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Abstract
This thesis investigates the behaviour of one-dimensional blood flow in the human arterial tree. It focuses
on modeling the change in velocity, cross-sectional area, and concentration. The equations governing this
flow are derived using the physical laws of conservation of mass, conservation of momentum, and the
advection-diffusion equation. To solve this set of equations numerically, the Finite Volume Method in
combination with a flux difference splitting approach is employed.

The study begins with an examination of a single artery, revealing wave-like behavior in pressure and
concentration. Pressure propagates along the vessel, while concentration gradually dilutes over time. This
behaviour is also visible when expanding to the 55-artery model of the entire human body. The results of
this model were found to be very comparable to the literature. Additionally, the propagation of a chemical
species injected into an artery near the heart is investigated. It takes around 25 seconds to propagate to
the legs but the amount of concentration is greatly reduced. The strength of this wave upon reaching the
legs is investigated for different values of the diffusion coefficient. It is found that when
D = 0.02 cm2/s, the strength is around the 80% of its original value while a value of D = 2 cm2/s reduces
it to 40%. Further research should focus on expanding this model and improving its accuracy. Especially
the exact concentration waves in single arteries are very prone to spurious oscillations. By optimizing the
numerical code, the accuracy can be greatly increased. Moreover, more realistic additions can be made to
this model. Such as expanding to a two-way model enabling to inject at various points around the arterial
tree. Nevertheless, this model provides insight into the propagation of blood and concentration in the
human circulatory system, highlighting the need for refinement.
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1 Introduction
The year 2020 will forever be remembered as the time when COVID-19 swiftly transformed into a global
pandemic, impacting every aspect of our lives. It started as an innocent virus but quickly became a world-
dominating disease. As our global population continues to grow at an unprecedented rate, the threat posed
by such epidemics becomes increasingly significant. Luckily, scientists have shown themselves capable
of developing vaccines to effectively combat these diseases. Upon injecting such a vaccine, the concen-
tration of antigens is not evenly distributed. Instead, it initiates a fascinating process of concentration
propagation.

When a concentration is injected into the body, it begins to spread and flow through the arteries, un-
dergoing two important processes: diffusion and advection. Understanding these properties is crucial to
understand the behaviour of concentration flow in the human body. However, studying these properties
requires knowledge about blood flow, which has historically been challenging. The underlying mecha-
nisms are extremely complex, involving the collaboration of millions of individual components. However,
in recent years our ever-growing computation power has come to be very useful. Originally, the 3D blood
flow can be described by the Navier-Stokes equations. Unfortunately, the computation complexity of
models based on these equations remains high so simplifications must be made. Researchers like Sherwin
et al. [1] have shown that one-dimensional blood flow models can greatly reduce computational time
while enjoying very realistic results.

In this thesis, we will derive a set of equations to describe the concentration- and blood flow in the
human arterial tree. Unfortunately, these equations do not have a closed-form solution so we must rely
on numerical approaches. One particularly effective approach is the Finite Volume Method. This method
ensures conservation of mass and momentum and proves highly valuable in solving physical problems
like this one. With the numerical methods, the set of equations is then tried to be solved. This project
then aims to use the numerical solution of the velocity and pressure inside the arteries, to model the
propagation of concentration in the body. To that end, the thesis can be divided into two parts. Firstly, we
numerically investigate the model recommended by Sherwin et al. [1] and the solutions for the velocity
and pressure inside the artery are computed. With this in hand, we proceed to model the concentration
propagation. The flow of concentration is described by the advection-diffusion equation which required
information about the velocity. With this known, a simulation can be made to understand the propagation
of a vaccine injected in the tree. This report will explain the steps taken during this thesis. It starts
in chapter 3 by deriving a system of equations that describe the flow of blood and concentration in the
circulatory system. In order to effectively implement the numerical methods, the derived system should
be rewritten in his characteristic form. This is done in chapter 4. In chapter 5 we derive our numerical
scheme and test it on a simplified linear test function. Since our final system is nonlinear the methods
from chapter 5 are expanded to nonlinear cases. This is done in chapter 6. In chapters 7 and 8 we test
the behaviour of the flow in simple test arteries. In both a normal and a stented artery, the pressure and
concentration propagation are analysed. In chapter 9 we determine how to model important features of
the human arterial tree. These include for example the bifurcations and the modeling of the heart. With
that all done, we are finally in the position to model the entire tree and investigate the propagation of an
injected concentration. This is done in chapter 10. This will all lead to answering the following research
question: How does concentration propagate in the human arterial tree?
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2 Literature survey
In this chapter, we give a short description of the current work which has been done on 1D blood flow
modeling. In recent years, numerous studies have focused on modeling blood flow in the human arterial
tree. These researches involve deriving a system of coupled partial differential equations (PDEs). Con-
servation laws, which play a crucial role in arterial flow dynamics, are used to derive these PDEs. The
conservation of mass leads to an equation based on volumetric flow (Q) and velocity (u), while the con-
servation of momentum results in an equation based on cross-sectional area (A) and velocity (u). This
has been done in studies like [1, 2, 3]. The main difference between these works is their relation between
pressure and cross-sectional area. In [4] a list of the different relations can be found. In our work, we will
adopt the relation used in, for example, [1, 5].

To solve these PDEs, the most common methods used in the literature are the Finite Element Method
(FEM) and the Finite Volume Method (FVM). FVM is particularly useful in our problem as mass and
momentum are conservated. In literature, different approaches are used. Sherwin [1] for example uses
Discontinuous Galerkin while Mynard [4] uses a Taylor-Galerkin approach. We will use a slightly dif-
ferent approach and use the flux wave decomposition method. This is explained in [6] and adapted in
[7].

Another important factor in the arterial system is how to model the heart. In our work, we will use
a rather simple model of the heart which only models the change of cross-sectional area imposed by a
heartbeat as introduced in [1] and adopted in [7, 8]. More sophisticated models of the heart, such as
those presented [4] and [2], account for the detailed contraction and relaxation behavior of the different
chambers.

Bifurcations are a vital element of the circulatory system. These branching points will be modeled by
conserving mass and pressure over these bifurcations. With this approach, a system of equations should
be solved using Newton-Raphson just as in [7, 4, 5].

We also aim to incorporate concentration in the model. This introduces an extra PDE known as the
advection-diffusion equation. Concentration propagation has been implemented in [3], where a more
complex radial-dependent concentration flow model is considered. However, in our model, we focus
solely on the 1D value of concentration at different time and spatial points, without incorporating this
radial dependency. Solving this concentration PDE can generally be done using two approaches, the
central difference method (CDM) or using an upwind scheme. Both have their stability advantages but in
general, CDM is more accurate if the Péclet number (see [9] for information about the Péclet number) is
below 2 while upwind is more accurate for Péclet numbers above 2. For that reason, we will determine
for each problem which approach would be more accurate depending on the Péclet number. The upwind
scheme is introduced in [6] and CDM in [10].
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3 Derivation of the model
To fully analyse the behaviour of blood flow in the human body, we need a mathematical model describing
the one-dimensional flow in the arterial system. The model should describe the propagation of blood
through the system as well as show how concentration diffuses through the arteries. To start, we consider
a simple artery illustrated in figure 1 to derive the model. Throughout this work, we will assume that the
local curvature of the arteries is very small. In that way, we can approximate the axial direction with the
Cartesian coordinate x as seen in figure 1.

Figure 1: Schematic model of the artery from Peiró et al. [11]. A(x, t) symbolizes the cross-sectional area, u(x, t)
the velocity and c(x, t) the concentration at a specific place and time.

We assume the arteries have flexible walls and a fully circular cross area. The cross-sectional area is
thus location and time-dependent and denoted by A(x, t). Throughout the thesis, we differentiate between
the average velocity denoted by U(x, t) and the axial velocity profile u(x, ξ, t). ξ is the radial coordinate.
The axial velocity is assumed to be time-independent. We follow Svitenkov et al. [3] and assume:

u(x, ξ, t) = U(x, t)g(ξ) = U(x, t)
ζ + 2

ζ

(
1−

(
ξ

R

)ζ
)

(1)

Here, R(x, t) is the artery’s radius, and ζ is a constant for a particular flow. ζ = 9 is seen as a good
approximation for flow in many arteries [12]. So we use that value of ζ. This radial dependency will es-
pecially be used when considering friction. Moreover, inside the artery, we introduce some concentration
c(x, t) of a chemical species but such, that it does not influence the fluid dynamics. With this set, we are
now in the position to derive a system of equations describing the blood and concentration flow through
the circulatory system. We will do this by using the conservation laws.

3.1 Conservation of mass
The first conservation law we consider is the conservation of mass. One can understand, that since we
assume no mass is being produced inside an artery, the total mass flowing into the artery must equal the
total mass flowing out of the artery. As a control volume, we consider an artery with boundaries at x = a

and x = b. The total mass inside this volume is given by M =
∫ b

a
ρ(x, t)A(x, t)dx, with A(x, t) and

ρ(x, t) is the cross area and the density at position x and time t respectively. In this work, we will assume
the fluid to be incompressible and hence ρ(x, t) ≡ ρ so independent of time and space. As mentioned
above we assume no mass is being produced inside the artery, hence the total mass can only change due
to the inflow and outflow of mass. The inflow and outflow rates are known as mass flux and describe
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the mass change per unit of time. The mass flux at x = a is given by ρA(a, t)U(a, t) with U(a, t) the
average flow velocity at the boundary. Similarly, the mass flux at x = b can be defined. When combining
everything, the change of mass in our control volume can be described as

∂

∂t

∫ b

a

ρA(x, t)dx = ρA(a, t)U(a, t)− ρA(b, t)U(b, t) (2)

We assume the functions to be sufficiently smooth so we can interchange integral and derivative (please
see [13] for the exact conditions). Then we can apply the Fundamental Theorem of Calculus (FTC) on
the right-hand side. Note that we get

ρA(a, t)U(a, t)− ρA(b, t)U(b, t) = −ρ

∫ b

a

∂(AU)

∂x
dx (3)

Then combining eqn (2) with eqn (3) we get

∂

∂t

∫ b

a

ρA(x, t)dx+ ρ

∫ b

a

∂(AU)

∂x
dx = ρ

∫ b

a

[
∂A

∂t
+

∂(AU)

∂x

]
dx = 0 (4)

For the integral to equal 0 for any a and b we must have that

∂A

∂t
+

∂(AU)

∂x
= 0 (5)

This is our first equation describing the flow in the human circulatory system.

3.2 Conservation of momentum
The next conservation law we use for the derivation of the model is the conservation of momentum. Again
we consider as a control volume an artery with boundaries at x = a and x = b. The total momentum
inside this volume is given by

∫ b

a
ρA(x, t)U(x, t)dx. The first way in which the momentum of the control

volume can change is due to the inflow and outflow of momentum at the boundaries. The momentum flux
at the boundaries is given by ρA(a, t)U(a, t)2 and ρA(b, t)U(b, t)2. Unlike with mass, momentum can
be produced in the control volume by applying a force F . With this, the change of momentum is given by

∂

∂t

∫ b

a

ρA(x, t)U(x, t)dx = ρA(a, t)U(a, t)2 − ρA(b, t)U(b, t)2 + F (6)

To define the applied forces F we will consider viscous and pressure force contributions as done by
Sherwin et al. [1]. Then p(a, t)A(a, t) and p(b, t)A(b, t) are the pressure forces acting on the volume
at the boundaries, with p(x, t) being the pressure at location x and time t. Next, the contribution of the
pressure force on the side walls is given by

∫ b

a
p∂A
∂x dx. Lastly, the contribution of the viscous resisting

force is given as
∫ b

a
fdx in which f represents the friction force per unit length. So eqn (6) becomes

∂

∂t

∫ b

a

ρAUdx = ρA(a, t)U(a, t)2−ρA(b, t)U(b, t)2+

∫ b

a

p
∂A

∂x
dx+

∫ b

a

fdx+p(a, t)A(a, t)−p(b, t)A(b, t)

(7)
We again assume we are allowed to rewrite it as

ρ

∫ b

a

∂(AU)

∂t
dx = −ρ

∫ b

a

∂(AU2)

∂x
dx+

∫ b

a

p
∂A

∂x
dx+

∫ b

a

fdx−
∫ b

a

∂(pA)

∂x
dx (8)
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This can be rewritten as

ρ

∫ b

a

[
∂(AU)

∂t
+

∂(AU2)

∂x
− p

ρ

∂A

∂x
− f

ρ
+

∂(pA)

∂x

]
dx = 0 (9)

Because the integral is 0 for any a and b we must have that the integrand is 0 so

∂(AU)

∂t
+

∂(AU2)

∂x
− p

ρ

∂A

∂x
− f

ρ
+

∂(pA)

∂x
= 0 (10)

Next, we will use the product rule of differentiation to simplify this equation

∂(AU)

∂t
=

∂A

∂t
U +

∂U

∂t
A

∂(AU2)

∂x
=

∂(AU)

∂x
U +

∂U

∂x
AU

∂(pA)

∂x
=

∂p

∂x
A+

∂A

∂x
p

(11)

Substituting eqn (11) into eqn (10) we will get

A

[
∂U

∂t
+ U

∂U

∂x
+

1

ρ

∂p

∂x
− f

ρA

]
+ U

[
∂A

∂t
+

∂(AU)

∂x

]
= 0 (12)

We note that the terms in the right bracket equal zero by conservation of mass. Moreover, we have
assumed an asymmetrical velocity profile described by eqn (1). This means we have a certain viscous
friction term f = −2(ζ+2)νπUA [3]. Here ζ is a constant depending on the velocity profile and ν is the
kinematic viscosity of blood. Together the second equation describing the flow in the human circulatory
system is given by

∂U

∂t
+ U

∂U

∂x
+

1

ρ

∂p

∂x
+

2

ρ
(ζ + 2)νπU = 0 (13)

3.3 Pressure relation
Eqn (5) and (13) can almost be used to describe the blood flow. To complete the system we need an
expression for the pressure in terms of U or A. For this, we follow Sherwin et al. [1] and assume

p(x, t) = pext(x, t) + β(
√
A(x, t)−

√
A0(x, t)) (14)

pext is the external pressure, A0 is the equilibrium cross area and β is a measure for the vessel’s stiffness
given by

β =

√
πh0E

(1− µ2)A0
(15)

Here h0 is the thickness of the vessel’s wall, E(x) is the Young modules, and µ is the Poisson ratio and
commonly set to 1

2 for tissues.
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3.4 Concentration
Combining 5, 13 and 14 allows us to describe the blood flow in the human circulatory system. In this
work, we also want to study the propagation of a chemical species through the system. For that, we use
the standard advection-diffusion equation

∂c(x, t)

∂t
+ U(x, t)

∂c(x, t)

∂x
= D

∂2c(x, t)

∂x2
(16)

Where we have assumed that the diffusion coefficient D(x, t) ≡ D. The part U(x, t)
∂c(x, t)

∂x
describes

the advection and D
∂2c(x, t)

∂x2
the diffusion part of the PDE. Unlike the velocity, we assume the cross-

sectional distribution of agent concentration to be uniform. This will simplify the calculations as it now
turns to a convectional transport with U(x, t). For an analysis with more sophisticated concentration
profiles, we refer to [3].
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4 Characteristic system
In the previous chapter, we have derived a system of non-linear partial differential equations (PDE)

∂A

∂t
+

∂(AU)

∂x
= 0

∂U

∂t
+ U

∂U

∂x
+

1

ρ

∂p

∂x
+

2

ρ
(ζ + 2)κπU = 0

(17)

Finalised with eqn (14). In this chapter, we want to derive the characteristic equations of the model.
Characteristic equations give insight into the behaviour of the model and will become useful during the
implementation of the model.

4.1 Conservative form
Before we can derive the characteristic equations it is wise to write the derived system into a conservative
form. The conservative form has the following form

∂W

∂t
+

∂F (W)

∂x
= S(W) (18)

We let W be the conserved quantity, F (W) is the flux function, and S(W) is the source function. So
following eqn (17)

W =

[
A
U

]

F (W) =

 AU
1

2
U2 +

p

ρ


S(W) =

 0

−2

ρ
(ζ + 2)κπU


(19)

Eqn (18) will be the starting point of the numerical methods described later.

4.2 Characteristic equations
As we have written the system in its conservative form we are now in the position to derive the charac-
teristic equations. In order the derive the characteristic equations we should rewrite system 18 once more
into the following form

∂W

∂t
+H

∂W

∂x
= K(W) (20)

For this, consider eqn (14) and assume β = β(x), pext = 0 and A0 = A0(x). First, we apply the chain
rule

∂p

∂x
=

∂p

∂A

∂A

∂x
+

∂p

∂A0

∂A0

∂x
+

∂p

∂β

∂β

∂x
=

β

2
√
A

∂A

∂x
− β

2
√
A0

∂A0

∂x
+ (

√
A−

√
A0)

∂β

∂x
(21)
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Substituting this into eqn (17) and applying the chain rule on ∂(AU)
∂x we rewrite 20 into[

A
U

]
t

+

 U A
β

2ρ
√
A

U

[A
U

]
x

=

 0

−2

ρ
(ζ + 2)κπU − 1

ρ
(
√
A−

√
A0)

∂β

∂x
+

β

2ρ
√
A0

∂A0

∂x

 (22)

The matrix H =
∂F (W)

∂W
is known as the flux Jacobian matrix and has eigenvalues equal to

λ1,2 = U ±

√√
Aβ

2ρ
= U ± c when we define c =

√
β

2ρ
A

1
4 . c can be seen as the wave speed in the case

the fluid is at rest. When the fluid moves with some velocity U , the waves are traveling with a velocity
equal to λ1,2. Note c can only be defined if A > 0, β > 0 and ρ > 0. In physical cases like the human
body, this is the case. In [1] it has been shown that in the circulatory system U < c hence we have that
λ1 = U + c > 0 and λ2 = U − c < 0. We can now make two observations. Firstly, we note that the
eigenvalues of system 17 are distinct and real. This means that the system is hyperbolic and subcritical
[14]. Furthermore, we can now understand the system as two waves propagating through the fluid. One
moves forwards with speed (U + c) and one moves backward with speed (U − c).

As we have now found the eigenvalues of this hyperbolic system we can use this to rewrite eqn (20).
First note the matrix of left eigenvalues, L, of H can be written as

L =

 c

A
1

− c

A
1

 (23)

where
LH = ΛL

Λ =

[
U + c 0
0 U − c

]
Note that we can write H = L−1ΛL so

L
∂W

∂t
+ΛL

∂W

∂x
= LK(W) (24)

We are now in the position to introduce the characteristic variables S =
[
s1
s2

]
. We use that ∂S

∂W = L as

this simplifies the analysis a lot. This transforms eqn (24) into

∂S

∂W

∂W

∂t
+Λ

∂S

∂W

∂W

∂x
=

∂S

∂W
K(W) (25)

To simplify this equation we need information about the two different characteristic variables s1 and s2.
Luckily these can be computed relatively easily using ∂S

∂W = L∂s1∂A

∂s1
∂u

∂s2
∂A

∂s1
∂A

 =

 c

A
1

− c

A
1

 (26)

Solving these differential equations yield

s1 = U + 4c = U + 4A
1
4

√
β

2ρ
, s2 = U − 4c = U − 4A

1
4

√
β

2ρ
(27)
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Since β > 0, we may write the variables (A,U) into the variables (s1, s2)

A =

(
s1 − s2

4

)4(
ρ

2β

)2

, U =
s1 + s2

2
(28)

Since we now have computed the characteristic variables we can go back to simplifying eqn (25) by using
the chain rule.

∂S

∂t
=

∂S

∂W

∂W

∂t
,

∂S

∂x
=

∂S

∂W

∂W

∂x
+

∂S

∂β

∂β

∂x
(29)

We can use this identity to write

∂S

∂t
+Λ

∂S

∂x
= LK(S) +Λ

∂S

∂β

∂β

∂x
(30)

In the case that the friction is neglectable, A0(x) = A(x) and β(x) = β we gain the final equations

∂s1
∂t

+ λ1
∂s1
∂x

= 0

∂s2
∂t

+ λ2
∂s2
∂x

= 0

(31)

Looking at eqn (31) one can recognize a standard transport equation in it. This means that we can indeed
understand the solution of the model as two waves traveling in opposite directions with velocity λ1,2. Note

that the two transport equations are coupled as λ1 = U+c =
s1 + s2

2
+

√
β

2ρ

s1 − s2
4

√
ρ

2β
=

5s1 + 3s2
8

and similarly λ2 =
5s2 + 3s1

8
. The characteristic equations we have derived will be of great importance

once we introduce the numerical parts.
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5 Linear system
We have derived the system of PDEs to describe the blood transport through the arterial system (17). This
system is coupled and therefore difficult to solve analytically. Therefore we use numerical methods to
solve the system.

As we have seen before, eqn (17) is nonlinear but also strictly hyperbolic. Hyperbolic PDEs arise
in a wide range of transport and wave propagation problems. In these problems, and ours in particular,
the conservation of momentum and mass plays an important role. For this reason, we will use Finite
Volume Method (FVM) as our integration method. As FVM has the property that mass and momentum
are conserved.

5.1 Derivation of Finite Volume scheme
For the derivation of the Finite Volume Scheme, we follow the steps taken by LeVeque [6]. Like our
system, FVM is derived using conservation laws. This is a great advantage. Note that our problem is
defined in one dimension. In the spatial dimension, the FVM is based on subdividing the domain into
subintervals, known as the Finite Volumes. The main idea is to keep track of the conserved variable in
each of these subintervals. This quantity will be updated at each time step using the net flux in and out of
the subintervals. This is schematically depicted in figure 2.

Figure 2: Schematic model of the Finite Volume Method from LeVeque [6]. The vertical axis depicts one timestep
and horizontally you can see three subintervals shown. F symbolizes the flux moving from one cell to another. Q
symbolizes the value of the conserved variable and is a 2-dimensional vector.

We denote the subinterval as Ci = [xi− 1
2
, xi+ 1

2
] with length ∆x. In each subinterval, we will define

the cell average of the conserved quantity q(x, tn) as Qn
i ≡ 1

∆x

∫
Ci

q(x, tn)dx. In our system, Q is a
2-dimensional vector. The next step will be to look at the flux in each subinterval, f(x, tn). Using the
same analogy as for deriving eqn (5).

d

dt

∫
Ci

q(x, t)dx = f(q(xi− 1
2
, t))− f(q(xi+ 1

2
, t)) (32)

If we integrate both sides over one time step tn+1 to tn and devide by ∆x we arive at

1

∆x

∫
Ci

q(x, tn+1)dx−
1

∆x

∫
Ci

q(x, tn)dx =
1

∆x

∫ tn+1

tn

f(q(xi− 1
2
, t))dt− 1

∆x

∫ tn+1

tn

f(q(xi+ 1
2
, t))dt

(33)

13



Now if we define the flux in each subinterval as Fn
i+ 1

2

= 1
∆t

∫ tn+1

tn
f(q(xi+ 1

2
, t))dt. We arrive at the

general numerical schematic for FVM:

Qn+1
i = Qn

i − ∆t

∆x
(Fn

i+ 1
2
− Fn

i− 1
2
) (34)

The problem with this scheme is that we cannot evaluate Fn
i± 1

2

explicitly as we have no prior informa-
tion about q(xi± 1

2
, t). To tackle this problem in the linear case we remember that the information will

propagate as waves over the characteristics. Using this knowledge could create better expressions for the
numerical flux. This idea has given rise to first-order Godunuv’s Method [15]. Please see [6] for the
derivation of the flux function which we will take here without justification.

Qn+1
i = Qn

i − ∆t

∆x
(A+∆Qn

i− 1
2
+A−∆Qn

i+ 1
2
) (35)

Here A+∆Qn
i− 1

2

represents the flux of the right moving wave at the border between xi and xi−1. Simi-

larly A−∆Qn
i+ 1

2

represents the flux of the left moving wave between xi and xi+1. A is here the hyper-

bolic matrix which can be diagonalized as A = RΛR−1. Λ is the matrix with the eigenvalues and R the
matrix of right eigenvectors. If we create Λ+ with only positive eigenvalues and Λ− with only negative
eigenvalues we can derive at

A+∆Qn
i− 1

2
= RΛ+R−1(Qn

i −Qn
i−1), A−∆Qn

i+ 1
2
= RΛ−R−1(Qn

i+1 −Qn
i ) (36)

We can now understand eqn (35). The only way Q can change is due to waves propagating to the left,
which would be coming from the right boundary, or waves propagating to the right, which would be
coming from the left boundary. Their sum would then account for the total change in Q. This is exactly
what the numerical scheme tells us.

5.2 Stability
For our numerical method to be stable and convergent there is a necessary condition which must be
satisfied. As we have seen, information in our system is propagating as waves over the characteristic
equations. Assume that these waves are traveling with velocity λ. In this way, the solution is translated
over a distance ∆t|λ| in each time step. Since the flux function at point xi− 1

2
is dependent on Qn

i−1

and Qn
i , information should not be traveling more than a grid cell at each time step. This principle is a

consequence of the CFL condition (Courant, Friedrichs, and Lewy). It hence gives some conditions on
the time and spatial discretization. It must be satisfied that:

CFL ≡ |λ|∆t

∆x
≤ 1 (37)

The value of this quotient is called the Courant Number and it tells us that the solution can only be
traveling one subinterval each time step.

5.3 Linear test case
To get a better feeling for the FVM, we start exploring a linear test case. Consider the following problem:

∂q

∂t
+A

∂q

∂x
=

[
q1
q2

]
t

+

[
2 3
3 2

] [
q1
q2

]
x

=

[
0
0

]
(38)
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To be able to implement the numerical scheme in eqn (35) we need to diagonalize matrix A. Computing
the eigenvalues gives us λ1 = 5 and λ2 = −1. Note that these eigenvalues are distinct and real, so the
system is indeed hyperbolic as desired. After computing the eigenvectors we can write:

A = RΛR−1 =
1√
2

[
1 −1
1 1

] [
5 0
0 −1

]
1√
2

[
1 1
−1 1

]
(39)

Knowing this we can follow eqn (36) and define

Λ+ =

[
5 0
0 0

]
Λ− =

[
0 0
0 −1

]
(40)

We are now almost in the position to apply eqn (35).

5.3.1 Characteristic variables

Before we analyse the FVM we again take a look at the characteristic variables as they can tell us much
about the behavior of the solution. So, let us compute the characteristic variables for our linear test case
similarly as done in chapter 4.

qt +RΛR−1qx = 0

R−1qt +ΛR−1qx = 0
(41)

When we now define the characteristic variables s1 and s2 as S = [s1s2]
T = R−1q. We arrive at the

characteristic equations.

∂s1
∂t

+ λ1
∂s1
∂x

= 0

∂s2
∂t

+ λ2
∂s2
∂x

= 0

(42)

We again see that the problem decomposes into two scalar transfer equations. Since λ1 > 0 and λ2 < 0
we note that we again have a right traveling wave with velocity λ1 and a left traveling wave with velocity
λ2.

5.4 Boundary conditions
So far we have seen a numerical scheme to compute to cell average Qn

i . However, in any problem, we
only deal with a finite grid which gives rise to boundary values. Dealing with boundary conditions can
be difficult but the characteristic variables turn out to be useful. We remember that the solution is a
combination of the forward and backward traveling waves. At a given boundary we should thus only
define the incoming wave. This means that at the left boundary, characteristic variable s1 with velocity λ1

should be prescribed. On the other side, characteristic variable s2 with velocity λ2 should be prescribed.
However, sometimes we want to describe the boundary conditions in terms of our original variables,
which are q1 and q2 in the test case. Gauily and Epstein [16] have shown that to determine which of the
original variable can be used to describe the boundaries one needs to have a non-zero Jacobian. So it must
satisfy that

J =
∂q

∂S
̸= 0 (43)
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We can use a variable to prescribe a characteristic if the corresponding element of Jsi is non-zero. Look-
ing at the right boundary which is prescribed by s2 we compute

∂q

∂s2
=

[
− 1√

2
1√
2

]
(44)

Here we have used that S = R−1q. Since neither ∂q1
∂s2

nor ∂q2
∂s2

equals zero, the right boundary can be
described by either q1 or q2. A similar analysis on the left boundary shows that also the left boundary can
be described by both q1 as q2.

5.5 Analysis of the linear test case
We have now developed all the tools to analyse the Finite Volume Method in a linear case. With the
addition of the boundary and initial conditions, the problem is as follows:[

q1
q2

]
t

+

[
2 3
3 2

] [
q1
q2

]
x

=

[
0
0

]
(45)

IC:
[
1 + e−50(x− 1

2 )
2

1

]
BC1: q1(0, t) = 1 +

1

20
sin(2πt) BC2: s2(1, t) = 0

Defined on the interval 0 < x < 1 and t > 0.
We have chosen as an initial condition an exponentially decaying function. This creates a clear peak

in the middle of the interval which can then be easily analysed. The sinus function as a boundary was
chosen since these waves are very recognizable. This enables us to see the influence of the boundary more
clearly. However, the amplitude of the sinus is chosen very small in comparison to the amplitude of the
exponential function such that it does not overpower this initial peak. The right boundary s2(0, t) = 0
simply means there is no left-moving wave at this boundary. We see that this formulation of the boundaries
is valid as ∂q1

∂s1
̸= 0.

5.5.1 Implementation of the boundary conditions

For the numerical computation, note that the interior can easily be computed when combining eqn (35)
with eqn (36). However, the boundaries should be looked at with extra care. For the handling of these
boundaries, we follow LeVeque [6]. To this end, we extend our computation domain by adding additional
volumes on both sides of the domain. These extra cells, Qn

N+1 and Qn
0 are referred to as Ghost cells.

These ghost cells will be used for the numerical scheme at the boundary. Let us first look at the right
boundary.

The right boundary condition implies that there are no left-traveling waves here. This implies that the
ghost cell Qn

N+1 has the same value as the last cell Qn
N .

A−∆Qn
i+ 1

2
= RΛ+R−1(Qn

N+1 −Qn
N ) = RΛ+R−1(Qn

N −Qn
N ) = 0 (46)

So at the right boundary, this numerical scheme becomes

Qn+1
N = Qn

N − ∆t

∆x
A+∆Qn

N− 1
2

(47)

For the left boundary, we have a condition on the solution q1. We again define a ghost cell but this time

on the left end, Qn
0 . Note that we have previously found that S = R−1q and so

[
q1
q2

]
=

[
1√
2
(s1 − s2)

1√
2
(s1 + s2)

]
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This also means q1(0, t) = 1√
2
(s1 − s2). Remember that s1 is the right traveling characteristic and s2 is

the left traveling characteristic. So s2 can just be computed inside the computational domain. It follows
that s1(0, t) = s2(0, t) +

√
2q1(0, t). We can now define the value of the ghost cell Qn

0 :

Qn
0 = RS =

[
1√
2
(s1(0, tn)− s2(0, tn))

1√
2
(s1(0, tn) + s2(0, tn))

]
=

[
q1(0, t)√

2s2(0, tn) + q1(0, t)

]
(48)

So the numerical flux function becomes

A+∆Qn
i− 1

2
= RΛ+R−1(Qn

1 −Qn
0 ) (49)

with Qn
0 as defined in eqn (48).

5.5.2 Results

We solve the linear test case from eqn (45) in the programming language Python [17]. The time step is
taken at ∆t = 0.001 and the space step at ∆x = 0.01. This gives a Courant Number of 0.5. Note that this
test case is not based on any physical phenomena but a purely mathematical one. In figure 3 the results
are shown of q1 together with the analytical solution.

(a) Numerical solution of q1 of the test case (b) Analytical solution of q1 of the linear test case

Figure 3: The plot shows the comparison between the numerical solution and analytical solution of the variable q1
of the linear test case.

The analytical solution was computed following Roosendaal [8]. Let us first look at the overall be-
haviour of the solution. When looking at figure 3 we first note that at t = 0 we indeed have a peak around
the x = 0.5. From there we see the peak decomposing in two waves traveling in opposite directions.
The right propagating one reaches the wall around t = 0.1. This implies that it was moving with a ve-
locity of v = ∆x

∆t = 0.5
0.1 = 5. This is exactly what we expected as λ1 = 5. Similarly, we see that the

left propagating wave reaches the left wall at t = 0.5. So the velocity of the left propagating wave is
v = ∆x

∆t = −0.5
0.5 = −1. This is also what we would expect as λ2 = −1. This shows us that indeed the

solution can be seen as two waves propagating in opposite directions. Let us now look at the influence of
the boundary conditions. We would expect no effect on the solution at the right boundary. This is indeed
what we see in figure 3. On the other hand, the left boundary does affect the solution. We see that the
left boundary resembles a sine wave. The wave ’flips’ at the boundary which is as expected. Let us now
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Figure 4: This figure shows the relative difference between the analytical and numerical solution of the test case.

compare the results with the analytical solution. We first note that the numerical and analytical computed
solutions are very similar. This gives us confidence about using the first-order Godunuv’s Method. How-
ever, there is an important difference notable between the solutions. Our numerically computed solutions
seem to be diluted. This can be seen in the intensity graphs of the solutions. In figure 4 the relative differ-
ence between the analytical and numerical solution of eqn. (45) is seen. Note that the diffusion is mostly
present at the reflected wave. This is a known effect of first-order Godunuv but the numerical diffusion
can be greatly reduced by using a finer grid.

18



6 Nonlinear system
Up till now, we have investigated the Finite Volume Method for a linear case. However, as we have derived
in Chapter 2, the system of equations 17 is nonlinear. This makes that we cannot use the numerical
difference scheme 35 which we derived before. To this end, we look at the inflow and outflow at the
boundaries of the cell.

6.1 Riemann problem
We will consider the Riemann problem. This is a specific initial value problem composed of a conserva-
tion equation together with a piece-wise constant initial data with a single discontinuity. For simplicity,
we first consider the case when the frictional terms can be neglected. Hence system 17 can be written in
a conservative form as

∂W

∂t
+

∂F (W)

∂x
= 0 (50)

Again we used that

W =

[
A
U

]

F (W) =

 AU
1

2
U2 +

p

ρ

 (51)

Like in our previous derivation of the numerical scheme, we consider subintervals Ci = [xi− 1
2
, xi+ 1

2
]

with length ∆x. We consider the average value of the conserved variable W at interval Ci and time tn as
Wn

i = 1
∆x

∫
Ci

W(x, tn)dx. We will now investigate what happens at the boundary between the i-th cell
and the i− 1-the cell. Note that here we have piece-wise constant data:

W(x, tn) =

{
Wn

i x < xi− 1
2

Wn
i−1 x > xi− 1

2

(52)

Here the discontinuity appears at the border of the two cells, at xi− 1
2

, as we will prove in a moment. So
we have indeed a Riemann problem. Now the aim is to use the solution of this Riemann problem to find
the solution one time-step further so Wn+1

i and Wn+1
i−1 . Unfortunately, we cannot simply use eqn (35)

because the flux function F (W, x) is nonlinear. To solve this, we follow Bale and LeVeque [18] to use a
method based on flux difference decomposition.

We first use some linearizations to simplify the problem. As done in [18] we use cell-centered flux
functions. For this approach, we assume that the flux function is constant inside each subinterval so
F (W, xi) = Fi(W). So the generalized Riemann problem, which by the CFL-condition is only valid
for x ∈ [xi− 2

3
, xi+ 1

2
], becomes:

∂W

∂t
+

∂Fi−1(W)

∂x
= 0 x < xi− 1

2

∂W

∂t
+

∂Fi(W)

∂x
= 0 x > xi− 1

2

(53)

We will now take a closer look at this Riemann problem to prove that we indeed have a discontinuity.
Figure 5 shows the domain of the Rieman problem.
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Figure 5: Schematic of the domain of the Riemann problem [8]. The vertical axis shows a single time step and the
horizontal axis shows two intervals Ci and Ci−1. The dashed line depicts the border. In each enclosed area, the name
of the solution is written. So Wn

i−1 means the solution at tn and Ci.

As we have seen in chapter 4, we expect our solution to be decomposed into waves. For eqn (53)
we expect information to travel with velocity λn

1,i− 1
2

and λn
2,i− 1

2

. In one time-step ∆t only a distance
λn
1/2,i−1∆t can be traveled. This is depicted in figure 5. Here the vertical axis shows a single time step tn

to tn+1. The horizontal axis shows two subintervals Ci and Ci−1 with the dashed line on their border. The
diagonal line is the border of the parts which have received information about the solution and parts which
have not. So at each time, the x-coordinate of this diagonal line tells us how far information coming from
xi− 1

2
has traveled. Thus the value of W in each enclosed area must be constant. In the figure, Wl

i− 1
2

and
Wr

i− 1
2

denotes the value of W left and right of the cell-border respectively. Because we expect the flux

the be conserved we have Fi−1(W
l
i− 1

2

) = Fi(W
r
i− 1

2

). But in general Fi−1(W) ̸= Fi(W). From this

it must follow that Wl
i− 1

2

̸= Wr
i− 1

2

. So we have proven that there is indeed a discontinuity at each cell
interface.

The fact that we have a discontinuity makes this problem a lot harder. We continue our search for a
numerical scheme to solve the system from 17. We follow analogously as in chapter 4. For this, we apply
the chain rule to eqn (53).

∂W

∂t
+

∂Fi−1(W)

∂W

∂W

∂x
= 0 x < xi− 1

2

∂W

∂t
+

∂Fi(W)

∂W

∂W

∂x
= 0 x < xi− 1

2

(54)

Note that the source terms from eqn (20) drop out since β and A0 are assumed to be constant. Here we
again find the flux Jacobian matrix H(W, xi) =

∂F (W)
∂W which was already found to be

H(W) =

 U A
β

2ρ
√
A

U

 (55)

We assume that the flux Jacobian matrix is constant in each cell. So we write H(W, xi) = Hi(W) = Hn
i

in each cell Ci and time tn. We have now reached a 2× 2 linear system of PDEs. As we have seen in the
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test case, such a system consists of two characteristics with constant eigenvectors and -values. So this is
now the case as well. Since the system is subcritical, one of the characteristic variables is traveling to the
right and one is traveling to the left.

Unlike in the linear case, we should carefully consider what happens at the discontinuity xi− 1
2

. At any
time tn we have piece-wise constant initial data namely, Wn

i and Wn
i−1. As a result, the characteristic

variables are also piece-wise constant. We then expect the discontinuity at xi− 1
2

to travel left with velocity
λn
2,i−1 into cell Ci−1 and with velocity λn

1,i−1 into cell Ci. We thus find that the solution of W at time
tn+1 is consisting of 4 values, Wn

i ,W
n
i−1,W

l
i− 1

2

and Wr
i− 1

2

. Moreover, we see that in each cell there
are two more discontinuities. These discontinuities are the waves that determine the solution.

Remember that the eigenvectors and eigenvalues of H are given by:

λ1 = U + c r1 =

A

2c
1

2


λ2 = U − c r2 =

−A

2c
1

2


(56)

With λ2 < 0 < λ1. We consider the cell Ci. For the first wave which travels right, we say

λn
1,i− 1

2
= λn

1,i rn1,i− 1
2
= rn1,i (57)

On the other hand, the second wave travels left. Therefore we can use the values of Wn
i−1.

λn
2,i− 1

2
= λn

2,i−1 rn2,i− 1
2
= rn2,i−1 (58)

The classical Riemann problem for constant-coefficient systems is usually solved by using their eigenvec-
tors. The standard approach is to decompose the jump in W as a linear combination of the eigenvectors.
This linear combination then defines the waves Sn

1/2,i− 1
2

:

Wi −Wi−1 = α1,i− 1
2
r1 + α2,i− 1

2
r2 ≡ S1,i− 1

2
+ S2,i− 1

2
(59)

With
αi− 1

2
= Li− 1

2
(Wi −Wi−1) (60)

where L is the matrix of left eigenvectors. However in our case we should also consider Wl
i− 1

2

and
Wr

i− 1
2

. Solving these directly is a difficult task therefore we will use the flux wave decomposition like in
[18]. In this approach, instead of decomposing (Wi −Wi−1) we decompose (Fi(W)− Fi−1(W)) as a
linear combination of eigenvectors. This linear combination defines the flux waves Zn

i− 1
2

. We get

Fi(W)− Fi−1(W) = Zn
1,i− 1

2
+ Zn

2,i− 1
2
= γn

1,i− 1
2
rn1,i + γn

2,i− 1
2
rn2,i−1 (61)

We can see γ as the relative strength of the eigenvectors. Solving for γ yields

[
γ1,i− 1

2

γ2,i− 1
2

]
=

2

An
i

cni
+

An
i−1

cni−1

1
An

i−1

cni−1

1
An

i

cni

 (Fi(W)− Fi−1(W)) (62)
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We can now define the j-th flux waves as Zj,i− 1
2
= γn

j,i− 1
2

rn
j,i− 1

2

. These waves are the net effect of all
the waves propagating through the border of the cell. We can now substitute eqn (62) into eqn (34) to get
the following numerical scheme

Wn+1
i = Wn

i − ∆t

∆x
(R+∆Wn

i+ 1
2
+R−∆Wn

i− 1
2
) = Wn

i − ∆t

∆x
(Zn

1,i− 1
2
+ Zn

2,i− 1
2
) (63)

6.2 Boundary conditions
Similar to what we have done with the test case, we look at how we can prescribe the boundary conditions.
Again we have two characteristic variables traveling with different velocities. We have that s1 is traveling
right with velocity λ1 > 0 and s2 is traveling left with velocity λ2 < 0. This means that again s1 should
be prescribed at the left boundary and s2 at the right boundary. We follow Gauily and Epstein [16] and
check if eqn (43) holds. In this case, the original variables are A and U . First at the right boundary

∂W

∂s1
=


(
s1 − s2

4

)3(
ρ

2β

)2

1

2

 (64)

For the derivation, we have used eqn (28). Gauily and Epstein have shown that we can prescribe the
boundary in terms of A and U if eqn (64) gives non-zero elements. We note that we can always describe
the right boundary in terms of U as the element we find is 1

2 . Moreover, we see that we can describe the
right boundary in terms of A if s1 ̸= s2. But using eqn (27) we derive that

s1 ̸= s2 =⇒ U + 4c ̸= U − 4c =⇒ c ̸= −c =⇒ c ̸= 0 (65)

And since we assume c > 0 we find that we can prescribe the right boundary by A or U . For the left
boundary, we use 28 again to find

∂W

∂s2
=

−
(
s1 − s2

4

)3(
ρ

2β

)2

1

2

 (66)

A similar analysis shows that also in the case of the left boundary, both A and U can be prescribed.

6.2.1 Forward prescribing

When specifying the incoming waves, this can be done via p, A, or U . Traditionally, this would force
one of these variables to have a certain value at the boundary. However, in that way, knowledge is
needed about the back traveling waves s2 too. This would generally not be known as these waves also
depend on for example the material property and the presence of bifurcations further in the domain. It is
therefore often more convenient to prescribe the forward traveling wave (s1) at the boundary and fix the
backward traveling wave (s2) at its initial value. This way of prescribing the boundaries is called forward
prescribing [4]. It must be noted, however, that the actual value at the boundary will only be equal to the
prescribed value of the boundary if no backward traveling waves arrive. When these waves do arrive, the
actual value is not equal to the assigned value but consists of (prescribed) forward and backward terms.
Nevertheless, this difference is very small and the non-reflective properties of forward prescribing are
worth the difference.
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6.3 Frictional forces
In deriving the numerical scheme of eqn (63) we have assumed the frictional forces to be neglectable.
We now consider the case when these terms are non-neglectable. In eqn (19) we see that the frictional
function is dependent on U . Therefore, we use first-order discretization to add the frictional forces to our
method. This gives a second term in our method

Wn+1
i = Wn

i − ∆t

∆x
(Zn

1,i− 1
2
+ Zn

2,i− 1
2
) + ∆tSn

i (W) (67)

where

Sn
i (W) =

 0

−2

ρ
(ζ + 2)νπUn

i

 (68)
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7 Test cases arteries
In the previous chapters, we have derived the knowledge needed to solve the system of eqn (17). Before
we consider the entire human circulatory system we first consider different cases of single arteries. We
investigate three different cases of arteries: a standard artery, a stented artery, and a tapered artery (this
case can be found in the appendix). With these arteries, we investigate the flux differencing method and
the effect of changing arterial properties on the pressure, velocity, and cross-sectional area of the different
arteries.

7.1 Standard artery
We first consider a standard artery as this is the simplest case we could have. For this test case, we follow
Sherwin et al. [1]. We assume a straight artery with a constant area and elasticity over the entire length.
We prescribe the left boundary condition in terms of pressure following the section forward prescribing

p(0, t) =

{
2000 sin 2πt

T t < T
2

0 t > T
2

(69)

So we have defined an inflow pressure during half the period. Note that this way of defining the pressure
ensures that the pressure is always positive. Moreover, a sin wave has a clear shape and can thus be easily
investigated. The right boundary is a periodic boundary condition so

s2(L, t) = s2(0, t) (70)

We can now implement these boundaries numerically.

7.1.1 Boundary conditions

First, we consider the left boundary. At x = 0 we can write eqn (14) as

p(0, t) = pext + β(
√
A−

√
A0) (71)

This influences the area at x = 0, hence with pext = 0

A =

(
p(0, t)

β
+
√
A0

)2

(72)

We want to use the characteristic variables to define this boundary condition. So using eqn (28)

s1 = s2 + 4

√
2β

ρ
A

1
4 =⇒ s1(0, t) = s2(0, 0) + 4

√
2

ρ

(
p(0, t) + β

√
A0

)
(73)

This equation can be implemented numerically. Moreover, note that the right boundary is described in
terms of s2 and can hence already be easily implemented.

7.1.2 Results standard artery

In the test case, we consider an artery of length L = 15 cm. Following Sherwin et al. [1] we take
β = 451352, ρ = 1 and A0 = 0.5. We have taken ∆x = 0.04 cm. For choosing the size of the time step
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we have to be careful. As explained in chapter 5 we should ensure that the CFL condition is satisfied so
∆t ≤ ∆x

|λ| . But since λ is not constant over the domain we determine ∆t at each time step such that

∆tn =
∆x

|λn|max
(74)

Summarizing, we have

IC:
[
A
U

]
=

[
0
0.5

]
BC1: p(0, t) = pext + β(

√
A−

√
A0) BC2: s2(L, t) = s2(0, t) (75)

In figure 6 the results of the pressure wave are shown.

(a) Results of the standard artery in our model (b) Results of the standard artery from Sherwin et al. [1]

Figure 6: Results of the test case of a standard artery. Subfigure (a) shows our results, and subfigure (b)is from
Sherwin et al. In both cases, the pressure wave is plotted at 1

4
L, 1

2
L and 3

4
L.

We must first note that the approach [1] took is slightly different than we did. They used a discon-
tinuous Galerkin scheme (for more information about the method please see [19]) while we used the flux
differencing method. This said, we see that both methods are very comparable. We notice that the pres-
sure wave, initiated at the boundary, is slowly propagating over the domain. We notice that the wave is
undistorted, this is expected as the material properties are the same over the entire artery. Furthermore,
we see that the results are not diffusive like the linear test case. The peak of the wave remains at the same
level. This new flux difference splitting approach has thus eliminated the diffusive effects. So we can
conclude that decomposing the flux function has this beneficial effect and works at least as well as the
discontinuous Galerkin scheme in this case.
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7.2 Stented artery
In the previous test case, we looked at how the pressure wave propagates in an artery with constant
material properties. In the following test case, also done in [1], we consider the case when a small
variation in the material properties is applied. We will look at a stented artery. Here, an expandable metal
mesh coil is added in the middle of the artery. This is modeled as an increase in stiffness (β) at this part
of the artery. Figure 7 shows this schematically.

Figure 7: Schemetic representation of the stented artery from [1]

In this test case, we now let β be depending on x.

β(x) =


β0 0 < x < a1

β0κ a1 < x < a2

β0 a2 < x < L

(76)

We take β0 = 451352 and κ = 100. Moreover, the stent is thus applied between a1 = 5 cm and a2 = 10
cm. To see the effect of the material variation we use the same conditions as in eqn (75).

7.2.1 Results stented artery

We take everything to be the same as in the standard artery test case. Again we compare our results with
the results from [1] using the discontinuous Galerkin method. In figure 8 the pressure waves are shown.
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(a) Results of the stented artery in our model (b) Results of the stented artery from Sherwin et al. [1]

Figure 8: Results of the test case of a stented artery. Subfigure (a) shows our results, and subfigure (b) is from
Sherwin et al. In both cases, the pressure wave is plotted at 1

4
L, 1

2
L and 3

4
L.

We note that again our results and the results from Sherwin are very similar. Although there are minor
differences, both approaches yield consistent outcomes. What is more interesting is the effect of adding
a stent on the pressure wave. We recall, λ1 ∝ β so inside the stent, the wave is traveling a bit faster.
Thus the points M and D (figure 7) are reached a bit earlier than in the non-stented case. This effect is
seen when comparing figure 6 and 8. In this test case, we can differentiate three distinct regions: before
the stent, after the stent, and inside the stent. Inside each part, the material properties are constant so the
solution is fully described by eqn (31). So here we expect to see non-distorted wave propagation similar
to figure 6. On the other hand, there is a discontinuity in the material properties at the border of these
parts. At the left boundary of the stent, we have an increase in β. This creates a partly positive reflected
wave and a transmitted wave. The reflected wave reaches point P around 0.015 s and creates an increase
in the pressure wave. At the right boundary, we have a decrease in β which results in a negative reflected
wave. So the first transmitted wave now generates a negative reflected wave. This wave reaches point P
around 0.17 s. This effect is visible in figure 8. Note that in principle each time a wave reaches one of
the borders of the stent, part of the wave is reflected and part of the wave is transmitted. The result is that
the energy is trapped in the stent and gradually dissipates through transmitted waves. This continuous
process of transmission and reflection also accounts for most of the other differences between the stented
pressure waves and the waves from figure 6. Lastly, we must note that having such a sharp discontinuity
in the domain may create problems numerically. To reduce the negative effects we have ensured that the
boundary of a grid cell coincides with the boundary of the stent.

These two test cases have learned us about how the numerical scheme of eqn (63) works and how it
is implemented. Furthermore, it has shown us the effects of material variations on the solution. Sherwin
did one extra test case, the case of a tapered artery. The implementation of this test case using our model
can be found in the appendix.
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8 Concentration
In the previous chapters, we have focused on eqn (17). This system describes the course of the velocity
and cross-sectional area in the human blood system. In this work, the goal is to add the propagation of a
chemical species in this system. To start this, we have seen the equation which describes the propagation
(eqn (16)). This equation is known as the advection-diffusion equation. In this chapter, we look at the
implementation of the concentration in arteries.

8.1 Numerical method
We aim to simulate the propagation of a species in the circulatory system. For that, we need numerical
tools to implement eqn (16). Similar to what was done in chapter 5, we try to find a numerical difference

scheme. Note that the advection-diffusion equation consists of three parts
∂c(x, t)

∂t
, D

∂2c(x, t)

∂x
and

U(x, t)
∂c(x, t)

∂x
. We will approximate the derivatives using the finite-difference method. In the appendix,

this choice of numerical method is discussed in more detail. With the choice of finite difference, we
subdivide the domain into intervals of length ∆x. We (re)define cni = c(i∆x, tn) and Un

i = U(i∆x, tn)
so it denotes the concentration and velocity in each subinterval respectively. With this, we follow Vuik et
al.[10] to reach the following scheme

cn+1
i = cni − Un

i ∆t

2∆x
(cni+1 − cni−1) +D

∆t

∆x2
(cni+1 − 2cni + cni−1) (77)

Here we have approximated the first- and second-order spatial derivatives with first- and second-order
central differences respectively. For time integration we use Forward Euler.

8.1.1 Stability

The Forward Euler method is only conditionally stable. It is therefore important to determine the size of
the time step such that we ensure stability. Please see [20] for the derivation of the stability condition
which we will take here without justification. For stability in the diffusion part, we need to ensure that

D∆t

∆x2
≤ 1

2
(78)

Similarly, for the advection part we need to ensure that

−2 ≤ Pc =
U∆x

D
≤ 2 (79)

Pc can be seen as the Péclet number of the cell. Note that these conditions implicitly ensure that the CFL
condition is satisfied.

8.2 Test case 1
To verify our numerical method we consider a standard artery of finite length L and cross-sectional area
A0. At the start of the artery, we inject a chemical species with a concentration of c0. We only inject this
specimen for a finite time. In addition, we assume the blood in the artery has a constant velocity of v and
a constant diffusion coefficient D. Figure 9 shows a representation of this test case. As mentioned earlier,
we assume that the injected chemical species does not affect the blood dynamics in any way.
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Figure 9: A schematic representation of the artery from the concentration test case.

We take v = 0.5 m/s, D = 0.0005 m2/s and L = 0.3 m. During t0 = 0.033 s we inject a concentration
of c0 = 1 kg/m3. So the problem can be written as follows

IC: c(x, 0) = 0, BC1: c(0, t) =

{
c0 t < t0

0 t > t0
, BC2:

∂c

∂x
(L, t) = 0 (80)

Our numerical results are compared with the analytical solution to this problem. We follow [21] for the
analytical solution to this problem. Figure 10 shows the result of this test case.

Figure 10: A plot of the numerical and analytical computed solution of the test case. The concentration is shown
at t = 0.15s (the first peak) and t = 0.30s (the second peak). The dots represent the analytical solution while the
continuous line represents the numerically computed solution.

We first consider the behaviour of the solution. Initially, we applied a square pulse input with a dura-
tion of t0. By examining the evolution of the wave at t = 0.15 s, we can observe that it has propagated
a distance of x = 0.075 m. This propagation can be understood by recalling that the solution follows an
advection-diffusion equation. Hence, the observed movement is a consequence of the advection compo-
nent of the equation. Considering we expect the wave to travel with a velocity of v = 0.5 m/s, then after
0.15 s, we expect the middle of the square pulse to have a displacement of ∆x = v(∆t − t0

2 ) = 0.067

29



m. This is indeed the case as seen in the figure. The next thing which can be noted is that the wave does
not have the shape of the square pulse anymore, it is smeared out. Consequently, we see that the height
of the peak is not at c0 = 1 kg/m3 as we would expect with pure advection. Again this is not surprising.
The diffusive part of the equation accounts for the ’smearing out’ of the solution. This diffusive process
is continued as the wave propagates through the artery. Therefore, the concentration at t = 0.30 s is again
much more diffused. From this test case, we see that any concentration of chemical species is slowly
decreasing as it is propagating through the blood system. Lastly, we compare the numerical solution with
the analytical solution. The two solutions are highly comparable, with the only noticeable difference
occurring at the peak of the concentration wave. This discrepancy is likely a numerical error which can
be accepted because it is very small. In summary, we have observed that our numerical scheme yields
expected results for the case of constant velocity. However, it is important to note that the velocity is not
constant when considering concentration propagation in the human circulatory system. For a test case
involving an artery with a non-constant velocity we refer to the appendix.
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9 Modeling the circulatory system
In previous chapters we have worked on building a model for describing the concentration propagation.
We have derived methods that enabled us to implement these models. Before we can start analysing this
propagation, we first discuss some important properties of the human system. These include modeling
the heart, treatment of bifurcations, and modeling capillaries.

9.1 Modeling the heart
The human heart is the driving force in the system and so it is in our model. There are various approaches
to model the heart. In previous works like [22] they have developed a very realistic way to model the
heart using the filling and draining of the individual heart chambers. In our work, we use a much simpler
approach following [1, 7]. We assume the contraction of the heart generates a pressure pulse. At his turn,
the pressure wave forces the cross-sectional area of the adjacent artery to increase. This expansion in the
first artery is then modeled as an inflow condition.

Abc(t) = A0 + 1.587 · α(t)H(α(t)) α(t) = sin (2πt+ 0.628)− 0.588 (81)

Note that H(t) is again the Heaviside function [23]. In the figure below, a sketch of the inflow condition
is seen. We see that at each beat the cross-sectional area of the adjacent artery is increased by 10%. For
our second boundary condition we, as said in the forward prescribing section, fix s2 at its initial value.
Moreover, note that this model has a heart rate of around 60 bpm. Which is a normal rate at rest.

Figure 11: A plot of the inflow boundary condition which models the heart rate (eqn (81))

9.2 Treatment of bifurcations
The human arterial tree is over 90.000 km in length but no artery is longer than 45 cm. This is caused
by all the bifurcations in the system. A bifurcation occurs if one parent vessel is branched into daughter
vessels. In figure 12 a scheme of such a bifurcation is shown. In reality, there also exists trifurcations
and more complex bifurcations. In this model, we do not consider those and model all the bifurcations
similarly. In our numerical computation, we treat each artery separately but use the information from the
characteristics to define boundary conditions for the parent and his daughters. Note that at a bifurcation
there is often a discontinuity in A and in β. However, we still force that there is a conservation of the
characteristic variables, pressure, and mass. Furthermore, we expect concentration to have a smooth
transition at the bifurcation. These seem like realistic assumptions which will prove itself useful. Note
that we have 9 unknown values at a bifurcation (also indicated in the figure). However, we can simplify
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Figure 12: Schematic representation of a bifurcation. The P symbolizes the parent vessel and D1 and D2 the two
daughter vessels

things by noting that the concentration should be continuous across the bifurcation. So that means that for
the concentration we can just ’ignore’ the branching since it does not affect the value of the concentration.
At the bifurcation we write eqn (77) as

cn+1
p = cnp −

Un
p ∆t

2∆x
(cnd − cnp−1) +D

∆t

∆x2
(cnd − 2cnp + cnp−1) (82)

Where cp denotes the concentration at the last parent cell and cd at the first daughter cell. Note that
concentration in both daughters is similar in the first cell of their vessel. This is due to the continuity
condition. Moreover, note that a similar approach can be applied to cn+1

d . With this, only 6 unknowns
remain. So, our goal is now to find 6 equations to solve for the velocity and cross-sectional area. The first
three can be found using the characteristic variables so

s1p = Up + 4A
1
4
p

√
βp

2ρ
, s2dj = Udj − 4A

1
4

dj

√
βdj

2ρ
(83)

We have denoted dj as daughter j. The next three equations come from the conservation laws. First the
conservation of mass

ApUp = Ad1
Ud1

+Ad2
Ud2

(84)

Next, we expect no discontinuity in pressure

ρU2
p

2
+ pext(p) + βp

(√
Ap −

√
A0p

)
=

ρU2
dj

2
+ pext(dj) + βdj

(√
Adj

−
√
A0dj

)
(85)
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Eqns (83 84 85) can be written in the following form

f1 = s1p − Up − 4A
1
4
p

√
βp

2ρ
= 0 (86)

f2 = s2d1 − Ud1
+ 4A

1
4

d1

√
βd1

2ρ
= 0 (87)

f3 = s2d2 − Ud2
+ 4A

1
4

d2

√
βd2

2ρ
= 0 (88)

f4 = ApUp −Ad1
Ud1

−Ad2
Ud2

= 0 (89)

f5 =
ρU2

p

2
+ pext(p) + βp

(√
Ap −

√
A0p

)
−

ρU2
d1

2
− pext(d1) − βd1

(√
Ad1

−
√
A0d1

)
= 0 (90)

f6 =
ρU2

p

2
+ pext(p) + βp

(√
Ap −

√
A0p

)
−

ρU2
d2

2
− pext(d2) − βd2

(√
Ad2

−
√
A0d2

)
= 0 (91)

We have now derived 6 equations with 6 unknowns. A popular method to solve this system is using the
Newton-Raphson method. We write x = [ApAd1

Ad2
UpUd1

Ud2
]
T . Following [10] we can write

x(k) = x(k−1) − J−1(x(k−1))f(x(k−1)) (92)

Here f = [f1f2 · · · f6]T and J is the Jacobian matrix of f(x)

J(x) =


∂f1
∂Ap

. . . ∂f1
∂Ud2

...
. . .

...
∂f6
∂Ap

. . . ∂f6
∂Ud2

 (93)

Note that eqn (92) is an iterative function so as a stopping condition we enforce that |x(k−1) − x(k)| ≤ ϵ
with ϵ = 0.01.

9.2.1 Test case bifurcation

Above, we have derived a method of how to treat the bifurcation in the circulatory system. We test our
method in the following setting. We consider a parent-daughter pair similar to the one illustrated in figure
12. We again inject a chemical species with a concentration of c0 = 1 g/cm3 t0 = 0.01 seconds long at
the start of the parent vessel. To make sure that the concentration wave reaches the daughter in T = 0.1
seconds we take each of the three arteries only to be L = 1 cm. We assume

A(0, t) = A0 + 0.35|sin 4πt

T
| (94)

Furthermore, we consider the symmetrical case which means the properties of both daughters are identi-
cal. Ap = 6 cm2, Ad1

= Ad2
= 3 cm2. βp = 1 · 105 dyne/cm3 and βd1

= βd2
= 1.5 · 105 dyne/cm3.

We also want to investigate the effect of the bifurcations on pressure. To that end, we consider how a
pressure wave propagates through the bifurcation. It is important to mention that if we use the test case
for the concentration above to analyse the pressure, no viable wave appears. This is due to the periodicity
and the amplitude of the input function. To that extent, we slightly change the situation to a case in which
the arteries are each L = 3 cm long, and the inflow boundary is given as

A(0, t) = A0 + e−106(t−0.01)2 (95)
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Below, the test results are shown in figure 13. Each of the two plots can be subdivided into three parts.
The first part (until x = 3 cm) represents the parent domain, the second part (x = 3 cm until x = 6
cm) represents the domain of daughter 1, and the final part represents the domain of daughter 2. We first
analyse the propagation of the pressure wave. We note that similar to the test cases performed earlier
(see chapter 7), the wave is gradually advecting through the domain. The wave reaches the bifurcation
at t = 0.018s from where it travels symmetrically in the two daughter domains. This symmetry in
both daughter domains is expected, as the material properties are similar in both cases. Furthermore, we
note that there is no reflective wave at the bifurcation. In the stented artery test case, we observed that
when a pressure wave encounters a discontinuous increase in β, it generates a negative reflective wave.
However, we now do not see a negative reflective wave despite the discontinuous increase in β. This can
be understood by realising there is also a discontinuous decrease in A at the bifurcation. The discontinuity
might give rise to a positive reflective wave which exactly cancels with the negative reflected wave caused
by the increase in β.

Next, we look at the concentration profile. We immediately notice the expected advective and diffusive
behaviour. Moreover, we see a continuous behaviour with no jump at the bifurcation. In addition, we note
the symmetry in the two daughter parts which is again as desired.

(a)

(b)

Figure 13: Numerical results of the bifurcation test case. Both plots are subdivided into three parts. The first part
shows the parent’s domain, the second part shows the domain of daughter 1 and the last part shows the domain of
daughter 2. (a) Shows the propagation of the pressure wave in the parent-daughter system. The pressure wave is
plotted at t = 0.014s, t = 0.018s, and t = 0.024s. (b) Shows the propagation of the concentration wave. The wave
is plotted at t = 0.033s, t = 0.066s, and t = 0.1s.
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Lastly, we test the asymmetric case. Now, the cross-sectional areas of the daughters are made different.
In addition, we equal the stiffness (β) of the parent and its daughters. In this way, we hope to see the
influence of β. We now also expect to see differences in velocity between the two daughters because the
cross-sections are different but the total mass flowing through the bifurcation must still be equal (note that
this is captured in eqn (84)). We take βp = βd1

= βd2
= 1.5 · 105 dyne/cm3 and Ap = Ad1

= 1
2Ad2

= 6
cm2. The results are shown in figure 12.

Note that we now have an asymmetrical behaviour. We clearly see the difference between daughter
1 and daughter 2 as expected. There is indeed a difference in velocity between the daughters. This is
expected as the total volume flux (UA) is constant. So a smaller A results in a higher U in daughter 2. We
moreover see that the concentration wave has propagated a bigger distance in the parent compared to our

previous test case. This could have been expected as c =
√

β
2ρA

1
4 , so an increase in β means an increase

in the velocity. Please consider [7, 8] for an analysis of the asymmetric bifurcation test case regarding the
pressure wave.

Figure 14: A plot of the parent-daughter test case with Ap = Ad1 = 1
2
Ad2 and βp = βd1 = βd2 . The plot can be

subdivided into three parts. The first part shows the parent’s domain, the second part shows the domain of daughter 1
and the last part shows the domain of daughter 2.

9.3 Terminal arteries
The number of branches dramatically increases towards the end of the arterial tree. All these capillaries
cannot be modeled individually but researchers have found a way to model their combined effect. To this
end, the effect of these capillaries will creates boundary conditions for the terminal arteries. Following
[4] we assume these effects are purely resistive. To that extent, we define the reflection coefficient Rt

Rt = −∆s2
∆s1

= −sn+1
2 − s02
sn+1
1 − s01

≈ −sn2 − s02
sn1 − s01

(96)

Then solving for sn2 we get
sn2 = s02 −Rt(s

n
1 − s01) (97)

Even though this is quite a simple approach, it has proven itself to be sufficiently accurate for our goals.
Note that a reflective coefficient of 1 means total reflection while a coefficient of 0 accounts for an open
end.
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10 The human arterial tree
We finally have all needed materials to implement our system in the human arterial tree. We consider a
system of the 55 main arteries. This model excludes the brain and some smaller arteries in the torso. This
model of arteries is also used in [1, 8]. Below is an overview of the arterial tree.

Figure 15: An overview of the arterial tree used in this work from [7].
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It is preferable to use this model as the values of β, A0, and Rt as experimentally determined and
listed for these 55 arteries. The physiological data is listed in the appendix.

Our model can be seen as a composition of two. One model for the velocity and area, and the one for
the concentration. But remember that the concentration model is highly dependent on the velocity. For
the model describing the velocity and cross-sectional area, we use the boundary conditions as described in
chapter 9. For the concentration model, we again use an injection boundary and a free outflow boundary.
Hence we have

IC:
[
A
U

]
=

[
A0

0

]
BC1: A(0, t) = Abc(t) BC2: s2(L, t) = s2(0, t)−Rt [s1(L, t)− s1(0, t)] (98)

and

IC: c(x, 0) = 0 BC1: c(0, t) =

{
c0 t < t0

0 t > t0
BC2:

∂c

∂x
(L, t) (99)

We compare the velocity and cross-sectional area with the work of Sherwin[1]. Below we plot the velocity
and cross-sectional area of artery 1 and artery 49 (see figure 15). It is plotted for 1 second once it is fully
developed. In this model ρ = 1.06 g/cm3 and pext = 0 dyne/cm2.

Figure 16 and 17 show our result at two different arteries. Here, the Rt = 0 for every terminal artery.
So in this model, we have not yet added reflection and friction. For an analysis with the addition of these
two factors, we refer to the appendix. We first note that the results of both arteries are very similar to the
literature. We have chosen artery 49 since it is almost at the end of the tree, in the leg. If any error occurred
previously, it would propagate and amplify through the system and thus be visible at the end. So figure
17 convinces us that no major error occurred earlier in the tree. Remember that s2 is the left traveling
wave. In two perfectly matching arteries, we would not expect an s2-wave to occur. This is because there
is no reflection at the bifurcation and no terminal reflection. This is for example seen in figure 17. Note
that artery 1 does have a (small) back traveling wave. This is because the adjacent arteries do not fully
match and the forward traveling wave creates a reflective wave (similar to our stented test case) which is
seen as a s2-wave. Note that in artery 1, the cross-sectional area increases according to s1. This is not
surprising as we have used forward prescribing (see section forward prescribing in chapter 6). Moreover,
we note that the general shape of the velocity and cross-sectional area is similar to the inflow condition
(see figure 11). So again the inflow condition is propagating through the system. Lastly, note that the
results look physically possible. An expansion of 10% in the cross-sectional area seems reasonable for
example. As well as the fact that the velocity in the arteries behaves wave-like. A velocity of 30 cm/s
during systole seems high but reasonable. We must not forget that the velocity depends on other factors
such as temperature and the exact geometry of the vessel. That is why it is difficult to compare the results
with medical data from arteries, our model is too simplistic for that.
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(a) The velocity in artery 1 with our model (b) The velocity in artery 1 from [1]

(c) The cross-sectional area in artery 1 with our model (d) The cross-sectional area in artery 1 from [1]

(e) The characteristic variable s1 with our model (f) The characteristic variable s1 from [1]

(g) The characteristic variable s2 with our model (h) The characteristic variable s2 from [1]

Figure 16: The results of artery 1 of our model together with the literature results from [1]. From top to bottom, the
velocity, cross-sectional area, and characteristic variables s1 and s2 are plotted respectively. The left column are our
results and the right column is from [1].
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(a) The velocity in artery 49 with our model (b) The velocity in artery 49 from [1]

(c) The cross-sectional area in artery 49 with our model (d) The cross-sectional area in artery 49 from [1]

(e) The characteristic variable s1 with our model (f) The characteristic variable s1 from [1]

(g) The characteristic variable s2 with our model (h) The characteristic variable s2 from [1]

Figure 17: The results of artery 49 of our model together with the literature results from [1]. From top to bottom, the
velocity, cross-sectional area, and characteristic variables s1 and s2 are plotted respectively. The left column are our
results and the right column is from [1].
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To illustrate the propagation of velocity and pressure in the arterial tree, we have made a plot of the
entire system. In the creation of this plot, the different arteries are represented as edges. These edges
are assigned a color that represents their average velocity and pressure. Please note that the figure is not
on scale (the exact lengths can be found in the appendix). Figure 19 nicely shows how the pressure is
developing and propagating in the tree. At t = 9.1s the inflow boundary is starting to create a pressure
wave. Indeed the velocity and pressure are the highest near the heart. As time moves on, the waves are
propagating over the system and increase the pressure and velocity further in the tree. Moreover, note
that in some places we have a negative velocity and pressure due to the reflective waves at the bifurcation.
Lastly, we see that the velocity and pressure are low at t = 9.7s. This can be understood by realizing
that one inflow cycle happens every 1 second. So at t = 9.7s, the inflow pulse from t = 9s has decayed,
decreasing the pressure and velocity. A new cycle starts at t = 10s increasing the velocity and pressure
again. This means the profile at t = 10.1s would be very similar to that of t = 9.1s.

Figure 19: Visual representation of the velocity and pressure in the arterial tree. The upper row represents the
pressure (p) and the lower row represents the velocity (U ) inside the system. Three times are shown, t = 9.1s,
t = 9.3s, and t = 9.7s.

It is now time to turn our attention to the concentration. During a period of t0 = 1 second, we inject a
concentration of c0 = 1 g/cm3. This concentration is injected in artery 1, so at the beginning of our model.
We follow [3] and take D = 0.2 cm2/s. With this said, note that we have just added the concentration of
a chemical species to the previous model. Remember that we have a simple outflow terminal condition so
there is no reflection of concentration of any kind. In figure 22 an overview of the way the concentration
is propagating in the arterial tree is shown. The figure is created by dividing each artery into two edges.
These edges are then colored based on the average concentration of the wave.
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Figure 22: Visual representation of the propagation of a chemical species through the arterial tree with D =
0.2cm2/s. The behaviour of the concentration profile is shown at 9 times.

We now take a closer look at what happens during the propagation. First note that we see the advection
property in figure 22. Over time, the concentration wave is propagating in the tree. From figures 16 and
17 we have seen that the velocity at the end of the tree is around the 10% lower. This makes it so that
we would expect a slightly lower advection rate near the end of the tree. Unfortunately, this is difficult to
see since the representation is not on scale. Remember that if the relative velocity of the two branches at
the bifurcation differs, this affects the concentration. If one branch has a higher velocity, more chemical
species will advect to this branch. This can be seen in the figure as the concentration distribution at
branches is not always uniform. The second property that can be seen in the plot is the diffusion property.
We observe that the concentration becomes more diluted and spreads out over time. The peak of the
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concentration wave which reaches the leg only is about 50% of its original value. So this shows that when
injecting any chemical species into the body one should base the amount of concentration on the location
where the substance needs to go. The longer the distance, the more diluted it becomes. We would also
realise that the amount of chemical species decreases over the length of the tree. Even though the height
of the peak is continuous at a bifurcation, the amount of volume flux is not. The volume flowing out of a
parent should equal the sum of the volume flowing into the daughters. This then influences the amount of
chemicals that reach a location.

Next, we take a more detailed look at the concentration profile in the different arteries. The con-
centration profiles are depicted in figure 23 and are taken at the beginning of the arteries. Firstly, it is
important to note that the concentration slices do not accurately resemble the expected shapes. In the plot,
small spurious oscillations can be seen which makes the interpretation of this profile harder. Moreover,
the general shape of the wave does not resemble the waves we have seen in the test cases. The waves
from figure 23 are more angular and less smooth. This is a weakness of this model. In our code, the
information of the entire model is saved, resulting in a computationally heavy analysis. Consequently, not
enough memory is available at the end of the process. Therefore, we are forced to choose a value for ∆x
that does not provide optimal accuracy. So, to optimize it, the modeling should be adjusted such that only
information is required from the nearby arteries instead of the entire tree. Nevertheless, these plots give
sufficient information to be able to say something about the average concentration and the propagation of
the wave. In figure 23 we recognize the square pulse inflow condition in artery 1 and we note that once it
has reached artery 49, the strength of the wave is greatly reduced. Also, note that the wave has broadened
over time just as in our test case. In addition, remember that the velocity in the arterial tree moves like
a wave. This means the velocity in an artery greatly increases for a short period of time after which the
movement almost stops. For that reason, the average advection rate is way smaller than the amplitude of
the velocity wave.

(a) artery 1 (b) artery 37

(c) artery 49

Figure 23: Result of the concentration profile in three different arteries with D = 0.2 cm2/s and a 60 bpm heart rate
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10.1 Concentration flow in running person
Next, we analyse the influence of the inflow condition on the concentration propagation. For that, we
consider the situation in which a running person gets an injection (of course this is no realistic scenario).
For that, we model a heart rate of 120 bpm which is an average running heart rate. In figure 25 the
propagation through the body is shown.

Figure 25: Visual representation of the propagation of a chemical species through the arterial tree with D = 0.2
cm2/s and a heartbeat of 120 bpm. The behaviour of the concentration profile is shown at 6 times.

Please compare the above representation with the representation in figure 23. The heart rate in the
running person is twice as big as in the previous model and thus we expect the concentration to propagate
much faster. In the first case, a contraction of the heart occurs every second which means that velocity
waves are generated each second. If this heart rate is doubled, a contraction occurs every 0.5s creating
velocity waves faster after each other. The blood’s velocity will then decrease less after such a wave
passed since a new one is already coming. We indeed see a faster advection rate of the concentration in
the plot. For example, note that at the t = 5s plot the concentration wave in figure 23 has reached artery
28 while with a heart rate twice as big, it reaches artery 37 after 5s. Suppose we want a chemical species
to reach the legs, we see that a 60 bpm heart rate makes it so this takes around the t = 20 s but increasing
the heart rate to 120 bpm reduces this time to around the t = 15 s. Furthermore, we see that the height of
the concentration wave is higher when the heart rate is increased because it is less diluted. This could be
expected. The diffusion coefficient is similar in both cases but since less time has passed before the wave
reaches an artery, less time there was to dilute.
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With this simulation, we can now understand that the velocity of the blood is very important in the
transportation of a chemical species. Not only does it determine the time needed to reach a certain artery
but also the level of concentration at which it reaches it. Altogether, it seems more effective to inject
somebody who is running (or at least someone with a higher heart rate).

10.2 Influence of the diffusion coefficient

In the previous two simulations, we worked with a diffusion coefficient of D = 0.2 cm2/s. In fact,
the diffusion coefficient is a very complicated parameter that depends on for example the temperature,
the viscosity of the blood, and the chemical species we are considering. For a more realistic model, D
should thus be place and time-dependent. Because of all these dependencies, the diffusion coefficient is
very difficult to estimate. That is why in this section we analyse the influence of changing the diffusion
coefficient. We consider the cases D = 2 cm2/s, D = 0.2 cm2/s and D = 0.02 cm2/s.

With these choices of D, we might run into trouble with the stability criterium of the central difference
method (CDM) (see eqn (79)). To ensure a more stable result we use the central difference method in
combination with Beam-Warming Method. At each time step we determine the local Péclet number. If
eqn (79) is satisfied we use the more accurate CDM and otherwise switch to BWM. In the appendix, we
have already shown that the BWM works just as well as the CDM in the test cases. That is why we can
easily interchange these two.

In figure 28, the results of the concentration wave in arteries 37, 43, and 51 are presented for simula-
tions with diffusion coefficients of D = 0.02 cm2/s, D = 0.2 cm2/s, and D = 2 cm2/s. It is important to
note that these plots provide an overall understanding of the wave’s behavior and its average value, rather
than precise details.

We consider the different cases. In case (III), the plots closely resemble the waves observed in the
test cases. This occurs because the Péclet number remains mostly below 2, allowing the CDM to provide
relatively accurate results. It is evident that the waves become more diluted compared to cases (I) and
(II), which aligns with our expectations as the higher diffusion coefficient induces greater diffusion in
each time step. Suppose we want an injected drug to reach the leg, a diffusion coefficient of D = 0.02
cm2/s retains about 85% of its original concentration, while D = 2 cm2/s reduces it to 40%. So we see
that knowledge about the diffusion coefficient is essential when injecting a medicine.

In the first two arteries, simulations (I) and (II) show minimal differences in dilution, despite the
tenfold difference in diffusion coefficients. This may be attributed to their small coefficients and the short
elapsed time. Therefore, no significant difference could yet have been made. Next, note that we see the
waves get more diluted as they travel. This effect is visible no matter the value of D and is of course what
we would expect. Lastly, note that the peak’s position is independent of D. This is what we would expect
as D only influences the level of dilution and not the velocity.

Regarding all the concentration plots, we again note small spurious oscillations. The inaccuracy of
the results is partly due to the value of D. The stability region of our time-integration method (see [10]
for more detail) is dependent on the value of D. The higher the value of D, the more accurate the results.
Moreover, LeVeque [6] had shown that even though BWM greatly reduces numerical oscillations it does
not eliminate them. That is why we also see oscillations in the simulations (just like in figure 23). In
future research, a finer grid can be used to get waves that show more similarity with the test cases.
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(I) D = 0.02 cm2/s

(II) D = 0.2 cm2/s

(III) D = 2 cm2/s

(a) artery 37 (b) artery 43 (c) artery 51

Figure 28: This plot shows the result of three arteries in three different simulations. The upper row shows the result
when D = 0.02 cm2/s, the middle row when D = 0.2 cm2/s, and the last row when D = 2 cm2/s. In each of these
three simulations, the concentration profile at the beginning of artery 37, 43, and 51 are shown respectively.
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To get a nice overview of the propagation of the concentration in the arterial tree, we have again made
a visual representation. Figure 32 shows how the waves are traveling through the system. Only the times
t = 3s, t = 5s, t = 7s, and t = 9s are plotted as this gives enough information about the propagation.
Note that from this figure it is clear that D = 2 cm2/s creates much more diluted waves. The value of
the concentration is a lot lower than in the other two cases. Moreover, note that the waves are also more
spread out in comparison with the other two. At t = 7s, the concentration wave has partly reached artery
42 in the first simulation but this is not the case in the other two. Please remember that figure 32 is not on
scale and each artery is modeled as an edge which is colored based on its average value. Because of this,
the broadening of the wave is not visible at the t = 9s plot. The arteries here are just a lot longer. So, this
broadening and lowering of the height is indeed what we would expect for a higher diffusion coefficient.
Moreover, there is also a difference between the D = 0.2 cm2/s and the D = 0.02 cm2/s even though this
one is less obvious. As time moves, we note a difference in value between these two. At t = 7s, there is a
clear value difference in artery 39. Note that it does not seem like the waves from the second simulation
are much broader than those in the third. Apparently the smearing out is not as big as the length of the
edges.

To summarize, this analysis of the diffusion coefficient had shown us that our model behaves as
expected no matter the value of D. It has also shown that the accuracy of the concentration plots is
dependent on the Péclet number (and thus D) and that spurious oscillations can occur in our model. This
model should therefore just be used to give an indication of the diffusivity and velocity of concentration
propagation in the human body. It is not accurate enough to say something about the precise nature of the
wave.
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(a) D = 2 cm2/s (b) D = 0.2 cm2/s (c) D = 0.02 cm2/s

Figure 32: Visual representation of agent propagation through the arterial tree plotted at 4 times
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10.3 Discussion of the model
In this final section, we provide a brief discussion of the model used in this study. We have observed
that the velocity and cross-sectional area in the different arteries align closely with the existing literature.
However, it is important to note that our 55-artery model represents a simplified version of the human
arterial tree. We have considered an anatomically simplified system, using only the main 55 arteries
while the total number of arteries in the human body is significantly higher. Also, we considered only a
single type of bifurcation while realistically more complex branches exist. To further increase the model’s
realism more sophisticated models for the heart and capillaries could be used. In [2] they for example
modeled the heart as four independent chambers and they changed the terminal coefficient to a windkessel
model. Moreover, in the work of Hamel [7] a 111-artery model was used. Therefore, expanding our model
to include 111 arteries and implementing more realistic models for the heart and terminal vessels would
be a logical next step.

Secondly, we did not consider gravitational effects. We would expect the propagation to be affected
by gravitational forces. Accounting for these aspects will further increase our understanding of the circu-
latory system.

There can also be made some improvement on the concentration part. Now the model is one-way, with
concentration flowing out of the terminal arteries. When expanding to a two-way model, concentration
can be injected at more realistic places like the arms. Remember that in this thesis we have set the
diffusion coefficient to be constant in every artery. Even though this is a reasonable assumption, it is more
realistic to make D artery-dependent as all the arteries do not have the same environmental properties.

Lastly, we like to address the numerical aspects of this study. For implementing the concentration we
have combined a second-order upwind scheme with a central difference scheme. While these methods
have provided insights into concentration propagation, they have not yielded sufficient accuracy in cap-
turing the precise concentration wave. To that end, it might be useful to add a High-Resultion Method
[6] as this increases the order of accuracy. Moreover, the numerical code can be optimized such that the
computation is less heavy so a finer grid can be used. Methods such as parallelization are also useful but
very difficult to implement in Python. Therefore, it might be better to use another language in further
works.
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11 Conclusion
In this thesis, we have investigated the behaviour of one-dimensional blood flow in the human circulatory
system. To model the flow numerically, we used the Finite Volume Method in combination with the flux
difference splitting approach to solving the equation governing velocity and cross-sectional area. The
concentration was numerically solved by smartly switching the central difference method with a second-
order upwind method.

As a test case concentration and pressure waves were considered in a normal artery. The results
showed a great resemblance with the literature/analytical solution. These findings revealed that blood
flow in the arterial tree propagates as a wave, with pressure traveling unhindered along the vessel while
concentration gradually dilutes over time. Additionally, after the heart and boundary conditions were
analysed and implemented, the blood flow of a simple 55-artery system is modeled. Again the velocity
and cross-sectional area in different arteries were very comparable to the results from Sherwin et al. [1]
It had moreover shown us that the solutions are composed of left and right traveling waves. In the case of
no reflection at the terminal arteries, we would only expect back-traveling waves if there is a discontinuity
at the bifurcation. However if we add reflection at the terminal arteries, we find that the reflected back-
traveling waves interact with the forward waves creating more complex velocity waves.

Furthermore, we investigated the injection of concentration at the beginning of the model. The results
demonstrated that the concentration wave advected over the arterial tree while gradually diluting. With a
diffusion coefficient of D = 0.2 cm2/s and a heart rate of 60 bpm, it took approximately t = 20 seconds
for the concentration wave to reach the legs. Increasing the heart rate to 120 bpm reduced this time to
approximately t = 15 seconds. However, it is important to note that the concentration wave dilutes during
the propagation. It therefore lowers the concentration values compared to the original injection. We also
observed that the diffusion coefficient significantly influenced the concentration level. For example, with
D = 0.2 cm2/s, the concentration at the beginning of the legs was around 70% of its original value, while
increasing D by a factor of 10 reduced it to 40%. Conversely, decreasing D by a factor of 10 augmented
the value to 85% of its original value.

In summary, our findings highlighted the influence of heart rate and diffusion coefficient on the propa-
gation of concentration through the arterial tree. Advection and diffusion properties were observed, which
are characteristic of concentration flow. Future research should aim to expand the model to a more real-
istic representation of the arterial tree by incorporating additional arteries, considering various branching
points, and employing a sophisticated heart model. Additionally, improving the accuracy of concentration
plots and enabling the flow of concentration in two directions within the arterial model would be valu-
able. The model could then be used to study the propagation of vaccines that are injected at more realistic
locations.
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A Appendix
All the created Python scripts can be found via this link https://drive.google.com/drive/
folders/18CnSx5ZSuHnBWSwrNZeaqPHskzHzjd7X.

A.1 Test case tapered artery
In chapter 7 we have looked at two arterial test cases. We have seen how pressure propagates through
a normal artery and what effect material variation has on this pressure wave. These test cases were
compared to the work of Sherwin et al. [1] In his work, he performed one last test case which we will
analyse now. A long tapered artery. This should represent a blood vessel in the middle of the arterial
system. For this test case, we consider an artery where at the inlet A0 = 1 cm2. The cross-sectional area
is then slowly reduced to A0 = 0.5 cm2 at the outlet. To ensure that the mass flux is constant over the
artery we take the initial conditions to be U = 1 cm/s at the inlet and gradually increase it to U = 2 cm/s
at the outlet. Physically we would expect c to be an order of 10 bigger than the average velocity of the

blood. So we would like c =
√

β
2ρA

1
4
0 = 10 cm/s at the inflow. We can achieve this by assuming β = 10

and ρ = 0.5. Following [1] we let the artery be L = 200 cm running from x = −100 cm to x = 100 cm.
In the circulatory system, the velocity differs a lot from the velocity-related input at the heart. To

mimic the expected velocity in an artery we take the left boundary condition to be

u(−100, t) = 1− 0.4 sinωt− 0.4 sin 2ωt− 0.2 cos 2ωt (100)

Here ω = 2π
T = 2

10 . For the right boundary, we again take a periodic condition so

s2(100, t) = s2(100, 0) (101)

A.1.1 Implementation boundary conditions

Analogously as done in chapter 7 we derive a numerical scheme to implement the boundary conditions.
We first note that the right boundary can be implemented easily as it is already defined in terms of the
characteristic variables. For the left boundary, we have to do some extra work. We again remember eqn
(28) and derive at

s1(−100, t) = 2u(−100, t)− s2(−100, 0) (102)

As said in the forward boundary condition section, the left boundary s2 is fixed at its initial state.
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A.1.2 Results of the tapered artery

We subdivide the domain into n = 400 intervals. Below in figure 34 the comparison with the literature is
made.

(a) Velocity of the tapered artery test case in our model (b) Velocity of the tapered artery test case from Sherwin et al. [1]

(a) Cross-sectional area of the tapered artery in our model
(b) Cross-sectional area of the tapered artery from Sherwin et al.
[1]

Figure 34: Results of the test case of the tapered artery. The cross-sectional area in the artery is plotted at t = 2.5s,
t = 12.5s, and t = 20s in the lower row and the velocity in the upper row. In the left column, our results are depicted
and in the right column, the results from [1].

First of all, we note that again our model is very comparable to the literature. Both plots of figure 34
are almost identical to the work of Sherwin. In addition, it is more interesting to look at the bevaviour of
the solution. We notice that the velocity is fluctuating over a linearly increasing line. This line goes from
U = 1 cm/s to U = 2 cm/s, which is exactly our initial condition. When looking at the velocity in the
figure we recognize a repeating part. This is best visible in the t = 0 plot between x = −100 and x = 0.
We can see, this is in fact the boundary condition. Figure 35 shows this boundary condition.
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Figure 35: The inflow boundary condition u(−100, t)

The inflow boundary condition has a period of T = 10s. So this explains why we recognize the
inflow function to be repeated twice in the t = 20 plot in figure 34. Moreover, it is interesting to note

that the wave speed is gradually decreasing. Since c0 =
√

β
2ρA

1
4
0 with A0 decreasing over length, c0

decreases too. This influences the velocity of the waves as λ = U + c. Inevitably, this would imply that
a bit more than two periods should be visible in the plot. However, this effect is very small and therefore
barely visible in the plots. Lastly, we want to mention that this test case is not physical. In the circulatory
system, there would not exist a vessel of 2m without any bifurcations.

A.2 Analysis of the different methods for solving the advection-diffusion equation
When numerically solving the advection-diffusion equation we could have chosen between different in-
tegration and discretization methods. We have used the finite volume method to solve the velocity and
cross-sectional change in the arteries. It would therefore seem elegant to also use finite volume for solving
the concentration. But let us analyse the difference between two of these methods in more detail. For the
advection term, we will compare the central difference scheme presented in eqn (77) with a second-order
upwind scheme. For that, we follow LeVeque [6] and use the second-order stable Beam-Warming Method
(BWM). The advection term is then written as

cn+1
i = cni − Un

i

∆t

2∆x
(3cni − 4cni−1 + cni−2) +

1

2

(
Un
i ∆t

∆x

)2

(cni − 2cni−1 + cni−2) (103)

Figure 36 shows the comparison between the two in the test case from chapter 8. In the figure, we can
see that both generate very similar results which are also similar to the analytical solution. Looking more
closely, the solution with the Beam-Warming method seems to generate a slightly more accurate result.
However, the computation power of this method is higher than that of the central difference method.
Moreover, the difference between the two is so small it does not hinder us when working with central
differences. In general, both two methods generate the same results. However, we must be careful when
using central difference when diffusion plays a role. It had been shown that when the Péclet number
exceeds 2, the central difference approach will generate spurious oscillations. These oscillations can be
greatly reduced by using an upwind method like the BWM. On the other hand, if the Péclet number is
far below 2 the central difference is in general more accurate. To summarize, we can use both the Beam-
Warming method as the central difference method to solve the advection-diffusion equation but in solving
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Figure 36: The solution of the numerical test case as described in chapter 8. The solution computed with the Beam-
Warming Method and with the central difference method are plotted. The dots represent the analytical solution. All
the plots show the concentration c(x, t) at t = 0.3s.

such we must remember the Péclet number. Later in the work, we will actually use a combination of the
two to achieve an optimal stable result.

A.3 Test case concentration 2
In chapter 8 we have looked at a test case of an artery. There we have considered blood that is flowing with
a constant velocity. However, in the final arterial system, the velocity is not constant. For that reason,
we will now analyse a test case in with a variable velocity. We consider an artery at which a periodic
pressure wave is applied. This pressure wave results in the contraction and release of the artery at x = 0.
We use this kind of periodic pressure wave as this mimics the behaviour of the heart. Figure 37 shows the
boundary pressure.

Figure 37: A plot of the pressure at the inflow boundary

Note that we have given the pressure wave quite a large amplitude, this is because it will generate
higher velocities of the blood. Therefore, the advection property can better be seen. Moreover, we once
again inject a chemical species with a concentration of c0 = 1 kg/cm3 at the beginning of the artery
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during a period of t0 = 0.033 s. We take D = 1 cm2/s and all the other parameters of importance are
chosen similar to the normal artery test case from chapter 7. The numerical results of the concentration
propagation are shown in figure 38.

Figure 38: The numerical solution of the concentration propagation in a normal artery with changing velocity. The
concentration profile is plotted at three time points, t = 0.08s, t = 0.17s, and t = 0.25s.

Looking at figure 38 we again clearly recognize the advective and diffusive characteristics of the
concentration profile. Note that we have the same shape as in our previous test case in chapter 8. However,
there is an important difference. Let us consider the distances each wave has traveled during the three
times. We note that during the first 0.08 s the wave has traveled around the 2.5 cm, in the next 0.08
s the wave has traveled around the 3.0 cm, and in the following 0.08 s the wave has only traveled 2.0
cm. We thus see that the distances over which the wave propagates, differ over time. This is exactly
the effect of a variable velocity. In figure 10 the wave propagated each time the same distance only
because the velocity was constant. Lastly, we want to say something about the correctness of the solution.
Unfortunately, our specific test case has no analytic solution so we cannot compare it that way. For that
reason, we will perform two alternative numerical tests to assess the reliability of the solution. First of all,
we use the method comparison test. Originally we solved the concentration profile using finite difference.
For this test, we solve eqn. (16) using a second-order upwind scheme. A similar result in both cases
gives us confidence about the numerical solution. Secondly, we do a grid analysis. In this test, we will
systematically increase and decrease the grid. If the solution is independent of the grid size, then the
confidence in our solution grows. In figure 39 the computed solution together with these two alternative
tests are shown.

56



Figure 39: A plot of the original computed concentration solution together with the two alternative tests. The plot
shows the original solution as seen in figure 38, the solution of the test case when the grid size is doubled, and the
solution of the test case when a second-order upwind scheme is used. In all these three plots c(x, t) is shown with
t = 0.17s.

In figure 39 we can see that all the tests generate very similar results. There are some small deviations
between the three. The difference between the original solution and the grid test can for example be
partly explained by the fact that even though the x-domain is doubled in size, the t-domain is not exactly
doubled. This is due to the fact that in the code ∆t is determined each time step to ensure that the CFL
condition is satisfied. Altogether, these tests have given us more confidence in our numerically computed
solution besides the small anomalies.

57



A.4 Physiological data from the 55 arteries
The physiological data from the 55 arteries we use in our model from Sherwin et al. [1]

Table 1: Physiological data of the 55 arteries
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A.5 Friction and reflection
In the models we have analysed before, we have neglected the frictional forces and we did not include
reflection at the terminal arteries. In this section, we analyse the behaviour of the blood when friction
and reflection are added. For the 55-artery model we consider, the value of Rt has been experimentally
determined. Moreover, we implement eqn (68) in our code. We wave taken ζ = 9, ν = 0.026 cm2/s
according to the literature [3]. Below the results are shown and compared to [1]. Note that in their work
they did not include any frictional terms but only reflection at the terminal arteries. But because the
friction is relatively low, comparing is still relevant. Below the results are shown of artery 1 and artery 49.

We first note that again our model is in agreement with the literature. All the plots show very much
resemblance with the results from Sherwin et al. However, when looking more closely we do see some
differences between the two. In artery 49, the velocity at some time points is lower than in the literature.
This is also visible in the other 3 plots of artery 49. These differences are probably due to the addition of
a friction force in our model. The frictional term slightly lowers the velocity as it works as a resistance.
The difference is of course also explained by the different methods used. In addition, including terminal
reflection increases the number of waves in the system. This is because of the additional back-traveling
waves. The forward waves get reflected generating back-traveling waves, which in their turn interact with
other forward waves creating a complex pattern. This is for example visible in the s2 plot of artery 49.
Instead of no s2-wave a complex wave is now generated. Note that the inclusion of friction and reflection
creates more differences in the waves between the arteries. In figures 16 and 17 the velocity waves look
similar but shifted and changed in value. In the new model with reflection, we see that there is a clear
difference in shape between the waves in artery 1 and 49. Especially artery 49 now has a more complex
pattern. Lastly, we want to discuss a physical phenomenon that can be seen in the results. In the area plot
of artery 1, we notice a small dip around t = 9.3s. This indentation is called a diacrotic notch. A diacrotic
notch appears as a small dip that occurs shortly after the peak of the systolic phase. It is followed by a
secondary rise before the waveform descends during the diastolic phase. This is exactly what we see.
The area is increasing during the first seconds and then slowly descends. Physically, the diacrotic notch
is caused by the closure of the aortic valve and the resulting brief interruption in the arterial blood flow.
It is a nice detail that it is also returning in our results.
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(a) The velocity in artery 1 with our model (b) The velocity in artery 1 from [1]

(c) The cross-sectional area in artery 1 with our model (d) The cross-sectional area in artery 1 from [1]

(e) The characteristic variable s1 with our model (f) The characteristic variable s1 from [1]

(g) The characteristic variable s2 (h) The characteristic variable s2 from [1]

Figure 40: The results of artery 1 of our model (including reflection and friction) together with the literature results
from [1]. From top to bottom, the velocity, cross-sectional area, and characteristic variables s1 and s2 are plotted
respectively. The left column is our results and the right column is from [1].
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(a) The velocity in artery 49 with our model (b) The velocity in artery 49 from [1]

(c) The cross-sectional area in artery 49 with our model (d) The cross-sectional area in artery 49 from [1]

(e) The characteristic variable s1 with our model (f) The characteristic variable s1 from [1]

(g) The characteristic variable s2 (h) The characteristic variable s2 from [1]

Figure 41: The results of artery 49 of our model (including reflection and friction) together with the literature results
from [1]. From top to bottom, the velocity, cross-sectional area, and characteristic variables s1 and s2 are plotted
respectively. The left column is our results and the right column is from [1].
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