
Cognitive Robotics

Learning from Few Demonstra-
tions with Frame-Weighted Mo-
tion Generation

Jianyong Sun

M
as

te
rT

he
sis



Learning from Few Demonstrations
with Frame-Weighted Motion

Generation

Master Thesis

For the degree of Master of Science in Robotics
at Delft University of Technology

Student name: Jianyong Sun
Student number: 5278031
Project duration: November 15, 2021 – December 22, 2022
Thesis committee: Jens Kober, TU Delft, Chair & Supervisor

Jihong Zhu, University of York, Daily supervisor
Michael Gienger, Honda Research Institute EU, Supervisor
Luka Peternel, TU Delft, External member
Arno Stienen, TU Delft, External member

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology



Learning from Few Demonstrations with
Frame-Weighted Motion Generation

Jianyong Sun

Abstract— Learning from Demonstration (LfD) aims to learn
versatile skills from human demonstrations. The field has been
gaining popularity since it facilitates transferring knowledge to
robots without requiring much expert knowledge. During task
executions, the robot motion is usually influenced by constraints
imposed by environments. In light of this, task-parameterized
(TP) learning encodes relevant contextual information in ref-
erence frames, enabling better skill generalization to new
situations. However, most TP learning algorithms require
multiple demonstrations in various environment conditions to
ensure sufficient statistics for a meaningful model. It is not
a trivial task for robot users to create different situations
and perform demonstrations under all of them. Therefore,
this paper presents a novel concept to learn motion policy
from few demonstrations through explicitly solving reference
frame weights along the task trajectory. Experimental results
in both simulation and real robotic environments validate our
approach.

I. INTRODUCTION

Compared to industrial robots that perform repetitive tasks
in well-defined working situations, service robots are ex-
pected to be dexterous and intelligent to work in variable and
unstructured environments, learn skills quickly, and easily
adapt to unseen scenarios. However, traditional task-specific
robot programming requires enough expertise to program
robot motions, which leads to the lower popularity of robots
in society and poor adaptability to various task executions.

Inspired by the process that humans learn skills by imi-
tating others, LfD enables robots to acquire versatile skills
by extracting important and consistent features from expert
demonstrations. It endows users with an intuitive interface
to transfer new skills to robots without the need for time-
consuming robot programming, and inefficient solution ex-
ploration [1]. To improve the generalization ability of robot
learners, [2] proposes the TP learning method by parameter-
izing the description of task situation into reference frames.
Nevertheless, to obtain enough statistical data, most existing
TP learning methods require collecting multiple diverse
demonstrations under different environment conditions. This
is often not feasible in practice due to time and space limits,
especially for complex tasks. With few demonstrations, these
methods cannot extract useful features from training data,
hence showing poor generalization performance.

To address this challenge, this paper proposes an approach
to learning from few demonstrations through solving the
weights of reference frames 1. The frame weight can be
interpreted as a measurement of its importance or relevance

1We will use frame weight, influence, importance and relevance inter-
changeably.

to the task. Benefiting from the calculated frame weights,
the robot can generalize learned skills in novel situations by
directly transforming the demonstrated trajectories. Despite
reduced number of training demonstrations, robots can still
have enough generalization capabilities to perform the task
well under various conditions, either within or out of the
range of their observed experience. Besides, for some tasks
requiring the motion variance to quantify uncertainties, such
as human-robot interaction scenarios, our proposed method
allows the augmentation of training datasets.

The remainder of the paper is organized as follows. We
first review related works about improving generalization
and data efficiency in LfD and calculating the influence of
task frames in Sec. II. We then detailedly state the problem
we would solve in Sec. III. In Sec. IV, we introduce our
proposed algorithm, which is then validated with simulation
in Sec. V and robotic experiments in Sec. VI. We finally
conclude in Sec. VII.

II. RELATED WORKS

Generalization in LfD The generalization ability is
considered one of the central properties of robot learn-
ing algorithms. Traditional movement encoding methods,
such as Dynamic Movement Primitive (DMP), Probabilistic
Movement Primitive (ProMP), and Gaussian Mixture Model
(GMM), can normally only be applied in invariant situations,
hence displaying limited extrapolation ability [3]. To improve
that, many LfD algorithms integrate these methods with
task parameters which can fully describe task situations [4].
Since task parameters encode relevant contextual information
about the task, these algorithms usually allow the automatic
adaptation of learned skills to various situations, showing
better extrapolation performance.

Most of these methods formulate the motion retrieval from
task parameters as a regression problem. In [5], Gaussian
Process Regression (GPR) is used to model the mapping
from task parameters to DMP parameters which represent
robot trajectories compactly. Similarly, [6] presents how to
utilize the mixture of GMMs to model the joint distribution
of task parameters and nonlinear forcing terms in DMP. [7]
applies Locally Weighted Regression (LWR) to model the
conditional distribution of the demonstrated trajectories with
respect to the demonstration contexts.

A prominent TP learning framework using local reference
frames as task parameters was proposed in [4] by exploiting
the spatial transformation between frames to achieve better
extrapolation performance, giving task-parameterized Gaus-
sian Mixture Model (TP-GMM). The approach first projects



the global trajectories into different local reference frames,
then extracts locally consistent features among demonstra-
tions using GMMs, and finally transfers them into new
situations leveraging the linear transformation property of
Gaussian distributions. While these methods with task pa-
rameters utilized perform better in generalization compared
with traditional LfD algorithms, most still require a number
of demonstrations which are not always easy to collect.

Date efficiency in LfD Since data efficiency is important
to LfD algorithms, several methods have been proposed to
decrease their dependence on the amount of data. [8] uses
Corrected Augmentation for Trajectories (CAT) to correct
distorted expert actions, which can augment original ex-
pert demonstrations. The routine-augmented policy learn-
ing (RAPL) framework proposed by [9] discovers routines
from a single demonstration and uses them to augment
policy learning. [10] augments the original demonstration
dataset with the data synthesized through noise injection,
TP-GMM generation, and both. As a noise injection variant
of Behavior Cloning (BC), Disturbances for Augmenting
Robot Trajectories (DART) provides a broader set of state-
action pairs by adding noise during demonstration collection
phases [11]. While these methods help reduce the number of
demonstrations required, most of them focus on augmenting
the original training dataset, which introduces a lot of extra
effort. Instead, our proposed algorithm provides the possibil-
ity to learn directly from the existing few demonstrations.

Frame weight calculation In most robotic tasks, the robot
movements are modulated by a set of local reference frames
with varying weights which capture frame importance along
the whole trajectory. Taking the grasping task as an example,
as the robot gets closer to the target, its motion is more
influenced by the reference frame attached to the target.

Most of the existing methods to solve frame weights build
on TP-GMM. In [12], the frame importance is computed as
the ratio of the precision matrix determinant with respect
to the other frames. [13] and [14] utilize this definition to
identify relevant frames to the task. Instead of solving the
frame weight from data, [15] proposes using a confidence
weight to directly modify the covariance matrix of each
local model. But its performance is limited by the reliance
on the human prior information. By combining the above
two schemes, [16] calculates the confidence weight using
the norm of data covariance modified with an extra shape
parameter. However, these methods still have a strong de-
pendence on the amount of data. In contrast, our method
can calculate the frame weight using few demonstrations.

III. PROBLEM STATEMENT

Our goal is to find how the robot movements are mod-
ulated by reference frames. For example, Fig. 1 displays
four demonstrations for a simple movement task. Obviously,
the robot motion is only influenced by the red and green
frames. The other two frames can be considered irrelevant to
this task. Furthermore, the influence of two relevant frames
changes along the trajectory. While the starting motion is

(a) (b) (c)

Fig. 1: A simple movement task with four reference frames
provided. Three demonstrations are displayed with different
frame positions. The demonstrated trajectory is shown in
purple with the start denoted by a dot.

more influenced by the red frame, the green frame is more
important to the ending part.

We consider P local reference frames and refer to the
rotation matrix AAAj ∈ SO(p) and translation vector bbbj ∈
Rp of each frame {j} with respect to the global coordinate
system as task parameters, where j = 1, 2, . . . , P , and p is 2
or 3 depending on the dimensionality required for the robot
task.

The training dataset {{ξξξt,m}Tm
t=0}Mm=1 consists of M

demonstrations, each with the time length Tm which may be
different for each demonstration. Their associated reference
frames are denoted as {{AAAj,m, bbbj,m}Pj=1}Mm=1. Here, for each
demonstration m, ξξξt,m ∈ Rp represents a p-dimensional
trajectory point recorded at time t. Considering the frame
weight captures its importance along the whole trajectory,
we calculate the relative distance dt,m of each point ξξξt,m as
follows:

dt,m =
∥ξξξt,m − ξξξ0,m∥

∥ξξξt,m − ξξξ0,m∥+ ∥ξξξt,m − ξξξTm,m∥
, (1)

where ∥·∥ represents the Euclidean distance between the data
point and the start or end of the trajectory.

To solve the frame influence on robot motion, for each
reference frame {j}, we wish to find a function fj which
maps the relative distance along the trajectory to the frame
weight Wj , i.e.

fj : d 7−→ Wj , (2)

where Wj should be between 0 and 1 and the weights of
all reference frames should sum to one for the same d.
Since we do not have the frame influence Wj in hand, it
seems impossible to solve this function through regression.
So we need to find some additional constraints, which will
be introduced in Sec. IV.

IV. METHODS

We introduce the proposed approach to calculating frame
weights in this section. We start with an intuitive description
by giving a simple introductory example in Sec. IV-A, and
then a more general explanation of the algorithm step by step
from Sec. IV-B to Sec. IV-D.



(a) (b)

Fig. 2: A simulated 2D movement task from the start (the
yellow U-shape box, frame {1}) to the target (the blue, green
and red U-shape boxes, frame {2}). For simplicity, only the
frame attached to the yellow box is shown. Separated by
black lines, R1, R2, and R3 denote the trajectory segments
near the start (in the yellow box), in the middle (between
two boxes), and near the goal (in the target box). mi

represents a demonstration. (a) Three demonstrations with
targets in the same orientation but different positions. (b)
Two demonstrations with targets in the same position but
different orientations.

A. Intuitive Illustration

Rather than calculating the frame importance using vari-
ance information, we find how the reference frame influence
changes along the trajectory in a more explicit way. To
illustrate the idea better, Fig. 2 presents a 2D movement task
from one U-shape box to the other without any collision with
them. The shape of boxes imposes geometric constraints on
the starting and ending parts of the motion. Displayed as
dots, the corresponding points ξξξt1,m1

, ξξξt2,m2
, and ξξξt3,m3

on different trajectories can be found by minimizing their
relative distance error, such as |dt1,m1

− dt2,m2
|.

In Fig. 2a, the solid purple lines indicate the target position
difference vectors vvv1,2, vvv3,1, vvv3,2 between demonstrations.
The dashed purple lines represent the position difference
vectors between corresponding points. In Fig. 2b, two solid
purple lines form the target angle difference α1,2. Two
dashed purple lines connecting a corresponding point to the
frame origin form the angle difference β1,2.

With the observation that the robot trajectory is modulated
by the reference frames in mind, we find there exists a scaling
factor s such that

ξξξt2,2 − ξξξt1,1 = svvv1,2,

ξξξt2,2 − ξξξt3,3 = svvv3,2,

ξξξt1,1 − ξξξt3,3 = svvv3,1,

βββ1,2 = s α1,2.

(3)

In region R1, the factor s is close to 0 because the robot
motion is almost fully constrained by the starting box. Along
the trajectory to the target, this factor gradually increases
with the influence of frame {2} getting stronger. Finally, in
region R3, it reaches 1 due to the full constraint of the ending

box. This factor s exactly represents the frame {2} influence.
Inspired by Eq. (3), given a reference trajectory, we can

generalize it to other situations by transforming it using
frame weights. Besides, we assume the trajectories in the
same situation should be similar. Therefore, one expert
demonstration should be as similar as possible to its re-
constructed version from another one, which provides a
implicit constraint on frame weights. Then we can solve them
by minimizing the difference between ground truth and its
reconstruction using a reference trajectory. Solving the frame
influence function fj in Eq. (2) is finally transformed into
an optimization problem.

To simplify the calculation of frame weights for a multi-
frame task (P ≥ 3), we would divide the whole task into
a sequence of subtasks with only two reference frames
involved. The demonstration is still collected from start to
finish, so the key issue is to segment it into component
trajectories modulated by only two frames. For simple tasks,
this can be achieved based on human prior information.
For more complex tasks, this challenge has been well-
studied and addressed [1]. For example, [17] proposes using
a Beta-Process Auto-regressive HMM to achieve automatic
recognition of repeated skills and segmentation of whole
demonstrations. Therefore, in the following, we will focus
on the two-frame task.

B. Demonstration Reconstruction

Given two demonstrations m1 and m2, we now introduce
how to reconstruct m1 from m2 utilizing frame weights.
We first project the global demonstrations into the local
frame {1} so that we only need frame {2} weights for
reconstruction since the difference between local trajectories
ξξξ
(1)
t,m only result from different {AAA(1)

2,m, bbb
(1)
2,m}.

1) Position Difference: Similar to Fig. 2a, we first con-
sider the difference of frame positions bbb

(1)
2,m1

and bbb
(1)
2,m2

between two demonstrations. For each data point ξξξ(1)t,m2
, we

can transform it as follows:

ξ̃ξξ
(1)

t,m1
= ξξξ

(1)
t,m2

+ f2(dt,m2
) (bbb

(1)
2,m1

− bbb
(1)
2,m2

), (4)

where ξ̃ξξ
(1)

t,m1
is one reconstruction point of the demonstration

m1 and f2(dt,m2
) represents the weight of frame {2}.

Similar to Eq. (3), the required position transformation of
two corresponding points on two trajectories should be the
position difference of frame {2} multiplied by a weight
which incorporates its importance at this relative distance.

2) Orientation Difference: Subsequently, we need to con-
sider the influence of frame orientation on the trajectory.
Similar to the target angle difference α1,2 shown in Fig. 2b,
we need to first calculate the difference of frame orientations
AAA

(1)
2,m1

and AAA
(1)
2,m2

as follows

uuu1,2 = g(AAA
(1)
2,m1

AAA−1
2,m2

), (5)

where uuu1,2 is the representation of the rotation vector and the
function g can transform a rotation matrix into a vector. The
vector direction indicates the rotation axis, and its magnitude



represents the angle. We then obtain the required rotation
transformation

TTT 1,2 = h(f2(dt,m2) uuu1,2), (6)

where h is a function to achieve the opposite conversion to
the function g. Multiplying uuu1,2 by a frame importance scalar
f2(dt,m2), we can get the required rotation vector whose
direction is the same as uuu1,2 but whose magnitude changes
depending on the frame weight.

Finally, to make the reconstructed trajectory meet the
orientation constraints of frame {2} of m1, we need to rotate
the reconstructed point ξ̃ξξ

(1)

t,m1
around the origin of frame {2}

as follows

ξ̂ξξ
(1)

t,m1
= TTT 1,2(ξ̃ξξ

(1)

t,m1
− bbb

(1)
2,m1

) + bbb
(1)
2,m1

, (7)

where ξ̂ξξ
(1)

t,m1
is the final reconstruction point based on the

frame pose difference.
After transforming each data point ξξξ(1)t,m2

in the demon-
stration m2 following Eq. (4) and Eq. (7) sequentially, and
transferring them back to the global coordinate frame, we fi-
nally get the reconstructed demonstration m̂1 = {ξ̂ξξt,m1

}Tm2
t=0 .

C. Frame Weight Calculation

In this subsection, we illustrate how to solve frame weights
based on demonstration reconstructions. To reduce the num-
ber of variables to be solved and simplify the calculation of
frame weight, we approximate the function fj in Eq. (2) as
a weighted summation of Radial Basis functions (RBFs)

fj(d) =

Q∑
i=1

ωj,i exp(−hi(d− ci)
2), (8)

where Q is the number of required RBFs, ωj,i represents
the component weight of each basis function, and hi and
ci denote the spread and center of the i-th basis function,
respectively. In this case, after specifying the parameters hi

and ci, we transform the problem of finding a function as
the calculation of Q basis function weights.

After obtaining the reconstructed demonstration as pre-
sented in Sec. IV-B, we can solve frame weights by mini-
mizing its difference to the ground truth. Here, we define the
dissimilarity between two demonstrations as their normalized
distance computed by dynamic time warping (DTW) (see
[18] for details)

D(m̂, m) = min
ϕ

dϕ(m̂, m), (9)

where ϕ is the warping function which maps the data point
in m̂ to m with minimum dissimilarity d.

With M demonstrations in the training dataset, we can
find at most N = M(M−1)

2 pairs {k1, k2}Nk=1 for trajectory
reconstruction. k1 and k2 represent two demonstrations in the
k-th pair. For each pair, we reconstruct k1 from k2. Then,
we can formulate the calculation of frame influence as an
optimization problem

min
{ωi,2}Q

i=1

1

N

N∑
k=1

D(k̂1, k1) (10)

s.t. 0 ≤ f2(d) ≤ 1, (11)

where we would find the optimized basis function weights
determing the frame influence in Eq. (8) through minimizing
the dissimilarity between one ground truth demonstration and
its reconstructed version from another reference demonstra-
tion using the frame influence. We also add the constraint
so that the solved frame weight should be between 0 and 1.
Several popular optimization algorithms can be used to solve
this problem, such as Sequential Least Squares Programming
(SLSQP).

We previously assume the weights of all reference frames
influencing the task trajectory should sum to one at the same
relative distance. Hence, after calculating the weight of frame
{2} through optimization, we can easily derive the weight of
frame {1} by subtracting the calculated frame {2} weights
from one.

D. Skill Generalization

Once we have solved for the influences of each reference
frame through optimization, we can directly transform a
reference trajectory to generalize to new reference frames
following the similar procedures described in Eq. (4) and
Eq. (7). This process can be referred to as frame-weighted
motion generation.

As a deterministic method, the frame-weighted motion
generation can only provide an estimated trajectory without
any variability. For some robotic tasks requiring variance
information, we also need to evaluate the path uncertainty to
determine how strongly the robot should follow the path. For
example, in the human-robot interaction scenarios, we can
dynamically adjust the robot stiffness based on the estimated
variability for the sake of safe interaction. In this case, the
frame-weighted motion generation can be used to augment
the training dataset, which is also a promising application to
help learn skills from few demonstrations. The augmented
dataset can be encoded by probabilistic LfD algorithms, e.g.,
TP-GMM.

V. SIMULATION

In this section, the proposed approach is evaluated on the
simulated movement task shown in Fig. 2. We collect six
expert demonstrations in total with different target positions
and orientations, as shown in Fig. 3a. Two of them are
used for training. To evaluate the extrapolation capability of
models, we take the reaming four as the validation dataset.
As introduced in Sec. IV-C, we still use the DTW normalized
distance as the similarity measure between two trajectories.
Then the model error can be defined as:

JDTW =
1

µ

µ∑
i=1

∥yyyi − ξξξi∥, (12)



(a) (b)

Fig. 3: (a) The training (red) and validation (green) set for
the simulated 2D movement task. Two reference frames are
attached to the yellow (frame {1}) and blue (frame {2})
box, respectively. (b) The calculated weights of frame {1}
(yellow) and frame {2} (blue) with RBFs (colorful dashed
lines).

(a) (b) (c)

Fig. 4: The comparison of three motion generalization
methods. The first and second row show generalizations in
training and validation set. The generalizations and ground
truths are marked with green and red. Column (a) Frame-
weighted motion generation, (b) Augmented TP-GMM, (c)
TP-GMM.

where yyyi is the reproduced trajectory by models, ξξξi is the
expert demonstration, and µ is the number of trials for
generalization (2 for training and 4 for validation).

We now have three methods available for skill generaliza-
tion:

• TP-GMM: the baseline method.
• Frame-weighted motion generation: to directly trans-

form the reference trajectory in the training dataset
utilizing frame weights.

• Augmented TP-GMM: to train TP-GMM on the training
dataset augmented using frame-weighted motion gener-
ation.

For this simulation task, two reference frames are attached
to the yellow and blue box shown in Fig. 3a, respectively. We
train TP-GMM on time-based trajectories, so the reference

TABLE I: Training and validation error for three motion
generalization methods

Frame-weighted
motion generation

Augmented
TP-GMM TP-GMM

Training error 0.011128
(32%)

0.040931
(116%)

0.035170
(100%)

Validation error 0.058802
(23%)

0.097286
(39%)

0.251572
(100%)

frames need to be accordingly augmented with a time dimen-
sion. As a data preprocessing step, the trajectories used for
TP-GMM training need to be temporally aligned using DTW
[19]. The number of Gaussian components of TP-GMM is set
to be 4. For augmented TP-GMM, we augment its training
dataset to 8 demonstrations.

To approximate the frame weight function, we use 10
RBFs whose centers are uniformly distributed between 0 and
1 and whose spreads are all set to be 5. The optimized frame
weights are depicted in Fig. 3b. The result is consistent with
our intuitive understanding. At the starting part, the trajectory
is fully constrained by the yellow box, so the frame {1}
weight reaches 1, and frame {2} weight is almost 0. As the
relative distance increases from 0 to 1, the influence of frame
{2} becomes larger due to the much closer distance to the
blue box. Finally, when the trajectory reaches the blue box,
the frame {2} weight comes to 1 because of the geometric
constraint of the box on the trajectory.

After using three motion generalization methods, we com-
pute the error defined in Eq. (12) for the training and
validation datasets. While the former indicates the model
performance in extracting useful features from demonstra-
tions and performing reproduction under observed condi-
tions, the latter represents their ability to generalize to unseen
situations. The results are summarized in Table I. We use
the error of TP-GMM as the reference value and provide a
percentage for each error value. The larger error is marked
with red, and the smaller one with green. The corresponding
generalized trajectories are displayed in Fig. 4. Since there
are two demonstrations in the training dataset, we use the
same reference trajectory for both frame-weighted motion
generation and data augmentation 2.

From Table I, we observe that frame-weighted motion
generation achieves the best performance, both for training
and validation. Due to few training demonstrations, TP-
GMM cannot obtain enough statistical data to effectively
model the skill. In Fig. 4c, we can find the reproduced
training demonstrations by TP-GMM are acceptable since
the situations where GMR is used have been observed during
training. However, the extrapolation performance of TP-
GMM in the validation set is very poor because of the
over-fitting to the few and sparse training data. In contrast,
due to the explicit calculation and use of frame weights,
our proposed algorithm can fully understand how the ref-
erence frames modulate the trajectory, enabling larger error
reduction. Compared with TP-GMM, Fig. 4a shows that the

2In theory, either can be used as a reference. Here, to maintain consis-
tency, we will always use the same one.



TABLE II: Average validation error of TP-GMM with in-
creasing number of augmented demonstrations

No. of
initial
+ new
demos

2+0 2+1 2+2 2+3 2+4 2+5

Average
validation

error

0.252
(100%)

0.177
(70%)

0.153
(61%)

0.127
(50%)

0.112
(44%)

0.110
(44%)

(a) (b) (c) (d)

Fig. 5: The GMM of each frame changes with new demon-
strations (green) added. The first and second rows show
GMM in frame {1} and {2}. The dots indicate the start
of trajectories. The yellow ellipses represent the co-variance
of each multivariate Gaussian. Column (a) initial demonstra-
tions (red), (b) one new demonstration added, (c) three new
demonstrations added, (d) five new demonstrations added.

generalized trajectories are much smoother and fulfill the
geometric constraints of U-shape boxes.

With the training dataset augmented by 6 demonstrations
generated using frame weights, TP-GMM also shows better
performance in terms of the generalization on the validation
set. The increasing training error indicates the overfitting
of TP-GMM has been improved with more training data.
Similar results can also be observed from Fig. 4b. Given 8
training demonstrations, the validation error of TP-GMM is
still a little larger than frame-weighted motion generation.
There are two possible reasons. First, all the augmented
trajectories are generated using the same reference demon-
stration and frame weight, so TP-GMM is likely to over-fit a
certain feature embodied by the reference. Additionally, the
trajectories generated by each component of GMM through
regression cannot be connected very smoothly. Obviously, in
Fig. 4b, the generalized trajectories are all clearly displayed
in 4 parts due to the use of 4 Gaussian components.

To further demonstrate the validity of our proposed method
in terms of data augmentation, we show how the aver-
age validation error changes as the number of augmented
trajectories increases. Here, the average means that we
try various frame poses to augment the same number of
demonstrations and calculate the average error of these trials.
The results are presented in Table II. We can observe that
the error reduction is most significant when the first new

demonstration is provided and gradually decreases with more
augmented demonstrations. In Fig. 5, we also show how the
data distribution in each reference frame changes with more
and more added demonstrations.

VI. ROBOTIC EXPERIMENTS

This section describes two experiments conducted to
demonstrate the ability of our proposed method to learn
skills from few demonstrations by solving the influence of
reference frames on task trajectories.

A. Experimental Setup

As the experimental platform, we use two 7 DoF Franka
Emika Panda placed vertically on a table and oriented in
the same direction, see Fig. 6a. Their mutual poses can be
calculated by locating the same object from two robot base
frames and finding the optimal rigid transformation between
two point sets [20]. The impedance controllers are deployed
on both manipulators.

We perform 2 experiments with the real robot setup: i) a
roller-on-holder task, where the right robot picks the paper
roller from the holder on the table and places it on the other
holder mounted on the left robot, see Fig. 6b and Fig. 6c, ii)
a flower-in-vase task, where the right robot grabs the flower
in the vase that vertically stands on the table and moves it
to the other vase grasped by the left robot, see Fig. 6d and
Fig. 6e. For both experiments, the left robot provides the
target pose while the right one executes the task. Since we
assume the right robot can automatically adjust the gripper
orientation to align with the target during task execution, the
trajectories we learn focus on the end-effector 3D positions
of the right robot.

For both tasks, the right robot needs to adapt to different
holder or vase poses which can be fully described by two
reference frames attached to starting and ending ones:

{AAAs, bbbs}, {AAAe, bbbe}, (13)

where bbbs and bbbe represent the bottom center positions of the
holder or vase and the z axis of AAAs and AAAe specify their
directions.

For both experiments, we first place the starting holder
or vase on the table with a known pose, then record the
end-effector poses of both robots during demonstrations. The
latter is used for calculating the pose of the ending holder
or vase and providing demonstrated trajectories. Since we
utilize GMM to learn time-based trajectories, the reference
frames used for TP-GMM training need to be accordingly
augmented as follows:

AAA′ =

[
1 000
000 AAA

]
, bbb′ =

[
0
bbb

]
. (14)

Considering these two tasks are more complex than the
simulated one, we increase the number of Gaussian compo-
nents of TP-GMM to 6 and augment the training dataset to
9 demonstrations for augmented TP-GMM. For the weight
calculation, we still use 10 RBFs, as introduced in Sec. V.



(a) (b) (c) (d) (e)

Fig. 6: The bimanual setup of two robot experiments. (a) shows two Franka Emika Panda robots on a table. The coordinate
systems of robot bases are depicted with red, green, and blue (RGB) arrows. (b) and (c) display the initial and final state
of the roller-on-holder task, while (d) and (e) present the initial and final state of the flower-in-vase task.

TABLE III: Training and validation error of three motion generalization methods for two real robotic tasks

Roller-on-holder task Flower-in-vase task
Frame-weighted

motion generation
Augmented
TP-GMM TP-GMM Frame-weighted

motion generation
Augmented
TP-GMM TP-GMM

Training error 0.0151 (52%) 0.0385 (131%) 0.0293 (100%) 0.0209 (49%) 0.0511 (120%) 0.0427 (100%)
Validation error 0.0835 (13%) 0.1448 (22%) 0.6657 (100%) 0.0787 (11%) 0.1284 (18%) 0.7062 (100%)

(a) (b) (c)

Fig. 7: The validation performance of three generalization
methods in the flower-in-vase task. Each row displays a
validation situation. The starting and ending vases are shown
in cyan and red. The generalized trajectories and ground
truths are marked with green and red. Column (a) Frame-
weighted motion generation, (b) Augmented TP-GMM, (c)
TP-GMM.

B. Results

We test three skill generalization methods on both tasks.
For each task, we use 2 and 4 expert demonstrations as the
training and validation dataset. Table III presents the training
and validation errors for both tasks.

Similar to the result shown in the simulated task, for both
robotic experiments, the frame-weighted motion generation
still achieves the best performance, even though the task is
more complicated and the number of training demonstrations
is still 2.

Taking the flower-in-vase task as an example, Fig. 7
presents how well these three methods perform in two

(a) (b) (c)

Fig. 8: The solved frame weights of frame {1} (green,
starting vase) and frame {2} (red, ending vase) through
(un)constrained optimization. Column (a) with constraints,
initialized with unconstrained optimization results, (b) with
constraints, (c) without constraints.

validation situations. With only two training demonstrations,
the initial TP-GMM cannot extract useful features from them,
generating meaningless trajectories, as shown in Fig. 7c.
When the training dataset is augmented by 7 new demonstra-
tions, the performance is better. Although the two generated
trajectories in Fig. 7b still display unwanted movements,
they are successful in task executions since the geometric
constraints of the vase have been satisfied. With Fig. 7a, we
can intuitively observe how similar the generalized trajectory
directly based on frame weights is to the ground truth.

In addition, we find the validation error reduction using
frame-weighted motion generation in these two more com-
plex tasks is larger than the simulated 2D task introduced
in Sec. V. It means the frame weight incorporating how
the reference frames modulate the task trajectories is one
of the most important features for skill learning. For more
complex tasks, this feature is more difficult to be extracted
from training data, so TP-GMM with few demonstrations
performs worse.

To further explore weight calculation, in Fig. 8, we present
the frame weights solved through optimization with and
without constraint that the weight value should be between



TABLE IV: Training and validation error using frame
weights optimized with or without constraints

Constrained
optimization

with
initialization

Constrained
optimization

without
initialization

Unconstrained
optimization

Training error 0.014571
(116%)

0.015699
(125%)

0.012554
(100%)

Validation error 0.101014
(89%)

0.116217
(102%)

0.113575
(100%)

0 and 1. Without the constraint, the frame weight in Fig. 8c
may be negative or exceed 1. This may be caused by data
stochasticity since the weight is calculated using human
demonstrations. But this phenomenon is contrary to the phys-
ical meaning of frame weights that the reference frame mod-
ulates task trajectories. Then, the solved frame weights using
constrained optimization are displayed in Fig. 8b. Through
Table IV, we can find the constrained optimization of weights
causes larger training and validation errors. The former can
be explained by the introduction of constraints. But the latter
indicates that only the locally optimal solution is given. This
problem can be addressed by initializing the constrained
optimization with the result derived from unconstrained
optimization. As shown in Fig. 8a, the frame weights seem
more reasonable. In Table IV, the training and validation
errors are both smaller than using constrained optimization
without initialization. In particular, the validation error is
also smaller than using unconstrained optimization, which
indicates the assumption that the frame weight is between 0
and 1 is reasonable, and this human prior information helps
improve the policy even further.

VII. CONCLUSION

Although task-parameterized learning in LfD achieves
better generalization performance over non-parameterized
alternatives, it requires multiple demonstrations collected in
various situations which are not always available due to
time and space constraints. This paper presents a method
to learn skills from few demonstrations through the explicit
calculation of reference frame weights. The method also
allows augmentation of the original training dataset, enabling
better performance of TP-GMM. We validate the method
using a 2D simulation task and two real robot experiments.

We observe that the frame-weighted motion generation
achieves much better performance compared to TP-GMM
when the training demonstrations are few and sparse. Fur-
thermore, the TP-GMM trained on the augmented training
dataset still cannot reach the same performance as our
proposed method. In addition, under the assumption that
the frame weight incorporating its importance should be
between 0 and 1, the constrained optimization of RBF
weights provides more reasonable frame influence along the
task trajectory and helps improve the extrapolation capability.

The current method is limited mainly by two aspects: i)
due to little training data, the method requires demonstrations
of high quality, ii) for multi-frame tasks, the segmentation
of demonstrations into component skills depending on only

two reference frames requires extra time and effort. The
first problem can be easily solved by selecting high-quality
demonstrations for training. For example, the demonstrations
should be as smooth as possible, have less ambiguity, and
follow the consistent human preference. The second limita-
tion can be reduced with the help of state-of-the-art automatic
demonstration segmentation algorithms [17] [21] [22].

REFERENCES

[1] H. Ravichandar, A. S. Polydoros, S. Chernova, and A. Billard, “Recent
advances in robot learning from demonstration,” Annual review of
control, robotics, and autonomous systems, vol. 3, pp. 297–330, 2020.

[2] S. Calinon, Z. Li, T. Alizadeh, N. G. Tsagarakis, and D. G. Caldwell,
“Statistical dynamical systems for skills acquisition in humanoids,” in
2012 12th IEEE-RAS International Conference on Humanoid Robots
(Humanoids 2012). IEEE, 2012, pp. 323–329.

[3] S. Calinon and D. Lee, Learning Control, 01 2019, pp. 1261–1312.
[4] S. Calinon, “A tutorial on task-parameterized movement learning and

retrieval,” Intelligent service robotics, vol. 9, no. 1, pp. 1–29, 2016.
[5] D. Forte, A. Gams, J. Morimoto, and A. Ude, “On-line motion

synthesis and adaptation using a trajectory database,” Robotics and
Autonomous Systems, vol. 60, no. 10, pp. 1327–1339, 2012.

[6] A. Pervez and D. Lee, “Learning task-parameterized dynamic move-
ment primitives using mixture of gmms,” Intelligent Service Robotics,
vol. 11, no. 1, pp. 61–78, 2018.

[7] T. Osa, A. M. G. Esfahani, R. Stolkin, R. Lioutikov, J. Peters,
and G. Neumann, “Guiding trajectory optimization by demonstrated
distributions,” IEEE Robotics and Automation Letters, vol. 2, no. 2,
pp. 819–826, 2017.

[8] D. Antotsiou, C. Ciliberto, and T.-K. Kim, “Adversarial imitation
learning with trajectorial augmentation and correction,” in 2021 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2021, pp. 4724–4730.

[9] Z. Zhao, C. Gan, J. Wu, X. Guo, and J. B. Tenenbaum, “Augmenting
policy learning with routines discovered from a single demonstration,”
in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 35, no. 12, 2021, pp. 11 024–11 032.

[10] J. Zhu, M. Gienger, and J. Kober, “Learning task-parameterized skills
from few demonstrations,” IEEE Robotics and Automation Letters,
vol. 7, no. 2, pp. 4063–4070, 2022.

[11] M. Laskey, J. Lee, R. Fox, A. Dragan, and K. Goldberg, “Dart:
Noise injection for robust imitation learning,” in Conference on robot
learning. PMLR, 2017, pp. 143–156.

[12] T. Alizadeh, S. Calinon, and D. G. Caldwell, “Learning from demon-
strations with partially observable task parameters,” in 2014 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2014, pp. 3309–3314.

[13] T. Alizadeh and M. Malekzadeh, “Identifying the relevant frames of
reference in programming by demonstration using task-parameterized
gaussian mixture regression,” in 2016 IEEE/SICE International Sym-
posium on System Integration (SII). IEEE, 2016, pp. 453–458.

[14] T. Alizadeh and B. Saduanov, “Robot programming by demonstration
of multiple tasks within a common environment,” in 2017 IEEE
International Conference on Multisensor Fusion and Integration for
Intelligent Systems (MFI). IEEE, 2017, pp. 608–613.

[15] Y. Huang, J. Silvério, L. Rozo, and D. G. Caldwell, “Generalized task-
parameterized skill learning,” in 2018 IEEE international conference
on robotics and automation (ICRA). IEEE, 2018, pp. 5667–5474.

[16] A. Sena, B. Michael, and M. Howard, “Improving task-parameterised
movement learning generalisation with frame-weighted trajectory gen-
eration,” in 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2019, pp. 4281–4287.

[17] S. Niekum, S. Osentoski, G. Konidaris, and A. G. Barto, “Learning and
generalization of complex tasks from unstructured demonstrations,” in
2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE, 2012, pp. 5239–5246.

[18] M. Müller, “Dynamic time warping,” Information retrieval for music
and motion, pp. 69–84, 2007.

[19] S. Calinon, F. Guenter, and A. Billard, “On learning, representing,
and generalizing a task in a humanoid robot,” IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 37, no. 2,
pp. 286–298, 2007.



[20] K. S. Arun, T. S. Huang, and S. D. Blostein, “Least-squares fitting
of two 3-d point sets,” IEEE Transactions on pattern analysis and
machine intelligence, no. 5, pp. 698–700, 1987.

[21] O. Kroemer, H. Van Hoof, G. Neumann, and J. Peters, “Learning to
predict phases of manipulation tasks as hidden states,” in 2014 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2014, pp. 4009–4014.

[22] R. Lioutikov, G. Neumann, G. Maeda, and J. Peters, “Probabilistic
segmentation applied to an assembly task,” in 2015 IEEE-RAS 15th
International Conference on Humanoid Robots (Humanoids). IEEE,
2015, pp. 533–540.



(a) (b)

Fig. 9: The validation error with more training demonstra-
tions for the flower-in-vase task. (a) Frame-weighted motion
generation. (b) TP-GMM.

(a) (b) (c)

Fig. 10: The simulated three-frame task. It can be described
as moving from the green U-shape box (frame {1}), through
the magenta pipe (frame {2}), and to the blue U-shape box
(frame {3}). (a) displays two training demonstrations. The
black dots indicates the segmentation of demonstrations. (b)
displays the weights of frame {1} (green) and {2} (magenta)
on the first sub-trajectory. (c) displays the weights of frame
{2} (magenta) and {3} (blue) on the second sub-trajectory.

APPENDIX

A. Increasing training data

To compare our proposed method with TP-GMM in more
depth, in Fig. 9, we display how the validation error changes
with increasing training data. Fig. 9a indicates that the
validation error using the frame-weighted generation remains
almost unchanged. The reason behind this is the frame
weights do not change as the number of demonstrations
increases. In contrast, TP-GMM performs relatively better
with more training demonstrations provided, as shown in
Fig. 9b. This comparison indicates that our proposed method
has less dependence on data, which further validates its
ability to learn skills from few demonstrations.

B. Three-frame task: simulation

As shown in Fig. 10a, we set up a simulated three-frame
task to evaluate the ability of our proposed method to deal
with multi-frame tasks. We totally collect 8 demonstrations
in various situations. Two of them are used for training and
the other six for validation.

As introduced in Sec. IV-A, since this task is simple, based
on our prior information, we manually divide the whole
demonstrations into two sub-skills based on the position of

frame {2}. The former one is to move from the green box
and reach the end of the magenta pipe, while the latter one
is to start from the pipe end and move to the blue box. In
Fig. 10a, the segmentation point is shown as a black dot.

By applying our method to each of the two sub-tasks,
we present the solved frame weights in Fig. 10. For the first
sub-task, Fig. 10b display the weights of frame {1} and {2}.
Similar to the simulated two-frame task introduced in Sec. V,
the weight of frame {1} goes from 1 to 0 along the trajectory,
while the weight of frame {2} increases from 0 to 1. Fig. 10c
show the frame weights of {2} and {3} with respect to the
second sub-task. Different from the weight of frame {2} in
the first sub-task, without the constraint at the beginning of
the trajectory, the weight of frame {3} directly increase to 1
without remaining 0 in the starting phase.

To generalize the movement in various situations, we first
generate the trajectory in each sub-task, and then connect
them together. From Fig. 11, we can observe the frame-
weighted motion generation demonstrates good generaliza-
tion capability, both in interpolation and extrapolation.

In a nutshell, the application of our proposed approach in
this three-frame task indicates its ability to learn skills with
multiple reference frames involved. For more complex tasks
which are difficult to be manually divided, our method re-
mains competitive with the help of automatic demonstration
segmentation algorithms [17] [21] [22].

C. Three-frame task: robot experiments

Similar to the task shown in Fig. 10, we use a real
robot experiment to further demonstrate the validity of our
proposed method in multi-frame tasks. The setup is shown
in Fig. 12. Two training demonstrations and calculated frame
weights are displayed in Fig. 13. The generalization on the
training and validation dataset is presented in Fig. 14. Since
these results are similar to those shown in the last subsection,
we do not illustrate them in depth here.



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 11: (a) – (b) and (c) – (h) show generalizations in the training and validation dataset, respectively. The generalized
trajectories and ground truths are shown in cyan and red. The DTW dissimilarity is displayed at the top of each sub-image.
The smaller value indicates the better performance.

(a) (b)

(c) (d)

Fig. 12: The setup of the three-frame moving task. (a) The
right robot moves the pen out of one U-shape box on the table
(frame {1}), into the box mounted on the left robot (frame
{2}), and finally into the other box on the table (frame {3}).
(b) to (d) display the pen reaching each box.

(a) (b) (c)

Fig. 13: (a) displays two demonstrations of the three-frame
real robot experiment. The black dots indicates the segmen-
tation of demonstrations. Three frames are attached to the
green (frame {1}), magenta (frame {2}), and blue (frame
{3}) U-shape boxes. (b) displays the weights of frame {1}
(green) and {2} (magenta) on the first sub-trajectory. (c)
displays the weights of frame {2} (magenta) and {3} (blue)
on the second sub-trajectory.



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 14: (a) – (b) and (c) – (h) show generalizations in the training and validation dataset, respectively. The generalized
trajectories and ground truths are shown in green and red. The DTW dissimilarity is displayed at the top of each sub-image.
The smaller value indicates the better performance.


	Introduction
	Related works
	Problem statement
	Methods
	Intuitive Illustration
	Demonstration Reconstruction
	Position Difference
	Orientation Difference

	Frame Weight Calculation
	Skill Generalization

	Simulation
	Robotic Experiments
	Experimental Setup
	Results

	Conclusion
	References
	Increasing training data
	Three-frame task: simulation
	Three-frame task: robot experiments

	Introduction
	Related works
	Problem statement
	Methods
	Intuitive Illustration
	Demonstration Reconstruction
	Position Difference
	Orientation Difference

	Frame Weight Calculation
	Skill Generalization

	Simulation
	Robotic Experiments
	Experimental Setup
	Results

	Conclusion
	References
	Increasing training data
	Three-frame task: simulation
	Three-frame task: robot experiments


