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Abstract

Reinforcement Learning (RL) has gained atten-
tion as a way of creating autonomous agents for
self-driving cars. This paper explores the adap-
tation of the Deep Q Network (DQN), a popular
deep RL algorithm, in the Carla traffic simulator
for autonomous driving. It investigates the influ-
ence of action space discretization and DQN ex-
tensions on training performance and robustness.
Results show that action space discretization en-
hances behaviour consistency but negatively af-
fects Q-values, training performance, and robust-
ness. Double Q-Learning decreases training per-
formance and leads to suboptimal convergence, re-
ducing robustness. Prioritized Experience Replay
also performs worse during training, but consis-
tently outperforms in robustness testing, reward es-
timation and generalization.

1 Introduction
Ever since the first deep Reinforcement Learning algorithm
[12] was demonstrated playing basic Atari games, Deep Re-
inforcement Learning has been at the forefront of the artifi-
cial intelligence world. Since then they started to appear in
various parts of human life from playing games, and simulat-
ing behaviour to fueling auto-driving vehicles, each bringing
unique opportunities and challenges. One such challenge is
the categorization of the action space, which actions the agent
can take within the world, into two: continuous and discrete.
While discrete action spaces can be found in more simplistic
environments such as board/video games, more realistic situ-
ations such as robotic movement, or simulations utilize con-
tinuous action spaces [17]. However, not all algorithms, Deep
Q Network (DQN) for instance, could work with a continuous
actions space and needs the space to be converted into a dis-
crete space [21]. How many distinct actions could the space
be divided into? One of the aims of this research is to answer
this question by comparing different levels of discretization
of an auto-driving vehicle in a traffic simulator called, Carla
[3]. Through this research, the effects of discretization could
be explored which in turn would lead to RL algorithms that
could both respond to different situations they are presented
with and take an efficient path in their training.

The other facet of this research is to check the effect of
DQN extensions, such as Prioritized Experience Replay and
Double Q-Learning, on the efficiency and robustness of the
algorithm when applied to Carla. To explain these exten-
sions, the RL algorithm utilizes the data, such as the state
of the world, as a way to decide their next action. These
data, referred to as experiences, can be stored and reused to
increase the efficiency of the algorithm and reduce training
times. Conventionally an experience is drawn with uniform
sampling and utilized. Prioritized Experience Replay pro-
poses to add prioritization to the experience sampling process
such that experiences that teach more to the agent are utilized
more [15]. The other extension stems from the fact that as
the Q-Learning algorithms utilize the same weights for both

action selection as well as evaluation, it can lead to more op-
timistic value estimations. This overestimation has the poten-
tial to negatively affect the performance of the agent as well
as increase the risk of divergence [18]. To counter this, this
process is decoupled into two with each action selection and
evaluation utilizing their own Q-estimators [19]. These are
just two of the many extensions proposed over time to im-
prove DQN. The two were chosen as they are feasible to be
implemented in two months, the duration of the project, and
have been shown to have a noticeable effect on training times
and robustness.

”How do the discretization of the action space (as required
for several RL algorithms) and various extensions (e.g., Pri-
oritized Experience Replay, Double Q-Learning) to the well-
known DQN algorithm influence training and the robustness
of final policies under various testing conditions?” is the
question that will be answered in the following sections. This
can be decoupled into three distinct steps:

• Adaptation into a relevant problem: The problem
chosen for this project is auto-driving in a simulated
driving environment of Carla. It allows the agent to train
in a relatively complex environment with other actors. It
contains multiple different maps to test the agent under
differing conditions and offers functionality to control
the action space. All of these reasons made it a good
candidate for this project.

• Comparison of training performance: One of the ob-
jectives of the research questions is to understand the in-
fluence of these different methods on training efficiency.
In the context of this research, efficiency will refer to sev-
eral factors including: how fast the agent’s performance
stabilizes, and how Q-values, the agent’s estimation of
its performance, compare to the rewards it achieves each
episode.

• Comparison of robustness under testing conditions:
The other objective is to see the relationship between the
proposed methods and the robustness of the algorithm.
Robustness refers to the ability of the agent to adapt to
varying conditions, which includes situations it may not
have encountered during its training period. For this pa-
per, the robustness will be tested by running the agent in
different maps Carla offers.

2 Background Information
This section explores the literature on Deep Q Networks
(DQN) and outlines the information necessary to understand
the paper. It starts with describing the inner workings of the
DQN algorithm in 2.1. Then discusses the problem of action
space discretization in 2.2 and explains the two DQN exten-
sions, Double Q-Learning and Prioritized Experience Replay,
in 2.3.

2.1 Deep Q Network (DQN)
In the current Reinforcement Learning problem, the agent has
a set of actions that it can select at each step, and selecting
each action leads to a different step. As the observation of
each step is an image of the agent’s surroundings, and the



agent mainly relies on that image to make its decision, it is
possible to model this problem as a Markov decision process
(MDP). This gives us the ability to apply algorithms designed
to tackle common MDPs in the current environment [12].

Deep Q Network is a Reinforcement Learning algorithm
that combines Q-Learning with neural networks to have an
agent that can adapt to environments by approximating an
action-state value [13]. It inputs the observation, the current
state of the world, to its internal neural network. This net-
work outputs values for each of the actions that the agent can
do at that given state, and then one of these action-value pairs
is selected to determine the next action of the agent. The fol-
lowing subsections will describe the important internal mech-
anism of the DQN algorithm.

Q(s, a) = (1−α)Q(s, a)+α · (r+γ ·maxa′Q(s′, a′)) (1)

Q-Learning
Q-Learning is an off-policy temporal difference algorithm
to find the optimal policy by updating the state-action value
function (Q-function) at every step using the Bellman Opti-
mality equation [9]. This is achieved by a data structure called
Q-table, which maps each state-action pair to an expected re-
ward, known as Q-values. The Bellman Equation describes
how to update this Q-function after each iteration, it is shown
in Equation 1 [9]. Translating this equation, it means that the
value of the state-action par s, a at time step t can be deter-
mined by the estimated best optimal future value. r refers
to the reward from taking an action, α refers to the learning
rate of the algorithm and γ is the discount factor that makes
rewards lose value over time so that immediate rewards are
prioritized. As the agent tries out different actions, these Q-
values converge and become accurate at describing the poten-
tial reward an action may give in a particular state.

Epsilon-Greedy Exploration Strategy
At each step, an agent can choose between two categories of
actions: exploitation and exploration. Exploitation is when
the agent utilizes their previous knowledge to choose the ac-
tion that it believes will maximize the reward. On the other
hand, exploration means the agent will take a random action
instead. These two categories are important for the agent to
learn new strategies and optimize the knowledge it has. The
probability of choosing one of these is determined by a pa-
rameter ϵ. At the beginning of each step, a random number
is generated and if the number is less than ϵ, the agent will
choose exploration and exploitation otherwise. In the begin-
ning, the agent has no knowledge of the environment so ex-
ploration is prioritized. As the training progresses, the agent
starts to use exploitation more and more and this change is
known as epsilon-decay.

Experience Replay
As the agent continues its training, it stores the experiences
inside a memory called a replay buffer. During learning, these
experiences are randomly sampled to contribute to the Q-
value updates [13]. This introduces nonsequentiality to the
training and reduces the bias that may have been caused by
the current episode. It increases the data efficiency as the

agent can learn multiple times from a single experience. Fur-
thermore, it increases the robustness of the algorithm as the
agent becomes less sensitive to sub-optimal experiences.

Q Network & Target Network
DQN utilizes a neural network called Q Network instead of a
Q-table to map a state-action pair to the expected reward. The
input to his neural network is the observation space and the
output of the neural network is the Q-values for each action.
At each step, if exploit is chosen, the maximum valued action
is selected by the algorithm.

Lt(θt) = Es,a,r,s′ ρ(.)[((r+γ·maxa′Q(s′, a′; θ−t )−Q(s, a; θt))
2]

(2)

θt+1 = θt + α(Y Q
t −Q(s, a; θt)) · ∇θtQ(s, a : θt) (3)

Y Q
t = r + γ ·maxa′Q(s′, a′; θ−t ) (4)

DQN has another internal neural network, identical to the
Q Network, called Target Network. Differing from the Q Net-
work, this neural network is only updated every C number
of steps, where C is a customizable parameter. These net-
works utilize the loss function in Equation 2 [13] and the up-
date equation in Equation 3 and Equation 4 to internally train
the neural networks. In the equations, θt refers to the set of
weights the Q Network has, while θ−t is the set of weights of
the Target Network.

2.2 Action Space Discretization
The first part of the research is concerned with discretiz-
ing, the process of dividing a continuous domain into a fi-
nite amount of values that can represent that domain fully.
While there have been proposals such as Actor-critic and Nor-
malized Advantage Functions (NAF) [6] to make a DQN al-
gorithm compatible with a continuous action space, this re-
search aims to convert the action space of Carla into a discrete
one rather than utilizing one of these techniques.

The tool we utilize to train the agent on the Carla simula-
tor, gym-carla [1], provides the ability to customize the action
space by allowing users to select between continuous and dis-
crete. In the case of discrete action spaces, it supports further
customization by specifying the values of acceleration, how
fast the car can go, and the angle of steering, how sharp a turn
the car can make. In other words, the RL algorithm’s output
will be one of these values. By utilizing different values for
these parameters, it is possible to see the influence of action
space discretization on the training performance as well as
the robustness of the DQN algorithm.

There has not been a lot of research that has directly var-
ied the possible action outcomes to see its influence on algo-
rithm performances within the traffic domain. Therefore, it is
difficult to speculate the results as well as the impact of the
amount of discretization. On one hand, the more choices the
algorithm has means it should be more suitable to deal with
different situations. On the other hand, being able to make
more movements might delay the learning process and even
negatively affect performance since safety is more important
than being able to go when it comes to traffic. The results



from this paper should shed light on how far should the dis-
cretization be taken for it to accurately represent a continuous
domain and whether discretization leads to better adaptability
under test conditions.

2.3 DQN Extensions
The second part of the paper is regarding two DQN exten-
sions, namely Double Q-Learning [19] and Prioritized Ex-
perience Replay [15]. These extensions have been proposed
over the years to improve various points of the traditional
DQN algorithm. Following subsections will give further in-
formation about these extensions.

Double Q-Learning
While DQN has shown to be capable of learning, it has some
faults. One of these faults is the fact that it tends to overesti-
mate action values in some cases, generating over-optimistic
results. This not only negatively affects the performance [19],
but could also cause divergence which in turn would render
the network model useless. The main reason for this is that
the maximum operator in DQN utilizes the same values to
both select and evaluate an action. This makes it more likely
to generate positive outcomes, which is a bad thing as it in-
troduces overestimation to the model.

Y Q
t = r + γ ·Q(s′,maxa′Q(s′, a′; θt); θt) (5)

Y DoubleQ
t = r + γ ·Q(s′,maxa′Q(s′, a′; θt); θ

′
t) (6)

Double Q-Learning, is an extension to the standard DQN
algorithm to help with this issue. The idea behind it is to
decouple the max operation into two: action selection and ac-
tion evaluation. This can be achieved through utilizing two
different Q Networks with each responsible for one of the op-
erations. The equations Equation 5 and Equation 6 [19] show
the difference between normal DQN and DQN with Double
Q-Learning when updating the network gradient. Double Q,
utilizes a different set of weights, denoted as θ′t, in its update
function to independently evaluate the action taken. As the
DQN algorithm already comes with an additional network
called Target Network, it is possible to utilize this network
for the action evaluation. This is also what is recommended
in the original paper for the Double Q-Learning [19].

The way to test the effect of this extension is to compare a
DQN implementation without it and a DQN with it. Nothing
should be changed and one important thing to note is that the
seeds should also be the same to eliminate any unfairness due
to randomness. While the literature agrees on the fact that
Double Q-Learning lowers the overestimation, there has not
been explicit research on the domain of traffic simulators [4].
These simulators are different in the fact that they have lots of
moving parts that the DQN agents are in no control of. This
means that due to lucky events increasing rewards in some
episodes could reinforce unwanted behaviours and since the
action selection and evaluation are done by the same network,
this could aggregate into the model not performing as well as
it can. Double Q-Learning could be used to disincentivize
this over-eager behaviour as there is a different network that
would evaluate the action.

Prioritized Experience Replay
Experience Replay is an integral part of the DQN algorithm.
It is a process in which the agent stores the previous data it has
seen in a memory buffer and then randomly samples this data
during the learning process to improve its decision-making
[12]. While this method has been shown to have improved
the performance of the DQN algorithm, it is still not optimal
in the fact that the agent can still sample bad experiences and
learn nothing from them [13].

Prioritized Experience Replay, as its name implies, assigns
importance to each experience that is stored within it to im-
prove performance. This prioritization is often determined by
temporal difference (TD) error, which is the difference be-
tween the actual reward and the estimated reward by the Q
Network [15]. A high TD error means that in that experience
an event that greatly surprised the agent has happened. This
means that this is an event that could teach the agent to do
or avoid something. The extensions achieve reduced training
times and improved performance by compelling the agent to
not disregard rare and valuable experiences, which could have
been overlooked in uniform sampling.

One crucial faucet in Prioritized Experience Replay is to
tune parameters α and β, which determine the degree of sam-
pling skewing. α determines how aggressive the prioritiza-
tion of the experiences should be whereas β determines the
amount of correction applied after sampling [15]. This cor-
rection is there to help reduce bias that may have been caused
by the difference in actual distribution and the sample’s own
distribution. In other words, the higher these values are, the
less random the sampling process is. If these parameters are
too low, then this is no different from normal experience re-
play, and if they are high then the agent can only focus on
these unexpected behaviours and over-tune itself. This is es-
pecially true within Carla as the behaviour of other cars could
directly create these unlikely situations. If these are learned
to the appropriate degree, the agent can adapt to the complex
nature of traffic much easier. All in all, this paper will utilize
the previously explained methodologies to test the influence
of experience prioritization on training performance as well
as robustness.

3 Methodology
Since the research question is divided into two parts, it was
advised to also divide the research itself into said parts. This
section will illustrate the chosen methodology for each of
these parts.

Due to technical limitations during the development of the
algorithm as well as extensions, Carla was not utilized in the
preliminary experiments. Instead a similar, in terms of input
as well output, yet much more computationally cheap envi-
ronment is utilized. This environment is the CarRacing1 en-
vironment from the Gym framework that OpenAI has created.
However, while this environment can indicate that the algo-
rithm can learn through images and apply that to driving a
car, it does not give insight into the algorithm’s performance
in realistic traffic. For this reason, for comparing the training
as well as robustness Carla is preferred.

1https://www.gymlibrary.dev/environments/box2d/car racing

https://www.gymlibrary.dev/environments/box2d/car_racing


Figure 1: The birdeye view gym-carla provides to the algorithm.

Through the repository gym-carla [1], it is possible to
seamlessly integrate the algorithm developed with the Gym
environment into Carla. This repository converts the interac-
tions that the Carla simulator has to a format compatible with
the Gym framework. Furthermore, it offers the option to cus-
tomize the action space, which makes it possible to answer
the action space discretization part of the research question.
An example of the algorithm will get as image input from this
wrapper is given in Figure 1.

The following subsections explain the exact methods that
will be used to conduct the experiments.
First part: action space discretization and its effect on train-
ing and robustness.

1. Adapt DQN into Carla’s environment.
2. Train DQN with by varying the action parameters:

(a) steering angle: the angle at which the vehicle can
be rotated in a single frame.

(b) acceleration rate: the velocity at which the vehi-
cle will be sped up or slowed down by in a single
frame.

3. Compare the various training data such as how fast the
rewards converge to a value, and how Q-values evolve
over training.

4. Run both versions of these algorithms by changing the
map in which the algorithm operates. Log the results to
check the differences that will occur.

Second part: DQN extensions and their effect on training
and robustness.

1. Utilize the implemented DQN algorithm within the first
part.

2. Add Prioritized Experience Replay into the DQN algo-
rithm.

3. Compare the training using by using the workflow in the
first part of the bare-bone implementation and DQN with
extension.

4. Do a similar robustness test to the action space dis-
cretization between DQN with extension and normal
DQN.

5. Implement Double Q-Learning into the DQN algorithm.
6. Run the tests for training times as well as robustness.

The workflow for testing the training performance and robust-
ness are the same to ensure consistency within the research.

Name of
the map

Carla Description

Town03 A larger, urban map with a roundabout and large
junctions.

Town04 A small town embedded in the mountains with a
special ”figure of 8” infinite highway.

Town05 Squared-grid town with cross junctions and a
bridge. It has multiple lanes per direction. Use-
ful to perform lane changes.

Table 1: Carla maps and their descriptions [3]

4 Experiments
The DQN algorithm has many different implementations.
The one that we have used for this paper is taken from
ClearnRl by Shengyi Huang [8]. It is a repository containing
clean, which means maintainable and easy-to-alter, imple-
mentations of many reinforcement learning algorithms with
DQN being one of them. However, the network architecture
of the internal Q Network was not suitable for learning from
the image format that Carla produces. Therefore, the net-
work architecture was replaced with the one used in the Deep
Mind Atari paper [12]. The common hyperparameters that
were constant throughout all of the experiments are given in
Appendix A.

For the environment, Carla simulator [3] with version
0.9.13v was used. The algorithm was adapted to this environ-
ment by utilizing a tool called gym-carla [1]. This is a tool de-
veloped to make Carla compatible with the Gym framework.
The parameters this tool takes are given in Appendix B. As
the hardware requirements for Carla are high, DelftBlue [2],
the supercomputer cluster under TU Delft. One constraint
of Delft Blue was that it only allowed training for 24 hours,
and only 500k steps could be completed within this duration.
Checkpointing was employed during the initial Carla tests;
however, continuing from a checkpoint lengthened the exper-
iment time by a factor of four to five. Due to this reason, 500k
steps were used to train each of the agents.

For testing the robustness of the algorithm, we elected to
change the maps that the agent will be tested in. The maps
and their descriptions are given in Table 1. These maps were
chosen as they present a multitude of real-life situations to
test the agent against. All of the agents are initially trained
in Town03. Then for evaluation, agents ran 10 episodes in
each of these maps with each episode having differing initial
conditions. For all of the models, both training and robust-
ness testing, 0 was selected as a seed to eliminate any unfair
advantage randomness may cause.

4.1 Action Space Discretization
In Carla, the action space is a combination of two parameters:
acceleration value and steering angle. The acceleration val-
ues refer to the change of speed the agent’s vehicle can have
and the steering angle refers to the degree of turn the vehicle
can make. Therefore, to test action space discretization, three
different levels of discretization were selected at 3 values, 5
values, and 7 values for each of these parameters. These are
given in Table 2. While the domain of the action space re-
mains the same, by adding more values the degree of control



Number of
values

Acceleration Value Steering Angle

3 values -3.0, 0.0, 3.0 -0.2, 0.0, 0.2
5 values -3.0, -1.5, 0.0, 1.5, 3.0 -0.2, -0.1, 0.0, 0.1, 0.2
7 values -3.0, -2.0, -1.0, 0.0, 1.0,

2.0, 3.0
-0.2, -0.133, -0.066, 0.0,
0.066, 0.133, 0.2

Table 2: Acceleration and Steering values for different agents

Figure 2: Graph showing the evolution of Q-values per agent during
training

increases.

Training Performance
For comparing the training performance, changes in Q-values
and episodic rewards were plotted for each step. These are
highlighted in Figure 2 and Figure 3 respectively. For Q-
values, it can be seen that they increase exponentially, as
the graph is in logarithmic scale, with each increment of dis-
cretization. Another observation is that Figure 3 shows that
an increase in the level of discretization delays the training
and is consistent with results found in research by Yunhao
Tang [17]. One explanation of these results could be about
the equation in Figure 2, it shows that the loss is directly cal-
culated by estimating the maximum amount of rewards the
agent can get if it follows an optimal policy for the rest of
the episode. As the level of discretization increases, the al-
gorithm is more likely to find higher-rewarding actions re-
sulting from the high-grained control. These compound over
time and cause the algorithm to overestimate during the train-
ing. Another possible way to explain this is that the algorithm

Figure 3: Graph showing the evolution of episodic returns per agent
during training

Figure 4: Graph showing the mean evaluation scores per agent
across Carla maps

Figure 5: Graph showing the standard deviation of evaluation scores
per agent across Carla maps

may need more time as well as data to adapt to the expanded
output neurons and to properly converge its Q Network gra-
dients. These results suggest that, at least for the Carla sim-
ulator, discretization increases overestimation and causes a
performance decrease for training.

Robustness Testing
For testing the robustness of the final agent, three different
maps in Table 1 were utilized. This was to ensure that the
agent would encounter a different environment that it has no
knowledge of. Each agent was run ten times per map with
different starting conditions and the reward for each episode
was collected. Figure 4 shows the mean evaluation score for
each map. This graph suggests that the level of discretization
lowers the overall expected reward from evaluations. This is
in correlation with the training performance shown in Figure
3. The standard deviation for these scores is depicted in Fig-
ure 5. The graph illustrated a decrease in the standard devia-
tion of scores as the discretizations increase. One reason for
worse evaluation performance at higher discretization steps
could be the divergence of Q-values in training. The previous
section showed that a higher level of discretization correlated
to an exponential increase in Q-value estimations. This may
mean that agents with highly discretized spaces may not have
had the opportunity to converge to an optimum neural net-
work. Another potential explanation is that the simulation
prioritizes bigger behaviour, larger turns or higher accelera-
tion. This would mean lower discretization that only offers
these larger movements would expect overall higher reward-
ing, but more varied, behaviour and this is supported by the
standard deviations shown in the graphs. We can infer that



with the increase in the level of control high discretization
provides, the agent’s behaviour becomes more consistent, as
it can choose more values rather than just backwards-stop-
forwards.

4.2 DQN Extensions
In order to compare the influence of DQN on training perfor-
mance, two DQN agents each utilizing one extension were
trained in Carla. For the Double Q extension, the implemen-
tation of Van Hasselt [19] was utilized. In this architecture,
the target network of the agent is utilized as an objective judge
to evaluate the actions. As for Prioritized Experience Replay
(PER), a Segment Tree was used as a Priority Queue with TD
loss as keys and experiences as values. For the two hyper-
parameters PER introduces, a value of 0.2 was selected for α
and a value of 0.6 was determined as the initial value of β. As
the training progress, β slowly decays to 0 because the need
for bias correction decreases.

Training Performance
Figure 6 describe the reward all three agents have gotten for
each step and figures 7 and 8 illustrate the evolution of Q-
values and TD loss respectively. It can be seen that base DQN
converges to a higher reward value as training comes to an
end. An interesting observation is that Figure 8 shows the
agent with PER having a smaller TD loss compared to other
agents.

These agents having worse performance does not agree
with the original research papers [19] [15] for these exten-
sions as both show an increased training performance com-
pared to a base DQN instance. One explanation for the de-
crease in performance due to Double Q could be due to un-
derestimation. Zhizhou Ren [14] describes that in complex
environments, Double Q-Learning could underestimate the
Q-values during training and converge to a less optimal point.
This can be seen in other figures as Double Q consistently has
lower Q-values and TD loss compared to base DQN, show-
ing that the algorithm is better at estimating the Q-values like
described in the original paper [19].

PER having significantly less TD loss is consistent with
Tom Schaul’s research [15] as the agent can train more on
rare situations, it is better able to anticipate the reward that
will come from it. For the decrease in training performance,
Jincheng Mei [11] describes two potential limitations: out-
dated priorities and insufficient sample coverage. The first
stems from the inability of the agent to update the priorities
inside the replay buffer at each step and the second is ob-
served when the replay buffer is not large enough compared to
the sample space [5]. Carla environment is especially prone
to insufficient sample coverage as it is a complex environment
with many moving parts. So while the experience with high
TD loss could have been sampled, the more normal experi-
ences could be underrepresented due to prioritization.

Robustness Testing
Results of robustness testing are depicted in Figure 9 and
Figure 10. These show that the agent with PER has higher
mean evaluation scores and lower variation, which indicates
that it outperforms other agents in robustness and agrees with
[15]. On the other hand, Double Q-Learning under-performs

Figure 6: Graph showing the evolution of episodic returns per agent
during training

Figure 7: Graph showing the evolution of Q-values per agent during
training

Figure 8: Graph showing the evolution of TD loss per agent during
training



Figure 9: Graph showing the mean evaluation scores per agent
across Carla maps

Figure 10: Graph showing the standard deviation of evaluation
scores per agent across Carla maps

both agents significantly having a lower mean reward. This
follows directly from the less-than-ideal convergence of its
training rewards as well. In the discussion for training per-
formance, we have explained underestimation bias as a pos-
sible reward for the loss of performance [14]. Another reason
could be the Target Network, which was the chosen evaluator
for the Double Q-Learning. The second network is supposed
to be decoupled from the Q Network responsible for selecting
the actions. However, the target network in DQN architecture
still has ties to the original network it is just that it lags behind
due to having lower frequency updates. While it helped to re-
duce the overestimation as seen by the decrease in TD loss,
it caused the network to get consistently lower rewards. A
secondary network which updates every step could overcome
this issue. The most likely hypothesis for PER performing
better than other agents could be explained through its mecha-
nism of training more on unique experiences. We believe that
these situations may have been encountered in other maps as
well because traffic movement remains consistent even with
different environments. Since an agent with PER has trained
more on these unique encounters, it is able to more effectively
deal with them in test episodes; hence leading to higher over-
all evaluation scores.

5 Responsible Research
Autonomous driving is a vital field of the future to improve
traffic safety and driving performance. However, many of
these autonomous vehicles will eventually hold individuals
and this, naturally, creates ethical problems about the qual-

ity of any research within this domain. While our research is
autonomous driving, the main environment was a simulation
and no real people were involved in it. Nevertheless, the re-
sults of these experiments may be utilized to develop real-life
autonomous vehicle agents, and we advise verifying our re-
sults with more time and better hardware to reduce any bias
these constraints may have caused us. These constraints are
described in more detail in Section 6.

Randomness is an inherent aspect of machine learning, and
this paper’s deep RL algorithms are no different. Choosing a
favourable initial state, selecting between exploitation or ex-
ploration within a step, or updating the neural network in the
correct direction at the beginning when most of the decisions
are arbitrary only contribute to this randomness. To counter
this, researchers use what is called a seed, essentially a num-
ber that can be specified so that the randomness can be repro-
duced. Another research could utilize the provided seeds in
Section 4 to generate a model that could behave similarly.

Unfortunately, this seeding creates another problem such
that whether the good or bad results obtained were due to
the quality of the seed. To combat this during the research,
we selected a representitive seed. This is a seed which will
perform average results and is able to represent a multitude
of seeds. Several runs of the base DQN algorithm at differ-
ent seeds were done to see the progress of the training graph.
Upon these, a seed was selected as the representative. This
is not the best solution since the results still come from a
single trial rather than aggregated results of multiple. How-
ever, within the limited time frame and the heavy hardware
constraints Carla has imposed upon researchers, it was not
possible to run multiple trials for all different algorithm vari-
ants and record the training performance for each of them.
For testing the robustness of different algorithm variants, the
trained models ran 10 trials, each starting with differing con-
ditions, for each town map to eliminate any bias that could
have been caused by good initial positioning.

6 Limitations
One issue we encountered during the research is the high
amount of resources and time each experiment took. Carla
has high hardware requirements that our computers were not
able to run the experiments locally. For this reason, Delft
Blue [2], the super-computer cluster of TU Delft was utilized.
However, the month of May had the submission deadlines for
NeurIPS2 and this caused Delft Blue to delay the running of
experiments. This lateness coupled with the fact that each ex-
periment taking at least 24 hours to conclude and the research
had a duration of two months, meant that the agents were not
trained to a global optimum. This especially caused some
negative bias for agents whose training performance was not
as good as the base DQN algorithm. While we have tried to
mitigate this limitation as discussed in Section 4, they nev-
ertheless impacted the experiment results. It is advised for
another research that would follow this one, to be aware of
this limitation and, ideally, train the agents until the upward
trends cease.

2https://nips.cc/

https://nips.cc/


Another negative impact caused by the limited time and
resources is that we were not able to perfectly tune the hyper-
parameters of the models. This may have negatively affected
the overall training and testing performance of the agents. Es-
pecially with PER agent, this difficulty in tuning may have
caused the results to be negatively biased against this exten-
sion, as it is heavily affected by two hyperparameters α and
β. Again, it is recommended for future research within this
domain, to spend more time tuning hyperparameters to have
each agent perform at its best.

7 Conclusions and Future Work
In a nutshell, the paper aimed to answer the question ”How do
the discretization of the action space (as required for several
RL algorithms) and various extensions (e.g., prioritized ex-
perience replay, double-q-learning) to the well-known DQN
algorithm influence training and the robustness of final poli-
cies under various testing conditions?”. For the action space
discretization, experiments show that the main positive ef-
fect of the action space discretization is the increase in the
behaviour consistency of the agent. The other metrics, such
as Q-values, training performance, and robustness evaluation,
negatively correlated to the degree of action space discretiza-
tion. As for the second part of the research questions, we
have concluded that both Double Q-Learning and Prioritized
Experience Replay lengthened the training times. In the case
of Double Q-Learning, the complexity of the environment has
led to the agent converging to a less ideal position and lead-
ing to worse performance in robustness testing. In contrast,
Prioritized Experience Replay has consistently outperformed
other agents during robustness testing. Being able to learn
more from unique situations, lead to better reward estimation
as well as generalization performance.

All of the figures suggest that both higher discretized ac-
tion spaces and DQN extensions have reduced performance
during the training process. A possible improvement would
be to train for longer than 500k steps. Some of the figures
still show an upwards trend, and this could lead to them con-
verging to a better optimum. This would possibly lead to
agents giving better results in robustness testing. One fur-
ther research avenue we have theorized would be to merge
Double Q-Learning with action space discretization. Exper-
iment results show that higher discretization could lead to
gross overestimation of values, as Double Q is mainly utilized
for countering this overestimation, its impact could be larger
on action spaces with higher discretization. Another research
could be done to validate other extensions of DQN, such as
Dueling DQN [20]. Or one could also test against Rainbow, a
combination of six proposed DQN extensions [7]. A similar
methodology to the current paper could be employed to check
the training and testing performance of other extensions.
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A DQN Parameters

Name of parameter Value
total-timesteps 500000
learning-rate 2.5e-4
buffer-size 50000
gamma 0.99
tau 1
target-network-frequency 500
batch-size 128
start-e 1
end-e 0.05
exploration-fraction 0.5
learning-starts 10000
train-frequency 10

Table 3: Parameters used for DQN

B Carla Parameters

Listing 1: Carla environment parameters

{
’ n u m b e r o f v e h i c l e s ’ : 100 ,
’ n u m b e r o f w a l k e r s ’ : 0 ,
’ d i s p l a y s i z e ’ : 256 , # s c r e e n s i z e o f b i rd −eye r e n d e r
’ m a x p a s t s t e p ’ : 1 , # t h e number o f p a s t s t e p s t o draw
’ d t ’ : 0 . 1 , # t i m e i n t e r v a l be tween two f r ame s
’ d i s c r e t e ’ : True , # whe ther t o use d i s c r e t e c o n t r o l space
’ d i s c r e t e a c c ’ : [ − 3 . 0 , 0 . 0 , 3 . 0 ] , # d i s c r e t e v a l u e o f a c c e l e r a t i o n s
’ d i s c r e t e s t e e r ’ : [ − 0 . 2 , 0 . 0 , 0 . 2 ] , # d i s c r e t e v a l u e o f s t e e r i n g a n g l e s
’ c o n t i n u o u s a c c e l r a n g e ’ : [ − 3 . 0 , 3 . 0 ] , # c o n t i n u o u s a c c e l e r a t i o n range
’ c o n t i n u o u s s t e e r r a n g e ’ : [ − 0 . 3 , 0 . 3 ] , # c o n t i n u o u s s t e e r i n g a n g l e range
’ e g o v e h i c l e f i l t e r ’ : ’ v e h i c l e . l i n c o l n * ’ ,

# f i l t e r f o r d e f i n i n g ego v e h i c l e
’ h o s t ’ : ’ l o c a l h o s t ’ ,
’ p o r t ’ : 2000 , # c o n n e c t i o n p o r t
’ town ’ : ’ Town03 ’ , # which town t o s i m u l a t e
’ t a sk mode ’ : ’ random ’ , # mode o f t h e t a s k
’ m a x t i m e e p i s o d e ’ : 1000 , # maximum t i m e s t e p s per e p i s o d e
’ max waypt ’ : 12 , # maximum number o f w a y p o i n t s
’ o b s r a n g e ’ : 32 , # o b s e r v a t i o n range ( me te r )
’ l i d a r b i n ’ : 0 . 1 2 5 , # b i n s i z e o f l i d a r s e n s o r ( me te r )
’ d b e h i n d ’ : 12 , # d i s t a n c e beh in d t h e ego v e h i c l e ( me te r )
’ o u t l a n e t h r e s ’ : 2 . 0 , # t h r e s h o l d f o r o u t o f l a n e
’ d e s i r e d s p e e d ’ : 8 , # d e s i r e d speed (m/ s )
’ max ego spawn t imes ’ : 200 , # maximum t i m e s t o spawn ego v e h i c l e
’ d i s p l a y r o u t e ’ : True , # whe ther t o r e n d e r t h e d e s i r e d r o u t e
’ p i x o r s i z e ’ : 64 , # s i z e o f t h e p i x o r l a b e l s
’ p i x o r ’ : F a l s e , # whe ther t o o u t p u t PIXOR o b s e r v a t i o n

}
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