the selected itinerary is stored, and the network state is updated. The
utilization of sections (Ura,t) are marked as either ’active’ or ’headway’ based on the train’s occupancy
and the headway period. When they are marked with either, these sections, at the specific times are
unavailable for future trains to depart over. Demand data (Drod,t) is updated by reducing the demand for
the scheduled origin-destination pair. Congestion factor values (Vra,h) are recalculated for all sections
in the network to reflect the updated network state.

7.4.4. Computation time
Computation time between 15 and 24 seconds. Lower network capacity results in the algorithm finding
it more difficult to allocate requests to itineraries resulting in larger computation times.
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7.5. Experiments
This section evaluates the performance of the proposed mathematical model through a series of exper-
iments. The experiments are designed to analyze the scheduling outcomes, sensitivity to parameter
changes, and overall effectiveness of the model in reducing substantial departure time deviations.

The section begins by testing the model under controlled conditions to visualize how requests are
allocated throughout the scheduling horizon and to examine the impact of different weights (w) on the
scheduling results (Subsection 7.5.1). Insights from these tests are then used to conduct a detailed
sensitivity analysis (Subsection 7.5.2), exploring the influence of various parameters, such as network
capacity, congestion factor adjustments, and request order. Through the sensitivity analysis the optimal
value for w is calculated for individual independent cases.

Subsequent experiments expand on this analysis by repeating the tests with randomized request orders
to evaluate the consistency of the results (Subsection 7.5.3). The findings are compared against a base
case scenario to identify optimal parameter settings and to assess the robustness of the model under
different conditions. Through these experiments, the following question will be answered: is there a
weight w, where the outcome will, on average, outperform the base case scenario?

7.5.1. Testing and Visualizing the Scheduling Model
This subsection evaluates the model’s performance under controlled conditions to understand its be-
havior across various scenarios. The tests use a fixed request order unless explicitly stated otherwise
to show how different parameters in the model change the scheduling process for the same request
list and order.

The first analysis examines the departure time deviation for scheduled requests throughout the schedul-
ing horizon at different weight (w) values. The results demonstrate for the base case scenario (w = 1)
how network capacity diminishes as scheduling progresses, leading to increasingly larger deviations
for later requests. An alternative scenario is also explored, prioritizing congestion factor minimization
(w = 0.1), which shows that now also earlier requests are occasionally being offered itineraries with
departure time deviations.

For both scenario’s the results are analyzed and discussed. By comparing the results, the sensitivity
of the model to changes in w are highlighted, offering insights into the trade-offs between minimizing
time deviation and congestion factor minimization.

Departure Time Deviation Per Request
The base case scenario is first considered, with network capacity set to 5 trains per hour (w = 1). The
congestion factor does not have an impact in this scenario.
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Figure 7.1: Time deviation per request, average time deviation per 100 requests and the cumulative time deviation for w = 1

In Figure 7.1 the cumulative time deviation is 12,035 minutes. Early requests are allocated with mini-
mal departure time deviations, but deviations increase significantly near the end of the horizon due to
reduced network capacity. Notably, request 704 experiences a deviation of 1003 minutes, and a total
of 13 requests exceed a deviation of 180 minutes.

An alternative scenario with w = 0.1 is then analyzed under identical conditions: section capacity of 5
trains per hour, squared congestion factor, and congestion factor scaling down per request.

Figure 7.2: Time deviation per request, average time deviation per 100 requests and the cumulative time deviation for w = 0.1
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In Figure 7.2, the cumulative time deviation increases to 19,114 minutes. Offering alternatives occurs
consistently andmore often throughout the horizon. In this example, tactically offeringmore alternatives
with small deviations, leads to fewer extreme deviations. There are now a total of 7 requests with a
departure time deviation bigger than 180 minutes, the largest being 725 minutes for request 702, but
there are significantly more smaller deviations. This behavior highlights the trade-off between either
reducing extreme departure time deviations or increasing the cumulative time deviation.

When comparing the two scenario’s of Figure 7.1 and Figure 7.2, the scheduling model behaves as
expected. The comparison of these two models raises the question of whether an intermediate w value
could balance these trade-offs, minimizing large deviations while maintaining an acceptable cumulative
departure time deviation.

Forecasted Demand versus Allocated Requests
Table 7.4a presents the forecasted demand per arc. After allocating all requests to itineraries, the total
allocated requests per arc can be analyzed to assess the algorithm’s impact. Comparing Tables 7.4a,
7.4b, and 7.4c highlights the effects of different w values.

Some arcs serve as critical connections or passages between origins and destinations, meaning that
this is the only connection and no alternative arcs are possible. This is shown for some of the cases
where the forecasted demand is equal to the number of allocated requests for an arc. While this
equality does not necessarily imply the arc is the only passage, but when looking at the railway map
of the Netherlands (ProRail, 2025) and seeing it is the only passage, the equality can be justified. For
instance, the busiest arc, (Whzan, Brdv), is the only connection between the port of Rotterdam and the
rest of the network, and its total usage matches the forecasted demand, as expected.

Time Space Graph
To visualize the allocated requests, time-space graphs are plotted in Appendix C. Plotting all requests
for a day quickly becomes overwhelming and difficult to interpret. Therefore, the focus is placed on
the most used arc, Whzan-Brdv, which accounts for 86 allocated itineraries. Figures C.1, C.2, and
C.3 show time-space graphs for this arc under three different values of w. These graphs illustrate
how closely packed the itineraries need to be to fit everything within the day’s schedule. The headway
time constraints are also visualized by the 12 minutes which need to at least be in between two plotted
arcs. While primarily used for visualization, the graphs are not particularly insightful for drawing detailed
conclusions. However, a comparison of the graphs for w = 1 and w = 0 reveals that, with w = 0, more
itineraries are scheduled at night. This shift occurs because congestion is lowest during nighttime, and
the algorithm prioritizes less desirable time slots. Understandably, most requests are submitted for
daytime travel.

In Figures C.4 and C.5, all itineraries are displayed in a 3D graph. This approach was chosen because
a 2D representation would be overly cluttered. However, the 3D visualization does not fully resolve this
issue, as the sheer volume of freight trains scheduled for a single day makes it challenging to interpret.
From a top-down perspective, the stations in these graphs mirror the geography of the Netherlands,
with notable nodes such as Maastricht (bottom right), Brussels (bottom left), Amsterdam (top left), and
Assen (top right) providing geographical context.

Load Distribution Forecasted Demand
To estimate network activity or the load throughout the day, the total number of trains is calculated per
time step. Initially, this was done per minute, but the resulting graph was too chaotic to interpret. To
address this, the average number of forecasted trains in the network for every five minutes is calculated
and visualized. The resulting graph represents the load distribution over the network in an ideal scenario
where all customers have zero departure time deviation.

The graph is generated using the demand data for origin-destination pairs requesting specific departure
times. Requests are distributed across the predefined paths using the commonality factor explained in
Subsection 5.1.1. For each path, the train’s velocity is used to calculate its presence in the network over
time. Combining this with the percentage of demand distribution per path allows for estimating the time
intervals during which trains occupy the network. By repeating this process for all requests, the total
train presence in the network can be calculated per minute, which is then averaged over five-minute
intervals. The resulting visualization is shown in Figure 7.3.
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Table 7.4: Comparison of forecasted demand per arc and total allocated requests per arc for a day

(a) Total forecasted demand per arc for a day
.

Arc Forecasted
demand

(’Whzan’, ’Brdv’) 86.0
(’Kfhan’, ’Kfhn’) 83.0
(’Brech’, ’Bropo’) 78.6
(’Brmet’, ’Brech’) 78.6
(’Bropo’, ’Brvalw’) 78.6
(’Kfhn’, ’Kfhz’) 77.0

(’Brvalw’, ’Brvalo’) 76.6
(’Brdv’, ’Whzan’) 76.0
(’Brdv’, ’Kfhan’) 75.5
(’Zvbtwa’, ’Zvo’) 75.0
(’Zvo’, ’Zvg’) 75.0

(’Brdvno’, ’Zvbtwa’) 74.6
(’Brvalo’, ’Brdvno’) 74.6
(’Kfhn’, ’Kfhan’) 69.0
(’Brech’, ’Brmet’) 67.6
(’Bropo’, ’Brech’) 67.6
(’Brvalo’, ’Brvalw’) 67.6
(’Brvalw’, ’Bropo’) 67.6
(’Zvg’, ’Zvo’) 67.0

(’Zvo’, ’Zvbtwa’) 67.0
(’Brdvno’, ’Brvalo’) 66.6
(’Zvbtwa’, ’Brdvno’) 66.6
(’Kfhz’, ’Kfhn’) 63.0
(’Brgnd’, ’Brgro’) 62.0
(’Brgro’, ’Brmet’) 62.0
(’Brppd’, ’Brgnd’) 62.0
(’Kfhz’, ’Brppd’) 62.0
(’Kfhan’, ’Brdv’) 60.0
(’Sgbr’, ’Asd’) 54.0
(’Ps’, ’Rscwa’) 53.0

(b) Total amount of requests per arc for a
day when w = 0.1

Arc Total re-
quests

(’Whzan’, ’Brdv’) 86
(’Kfhan’, ’Kfhn’) 83
(’Brech’, ’Bropo’) 78
(’Brmet’, ’Brech’) 78
(’Bropo’, ’Brvalw’) 78
(’Kfhn’, ’Kfhz’) 77
(’Brdv’, ’Whzan’) 76
(’Brvalw’, ’Brvalo’) 76
(’Zvbtwa’, ’Zvo’) 75
(’Zvo’, ’Zvg’) 75

(’Brdvno’, ’Zvbtwa’) 74
(’Brvalo’, ’Brdvno’) 74
(’Brdv’, ’Kfhan’) 70
(’Kfhn’, ’Kfhan’) 69
(’Brech’, ’Brmet’) 67
(’Bropo’, ’Brech’) 67
(’Brvalo’, ’Brvalw’) 67
(’Brvalw’, ’Bropo’) 67
(’Zvg’, ’Zvo’) 67

(’Zvo’, ’Zvbtwa’) 67
(’Brdvno’, ’Brvalo’) 66
(’Zvbtwa’, ’Brdvno’) 66
(’Kfhz’, ’Kfhn’) 63
(’Brgnd’, ’Brgro’) 62
(’Brgro’, ’Brmet’) 62
(’Brppd’, ’Brgnd’) 62
(’Kfhz’, ’Brppd’) 62
(’Kfhan’, ’Brdv’) 56
(’Sgbr’, ’Asd’) 54
(’Ps’, ’Rscwa’) 53

(c) Total amount of requests per arc for a
day when w = 1

Arc Total re-
quests

(’Whzan’, ’Brdv’) 86
(’Kfhan’, ’Kfhn’) 83
(’Brech’, ’Bropo’) 79
(’Brmet’, ’Brech’) 79
(’Bropo’, ’Brvalw’) 79
(’Brdv’, ’Kfhan’) 78
(’Brvalw’, ’Brvalo’) 77
(’Kfhn’, ’Kfhz’) 77
(’Brdv’, ’Whzan’) 76

(’Brdvno’, ’Zvbtwa’) 75
(’Brvalo’, ’Brdvno’) 75
(’Zvbtwa’, ’Zvo’) 75
(’Zvo’, ’Zvg’) 75

(’Kfhn’, ’Kfhan’) 69
(’Kfhan’, ’Brdv’) 68
(’Brech’, ’Brmet’) 67
(’Bropo’, ’Brech’) 67
(’Brvalo’, ’Brvalw’) 67
(’Brvalw’, ’Bropo’) 67
(’Zvg’, ’Zvo’) 67

(’Zvo’, ’Zvbtwa’) 67
(’Brdvno’, ’Brvalo’) 66
(’Zvbtwa’, ’Brdvno’) 66
(’Kfhz’, ’Kfhn’) 63
(’Brgnd’, ’Brgro’) 62
(’Brgro’, ’Brmet’) 62
(’Brppd’, ’Brgnd’) 62
(’Kfhz’, ’Brppd’) 62
(’Sgbr’, ’Asd’) 54
(’Ps’, ’Rscwa’) 53

This graph is particularly useful for comparing how the network load is distributed under different sce-
narios in the sensitivity analysis. However, it is important to note that the peaks in the graph do not
necessarily indicate congestion. These peaks represent the total number of trains present across the
entire network. If the requests use different paths and arcs, the demand can be met without issue.
Conversely, a valley in the graph, such as 15 trains, could represent congestion if all requests follow
the same path. Despite these nuances, the graph provides a helpful estimate of expected network
activity.
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Figure 7.3: Average forecasted trains per 5 minutes

7.5.2. Sensitivity Analysis
This section evaluates the impact of varying the weight parameter w on the scheduling model’s perfor-
mance. By systematically testing w values in the range [0.1, 1.0] with a discrete step size of 0.01, the
analysis identifies the optimal weight for minimizing total (cumulative) time deviation and total (cumula-
tive) squared time deviation. The results provide insights into how w influences the trade-off between
minimizing overall delays and avoiding extreme outliers in departure time deviation. Additionally, the
analysis explores patterns and trends, laying the groundwork for understanding the sensitivity of the
model under different scenarios.

For the sensitivity analysis the KPI’s presented in Table 1.2 are used as a baseline to try and quantify
some of the improvements compared to the baseline. Only the average cumulative departure time
deviation and the average cumulative departure time deviation squared are not measured here, but
measured in Section 7.5.3.

Only the range ofw is tested between 0.1 and 1 due to the fact that implementing a weight value smaller
than 0.1 focuses too much on minimizing the congestion factor resulting in extreme time deviations
throughout the whole scheduling horizon. This makes the visualization of graphs more difficult and the
results are not useful for this thesis.

First Experiment
The first sensitivity analysis is conducted for the following scenario: Capacity = 5 trains per hour,
squared congestion factor, congestion factor scaling down per request. The results are plotted in a
graph where the weight is on the x-axis and the total (cumulative) time deviation is on the y-axis. The
results of the same experiment are also shown in a separate graph where the total time deviation
squared is plotted against the weight.
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Figure 7.4: Total time deviation plotted per weight

Figure 7.5: Total time deviation squared plotted per weight
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Table 7.5: Results for First Experiment (Capacity = 5 Trains/Hour)

Weight Total Time
Deviation
(min)

Total Squared
Deviation
(min)

Number of
Requests > 180

Observations

1.00 12,035 3,024,263 13 Base case
0.30 11,593 1,766,177 12 Best total time deviation
0.16 13,211 1,169,785 8 Best squared time deviation

Table 7.6: Results Average and Maximum Time Deviation

Weight Average Time
Deviation (min)

Maximum Time
Deviation (min)

1.00 15.78 1003
0.30 14.92 533
0.16 17.22 284

By analyzing the results in Figure 7.4, w = 0.30 gives the best result in this scenario with a total
departure time deviation of 11,593 minutes which is slightly better than the base case scenario of w = 1
which results in a total of 12,035 minutes.

By analyzing the results in Figure 7.5, the best result for the total time deviation squared is for w = 0.16
with a value of 1,169,785 minutes which is a lot better compared to the total value of 3,024,263 minutes
for the base case when w = 1.

The key results forw = 1,w = 0.30 andw = 0.16 are shown in Table 7.5 and 7.6. These results highlight
the algorithm’s significant impact on extreme departure time deviations. For example, the number of
requests exceeding 180 minutes is reduced from 13 in the base case (w = 1) to 8 at w = 0.16, and the
maximum departure time deviation decreases from 1003 minutes to 284 minutes. This demonstrates
the algorithm’s ability to minimize extreme delays effectively.

However, these improvements come with trade-offs. At w = 0.16, while the squared total time deviation
is minimized (1,169,785 minutes), the total time deviation increases to 13,211 minutes compared to
12,035 minutes in the base case. Similarly, the average time deviation rises to 17.22 minutes from
15.78 minutes. These results illustrate how the algorithm prioritizes reducing extreme deviations at the
expense of slightly higher overall and average deviations.

For w = 0.30, the total time deviation is the lowest at 11,593 minutes, achieving a balance between
reducing extreme delays and maintaining lower total and average deviations. This demonstrates the
algorithm’s versatility in adjusting outcomes based on the weight parameter, w, allowing for scenario-
specific optimization.

While the total time deviation increases significantly as w approaches 0.1, the squared total time de-
viation remains relatively low. This presents a trade-off for ProRail: either prioritizing the reduction
of extreme time deviations at the expense of higher overall deviations or accommodating more pre-
ferred departure times while allowing a few extreme deviations. This correct answer to this trade-off is
debatable and is beyond the scope of this thesis.

To visualize how the scheduling changes when inserting the ’best’ weight values resulting from the
sensitivity analysis. The same scheduling graphs are computed as in Subsection 7.5.1.
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Figure 7.6: Time deviation per request, average time deviation per 100 requests and the cumulative time deviation for w = 0.30

When comparing Figure 7.6 to Figure 7.1 (the base case), one big noticeable difference is the scale
on the axis for the total time deviation is halved, showing how the number of extreme time deviations
is decreased. This graphs shows the optimal result for keeping the total (cumulative) time deviation
in a similar range, while also decreasing the extreme time deviations. The total amount of requests
above 180 minutes is 12, which is still a similar amount to the base case, but the value of these extreme
deviations is decreased.

Figure 7.7: Time deviation per request, average time deviation per 100 requests and the cumulative time deviation for w = 0.16

When comparing Figure 7.7 to Figure 7.1 (the base case), the most noticeable difference is how the
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scale on the axis is even smaller compared to the results from Figure 7.2. There are only two requests
going over the 250 minute mark. The total cumulative time deviation is slightly larger with a value of
13,211. The total amount of requests with a departure time above 180 minutes is 8.

Appendix D presents the allocation of the first 30 requests in two scenarios: the base case with w = 1
and the scenario with the lowest cumulative squared time deviation (w = 0.16). By comparing these
tables, differences in the algorithm’s behavior are noticeable.

In the base case (w = 1), all 30 requests are allocated to their preferred departure times, resulting
in zero departure time deviation. This is due to the network starting empty and still having enough
capacity to distribute everything. In contrast, the w = 0.16 scenario actively offers alternatives with
departure time deviations to prevent forecasted congestion and improve overall outcomes.

When w = 0.16 the algorithm’s preference for minor adjustments becomes very active, such as shifting
departure times by one minute. For instance, an initial small congestion factor of 0.04, is adjusted
by a departure time deviation of one minute to transition the itinerary to a new hour slot where the
congestion factor is equal to zero. One might argue that this is unnecessary due to the initial value for
the congestion factor was already extremely low. The gain in congestion reduction is minimal, which
illustrates the model’s strict optimization priorities, which might be too excessive in this scenario.

Another important observation is seen in the handling of the first request. With w = 1, the request is
allocated to an itinerary with a high congestion penalty of 2.742 due to heavily forecasted congested
arcs. In contrast, at w = 0.16, an alternative itinerary with a 207-minute departure time deviation and a
significantly reduced congestion factor of 0.019 is selected. Table 7.7 shows all feasible itineraries for
this request, their corresponding time deviations, congestion factors, and the resulting values from the
penalty.

The algorithm selects the itinerary that minimizes the penalty:

Penalty =
w ∗ departure time deviation

120
+ (1− w) ∗ congestion factor

In this scenario, the weight w = 0.16 places greater emphasis on reducing the congestion factor com-
pared to the time deviation. Among the 24 feasible itineraries (one for each hour along the single path
connecting the origin and destination), the itinerary with the lowest penalty is selected, which has a
penalty of: 0.292. This occurs because the significant reduction in the congestion penalty outweighs
the moderate increase in time deviation.

For example, the itinerary with no time deviation (0 minutes) receives a congestion factor of 2.742,
resulting in a total penalty of 2.303. Alternatively, the selected itinerary with a time deviation of 207
minutes and a congestion factor of 0.019 results in the lowest overall penalty of 0.292. This outcome
demonstrates how the weighted objective function drives the algorithm’s decision, prioritizing a balance
between time deviation and congestion factor penalty based on the given weight w.
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Table 7.7: All feasible itineraries of first request

Itinerary Time Deviation Congestion Factor Penalty Results Objective Function
1 0 2.742 2.303
2 27 1.767 1.520
3 34 1.299 1.136
4 87 0.508 0.543
5 94 0.550 0.587
6 147 0.228 0.388
7 154 0.543 0.661
8 207 0.019 0.292
9 214 0.454 0.667
10 267 0.215 0.537
11 274 0.044 0.402
12 327 0.060 0.486
13 334 0.545 0.903
14 387 1.198 1.522
15 394 1.246 1.572
16 447 0.906 1.357
17 454 2.087 2.358
18 507 0.329 0.952
19 514 0.868 1.414
20 567 0.078 0.822
21 574 0.208 0.940
22 627 0.009 0.844
23 687 0.539 1.369
24 747 0.009 1.004

Comparing the actual load distribution on the network to the forecasted load distribution, as discussed in
Subsection 7.5.1.4, reveals key insights. Figure 7.8 shows the forecasted versus actual load distribution
for w = 1, representing the base case or first-come, first-served approach. In this scenario, departure
times are prioritized. In the graph instances are seen where these priorities cannot be met, leading
to redistributions to other time steps. A clear example is seen at the peak around minute 800, the
demand cannot be fully satisfied due to insufficient network capacity. The actual number of trains at
minute 800 in the network (red line) is lower than the forecasted amount. Between minutes 600 and
700, a forecasted valley indicates available capacity, suggesting that the algorithm shifts requests from
minute 800 to this interval to respect capacity constraints, which is seen be the red line showing more
allocated requests at this point. The same switch in the redistribution of forecasted capacity versus
actual capacity can be seen in between the minutes 1050 and 1200.

When examining the load distribution for w = 0.16 in Figure 7.9, the algorithm’s behavior becomes
more apparent. The algorithm actively avoids forecasted congestion, steering requests towards less
busy sections. The workings of the algorithm can be seen in its extreme form when the values for w are
reduced evenmore, as seen in Figure E.1 forw = 0. In Figure 7.9, the actual allocation of requests near
the 800-minute mark is further reduced compared to w = 1, demonstrating the algorithm’s preference
for less congested periods. Additionally, the algorithm shifts more requests to earlier (around minute
300) and later times (around minute 1400), avoiding congestion during the day and distributing them
more to the morning or evening. At such low w values, the algorithm strongly favors uncongested
periods, even at the cost of significant departure time deviations.
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Figure 7.8: Average forecasted trains per 5 minutes for w = 1

Figure 7.9: Average forecasted trains per 5 minutes for w = 0.16

Second Experiment
The second sensitivity analysis is conducted similarly to the one in Subsubsection 7.5.2.1 and evaluates
the impact of reversing the order of requests on the scheduling model’s performance. As in the first
experiment, the capacity is set to 5 trains per hour, the congestion factor is squared, and it scales
down per request. However, the request order is reversed to observe how this change affects the total
(cumulative) time deviation and the squared time deviation for different values of w.
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Figure 7.10: Total time deviation plotted per weight

Figure 7.11: Total time deviation squared plotted per weight

Reversing the request order increases the total time deviation of the base case (w = 1) by approximately
1,500 minutes and the squared total time deviation by approximately 1.7 million. This highlights the sig-
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nificant influence of request order on scheduling outcomes. For smaller weight values (w < 0.3), minor
improvements are observed in squared time deviations, but overall performance worsens compared
to the base case. Two conclusions can be made: request order significantly influences scheduling
outcomes for all w values, not just the base case, and in some scenarios, the algorithm may fail to
achieve a performance improvement compared to the base case, for not a single value of w.

Table 7.8: Key Results for Second Experiment (Capacity = 5 Trains/Hour, Reversed Request Order)

Weight Total Time
Deviation
(min)

Total Squared
Deviation
(min)

Number of
Requests > 180

(min)

Observations

1.00 13,418 4,715,438 18 Base case
0.35 15,394 5,036,868 17 Balanced deviations
0.15 18,755 3,976,327 11 Best squared deviation

Table 7.9: Results for Reverse Request Order, Average and Maximum Time Deviation

Weight Average Time
Deviation (min)

Maximum Time
Deviation (min)

1.00 17.43 896
0.35 19.99 897
0.15 24.50 851

The key results for w = 1, w = 0.35, and w = 0.15 are shown in Tables 7.8 and 7.9. From this data
can be deducted that the algorithm reduces the number of extreme delays, with requests exceeding
180 minutes dropping from 18 in the base case (w = 1) to 11 at w = 0.15. Additionally, the maximum
departure time deviation decreases slightly from 896 minutes at w = 1 to 851 minutes at w = 0.15.

However, the trade-offs are noticeable. As w decreases, the total time deviation increases significantly,
from 13,418 minutes at w = 1 to 18,755 minutes at w = 0.15. Similarly, the average time deviation per
request rises, reaching 24.50 minutes at w = 0.15, compared to 17.43 minutes in the base case. These
results highlight the algorithm’s prioritization of reducing extreme deviations, often at the expense of
higher total and average deviations across all requests.

Figures 7.12, 7.13 and 7.14 visualize the scheduling changes for the selected weights in this reversed
request order scenario.
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Figure 7.12: Time deviation per request, average time deviation per 100 requests and the cumulative time deviation for w = 1

The base case (w = 1) for reversed requests results in more extreme deviations, with 18 requests
exceeding 180 minutes and higher total squared deviation compared to other weights.

Figure 7.13: Time deviation per request, average time deviation per 100 requests and the cumulative time deviation for
w = 0.15

For w = 0.15, the total time deviation increases significantly, but extreme deviations are reduced. Only
11 requests exceed 180 minutes, and most deviations are distributed across smaller delays.
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Figure 7.14: Time deviation per request, average time deviation per 100 requests and the cumulative time deviation for
w = 0.35

For w = 0.35, the results balance smaller delays with fewer extreme deviations compared to the base
case. This weight prioritizes a moderate trade-off between congestion and departure time deviations.

The load distributions for different w values are shown in Appendix E in Figures E.4 and E.5. While
the distribution of requests differs slightly, the algorithm’s behavior remains the same and no new con-
clusions can be drawn. When w = 0.15 the algorithm actively avoids forecasted congestion wherever
possible, redistributing requests to less busy periods, often corresponding to the valleys in the graph.

Third experiment
The third sensitivity analysis evaluates the scheduling model in a high-capacity scenario. The network
capacity is set to 10 trains per hour, with the congestion factor squared and scaling down over time. This
experiment investigates how increased capacity affects the model’s scheduling behavior, performance
and consistency across different weights.
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Figure 7.15: Total time deviation plotted per weight

Figure 7.16: Total time deviation squared plotted per weight

The results in Figures 7.15 and 7.16 show a completely different behavior compared to the scenario
with the lower capacity. Firstly, the total time deviation is reduced to 1,226 minutes for the base case
scenario which is ten times smaller compared to the base case scenario where the capacity was 5



7.5. Experiments 63

trains per hour. With more available capacity in the network, the scheduling model demonstrates a
smoother trend across the weight range. Variations between weight values are less pronounced, as
congestion penalties remain consistently low. The highest congestion factor across all itineraries is
0.718, compared to 2.874 in the low-capacity scenario. This means that congestion penalties do not
play a big role in the scheduling decisions, as their impact is outweighed by time deviation penalties.
The key results for the value w are showcased in Table 7.10.

Table 7.10: Results for Third Experiment (Capacity = 10 Trains per Hour)

Weight Total Time
Deviation
(min)

Total Squared
Deviation
(min)

Number of
Requests > 180

(min)

Observations

1.00 1,226 19,422 0 Base case
0.6-0.99 1,103 16,465 0 Minimal deviations

Table 7.11: Results for Normal Request Order (Capacity is 10 trains per hour)

Weight Average Time
Deviation (min)

Maximum Time
Deviation (min)

1.00 1.65 60
0.6-0.99 1.44 53

The key results for w = 1 and w = 0.6-0.99 are shown in Tables 7.10 and 7.11. These results demon-
strate the reduced influence of the algorithm in high-capacity scenarios where the network can accom-
modate most requests with minimal deviation. For both weights, no requests exceed 180 minutes,
highlighting the absence of extreme delays.

At w = 0.6-0.99, the total time deviation decreases slightly to 1,103 minutes compared to 1,226 minutes
in the base case (w = 1). The squared total time deviation also shows a notable improvement, reducing
from 19,422 to 16,465 minutes. Additionally, the average and maximum time deviations are marginally
lower, with the average deviation dropping from 1.65 minutes to 1.44 minutes and the maximum depar-
ture time deviation from 60 minutes to 53 minutes.

These results indicate that, in high-capacity networks, the algorithm performs consistently well regard-
less of weight, with minimal differences in outcomes. The high capacity ensures that most preferred de-
parture times can be accommodated without significant adjustments, leading to stable and predictable
scheduling results.

The scheduling behavior for the selected weights in Table 7.10 are visualized below to demonstrate the
scheduling decisions being made in the model under high-capacity conditions.
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Figure 7.17: Time deviation per request, average time deviation per 100 requests and the cumulative time deviation for w = 1

Figure 7.18: Time deviation per request, average time deviation per 100 requests and the cumulative time deviation for
w = 0.9

No requests experienced a time deviation exceeding 180 minutes, with the maximum time deviation
being only 43 minutes. This contrasts the high-capacity scenario, where extreme deviations (of multiple
hours) frequently occurred.

When looking closely at the scheduling process, the results are slightly better when a value for w is
chosen between 0.60 and 0.99, resulting in a decrease of 123 minutes. The difference between Figure
7.17 and 7.18 is not as noticeable compared to the low capacity scenario in experiment one 7.5.2.1
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and two 7.5.2.2. To put things in perspective, the average time deviation per request is approximately
equal to one and a half minute. The biggest time deviation of 43 minutes can also be considered as
acceptable when looking at the scheduling process. One could argue that in this scenario it is not really
needed to start actively rescheduling requests. Everything fits easily in the network.

No requests experienced a time deviation exceeding 180 minutes, with the maximum deviation being
only 43 minutes. This marks a stark contrast to the low-capacity scenario, where extreme deviations of
several hours frequently occurred. A closer analysis of the scheduling process reveals slightly better
results when w is chosen between 0.60 and 0.99, reducing the total time deviation by 123 minutes.
However, the difference between Figures 7.17 and 7.18 is minimal compared to the more pronounced
variations observed in the low-capacity scenarios of experiments one 7.5.2.1 and two 7.5.2.2. On aver-
age, the time deviation per request is approximately one and a half minutes, with the largest deviation of
43 minutes being considered acceptable. Given the high capacity of the network, active rescheduling
or offering alternative itineraries seems unnecessary, as requests are easily accommodated without
significant delays. The weight parameter (w) does not have a big positive impact on the scheduling
model and when it is lowered too much, the outcomes become worse compared to the base case.

The load distributions for a network capacity of 10 trains per hour show that forecasted demand and
the actual allocated requests are nearly identical, as can be seen in Appendix E in Figures E.3 and
E.2. With increased capacity, most preferred departure times are met, resulting in minimal differences
between the forecasted and actual graphs. No significant variations are observed across different w
values, except when w is reduced to extremely low levels.

Conclusions Sensitivity Analysis
Using the KPI’s mentioned in Table 1.2, the results of the sensitivity analysis can be quantified and
therefore evaluate the performance of the scheduling model by comparing the results to the base case.

The cumulative departure time deviation for the high capacity scenario remains relatively stable across
most values of w, with minor improvements or degradations compared to the base case. However,
when w falls below a certain threshold, the cumulative departure time deviation increases rapidly, but
consistently. For low-capacity scenarios, the effect of w is much more pronounced and chaotic, with
no clear pattern of improvement or degradation. Performance fluctuates significantly for each value of
w, and results are also highly dependent on the request order (for the base case and for values of w).
This indicates a greater sensitivity of the model to the tuning of the weight parameter under constrained
network conditions.

The cumulative departure time deviation squared shows slightly different behavior. In low-capacity
scenarios, lower w values tend to reduce extreme deviations better, but sometimes at the expense
of increasing total and average deviations. Also, the behavior is still chaotic and not consistent for
different values of w. For high-capacity networks, the improvements are marginal, with reductions
in extreme deviations being negligible due to the relatively small maximum departure time deviations
already present (e.g., a reduction from 60 to 53 minutes).

The load distribution shows how the algorithm reallocates requests to avoid busy periods, shifting them
to forecasted less busy times. In the base case, requests are scheduled without avoiding congestion,
resulting in the actual load and forecasted load are kept similar if possible unless no capacity is left.
While for lower w values, the algorithm actively steers requests away from busy periods, prioritizing
less congested times.

Another key aspect is the distribution of offering departure time deviations. For lower w values, alter-
natives are offered earlier in the time horizon, evenly spreading departure time deviations throughout.
In contrast, the base case first schedules requests until capacity is reached, with alternatives primarily
offered later in the horizon, concentrating deviations near the end.

Analyzing average andmaximumdeparture time deviations provides additional context. In high-capacity
scenarios, improvements in average deviations are minimal, such as an average reduction of 13 sec-
onds per request from 1.65 to 1.44 minutes. In low-capacity scenarios, the differences are more pro-
nounced, with variations of several minutes on averages ranging from 15 to 18 minutes per request.
Maximum deviations, however, show significant reductions for low-capacity scenarios, with decreases
of up to 719 minutes (from 1003 to 284 minutes). However, for the second experiment with the reversed
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request order the reduction is at most 45 minutes compared to the base case showing that sometimes
it is difficult to get rid of extreme outliers in departure time deviation. In contrast, improvements in max-
imum deviations are modest for high-capacity scenarios, such as a reduction of just 7 minutes (from
60 to 53 minutes).

The weight parameter w fundamentally drives a trade-off between minimizing future congestion and
minimizing the departure time deviation for the request currently being handled. This trade-off is more
challenging to manage in low-capacity scenarios, where small changes in w produce significant differ-
ences in outcomes. High-capacity networks, on the other hand, exhibit greater stability, as the surplus
capacity reduces the sensitivity of the results to w. The request order also plays a critical role, espe-
cially in low-capacity scenarios, influencing the model’s ability to improve performance relative to the
base case. The base case (w = 1) acts as a greedy algorithm that performs inconsistently, sometimes
yielding better results and other times being outperformed by smaller values of w.

It is important to clarify that the results are driven not by capacity alone, but by forecasted congestion,
which depends on both capacity and forecasted demand. In the experiments conducted the amount
of requests coming in stays the same and therefore it seems like capacity is influencing the outcomes,
but it is the combination of capacity and demand.

These results reveal that the optimal value of w is highly scenario-dependent, making it difficult to gen-
eralize a single best value for all conditions. This raises an important question for further investigation:
Can a repeated sensitivity analysis across multiple request orders identify an average value of w that
consistently improves scheduling outcomes compared to the base case? This question motivates the
next section, which explores the consistency and reliability of values for w through repeated testing.

7.5.3. Repeated Sensitivity Analysis
This section evaluates the impact of repeated sensitivity analysis to identify a consistent and optimal
value of the weight parameter (w) for the scheduling model. The experiments aim to address the
variability observed in previous sensitivity analyses by testing the model across multiple randomized
request orders. The objective is to determine whether a particular value of w consistently outperforms
the base case scenario (w = 1) across various network configurations and parameter settings.

Experimental Setup
The repeated sensitivity analysis explores how different values of w influence the scheduling model’s
performance across 12 distinct experiment configurations. Each experiment combines variations in
four key parameters:

1. Objective function: Static congestion factor or CF decreasing per request.
2. Congestion factor per section: Linear or squared congestion factors for each section.
3. Request order: Randomized over 50 iterations for each configuration.
4. Capacity: 5, 7.5, 10 trains per hour.
5. Weight: w = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99, 1

Each experiment evaluates the value of w against the base case (w = 1), which minimizes time devia-
tion without considering the congestion factor.

Objective Function: The congestion factor is either static or decreases linearly as requests are pro-
cessed. This approach prioritizes offering alternatives earlier in the planning horizon, reserving capacity
for later requests. Testing these two scenarios assesses whether request-dependent congestion fac-
tors improve scheduling outcomes. This is further discussed in Subsection 7.4.3.

Congestion factor per Section: As described in Subsection 6.1.2, the congestion factor per section is
modeled as either linear or squared. Squared factors penalize heavily congested sections more, poten-
tially improving outcomes in high-demand scenarios. The experiments compare these configurations
to determine which approach produces better results.

Request Order: From the experiments conducted in Subsection 7.5.2 the importance of the order of
the requests is highlighted. This is why the order in which requests are processed is randomized over
50 iterations to evaluate its impact on scheduling outcomes. Since allocation decisions significantly
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depend on request order, this test measures the variability in results and howw performs under different
sequences.

Capacity: Experiments test network capacities of 5, 7.5, and 10 trains per hour to analyze the model’s
adaptability under different levels of congestion. Higher capacities are expected to reduce sensitivity
to w, while lower capacities may highlight the weight’s importance in managing congestion.

Weights: To manage computational demands (approximately 3 hours per experiment), the weights
tested are limited to w ∈ 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99. Weights below 0.2 are excluded due
to their disproportionate impact on deviations, which distorts result interpretation. The inclusion of
w = 0.99 creates the scenario where the model chooses between itineraries with the same departure
time, but the congestion factor differs.

Performance Metrics
The following metrics are used to evaluate the results:

• Average Improvement in Total Time Deviation: Difference in total time deviation compared to the
base case, averaged over 50 iterations.

• Average Improvement in Squared Time Deviation: Similar to the above, but penalizing larger
deviations more heavily by squaring them.

• Percentage of Better Results (Total Deviation): Proportion of experiments where a weight resulted
in a lower total deviation than the base case.

• Percentage of Better Results (Squared Deviation): Similar to the above but applied to squared
deviations.

Baseline Scenario: The baseline scenario corresponds to w = 1, where requests are scheduled
greedily without prioritizing future flexibility. A weight is considered effective if it consistently outperforms
the base case in terms of keeping the average time deviation close to the same value while having a
smaller average time deviation squared.

7.5.4. Results and Discussion Repeated Sensitivity Analysis
The repeated sensitivity analysis provides insights into the behavior of the scheduling model under
varying conditions. Adjusting the weight (w) and other parameters followed by running the experiment
50 times, reveals how the model performs on average for a specific scenario. By conducting these ex-
periments the question will be answered on whether there is a scenario of a combination of parameters
chosen, where the model will consistently perform better compared to the base case scenario.

In this Subsection the key takeaways from the results are discussed, based on all the experiments
conducted for the repeated sensitivity analysis. The complete results can be found, visualized by the
use of box plots, in Appendix A and all the results from showing the improvement per scenario in
numbers are gathered and organized in Tables shown in Appendix B.

Behavior of Changing the Weight
The results, visualized in Appendix A and B, show that reducing w from 1 to 0.99 produces minimal
changes compared to the baseline. When w = 0.99, the model prioritizes choosing the lowest con-
gestion factor for itineraries with identical departure time deviations. While this is expected to improve
departure time deviations, the results show no consistent significant improvement. This could be due
to the limited availability of alternative paths between origin-destination pairs, reducing the impact of
congestion factor prioritization. In most scenarios, the results for w = 0.99 are similar to those for
w = 1, with no noteworthy differences. However, some specific scenarios, such as B.1, show a slight
improvement in average departure time deviations, but still a decrease in the time deviation squared.
These somewhat small improvements can be marked as negligible due to their small size and lack of
consistency.

A more noticeable trend occurs as w decreases further. The performance of the model stays com-
parable, with optimal results sometimes being observed around w = 0.9. Decreasing w further, the
results show a slight increase in total time deviations before improving again for weights in the range of
w = 0.4 to w = 0.6. This behavior can be explained by the penalty trade-off between congestion factor
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and time deviation. For w values near 0.4-0.6, the penalty for a congestion factor change becomes fa-
vorable when offering a 60-minute departure time deviation. Table 7.12 illustrates this trade-off, where
a lower weight makes the second path option with the time deviation of 60 minutes better due to its
lower congestion factor.

Table 7.12: Example of departure time deviation and congestion factor for itineraries of two paths

Departure Time
Deviation (minutes)

Congestion
Factor (Path 1)

Congestion
Factor (Path 2)

0 1.8 1.3
60 1.6 0.7

As w decreases below 0.4, the total (cumulative) time deviation increases sharply. At this point, the
model excessively prioritizes minimizing the congestion factor, often neglecting the importance of mini-
mizing time deviations. This behavior leads to the frequent offering of alternative itineraries with larger
time deviations, undermining overall scheduling performance.

The model behaves mostly as expected, but the negligible impact of reducing w slightly (e.g., w = 1
to w = 0.99) is unexpected. Potential reasons could be due to inaccuracies in demand forecasting
(Subsection 5.1.1) which is not done perfectly and could be elaborated on by extending the calculations
for the utility per path.

Or the negligible impact could be due to the averaging of congestion factors across sections in an
itinerary. Dividing the congestion factor by the number of sections in an itinerary is intended to prioritize
routes with lower average congestion. This approach generally leads to better scheduling decisions, as
it encourages the selection of itineraries that impose less strain on the network. However, this method
can also inadvertently lead to suboptimal outcomes.

For instance, by focusing on minimizing the average congestion factor, the model might prioritize
itineraries with more sections, each having a low congestion factor, over shorter routes with slightly
higher congestion factors. While this reduces the average congestion, it results in the unnecessary
use of additional sections. Consequently, this behavior can increase the total number of sections oc-
cupied in the network, consuming more capacity than needed.

As the scheduling horizon progresses, this inefficient allocation of capacity can lead to an overcrowded
network. The reduced availability of free sections for later requests results in higher time deviations
or even the inability to schedule requests optimally. Thus, while dividing the congestion factor by the
number of sections generally aligns with the goal of reducing congestion, it can unintentionally strain
network congestion and compromise scheduling efficiency in cases where longer routes are selected
unnecessarily.

Squaring the Congestion Factor or not
The results demonstrate that squaring the congestion factor generally enhances performance, particu-
larly in low-capacity networks (5 trains per hour). Squaring amplifies the penalty for heavily congested
sections, encouraging the model to allocate requests more efficiently. This trend is consistent for both
request-dependent and request-independent scenarios.

In moderate-capacity networks (7.5 trains per hour), squaring the congestion factor still improves re-
sults in most cases but exhibits less consistent advantages. The average congestion factor in this
scenario is 0.230, and the maximum congestion factor among all itineraries is 1.466. Compared to
low-capacity networks, where the average congestion factor is 0.323 and the maximum is 2.874, the
reduced variability in congestion lessens the benefits of squaring. In some cases, linear congestion
factors perform slightly better due to the more balanced congestion levels.

In high-capacity networks (10 trains per hour), the impact of squaring the congestion factor diminishes
significantly. The average congestion factor is only 0.161, with a maximum of 0.718, making the penalty
differences between linear and squared congestion factors negligible. Squaring remains effective when
congestion variability is high, as seen in low-capacity scenarios, but its influence diminishes as capacity
increases and network congestion becomes less of a problem.
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Congestion Factor Request Dependent or Not
The results showminimal differences between request-dependent and request-independent congestion
factor scenarios. In request-independent scenario’s, the congestion factor penalty remains constant
throughout the scheduling horizon, leading to penalties coming off stronger compared to the request
dependent penalty. This is seen clearly when comparing the time deviation results of the lower weights
(e.g., w = 0.2).

While the weights do not behave identically across the two approaches, neither method consistently
outperforms the other. Scaling the congestion factor down per request, slightly outperforms request-
independent scenario, but not convincingly. This indicates that both could be viable strategies, with
their effectiveness depending more on the specific network conditions and weights than on the scaling
method itself.

Performance Under Different Capacities
Changes in capacity significantly affects the model’s performance, primarily through its impact on
scheduling flexibility and congestion factor values.

From the Subsection 7.5.1, the results show that for low-capacity networks (5 trains per hour), schedul-
ing of the requests becomes more chaotic and unpredictable. In such cases, the range of w values
where the total time deviation improves compared to the baseline becomes smaller and less consis-
tent. Small changes in w heavily influence total time deviations, with optimal results for weights ranging
between w = 0.8 and w = 0.99. However, these improvements are marginal, averaging around 100
minutes out of a total deviation of 13,000 minutes, and squared deviations always perform worse. Sur-
prisingly, the algorithm’s ability to tactically reschedule requests does not yield significant gains in these
scenarios. It would be expected that in the cases of limited capacity, the model could provide a bet-
ter outcome when applying the model. Additionally, time deviations vary widely when conducting the
experiment 50 times, ranging from 11,000 to 19,000 minutes across iterations for w = 1, showing the
impact on the scheduling outcomes from the order in which requests come in.

In moderate-capacity networks (7.5 trains per hour), results fluctuate less compared to the low-capacity
network, with deviations ranging between 2,250 and 3,100 minutes for w = 1 after 50 experiments
conducted. While weights between w = 0.8 to w = 0.99 still perform optimally, they generally offer no
significant advantage over w = 1.

In high-capacity networks (10 trains per hour), the model becomes less sensitive to w, as most requests
are easily accommodated. Weights between w = 0.7 and w = 0.99 show slight advantages, but
the improvements are negligible, averaging around an improvement of one second per request. This
highlights the reduced importance of congestion minimization in networks with a high capacity. The
range of time difference for 50 iterations is between 1,100 and 1,400 minutes for w = 1.

Conclusion Repeated Sensitivity Analysis
Based on the repeated sensitivity analysis the results can be presented based on the last two KPI’s
presented in Table 1.2 referring to the average cumulative departure time deviation and the average
cumulative departure time deviation squared.

The repeated sensitivity analysis reveals that the optimal weight w for the scheduling model depends
significantly on the amount of requests, network capacity, request order, and parameter configurations.
In low-capacity networks, scheduling outcomes are highly sensitive to w, with slight improvements ob-
served in average cumulative departure time deviation and the average cumulative departure time de-
viation squared for weights around w = 0.8 and w = 0.99. However, these improvements are marginal
and inconsistent, highlighting the unpredictable nature of scheduling under constrained capacity.

As capacity increases (while the amount of requests stays the same), the model’s sensitivity to w de-
creases. In moderate-capacity network there is no significant advantage over the base case scenario
regarding the average deviation and average deviation squared. In high-capacity networks, the model
becomes largely indifferent to w, as most requests are easily accommodated, and congestion mini-
mization has minimal influence on results.

The analysis also shows that squaring the congestion factor generally improves performance in low-
capacity networks by penalizing heavily congested sections more effectively. However, this benefit
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decreases as capacity increases, with negligible differences observed in high-capacity scenarios. The
decision to scale congestion factors per request offers slight advantages in some cases but does not
consistently outperform static penalties.

As already concluded in the conclusion from Section 5.4.5, the order of the requests has a significant
impact on scheduling outcomes, particularly in low-capacity networks. Randomizing request orders
introduces such a level of variability that, even though the requests are the same, the order completely
changes the scheduling and thus the results on total time deviations. This difference is highlighted by
the top and bottom of the box plot indicating the maximum and minimum cumulative deviations.

In summary, no single value of w consistently improves results across all scenarios. While weights in
the range of w = 0.7 to w = 0.99 provide better results in some cases, their effectiveness depends on
the network’s capacity and conditions. Further exploration is needed to determine if an average optimal
weight can be identified for consistent performance under varying scenarios.

7.6. Conclusion Case Study
By using the KPI’s presented in Table 1.2, the performance of the algorithm can be measured and
evaluated by comparing the results to the results of the base case (which simulates the first come
first served approach currently used by ProRail). The comparative analysis demonstrates that the
algorithm’s performance relative to the base case is highly dependent on the demand, network capacity,
request order, and the weight parameter w.

In high-capacity networks, the algorithm offers minimal improvements over the base case, as excess
capacity (with similar demand inputs) reduces the influence of both congestion and weight adjustments.
Cumulative departure time deviations and their squared values remain stable (unless significantly low-
ering w), and improvements in maximum deviations are modest. Conversely, in low-capacity scenarios,
the algorithm shows greater potential, reducing maximum departure time deviations by up to 719 min-
utes in some cases and showing significant improvements in the cumulative time deviation squared
indicating that extreme time deviations are less frequent. However, by conducting the repeated sen-
sitivity analysis results of improvement remain inconsistent, with performance of the algorithm being
heavily influenced by request order and weight tuning.

The algorithm’s ability to actively redistribute requests away from congested periods early on in the
time horizon, demonstrates an improvement in offering alternatives more evenly throughout the time
horizon as the base case mostly offers alternatives near the end of the horizon.

Ultimately, while the algorithm outperforms the base case in certain scenarios, particularly in managing
extreme deviations in low-capacity networks, its effectiveness varies significantly and inconsistently.
The base case (w = 1) proves surprisingly effective in many scenarios, behaving as a robust greedy
algorithm. No single configuration consistently delivers better results, highlighting the need for further
investigation to identify robust, scenario-independent parameter settings.



8
Conclusion, discussion and

recommendation

This chapter presents the conclusion, discussion, and recommendations based on the findings of this
thesis. The conclusion answers the main research question and its subquestions. The discussion high-
lights potential limitations and situates the findings within existing literature. Lastly, recommendations
are made for improving ProRail’s scheduling approach and for future research directions.

8.1. Conclusion
The objective of this research was to develop and evaluate an alternative scheduling algorithm which
tries to minimize forecasted congestion while also minimizing departure time deviations, with the goal
of reducing the number of extreme time deviations while keeping the overall departure time deviation
similar. The objective comes from the main research question: ”How can a dynamic scheduling model
that balances minimizing forecasted congestion and departure time deviations per customer request,
improve rail freight scheduling in the Netherlands?” which is answered through the use of multiple
subquestions. The first subquestion being:

What are the limitations of the current scheduling approach used by ProRail, and how do they impact
customer satisfaction?

ProRail’s first-come, first-served approach favors requests being handed in early, which sometimes
lead to fewer options for later submissions. While ProRail almost always manages to plan requests
into the network, the departure time deviations from customers’ preferred schedules can vary signifi-
cantly, sometimes by multiple hours or even days. This creates uncertainty for late-submitters, who
are disproportionately impacted by these deviations.

To avoid such outcomes, customers now secure itineraries early ”just in case,” even without the certainty
of using them. This behavior results in unnecessary cancellations or rescheduling of some requests
(sometimes up to twenty times), adding inefficiencies to the planning process. Additionally, the reliance
on a manual, trial-and-error approach for allocation limits ProRail’s ability to explore optimal solutions,
further underutilizing the network’s capacity. This manual scheduling process is also unnecessary,
as automation could significantly reduce the amount of labor required while improving efficiency and
consistency in planning. These issues ultimately result in lower customer satisfaction, as significant
deviations from requested schedules reduce trust in the scheduling process.

How can a deterministic demand forecasting model be created using request data, and how can this
information be integrated into the scheduling model?

A deterministic demand forecasting model was constructed using request data on origins, destinations,
and preferred departure times. However, the challenge lies in the fact that from this request data
alone, it is not possible to know how busy specific paths or sections of the network will become. This is
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because path choices for individual requests have not yet been made, and overlapping paths or shared
sections between different origin-destination pairs further complicate the forecasting process.

To solve this problem, the C-Logit model was employed to distribute demand across feasible paths
between origin-destination pairs. This model accounts for overlapping paths by assigning probabilities
based on path attributes, in this case total overlap distance. Once demand is divided among paths,
travel times are used to allocate the demand over time to the corresponding sections.

By examining individual network sections, the demand for each section is calculated by summing the
demand from all paths that traverse it. Using this section-specific demand, along with the available and
total capacity, a congestion factor is calculated for each section. This factor provides an approximation
of how busy the section is expected to become, offering a predictive measure for potential bottlenecks.

Once congestion factors for individual sections are determined, they are used to calculate the total con-
gestion factor for an itinerary, which consists of multiple sections. For each itinerary, the congestion
factors of all sections are summed and then divided by the number of sections to compute an aver-
age congestion factor. Two models were tested: one using the normal congestion factors and another
squaring the congestion factors for each section before summing. The results from the case study indi-
cate that squaring the congestion factor provides better performance by penalizing heavily congested
sections more.

In summary, the deterministic demand forecasting model uses the C-Logit framework to estimate de-
mand per path and from this compute section-level congestion factors. These values are then inte-
grated into the scheduling model, enabling it to prioritize less congested paths.

How can a mathematical model be developed to dynamically schedule freight train requests while
balancing the two objectives on forecasted congestion and departure time deviation?

A mathematical model is constructed to replicate ProRail’s current scheduling approach by minimizing
departure time deviations per request. A second objective, minimizing congestion factors per request,
was added to the objective, allowing the focus to shift between the two objectives using a weight pa-
rameter (w).

Themathematical model, including its objective function and corresponding constraints, was developed
by thoroughly analyzing ProRail’s current scheduling system, defining sets, parameters, and variables,
and making certain justified assumption for simplification. The disparity in behavior between time devi-
ations and congestion penalties makes the model’s outcomes inconsistent and hard to predict. From
the mathematical model a sensitivity analysis was conducted to test various weights as inputs and iden-
tify the optimal trade-off from these results. While the model captures the scheduling dynamics of the
system effectively, it struggles to find a balance between the two objectives, not knowing which should
be prioritized more and by how much.

How does the proposed dynamic scheduling model perform compared to the current approach?

The primary objective of this research was to minimize total time deviation squared while keeping total
time deviation similar or smaller. By comparing the outcomes of these measurements, the aim is to
reduce extreme departure time deviations, which are generally less acceptable to customers. Other
factors influencing customer satisfaction such as costs, travel time, or distance were excluded, focusing
solely on time deviation.

Experiments show that, when all requests and its order are known, an optimal weight (w) can outperform
the current method by reducing extreme time deviations in size and quantity. However, the best value
for w is inconsistent across different scenario’s. This inconsistency shows the model’s unreliability and
whether a single w can consistently improve outcomes.

Testing ten different values for w, across fifty different request orders, under various parameters (e.g.,
squaring congestion factors, capacity variations,) revealed that no value for w consistently produced
better results referring regarding the KPI’s presented in the introduction. Especially when also taking
into account that the deterministic forecasting model used in this research lacks the uncertainty present
in real-world demand forecasting. Including such variability would likely increase fluctuations even
more, making the model’s performance even less consistent.
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One of the most notable improvements achieved by the algorithm is in the distribution of alternative
offers. In the base case scenario, alternatives are primarily offered near the end of the scheduling
horizon, which disadvantages customers submitting requests later. By reducing the value of w, the
algorithm offers alternatives more evenly throughout the entire scheduling period. This improvement
could increase customer trust in the system, as customers are less likely to perceive the scheduling
process as biased against late requests. A more balanced distribution of alternatives might discourage
customers from submitting requests prematurely ”just in case,” potentially leading to fewer cancellations
or last-minute changes. Such improvements could result in reduced administrative workload for ProRail
and enhance overall scheduling efficiency.

“How can a dynamic scheduling model that balances minimizing forecasted congestion and departure
time deviations per customer request, improve rail freight scheduling in the Netherlands?”

In conclusion, while the proposed algorithm reduces extreme departure time deviations in some scenar-
ios, it does not reliably improve overall performance compared to the current scheduling approach. The
results demonstrate that balancing forecasted congestion with time deviation is theoretically achievable,
but highly sensitive to network conditions, request order, and weight selection. The lack of consistency
in results and the dependence on deterministic forecasting limit the algorithm’s practical value in its
current form.

Nevertheless, the research provides valuable insights into objective balancing and dynamic schedul-
ing methodologies. It highlights the challenges of combining minimizing departure time deviation and
forecasted congestion, revealing the sensitivity of outcomes to parameter adjustments and request or-
der. Furthermore, the analysis of congestion factor methods (squared vs. linear), request-dependent
penalties, and varying network capacities not only underscores the complexity of designing a robust
scheduling model but also identifies which approaches yield the best results.

8.2. Discussion
The discussion examines the findings of this thesis in relation to existing literature, identifying the key
contributions, implications, and limitations of the proposed dynamic scheduling model. It highlights
how the research addresses gaps in current literature, and situates the results within the broader con-
text of rail freight logistics. Additionally, the section outlines practical challenges and areas for further
exploration to enhance the model’s applicability and effectiveness.

8.2.1. Comparison with Literature
This thesis builds upon and extends existing research in several key areas. Unlike prior studies focus-
ing predominantly on pricing mechanisms, such as Armstrong and Meissner (2010) and Li et al. (2024),
this research introduces a dynamic scheduling approach aimed at minimizing time deviations and fore-
casted congestion without relying on pricing strategies. This is particularly relevant in the Dutch rail
freight context, where prices are fixed by governmental agreements and cannot be adjusted to influ-
ence customer behavior.

In terms of demand forecasting, the use of the deterministic demand model combined with the C-
Logit framework and dynamic scheduling of requests is a novel contribution. While studies like Kraft
(2002) emphasize on dynamic scheduling through demand prediction, they largely focus on car-to-train
allocations or dynamic pricing strategies. By using the demand forecasting focused on the network and
distributing this using the C-Logit model, the dynamic scheduling focuses more on dynamics scheduling
through itinerary allocation. Additionally, stochastic methods such as Van Slyke and Young (2000) have
been applied in industries like airlines and hotels, but their application to freight railways remains limited,
particularly when offering alternatives to customers is considered.

The scheduling model presented in this thesis also introduces an objective function balancing time
deviations and congestion, creating a trade-off which is investigated using a sensitivity analysis be-
tween these two objectives. Previous studies, such as Cacchiani and Toth (2012) and Cacchiani et al.
(2010), investigate path-based scheduling but focus on static networks and pre-defined timetables. By
contrast, this thesis evaluates dynamic scheduling scenarios with real-time adjustments, contributing
insights into how congestion penalties influence itinerary selection.
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Finally, the integration of revenue management principles without direct pricing mechanisms addresses
a gap in freight train scheduling research. While Crevier et al. (2012) explore integrated models com-
bining operations and revenue management, these approaches often prioritize revenue maximization
over practical considerations like minimizing extreme deviations or addressing customer satisfaction di-
rectly. This thesis, therefore, represents a significant step toward practical, customer-centric solutions
for rail freight logistics.

8.2.2. Limitations
This research encountered several limitations that affect the applicability of the findings. A significant
simplification was the assumption of uniform train velocity. In reality, freight trains often operate at differ-
ent speeds, with station waiting times and overtaking capabilities further influencing network dynamics.
Implementing these factors would increase the model’s complexity and computational demands but
could also lead to a broader range of scheduling options. The increase in options could either improve
or worsen the outcome of the results, depending on the scenarios tested. Incorporating these variations
would make the model more reflective of real-world operations and enhance its practical relevance.

Another limitation was starting with an empty network. This assumption is unrealistic, as passenger
trains and other repeated services are typically pre-scheduled. Including these pre-existing schedules
in the model would provide a more accurate representation of the network’s capacity and constraints,
potentially altering the results.

The use of predefined paths for origin-destination pairs also constrained the model’s flexibility. Although
this limitation reflects the real world operations, allowing the model to generate paths dynamically in-
creases the amount of scheduling options, which could make it easier to reduce departure time de-
viations. However, the extra path options could also include paths with longer travel times for some
customers, which might negatively affect customer satisfaction. Balancing these trade-offs would be
an important area for further exploration.

Due to data limitations, the model’s capacity constraints were overly simplified. In reality, ProRail sets
specific headway times for each station and arc, which vary significantly across the network. Applying a
uniform capacity does not accurately reflect real-life scheduling andmay create bottlenecks that ProRail
has already mitigated through infrastructure expansion or operational adjustments. Incorporating more
accurate, arc-specific capacity data would improve the model’s realism and make its outcomes more
representative for comparison with actual scheduling practices.

The model faced additional data limitations that impacted its realism. A complete list of distances
between all stations was unavailable, requiring the use of default values for missing data. While in-
corporating an accurate distance matrix would better align the model with real-world scenarios, it is
unlikely to significantly alter the outcomes. Furthermore, the assumption that all railway tracks are
single-track does not reflect actual conditions, where many routes have multiple tracks. Implementing
realistic track configurations would provide more accurate capacity representations between stations
and could meaningfully influence the results.

The congestion factor calculation could also be more extensive, although this mostly just acts as an es-
timation, it now only takes the account of overlap between paths into account as part of the utility. This
lacks potentially other important influences like path length or travel time. Including more elaborate
utility calculations, changes the forecasted demand distribution per path which changes the conges-
tion factor. By implementing this approach for the congestion factor, outcome results will be different,
possibly improving or worsening the model.

Finally, the study relied on request data from a single day, which restricts the scope of the analysis.
While network capacity could be adjusted, testing the algorithm with different request lists could reveal
whether its performance depends on the specific request order used. This limitation highlights the
importance of evaluating the model under diverse scenarios to better understand its robustness and
applicability.
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8.3. Recommendations
This section provides practical suggestions for improving ProRail’s scheduling practices and outlines
potential directions for future research. The recommendations focus on enhancing demand forecasting,
optimizing capacity utilization, and refining scheduling models to address real-world complexities more
effectively. These insights aim to guide both ProRail and researchers in the advancement of freight
train scheduling methods to improve efficiency and customer satisfaction.

8.3.1. Practical Recommendations for ProRail
Based on the insights gained during this thesis, several recommendations can be made for ProRail to
improve its scheduling research and practices.

ProRail could extend this research by incorporating recurring requests, such as those submitted for
every Wednesday or the first day of each month, to better reflect real-world scenarios. Including recur-
ring requests would change the scheduling approach. For example, a request for the same departure
time every week should ideally be approved as a single request, rather than treated as 52 separate
requests (one for each week of the year), as handling them individually would complicate the logistics
for all parties involved. While this approach may reduce scheduling flexibility and alter the results, it
would offer a more realistic representation of actual operations.

Developing demand forecasting tools would enable ProRail to predict where and when requests will
likely be submitted. With access to extensive data and the repetitive nature of train scheduling, Pro-
Rail is well-positioned to create accurate forecasts. Researching forecasting accuracy could identify
uncertainty levels, which can then be included into the model. This would result in higher variability in
outcomes, but would more accurately reflect real-world implementation.

Another important consideration is researching the impact of the trade-off between average time devi-
ations and extreme outliers. For example, a scenario where all customers face an average departure
time deviation of 10 minutes with no deviations exceeding 100 minutes might be more acceptable than
one where most customers experience no departure time deviations, but a few endure extreme de-
viations of 800 minutes. Researching stakeholder perspectives, including ProRail and its customers,
could help determine what outcomes benefit customer satisfaction the most.

Additionally, ProRail should prioritize collecting data on denied requests and analyzing the reasons
behind these denials. Currently, the reasons for cancellations are unclear. For example, it is unknown
whether a request is canceled because the customer prefers a different departure time, wants to ad-
just the number of cars on the train, or if a slight schedule adjustment has been made. Without this
information, it is difficult to determine whether cancellations are due to customer dissatisfaction or op-
erational adjustments. Gathering this data would provide valuable insights into customer behavior and
decision-making processes, helping to refine scheduling strategies and better align them with customer
needs.

8.3.2. Future research
Future research could explore different methods for adjusting the congestion factor (CF) penalty over
time. Currently, the CF decreases linearly per request, but experimenting with an exponential decrease
could yield different results, allowing the penalty to dominate more strongly early on and taper off after
a certain threshold. Alternatively, a simpler on/off switch could also be tested, where the CF penalty is
only active for a set percentage of requests before being deactivated.

The current model shows that squaring CF values per section improves results, but further experiments
could test raising the CF to higher powers, such as cubing or even higher exponents. This would widen
the gap between low and high CF values, potentially influencing the allocation of itineraries in new
ways. Another approach could involve squaring the CF for entire itineraries, which might favor some
alternatives with slightly higher time deviations but significantly lower congestion factors.

One issue with the current model is that it allows unnecessary switches to itineraries with time deviations
(which have a CF close to zero), even though the original CF for the preferred departure time was
already favorable. These switches could be prevented by combining a weighted sum approach with
parametric sensitivity analysis. In this case this would lead to the objective function acting more as a
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constraint: if an itinerary with zero time deviation has a CF above a set threshold (e.g., 1), the objective
function would be activated to identify possibly better alternatives. If the CF is below the threshold, the
itinerary with zero time deviation would be offered without any further optimization.

Due to not all the values forw being checked in the repeated sensitivity analysis and this being computa-
tionally time consuming, an idea for future research could be to store the best values forw resulting from
individual experiments and use these values as an input for the repeated sensitivity analysis. Running
the repeated sensitivity analysis with these values for w could provide more consistent improvements.

Another improvement could focus on minimizing time intervals between sections for consecutive orders.
The current model allows requests to be scheduled at their preferred departure times without optimizing
for tighter scheduling. For instance, if a train departs at 12:00 and the minimum interval is 10 minutes,
the next train could depart at 12:10. However, if a request prefers 12:15, it is allocated at that time,
leaving a gap of 5 minutes. Shifting this request to 12:10 could enhance scheduling efficiency. This
approach could also extend beyond just the departure time of the entire itinerary, by considering the
departure time of each section, adjusting schedules by a few minutes to pack itineraries and their
sections closer together, improving tighter scheduling in the network.

Future research should refine the calculation of remaining arc capacity per hour leading to a greater
accuracy in the congestion factor calculation. The current approach, which subtracts the number of
scheduled trains from the maximum capacity for an arc, does not account for inefficient scheduling. In
practice, an arc may be fully scheduled at only 60–80% of its theoretical capacity due to suboptimal
train spacing. Developing a capacity model that evaluates howmany trains can still be scheduled within
an hour, considering consecutive arc availability and headway times, could enhance the reliability of
congestion factor estimates, leading to better informed scheduling decisions.

Future research should also refine the calculation of remaining arc capacity to improve accuracy. The
current method, of subtracting the amount of scheduled trains on an arc from its maximum capacity,
does not portray correct capacity management. If requests are scheduled inefficiently, it could be that
an arc can only fit 80% or 60% of the maximum capacity before being fully scheduled. Developing a
capacity model which checks how many trains can still be scheduled on an arc in an hour, by checking
the amount of consecutive arcs in time being available also accounting for the headway time, could
enhance the reliability of congestion estimates, leading to better informed scheduling decisions and
more efficient use of network resources.

Demand prediction accuracy is another critical area for investigation. While this study assumes de-
terministic demand, real-world predictions are never 100% accurate. Future research should evaluate
how varying levels of prediction accuracy (e.g., 90% or 80%) impact the model’s outcomes. Additionally,
studies could explore the practical limits of forecasting accuracy on the prediction of train requests.

Experiments could investigate how often specific values of w improve the scheduling model’s perfor-
mance. Collecting data on optimal weights across scenarios would allow future research to focus on
targeted experiments rather than the limited weights tested in this thesis. Since the best value for w
differs per request list, dynamically adjusting w based on the request list would be beneficial. To refine
this process, an AI model could be trained to predict the optimal w based on the initial request list. This
approach could enable dynamic adjustments, increasing the likelihood of better results.

Another topic for future research is establishing a robust link between the algorithm’s outcomes on
departure time deviation per request and customer satisfaction. Kraft (2002) provides a formula to cal-
culate acceptance probabilities based on departure time deviations, which can serve as a foundational
model for understanding the impact of time deviations on customer acceptance. The formula is given
as:

P (Accepts Quote) = eα−β∆

1 + eα−β∆

where∆ represents the departure time deviation, and α and β are calibration parameters. For example,
Kraft (2002) assumes that a departure time deviation of two days corresponds to a 50% acceptance
probability, using empirical estimates. Substituting ρ = 2, α = 4.394, and β = α/ρ, the formula simplifies
to:
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P (Accepts Quote) = e4.394−4.394/ρ

1 + e4.394−4.394/ρ

This formula is based on several assumptions and serves as an estimate rather than a definitive mea-
sure. While it provides a useful starting point, tailoring this model to the Dutch rail freight context would
require ProRail to conduct research and calibrate these parameters based on local customer behavior.

In addition to time deviations, other factors likely influence customer satisfaction, but are not captured
in Kraft’s model. These include the lead time of the request (e.g., requests submitted two weeks ver-
sus one year in advance), whether the deviation shifts departure from day to night, the frequency of
rescheduling for recurring requests (e.g., multiple small shifts versus one large shift), the trip length,
the type of freight transported, etc. Research incorporating these variables, supported by empirical
data on customer acceptance collected by ProRail, could significantly enhance understanding of cus-
tomer behavior. Using AI models trained on this dataset could further improve predictions of customer
satisfaction, enabling more tailored and effective scheduling decisions.
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A
Box Plots Repeated Sensitivity Analysis

A.1. Congestion Factor Sections Squared and Scaling Congestion
factor down per Request

Figure A.1: Capacity = 5 trains per hour, Squared Congestion Factor, Congestion Factor Request Dependent
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Figure A.2: Capacity = 5 trains per hour, Squared Congestion Factor, Congestion Factor Request Dependent, Total Time
Deviation Squared

Figure A.3: Capacity = 7.5 trains per hour, Squared Congestion Factor, Congestion Factor Request Dependent
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Figure A.4: Capacity = 7.5 trains per hour, Squared Congestion Factor, Congestion Factor Request Dependent, Total Time
Deviation Squared

Figure A.5: Capacity = 10 trains per hour, Squared Congestion Factor, Congestion Factor Request Dependent
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Figure A.6: Capacity = 10 trains per hour, Squared Congestion Factor, Congestion Factor Request Dependent, Total Time
Deviation Squared

A.2. Congestion Factor Sections Linear and Scaling Congestion
factor down per Request

Figure A.7: Capacity = 5 trains per hour, Linear Congestion Factor, Congestion Factor Request Dependent
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Figure A.8: Capacity = 5 trains per hour, Linear Congestion Factor, Congestion Factor Request Dependent, Total Time
Deviation Squared

Figure A.9: Capacity = 7.5 trains per hour, Linear Congestion Factor, Congestion Factor Request Dependent
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Figure A.10: Capacity = 7.5 trains per hour, Linear Congestion Factor, Congestion Factor Request Dependent, Total Time
Deviation Squared

Figure A.11: Capacity = 10 trains per hour, Linear Congestion Factor, Congestion Factor Request Dependent
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Figure A.12: Capacity = 10 trains per hour, Linear Congestion Factor, Congestion Factor Request Dependent, Total Time
Deviation Squared

A.3. Congestion Factor Sections Squared and Congestion Factor
Not Request Dependent

Figure A.13: Capacity = 5 trains per hour, Squared Congestion Factor, Congestion Factor Not Request Dependent
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Figure A.14: Capacity = 5 trains per hour, Squared Congestion Factor, Congestion Factor Not Request Dependent, Total Time
Deviation Squared

Figure A.15: Capacity = 7.5 trains per hour, Squared Congestion Factor, Congestion Factor Not Request Dependent
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Figure A.16: Capacity = 7.5 trains per hour, Squared Congestion Factor, Congestion Factor Not Request Dependent, Total
Time Deviation Squared

Figure A.17: Capacity = 10 trains per hour, Squared Congestion Factor, Congestion Factor Not Request Dependent
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Figure A.18: Capacity = 10 trains per hour, Squared Congestion Factor, Congestion Factor Not Request Dependent, Total
Time Deviation Squared

A.4. Congestion Factor Sections Linear andCongestion Factor Not
Request Dependent

Figure A.19: Capacity = 5 trains per hour, Linear Congestion Factor, Congestion Factor Not Request Dependent
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Figure A.20: Capacity = 5 trains per hour, Linear Congestion Factor, Congestion Factor Not Request Dependent, Total Time
Deviation Squared

Figure A.21: Capacity = 7.5 trains per hour, Linear Congestion Factor, Congestion Factor Not Request Dependent
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Figure A.22: Capacity = 7.5 trains per hour, Linear Congestion Factor, Congestion Factor Not Request Dependent, Total Time
Deviation Squared

Figure A.23: Capacity = 10 trains per hour, Linear Congestion Factor, Congestion Factor Not Request Dependent
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Figure A.24: Capacity = 10 trains per hour, Linear Congestion Factor, Congestion Factor Not Request Dependent, Total Time
Deviation Squared



B
Tables Repeated Sensitivity Analysis

Below are the results presented from conducting the weighted sensitivity analysis. The results are
divided into 4 categories with either the squared congestion factor or normal congestion factor, or
scaling the congestion factor down per request or not.

All results in the table are a comparison with the base case scenario where w = 1, showing the im-
provement compared to the base case. That’s why there is no row with the weight w = 1. The column
titles in the tables below mean the following:

• Weight: is the weight for which the experiment is conducted [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,
0.99, 1].

• Average Improvement Time: When a list of requests is handled, the experiment with the list
is conducted for multiple weights. For each weight, the total time deviation after allocating all
requests is measured and compared with the total time deviation of the base case scenario (w =
1). After running the experiment 50 times, the average improvement is measured compared to
the base case scenario.

• Average Improvement Time Squared: This is the same as the improvement in total time devi-
ation but considers the squared deviations. It emphasizes larger deviations by penalizing them
more heavily, as they are squared before being averaged across all requests and experiments.

• Percentage Better Result Time: This measures the percentage of experiments where the total
time deviation for a specific weight was lower than that of the base case scenario. It quantifies
the frequency of improvement over the base case.

• Percentage Better Result Time Squared: Similar to the previous column, this measures the
percentage of experiments where the total squared time deviation for a specific weight was lower
than that of the base case scenario. It reflects how often a weight achieves better results in terms
of departure time deviations squared.
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Congestion Factor Sections Squared and Scaling Congestion factor down per Request
Table B.1: Capacity = 5 trains per hour, Squared Congestion Factor, Congestion Factor Request Dependent

Weight (w) Average
Improvement

Time

Average
Improvement
Time Squared

Percentage Better
Result Time

Percentage Better
Result Time
Squared

0.2 -2439.84 -718959.96 8.00% 28.00%
0.3 -1709.58 -936079.38 14.00% 20.00%
0.4 -911.78 -482155.62 24.00% 30.00%
0.5 -856.84 -600581.56 24.00% 30.00%
0.6 -706.58 -609327.42 30.00% 38.00%
0.7 -401.60 -361794.12 34.00% 32.00%
0.8 -209.88 -207314.84 46.00% 44.00%
0.9 35.50 -70297.54 56.00% 54.00%
0.99 100.78 -21761.62 56.00% 54.00%

Table B.2: Capacity = 7.5 trains per hour, Squared Congestion Factor, Congestion Factor Request Dependent

Weight (w) Average
Improvement

Time

Average
Improvement
Time Squared

Percentage Better
Result Time

Percentage Better
Result Time
Squared

0.2 -803.22 -45653.46 0.00% 6.00%
0.3 -376.70 -26603.94 2.00% 18.00%
0.4 -229.80 -21200.56 10.00% 16.00%
0.5 -157.10 -19986.10 18.00% 22.00%
0.6 -107.12 -15771.28 24.00% 24.00%
0.7 -89.86 -15316.94 32.00% 26.00%
0.8 -58.64 -13512.56 38.00% 36.00%
0.9 -25.84 -9349.12 48.00% 36.00%
0.99 -26.70 -9128.58 48.00% 38.00%

Table B.3: Capacity = 10 trains per hour, Squared Congestion Factor, Congestion Factor Request Dependent

Weight (w) Average
Improvement

Time

Average
Improvement
Time Squared

Percentage Better
Result Time

Percentage Better
Result Time
Squared

0.3 -80.44 -3686.84 14.00% 22.00%
0.4 -24.16 -1505.40 40.00% 34.00%
0.5 -17.50 -1583.26 42.00% 36.00%
0.6 -3.58 -1196.70 42.00% 34.00%
0.7 0.26 -1029.98 52.00% 34.00%
0.8 -0.70 -1090.58 54.00% 36.00%
0.9 -1.68 -1144.40 52.00% 34.00%
0.99 -0.80 -1070.32 52.00% 34.00%
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Congestion Factor Sections Linear and Scaling Congestion factor down per Request
Table B.4: Capacity = 5 trains per hour, Linear Congestion Factor, Congestion Factor Request Dependent

Weight (w) Average
Improvement

Time

Average
Improvement
Time Squared

Percentage Better
Result Time

Percentage Better
Result Time
Squared

0.2 -4652.02 -1140668.30 2.00% 26.00%
0.3 -1883.06 -863635.66 14.00% 30.00%
0.4 -1190.04 -810594.16 20.00% 30.00%
0.5 -682.32 -592894.16 24.00% 30.00%
0.6 -225.80 -208033.56 40.00% 38.00%
0.7 -297.24 -234580.64 34.00% 30.00%
0.8 -189.32 -232586.52 44.00% 42.00%
0.9 -73.76 -136074.04 48.00% 50.00%
0.99 -77.10 -119702.74 50.00% 52.00%

Table B.5: Capacity = 7.5 trains per hour, Linear Congestion Factor, Congestion Factor Request Dependent

Weight (w) Average
Improvement

Time

Average
Improvement
Time Squared

Percentage Better
Result Time

Percentage Better
Result Time
Squared

0.2 -2305.66 -104314.22 0.00% 0.00%
0.3 -685.20 -33988.04 0.00% 22.00%
0.4 -250.32 -18477.60 8.00% 24.00%
0.5 -125.24 -15378.60 22.00% 32.00%
0.6 -76.00 -12908.08 26.00% 26.00%
0.7 -36.22 -7980.30 38.00% 20.00%
0.8 -22.62 -7476.22 40.00% 22.00%
0.9 2.14 -4893.38 50.00% 38.00%
0.99 4.04 -6221.28 50.00% 40.00%

Table B.6: Capacity = 10 trains per hour, Linear Congestion Factor, Congestion Factor Request Dependent

Weight (w) Average
Improvement

Time

Average
Improvement
Time Squared

Percentage Better
Result Time

Percentage Better
Result Time
Squared

0.2 -1103.34 -40731.02 0.00% 0.00%
0.3 -267.34 -6632.58 0.00% 14.00%
0.4 -85.50 -2632.90 14.00% 42.00%
0.5 -31.44 -1207.84 38.00% 46.00%
0.6 -5.70 -677.58 54.00% 56.00%
0.7 -8.26 -1226.10 56.00% 48.00%
0.8 -7.82 -1324.62 60.00% 48.00%
0.9 -6.26 -1321.46 60.00% 50.00%
0.99 -6.26 -1322.42 60.00% 50.00%
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Congestion Factor Sections Squared and Congestion Factor stays constant
Table B.7: Capacity = 5 trains per hour, Squared Congestion Factor, Not Request Dependent

Weight (w) Average
Improvement

Time

Average
Improvement
Time Squared

Percentage Better
Result Time

Percentage Better
Result Time
Squared

0.2 -3947.86 -959281.30 4.00% 36.00%
0.3 -2603.36 -1214142.48 8.00% 22.00%
0.4 -1417.02 -921239.90 24.00% 30.00%
0.5 -1168.74 -887004.02 20.00% 30.00%
0.6 -912.04 -824156.96 26.00% 26.00%
0.7 -568.82 -651972.74 30.00% 28.00%
0.8 -194.76 -302914.08 46.00% 42.00%
0.9 -7.50 -124663.94 44.00% 40.00%
0.99 95.70 -12898.38 54.00% 50.00%

Table B.8: Capacity = 7.5 trains per hour, Squared Congestion Factor, Not Request Dependent

Weight (w) Average
Improvement

Time

Average
Improvement
Time Squared

Percentage Better
Result Time

Percentage Better
Result Time
Squared

0.2 -1293.64 -56766.08 0.00% 10.00%
0.3 -561.96 -31707.64 0.00% 18.00%
0.4 -326.66 -25225.74 6.00% 22.00%
0.5 -201.72 -22833.92 16.00% 20.00%
0.6 -135.08 -20792.80 26.00% 26.00%
0.7 -89.60 -16917.92 28.00% 26.00%
0.8 -47.00 -13500.56 44.00% 32.00%
0.9 -14.90 -9999.22 50.00% 32.00%
0.99 -0.82 -7014.82 50.00% 36.00%

Table B.9: Capacity = 10 trains per hour, Squared Congestion Factor, Not Request Dependent

Weight (w) Average
Improvement

Time

Average
Improvement
Time Squared

Percentage Better
Result Time

Percentage Better
Result Time
Squared

0.2 -384.28 -13531.56 0.00% 4.00%
0.3 -116.44 -3787.64 16.00% 24.00%
0.4 -16.32 -67.12 48.00% 44.00%
0.5 -17.44 -1276.32 36.00% 36.00%
0.6 9.52 -310.24 48.00% 40.00%
0.7 7.44 -638.00 52.00% 40.00%
0.8 8.04 -670.20 56.00% 44.00%
0.9 8.60 -446.20 60.00% 48.00%
0.99 7.28 -511.20 56.00% 48.00%
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Congestion Factor Sections Linear and Congestion Factor stays constant
Table B.10: Capacity = 5 trains per hour, Congestion Factor Linear, Not Request Dependent

Weight (w) Average
Improvement

Time

Average
Improvement
Time Squared

Percentage Better
Result Time

Percentage Better
Result Time
Squared

0.2 -10494.24 -888239.36 0.00% 40.00%
0.3 -4329.60 -1236375.20 0.00% 12.00%
0.4 -2292.92 -1209439.24 8.00% 24.00%
0.5 -1755.52 -1331708.24 8.00% 8.00%
0.6 -754.44 -606999.00 24.00% 28.00%
0.7 -452.76 -416548.60 24.00% 20.00%
0.8 -490.08 -414180.80 24.00% 24.00%
0.9 -213.60 -212163.52 32.00% 24.00%
0.99 -112.40 -132329.28 40.00% 32.00%

Table B.11: Capacity = 7.5 trains per hour, Congestion Factor Linear, Not Request Dependent

Weight (w) Average
Improvement

Time

Average
Improvement
Time Squared

Percentage Better
Result Time

Percentage Better
Result Time
Squared

0.2 -6526.92 -281390.04 0.00% 0.00%
0.3 -1882.92 -62378.60 0.00% 4.00%
0.4 -638.12 -20701.08 0.00% 28.00%
0.5 -256.16 -14767.52 12.00% 24.00%
0.6 -164.68 -14734.92 8.00% 28.00%
0.7 -75.48 -7408.12 24.00% 28.00%
0.8 -5.68 -1403.28 40.00% 36.00%
0.9 11.80 -773.64 56.00% 52.00%
0.99 11.28 -1240.72 56.00% 52.00%

Table B.12: Capacity = 10 trains per hour, Congestion Factor Linear, Not Request Dependent

Weight (w) Average
Improvement

Time

Average
Improvement
Time Squared

Percentage Better
Result Time

Percentage Better
Result Time
Squared

0.2 -3203.44 -122108.80 0.00% 0.00%
0.3 -710.28 -16013.64 0.00% 0.00%
0.4 -224.80 -4472.56 4.00% 24.00%
0.5 -104.92 -2528.28 8.00% 24.00%
0.6 -64.04 -2425.24 16.00% 20.00%
0.7 -39.96 -2367.00 16.00% 28.00%
0.8 -38.64 -2785.68 20.00% 24.00%
0.9 -32.68 -2765.16 20.00% 20.00%
0.99 -33.28 -2873.84 24.00% 16.00%



C
Time Space Graphs

In this appendix chapter time-space graphs are plotted to get a better feel of how requests are allocated
to itineraries. In Figures C.1, C.2 and C.3 the arc which is most used (Whzan, Brdv, used 86 times) is
plotted with all the itineraries using that specific arc.

In Figures C.4 and C.5 all itineraries are plotted in a 3d graph. The idea is that plotting all used itineraries
in a 2d graph would be too chaotic. However, visualizing this in a 3d graph does not solve this problem.
The main conclusion which can be drawn from plotting the 3d graph is that plotting all freight trains for
a single day is too much to visualize in one graph.
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Figure C.4: Allocation of All Requests in a 3d Time Space Graph (top view)
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Figure C.5: Allocation of All Requests in a 3d Time Space Graph (side view)



D
Allocation of Itineraries in Two

Scenario’s

Table D.1: w=1, itinerary allocation, regular request order, first 30 requests

Request Origin Dest. Pref.
Time

Path Dep.
Time

Penalty Time
Dev. Sq.

Time
Deviation

495740 Whz Zvg 806 (’Whz’, ’Whzan’, ’Brdv’,
’Kfhan’, ’Kfhn’, ’Kfhz’,
’Brppd’, ’Brgnd’, ’Brgro’,
’Brmet’, ’Brech’, ’Bropo’,

’Brvalw’, ’Brvalo’,
’Brdvno’, ’Zvbtwa’, ’Zvo’,

’Zvg’)

806 2.742 0 0

515241 Mdk Zlw 1380 (’Mdk’, ’Zlw’) 1380 0.040 0 0
515245 Zlw Mdk 60 (’Zlw’, ’Mdk’) 60 0.040 0 0
515258 Mdk Zlw 600 (’Mdk’, ’Zlw’) 600 0.040 0 0
517048 Mvtww Erp 843 (’Mvtww’, ’Mvta’, ’Erpw’,

’Erp’)
843 0.720 0 0

522430 Mt Edng 379 (’Mt’, ’Mtr’, ’Edn’, ’Edng’) 379 0.010 0 0
522431 Edng Mt 327 (’Edng’, ’Mt’) 327 0.010 0 0
522434 Mt Hang 354 (’Mt’, ’Bha’, ’Luta’, ’Std’,

’Gln’, ’Sbk’, ’Sn’, ’Nh’,
’Hb’, ’Hrla’, ’Hrl’, ’Lg’,
’Eghm’, ’Han’, ’Hang’)

354 0.057 0 0

522436 Edng Mt 1407 (’Edng’, ’Mt’) 1407 0.010 0 0
522437 Mt Hang 1434 (’Mt’, ’Bha’, ’Luta’, ’Std’,

’Gln’, ’Sbk’, ’Sn’, ’Nh’,
’Hb’, ’Hrla’, ’Hrl’, ’Lg’,
’Eghm’, ’Han’, ’Hang’)

1434 0.040 0 0

522438 Edng Mt 1347 (’Edng’, ’Mt’) 1347 0.010 0 0
522439 Mt Hang 1374 (’Mt’, ’Bha’, ’Luta’, ’Std’,

’Gln’, ’Sbk’, ’Sn’, ’Nh’,
’Hb’, ’Hrla’, ’Hrl’, ’Lg’,
’Eghm’, ’Han’, ’Hang’)

1374 0.040 0 0

522440 Edng Mt 1287 (’Edng’, ’Mt’) 1287 0.010 0 0
Continued on next page
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Table D.1 – continued from previous page
Request Origin Dest. Pref.

Time
Path Dep.

Time
Penalty Dev. Sq. Deviation

522441 Mt Hang 1314 (’Mt’, ’Bha’, ’Luta’, ’Std’,
’Gln’, ’Sbk’, ’Sn’, ’Nh’,
’Hb’, ’Hrla’, ’Hrl’, ’Lg’,
’Eghm’, ’Han’, ’Hang’)

1314 0.040 0 0

522442 Edng Mt 1227 (’Edng’, ’Mt’) 1227 0.010 0 0
522443 Mt Hang 1254 (’Mt’, ’Bha’, ’Luta’, ’Std’,

’Gln’, ’Sbk’, ’Sn’, ’Nh’,
’Hb’, ’Hrla’, ’Hrl’, ’Lg’,
’Eghm’, ’Han’, ’Hang’)

1254 0.040 0 0

522444 Edng Mt 1167 (’Edng’, ’Mt’) 1167 0.010 0 0
522445 Mt Hang 1194 (’Mt’, ’Bha’, ’Luta’, ’Std’,

’Gln’, ’Sbk’, ’Sn’, ’Nh’,
’Hb’, ’Hrla’, ’Hrl’, ’Lg’,
’Eghm’, ’Han’, ’Hang’)

1194 0.040 0 0

522447 Edng Mt 1107 (’Edng’, ’Mt’) 1107 0.010 0 0
522448 Mt Hang 1134 (’Mt’, ’Bha’, ’Luta’, ’Std’,

’Gln’, ’Sbk’, ’Sn’, ’Nh’,
’Hb’, ’Hrla’, ’Hrl’, ’Lg’,
’Eghm’, ’Han’, ’Hang’)

1134 0.066 0 0

522450 Mt Hang 1074 (’Mt’, ’Bha’, ’Luta’, ’Std’,
’Gln’, ’Sbk’, ’Sn’, ’Nh’,
’Hb’, ’Hrla’, ’Hrl’, ’Lg’,
’Eghm’, ’Han’, ’Hang’)

1074 0.160 0 0

522451 Edng Mt 1047 (’Edng’, ’Mt’) 1047 0.010 0 0
522452 Edng Mt 987 (’Edng’, ’Mt’) 987 0.010 0 0
522453 Mt Hang 1014 (’Mt’, ’Bha’, ’Luta’, ’Std’,

’Gln’, ’Sbk’, ’Sn’, ’Nh’,
’Hb’, ’Hrla’, ’Hrl’, ’Lg’,
’Eghm’, ’Han’, ’Hang’)

1014 0.174 0 0

522455 Edng Mt 927 (’Edng’, ’Mt’) 927 0.010 0 0
522456 Mt Hang 954 (’Mt’, ’Bha’, ’Luta’, ’Std’,

’Gln’, ’Sbk’, ’Sn’, ’Nh’,
’Hb’, ’Hrla’, ’Hrl’, ’Lg’,
’Eghm’, ’Han’, ’Hang’)

954 0.160 0 0

522457 Edng Mt 867 (’Edng’, ’Mt’) 867 0.010 0 0
522458 Mt Hang 894 (’Mt’, ’Bha’, ’Luta’, ’Std’,

’Gln’, ’Sbk’, ’Sn’, ’Nh’,
’Hb’, ’Hrla’, ’Hrl’, ’Lg’,
’Eghm’, ’Han’, ’Hang’)

894 0.160 0 0

522459 Edng Mt 807 (’Edng’, ’Mt’) 807 0.010 0 0
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Table D.2: w=0.16, itinerary allocation, regular request order, first 30 requests

Request Origin Dest. Pref.
Time

Path Dep.
Time

Penalty Time
Dev. Sq.

Time
Deviation

495740 Whz Zvg 806 (’Whz’, ’Whzan’, ’Brdv’,
’Kfhan’, ’Kfhn’, ’Kfhz’,
’Brppd’, ’Brgnd’, ’Brgro’,
’Brmet’, ’Brech’, ’Bropo’,

’Brvalw’, ’Brvalo’,
’Brdvno’, ’Zvbtwa’, ’Zvo’,

’Zvg’)

599 0.019 42849 207

515241 Mdk Zlw 1380 (’Mdk’, ’Zlw’) 1379 0.000 1 1
515245 Zlw Mdk 60 (’Zlw’, ’Mdk’) 59 0.000 1 1
515258 Mdk Zlw 600 (’Mdk’, ’Zlw’) 599 0.000 1 1
517048 Mvtww Erp 843 (’Mvtww’, ’Mvta’, ’Erpw’,

’Erp’)
900 0.107 3249 57

522430 Mt Edng 379 (’Mt’, ’Edng’) 379 0.010 0 0
522431 Edng Mt 327 (’Edng’, ’Edn’, ’Mtr’, ’Mt’) 327 0.010 0 0
522434 Mt Hang 354 (’Mt’, ’Bha’, ’Luta’, ’Std’,

’Gln’, ’Sbk’, ’Sn’, ’Nh’,
’Hb’, ’Hrla’, ’Hrl’, ’Lg’,
’Eghm’, ’Han’, ’Hang’)

353 0.054 1 1

522436 Edng Mt 1407 (’Edng’, ’Edn’, ’Mtr’, ’Mt’) 1407 0.010 0 0
522437 Mt Hang 1434 (’Mt’, ’Bha’, ’Luta’, ’Std’,

’Gln’, ’Sbk’, ’Sn’, ’Nh’,
’Hb’, ’Hrla’, ’Hrl’, ’Lg’,
’Eghm’, ’Han’, ’Hang’)

1434 0.040 0 0

522438 Edng Mt 1347 (’Edng’, ’Edn’, ’Mtr’, ’Mt’) 1347 0.010 0 0
522439 Mt Hang 1374 (’Mt’, ’Bha’, ’Luta’, ’Std’,

’Gln’, ’Sbk’, ’Sn’, ’Nh’,
’Hb’, ’Hrla’, ’Hrl’, ’Lg’,
’Eghm’, ’Han’, ’Hang’)

1374 0.040 0 0

522440 Edng Mt 1287 (’Edng’, ’Edn’, ’Mtr’, ’Mt’) 1287 0.010 0 0
522441 Mt Hang 1314 (’Mt’, ’Bha’, ’Luta’, ’Std’,

’Gln’, ’Sbk’, ’Sn’, ’Nh’,
’Hb’, ’Hrla’, ’Hrl’, ’Lg’,
’Eghm’, ’Han’, ’Hang’)

1314 0.040 0 0

522442 Edng Mt 1227 (’Edng’, ’Edn’, ’Mtr’, ’Mt’) 1227 0.010 0 0
522443 Mt Hang 1254 (’Mt’, ’Bha’, ’Luta’, ’Std’,

’Gln’, ’Sbk’, ’Sn’, ’Nh’,
’Hb’, ’Hrla’, ’Hrl’, ’Lg’,
’Eghm’, ’Han’, ’Hang’)

1254 0.040 0 0

522444 Edng Mt 1167 (’Edng’, ’Edn’, ’Mtr’, ’Mt’) 1167 0.010 0 0
522445 Mt Hang 1194 (’Mt’, ’Bha’, ’Luta’, ’Std’,

’Gln’, ’Sbk’, ’Sn’, ’Nh’,
’Hb’, ’Hrla’, ’Hrl’, ’Lg’,
’Eghm’, ’Han’, ’Hang’)

1194 0.040 0 0

522447 Edng Mt 1107 (’Edng’, ’Edn’, ’Mtr’, ’Mt’) 1107 0.010 0 0
522448 Mt Hang 1134 (’Mt’, ’Bha’, ’Luta’, ’Std’,

’Gln’, ’Sbk’, ’Sn’, ’Nh’,
’Hb’, ’Hrla’, ’Hrl’, ’Lg’,
’Eghm’, ’Han’, ’Hang’)

1140 0.043 36 6

Continued on next page
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Table D.2 – continued from previous page
Request Origin Dest. Pref.

Time
Path Dep.

Time
Penalty Dev. Sq. Deviation

522450 Mt Hang 1074 (’Mt’, ’Bha’, ’Luta’, ’Std’,
’Gln’, ’Sbk’, ’Sn’, ’Nh’,
’Hb’, ’Hrla’, ’Hrl’, ’Lg’,
’Eghm’, ’Han’, ’Hang’)

1153 0.004 6241 79

522451 Edng Mt 1047 (’Edng’, ’Edn’, ’Mtr’, ’Mt’) 1047 0.010 0 0
522452 Edng Mt 987 (’Edng’, ’Edn’, ’Mtr’, ’Mt’) 987 0.010 0 0
522453 Mt Hang 1014 (’Mt’, ’Bha’, ’Luta’, ’Std’,

’Gln’, ’Sbk’, ’Sn’, ’Nh’,
’Hb’, ’Hrla’, ’Hrl’, ’Lg’,
’Eghm’, ’Han’, ’Hang’)

1080 0.040 4356 66

522455 Edng Mt 927 (’Edng’, ’Edn’, ’Mtr’, ’Mt’) 927 0.010 0 0
522456 Mt Hang 954 (’Mt’, ’Bha’, ’Luta’, ’Std’,

’Gln’, ’Sbk’, ’Sn’, ’Nh’,
’Hb’, ’Hrla’, ’Hrl’, ’Lg’,
’Eghm’, ’Han’, ’Hang’)

960 0.143 36 6

522457 Edng Mt 867 (’Edng’, ’Edn’, ’Mtr’, ’Mt’) 867 0.010 0 0
522458 Mt Hang 894 (’Mt’, ’Bha’, ’Luta’, ’Std’,

’Gln’, ’Sbk’, ’Sn’, ’Nh’,
’Hb’, ’Hrla’, ’Hrl’, ’Lg’,
’Eghm’, ’Han’, ’Hang’)

900 0.143 36 6

522459 Edng Mt 807 (’Edng’, ’Edn’, ’Mtr’, ’Mt’) 807 0.010 0 0



E
Load Distribution on the Network

Figure E.1: Average forecasted trains per 5 minutes for w = 0, capacity=5 trains per hour
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Figure E.2: Average forecasted trains per 5 minutes for w = 1, capacity=10 trains per hour

Figure E.3: Average forecasted trains per 5 minutes for w = 0.6− 0.99, capacity=10 trains per hour
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Figure E.4: Average forecasted trains per 5 minutes for w = 0.15, capacity=5 trains per hour, reversed order

Figure E.5: Average forecasted trains per 5 minutes for w = 1, capacity=5 trains per hour, reversed order
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