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Turbulent fluctuations of the atmospheric refraction index,
so-called optical turbulence, can significantly distort prop-
agating laser beams. Therefore, modeling the strength of
these fluctuations (C2

n) is highly relevant for the successful
development and deployment of future free-space opti-
cal communication links. In this Letter, we propose a
physics-informed machine learning (ML) methodology, Π-
ML, based on dimensional analysis and gradient boosting
to estimate C2

n. Through a systematic feature importance
analysis, we identify the normalized variance of potential
temperature as the dominating feature for predicting C2

n.
For statistical robustness, we train an ensemble of models
which yields high performance on the out-of-sample data of
R2 = 0.958± 0.001. © 2023 Optica Publishing Group

https://doi.org/10.1364/OL.492652

Free-space optical communication (FSOC) between satellites
and ground or between multiple ground terminals is among
the emerging applications in which an optical beam propagates
through the atmosphere. FSOC can have a major societal impact,
increasing data throughput, data security, and global internet
coverage while potentially reducing the cost per bit per sec-
ond [1]. However, some challenges need to be addressed; in
addition to precipitation, clouds, fog, and aerosol scattering,
turbulent fluctuations of the atmospheric refractive index form
a major source of disturbance [2]. The strength of these fluctua-
tions—called optical turbulence—is quantified by the refractive
index structure parameter C2

n. Good knowledge about the behav-
ior of C2

n in diverse locations and meteorological conditions
is required to design and deploy reliable future FSOC links.
However, measuring C2

n is difficult and typically needs elab-
orate post-processing of high-frequency observations [3]. As
a result, a wide range of empirical C2

n models and param-
eterizations have emerged, which aim to relate C2

n to more
easily obtainable variables [4]. Conventional physics-based C2

n
parametrizations typically make use of Monin–Obukhov simi-
larity theory (MOST) [5] and associated empirically determined
similarity relationships. One of the earliest parameterizations
was proposed by [3] and utilizes turbulent fluxes to estimate
C2

n. Several other competing formulations exist (refer to [6]

for a comprehensive review). Recently, multiple studies [7–10]
showed that machine learning (ML) models can be used to
parameterize C2

n based on routinely available meteorological
inputs. These ML approaches parameterize the underlying phys-
ical processes from data through sophisticated regression, but
they do not explicitly incorporate physical knowledge. In this
Letter, we propose an alternative physics-inspired ML frame-
work. We present Π-ML, a dimensional analysis-based ML
framework, which strives to improve conventional MOST-based
surface layer parameterizations with the power of ML. We use
dimensional analysis (DA) constrained with domain knowl-
edge to expand the set of traditional MOST variables and an
ensemble of gradient-boosting ML regression models to learn
similarity relationships from observations. In DA, the relevant
dimensional variables of a physical process are combined into
non-dimensional groups which describe that process equally
well [11]. DA is compelling to use in practice because the
non-dimensional variables enable us to combine observational
data from different field campaigns around the world. More
importantly, when using ML, DA can change the extrapolation
problem in dimensional variables to an interpolation problem in
non-dimensional variables [12].

To investigate the strengths and weaknesses of the proposed
methodology, we use measurements collected during a seeing
study at the Mauna Loa Observatory (MLO) on the island of
Hawai’i. The MLO study was conducted by the National Cen-
ter for Atmospheric Research (NCAR) from 9 June 2006 to 8
August 2006 (∼8 weeks). The dataset contains measurements
of mean meteorological quantities, turbulent fluxes, and turbu-
lent variances obtained from three sonic anemometers deployed
at ca. 6-m, 15-m, and 25-m altitude. The C2

n values were esti-
mated by NCAR via inertial-range scaling of temperature spectra
[13]. We compute two gradients from the mean horizontal wind
components u and v and the mean potential temperature θ:

mean wind shear S =
√︂
(∂u/∂z)2 + (∂v/∂z)2 and mean poten-

tial temperature gradient Γ = ∂θ/∂z. Atmospheric turbulence is
modulated by thermal buoyancy and wind shear effects, which
are captured by the sensible heat flux w′θ′ and the friction veloc-
ity u∗ = (u′w′

2
+ v′w′

2
)
1/4

, respectively, where u′w′ and v′w′ are
momentum flux components. Additionally, we incorporate the
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Fig. 1. Our Π-ML methodology consists of two components. (a) The dimensional analysis based on the Buckingham Π theorem combines
observed dimensional variables into Π sets of normalized non-dimensional variables. (b) These sets are used to transform the observed data
into a stacked non-dimensional dataset to train an ensemble of XGBoost regression models.

variances of potential temperature and horizontal wind mag-
nitude, σ2

θ and σ2
M = σ

2
u + σ

2
v . The altitude z serves as length

scale because we aim for a surface layer C2
n parameterization,

but to model OT at higher altitudes, the suitable length scale is
expected to differ. All relevant variables forming the input for
ourΠ-ML methodology are summarized in the table of Fig. 1(a)
with their respective fundamental dimensions. Earth’s gravita-
tional acceleration g = 9.81m s−2 is also included because it is
required for the atmospheric force balance. Given the dry atmo-
spheric conditions at the MLO sites, moisture variables were
ignored. To later assess the C2

n estimation performance of the
trained model, the first two weeks of July 2006 are set aside
as test data. Although using data out of the middle as test data
might seem unconventional, it is used so that the ML models can
capture the seasonal change from June to August (see Section 2
of the Supplement 1 for details).

The two key components of our proposed Π-ML methodol-
ogy are illustrated in Fig. 1: the DA constrained with domain
knowledge in panel (a) and the ensemble of gradient-boosting
ML models, which perform regression on the stacked, non-
dimensionalized observations in panel (b). We set off with the
table in Fig. 1(a) and the Buckingham Π theorem [11], popular
in DA. The theorem states that our k = 10 dimensional vari-
ables with their l = 3 fundamental dimensions (length, time,
temperature) can be expressed as a set of (k − l) = 7 independent
non-dimensional Π groups. Multiple options exist to form these
sets, so we employ theΠ theorem implementation of [14], which
generates 71 sets with 7 Π groups each. Using domain knowl-
edge, we conceive three constraints to reduce the number of sets
from 71 to 14. First, each set can only contain one dependent Π
group that is a function of C2

n [cf. pink highlights in Fig. 1(a)].
All other Π groups should only be functions of the independent
dimensional variables X. Second, C2

n and its normalized variant
Πy vary over multiple orders of magnitude, so the ML models
are trained on log10 Πy. Since the logarithm is not defined for
negative arguments, only Π sets where Πy is strictly positive are
valid. Third, the dimensional variables Γ and w′θ′ can be posi-
tive and negative, so raising them to fractional or even-integer

powers can result in complex values or a loss of sign. There-
fore, valid Π sets cannot contain such expressions. Each of the
14 constrained Π sets is used to scale and non-dimensionalize
the dimensional observations X and y = C2

n to yield ΠX and Πy,
respectively, as illustrated in Fig. 1(b). The non-dimensionalized
observations from all three levels can be stacked into a combined
dataset from which ML learns the non-dimensional black box
similarity relationship f (ΠX) ≈ log10 Πy. For eachΠ set, we train
one ensemble of n = 25 member models to make robust C2

n pre-
dictions with uncertainty estimates using the gradient boosting
algorithm XGBoost (XGB) and the AutoML library FLAML
[15]. FLAML performs time-constrained hyperparameter tun-
ing of the XGB models using 5-fold cross-validation. For each
ensemble member, FLAML was given a 10-minute time budget
on 8 cores of a 3-GHz Intel Xeon E5-6248R CPU. Such a time-
constrained optimization is crucial to keep the overall training
costs reasonable (∼34 core hours per ensemble). We employ
the Monte Carlo resampling strategy to generate a different 4-
week subset of the 6-week training data for each member. Two
non-overlapping sets of seven consecutive days are randomly
removed from the training data, so each subset covers differ-
ent meteorological conditions. As depicted in Fig. 1(b), each
of the n trained members produces a prediction that is robustly
aggregated into an ensemble prediction using the median.

The prediction accuracy and model complexity of each trained
Π-ML ensemble is assessed to decide which Π set is best suited
for our ML-based parameterization. The root mean squared error

(RMSE) ϵ =
√︂
⟨(y − ŷ)2⟩ in the log-space is used to quantify

accuracy as the deviation between the observed log10 C2
n = y

from the test set (July 1–14) and the corresponding Π-ML pre-
diction ŷ = log10 Ĉ2

n. We also evaluate the complexity of the Π
sets and their trained ML ensembles. That is essential because
ML models should only be as complex as necessary to increase
their ability to perform well on new unseen data [16]. One Π
set is considered simpler than another set if its Π groups are
constructed from fewer dimensional variables. Similarly, one
trained ensemble is considered simpler than another one if fewer
Π groups are important for the ML prediction, i.e., the modeled

https://doi.org/10.6084/m9.figshare.23800716
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Fig. 2. Comparison of (a) ensemble performance and (b) Π
set complexity for our 14 different Π sets, where winning set 10
(green/hatched) balances performance and complexity well.

Fig. 3. Importance of non-dimensional Π groups (i.e., Π1 to Π6)
based on the permutation feature importance strategy. For easy
intercomparison, for each non-dimensional Π-group, four boxplots
representing ML ensembles corresponding to Π-sets 9, 10, 11,
and 12 (left to right) are plotted side-by-side. The best performing
ensemble 10 is marked in green (hatched).

C2
n is sensitive to fewer input features. The importance of input

features of the trainedΠ-ML models is quantified by the permu-
tation feature importance technique (PFI) [17]. For each feature
Πi, PFI yields a ratio (ϵ ′i − ϵ)/ϵ , which describes how the RMSE
ϵi of a trained model magnifies when the model gets shuffled data
for Πi compared with the baseline RMSE ϵ where the correla-
tion is intact. That means a highly important feature results in a
large error magnification.

The performance and complexity of the 14 Π-ML ensem-
bles are shown in Fig. 2. The boxplots in panel (a) display
the ϵ distributions for each ensemble. While all ensembles
show median RMSEs of the same order of magnitude, Π sets
9 to 14 outperform the others. Panel (b) visualizes complex-
ity through the number of dimensional variables constituting
each Π group (left) together with the sum per set (right). This
plot reveals that sets 9 to 12 of the well-performing ensem-
bles are the only ones consisting of Π groups formed from no
more than three dimensional variables. These four low-error,
low-complexity candidates are further assessed based on their
PFI score distributions displayed in Fig. 3. Remember that the
DA yields different functional expressions for Πi for each set,
which is why each set shows different PFI distributions. The
boxplots reveal that Π sets 9 and 11 yield more complex Π-ML
ensembles compared with 10 and 12 because they significantly
rely on two Π groups (Π2 and Π4, see inset) for C2

n estimation
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Fig. 4. Median predictions of log10 C2
n based on test data (black)

using the selected Π set 10 ensemble. The observed values (red) are
shown for reference.

Fig. 5. Correlation histogram and quantile–quantile plot for Π
set 10 ensemble showing (a) high correlation (R2 = 0.958 ± 0.001)
and (b) well-captured C2

n distributions compared with traditional
models from the literature (blue, orange).

instead of one (Π2). Consequently, only sets 10 and 12 remain
candidates for our ML-based similarity theory of optical tur-
bulence. From these, we ultimately select Π set 10 because of
the lower ϵ spread in Fig. 2(a) with Π1 = σ

2
M/u2

∗, Π2 = θ/
√︁
σ2

θ ,
Π3 = (S z)/u∗, Π4 = w′θ′/(u∗σθ ), Π5 = (g z)/u2

∗, Π6 = (Γ z)/σθ ,
and Πy = (C2

n)
3/2 z. The expressions for the other 13 Π sets are

listed in Supplement 1. The observation that Π2—the inverse
normalized potential temperature variance—is the only dom-
inating feature of our parameterization could have practical
implications. First, temperature variances can be measured with
thermocouples [18], which are cheaper than sonic anemome-
ters. Second, the low relevance of the gradients (Π3 and Π6)
indicates that even single-level measurements might be suffi-
cient to estimate C2

n accurately. Therefore, our approach might
lead to simpler C2

n measurement setups. In Supplement 1, we
confirm that retraining the models with Π2 as the sole input
feature still yields highly accurate predictions.

The performance of the final Π-ML ensemble is illustrated
in more detail in Figs. 4 and 5. The observed (red) and the
predicted median evolutions of C2

n (black) for the test data
are shown in Fig. 4. The evolutions are plotted for the three
original sonic heights individually for visualization. The agree-
ment between prediction and observation is high for all levels,
although the level-specific ϵ slightly increases with height. For
nighttime conditions, the surface layer depth is typically shal-
lower than 10–20 m. Thus, the topmost sonic anemometer at

https://doi.org/10.6084/m9.figshare.23800716
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25 m might be outside the surface layer. In addition, outer layer
effects such as wave-induced bursting events can force the tur-
bulence underneath [19]. In such cases, cause (forcing) and
effect (turbulence) are vertically separated, so the sonic signal
only contains the effect but not the cause. Thus, prediction accu-
racy decreases without additional upper-air information. Notable
errors on all levels mostly occur during atmospheric neutral
conditions shortly after sunrise and sunset, where the observed
C2

n drops as low as 10−16. These drops are overestimated by
our ensemble, which is also visible in the 2D correlation his-
togram of Fig. 5(a) and the quantile–quantile (QQ) plot in 5(b).
Panel (a) directly compares observed C2

n samples with their
ML-estimated counterpart, while panel (b) plots the cumula-
tive density functions of observed and estimated C2

n against each
other. The overestimation of neutral conditions is visible in both
panels as the deviation of the histogram/curve from the ideal
1:1 line (dashed) for C2

n<10−15. Simultaneously, the gray 90%
confidence band in panel (b) grows, which indicates increasing
disagreement between the predictions of the ensemble mem-
bers. However, less than 8% of C2

n measurements are smaller
than 10−15, so the regularization of the ML training results in
models that favor the center of the C2

n distribution, not its tails.
Also, the lower signal-to-noise ratio of the sonic anemometers
in weak turbulence conditions increases the measurement uncer-
tainty [20]. Since very low turbulence conditions are also not
critical for FSOC or astronomy, we argue that little emphasis
should be put on these deviations. The regularization mentioned
above also explains the minor underestimation visible in panel
(b) for observations with C2

n>10−12.5, which make up less than
3.5% of the data. Leaving the tails of the distributions aside,
both panels of Fig. 5 show excellent performance of our ensem-
ble for most data. Most points in the histogram and the QQ plot
in Fig. 5(a) are close to the ideal 1:1 line as quantified by the
coefficient of determination of R2 = 0.958 computed on all test
data, including the deviating tails. The spread of the correla-
tion distribution around the 1:1 line is symmetric for C2

n>10−15.
That means the ensemble predictions are well-balanced and not
biased toward over or underestimation for most of the C2

n range. A
brief comparison of Π-ML with two conventional MOST-based
C2

n parameterizations (W71 [3] and TG92 [21]) in Fig. 5(b)
illustrates the potential of improvement by utilizing ML. While
W71 and TG92 have the operational advantage of being formu-
lated as analytical equations, they lack the flexibility to capture
complex behavior where ML excels. This results in the larger
over and underestimations shown in the QQ plots for these pop-
ular approaches. Comparing Π-ML to a more traditional ML
approach based on [7] (see Section 4 of Supplement 1) also
shows significantly higher performance of Π-ML.

In summary, we demonstrated how dimensional analysis con-
strained with domain knowledge yields non-dimensional surface
layer scaling expressions, which enable us to train accurate
XGBoost regression models. Our approach has two advantages
over C2

n parametrizations from the literature. First, the final
ensemble produced highly accurate predictions for both daytime
and nighttime, while previous models are often limited to one or
the other [4]. Second, we expect that the non-dimensional for-
mulation allows making predictions with a pre-trained ensemble
for new sonics setup at different heights or locations if the new
non-dimensionalized data fall into the original non-dimensional
training ranges. The data scaling should enable our ensemble
to stay in the interpolation regime longer, i.e., cover a larger
dimensional space, compared with traditional ML-based mod-
els. At this point, these claims are speculative in nature and need

extensive validation. Our final Π-ML ensemble was shown to
perform well, regardless of the complex meteorology of Hawai’i
[22] and the limited measurement duration of only two months.
While the complexity and data sparsity of the MLO campaign
limits the applicability of the trained ensemble to other sites, the
good performance leads us to posit that ourΠ-ML methodology
might perform well in more favorable setups. Additionally, we
observed a strong dependency of C2

n on σ2
θ (Π2), suggesting that

relatively inexpensive single-level variance measurements might
be sufficient for accurate C2

n estimation in the surface layer. In
conclusion, we presented a powerful, statistically robust physics-
informed machine learning methodology (Π-ML) to estimate C2

n
from turbulence measurements.
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