Eixpressing Intent

An evaluation of the Arm Machine Readable Specification

Eixpressing Intent

iii

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in
COMPUTER SCIENCE
by

Jeroen Kloppenburg
born in Haarlem, the Netherlands

]
TUDelft

Programming Languages Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology

Delft, the Netherlands
www.ewi.tudelft.nl

www.ewi.tudelft.nl

Expressing Intent

Author: Jeroen Kloppenburg
Student id: 4477960

Abstract

The behaviour of software is intrinsically linked to the hardware it
runs on. As hardware innovations continuously change the landscape of
computing, software has to adapt to these changes. Running legacy soft-
ware on new hardware requires either the old hardware to be emulated,
or a very time-consuming and error-prone process of reverse engineering
the software to determine its behaviour, and then writing new software
that has the same behaviour, but runs on the new hardware. Binary
lifting and translation tools aim to automate this process, but are often
limited by the lack of accurate and complete instruction semantics.

This project aims to evaluate the feasibility of using the Arm Ma-
chine Readable Specification to aid in this process. The specification is
a machine-readable description of the Arm architecture, including self-
proclaimed ”executable” instruction semantics, written in a specification
language called ASL. This project has created an emulator that can run
Arm instructions on a non-Arm architecture, using the specification to
determine the behaviour of the instructions. The emulator is able to run
simple programs with little context, but is not yet able to run more com-
plex programs, due to the lack of support for behaviour that depends on
the specific hardware implementation, and context dependencies outside
of the instruction set, such as operating system interactions.

This emulation based solely on the specification has demonstrated
that it is a promising approach to reason about the behaviour of Arm
programs, but it is not complete enough to be used for binary lifting
and translation. The context dependency of executables, and the lack
of implementation specific behaviour in the specification are the main
reasons for this.

Thesis Committee:

Chair: Prof. dr. K.G. Langendoen, Faculty EEMCS, TU Delft
University Supervisor: Dr. S.S. Chakraborty, Faculty EEMCS, TU Delft

jeroen.kloppenburg@xs4all.nl

Preface

This thesis serves as the final project for my master’s degree in Computer
Science at the Delft University of Technology.

I have always loved working with the lowest level of abstraction, so while
talking with the late Eelco Visser about possible topics for my thesis, he in-
troduced me to my daily supervisor, Soham Chakraborty, who had a project
in mind that would have me working on adding support for preserving concur-
rency semantics during binary lifting of Arm executables to an existing project
called llvm-mctoll. Partway through the project, it became clear however that
some of the assumptions we had made about llvm-mctoll were incorrect, in
that it was incapable of lifting even the most basic Arm executables, and that
the project was not in a state where it could be used for the project. Several
months were spent trying to get llvmm-mctoll to work, but in the end, after
basically rewriting the entire project, it became clear that it would not be
possible to get any meaningful results out of it. At this point, we decided
to change the focus of the project to something that would be more feasible
to accomplish in the remaining time. What followed was a period of small,
tangentially related projects, until we eventually settled on the current topic
of working with the Arm specification.

Overall, this project has been a stressful and frustrating experience, with
many setbacks and unexpected problems.

Jeroen Kloppenburg
Delft, the Netherlands
July 5, 2023

iii

Contents

Preface

Contents

1

Introduction

1.1 Motivation
1.2 Problem Statement
1.3 Overview e

Background

2.1 Binaries
2.2 Semantics
2.3 Binary Analysis
2.4 Existing Tools.
2.5 ARM Architecture

Methodology
3.1 The ARM Machine-Readable Specification
3.2 Emulation

Implementation

4.1 Working with the ARM Machine-Readable Specification
4.2 Design of the Emulator
4.3 Missing Specifications L

Evalutation

5.1 Emulation In Steps oo oL
5.2 Levelof Detail
5.3 Emulation Performance

Discussion

6.1 Requirements for a Specification
6.2 Implementation Specific Specifications
6.3 OS Specifications oo

iii

11
11
15

17
17
20
23

27
27
33
33

vi CONTENTS

7 Conclusion 39
7.1 Summary of the limitations of the ARM Machine-Readable

Specification oL oo 39

7.2 Future Work 40

Bibliography 41

Chapter 1

Introduction

1.1 Motivation

Computing technology is ever-changing, with new innovations in software and
hardware driving the field forward. Where in the past, programmers had
to use clever low-level hacks to squeeze the last bit of performance out of
a system, now the focus is on very high-level concepts such as what kind of
machine learning model would perform best on a dataset, what kind of lighting
makes a 3D render look more realistic, or how to structure the back-end of a
web application to make it more scalable. This is a good thing, as it allows
users to focus on the task at hand, rather than having to worry about the
details of the system they are using, but it also means that the systems they
are using are becoming increasingly complex and opaque. However, despite
this progress, many outdated systems continue to be used due to their heavy
reliance on legacy software and hardware. Additionally, as computing systems
become increasingly complex and pervasive, security vulnerabilities and bugs
are major concerns, particularly in systems that have a significant impact on
society, such as medical devices and financial systems. In order to address
these issues, it is important to be able to update these legacy systems. The
main challenge in doing so is that the software is so closely tied to the hardware
it is running on, that it is often not possible to move the software to a new
system without significant changes.

Reverse engineering is the process of recreating higher-level representations
of programs from compiled machine code. This can be very time-consuming
and challenging when done manually, leading to a growing interest in automat-
ing various parts of the process. By creating higher-level representations of
programs, it becomes easier to detect bugs and security vulnerabilities, as
well as modify and recompile programs to target different architectures. For
legacy software, one of the goals of this process can be to reach a full binary
translation, where the original code can be completely transformed into a new
program that runs on a different architecture, preferably with as little manual

2 CHAPTER 1. INTRODUCTION

intervention as possible. The best way to accomplish this is to lift or raise the
program to a level of abstraction high enough that it can be compiled later.

Key to this process is having a way to represent the behaviour of a pro-
gram. Instruction semantics refer to the meaning and behavior of individual
machine instructions. They play a critical role in this lifting process, as this
involves mapping the original instructions to constructs in the higher level
representation. Many existing tools that do binary analysis or translation
have their own system to represent and work with these instruction seman-
tics. Writing these instruction semantics and making sure they are correct
with respect to the actual behaviour of the instruction on hardware is again
time-consuming and error-prone.

A recent project by ARM has created a machine-readable specification for
large parts of their architecture, including ”executable” instruction semantics
written in their own specification language called ASL. If this specification
is comprehensive enough, it could be used to replace the existing instruction
semantics in many tools. This would not only reduce the amount of time and
effort spend by developers of individual tools to write their own instruction
semantics, but it would also allow for more accurate and complete tools, as the
semantics are not only written by the authority on the architecture, but any
and all improvements to the specification would automatically be reflected in
the tools.

1.2 Problem Statement

This thesis aims to discuss the possibility of using formal specification to
manipulate binaries by evaluating the accuracy and limitations of the ARM
machine-readable specification. To do so, an emulator is created that uses
the specification to run ARM instructions on an x86-64 machine. The devel-
opment of this emulator brings to light the limitations of the specification,
and the more general challenges that arise when trying to run programs on
hardware that it was not designed for.

1.3 Overview

The background chapter will provide essential background information on bi-
nary lifting, semantics, ARM architecture, and the current landscape of tools.
The methodology chapter will describe the approach taken in working with
the ARM Machine-Readable Specification and the development of an emulator
that uses this specification. The evaluation chapter will present the roadblocks
encountered and the results of trying to run programs on the emulator, in-
cluding its performance and current limitations. The discussion chapter will
explore future research directions, including the need for more detailed specifi-
cations and the potential for OS-specific specifications. Finally, the conclusion

1.3. OVERVIEW 3

will summarize the limitations of the ARM machine-readable specification and
outline areas for future work.

Chapter 2

Background

Since the aim of this thesis is to explore the use of the ARM Machine-Readable
Specification for binary analysis and lifting, it is important to understand
these concepts in more detail. This chapter will provide a brief overview of
the ARM instruction set architecture, and other concepts that are important
to understand the rest of this thesis. An Instruction Set Architecture, or ISA,
describes an abstract model of a computer. It is used as a simple layer of
abstraction over the specific hardware implementations. An ISA is usually
described in enormous documents, describing behaviour in natural languages
and occasionally pseudocode. A program written in a high-level language is
compiled into sequences of instructions, and combined with data to form an
executable binary file.

2.1 Binaries

In order to execute a program, it has to be loaded by a different program
called the loader. The loader is responsible for setting up the context of
the executable, such as setting up all the relevant memory regions, loading
the executable into memory, setting up the initial stack and registers, and
loading any shared libraries that the executable depends on. File formats differ
between operating systems, but they all contain roughly the same information.
The main executable formats are ELF for Unix systems, PE for Windows, and
Mach-O for macOS. For the sake of this thesis, we will limit ourselves to the
ELF format, but the concepts are similar for other formats.

ELF

The Executable and Linkable Format (ELF) is the file format for executables
and shared libraries for most Unix systems like Linux. In order to deal with
dynamically linked code, the system first has to load the dynamic linker, which
reads the dependencies and performs relocations on the program by replacing

5

6 CHAPTER 2. BACKGROUND

placeholder values with the resolved addresses of the dependencies. Because
very large programs may require an incredible amount of relocations, the
Procedure Linkage Table (PLT) and the Global Offset Table (GOT) are used
as a level of indirection in order to lazily resolve the dependencies. Instead of
resolving all the relocations at the start, the first time a symbol is used, the
dynamic linker will resolve it, after which it will be cached.

The segments within an ELF file contain data or instructions. The instruc-
tions are written under the assumption that it will be executed by a specific
architecture, so the instructions do not explicitely describe their meaning. For
that, we have to look at the specification of the architecture.

2.2 Semantics

Semantics is the study of meaning. Formally talking about logic and theo-
retical meaning of programs or parts of programs has natural parallels to the
study of meaning in natural language.

Meaning

The meaning of a word can be literal or figurative. A literal meaning is the
meaning of a word as it is defined in a dictionary. A figurative meaning is
the meaning of a word as it is used in a sentence. The literal meaning of a
word is the same for everyone, but the figurative meaning is dependent on
the context of the sentence. Likewise, the meaning of a part of the program
can depend on the level of abstraction you are talking about, so I will use the
terms operational semantics and natural semantics to differentiate between
the literal and more abstract meanings.

Operational semantics refers to the denotation or literal meaning of a con-
struct. In case of a machine instruction, this means the actual observable
behaviour as a transformation of the system within the context it is executed
in. Natural semantics refers to the connotation or intention of a construct.
This is the higher level meaning that is implemented by the operational se-
mantics, and as such are usually emergent properties of the context in which
some operational semantics are placed.

An instruction that adds two numbers has very clear operational semantics.
It takes the two numbers and produces their sum. The natural semantics of
this instruction is dependent on the context. It could be just the addition of
two numbers for the sake of their sum, but it could also be the calculation of
an address to load a value from, or the address of a function to call.

Programming

With a perfect understanding of how a computer interprets instructions, pro-
gramming becomes the art of encoding intent. The intent is usually encoded

2.3. BINARY ANALYSIS 7

into a set of plain texts in a rather constrained language. These texts are
parsed, analysed, and lowered to a more compact representation that is opti-
mized for the specific computer that runs the program. This transformation
breaks down abstractions into their implementations, which depend on the
specific context of the computer; the operating system it runs, the hardware
available to it, even the presence of other programs.

The resulting representation is usually optimized based on some desired
properties such as overall runtime or memory usage. This might change the
exact operational semantics of the program in a way that preserves the natural
semantics of the program.

While lowering abstractions, the program accumulates dependencies on
other pieces of code, usually code that interacts with the operating system.
These pieces of code are usually not directly inserted into the program, but
rather linked into it. Like how the meaning of a text can depend on circum-
stances not contained within the text, the meaning of a program can depend
on context not contained within the program, so figuring out the meaning of
a program may require more than just the program itself.

2.3 Binary Analysis

Binary analysis is the process of analyzing executable code or binary files to
gain an understanding of their functionality, behavior, and potential vulner-
abilities. Binary analysis is often used by security researchers, malware ana-
lysts, and reverse engineers to identify security issues and potential threats in
software. In addition to security analysis, binary analysis can also be used for
software optimization and performance tuning. By analyzing the binary code
and identifying areas of inefficiency or bottlenecks, developers can make im-
provements to the software to optimize its performance and reduce its resource
usage.

Static Analysis

Static binary analysis involves analyzing the binary code at the assembly level
without executing it. This can be done using disassemblers and decompilers
that improve the readability of the code by looking for patterns in the code
and replacing them with higher-level constructs.

Dynamic Analysis

Dynamic binary analysis involves running the binary in a controlled environ-
ment in order to observe its behaviour. Dynamic analysis is usually done using
a debugger, which allows the user to step through the program and observe
the state of the program at each step. This is usually more effective than
static analysis, as programs often have complex behaviour that is difficult to

8 CHAPTER 2. BACKGROUND

predict from the code alone. One obvious example is obfuscation, where the
code is deliberately made difficult to understand in order to hide its true func-
tionality, something that is very prevalent in malware. Another example is
the use of code generation, where the code being executed is generated during
execution, which used to be common on older systems to work around the lack
of memory. The obvious downside of dynamic analysis is that only executed
code can be analyzed, so it is possible to miss important parts of the program.
One way to mitigate this is to use a type of symbolic execution, but this is
computationally expensive for non-trivial programs.

2.4 Existing Tools

Working with instruction semantics is not limited to a single, narrow field of
research. The entire discipline of reverse engineering is concerned with the
semantics of binary code, and as such, there are many tools that are relevant
to this work, with goals ranging from security analysis to software optimiza-
tion. The rough categories of these tools are analysis[12, 11, 36, 10], dis-
assembly[37, 3], emulation[19], instrumentation[22, 26], lifting[23, 31,
30, 16, 15], rewriting[2, 7, 35], symbolic execution[6], and virtualiza-
tion[25]. Because of the overlap in these fields, there are also many ”frame-
work” projects that do a bit of everything[9, 27, 28, 17, 18, 33, 34, 13, 14].
Many tools in these fields are either very minimalistic and start and end their
lives as academic research projects, or are heavily sponsored or commercial-
ized projects developed by many people over many years. Special mention
goes to QEMU[8], a full system emulator, and IDA[20], the ”de-facto tool”
for binary analysis. At different stages of the project, we have looked at many
of these tools, specifically how they represent instruction semantics, and how
they use these semantics to perform their analysis.

2.5 ARM Architecture

The ARM architecture is a family of microprocessor architectures that are
used in a wide range of electronic devices, from smartphones and tablets to
servers and supercomputers.

The ARM architecture is based on a reduced instruction set computing
(RISC) design, which means that the instructions that the processor can exe-
cute are simplified and streamlined, resulting in faster and more power-efficient
performance. RISC architectures like ARM are typically used in devices that
have limited power and memory resources, such as mobile phones and tablets.

ARM defines three architecture profiles, A, R, and M; the Application
profile, the Real-time profile, and the Microcontroller profile. The Application
profile is the most general profile, and is used in most devices. The Real-time
profile is used in devices which require real-time guarantees, such as medical

2.5. ARM ARCHITECTURE 9

devices. The Microcontroller profile is used in devices which have very limited
resources, such as microcontrollers. From this point on, we will only talk
about the Application profile.

Instruction Sets

As with most architectures that are multiple decades old, the ARM architec-
ture has evolved a lot over time. One facet of this evolution is the creation
of specialized instruction sets and extensions that improve performance and
efficiency in certain situations.

The main instruction sets are A32, the 32-bit ARM instruction set; T32,
the mixed 16- and 32-bit Thumb-2 instruction set; and A64, the 64-bit ARM
instruction set. In addition to these instruction sets, there are many exten-
sions, including but not limited to; SVE (Scalable Vector Extension), VFP
(Vector Floating Point), NEON (Advanced SIMD), Helium/MVE (M-Profile
Vector Extension), RME (Realm Management Extension), and MTE (Mem-
ory Tagging Extension).

Memory Model

The ARM architecture uses a simple addressing load/store model with weak
memory ordering. This means that the processor can execute instructions in
any order, and that the processor does not guarantee that memory operations
are performed in any particular order, unless explicit memory barriers are
used.

Because of this simple addressing mode, instructions can only perform
operations on registers, and all load/store addresses are purely determined
from register contents and instruction fields. This is in contrast to other
architectures, such as x86, which have a complex addressing mode.

Conditional Execution

Most instruction sets only allow conditional execution for branches. ARM
has conditional execution encoded in almost all instructions in its A32 and
A64 instruction sets by means of the first 4 bits of each opcode. Because
of the small size of the T32 instructions, a special instruction is used which
sets conditional execution for the next couple of instructions. This starkly
contrasts with other architectures, such as x86, which only allow conditional
execution for branches. This allows for more compact code and reduces the
amount of branching required, but it also makes it harder to statically analyze
the code.

Chapter 3

Methodology

In this chapter, we describe the structure of the Arm Machine-Readable Spec-
ification, and the overall process of working with it. We also describe the
overall emulator design choices made in preparation for the implementation
of the emulator in the following chapter.

3.1 The ARM Machine-Readable Specification

When hardware is designed, it is of the utmost important that the behaviour of
the hardware is well-defined, such that software can be written that interacts
with this hardware. As processors have evolved over the years, their specifi-
cations have not only become more precise, but also significantly larger. As
these specifications usually contain enormous amounts of explanations writ-
ten in a mixture of natural language and pseudocode, this makes it difficult
to check the correctness of the specification, or to verify the implementation
of the processors against the specification. Because of this, there are many in-
stances of specifications being changed or amended after the related processor
has been released to improve on accuracy.

Arm Architecture Reference Manual

The current version of the Arm Architecture Reference Manual for A-profile
architecture[5], version DDI 04871.a, stands at an ungodly 11,952 pages. For
many years, these specifications were created after the implementation had
been built and served as a reference. Anyone wanting to use the specifications
for large-scale verification or reasoning about the correctness of the specifica-
tion had to manually read and transcribe the relevant parts of the specifica-
tions to whatever language they were using. This was both time consuming
and error prone. In an effort to run formal verification on ARM Processors, a
5-year internal project spearheaded by Alastair Reid changed the existing pro-
cess that generates the specification in order to produce a machine-readable,

11

12 CHAPTER 3. METHODOLOGY

executable specification[29]. The pseudocode originally used as an informal
description of the processor’s behaviour has been formalized into a new spec-
ification language called ASL, for Arm Specification Language. After recog-
nizing the other potential uses of such a specification, this machine-readable
specification was made (partially) publicly available under the term ”Explo-
ration Tools”[1], and is part of the Arm Architecture Reference Manual.

Machine-Readable Specification

With access to the Machine-Readable Specification, the first step was to get a
better understanding of the specification and how to extract specific informa-
tion from it. Since there is no overarching documentation for the specification,
this was done by reading parts of the specification and trying to extract in-
formation from it.

The Exploration Tools consist of three parts;

e Arm Architecture System Registers
e Arm A64 Instruction Set Architecture
e Arm A32/T32 Instruction Set Architecture

All three of these specifications are available in the form of a PDF docu-
ment, a set of machine-readable XML files, and a browsable HTML version.
All versions hold on to the same information, but the HTML version is much
easier to navigate manually and the XML version is much easier to work with
programmatically. For the sake of this project, we extract information from
the XML version of the specification and only use the HTML version for man-
ual verification.

SysReg

The ”Arm Architecture System Registers” specification, referred to as ”Sys-
Reg” from now on, contains XML files that describe the behaviour of the
system registers in the architecture. Each register is described in a separate
XML file, containing information like register fields, reset values, and access
permissions. A lot of this information is still written in natural language.
While this is useful for a reference document, this is very difficult to use in an
automated way.

Information regarding registers is implicitly used in ASL snippets. An
ASL snippet can directly reference a register by name and use its fields. For
example, the file for AArch32 register SCTLR (System Control Register),
defines a field called TE. This is the T32 Exception Enable bit that determines
whether an exception should run in the A32 or T32 state. This field is directly
referenced as SCTLR.TE, and there are no additional tags around it to help
narrow down where this is defined. Since the length of a field might be crucial

3.1. THE ARM MACHINE-READABLE SPECIFICATION 13

to the interpretation of an ASL snippet, the knowledge of the existence of
every single register and their fields is required to correctly interpret the ASL
snippets.

Register files also do not exclusively define a single register. Some regis-
ters have additional Secure and Non-Secure versions, denoted with a _S or _NS
postfix. These mapped registers are usually, but not always, defined as a regis-
ter mapping. For example, the PRRR register (Primary Region Remap Regis-
ter) defines PRRR_S and PRRR_NS, while SCTLR does not define SCTLR_S
and SCTLR_NS, while they are used in ASL snippets.

These cases where ASL presumably references a register and/or a register
field that is not described in the specification do not evoke confidence in the
correctness of the registers that are described. While any unknown register
and/or field can be abstracted away as a globally available variable, this is
not a good solution for a formal verification tool. The tool should be able to
reason about the correctness of the specification, and not just blindly accept
it.

Index files

The most important parts of the ”Arm A64 Instruction Set Architecture”
and ”"Arm A32/T32 Instruction Set Architecture” specifications, referred to
as "A64” and ”"AArch32” from now on, are their index files. These special
files describe how to map the bits of an instruction to the actual instruc-
tion it encodes. The index files contain a tree of nodes called the hierarchy,
which represent the way instructions are decoded. Non-leaf nodes represent
increasingly more specific groups of instructions, while leaf nodes represent
instruction classes, from now on called iclasses. The T32, A32, and A64 in-
struction sets consist of 1327, 1201, and 4321 nodes, respectively.

The hierarchy tree contains many structures called regdiagrams that spec-
ify bitpatterns with named ranges. These patterns are mutually exclusive
between nodes on the same level and can be used to decode an instruction.
The regdiagram is described in more detail in Section 4.1. By matching the
bitpattern of an instruction with the regdiagrams of the hierarchy, a path from
the root of the tree to an iclass can be found, as shown in Figure 3.1.

iclass sections

After the hierarchy, every iclass has a section that contains information about
the instruction class. An instruction table further decodes the instruction to
a specific instance within the class, identified by its unique encoding name,
or encname, and the name of the file that describes the instruction, called its
iform file. The instruction table is described in more detail in Section 4.1.

14 CHAPTER 3. METHODOLOGY

Figure 3.1: Example path in the a32 hierarchy tree
root

-y ~
- N
- / N
- ~
s / ~
- / ~
- N
- / ~

ldstimm dp

- N

- ~
- \ N
- ~
- \ ~
- ~
-z \ ~
- \ ~
- ~

xldst mul_half

N
N
N
N
N
N
N

ldstxreg ldstximm

~

iform files

The specification contains XML files, called iform files, for each instruction.
The AArch64 profile contains 1607 iform files, and the AArch32 profile con-
tains 566 iform files. These files contain a lot of information, from assembly
syntax to operational notes, but we are mostly interested in the ps_section
tags. These ps_sections express the semantics of the operation using ASL,
with XML tags throughout that links specific objects like functions to where
they are defined. This is mostly used to directly link to them in the HTML
version and sadly these tags are not always available, so this is not something
that can be relied on. Other parts of the iform files are used to improve the
overall quality of the projects, like the assembly syntax. This contains tem-
plates for instruction mnemonics and operands, which is added to the decoders
to give us a disassembler for free.

Every unique instruction encoding corresponds to multiple ps_sections; a
Decode section, an Execute section, and occasionally a Postdecode section.
These sections all have name attributes that suggest the existence of some file
hierarchy that is not included in the specification itself. While extracting these
snippets to their own file, we attempt to reconstruct this hierarchy, though it
became obvious later that this hierarchy is neither consistent, nor needed for
the tool to function.

ASL

Besides the index files, there are also special shared_pseudocode.xml files,
which contain an enormous amount of pseudocode snippets which describe
functions and other objects that are used by the instructions. The AArch64
profile for example contains 1697 of these sections.

ASL grew organically by expanding on the pseudocode from earlier ver-
sions of the specification. This was done in order to improve the transition
from the original specification, since moving over to a completely new speci-

3.2. EMULATION 15

fication gets rid of existing trust in the correctness of the specification. The
design of ASL was therefore also based on non-functional criteria such as the
space it occupies when printed.

All ASL is written for the context of the entire specification, and many
snippets have additional context, such as instruction snippets depending on
variables defined as fields in a regdiagram. In order to make sense of a function,
it might be required to go through large parts of the specification. This is
made significantly more difficult by the many different types of ambiguity in
the language that can only be resolved by knowledge from other parts of the
specification, such as the usage of "accessor” functions, which are functions
written like array accesses. Other more low-level ambiguities require the use
of a parsing with unbounded lookahead. ASL also uses bitvectors of arbitrary
length, and because it is strongly-typed, this means that type interference has
to use polynomials to represent the bitvector lengths.

At the time of writing, there is no formal language definition of the ASL
pseudocode. The PDF version of the specification contains an appendix which
provides a minimal definition useful for understanding the pseudocode, but
it glosses over many important details. Working with ASL was therefore
a process of trial and error, and not having a formal definition for the very
language that is used to describe the specification add another point of possible
failure to the verification process, since now you also have to reason about the
correctness of the parser.

3.2 Emulation

Emulation is the process of creating a virtual version of a system or machine
on another system or machine. This virtual version, or emulator, is designed
to behave like the original system, allowing software designed for the original
system to run on the emulator. Emulation is used in many fields, including
gaming, software development, and system testing. After going over the basics
of emulation, we will discuss the general design we used for our emulator, and
how we used the Arm Machine-Readable Specification to implement it.

High-Level Emulation

High-Level emulation aims to emulate the functionality of a program running
on specific hardware. The specifics of how the hardware implements certain
instructions are not important, and this allows the emulator to make full use
of the capabilities of the host hardware. This is the most common form of
emulation for professional emulators that try to fairly faithfully emulate a
system, but primarily focus on the experience of running the system. High-
level emulators have been developed for almost all major consoles, usually
using commonly-used disassembly frameworks or using their own set of tools.

16 CHAPTER 3. METHODOLOGY

Low-Level Emulation

Low-Level emulation aims to emulate the system itself, focusing on how in-
dividual instructions are implemented. This is the most common form of
emulation for small hobbyist emulators that target smaller, simpler systems.
Most of the work comes from transcribing the semantics of the instructions
into whatever language the emulator is written in. When these hobby projects
want to run as much of the original programs as possible, the systems have
to get more complex however, as there is a need for the emulation to be bug-
compatible. This means that the edge-cases and normally incorrect behaviour
are also preserved, as programs are occasionally reliant on specific incorrect be-
haviour. Many older systems have published hardware errata that give insight
into how things are implemented in hardware. This allows for the tracking
down of the causes of unexpected behaviour. Some programs unknowingly
make use of this behaviour, so a less faithful emulator would behave differ-
ently. Because of the precision potentially required to preserve the original
behaviour of the programs, many emulators aim to be cycle-accurate, or even
subcycle-accurate.

Emulation of the Arm Architecture

Emulation of the Arm architecture involves creating a virtual environment
that replicates the behaviour of an Arm-based system. Given that the goal
is not to emulate a specific system, but rather the abstract Arm architecture
itself, it is not possible to speak of higher-level emulation. There are hand-
written low-level emulators for Arm, but these are usually written for specific
systems, usually the ones available. The Arm Machine-Readable Specification
gives us the opportunity to go one step lower and emulate what is effectively
an abstraction over the microarchitecture. This allows us to emulate the Arm
architecture to an incredible level of precision, as the specification is designed
to be used by hardware designers to implement the Arm architecture in hard-
ware. This means that the specification is very precise, and includes many
details that are normally not relevant to software developers, that might be
overlooked when talking about the semantics of instructions.

You could also say that the emulator is running an abstract machine with
its own instruction set, the ASL instructions, and an execution loop that
uses the specification as a description of how to translate Arm instructions
into instructions for this abstract machine. In this way, the specification has
shifted the manual work of writing an emulator from the Arm semantics to
the ASL semantics. This is much less work, as the ASL semantics are much
smaller, but the lack of documentation still presents a hurdle.

Chapter 4

Implementation

With an endgoal in mind, but no clear path to get there, development was
largely driven by exploration and encountered limitations. In hindsight, many
of the design decisions made were not optimal, but were made to keep the
project moving forward.

4.1 Working with the ARM Machine-Readable
Specification

There is no specification for the specification, so the layout and structure
had to be experimented with to find out how it works. As mentioned in
Section 3.1, the specification can be viewed as consisting of two parts; the
instruction decoding by going through the encodingindex’s hierarchy tree, and
the instruction specific iformfiles. In order to simplify the process of working
with the specification, the files are preprocessed into forms that more easily
allow for integration into the emulator, as shown in Figure 4.1.

Because walking the hierarchy tree in xml for every instruction encountered
is a slow process, the regdiagrams are extracted, and a decoder is generated
for each instruction set that has cascading functions corresponding to nodes in
the tree. These functions end up with generating an instruction state which
has variables for the different fields in the regdiagram, initialized based on
the specific instruction. This state is directly used by the ASL interpreter, as
identifiers can directly refer to these fields by name.

Regdiagrams

All throughout the specification, regdiagrams are used to describe bitpatterns.
These regdiagrams are lists of boxes that describe ranges in those bitpat-
terns. For example, the decoding regdiagram for the instruction group mort-
lach_32bit_prod (Scalable Matrix Extension 32-bit Outer Product) includes
the boxes shown in Listing 4.1.

17

N O TR W

18 CHAPTER 4. IMPLEMENTATION

Figure 4.1: Extracting parts of the specification

,,

' index files | | iform files | ' shared_pseudocode i

N 225

,,,,,,,,,,,,,,,,,,

Regdiagram parsing

Emulator input

Listing 4.1: Two regdiagram boxes

<box hibit="29" width="1" name="op0" usename="1">
<c colspan="1" />

</box>

[...]

<box hibit="23" width="2">
<c colspan="2">10</c>

</box>

The first box defines a field called ”op0”, starting at bit 29 counting from the
right, with a width of 1. A single pattern runs over the whole range of 31-0,
or 15-0 for the shorter Thumb instructions, so bit 29 is the third bit from the
left. The box does not contain a value for it, so it matches with anything.
The second box does not name its field, but it does contain the value ”10”.
In order to condense this information, any further patterns will be written as

a bitstring with ”x” for unknown named bits and ”-” for unknown unnamed
bits. The regdiagram for the two boxes above would be written as;
Lo e e e e e e T L T T T T T T T

If we look at the A32 instruction ”ands x1, x2, x3, 1sl #4”, encoded as
[1]1]1To]1To]1]o o oJoJoJoTof1 1 oJoJoJoJofo o 1 o 1]oJofoJo o 1]

we can follow the hierarchy tree to see how the instruction is decoded. The
root node of the hierarchy has ten child nodes that describe different groups
or classes. Our instruction matches with a node with the groupname ”dpreg”
with decode regdiagram
Cl-T-Ixafofaf-T-T-T-T-T-T-T-[-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T- -]

The ”dpreg” group has twelve child nodes, of which our instruction matches

with the node with the iclass ”log_shift” with decode regdiagram
Ix[-Tol-T-T-TolxIx[x[-T-T-T-[-Ix[-T-T-T-T-T-T-T-T-T-T-T-T-T-1-]

© 00 O O i W N -

— = =
w N = O

14
15
16
17
18

19
20
21
22

4.1. WORKING WITH THE ARM MACHINE-READABLE
SPECIFICATION 19

This is a leaf node, so it has no further children.

Instruction Table

The instruction table is a table that maps the values of the fields in the reg-
diagram to the instruction that matches with those values. The regdiagram
for the ”log_shift” iclass defines 8 fields, but 4 are relevant for the instruction
table;

sf: bit 31

op: bits 30-29

N: bit 21

imm6: bits 15-10

The instruction table, partially shown in Listint 4.2, has a header that
defines the order of the fields, and rows that correspond to specific instances
of the instruction class. Matching on these fields gives us an encoding name,
iformid, and iformfile.

Listing 4.2: log_shift’s iclass_sect

<instructiontable iclass="log_shift" cols="6">
<thead class="instructiontable">
[...]
<tr id="heading2">
<th class="bitfields">sf</th>
<th class="bitfields">opc</th>
<th class="bitfields">N</th>
<th class="bitfields">imm6</th>
</tr>
</thead>
<tbody>
[...]
<tr class="instructiontable" encname="ANDS_64_log_shift"
— iformfile="ands_log_shift.xml" label="64-bit"
— oneofthismnem="2" first="t" last="t">
<td bitwidth="1" class="bitfield">1</td>
<td bitwidth="2" class="bitfield">11</td>
<td bitwidth="1" class="bitfield">0</td>
<td bitwidth="6" class="bitfield"></td>
<td class="iformname" iformid="ANDS_log_shift">ANDS (
— shifted register)</td>
<td class="enctags">64-bit</td>
</tr>
[...]
</tbody>

23

20 CHAPTER 4. IMPLEMENTATION

</instructiontable>

There are instances in which the attributes do not make sense and the
overall design starts to break down. For example, these bitfields can consist of
multiple named fields together with colons between them. The actual meaning
of this is not explained within the specification, and no matter what you
choose, it breaks something. In some cases, it seems to mean the entire interval
between the fields, which corresponds to the bitwidth given to the field. The
contents of these fields however mostly follow the idea of simply concatenating
the fields, leading to cases where the bitwidth and the actual length differ.

Listing 4.3: log_shift’s iclass_sect
<td bitwidth="7" class="bitfield">00000</td>

It is rather problematic that something as seemingly simple as expressing
a bitpattern is convoluted and inconsistent. This is a problem that is not
limited to the instruction table, but is present throughout the specification.

Parsing ASL

There is no formal grammar for ASL, so the development of a parser involved
a lot of trial and error. I chose to use the ANTLR[4] parser generator because
of its great python runtime. The ambiguities of ASL and the inherent prob-
lem of generating useful error messages made it difficult to write a complete,
correct grammar in one go, so it was developed in parallel with the rest of the
prototype; adding new rules as they were needed by the specific instructions
or functions encountered. There are a few weird edge cases in the specification
that heavily influenced the grammar. This eventual grammar used to gener-
ate the parser is overly permissive to deal with these edge cases and generally
assumes that the input is valid. The entire specification was used as a test-
suite for the parser, so while the generated parser can completely parse the
existing specifications, this does not guarantee that it can parse all valid ASL
code. In most cases, it would be preferable to change the edge cases in the
specification instead of changing the grammar to accommodate them, but the
specification is meant to be input to the project. The unbounded lookahead
required for parsing and the large amount of ambiguities in the specification
make it a relatively slow process, but preferably all parsing would be done
separately from the execution of the model, so this is not a major concern.

4.2 Design of the Emulator

Under the original goal of trying to emulate an Arm executable on a different
architecture, the emulator would have to describe the abstract behaviour of
each individual instruction. Given the size of the Arm instruction sets, this

4.2. DESIGN OF THE EMULATOR 21

Figure 4.2: Emulator design

,,

1. Get raw
instructions

2. Decode ANTLR generating

instructions

3. Parse all
relevant ASL

Execution Loop ASL Parser
4. Interpret parsed ASL
Emulator

would be a very large task. The specification provides the operational seman-
tics of the individual instructions, so using this specification shifts the level of
abstraction on which emulation is done. Instead of emulating the individual
instructions, the emulator can emulate the operational semantics, available in
ASL. The biggest advantage of this setup is that changes to the specifation
are automatically reflected in the emulator.

Skipping over the setup of an executable for a bit, Figure 4.2 shows the de-
sign of the emulator. The emulator takes an executable, and the preprocessed
specification and runs in a loop;

1. Fetch the next instruction from the executable.

2. Decode the instruction to determine the operational semantics.
3. Parse the relevant ASL snippets.

4. Interpret the parsed ASL.

5. Execute meta operations.

These meta operations are operations separate from the operational se-
mantics of the instructions, but are still necessary for the emulator to function.
Examples of these are incrementing the program counter after an instruction
is executed, and handling interrupts. In actuality, the emulator does not sep-
arate the parsing and execution of the ASL into separate steps, since the
interpretation of the ASL leads to new ASL snippets that need to be parsed

22 CHAPTER 4. IMPLEMENTATION

and interpreted. If performance was a concern, it would be better to fully
process the ASL snippets and partially evaluate instruction semantics, but
this is not the case for this emulator.

This is a very high level description of the execution loop, but it is enough
to start implementing the emulator. The first step is to fetch the next instruc-
tion from the executable. We are limiting ourselves to ELF executables, as
this is the most common format for Arm executables.

Reading ELF files

ELF files are normally executed by the operating system, which loads the
executable into memory, sets up the stack and registers, and then jumps to
the entry point of the executable. Often, this entry point is also in a special
section that invokes a dynamic linker, which loads all the shared libraries that
the executable depends on. The emulator does not have an operating system
it can depend on to do all this, so it has to do it itself.

The first step is to read the initial part of the executable, the elf header.
This header contains a lot of information about the executable, but we are
mostly interested in e_entry, the entry point, and e_phoff, the offset of the
program header table. The program header table holds headers for each indi-
vidual program header, which describe segments of the executable and where
in memory they should be loaded. Reading these program headers, we can set
up the memory for the executable, and we now know where to start executing
the executable.

Emulating memory

This introduces the first problem; the emulator needs to know how to deal
with memory. The obvious solution is to use a large continuous block of
memory for this, but this can be expensive and glosses over important memory
behaviour like memory mapped I/0, in which the same address space is used
for both memory and I/O devices. The specification is rather unclear about
how memory is supposed to be handled, choosing to declare but not define
the functions related to actually interacting with the memory. The way we
addressed this is by using a memory map, which is a mapping from address
ranges to their concrete values.

Executing ASL

After the context for the executable has been set up and it is possible to speak
of a current instruction, the emulator can start executing. After fetching the
instruction, decoding it, determining what ASL snippet expresses the opera-
tional semantics, and parsing said ASL, we come to the point where we have
to execute the ASL. Since large parts of the code only depend on static infor-
mation, such as what features are enabled, it would be possible to precompile

4.3. MISSING SPECIFICATIONS 23

the ASL to a more efficient format or do partial evaluation on it. This was
originally planned, but due to limitations in the specification, this was not
expanded upon.

The ASL is executed by an interpreter that directly uses the parsed ab-
stract syntax tree and evaluates it via in-order traversal. This is definitively
not the most efficient way to execute the ASL and heavily ties the emulator
to the parser, but it is a simple way to execute the ASL. The interpreter is
also responsible for handling operations that are not part of the specification,
such as the aforementioned memory interactions.

Dealing with unknowns

The specification is filled with ASL using partial values and unknowns. In
order to work with these, the most fundamental datatype in the specification,
the ’bits’, is expressed as a tritstring, a string of 1s, Os, and xs. These xs are
both used as wildcards during matching, and as unknown values, which means
that normal equality is not symmetric. These unknows are also propagated
through binary operations.

Meta operations

While the specification is very detailed when it comes to the operational se-
mantics of the instructions, it completely ignores the overarching process.
Something as simple as incrementing the program counter after an instruc-
tion is executed that does not change the program counter is not part of the
specification. This means that we had to use the standard pdf specifications
to determine what to do about more complicated meta operations, such as
handling interrupts and timers.

4.3 Missing Specifications

While the specification covers important parts of the architecture, including
a detailed specification of every single instruction, there are still many parts
to running an executable that are not covered by the specification.

Implementation Defined behaviour

Many important parts of the overall specification are underdefined; most no-
ticeably the main execution loop mentioned earlier, speculative execution and
multi-processing. The most important limiting factors of the specification are
the behaviours that differs per implementation, such as memory access and
caching. This leads to a lot of important parts of the specification simply
stating it is IMPLEMENTATION _DEFINED, and often not specifying what
the implementation should do.

w N

N O Ot~

24 CHAPTER 4. IMPLEMENTATION

Listing 4.4: ASL function only declared

// Returns the value read from memory, and a status.

// Returned value is UNKNOWN if an External abort occurred while
— reading the

// memory.

// Otherwise the PhysMemRetStatus statuscode is Fault_None.

(PhysMemRetStatus, bits(8+*size)) PhysMemRead(AddressDescriptor
— desc, integer size, AccessDescriptor accdesc);

If a function is not defined, only declared, then any model that wants to use
the specification has to provide a definition.

Listing 4.5: Implementation Defined behaviour

// HaveRME()

// =========

// Returns TRUE if the Realm Management Extension is implemented
<~ , and FALSE

// otherwise.

boolean HaveRME()
return boolean IMPLEMENTATION_DEFINED "Has RME extension";

Because of the modular nature of Arm processors, large parts of the spec-
ification hit functions that check whether a specific extension is supported.
While building a model on top of the specification, these IMPLEMENTA-
TION_DEFINED values can be given a value, but some of these implementa-
tion defined values require a very deep understanding of the entire architecture.
Some examples of such IMPLEMENTATION_DEFINED values are:

e "JOSCR UNDEFINED at EL0”
e "ID_AAG64ISAR2_EL1 trapped by HCR_EL2.TID3”
e "EL3 trap priority when SDD == "1""

e "Has increased Reciprocal Estimate and Square Root Estimate precision
support”

Together with the overall specification that outsources implementation defined
behaviour, it would be very helpful if there were also actual implementations
so you can reason about the behaviour of the specification without having
to figure out these implementation defined behaviour. It is of course near
impossible to provide the implementation behaviour of every single possible
combination of extensions, but it would be helpful if there were at least some
implementations of the most common combinations of extensions, such as the
most common processor configurations.

O UL W N =

4.3. MISSING SPECIFICATIONS 25

The way the emulator handles these implementation defined values and
functions is by using a separate set of files that contain handwritten ASL
snippets that define some of these. These snippets were all created in the
order in which they were needed by benchmark programs ran on the emulator.

Limits of ASL

Listing 4.6: Obscured Execution

if 1UsingAArch32() then

ExecuteA64(0xD5330501<31:0>); // A64 "MRS X1,DBGDTRRX_ELO"

ExecuteA64(0xB8004401<31:0>); // A64 "STR W1, [X0],#4"

X[1] = bits(64) UNKNOWN;

else

ExecuteT32(0xEE10<15:0> /*hwix/, 0x1E15<15:0> /*hw2x/); // T32 "
<% MRS R1,DBGDTRRXint"

ExecuteT32(0xF840<15:0> /xhwix/, 0x1B04<15:0> /*hw2x/); // T32 "
< STR R1, [RO],#4"

R[1] = bits(32) UNKNOWN;

Because of the limitations of ASL itself, some operations like invoking a
specific instruction are unintentially obfuscated, with the important informa-
tion left in comments. In this case, ExecuteA64 and ExecuteT32 are also only
declared and not defined. These limitations are not a problem for using the
specification, but it does show a remarkable property of the specification; the
instructions all exist in isolation, with some overlapping functionality split
off into the shared_pseudocode snippets. Inputs to these instructions are left
as fields in the encoding XML, and it is impossible to directly refer to other
instructions.

Other specification scopes

A program is much more than just the instructions that are executed. There
are many other parts of a program that are not covered by the specification,
like its interactions with the operating system. For an emulator that wants
to run a program, it needs to know how to load the program into memory,
how to start the program, what system calls do, etc. These are all parts
of the operating system specification, which is obviously not available in the
same way as the architecture specification. In order to fully emulate a pro-
gram, other specifications are needed, and it would obviously be very helpful
if different machine-readable specifications were available and expressed in the
same way.

Chapter 5

Evalutation

The goal of this project is to evaluate the feasibility of using the Arm Machine-
Readable Specification for reasoning about the behaviour of Arm programs.
To this end, we have constructed an emulator that could in theory run binaries
compiled for Arm on a non-Arm architecture.

5.1 Emulation In Steps

Since there are many moving parts involved with emulating a program, we
decided to evaluate the capabilities of the emulator in steps, starting with
the simplest possible program, and gradually increasing the complexity of the
programs. This allowed us to test the emulator in isolation, and to ensure that
the emulator was able to execute the instructions correctly before moving on
to more complex programs. While the stereotypical "Hello World” program
is usually considered the simplest possible program, on a machine code level,
it is actually quite complex, as it uses a runtime with a standard library and
uses system calls to interact with the operating system. Instead, we first try
to run individual instructions.

Prerequisites

Instructions make use of structures and functions defined in the shared pseu-
docode, and are intended to be run in the context of an initialized processor.
In order to run any instruction, it is therefore required to load the shared
pseudocode into the emulator, and initialize the processor.

The shared pseudocode spans 1697 individual ASL files, defining or declar-
ing the structures shown in Figure 5.1. These files have to be parsed, in-
terpreted, and potentially partially evaluated before any instruction can be
executed.

The SysReg part of the specification spans 1627 individual xml files, defin-
ing 273 AArch32 registers, 548 AArch64 registers, and 535 shared registers.

27

© 00 N Tt W

28 CHAPTER 5. EVALUTATION

Figure 5.1: Shared Pseudocode Structures

A Archer32 | AArch64 | Shared

Function Definitions 192 517 596
Function Declarations 16 58 93
Constants 4 20 60
Enumerations 5 27 45
Accessors 16 56 10
Variables 2 33 15
Arrays 1 4 3

Types 0 13 28

These registers will also have to be loaded into the emulator before any instruc-
tion can be executed, as it would otherwise be impossible to know whether an
identifier is a register or not.

Loading and parsing all these files takes well over a minute, and has to be
done every time the emulator is started. This could be improved by preparsing
and precompiling the files, and an earlier version of the emulator did this, but
it was not reintroduced after a major refactor of the emulator due to the minor
benefit it provided compared to the increased complexity of the emulator.

Registers

In order for a program to achieve anything, it needs to be able to interact
with registers. The simplest possible program that allows us to test this is
a program that sets a register, and then copies that value to another regis-
ter. This not only tests the ability to set and read registers, but also all the
surrounding functionality.

E3A00001 - mov r0, #1
E1A01000 - mov rl, r0

In order to execute these instructions, we need to set the conditional flags,
since those are relied upon by all instructions. To observe the behaviour of
the instructions, we display the values of the registers after every instruction
is executed.

PC : 0x0000000000000000

NZCV

0000O0

R[0] : 00000000000000000000000000000001 = 00000001
R[1] : 00000000000000000000000000000001 = 00000001
R[2] ! XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

R[3] ! XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

R.[4] I XXXXXXXXXX XX XX XXX XX XX XXX XX XXXXXX

10
11
12
13
14
15
16
17
18
19

N R

5.1. EMULATION IN STEPS 29

R[5] I XXX XXXXXXXXXXXXXXXXXXXXXXXXXXKXXX
R[6] I XXXXXXXXXXXXXXXX XXX XXX XXX XXX KXXXX
R[7] I XXX XXXXXXXXXXXXXXXXXXXXXXXXXXKXXX
R[8] I XXXXXXXXXXXXXXXX XXX XXX XXX XXX XXXX
R[9] I XXXXXXXXXXXXXXXXXXXXXXXXXXXXKXXXX
R[10] ! XXXXXXXXXXXXXXXXXXXXXXXXXXXKXXXXX

R[11] (fp): XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
R[12] (ip): XXXXXXXXXXXXXXXXXXXXXXXXXXXKXXXX
R[13] (sp): XXXXXXXXXXXXKXXXXXXXXXXXXXXXXXXX
R[14] (I1r): XXXXXXXXXKXXXXXXXXXXXXXXXXXKXXXX

Memory Access

If a program needs to hold on to more values than there are registers, it
needs to be able to access memory. Normally, the operating system handles
memory management, so programs have to request memory regions and are
only allowed to access the memory regions they have been granted access to.
In the emulator, this is glossed over, and the program is allowed to access any
memory address. This is obviously not a realistic assumption, but it is good
enough for testing the emulator. In order to test memory access, we need to
be able to write to memory, and then read from that memory location. This
can be done by writing to register rl, storing that register value into memory
at address #400, and then loading that memory into register r2.

E3AOOE19 - mov r0O, #400
E3A0104D - mov rl, #77
E5801000 - str ri1, [rO]
E5902000 - 1ldr r2, [r0]

Trying to run these instructions surfaces the next kind of problem. The
ASL code uses the term SCTLR_NS, which is not defined anywhere in the
specification. Context clues lead us to infer that this is a Non-Secure version
of the group of registers like SCTLR_ELI1, but this is yet another assumption
someone has to make when trying to use the specification.

Cold Boot

In order to initialize the processor, the emulator has to run a cold boot se-
quence. This is defined in the specification as the function AArch32.TakeReset.
This function checks security permissions, resets register values, sets up the
PSTATE, and then jumps to the reset vector. This reset vector also has to be
set by initializing the Reset Vector Base Address Register.

The entire boot sequence requires setting thirteen feature flags, uses five
declared but undefined functions, needs two implementation defined values,
and makes 2009 function calls. A total of 57 ASL files are used to execute this

30 CHAPTER 5. EVALUTATION

function with the features that we have enabled. The vast majority of these
functions calls are for checking exception levels and security permissions which
depend on static information, so it would be possible to either precompile
the ASL to a more efficient format or do partial evaluation on it. This was
originally planned, but due to limitations in the specification, this was not
expanded upon.

Graceful Termination

Up until this point, we have been disregarding the Program Counter and the
entire execution loop around it, instead directly feeding the emulator what
instructions to execute. In order to emulate a program, we need to be able to
have the emulator decide what instruction to execute next. To construct this
execution loop, we start at the end.

Program execution usually starts at a predefined entry point, and keeps
going until something prevents further execution. In the context of a complete
computer, the execution of a program is handled by the operating system, and
when the program runs out of instructions to execute without gracefully telling
the operating system it wants to stop, it will keep going and try to execute
instructions from memory that it is not allowed to access. This will trigger a
memory access violation, which will prompt the operating system to terminate
the program. In the emulator, there is no operating system to handle this, so
the execution will run into unknown memory, which will crash the emulator if
it is not handled. In order to prevent this, we need to be able to detect when
the program has finished executing. The two ways we can do this is by either
triggering an exception, such as a breakpoint, or by making a system call to
the operating system to terminate the program.

E1200070 - bkpt #0

Trying to trigger a breakpoint in the emulator surfaces the next problem.
The specification defines the BKPT instruction as a call to
A Arch32.SoftwareBreakpoint(imm16). This function intends to go through
the normal exception process, but it runs into a situation where it tries to
access a value that has not been set, in a structure it defines itself. It is
of course possible to alter the AArch32.SoftwareBreakpoint function to set
this value, but if we have to fix every single problem we run into by creating
our own implementation, it defeats the purpose of having this specification.
The whole point of this instruction was to add a way to inspect the state
of the emulator to observe the behaviour of the program. Running into an
exception before we even have a program to inspect kills any confidence we
might have had in the possibility of fully emulating a program. At the end of
the function cascade, AArch32.EnterModelnDebugState sets specific flags in
the most important registers, including the ERR flag on the External Debug
Status and Control Register EDSCR, to indicate that normal control flow is

5.1. EMULATION IN STEPS 31

aborted. The status code is set to indicate that the exception was caused by a
breakpoint, so we can use this to detect the breakpoint and inspect the state
of the emulator, followed by restoring the state of the processor and resuming
execution by means of a special ExitDebugState function.

To eventually support full programs, we also look at the system call in-
struction. Since operating system interactions are obviously context depen-
dent, we cannot directly ask it to stop the program for us. We cannot do
this in the emulator without making some assumptions about the operating
system, so we chose to assume a Linux environment, in which system calls are
made by setting the value of the r7 register to the system call number, and
then triggering an exception with the SuperVisor Call instruction.

E3A00000 - mov r0O, #0
E3A07001 - mov r7, #1
EF000000 - svc #0

Register r0 is an argument supplied to the system call, which in this case
is the return code of the program, where 0 indicates success.

The execution of the SVC instruction reaches the same part of the code
responsible for handling breakpoints, where execution is moved to an address
that normally holds a handler function defined by the operating system. Since
we are not running in an operating system, we would have to define this
handler function ourselves. We instead chose to detect that control flow was
transferred to the handler, and use the r0 and r7 registers to determine what
system call was made. In this case, we can detect that the system call was
exit, and terminate the program.

Function Calls

Function calls in Arm are implemented as branches ”with link” | which means
that the address of the next instruction to return to after the function is saved
into general register r14, also known as the link register Ir. For nested function
calls, the link register is usually pushed onto the stack. This behaviour can
be tested by running a simple function call;

EBO00000 - bl #8

This will branch and link one instruction forward, meaning the address after
this instruction is saved into the link register. The function can then return
using the bx instruction, which branches to the address in a register.

E12FFF1E - bx 1r

Running in memory

In order to handle actual branching in the assembly code, we need to use the
actual Program Counter. This is done by implementing a small loop that

32 CHAPTER 5. EVALUTATION

fetches the instruction at the address pointed to by the Program Counter,
and executes this. A random comment on the Mem _with_type function sug-
gests that instruction fetches are done by directly calling A Arch32.MemSingle.
Since the Program Counter is only incremented if the instruction did not cause
a branch, we add a globally available state variable that indicates whether a
branch was triggered.

Because the instruction decoding is done outside of ASL, the execution
loop is not represented by an ASL snippet, but rather as python function that
calls upon the emulator to execute specific statements.

Since control flow is now handled within memory, we can no longer rely
on feeding the emulator instructions, and instead write the instructions to
memory, point the Program Counter to the first instruction, and then start
the execution loop. For smaller programs, we dump the emulator state after
every instruction, and for larger programs, we only dump the state when the
program terminates.

Loading ELF files

The final step in running an actual executable is to load a compiled program
into memory and set up its context. We go over the segments of the ELF file,
and write them to the addresses specified in the headers. We then set the
Program Counter to the entry point in the main header. It would be nice to
be able to just start the execution loop at this point, but the program still
has some context that needs to be recreated. If we pick a statically compiled
C program with just a main function, there is still a lot of code surrounding it
that is relevant. Instead of the main function being called, the program first
sets up the C environment and the standard library, which involves setting
up static data and a lot of stack manipulations. Likewise, when the main
function returns, the program does not immediately terminate, but instead
cleans up the C environment and the standard library first.

When we try to run a C program on the emulator, it runs into several
instances where registers and memory addresses are assumed to have specific
values. Setting these values allows us to run the program for a bit, but at some
point, the program tries to access memory that is supposed to be initiated by
the loader, and without building an entire loader, it is almost impossible to
figure out what values the program is expecting.

It is possible to try to run programs by skipping the C runtime initialization
by starting at the address pointed to by the ”main” symbol instead of starting
at the original entry point, but any non-trivial program relies on this runtime,
so this severely limits the programs that can be run.

5.2. LEVEL OF DETAIL 33

5.2 Level of Detail

The aforementioned underspecification of certain parts of the Arm architecture
presents a problem for the emulation of Arm binaries. There are large parts
of the specification that are left as implementation defined, which means that
the emulator has to make assumptions about the behaviour of the processor.
This is especially problematic for the emulation of binaries, as the compiler
can make use of these implementation defined behaviours to optimise the
code. This means that the compiler can generate code that is correct under the
assumption that the executable will be run on a specific processor, which might
behave wildly different from the processor that the emulator is pretending to
be.

Memory and Cache

Going into this project, the first potential problem that came to mind was
how the specification would express the caching behaviour of the processor.
Over time, the performance of memory has become relatively worse compared
to the processor, and so most modern processors have multiple levels of cache,
including caches that are shared between clusters. Because of this setup, we
expected to find some form of specification regarding the inner workings of
the cache controller that controls all aspects of the caches in tandem with the
core. Sadly all aspects of memory handling and multiprocessing, such as the
cache, are left as implementation defined. This is not necessarily a problem
for the emulator, as it can be abstracted over, but it does mean that all the
interesting details of memory behaviour is lost.

5.3 Emulation Performance

There are many criteria that can be used to evaluate the performance of an
emulator. Traditionally, the most important metrics for an emulator are its
speed and its accuracy. However, in the context of this project, we are not as
interested in the speed of the emulator, and more interested in the accuracy
and functionality of the emulator.

The accuracy of the emulator refers to how faithfully it reproduces the
behavior of the actual hardware. In the case of an Arm emulator, it involves
ensuring that the instructions are executed correctly and produce the expected
results.

For this purpose, Arm has their own private test suite, which is used to test
implementations against their specification. Since this test suite is not public,
we have not been able to use it to test our emulator, instead we have had to
rely on creating our own test suite. The initial goal of the test suite was to
gather a set of binaries that we could use to benchmark the emulator, however,
since we were unable to get the emulator to run any binaries due to missing

34 CHAPTER 5. EVALUTATION

context, we had to settle for manually running the emulator interactively and
using handwritten assembly-level programs to test the emulator. The test
suite is not comprehensive at all, since it was created while still under the
assumption that the emulator would be able to run binaries.

Instruction Times

On an actual processor, different instructions have their execution times ex-
pressed in how many cycles it takes. This is mostly influenced by whether or
not the instruction uses the barrel shifter or the program counter.

For the emulator, the execution time of a single instruction depends on
the amount of specification required to express its semantics. The biggest in-
fluence on this is the security involved with the instruction; instructions that
touch upon security sensitive parts of the system, such as memory manage-
ment, have checks in place to see whether the current execution level of the
processor is allowed to interact with that part of the system.

Encoding | Instruction Files | Time (ms)
E3A00001 | mov 10, #1 19 2.4
E1A01000 | mov rl, r0 20 24
E5801000 | str rl, [r0] 82 10.1
E5901000 | 1dr r1, [r0] 78 124
FE0811280 | add rl, rl, r0, Isl #3 28 4.1
E0010091 | mul r1, r1, r0 20 4.5
E1510000 | cmp rl, r0 25 4.0
EA000017 | b #100 19 0.8

Table 5.1: Instruction execution times

Table 5.1 shows the execution statistics of the basic set of instructions. The
emulator caches instruction decoding, so these times only reflect the actual
execution of the instruction semantics. The times are the average of 1000
executions of the instruction, and the number of files is the number of ASL
files interacted with during the emulation of the instruction. The absolute
times are not very important, since that heavily depends on the hardware the
emulator is running on, but the relative times are interesting. The memory
instructions are by far the slowest, since they require a lot of checks to ensure
that the memory access is allowed.

Given the successful emulation of register, memory, alu, and branching
instructions, a lot of different types of programs can be emulated. One of the
biggest limiting factors is the lack of support for dynamically linked library
functions, since even something as simple as a modulo operation requires a
call to a library function.

Chapter 6

Discussion

While working with the Arm Machine-Readable Specification, we kept run-
ning into issues related to two underspecified aspects; implementation defined
behaviour; and behaviour that escapes the specification, such as operating
system interactions. These issues are not necessarily problems with the spec-
ification itself, as it is not meant to be a complete specification of the Arm
ISA, but it does mean that the specification is not suitable for modelling entire
programs.

6.1 Requirements for a Specification

A specification is as good as its use cases. As such, we want a specification to
be as complete as possible, and entirely correct.

The ASL specification covers large parts of the Arm ISA, and can be
used to reason about the behaviour of sequences of simple instructions. For
more complex operations however, such as memory caching and concurrency,
the specification is severely lacking in detail. It instead leaves these parts
as implementation defined, outsourcing the specification of these parts to the
original Arm Reference Manual, and the implementation of these parts to the
user of the specification. While this means that the specification can be used
for comparing the behaviour of different implementations and verifying that
these implementations follow the specification, it can only do this for the parts
of the specification that are actually specified. Research into verifying the
behaviour of Arm programs focusses on these more complex, underspecified
parts of the specification, exactly because they are more complex.

While the specification is not complete, it has a very high level of detail,
and is created by the authority on the Arm architecture, Arm themselves. This
gives the specification a high level of trustworthiness. Of course, just like with
any large enough project, the specification is not without its flaws. So far, Arm
has released several versions of the specification, each accompanied by a list
of changes that fixed old bugs, and a list of known issues that are to be fixed

35

36 CHAPTER 6. DISCUSSION

in a future release. One of the things bringing down the trustworthiness of
the specification is its obscurity. While the specification is publicly available,
it is not very well known, and there is not a lot of documentation available on
how to use it. This means that there is a high barrier to entry for anyone who
wants to use the specification, and it is not very likely that the specification
will be used by many others outside of Arm. Usage of the specification can
bring to light issues, so the lack of usage means that there is a higher chance
that issues will go unnoticed.

The biggest gripe we have with the specification is that there is this idea
for an objective, correct interpretation of the specification, yet all executable
code is written in a domain specific language that is not described within
the specification, while they could have simply embedded the actual parsed
abstract syntax tree. This would not only make more sense in the context
of the specification, but it would also make it a lot easier to work with, as
now any user of the specification has to write their own parser for the ASL
language, and deal with the inconsistencies and ambiguities of the language
that would be cleared up by directly embedding the AST.

6.2 Implementation Specific Specifications

It is obvious that a specification for the Arm architecture cannot go into detail
about the implementation of every single piece of hardware that implements
the Arm architecture. This is why the specification is written in a way that
allows for abstracting over the parts that differ between implementations. It
does limit the specification however that there is neither a simplified abstract
implementation, or at least some concrete implementations available, for ex-
ample for the most common Arm processors. There is also no easy way to
construct a possible implementation from the specification, as the specifica-
tion is not written in a way that lends itself to implementation. You would
need to provide an implementation for each declared but undefined function in
the entire specification, which requires domain knowledge about nearly every
extension and feature of the Arm architecture, and requires you to express
those features in a way that is compatible with the rest of the specification.
Since this is a monumental task, it is not surprising that there are no imple-
mentations available created by people outside of Arm.

6.3 OS Specifications

While having an instruction set specification goes a long way towards auto-
mated reasoning about the behaviour of a program, too much of a program’s
behaviour depends on the operating system. Operating systems used to be
complex but compact pieces of software, but as they have grown in complexity
and size, they have become almost as complex as the hardware they run on.

6.3. OS SPECIFICATIONS 37

Added to this is the fact that operating systems are not completely standard-
ised, and that many operating systems are closed-source, and it becomes clear
that it is not feasible for a small team to create a specification for an operating
system that is as complete as the Arm Machine-Readable Specification. While
it is possible to create a small specification for specific parts of the operating
system, like system calls, we would prefer to have a specification that covers
the more complex parts of the operating system too, like the scheduler and
memory management.

Chapter 7

Conclusion

The goal of this project was to evaluate the Arm Machine-Readable Specifi-
cation as an authoritative source of information about the Arm architecture,
and for its possible application in the fields of binary analysis and binary
translation. For this purpose, we have constructed an emulator that uses the
specification as its only source of instruction semantics. We have found that
the specification is a very useful resource for understanding the inner work-
ings of the execution of individual instructions, and that it is a good starting
point for creating a binary analysis tool. However, we have also found that
the specification is not complete enough to be used as a source of truth, as it
is missing crucial information about overarching concepts and implementation
specific details.

7.1 Summary of the limitations of the ARM
Machine-Readable Specification

The Arm Machine-Readable Specification has a couple of good things going
for it, but it is being held back by a couple of big limitations. Not just the
gaps in the specification, but also the overall lack of attention to the needs of
the user of the specification and the level of polish in general.

During our time working with the specification, we have encountered issues
including but not limited to:

e References to a layout of the specification that is much better organised

References to non-existent sections

Inconsistent usage of XML attributes, such as the attributes related to
the instruction hierarchy

Contradictory information, such as length attributes that do not match
the length of the data

39

40 CHAPTER 7. CONCLUSION

o Important details left in comments

Besides the issues within the specification, the biggest stumbling block for
working with the specification is the lack of documentation. Figuring out the
layout of the specification, and how to use it, took a lot of time and effort
spent on trial and error experimentation.

The limited scope of the specification, namely only covering the semantics
shared by all implementations, yet barely providing any information about
the implementation-specific semantics, means that the use-cases for the spec-
ification are rather limited.

7.2 Future Work

The Arm Machine-Readable Specification is a step in the right direction for
expressing the operational semantics of a program, but there are a lot of prob-
lems with it that are not easily solved without significant resources. REMS[32],
the Rigorous Engineering of Mainstream Systems group, aims to develop a
mathematically rigourous approach to working with more robust and secure
systems. They have worked on many projects regarding models and semantics
on not just instruction sets, but also memory behaviour, concurrency, ELF file
linking, and more. Their ISA specification language, Sail, is a superset of ASL,
and their Arm instruction set model is generated from a closed-source, more
complete version of the Arm Machine-Readable Specification. This is made
possible by the extensive amount of funding and industry contact available to
the group.

With Arm mostly neglecting their own Machine-Readable Specification,
we would not be surprised if the Sail model would be adopted to become the
official specification, just like has happened to their RISC-V model. In effect,
Sail is what this project would become given enough time and resources. Most
of the possible extensions or other avenues of future work we have considered
are already being worked on by the REMS group; including linksem[21], formal
model for ELF linking, and Cerberus[24], an executable formal model for a
subset of C.

If there was a need to pick a single, specific future direction for the project,
it would be to pick a specific implementation and create an addition to the
specification that provides all the ASL required to never run into unknown,
implementation defined behaviour. Could be done by developing a system that
runs instructions on actual hardware and on the emulator, both to validate
the correctness of the ASL, and as a way to figure out the implementation
specific details. This would be a very large undertaking, and would require
a lot of time and resources, but it would be a very valuable addition to the
specification.

Bibliography

URL: https://developer . arm . com/ downloads/ - /exploration -
tools.

Kapil Anand et al. “A Compiler-Level Intermediate Representation Based
Binary Analysis and Rewriting System”. In: Proceedings of the 8th ACM
European Conference on Computer Systems. EuroSys ’13. Prague, Czech
Republic: Association for Computing Machinery, 2013, pp. 295-308.
ISBN: 9781450319942. por1: 10.1145/2465351 . 2465380. URL: https:
//doi.org/10.1145/2465351.2465380.

Dennis Andriesse et al. “An In-Depth Analysis of Disassembly on Full-
Scale X86/X64 Binaries”. In: Proceedings of the 25th USENIX Con-
ference on Security Symposium. SEC’16. Austin, TX, USA: USENIX
Association, 2016, pp. 583-600. 1SBN: 9781931971324.

ANTLR. URL: https://www.antlr.org/.

Arm Architecture Reference Manual for A-profile architecture. URL: https:
//developer.arm.com/documentation/ddi0487/latest.

Roberto Baldoni et al. “A Survey of Symbolic Execution Techniques”.
In: ACM Comput. Surv. 51.3 (2018).

FErick Bauman, Zhiqgiang Lin, and Kevin W. Hamlen. “Superset Dis-
assembly: Statically Rewriting x86 Binaries Without Heuristics”. In:
NDSS. 2018.

Fabrice Bellard. “QEMU, a Fast and Portable Dynamic Translator”.
In: Proceedings of the Annual Conference on USENIX Annual Technical
Conference. ATEC ’05. Anaheim, CA: USENIX Association, 2005, p. 41.

Binary Ninja. URL: https://binary.ninja/.
David Brumley et al. “BAP: A Binary Analysis Platform”. In: CAV.
2011.

Vitaly Chipounov, Volodymyr Kuznetsov, and G. Candea. “S2E: a plat-
form for in-vivo multi-path analysis of software systems”. In: (2011). DOI:
10.1145/1950365 . 1950396. URL: https://www. semanticscholar.
org/paper/2fb716c1119e2da8f896222f48dbac11209e2486.

41

https://developer.arm.com/downloads/-/exploration-tools
https://developer.arm.com/downloads/-/exploration-tools
https://doi.org/10.1145/2465351.2465380
https://doi.org/10.1145/2465351.2465380
https://doi.org/10.1145/2465351.2465380
https://www.antlr.org/
https://developer.arm.com/documentation/ddi0487/latest
https://developer.arm.com/documentation/ddi0487/latest
https://binary.ninja/
https://doi.org/10.1145/1950365.1950396
https://www.semanticscholar.org/paper/2fb716c1119e2da8f896222f48dbac11209e2486
https://www.semanticscholar.org/paper/2fb716c1119e2da8f896222f48dbac11209e2486

42

[12]

BIBLIOGRAPHY

Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. “The
S2E Platform: Design, Implementation, and Applications”. In: ACM
Trans. Comput. Syst. 30.1 (Feb. 2012). 1SsN: 0734-2071. pOI: 10.1145/
2110356 . 2110358. URL: https://doi . org/10 . 1145/2110356 .
2110358.

Cutter. URL: https://cutter.re/.
Clutter repository. URL: https://github.com/rizinorg/cutter.

Alessandro Di Federico, Pietro Fezzardi, and Giovanni Agosta. “rev.ng:
A Multi-Architecture Framework for Reverse Engineering and Vulner-
ability Discovery”. In: 2018 International Carnahan Conference on Se-
curity Technology (ICCST). 2018, pp. 1-5. DOI: 10.1109/CCST.2018.
8585654.

Alessandro Di Federico, Mathias Payer, and Giovanni Agosta. “Rev.Ng:
A Unified Binary Analysis Framework to Recover CFGs and Function
Boundaries”. In: Proceedings of the 26th International Conference on
Compiler Construction. CC 2017. Austin, TX, USA: Association for
Computing Machinery, 2017, pp. 131-141. 1SBN: 9781450352338. DOI:
10 . 1145 /3033019 . 3033028. URL: https://doi.org/10. 1145/
3033019.3033028.

Ghidra. URL: https://ghidra-sre.org/.

Ghidra repository. URL: https://github.com/NationalSecurityAgency/
ghidra.

Xuan Guo and Robert Mullins. Accelerate Cycle-Level Full-System Sim-
ulation of Multi-Core RISC-V Systems with Binary Translation. 2020.
DOI: 10.48550/ARXIV.2005.11357. URL: https://arxiv.org/abs/
2005.11357.

IDA. URL: https://hex-rays.com/ida-pro/.

Stephen Kell, Dominic P. Mulligan, and Peter Sewell. “The Missing
Link: Explaining ELF Static Linking, Semantically”. In: Proceedings of
the 2016 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications. OOPSLA 2016.
Amsterdam, Netherlands: Association for Computing Machinery, 2016,
pp- 607-623. 1SBN: 9781450344449. DOI: 10.1145/2983990 . 2983996.
URL: https://doi.org/10.1145/2983990.2983996.

Chi-Keung Luk et al. “Pin: Building Customized Program Analysis
Tools with Dynamic Instrumentation”. In: Proceedings of the 2005 ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation. PLDI’05. Chicago, IL, USA: Association for Computing Ma-
chinery, 2005, pp. 190-200. 1sBN: 1595930566. DOI: 10.1145/1065010.
1065034. URL: https://doi.org/10.1145/1065010.1065034.

https://doi.org/10.1145/2110356.2110358
https://doi.org/10.1145/2110356.2110358
https://doi.org/10.1145/2110356.2110358
https://doi.org/10.1145/2110356.2110358
https://cutter.re/
https://github.com/rizinorg/cutter
https://doi.org/10.1109/CCST.2018.8585654
https://doi.org/10.1109/CCST.2018.8585654
https://doi.org/10.1145/3033019.3033028
https://doi.org/10.1145/3033019.3033028
https://doi.org/10.1145/3033019.3033028
https://ghidra-sre.org/
https://github.com/NationalSecurityAgency/ghidra
https://github.com/NationalSecurityAgency/ghidra
https://doi.org/10.48550/ARXIV.2005.11357
https://arxiv.org/abs/2005.11357
https://arxiv.org/abs/2005.11357
https://hex-rays.com/ida-pro/
https://doi.org/10.1145/2983990.2983996
https://doi.org/10.1145/2983990.2983996
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1145/1065010.1065034

BIBLIOGRAPHY 43

23]
[24]

[25]

[26]

IS
i)

N
L

‘W
=2

‘W
=

W
o

‘W
)

w
A

w

[36]

[37]

McSema repository. URL: https://github.com/lifting-bits/mcsema.

Kayvan Memarian et al. “Exploring C Semantics and Pointer Prove-
nance”. In: Proc. ACM Program. Lang. 3.POPL (Jan. 2019). pDOI: 10.
1145/3290380. URL: https://doi.org/10.1145/3290380

Susanta Nanda and tzi-cker Chiueh. “A Survey on Virtualization Tech-
nologies”. In: (Jan. 2005).

Nicholas Nethercote and Julian Seward. “Valgrind: A Framework for
Heavyweight Dynamic Binary Instrumentation”. In: Proceedings of the
28th ACM SIGPLAN Conference on Programming Language Design and
Implementation. PLDI ’07. San Diego, California, USA: Association for
Computing Machinery, 2007, pp. 89-100. 1SBN: 9781595936332. DOI: 10.
1145/1250734.1250746. URL: https://doi.org/10.1145/1250734.
1250746.

Radare. URL: https://rada.re/n/.

Radare2 repository. URL: https://github.com/radareorg/radare2.

Alastair Reid. “Trustworthy Specifications of ARM R v8-A and v8-M
System Level Architecture”. In: Oct. 2016. DOI: 10.1109/FMCAD.2016.
7886675.

rellic repository. URL: https://github.com/lifting-bits/rellic.
remsll repository. URL: https://github.com/lifting-bits/remill.

Rigorous Engineering of Mainstream Systems. URL: https://wuw.cl.
cam.ac.uk/~pes20/rems/index-intro.html.

Rizin. URL: https://rizin.re/.
Rizin repository. URL: https://github.com/rizinorg/rizin.

Eric Schulte, Michael D. Brown, and Vlad Folts. “A Broad Comparative
Evaluation of x86-64 Binary Rewriters”. In: Cyber Security Experimen-
tation and Test Workshop. ACM, Aug. 2022. DOI: 10.1145/3546096 .
3546112, URL: https://doi.org/10.1145%2F3546096.3546112

Yan Shoshitaishvili et al. “SOK: (State of) The Art of War: Offensive
Techniques in Binary Analysis”. In: 2016 IEEE Symposium on Security
and Privacy (SP). 2016, pp. 138-157. pDo1: 10.1109/SP.2016.17.

Shuai Wang, Pei Wang, and Dinghao Wu. “Reassembleable Disassem-
bling”. In: USENIX Security Symposium. 2015.

https://github.com/lifting-bits/mcsema
https://doi.org/10.1145/3290380
https://doi.org/10.1145/3290380
https://doi.org/10.1145/3290380
https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1145/1250734.1250746
https://rada.re/n/
https://github.com/radareorg/radare2
https://doi.org/10.1109/FMCAD.2016.7886675
https://doi.org/10.1109/FMCAD.2016.7886675
https://github.com/lifting-bits/rellic
https://github.com/lifting-bits/remill
https://www.cl.cam.ac.uk/~pes20/rems/index-intro.html
https://www.cl.cam.ac.uk/~pes20/rems/index-intro.html
https://rizin.re/
https://github.com/rizinorg/rizin
https://doi.org/10.1145/3546096.3546112
https://doi.org/10.1145/3546096.3546112
https://doi.org/10.1145%2F3546096.3546112
https://doi.org/10.1109/SP.2016.17

	Preface
	Contents
	Introduction
	Motivation
	Problem Statement
	Overview

	Background
	Binaries
	Semantics
	Binary Analysis
	Existing Tools
	ARM Architecture

	Methodology
	The ARM Machine-Readable Specification
	Emulation

	Implementation
	Working with the ARM Machine-Readable Specification
	Design of the Emulator
	Missing Specifications

	Evalutation
	Emulation In Steps
	Level of Detail
	Emulation Performance

	Discussion
	Requirements for a Specification
	Implementation Specific Specifications
	OS Specifications

	Conclusion
	Summary of the limitations of the ARM Machine-Readable Specification
	Future Work

	Bibliography

