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1 Introduction.

For solving of field theoretical or numerical problems, it is advantageous to make
use of curvilinear coordinates, because the bodies and surfaces are curved gen-
erally. By making a proper choice of the coordinates, the geometry of these
bodies can be treated more easily. Especially for flow calculations of cavitating
profiles curvilinear coordinates can be used. The wing and cavity are assumed
to be (doubly) curved. With the panel method the potential is solved at the
collocation points. The collocation points are defined at the stations ip, and jp.
These variables ip and jp can be-used as the curvilinear parameters. By making
use of the curvilinear coordinates, with help of tensor calculus, the velocities
:at the collocation points can be determined. Also it is possible to make an ex-
pansion of several variables, like potential and velocity, into the: field, with help
of the divergence and rotation theorem of potentials. This report is written to
give a summary of the curvilinear equations. So, in other reports the equations
in this report can be referred to. The text around the equations will give briefly
the meaning of the equations. The derivation of the equations is not explained.
The derivations can be found: in the literature of tensor calculus (seefl]).

2 Curvilinear cooerdinates.

The cartesian coordinates of a point P with the components (x,y,z) are functions
of the curvilinear coordinates £! = £ (2 = 5 and €3 = (:

2 = (6,646
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These coordinates &', &% and £* will be shortly written as:&. From now on the
general theory of the curvilinear coordinates calculus in a R"-space is' treated
(, where the index range of the curvilinear parameters is from 1 to n).

3 Base_vectors.

The base_vectors can bé determined by taking the partial derivative of each
curvilinear variable:

€ = 7 (2)

In fact these base_vectors are the tangent vectors of each curvilinear variable.
The components of the base_vector €;, calculated in this way, are given in carte-
sian -coordinates. These base_vectors are called the natural base and are used




for contra_variant components. These base_vectors with their components de-
scribe a vector_space V. The curvilinear components, which belong to these
base_vectors are v*. They are called the contra_variant components. To get the
global vector ¥y;04 in cartesian coordinates, the components of the contra_variant.
curvilinear coordinates have to be mulfiplied by each base.vector:

"-;glob‘ = 'Uié.i (3)

4 Dual space.

There also exists a dual space. The base_vectors of this space are perpendicular
to the base_vectors as described as before. The base_vector in this space are
called dual base_vectors and they are noted as a vector with a superscript: &
The relation between the base_vectors and dual base_vectors is given as:

<&-8>=8 (4)
in which‘: 6; the kronecker delta.symbol.

The components of the dual base_vector are also given in cartesian components.
The dual base.vectors:are used for co_variant description of a vector.

The curvilinear components, which belong to these dual base_vectors are. v;.
They are called the co_variant components: To get the global vector Ugiop in
cartesian coordinates, the components of the co_variant curvilinear coordinates
have to be multiplied.by each dual_base_vector:

"-’.glob = U.'é‘ (5))

5 Fundamental tensor of the first kind or me-
tric tensor.

The fundamental or metric tensor G is defined: as the dot_product of the base_--
vectors:

gij =<-é'.-’,é} > » (6‘)
The metric tensor gives' an indication of the length of the base_vectors and,
their direcrtion cosines. The metric tensor .can also be used to transform the.
contra_variant components into the. co_variant components:

v = gijo? ‘ (M)




The inverse of the metric tensor G~! is the metric tensor of the dual space.

‘This tensor can be determined by taking the inverse of gij:

g% = (g;)" (8)

or in the same way as the natural base, by taking the dot_product of the dual

base_vectors:

i =<é&.gd> 9) .

Because g%/ is the inverse of g;; the following equation is valid:

g9k = g} = 8} (10)

In which;
6;5 the kronecker delta symbol.
g}, the mix metric tensor.

This equation can be-used for the calculus of derivations from the contra_variant
components to.co:variant components (or vice versa). The contra_variant metric
tensor can also be used to transform the co_variant components:of a vector into
the contra_variant components.of a vector:

v' = g¥lv; ' (11)

The base vectors of:a natural coordinate systém form the ribs of aparallelepiped.

It’s well known that the determinant of the vectors delivers the volume of this
parallelepiped: o

V= det(é.l) l‘é’ﬂ) (12)

It is also known that the determinant of a transposed 2-tensor (= matrix) is

equal to the determinant .of the original 2-tensor and that the _determinant of a
product. of two 2-tensors is equal to the product of the determinants of the two

'2-tensors: If a 2-tensor is made of the base_vectors:

E= (&, -, &) (13)

then the co_variant metric tensor G' (with components g;;) can be calculated as:
G=E"E (14)

The determinant.of G will be:
det(G) = det(ET)det( E) = (det(E))? = (det(éy,- - - ,én))? (15)
From this the square root can be taken and this gives:

V = Vdet(G) = /g = det(€y, - &) (16)

So the square root of the determinant of the co_variant metric tensor is the

volume of the base_vectors. This expression can be used for the Jacobian of in-
tegral expressions when the integral is calculated in the: transformed curvilinear
coordinates:.




6 Christoffel symbols.

Using, curvilinear coordinates and their base_vector in several points in a space:
V doesn’t have the same length and direction, so the: base vectors are a function
of the curvilinear coordinates (contra.variant rotationy):

&= &g, €") amn

When this function is. differentiated to one of these curvilinear .coordinates,
the newly function can be expressed as a linear comibination of the origin
base_vectors. The components of these base_vectors are the Christoffel sym-
bols of the second kind Tf;:

W ’F.'je,k (18‘)
The calculation of the Christoffel symbols will be discussed later.

It is also possible that the curvilinear coordinates are dependent of :a para-
meter t (such as streamlines). The base_vectors then are:

& =aEW, ) (19)
Differentiating to t gives, using the chain rule:

de. _ 6e. df-’ k df P

d T egd A (@0)
- So.the rules of the calculus of diﬂ'erenﬁiatibn of base_vectors are defined.
Now a vector field 7 is defined with a natural base (14 - -+ ,€n) and compo-

nents v*. These components are functions of t along a curve. Dlﬂ'erentlatlon to
t gives:

v d(v'é‘.) _ - de.
@ - T d _ﬁe KRS
v dv* o dfi o1
@ - metY T ar di ¢ (21)
Changing the summation indices i and k ‘gives:
di” dv i df
wd &+ vl —— FTie (22)
Expliciting the base_vector results in:
dv _ i ki 0,
O A (23)




The components of the derivative ofﬂ% are called D" Dv’ For Dv° remalns

ar
Dv'  dvt L odEd
o = ar YUy
This method of differentiation of the components-of #'is called absolute, intrinsic

(24)

- or contra_variant differentiation. This gives the components of the derivative

vector of a vector field ¥, with a. curvature, expressed in the natural base of each
point.

If a vector field is defined only with the curvilinear coordinates €*:
v =0l g (25)

Then the derivative of the h-th coordinate line £* of v* gives:

Dv' 9 ¢
E T T
(This equation is found by:substituting ¢:by £* in equation (24).) The curvilinear
coordinates £° are independent of each other. So the. partial derivative of the

curvilinear coordinates gives the kronecker delta function:
3
oh

This expression can be replaced in equation (26). By making use of a new.
notation for this kind. of derivating; v*,; ; it yields:

i _ DV a8
Vb= T der ~ a&h

This-equation can also be used for the absolute differentiation. It can then be
‘written as:

kI\u (26)

. (28)

Dv , de '
=o'y = = (29)
At dt
In the same way it is possible to derive a simular expression for the co. _variant
derivatives. The results of the co_variant derivatives are:

Dy; dv, k df-’
a T @ % nIj; dt (30)
(This is called the co_variant differentiation)
Dv;  Ov; E y
Viyh = F,: = 55—;' — Fpive - (31)
and D dei
Dv: _
Eakr @2

= 6} (27)




7 Calculation of the Christtoffels symbols.

" In section (3. Base_vectors.) it has been derived that the paitial derivative of

each curvilinear parameter gives the base_vector;

. _ OF

€ = Fr (33)

Repeated differentiation of this newly obtained equation to-£*, and remembering
the definition of the Christoffel symbol of the second kind, it results in:
%z oe; . oz : ok
W = &.‘I— = I‘j'-ek F_n afk (34)
This equation is multiplied (inner product) by the vector é;. Keeping in mind
the definition of the metric tensor equation (34) can be rewritten as:
or 0z 08; k

The right hand side is the definition of the Christoffel symbol of the first kind
and is notated as:

Ljqu = Tfigur (36)

So the inner product of the base_vectors and' the derivative of the base _vectors

gives the Christoffel symbols of the first Kind:

a" ’ :
Fji1 =<€ - @ > (37)

The Christoffel symbols of the first. kind can also be. calcu!ated on an other
way. Using the definition of the metric tensor (see equation (6)):

9ij =< & - € >

and differentiating this equation partial to ™ gives:

afm <a£m € >+ < ¢ a£m> _ (38)

In the right hand side the definitions:of the Christoffel symibols. of ‘the ﬁrst kind

:appear (see equation(37)). 'So equation (38) can be rewritten as:

9gi;
gem

= Lmgi + Limy (39)

Cyclic changes of the indicesi,j,m gives respectively:




ag mi

oe5 = Uim+Dmis -0
895m
5a = Tim + s (41)

Adding equation (40) and (41) and substracting equation (39) gives:
99jm +'agm|’ _ Ogij
og " o¢gh ogm

The Christoffel' symbol of the first kind' can be determined by dividing this
equation by 2:

2Ljgm = (42)

r.. 1 09im  Ogmi Ogij
Lim =3 ET T3] agm)

(43)

Equation (37) can be multiplied with the contra_variant metric tensor G~! with
components g*. Making use of that the product of the co_variant metric ten-

sor and contra_variant metric tensor gives the Kronecker function (see equation

(10)): 'The Christoffel symbol of the second kind can be written explicitly:

g"Tjq1 = g™ gul}; = 6§15, = 1% (44)

Or. )
I} = g™ (45)

8 Gradient, divergence and rotation.

In this section the definition of gradient, divergence .and rotation is given in a
curvilinear coordinate system, without further derivation.
The-gradient of a scalar F is defined as:

lim AF i OF

grad(F)' = | = g¥

A’f‘ —0 AL %f (46)

The di_vergehce of a vector ¥ is defined as:

im [f<#d>d0 _ ; 8

di‘u(’l-)') = V _"0 V = "v= a_fl'

$To (47)




The rotation of a vector 7 is calculated as:

. lim §7-dF |
< n.rotv >= AO—0 AOD (48)
Then the definition of rotation is found by eliminating the normal vector:
Lo dv; O
rol(®s = Ui — i = 5t~ pg (49)

9 The geometry of a scale and of a surface.

The surface of the body is described with two parameters ' = £ and €2 = ¢ in

R?.

It’s assumed'that the siirface’S varies smoothly and that the functions, which

described this surface are. suﬂic1ently dlﬂ'erentlable In each point Pon S there
are two base_vectors & = Xf and €5 = X These are the tangent vectors.
Perpendicular to these base_vectors a normal can be defined:

§= Xe®X
[ Xe® %y |

9.1 Definition of a scale.

" A scale is defined as a parameterisation .of the surface coordinates and a linear

normal-coordinate:

(& n,¢) = X(&,m) +¢N(E.n) (51)
The base.vectors, which belong to these. parameters are:
€1 = X¢ +(Ne
€y = )S,, +‘CN,, (52) .
éoal =N :

If ¢ =0, then the metric of a surface appears.

9.2 The metric tensor of the scale and surface.

According to the definition of the metric tensor (see equation (6)) the metric

tensor in a scale with indices i,j = 1,2 can be determined by:

g = <é'.'-é}'r>=<)?5+g’ﬁ5‘-f,,+(ﬁ,,v>
= <X Xy> +(< X -Noy> + < X, Ne >) 4 < Ne - Ny > ¢2
| (53)
8,

(50)




If sub_tensors are defined as:

a; = < XE -)-(:,', >
bii = <X¢-Ny>=<X, Ne>=—< N X >
Gj = <NgwNp> (54)

then the metric tensor in the: scale is composed of:
Gij = aij + 2b45¢ +ci5C? (55)
The components with index 3 in this equation are:
- 9ia = g3 =< €& -€3>=< XE: +r€1\-f5 N >=0
gs = <N.-N>=1 ' (56)
So the metric tensors in the scale have the following forms:

‘ gn G122 O
G=1 gi» g2o 0 | (57)
0 o 17

gll gl2 0
G—l - ( : ‘gylz g22 0 (58)
0 0 1 '

From this equation it is easy to.see that the third co_variant component is equal
to the third contra_variant component:

V3 = 1)'3\' (59)

and:

When: ¢ =0 the metric tensor of a surface appears and the coinponents .of this
metric tensor-are ajj.
9.3 Christoffel symbols of the scale with an index 3.

Here a summary of the Christoffel symbols with the index 3 is given, without
derivation. The Christoffel symbols of the first kind are:

Tiss = Tapz =Tagi =Fagasz=0
Fijja = —(bij +¢ij¢)
Fanj = bij+ei¢ (60)

The Christoffel symbols of the second kind are:

I‘?a = ng = E."ia = Fga =0

I"?_; = —('b,‘jl-i-c,'j()
Iy = ¢*Tau ?*gik‘(bik + i) (61).
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