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i Introduction.
Fòrsolving of field theoretical or numerical problems, it is advantageous to make
use of curvilinear coordinates, because the bodies and surfaces are curved gen-
erally. By making a proper choice of the coordinates, the geometry of these
bodies can be treated more easily. Especially for flow calculations of cavitating
profiles curvilinear coordinates can be u8ed. The wing and cavity are assumed
to be (doubly) curved. With the panel method the potential is solved at the
collocation points The collocation points are defiûedat the stations ip,, and jp.
These variables ip and jp can be used as the curvilinear parameters. By making
use of the curvilinear coordinates, with help of tensor calculus, the velocities
at the collocation points can be determined. Also it is possible to make an èx-
pansion of several variables, like potential and velocity, into the field, with help
of the divergence and rotation theorem of potentials. This report is written to
give a summary of the curvilinear equations. So, in other reports the equations
in this report can be referred to. The text around the equations will give briefly
the meaning, of the equations. The derivation of the equations is not explained.
The derivations can be found in the literature of tensor calculus (see[1]).

2 Curvilinear coordinates.
The cartesian coordinates of a point P with the components (x,y,z) are functions
of the curvilinear coordinates ¿ = ¿ ,2 and ¿3 =

z =
y = y(1,2,43)

= z(e',e2,3) (I)

These coordinates ¿, ¿2 and ¿3 will be shortly written äs ¿'. From now on the
general theory of the curvilinear coordinates calculus in 'a Rn-space is treated
(, where the index range of the curvilinear parameters is from i to n).

3 Base_vectors.
The base...vectors can b determined by taking the partial derivative of each
curvilinear variable:

(2)

In 'fact these 'base_vectors are the tangent vectors of each curvilinear variable.
The components of the base_vector , calculated in this way, are given in carte-
sian 'coordinates. These basevectors are called the natural base and are used
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for contra_variant components. These base_vectors with their components de-
scribe a vector..space V. The curvilinear components, which belong to these
base_vectors are y'. They are called the contra_variant components. To get the
global vector ii9 m cartesian coordinates, the components of the contra_variant
curvilinear coordinates have to be multiplied by each base_vector:

iigiob = V' (3)

4 Dual space.
There also exists a dual space. The base...vectors of this space are perpendicular
to the base_vectors as described as before. The base_vector in this space are
called dual base_vectors and they are noted as a vector with a superscript: ¿'.
The relation between the base_vectors and dual base_vectors is given as:

<e' (4).

in which: the kronecker delta symbol.

The components of the dual base_vector are also given in cartesian components.
The dual base.vectors:.are used for co_variant description oía vector.

The curvilmear components, which belong to these dual base_vectors are y,
They are called the co_variant components To get the global vector i9 in
cartesian coordinates, the components of the co_variant curvilinear coordinates
have to be multiplied:by each duaLbasevector

Vg,ob = Vj (5)

Fundamental tensor of the first kind or me-
tric tensor.

The fundamental or metric tensor G is defined as the dot_product of the base_-
vectors:

Uij =<,ë > (6)

The metric tensor ives an indication of the length of the base.vectors and,
their direction cosines. The metric tensor can also be used to transform the.
contra_variant components into the. co_variant components:

= (7.)

2



The inverse of the metric tensor G-1 is the metric tensor of the dual space.
This tensor can be determined by taking the inverse of g3:

g11 = (gj)' (8)

or in the same way as the natural base,, by taking the dot...product of the dual
base_vectom

g'2 =< '
Because g11 is the inverse of gjj the following equatión is validi

11 1 ci /1g 'g =g ='°k ISI'

In which:
ö the kronecker deltasymbol.
g the mix metric tensor.

This equation can be used forthe calculus of derivatiöns from the contra_variant
components'toco_variant components (or vice versa). The contra_variant metric
tensor can also be used to transform the co_variant components of a vector into
the contra_variant 'components of a vector:

v = g11 y1 (il)
The base vectors ofa naturalcoordinate system form'the ribs ofaparallelepiped.
It's well known that the determinant of the vectors delivers the volume of this
parallelepiped:

V=det(êì, .....4) (1:2)

It is also known that the determinant of a transposed 2teasor (= matrix) is
equal to the determinant of the original 2-tensor and that the determinant of a
product of two 2-tensors is equal to the product of the determinants of the two
2-tensors. II' a 2-tensor is madè of the base_vectors:

E=(e1,...,4) (13)

then the co_variant metric tensor G (with components' gjj) can be calculated as:

G=ETE (14):

The determinant of G will be:

det(G) = det(ET)det(E) ="(det(E))2 = (det(êi,. ,
4))2 (I5

From this the square root can be taken and this gives:

V det(G) = = det(4,.. 4) (16)

'So the square root of the déterminant o the co_variant metric tensor is the
volume of 'the base_vectors. This expression can be used for the Jacobián of in-
tegral' expressions when the integrai is calculated in the. transformed curvilinear
coordinates.

3

(9)



6 :Christoffel symbols.
Using, curvilinear coordinates and their base_vector in several pòints in a space
V doesn't have the same léngth and direction, so the base vectors are a function
of the curvilinear coordinates (contra..váriant ñotation:

When this function is differentiated to one of these curvilinear coordinates,
the newly function can be expressed: as a linear combination o the origin
base_vectors. The components o these base_vectors are the Christoffel sym-
bols of the second kind

oe
= F1JCI (18)

The calculation of the Christoffël symbols will be discussed later.

It is also possible that the curvilinear coordinates' are dépendent of a para-
meter t (such as streamlines). The base_vectors then are

= e('(t), . ,e3(t)) (19):

Differentiating to t gives, using the chain rulé:

d4 ô d.c' k dI
(20)

So the rules of the calculus of differentiatiön of bàsevectors 'are dèfined.

Now a vector field: il is defined with a natural base (e1,. . ,ej) and compo-
nents y1. These components are functions of t along a curve. Differentiation to
t gives:

df! d(v14) dv'...
- dt

- ---e + V
df! dv kd= ---e + v

Changing the SummaIibn indices i and k gives:

df!' dv1 k= -e+v Fk---e1

Expliciting the 'base_vector results in:

df! dv1 klde'.-=(-±v rIk-)el
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The components of the derivative of
Ç are called For remains:

Dv1 dv1 k dC'= ± V ''jk - (24)

This method of differentiation of thecomponents'of uiis called absolute, intrinsic
or contra_variant differentiation. This gives the components of the derivative
vector of a vector field ui, with acurvature,, expressed in the natural base of each
pàint.

If a vector field is defined only with the curyilinear coordinates 'C':

Then the derivative of the h-th coordinate line eh of y1 gives:

Dv' 0V1 'k= + (26)

(This equation is found bysubstituting tby' in equation (24).) The curvilinear
coordmates ' are independent of each other So the partial derivative of the
curvilinear coordinates gives the kronecker delta function:

OC' o'- h
This' expression can' be replaced in' equation (26). By making use of a new
notation for this kind of derivating;, y1 ,h , it yields:

Dv1' 0v1 k=- ±Fv (28)

This'equation can also be used' for the 'absolute' differentiation. It can then be
written as:

Dv = y , -- (29),

In the same way it is' possible to derive a simular expression for the co.variant
derivatives. The results of 'the co_variant derivatives are:

Dv1 dv1
' k dC'- =---VkFi1--

(This is called the cö_variant differentiation)

Dv 8v1 kv1,h= = -

Dv1 dC'- vi,,

(25)
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7 Calculation of the C'hristtoffeis symbols.
In section (3. Base_vectors.)' it has been derived that the partial derivative of
each curvilinear parameter 'gives the base_vector;

(33)

Repeated differentiation of this newly obtained'equation to1, and.remembering
the definition of the Christoffel symböl of the second kind, it results in:

O2 ôej k -. k. 4- = - rii. 3

This equation is multiplied' (inner product) by the vector .. Keeping in mind
the definition of the metric tensor equation (34) can be rewritten as:

Ox k< i, > =< e1, >= I'11gj (35)

The right hand side is the definition. of the Christoffel symbol of the first kind
and' is. notated as:

r1111 rgkl (36)

Sb the inner product of the base_vectors andc the derivative of the base _vectors
gives the Christoffél symbols of the first. kind;

Fjj1j =<ej - > (37)

The Christoffel symbols of the first kind can also be calculated on an other
way. Using the définition of the metric tensor (see equation (6))

gjj <

and differentiating this equation partial to r gives

0g,1 e,>+'<e, (38)

In the right hand side the definitions of the Christoffel symbols of':the first 'kind
appear (see equation(37). So equation (38.) can be rewritten' as:'

8g,1
= + I'jmj

Cyclic changes of'the indices'ij,m gives respectivelyt
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ôgrj = rjj+rmj
gjm - r r 41- imli iikn

Adding, equation (40) and (41) and substracting equation (39) gives:

ôgjm Ogn,i Og2r. = + --- 42

The .ChristofFel symbol of the first kind can be determined by dividing this
equation by 2:

i ôg1, ôgmj ôgij
FjiJm -k-- + ;)

Equation (37)' can be multiplied with the contra_vaiiant metric tensor G-' with
components g''. Making use of that the product of the co_variant metric ten-
sor and contra_variant metric tèn8or gives the Kronecker function (see equation
(I0)) The Christoffel symbol of the second kind can be written explicitly:

ghlrj1 ¡ ghlgj =

or
i-h hIT'- g 'jill

8 Gradient, divergence and, rotation.
In this section the definition of gradient,, divergence and rotation is given in a
curvihnear coordmate system, without further derivation
The gradient of a scalar F is defined as:

grad(F)1 = 'um i.F 5F
e4 g

(40)

(43)

(46)

The divergence of a vector ii is defined: as:

div(i7) = <ii>
dO

=
= + (47)
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The rotation of a vector is calculàted as

'lim jiT.dñ
<n.roiv >= EO-0 ¿Q

Then the definition of rotation is found by eliminatiñg the normai vector:

-. ovi 'oviVjJ -r

9 The geometry of a scale and of a surface.
The surface of the body is described with' two parameters ¿1 = ¿ and ¿2 = , j

It's assumed that the surface S varies smoothly and that the functions, which
described this surface aresufficiently differentiab1e In each point P on S there
are two base_vectors è = J4 and 2 X,1. These are the tangent vectors.
Perpendicular to these basevectors a normal can be defined:

Ñ= (50)
II X®X7 II

9.1 Definition of a sca1e
A scale is defined as a parameterisation of the surface coordinates and a linear
normal-coordinate:

= (i) +(Ñ(,) (51)

The base_vectors, which belong to these parameters are

= X, +CN,, (52)

If ( = '0, then' the metric' of a surface appears.

9.2 The metric tensor of the scale 'and surface.
According to the definition of the metric tensor (see' equation '(6)) the metric
tensor. in a scale with indices ij = 1,2 can be determined by:

gjj =

<XeX,,> +(<.Ñ,1> +<,Ñ>)±<ÑÑ,1>(2
(53)
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If sub_tensors are dèfined as:

a11 <ZZ>
b11 = <Z.Ñ,,,>=<Z.Ñe><ÑZ0>
cjj Ñ,> (54)

then the metric tensor in the scale is composed of:

= a11 -F 2b11C + cjj(2 (55)

The components with index 3 iii this eqUation are:

g3

gas <ÑÑ>=1 (56)

So the metric tensors in the scale have the following forms:

/ 9ii g2 O. \
G = g12 922 (57)' o o ij

and: fg11 g12 O\
G' =. j g2 22 (58)\o o i)

From this equation it is easy to see that the third co_variant component is equal
to the third contra_variant component:

y3 = (59)

When = O the metric tensor of a surface appears and the components of this
metric tensor are

9.3 Christoffel symbols of the scale with an index 3.
Here a summary of the Christoffèl symbols with the indèx 3 is given, without
derivation. The Christoffel symbols of the first kind are:

r31
. . = = F33 = o

F111 3 (b1 + Cij)
T'311 j = b1 ± cjj( (60)

Th'e Christoffel symbols of the second kind are;

r3 - r3 - ri - F3 - o
13 .31 33 33

I'. = (b + cj<)
r!31,

= g1k
3I Ic gk(b + clkC) (61)
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