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1 Preface

This document forms a thesis proposal submitted to the Delft University of Technology based
on the requirements for the degree of Master of Science (MSc) in Geomatics for the Built Envi-
ronment.

This proposal will introduce the reader to the defined topic and its relevance with the geomat-
ics field in Section 2. In Section 3, the relevant work is presented and linked with the topic,
while the research objectives are declared in Section 4. The methodology and the used tool
and datasets are presented in Section 5 and 8 respectively. The time planning of the entire
project is given in Section 7.

2 Introduction

The Netherlands, a low-altitude country where four rivers merge into a delta area, has over
50% of its total area protected by dikes against floods. The existence of a well-organized infras-
tructure with ditches and pumping stations can cope with all the dangers posed by a wet and
shallow country (Vázquez et al., 2017). Part of this system is the so called Dutch polder model.
The country’s water boards are responsible for managing the regional water system, maintain-
ing the water level, protecting the water quality and supervising regional flood infrastructure.
In order to control this complex and well-balanced water system with 237.000 km of canals
and ditches consisted of sand, peat and clay (Vazquez, 2017), bathymetric information is vital
for the water management.

The regional water systems that are maintained by water boards consist of muddy and shallow
water bodies (water depth around 50cm to 3-4 meters). In order to acquire accurate bathymet-
ric data for these shallow inland water bodies, an efficient and cost-effective way is demanded.
A technique such as echo-sounding is not suitable because of the shallowness of water or the
presence of obstacles above and below the water surface. Another technique is to use the
gauging rod but it is preferred only for small area surveys and not for large areas (Vázquez
et al., 2017).

However, since the airborne LiDAR bathymetry (ALB) technology has been successfully used
in recent decades in deep waters and clear coastal wetted areas, it can be used to improve the
bathymetric surveys in the muddy and shallow inland Dutch water bodies. That’s why several
water boards in collaboration with private companies have already run a pilot project to ex-
amine the potential of bathymetric LiDAR, especially green, of monitoring the water depths
efficiently, easier and cheaper than manual measurements (i.e. GPS measurements). Espe-
cially, green bathymetric LiDAR uses a wavelength of 532 nm that propagates into the water
and can be reflected from the bottom surface of the water body (Mandlburger et al., 2015). Its
laser can penetrate greater depth measurements and errors due to shadows or surface distur-
bance do not exist. Other factors such as sun angle and shining water surface do not affect the
ALB and the data collection is not limited only during desired light conditions (Hilldale and
Raff, 2008).

These acquired green LiDAR data can be used in order to distinguish the 3D geometry; es-
pecially the waterbeds of the shallow water bodies in Netherlands. That is a complex and
challenging problem as the bottom sediments of Dutch water canals are mainly contained
dark sands, peat, clay and mud. Many of the sediments contain organic matter which makes
them look like dark colour and decreases their reflectivity to the ALB technology. Also, they
present high concentrations of chlorophyll during the seasons and usually have a soft layer
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of sludge that attenuate the laser signal. These general conditions of the water and bottom
surface of the shallow water bodies increase the complexity for ALB measurements.

Bathymetric data is essential for applications related to agriculture, floods protection and
maintaining water supply during drought periods (Vázquez et al., 2017). Moreover, the knowl-
edge of water depths in water bodies provides useful information for dredging and water
transportation purposes, used to maintain the water quantity and quality of the water.

This research aims to implement algorithms that can automatically detect the bottom points of
these shallow and muddy water bodies and, then classify them into water surface, underwater
and bottom points. The classification process needs to be achieved by performing a high level
of automation. The existence of various dense and sparse parts in the point cloud, the muddy
and shallow waters, the characteristics and limitations of the data are challenging parameters
that certainly affect so the automation process as the accuracy of the results.

Previous studies have been conducted to detect waterbeds in water bodies in the case of
Netherlands using bathymetric LiDAR data. The developed methods have not succeeded in
detecting bottom points with high certainty and accuracy. Therefore, further research needs to
be carried out by applying other techniques and algorithms that could improve the detection
process and deal particularly with shallow and muddy water bodies. This research needs to
fill this gap by implementing algorithms that enhance the ability to classify the water bodies
and then detect the interested bottom points.

The study will be carried out in collaboration with Deltares, a technological institute for ap-
plied research in the field of water, soil and infrastructure. Many different companies and or-
ganizations (e.g. Water boards, Rijkswaterstaat) benefit from accurate and dense bathymetric
LiDAR data, especially with green wavelength for shallow water areas. Deltares in collabora-
tion with other institutes and organizations flew aeroplanes to collect those data from water
areas (i.e. shallow and muddy water canals) throughout the Netherlands. Big data acquisi-
tions costs a lot and requires good organization, as it should be done once. However, there is
not an automatic operation that using these data detects the waterbeds of shallow and muddy
water-bodies in the Netherlands.

3 Related work

Several studies have been done in the field of mapping river and shallow water body bathymetry
using green LiDAR. Green LiDAR appears as an interesting tool that widely used for coastal
surveys. Many studies that focus on water depth measurement quality and limits, in particu-
lar for rivers and surface water, take advantage of this technology. Some of them are concen-
trated on the mapping of the water-bodies acquired from LiDAR data either green or green
with additional ones such as near-infrared (NIR) and then methods are applied to classify the
water points. However, few of them only deal with the detection of the water regions from
a point cloud, which is not part of this study, but the implemented methods (e.g. fuzzy logic
concept) give insight for the classification part of the proposed methodology of this research.
Also, other studies point out the various environmental factors such as the water clarity, water
turbidity, vegetation and refer to them as important limitations for the accuracy and quality of
the LiDAR data.
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3.1 Mapping water body using LiDAR data

In general, the methods for mapping the shallow water-bodies can be separated based on the
use of LiDAR data either only green LiDAR or green combining with additional LiDAR data
(e.g. NIR).

3.1.1 Using only green LiDAR

Many studies have been developed which analyse the 3D geometry of water bodies and then
detect the water surface and bottom parts using green LiDAR data.

Allouis et al. (2015) introduced a specific green LiDAR full waveform (GLFW) model in order
to detect the minimum depth detectable estimation Hinf. The Hinf assessment is done on four
steps, the GLFW modelling, the bathymetry estimation, the determination of limit Hinf and
confidence interval computation using the Monte Carlo method. This methodology is targeted
on low deep waters and only focuses on the usage of surface and bottom returns from the
green LiDAR signal in order to determine the minimum depth.

Mandlburger et al. (2015) proposed a method to determine the water surface using only the
reflections available from green LiDAR and classify the water echoes. The classification of the
water points into (i) surface, (ii) body and (iii) bottom points relied on full waveform features
and spatial features based on local neighbourhood. To avoid misclassification of water points,
three thresholds were used: water depth, object reflectance and neighbourhood definition. The
water depth threshold is related to the maximum penetration depth based on Secchi depth
of the water body. The reflectance threshold depends on environmental conditions and the
neighbourhood for the dimension of the search (e.g. spheres, cylinders). As seen in Figure
1, the LiDAR points were classified based on their reflectance value, their distance from the
water surface (i.e. water point’s depth) and their spatial distribution.

Figure 1: Classification of water echoes based on reflectance, distance form water surface and
spatial distribution (Mandlburger et al., 2015)

Andersen et al. (2017) performed a methodology to process green LiDAR data in tidal environ-
ments and to improve the classification water surface and bottom points. The water surface
detection is based on determining depth and surface extent by creating a digital water surface
model (DWSM). The water surface elevation is acquired by the water surface points, while the
extent is determined by inferring the intersection of water surface and the surface topography.
Then, the refraction correction on the processed points is applied to the detected underwater
and bottom points.

6



Kinzel et al. (2013) considered the importance of green bathymetric LiDAR due to their water-
penetrating abilities. The green laser is less attenuated than near-infrared laser, and thus is
capable of greater penetration into the water bodies. Specifically, Kinzel et al. (2013) proposed
algorithms that used to detect the location of a water surface and bottom return in waveforms
for shallow depths (<1 m) and deeper depths. In particular, after correcting the waveform from
the refraction factor or water column effects, the algorithm searches for the most significant
peak (maximum peak (MP)) which corresponds to the water surface. Also, the last peak (LP)
algorithm like the MP first corrects the waveform and then finds all inflection points in the
waveforms (using 1st derivative) and selects the last peak based on a threshold value. This
reduce the change to select a stronger peak due to the turbidity of the water instead of a weaker
bottom reflection.

3.1.2 Using additional LiDAR data

Using only green LiDAR (532 nm) on very shallow waters (<2m) is quite challenging and
difficult to extract the water surface and bottoms positions, as they are typically mixed in
the green signal (Allouis et al., 2010). For depths lower than 2 meters, the difficulty is in
discriminating between the two mixed peaks. For that reason, Allouis et al. (2010) proposed
the use of near-infrared (NIR) wavelength (1064 nm) and the red wavelength Raman signal
(647 nm). The first one is reflected on the water surface, and thus it is easy to distinguish
dry land from water surface. The second one is useful to locate the air/water interface when
facing incorrect surface detections due to land reflection or to undesired targets such as birds.
Consequently, NIR and Raman signals help to accurately measure the water surface position
and water column, respectively. Also, if depth measurements are missing in muddy shallow
waters in green waveforms, Raman signal can be used instead.

Zhao et al. (2017) proposed a method to accurately detect water surface and water bottom
heights combining green LiDAR and corrected by the near water surface penetration (NWSP)
model. The NWSP is the phenomenon where the first return can not exactly correspond to
the water surface but reflects a penetration level in the water column. However, the use of
integrated infrared (IR) and green LiDAR solve this phenomenon and improves the accuracy,
but it cost a lot and adds extras weight to the ALB system. That’s why only the green Li-
DAR is preferred to be used. In this case, if the NWSP model can be accurately estimated,
the green LiDAR can obtain accurate measurements. The model can be build using LiDAR
and hydrological ground truth data and applying statistical analysis. However, the results of
this method are affected by the given reference water surface height data (IR data) and water
turbidity.

3.2 Detecting water regions from LiDAR data

There are relatively few authors who try to detect and extract water regions from LiDAR data.
For instance, (Brzank and Heipke, 2007) study is concentrated on the detection of water re-
gions from LiDAR data using fuzzy logic concept. The raw data are grouped into scan lines.
Using training data for the water and muddy areas, the intensity, point density and height of
the points were analysed. Individuals weights are calculated using the importance level of
these features. Then, the fuzzy logic concept are used to distinguish all the points into water
and muddy points. Moreover, even if this study did not aim to distinguish the bottom points
of a selected water area, the proposed methodology gave useful insight how fuzzy logic could
be used in the classification process.

7



3.3 Identifying environmental factors that a�ect laser pulse's transmission

Many ALB systems use green LiDAR as it is suitable for the waterbed detection of water
bodies. Thus, even if the green LiDAR wavelength can penetrate the water surface of water
areas and can potentially reach the bottom part, many factors can negatively influence the
direction, strength and shape of the returned laser pulse to the aircraft. For instance, the
laser pulse’s transmission is affected by various environmental conditions (e.g. water clarity,
suspended sediments, organic particles, water turbidity (waves), vegetation) (Guenther et al.,
2000). Also, the composition and the roughness of the bottom play important role on the
reflectivity of the laser beam.

• Water clarity is one of the most important factors that limits the depth penetration of
the laser pulse. It causes absorption (energy reduction) and scattering of the pulse. The
water clarity can be measured using Secchi depth method, which is the depth at which
a standard black and white disk is lowered into the water until no longer can be seen by
the observer.

• Organic particles & Suspended sediments increase the scattering effects of the laser
pulse. The amount of organic materials in the water and the quantities of the suspended
organic and inorganic particles influence the redistribution of the laser pulse’s energy
(scattering) back to the airborne receiver. For example, the presence of mud over the
bottoms of water-bodies cause the absorption of the laser signal rather than the reflection
(Vazquez, 2017).

• Water turbidity (waves) increases the backscattering effect and causes the lack of bottom
returns depending also on the season of the year when the flight done, as the turbidity
varies (Vazquez, 2017).

• Vegetation affects negatively the ALB measurements because they can block the laser
pulse to reach the bottom sediments.

4 Research objectives

4.1 Research question

As argued in the introduction and the related work sections, the main goal of this thesis is to
automatically detect the waterbeds of shallow muddy water-bodies in the Netherlands using
airborne green LiDAR datasets. Thus, to classify the water points into three classes: water
surface, underwater and bottom points. Therefore, the corresponding main research question
is:

• To what extent can the bottom points of shallow muddy water-bodies in the Netherlands be auto-
matically detected?

In order to achieve the goal of this thesis, the following sub-questions will be helpful and
relevant:

• What is a shallow water-body?

• Which are the characteristics and limitations of a green LiDAR dataset?

• How can the water points of shallow water-bodies into water-surface, underwater and
bottom points be classified using bottom point detection (BPD) and voxelization meth-
ods?
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• How does the various point cloud quality (i.e.density, errors) affect the classification
process?

• How can the 3D geometry (DTM surface) of the water-bodies be constructed from the
classified point cloud?

4.2 Research scope

This thesis will not deal with the detection of water courses from an unclassified green LiDAR
dataset. The provided datasets (i.e. topo-bathymetric) contain urban structures (e.g. build-
ings, bridges) and vegetation that are going to filtered them out in the pre-processing step.
This will happen by just cropping them in x and y dimensions using the Top10NL dataset
with the water boundaries, whereas a hard-coded threshold will be used for the z dimension.
Only if necessary, ground filtering methods will be run to extract the ground points which
correspond to water-bodies’ points in this study (Ledoux et al., 2019).

Moreover, the main focus of this study is to automatically distinguish the bottoms of the shal-
low water-bodies by applying different approaches. By detecting those interested bottom
points, the original water points can be classified into three different classes: water-surface,
underwater and bottom points.

LiDAR data handling techniques like filtering methods based on the points’ characteristics
(e.g. return number, number of returns, intensity value) and point neighbourhood based
methods will be implemented. The later ones take advantage of specific spatial search cri-
teria that tested on the local neighbourhood of each 3D point. Two methods are going to be
performed: the boundary point detection (BPD) and the voxelization. All these techniques
will be extensively discussed in the methodology section (see Section 5).

Also, the research aims to develop an efficient workflow in terms of accuracy and execution
time that should be applicable on various green LiDAR datasets in the Netherlands; specifi-
cally for muddy and shallow water areas. Important to mention that the input point clouds
may have various densities and are not classified at all. If few ground truth data (GPS mea-
surements) are provided, the validity of the achieved results can be checked by computing
statistics (see Subsection 5.2.6).

The various point cloud quality in terms of density and errors might affect the classification
process of the LiDAR data and needs to be investigated. Also, 3D geometry (DTM surface)
can be created using the classified point cloud in order to visually check the geometry and
classification of water bodies, but also to validate the results comparing with few ground
truth data.
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5 Methodology
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Figure 2 displays a flowchart of the process of distinguishing potential bottom points in shal-
low water bodies in the Netherlands. The automatic detection of the waterbeds is carried out
in several steps.

First, a pre-processing step is required to filter out errors like outliers due to reflection ef-
fect and to restore points from the refraction existence. That filtering pre-processing step is
essential as many undesired points, such as urban structures (e.g. buildings, bridges) and
vegetation, need to be removed from the initial raw green point cloud. Some LAStools func-
tions (e.g. lasreturn, las2las) could be used to remove errors or duplicates from the dataset.
Then, the input point cloud (unclassified green LiDAR data) will be filtered and cropped in
the x,y and z dimensions based on top10nl water boundaries and specific height level, respec-
tively. After cropping the input data only to the water areas, the remaining points are sorted
by GPS time, and then are grouped per laser pulse based on some features (i.e. return number,
number of returns).

Second, the processing step relates to the correction of the point cloud due to the refraction
and slowdown effects, and then to the main classification procedure. Having each laser pulse
with its points, the refraction correction algorithm is applied to correct the underwater points
according to the corresponding water surface point. Using the corrected water points for each
pulse, the intensity value of each point will be used to give insight about its return strength
and its reflectivity. This will be an initial indication of the classification of the points of each
laser pulse into water surface, underwater and bottom based only on their intensity. The main
classification process is implemented using point neighbourhood based methods: boundary
point detection (BPD) and voxelization algorithms. Both of them are going to be applied in
parallel in an effort to distinguish the bottom points from the other water points, particularly
the underwater ones. In the next step, they will be compared based on their results and then
probably combined in order to increase the effectiveness of correctly classify the LiDAR points.

Last, the result of this process will be a classified point cloud with three classes: water surface,
underwater and bottom points. After classifying the point cloud, a raster-based approach with
interpolation (e.g. TIN, IDW) will be used for creating DTMs (3D surfaces) both with height
values and statistics (e.g. certainty of distinguished bottom points). Then, comparison with
ground truth data can be done. The last step is to validate the results and calculate statistics.

The following sections will describe the methodology stepwise.

5.1 Pre-Processing

As is known the LiDAR data were collected with a topo-bathymetric airborne laser scanner.
The scanner is characterized by emitting green laser pulses with 532 nm wavelength, which
can penetrate the water surface and capture the bottom of shallow water bodies. However, the
raw point cloud data contain noisy points in the air column as the laser pulses are scattered
by clouds, dust, birds or even other particles, while the noisy points can be presented below
the water beds (Fig.10) (Brzank et al., 2008). In order to remove this noise before the further
processing, the filtering/cropping process is required. To begin with, some LAStools functions
such as lasreturn and las2las are used to select and drop error points by checking missing
returns in the point cloud.

The filtering process will be carried out in two steps:

1. crop the input data in x and y dimensions based on Top10nl dataset (Fig. 11a)
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2. clip the resulted data in z dimension based on a specific threshold in the height boundary
(Fig. 11b)

Then, the desired water areas have been selected and saved as a separate point cloud (Fig. 11).

5.2 Processing

As the shallow water bodies have been selected in the previous step, their water points will be
filtered out based on their characteristics, and then two point-neighbourhood based methods
will be implemented, compared and possibly combined to receive a desirable classified point
cloud.

5.2.1 Filter criteria

Since the remaining water points resulted from cropping/filtering process, their order in the
new written point cloud file (LAZ) has been modified. That’s the reason why they need to be
sorted by their GPS time. Then, the sorted points will be grouped per laser pulse, based on
some characteristics (Return Number, Number of Returns), as potential points on the water
surface and their corresponding underwater points for the same beam can be pointed out.

In particular, a water surface point should present Number of Returns bigger than 1 (i.e.
multiple points follow up) and Return Number equal to 1 (i.e the first point of the laser pulse).
The corresponding underwater points needs to follow up the water surface in the written LAZ
file with Return Number bigger than 1 and to have Number of Returns bigger than 1.

Index Return Number Number of Returns
6 2 2
7 2 2
9 2 2
11 1 2
12 2 2
13 4 4

Table 1: Water-surface point (blue) and underwater point (red)

As seen in Table 1, the 11th point in the dataset has Return Number = 1 and Number of
Returns = 2 indicating that could be a water-surface point, whereas the following 12th point
has Return Number = 2 and Number of Returns = 2 and is a corresponding underwater point.

5.2.2 Refraction correction and Slowdown e�ect

Moreover, when the green LiDAR data is recorded and stored, the refraction effect and the
corresponding change in the speed of light takes place at the air-water interface have not
been taken under consideration (Parrish et al., 2019). Both horizontal and vertical errors are
introduced in the point cloud, resulting in points that are deeper and further away from the
nadir than the true measurement (Parrish et al., 2019).

The light travels in a straight line through transparent media such as air or water. When it
encounters surfaces such as the interface between different media (air and water), then one or
more of the following things occur. A part of the light ray:
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1. reflects off the surface and travels off in a different direction

2. passes from one medium (air) into the other (water) and continues on a new straight
path

3. is absorbed

The light ray that hits a surface is the incident ray and the angle it hits this surface is called
incidence angle (φair). The reflected part returns back to the atmosphere with an angle of re-
flection equal to the incidence angle, while the transmitted light ray bends (refraction). The
magnitude and the direction of the refracted light ray depends on the refraction indexes of the
two medias (air,water) and the incidence angle (SciencePrimer, 2019).

Except the refraction of the laser beam, the slowdown effect (as the speed of light in the water
is smaller) occurs. The beam hits on a point on the water surface and measures how long it
takes that beam to bounce back. By knowing the speed of light (c) and the measuring time
(t), the distance (d) can be computed by using the formula (d = c · t/2). When the beam
penetrates the water, the captured points should have smaller distance from the initial water
surface point due to the smaller speed of light.

Nadir

Air

Water

Laser beam
ϕ_air

ϕ_water

REFRACTION PROBLEM

Laser beam

A

B
C

Aeroplane

Figure 3: An example cross section of a water area; refraction problem is presented. Point A
(red) indicates the point where the laser beam hits the water-surface, whereas Point
B (blue) is the underwater point that was recorded from this beam and written in the
point cloud document. Point C (magenta) indicates the corrected position of point
B (i.e correct coordinates) after applying the refraction factor and considering the
slowdown.

As seen in Figure 3, the laser beam (light ray) from the airplane laser scanner transmits through
the air and part of it passes from one medium (air) into the other (water), but due to the
refraction effect it should follow a new straight path (dashed line segment). However, the
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laser scanner interprets that the laser pulse continues on an uninterrupted path (fixed line
segment). As a result, the underwater point is written with incorrect coordinates in the LAZ
file since the refraction effect has not been taken into account.

5.2.3 Intensity & Depth Information

Since the water points have been grouped per laser pulse and corrected from the refraction and
slowdown effects, the characteristics of each point (especially the intensity value and depth)
can be used as important factors to classify the points of every pulse into the three classes:
water surface, underwater and bottom points.

As the laser beam penetrates the water surface, the intensity value is decreased due to the
reflectivity of the water interface. As shown in Figure 4, the water surface point has a high
intensity value as it’s the first point that laser pulse hits on, while the following underwater
points present gradually decreasing values. The last point of the pulse could be a potential
bottom point of the water body, if a small peak in the intensity graph could be presented.

Figure 4: The three components of echoes from water area of green LiDAR consist of water
surface return, water volume backscatter and bottom return (IQmulus, 2019).

The laser beams of the given raw point cloud are not stored as a full waveform (Fig. 4), but
there are only a few intensity values that correspond to the stored points of every laser beam.
For instance, the first intensity value (first point) of a pulse in the point cloud corresponds to
the water surface echo pulse, the following values to the underwater points and the last value
(last point) indicates the sea floor (bottom) echo pulse.

5.2.4 Detection of boundary points

By acquiring a point cloud, the identification of the boundary points is a challenging task.
One approach that works well in 2D domain is to compute the convex hull, which contains all
the points of a finite set of point cloud points. The convex hull is uniquely defined and can
be easily computed, as it can be extracted from the Delaunay triangulation or computed by
another algorithm (e.g. gift wrapping algorithm) (Ledoux et al., 2019). One method that could
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work fine is the quickhull (Barber et al., 1996), but it is only able to distinguish boundary points
that belong to the convex hull and there should be a set of points.

A more generic approach of the convex hull is the alpha-shape method for 3D point clouds.
Every convex hull is alpha-shape, but not every alpha-shape is a convex hull. The limitation
of alpha-shape approach is that depends on a parameter α. Since it is a parametric method, a
specific value α may produce satisfactory result for a given point cloud, but not for another
one with dense and sparse parts. Thus, it can give decent results in some regions and poor in
others of the same point cloud.

The boundary point detection (BPD) algorithm was chosen to apply to this study as it does
not demand any definition of threshold values in order to detect boundary points of an input
point cloud (Mineo et al., 2019). The algorithm detects all the potential boundary points based
on the local resolution of every region of the point cloud. It uses the k-nearest neighbourhood
(k-NN) search method, as it is non-parametric and does not need a threshold value like alpha-
shape method. By This technique is non-parametric as no assumptions on the underlying data
distribution has been done. In Figure 5, the k-NN method finds the closest k-members of a
specific point of point cloud (A to E) where k assumed is 30.

The points belong to each neighbourhood of points are represented through filled circles,
while the other points are represented with empty circles.

Figure 5: Point cloud with two boundary points on concave regions (A and B), an inner point
(C) and two other boundary points on convex regions (D and E) in 3D space. The k
value is set to 30 (Mineo et al., 2019).

For every point of the point cloud, the local cloud resolution is calculated. Given a point Pi, for
every point of its neighbourhood Pij, the minimum distance dj,k between the point Pi and all
the neighbours is computed. The local point cloud resolution (βi) of Pi is calculated by the
equation

βi = µi + 2 · σi (1)

where µi represents the mean value of minimum distances and σi their standard deviation.
According to (Mineo et al., 2019), if the distances are Gaussian distributed, then the addition
of 2σi ensures that 97,6% of the data are included and main outliers are eliminated.
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This method (BPD) takes advantage of the fact that there is only one circle that passes through
3 points in the 3D space. A point Pi is characterized as boundary point if there is at least one
circle with radius bigger or equal than βi and if the sphere with centre the Pi point does not
contain any other point of the neighbourhood such as points A and B in Figure 6.

Figure 6: Both points A and B belong to the boundary (Mineo et al., 2019).

However, the above two conditions that categorize a point as boundary point of the dataset
do not cover the case of an internal point in the point cloud (Fig. 5). In the case of points C,D
and E, even if there is one circle with radius bigger or equal than βi, there will always exist
other points of the neighbourhood inside the circle (Fig. 5).

For that reason, all the distinguished boundary points from the first part of the algorithm and
their neighbours will be projected to the best fit plane based on the normal vector of the point.
The 2D points can be plotted in polar coordinates, where Pi shown in red and its neighbours
in blue (Fig. 7).

Figure 7: Plot with polar coordinates of points C,D,E and the neighbours (filled circles). The
line segments display the application of the algorithm (Mineo et al., 2019).

The main idea of the BPD algorithm is that the point Pi belongs to the boundary area if it is not
possible to find any path that can surround it and passes through its neighbours. Every point
on the polar plot is determined by distance from the pole (R) and angle (θ). The algorithm
tries to create a path that surrounds the parent point (Pi) at the pole. Moreover, the radial (rj)
and angular (θj) coordinates are normalized for every neighbour (j) based on the following
equations, where Rmin, Rmax, θmin, θmax are the minimum and maximum radial and angular
coordinates, respectively:

rj =
Rj − Rmin

Rmax − Rmin
(2)

θj =
θj − θmin

θmax − θmin
(3)

In order to determine the starting point of the surrounding path (connectivity graph), the
parameter γ needs to be calculated for every neighbour and is given by the following equation:
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γj = rj + |θj − θbis| (4)

where θbis is the normalized angle of the direction bisecting the angle between θmin and θmax.
Then, the neighbouring point with the smallest γ value is the starting point of the path and
the other points of the neighbourhood are linked. Every point can be connected with the path
only once.

The characterized parameter is the generic p-th remaining point is computed as:

γp = rp + [(θp − θlast) · c] (5)

where θlast is the normalized angular of the last point in the path and c is a factor equal to 1 or
-1. The parameter c helps to select point that does not force the change of the path’s direction.
For instance, if the last point produced a clockwise rotation, any anti-clockwise rotation is
penalized. The neighbouring point with the minimum γ value (Eq.5) is the new last point in
the path.

Every time we add a point to the surrounding path, the sum of angles (α = Σ∆a) and the sum
of absolute values (τ = Σ|∆a|) are updated. The whole process stops when no more points
exist to be added in the path or sum (τ > 2π). If |α| >= 2π, then the investigated point (e.g.
point C in Fig.7) is internal, whereas if |α| < 2π is a boundary point.

Thus, the condition τ > 2π helps to avoid computational effort, since a point belongs to the
boundary without the need to connect all the neighbouring point to the path. For instance,
point C in Fig.7 is not a boundary point by just selecting 18 out of 29 neighbours and the
|α| < 2π.

At the end, the potential boundary points of the point cloud can be detected containing the
detected bottom points of the water body.

5.2.5 Voxelization

The voxelization of LiDAR data is the process where the entire point cloud can be divided
into a collection of 3D regular cubes, which can be called voxels. Each point of the point cloud
is allocated to 3D voxels and voxel values are assigned based on the attribute values of the
LiDAR point inside the corresponding voxel (Wang et al., 2018).

An Axis-Aligned Bounding Box (AABB) is used to define the 3D extent of the point cloud,
where AABB = (x, y, z)|xmin <= x <= xmax, ymin <= y <= ymax, zmin <= z <= zmax ,where
(xmax,ymax,zmax) and (xmin,ymin,zmin) are the maximum and minimum values of the bound-
ing box, respectively. The AABB can be divided into uniform 3D voxels based on the voxel
resolution.

The voxel resolution is the most important parameter during the voxelization of a point cloud.
If the resolution is too high, the number of voxels that contain no points become larger. But
if the resolution is too low, then more points fall into a voxel and the loss of information
is increased. In order to reduce the redundancy and the information loss, an appropriate
resolution should be selected. If the LiDAR data are well-distributed and form a regularized
grid, then the horizontal resolution can be determined from the equation ∆x = ∆y =

√
Axy/n,

where δx and ∆y are the voxel resolution in x and y axes respectively, and Axy is the horizontal
projected area of the points. The vertical resolution ∆z is determined by the equation: ∆z =
min[
√

Axz/n,
√

Ayz/n], where Axz and Ayz are the projected areas of the points in xz and yz
planes.
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Based on the voxel resolution, the bounding box (AABB) is divided into rows (r), columns (c)
and layers (l) and they will be stored into a 3D array. The LiDAR points are distributed to the
voxels using the formulas

ri = [
xi − xmin

∆x
], ci = [

yi − ymin

∆y
], li = [

zi − zmin

∆z
] (6)

Afterwards, descriptive and spatial statistics can be computed for every voxel in order to
classify the LiDAR point cloud into water surface, underwater and bottom points (Fig. 8). In
particular, the number of points that fall into each voxel can be summed, while the minimum,
maximum,mean and the standard deviation of z values can be calculated (Habel et al., 2018).

Moreover, skewness and kurtosis of the data can measured in order to indicate points’ distri-
bution inside the voxel. Skewness is a measure of symmetry, or more specifically, the lack of
symmetry. The distribution of the data is symmetric if it looks the same to left and right of the
centre point in a histogram. Kurtosis is a measure of whether the data are heavy or light tailed
relative to the normal distribution. High kurtosis means heavy tails (or outliers), whereas low
kurtosis indicates lack of outliers.

Figure 8: LiDAR point cloud is divided into 3D voxels

By calculating various descriptive and spatial statistics such as minimum z, maximum z, mean
z, number of points, standard deviation for each 3D voxel, bottom points can be distinguished
from the other underwater surface points. As seen in Fig. (9), the red points could correspond
to the potential bottom points, while the blue ones can be classified as inner water points.

18



Figure 9: LiDAR points divided into 3D voxels; blue colour indicates water points while red
one display potential bottom points

5.2.6 Comparison and Combination of methods

The next step is to compare the two aforementioned point neighbourhood based techniques,
the boundary point detection (BPD) and the voxelization. The comparison can be done by
easily checking the classified points from the two different techniques. Then, statistics for the
two classified point clouds can be calculated by using accuracy indexes such as true positives,
false negatives and false positives and kappa coefficient. However, in order to compute this
statistical analysis, the most promising results from one of the two techniques can be used as
reference data. These statistical results can indicate the effectiveness of each technique and its
sufficiency to obtain the desired result; a classified point cloud.

Moreover, the prospect of combining the two methods in one to increase the potential of de-
tecting bottom points, and to further classify the point cloud into the three classes: water
surface, underwater and bottom points will be checked. As mentioned in Subsection , the
intensity value and depth information of each point in a laser pulse will give insight about
its reflectivity and return strength. As this will be an initial indication for the classification
process, this information is going to be used in the potential combination of the two methods.

5.3 Results

5.3.1 Classi�cation and Visualization of the water areas

The output data would be a classified point cloud with three classes: water surface, under-
water surface and bottom points. By acquiring this information, then a raster-based approach
with interpolation will be implemented for creating DTMs (3D surfaces) both with height val-
ues and statistics (e.g. certainty value of distinguished bottom points). Then, comparison with
ground truth data (see Section 8.2) can be done by calculating height differences between the
3D surface and the measured ground truth points. The last step is to validate the results and
calculate statistics that indicate the certainty of correctly classified points and especially the
identified bottom points throughout this methodology.
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6 Preliminary Results

In this section, some preliminary results will be presented. As it is already known that the
input data are unclassified green LiDAR point cloud, some pre-processing steps are needed to
filter out both noisy (e.g. outliers) and non-useful points (e.g. buildings, vegetation).

In order to apply the proposed pre-processing steps, a green LiDAR subset that covers part of
the south area (water canals) of Pijnacker (east to Delft) was chosen (Fig. 10).

Figure 10: Green LiDAR subset with outliers; provided by Deltares

By using the lasmerge.exe tool, different LAZ files from laser scanner flights covered the same
area (Pijnacker) were merged into one LAZ file. The new merged LAZ dataset consists of
various dense and sparse parts as points from overlapping areas existed in the different LAZ
files were added to it.

Moreover, the lasinfo.exe tool was used to get more detailed information about the LAZ header
and point record entries were retrieved. In header part, the version number is 1.4 with point
data format 6, scale factor 0.01 in all three dimensions (x,y,z) and offset values in x = 89876, y =
447436 and z = -105. Also, the 3D extent of the dataset (min x = 90250.000, min y = 447100.000,
min z = -324.924, max x = 90553.103, max y = 447299.999, max z = 436.921) and the number
of point records ( 15.008.072 points) are clearly presented. The Coordinate Reference System
(CRS) of the data is the Amersfoort/RD New (EPSG:28992). As far the point record part, the
attributes of all the LAS points such as the X,Y,Z coordinates, the intensity, the return number,
the number of returns, the edge of flight line, the scan direction flag and the GPS-time are
given.

The next step was to acquire only the water areas from the subset point cloud. Specifically, the
input dataset (Fig. 10) was cropped (in x and y dimensions) based on the top10nl shapefiles,
which provide the exact boundaries of the desired water areas (i.e. water canals) (Fig. 11a).
Then, it clipped on specific height level (i.e. between 0m to -3m) (Fig. 11b). As a result, a new
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point cloud dataset with only the water points and without outliers was created (Fig. 11b).

(a) Cropping in x and y dimensions
based on Top10nl shapefile

(b) Clipping on specific height level
based on a threshold value

Figure 11: Cropped water areas of the subset point cloud; provided by Deltares

At this point, it is important to mention that the appropriate height values of the clipping part
were chosen after numerous tests of those that best eliminate the outliers in z dimension. This
is a hard-coded approach that demands tests and manual processing, but it was a quick and
efficient brute force way to filter this particular subset. A more generic filtering procedure in
z dimension will be experimented in the further steps of the thesis.

Also, the point data format were modified from number 6 to 3 in order to allow the compat-
ibility with point cloud libraries in Julia. This modification in the header part will not affect
that much the further steps of the proposed workflow, as the difference between 6 and 3 is
related to the amount of used core bytes. To be more specific, the difference is there are more
bits for return numbers in order to support up to 15 returns, more bits for point classifications
to support up to 256 classes, higher precision scan angle (16 bits instead of 8), and the GPS
time is mandatory (ASPRS, 2013).

Obtaining the desired water areas from the original point cloud, the remaining points were
sorted based on their GPS time. This was essential in order to ensure that the remaining
points follow the right order in the file (i.e. 1st collected point corresponds to the 1st written
point in the file), since many points were eliminated from the file during previous cropping
steps. Then, the remaining points were grouped into separate laser pulses according to their
return number and number of returns (see Subsection 5.2.1).

Considering that even if light travels in a straight line through transparent media such as
air or water, when it encounters surfaces such as the interface between different media (air
and water) two things occur. Specifically, a part of the light array is reflected on the surface
and returns back to the atmosphere while transmitted light ray bends (refraction). Except the
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refraction of the laser beam, the slowdown effect (as the speed of light in the water is smaller)
occurred. As a result, the underwater point is written with incorrect coordinates in the LAZ
file and the points need to be corrected by applying the refraction correction as described in
Section 5.
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Figure 12: Vertical section of original and corrected water points

As seen in Figure 12, the vertical section of the original and corrected points in the Z and X
axes is presented. Each water surface point (black) corresponds to an initial underwater point
(blue) with its refracted point (magenta). Looking closely at this figure, a few water surface
points differ a bit more in the height level than the other ones. However, this difference is
ranged around 20cm indicating possibly the existence of small objects-structures or plants on
the water surface.
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7 Time Planning

7.1 GANTT chart
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Figure 13: GANTT chart indicating the planned project phases and deadlines
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7.2 Meetings

Another important part of the time planning is the arrangement of meetings. Weekly meet-
ings will be held with the daily supervisor Maarten Pronk to evaluate and discuss the im-
provements of the project. Additional guidance and helpful feedback will be provided by the
graduation tutors Ravi Peters and Jantien Stoter every 15 days.

8 Tools and Data

8.1 Tools

In order to read, process and manipulate green LiDAR point cloud several tools need to be
used.

Specifically, the Julia 1programming language will mainly be used for data processing. It is a
novel language that combines the functionality of quantitative environments (e.g. R, Python)
with the speed of programming languages like C++ to solve big data and analytics problem.
Due to the highly demanding computational analysis of a point cloud dataset, all the algo-
rithms will be implemented in Julia 1 as it is suitable for high-performance numerical analysis
and computational science.

Existing packages such as LazIO 2, LasIO 3, FileIO 4 will be used to traverse the point cloud
dataset, read, store the points and the header file.

Also, by using plotting packages like Plots 5 and Plotly 6 in Julia and Matplotlib 7 in Python 8,
several 2D and 3D plots will be produced.

For point cloud viewing, an open-source LiDAR viewer called Displaz 9 is going to be used.
Using the Shader Parameters dialogue box, parameters (e.g..point radius, colour mode, selec-
tion etc.) change the way the points displayed. Displaz allows full control over how points
are displayed in the 3D window by allowing the user to edit,customize and recompile these
parameters.

Another software for rapid LiDAR (LAZ/LAS files) processing is the LAStools 10, which pro-
vides useful tools for getting point cloud info, clipping, correcting etc. Some tools such as
las2las, lassort, lasclip, lasinfo are going to be used in the pre-processing step to deal with the
initial point cloud dataset.

8.2 Data

As for the datasets to be used for this study, Deltares has already received green LiDAR data
from six different regions in the Netherlands. Several water boards had organized a pilot
project in cooperation with Deltares, Stowa and Waternet where tried to examine the potential

1https://julialang.org
2https://github.com/evetion/LazIO.jl
3https://github.com/visr/LasIO.jl
4https://github.com/JuliaIO/FileIO.jl
5http://docs.juliaplots.org/latest/
6https://plot.ly/julia/
7https://matplotlib.org
8https://www.python.org
9https://github.com/c42f/displaz

10http://lastools.org
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of green LiDAR for the muddy shallow Dutch water-bodies. This project had to show which
areas in the Netherlands can de detected with green LiDAR, if it worked or not and the future
potential of these data. The acquired data from this project will be processed and used in order
to run and test the implemented algorithms.

As seen in Table 2, characteristics of these datasets have been calculated by (van Tol, 2019).
The measured surface (per km2), the average point density (points per m2) and maximum soil
depth (m) differ per location.

Location Measured surface (km2) Average Point Density (points per m2) Maximum soil depth (m)
Westerschelde 14,263 37,33 -5.04
Gevelingenmeer 12,304 58,89 -5,24
Regio Rotterdam 13,458 17,63 -2.46
Oss 18,263 15,70 -2,30
Vechtgebied 14,041 23,167 -1,08
Dinkelgebied 7,527 52,63 -1,12

Table 2: Characteristics of green LiDAR datasets from six different regions in the Netherlands
(van Tol, 2019)

(a) Westerchelde (b) Gevelingenmeer (c) Regio Rotterdam

(d) Oss (e) Regio Vechtgebied (f) Regio Dinkelgebied

Figure 14: Datasets of six different regions in the Netherlands (van Tol, 2019)

In Figure 14, the six different point cloud datasets are displayed on a background map. The
various colours indicate the water depth in specific parts of each region. In particular, dark
blue colour illustrates the water areas whereas yellow one the non-existence of water.
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Moreover, the various water boards have conducted ground truth measurements in those re-
gions by selecting depth and transparency data. Those measurements have been captured one
day after the flight over that regions. These reference data are going to be used in the last steps
of this study where will be tested with the results of the implemented algorithms.

Another useful data source is the new delivered green LiDAR data from the Wadden Sea area,
in the north-east part of the Netherlands. That area forms a shallow body of water with tidal
flats and wetlands with high biological diversity. The next coming weeks Deltares will receive
the processed and un-processed raw point cloud that will be used in this study as well.
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