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A B S T R A C T

Hinterland intermodal transportation is the movement of containers between deep-sea ports and inland term-
inals by using trucks, trains, barges, or any combination of them. Synchromodal transportation, as an extension
of intermodal transportation, refers to transport systems with dynamic updating of plans by incorporating real-
time information. The trend towards spot markets and digitalization in hinterland intermodal transportation
gives rise to online synchromodal transportation problems. This paper investigates a dynamic shipment
matching problem in which a centralized platform provides online matches between shipment requests and
transport services. We propose a rolling horizon approach to handle newly arrived shipment requests and de-
velop a heuristic algorithm to generate timely solutions at each decision epoch. The experiment results de-
monstrate the solution accuracy and computational efficiency of the heuristic algorithm in comparison to an
exact algorithm. The proposed rolling horizon approach outperforms a greedy approach from practice in total
costs under various scenarios of the system.

1. Introduction

Hinterland intermodal transportation is the movement of containers
between deep-sea ports and inland terminals by using trucks, trains,
barges, or any combination of them [17]. Compared with unimodal
transportation, intermodal transportation has the flexibility to use dif-
ferent modes considering the specific characteristics of containers and
in turn achieves better performance in costs, delays, and emissions [6].
However, due to the utilization of multiple modes, operating an inter-
modal transportation system is very complex. In intermodal transpor-
tation, barge and train services normally follow fixed time schedules
and have limited free capacity [6]. Conversely, truck services are
usually not scheduled and have time-dependent travel times as a result
of road traffic congestion [18]. Therefore, constraints such as time
compatibility between different services and capacity limitations of
barge and train services need to be considered in intermodal transport
planning.

Synchromodal transportation, as an extension of intermodal trans-
portation, refers to transport systems with dynamic updating of plan-
ning by incorporating real-time information [9]. The trend towards spot
markets and digitalization in hinterland intermodal transportation in-
creases the need for such online synchromodal transportation problems.
In the literature, most of the existing studies assume that container

shipments are only collected from large shippers based on long-term
contracts. These contractual shipment requests are often fixed and
known over a given planning period. Recently, quite a few studies
[e.g.,21,22] have pointed out the trend towards spot markets in con-
tainer transportation. Different from the former contracted requests,
spot shipment requests arrive in real-time and require receiving trans-
port solutions as soon as possible. Thanks to the development of digi-
talization and advanced information and communication technologies
in logistic industries, information can be collected in real-time, and
decisions can be made online [14]. Nevertheless, these new trends also
introduce complexity in intermodal transport planning, unveiling the
need for decision support systems adapted to dynamic contexts.

In this paper, we investigate a dynamic shipment matching (DSM)
problem in which a platform provides online matches between ship-
ment requests and transport services. We consider an online synchro-
modal matching platform that receives contractual and spot shipment
requests from shippers, and receives transport services from carriers, as
shown in Fig. 1. Shippers are the entities that are searching for services
to transport their shipments. Examples of shippers include freight for-
warders and ocean carriers. Carriers are the entities that provide
transport services. Carriers could be truck, train or barge companies.
We consider a network operator as the owner of the platform. A net-
work operator could be a logistics service provider or an alliance
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formed by multiple carriers. The recent developments in information
technologies such as cloud computing and Internet of Things allow real-
time information sharing and container tracking, which facilitates the
adoption of such a platform in practice.

The objective of the platform is to minimize the total cost of
matching shipment requests and transport services over a given plan-
ning horizon. Due to the capacity limitation of barge and train services,
decisions made for current requests may influence the decisions for
future requests. Therefore, dynamic approaches that create online
matching decisions for current requests are required. In this paper, we
design a rolling horizon approach to handle dynamically revealed
shipment requests and develop a heuristic algorithm to solve the DSM
problem in a computationally efficient way.

The remainder of this paper is structured as follows. We discuss the
relevant literature in Section 2. In Section 3, we formally describe the
DSM problem. In Section 4, we explain the implementation of dynamic
approaches. In Section 5, we present optimization algorithms. In
Section 6, we describe the generation of instances and present the ex-
periment results. Finally, in Section 7, we provide concluding remarks
and directions for future research.

2. Literature review

Over the past decades, different freight transport concepts have
been proposed in the literature and in the industry: multimodality, in-
termodality, co-modality, and synchromodality [9]. Although these
concepts are often used interchangeably, there are subtle differences
between these terms: multimodality focuses on the utilization of mul-
tiple modes; intermodality emphasizes the integration between dif-
ferent modes by using standard loading units; co-modality aims to have
efficient utilization of resources; synchromodality, as an extension of
intermodality, adds dynamic updating of transport plans over a net-
work to benefit from real-time information [1]. In this section, the
studies related to the DSM problem have been divided into two cate-
gories: hinterland intermodal transportation and synchromodality.

2.1. Hinterland intermodal transportation

Hinterland intermodal transportation is the provision of efficient,
reliable, and sustainable services through integrated strategic and tac-
tical planning at a network level. Strategic planning concerns the design
of transportation network topologies, such as direct link, corridor, or
hub-and-spoke [5]. Konings et al. [10] investigate the benefits of a hub-
and-spoke network for hinterland transportation in turnaround times,
waiting times, and the reliability of barge services. Containers at a
seaport terminal that have different destinations in the hinterland

would be transported together to the hub and after being regrouped and
bundled with containers originate from other seaport terminals would
continue their trip to their inland destination.

Tactical planning refers to optimally utilizing the given network by
choosing transportation services, allocating their capacity to customer
demands, and planning their itineraries and frequency [17]. Bhatta-
charya et al. [3] propose a mixed integer programming model to opti-
mize schedules for an intermodal transport network by taking into ac-
count the road traffic flow estimation. Zuidwijk and Veenstra [23]
propose a single period model to allocate containers to a truck or barge
and schedule the barge departure time considering container release
time uncertainty and service transit time uncertainty. Crainic et al. [4]
propose a service network design model to decide the optimal schedules
for the services operated by a fleet of shuttles on the railway network
connecting seaport terminals and inland terminals. Demir et al. [6]
investigate a service network design problem with travel time un-
certainty to decide on the routing of containers and the departure time
of transport services.

2.2. Synchromodality

While intermodality focuses on offline planning in which all forms
of input information are required in advance and decisions are made
before the start of transportation, synchromodality emphasizes online
planning in which real-time information about the current state of the
transport system can be taken into account in online planning processes
[7]. Specifically, synchromodal transport planning deals with dynamic
events that are not explicitly addressed in intermodal transportation,
including the representation of real-time data, decisions, and system
states [5]. The most common dynamic events are the arrival of new
shipment requests, but container flows and travel times are possible
dynamics as well.

In the literature, Fazi et al. [8] develop a decision support system for
the optimal allocation of import containers to a heterogeneous fleet
composed of barges and trucks. van Riessen et al. [19] design a decision
tree to derive real-time decision rules for suitable allocation of con-
tainers to services. Rivera and Mes [16] propose an algorithm based on
approximate dynamicm programming to assign newly arrived con-
tainers to either a barge or a truck. Although the above studies con-
sidered the utilization of multiple modes, none of them take into ac-
count the transshipment operations between different services.
Research that models transshipment in synchromodal transportation,
such as Li et al. [11] and Qu et al. [15], are usually designed for con-
tainer flows. However, in practice, shippers would like to receive their
shipments as a whole. Therefore, in this paper, we investigate the DSM
problem from shipment requests' perspective, namely, decisions are

Online synchromodal matching pla orm
Contractual 
shipment 
requests

Spot 
shipment 
requests

Truck 
services

Rolling horizon approach

Train 
services

Barge 
services

Shippers

Inform shippers the 
transport services 

Carriers

Book capacity on 
matched services

Matching decisions

Heuris  algorithm

Network operator

Fig. 1. Illustration of an online synchromodal matching platform. The platform provides online matches between shipment requests received from shippers and
transport services received from carriers thanks to the developed rolling horizon approach.
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designed as binary variables indicating the allocation of a specific
shipment request to a specific service. Mes and Iacob [12] propose a
greedy approach to select the cheapest services for dynamically arrived
shipment requests but without the consideration of road traffic con-
gestions. Due to the limited capacity of road infrastructures, traffic
congestions exist during several periods of a day [18]. The variation of
road travel times has been well investigated in the literature and
therefore can be incorporated in the online synchromodal matching
process.

2.3. Contributions

In the literature, the work most similar to our work is Li et al. [11],
which proposes a rolling horizon approach to control container flows in
a hinterland intermodal network by considering time-dependent truck
travel times and time-schedules for trains and barges. In contrast to our
work, Li et al. [11] focuses on aggregated container flows instead of
specific shipment requests with time windows, and therefore uses the
value of time instead of delay costs in the objective function to push
containers move to their destinations.

The main contributions of this paper are as follows. First, we pro-
pose a rolling horizon approach to handle newly arrived shipment re-
quests. The implementation of the rolling horizon approach relies on an
optimization algorithm that can generate timely matching decisions at
each decision epoch. In particular, we develop a heuristic algorithm to
solve the DSM problem. Third, we conduct extensive experiments to
assess the performance of the heuristic algorithm in comparison to an
exact algorithm, and the performance of the rolling horizon approach in
comparison to a greedy approach from practice. Briefly, we design,
operationalize and validate an online matching platform in the context
of synchromodal transportation.

3. Problem description

Let R be the set of shipment requests. Each shipment request r ∈ R is
characterized by its announce time Γr

announce (i.e., the time when the
platform receives the request), release time Γr

release (i.e., the time when
the shipment is available for hinterland transportation) at origin
terminal or, due time Γr

due (i.e., the time that the shipment needs to be
delivered) at destination terminal dr, and container volume qr (i.e., the
number of containers). Delay in delivery is available but with a delay
cost coefficient per container per hour overdue cr

delay. The lead time of
shipment request r is represented as, LDr = Γr

due − Γr
release.

Shipment requests can be divided into two groups: contractual re-
quests Rcontract and spot requests Rspot. For a contractual request
r ∈ Rcontract, the network operator has long-term contracts with ship-
pers. Therefore, the announce time of contractual request r is,
Γr
announce=0. All the information {or, dr, qr, Γr

release, Γr
due, cr

delay} is
known in a given planning horizon. Conversely, for a spot request
r ∈ Rspot, the platform receives the request from spot markets in real-
time. The information of the spot request {or, dr, qr, Γr

release, Γr
due,

cr
delay} is unknown before its announce time.
Let S be the set of transportation services. According to the type of

modes, services can be divided into two groups: time-scheduled barge
and train services, and departure time flexible truck services.

Barge and train services have limited capacity and fixed time
schedules but can help generating economies of scale. Each barge or
train service s ∈ Sbarge ∪ Strain is characterized by its origin terminal os,
destination terminal ds, free capacity in terms of loading units (i.e.,
containers) Qs, departure time (at origin terminal) TDs, arrival time (at
destination terminal) TAs, transport cost cs, and generation of carbon
emissions es.

Truck services have unlimited capacity, flexible departure times,
and time-dependent travel times tstruck(γ) = θs

mγ + ηs
m, ∀ γ ∈ Tm, as

shown in Fig. 2. Here, we let γ be the departure time of truck services,
and represents the set of time periods within a day. A time period can

be defined by two consecutive breakpoints. Let tstruck be the travel time
at non-peak periods, α and β be traffic congestion coefficients. For time
period T2 = [b2, b3], given the values b2, b3, tstruck, αtstruck, we can
calculate the slope θ of the function and the intersection η with the y-
axis. Each truck service s ∈ Struck is characterized by its origin os, des-
tination ds, time-dependent travel time tstruck(γ), transport cost cs, and
generation of carbon emissions es.

As spot shipment requests arrive in real-time, the platform provides
online matches between shipment requests and transport services. A
match is defined as a combination of a shipment and a service, which
means the shipment will be transported by the service from the service's
origin to the service's destination. Each shipment might be matched
with multiple services, each service might be matched with multiple
shipments. An illustrative example of shipment matching in synchro-
modal transportation is shown in Fig. 3. Matching decision 〈r1, s4〉
means shipment r1 will be transported by service s4 from terminal 1 to
terminal 5; matching decision 〈r2, s1〉, 〈r2, s3〉, 〈r2, s7〉 means shipment
r2 will be transported by service combination [s1, s3, s7] from terminal
1 to terminal 6.

To model this problem, we make the following five assumptions.
First, we assume the platform is centralized and the contracts among
carriers, shippers, terminal operators, and the network operator have
been made. Therefore, we do not consider fairness, pricing, and con-
tracting strategies among players. Second, we do not model the accept/
reject decisions and consider only the accepted spot requests by the
platform. Third, we assume that shippers require their shipments to be
transported as a whole, thus shipments are unsplittable. Fourth, we
assume shippers require to receive matching decisions before the re-
lease time of shipments. Therefore, the response time of request r is
ΔΓr = Γr

release − Γr
announce. Fifth, we assume the capacity of truck

services is unlimited. Therefore, the synchromodal matching system
always has feasible matches for newly arrived shipment requests. Last,
we do not consider stochasticity of travel times in this paper. Instead,
we use deterministic travel times for all services, and consider time-
dependent travel times for trucks, since the road traffic patterns have

truck
st

truck
st

truck
st

2b 3b 4b 5b 6b 7b 8b 9b 10b

Fig. 2. Time-dependent travel times of truck services.

Fig. 3. Illustrative example of shipment matching in synchromodal transpor-
tation.
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been well investigated in the literature [18].

4. Dynamic approaches

To handle newly arrived shipment requests, we need to design
methodologies that can update the decisions based on dynamically re-
vealed information. This paper proposes a rolling horizon approach for
the DSM problem and uses a greedy approach as the benchmark. While
the greedy approach makes matching decisions for each newly arrived
shipment request and the decisions are fixed once they are made, the
rolling horizon approach makes decisions at fixed time points for all
active requests including newly received requests at the current time
interval and the requests received at previous time intervals which have
not expired yet, and the decisions are fixed only when the response for
the request cannot be further postponed, namely, the request will ex-
pire before the next decision epoch.

4.1. Benchmark: greedy approach

Greedy approach (GA) is a simple, intuitive algorithm that makes
fixed decisions at each step. In practice, a GA is often used for container
transport planning [19]. By using the GA, a shipment request is as-
signed to the cheapest feasible service at the time of request arrival.
Fig. 4 presents the flow chart of the GA applied in dynamic shipment
matching. Specifically, the platform provides matches for all the con-
tractual requests received before the planning horizon. After that, the
platform books all the services matched with the contractual requests
and updates the free capacity of barges and trains. A dynamic event,
that is the arrival of a spot shipment request before the end of the
planning horizon, triggers a new optimization process. After that, the
platform books all the services matched with the spot shipment request,
and updates the free capacity of barges and trains.

4.2. Rolling horizon approach

Rolling horizon approach (RHA) is a periodic reoptimization ap-
proach, which has been applied in many research fields, such as ride-
sharing problems [13] and parcel delivery problems [2]. Under a RHA,
the system is optimized periodically at pre-specified points in time
called optimization times. The length between two consecutive optimi-
zation times is called the optimization interval, h. The RHA is therefore
executed at a given set of time points {0,h, 2h, …, T}. Here, T is the
length of the planning horizon.

Under the RHA, plans are made using all known information within
a planning horizon, but decisions are not finalized until necessitated by
a deadline. Re-optimizing the system allows for enhancing the relia-
bility of the system and improving its performance by incorporating the
latest information. The flow chart of the RHA applied in the DSM
problem is presented in Fig. 5. At each decision epoch, the system de-
termines the matches for all active shipments. At time point t, shipment
r is active if its announce time is earlier than t, and its release time is
later than t. The matching plan for active shipment r made at time point
t is fixed only if its release time is earlier than t + h, namely, the
shipment request will expire before the next decision epoch. Thus, the
system books all the services matched with this request, and updates
the free capacity of barge and train services.

Fig. 4. Flow chart of the greedy approach.

Fig. 5. Flow chart of the rolling horizon approach.
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5. Optimization algorithms

In this section, we present two optimization algorithms to solve the
DSM problem: an exact algorithm and a heuristic algorithm. While the
exact algorithm aims to generate optimal solutions, the heuristic algo-
rithm is designed to generate timely solutions. The notations used in

this paper are shown in Table 1.

5.1. Exact algorithm

In this section, we present a mixed integer linear programming
model (MILP) for the DSM problem. The MILP model is solved by an
exact algorithm which is the CPLEX solver. The objective function (Eq.
(1)) minimizes the total costs for the matching of all shipments with
services. The total costs consist of transport costs (including transit
costs, transfer costs, and storage costs), delay costs, and carbon tax. We
include delay costs to address the level of services (i.e., delayed de-
liveries). Considering carbon tax follows the trend towards sustain-
ability in the transport industry. In the literature, there exist several
models for calculating emission charges. However, most of the models
require detailed input data (e.g., the mass of the vehicle, air, and rolling
resistance) which is in many cases not available. As an alternative, the
activity-based method that multiplies the number of containers with the
CO2 emission factor yields better feasibility in transportation practice
and has been applied in many studies [6,18]. Therefore, this paper uses
the activity-based method to charge CO2 emissions.

Minimize

+ + +

+

+

+x q c f f q w q c

q c

x e q c

( )
r R s S

rs r s
r R i N

ri ri r
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ri r
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=
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Table 1
Notations used in this paper.

Sets

N Terminals
R Shipment requests
S Transport services, S = Sbarge ∪ Strain ∪ Struck

Si
+ Transport services depart at terminal i ∈ N, Si

+= Si+
barge ∪ Si+

train ∪ Si+
truck

Si
− Transport services arrive at terminal i ∈ N, Si

− = Si−
barge ∪ Si−

train ∪ Si−
truck

Parameters

or Origin terminal of shipment request r ∈ R
dr Destination terminal of shipment request r ∈ R
qr Container volume of shipment request r ∈ R
Γr
announce Announce time of shipment request r ∈ R

Γr
release Release time of shipment request r ∈ R

Γr
due Due time of shipment request r ∈ R

cr
delay Delay cost coefficient of request r ∈ R per container per hour overdue

os Origin terminal of service s ∈ S
ds Destination terminal of service s ∈ S
Qs Free capacity of service s ∈ Sbarge ∪ Strain

TDs Departure time of service s ∈ Sbarge ∪ Strain

TAs Arrival time of service s ∈ Sbarge ∪ Strain

tstruck Travel time of truck service s ∈ Struck at non-peak periods
α, β Road traffic congestion coefficients
bk The kth breakpoint of time-dependent travel time functions of truck

services, k={1,2,...,K}
Tm The mth time period within a day, Tm = [bm, bm+1],

m={1,2,...,K − 1}
θs

m The slope of the travel time function of truck service s for time period
Tm

ηs
m The intersection of the travel time function of truck service s ∈ Struck

for time period Tm

es Carbon emissions of service s ∈ S per container
cs Transport cost of service s ∈ S per container
lcbarge Loading/unloading cost of barge services
ltbarge Loading/unloading time of barge services
lctrain Loading/unloading cost of train services
lttrain Loading/unloading time of train services
lctruck Loading/unloading cost of truck services
lttruck Loading/unloading time of truck services
cstorage Storage cost coefficient at terminals per container per hour
cemission carbon tax coefficient per ton
M Large (enough) numbers used for binary constraints

Variables

xrs A binary variable equal to 1 if request r ∈ R is matched with service s ∈ S,
0 otherwise

Ari Arrival time of request r ∈ R at terminal i ∈ N
fri+ Loading cost of request r ∈ R at terminal i ∈ N per container
fri− Unloading cost of request r ∈ R at terminal i ∈ N per container
wri Storage time of request r ∈ R at terminal i ∈ N
Γr
delay Delay of request r ∈ R at destination terminal dr

t′rs Travel time of truck service s ∈ Struck with request r ∈ R
τrs Departure time of truck service s ∈ Struck with request r ∈ R
τ′rs Normalized departure time of truck service s ∈ Struck with request r ∈ R,

0 ≤ τ′rs ≤ 24
nrs An integer variable used for normalizing departure time of truck service

s ∈ Struck with request r ∈ R
ζrs

k A continuous variable used for linearizing the time-dependent travel
time function of truck service s ∈ Struck, 0 ≤ ζrs

k ≤ 1
ξrs

m A binary variable used for linearizing the time-dependent travel time
function of truck service s ∈ Struck
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Constraints (2)–(4) manage the inflow of shipments at their origin
terminal, outflow at destination terminal, and flow conservation at
transshipment terminal. Constraints (5) ensure that the total container
volumes of shipments carried by service s ∈ Sbarge ∪ Strain do not exceed
its free capacity. Constraints (6)–(7) represent the loading and un-
loading cost of request r per container generated at terminal i.
Constraints (8) assume that the arrival time of request r at origin
terminal is the release time. Constraints (9)–(12) ensure that the arrival
time of request r at terminal i is the arrival time of service
s ∈ Sbarge ∪ Strain plus unloading time, if request r is transported by
service s entering terminal i. Constraints (13)–(14) ensure that the ar-
rival time of request r at terminal i is the sum of departure time of
service s ∈ Struck with request r at terminal os, travel time of truck

service s, and unloading time, if request r is transported by truck service
s entering terminal i. In constraints (14), we use 2M instead of M in the
right-hand side to make sure the value of Ari will not be influenced by
the constraints when xrs=0 and τrs = M. Constraints (15)–(17) ensure
that the arrival time of request r at terminal i is earlier than the de-
parture time of service s ∈ S minus loading time, if request r is trans-
ported by service s leaving terminal i. Constraints (18)–(25) are im-
posed to linearize the time-dependent travel time functions of truck
services. Constraints (26)–(28) ensure that the storage time of request r
at terminal i is the departure time of service s minus the arrival time of
request r at terminal i and minus loading time, if request r is transported
by service s leaving terminal i. Constraints (29) are imposed to calculate
the late deliveries of request r at destination terminal dr. We do not
penalize earlier deliveries but only late deliveries.

5.2. Heuristic algorithm

Due to the computational complexity of the matching problem, the
exact algorithm proposed in Section 5.1 approach cannot generate
feasible solutions for realistic instances. Therefore, this paper proposes
a preprocessing-based heuristic algorithm to reduce the computational
complexity. The algorithm consists of three steps: preprocessing of path
generation in which no request-specific characteristics are taken into
account, preprocessing of feasible matches in which request-specific
characteristics (i.e., release time and due time) are considered, and
binary integer programming to generate ‘optimal’ solutions.

5.2.1. Preprocessing of path generation
We define a path as a combination of services. A path p can consist

of a single service or multiple services. For example, a path p consists of
a barge service s1 and a truck service s2, thus, p = [s1, s2]. We define L
as the largest number of services in a path. Due to fixed schedules of
barge and train services, some of the service combinations are in-
feasible. Let Pij

l be the set of feasible paths with l services that depart at
terminal i ∈ N and arrive at terminal j ∈ N, l ∈ {1,...,L}. A path p ∈ Pij

l is
feasible only if all the services in path p= [s1,…, sl] satisfies spatial and
time compatibility: for service sn, sn+1 ∈ p, n ∈ {1,...,l − 1}, the des-
tination terminal of service sn should be the same as the origin terminal
of service sn+1; the arrival time of sn plus unloading and loading time at
the transshipment terminal should be earlier than the departure time of
service sn+1.

Based on the above principles, feasible paths with maximum L
services are generated by using the offline preprocessing algorithm
presented in Algorithm 1. The algorithm starts with determining the
feasible paths for each origin-destination pair with just one service, and
subsequently combines these paths with a single service to create fea-
sible paths with two services, three services, and so on. For each fea-
sible path, we record the virtual departure and arrival time points of all
the services in the path by calling the AUXILIARYTIMEPOINTS as de-
scribed in Algorithm 2. The virtual departure (arrival) time points of
barge and train services are the departure (arrival) time of these ser-
vices minus (plus) loading (unloading) time. Instead of determining the
departure time of truck services to avoid traffic congestion, we define
the virtual departure time points of truck services as the virtual arrival
time points of their previous services to reduce computational com-
plexity. The time-dependent travel time of truck services is calculated
based on the virtual departure time point plus loading time. To examine
whether a path p ′ = [s1,…, sl−1, s] ∈ Pij

l is feasible, we check the time
compatibility between path p = [s1,…, sl−1] ∈ Pios

l−1 and service
s ∈ Sj

− by calling the TIMECOMPATIBLE1 as described in Algorithm 3.
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Algorithm 1. Path generation algorithm.

Algorithm 2. AUXILIARYTIMEPOINTS.

Algorithm 3. TIMECOMPATIBLE1.

5.2.2. Preprocessing of feasible matches
A match 〈r,p〉 is defined as a combination of shipment r ∈ R and

path p = [s1,…, sl], p ∈ P, which means shipment r will be transported
by the services included in path p. The match 〈r,p〉 is feasible only if it
satisfies spatial and time compatibility: the origin of shipment r should
be the same as the origin of service s1, the destination of shipment r
should be the same as the destination of service sl; the release time of

shipment r should be earlier than the virtual departure time point of
service s1.

We define Φ as the set of feasible matches, crp as the cost of
matching shipment r with path p. Algorithm 4 is designed to create the
feasible matches. For shipment r and path p = [s1,…, sl] ∈ Pordr

l, the
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time compatibility between r and p is checked by calling TIMECOMP-
ATIBLE2, as presented in Algorithm 5. If s1, …, sn are truck services, the
virtual departure and arrival time points of these truck services need to
be updated sequentially. After the updating, if the virtual arrival time
point of sn is less than the virtual departure time point of service sn

+1 ∈ Sbarge ∪ Strain, match 〈r,p〉 is feasible. If s1 is a barge or train
service, and the release time of shipment r is less than the virtual de-
parture time point of service s1, then match 〈r,p〉 is feasible.

Algorithm 4. Feasible match generation algorithm.

Algorithm 5. TIMECOMPATIBLE2.

5.2.3. Binary integer programming
Based on the above preprocessing procedures, the objective function

is updated to minimize the total costs for the matching of shipments
with feasible paths. Let yrp be a binary decision variable equal to 1 if
shipment r is matched with path p, and 0 otherwise. The mathematical
formulation translates into a binary integer programming (BIP) model:

Minimize

c y
r R p

rp rp
r (30)

subject to

=y r R1, ,
p

rp
r (31)

y q Q s S S, ,
r R p

rp r s
barge train

rs (32)

y r R p{0, 1}, , ,rp r (33)

where Φrs = {p ∈ Φr| s ∈ p}.
Constraints (31) ensure that only one feasible path will be assigned

to each shipment. Constraints (32) ensure that the total volume of

shipments assigned to service s ∈ Sbarge ∪ Strain does not exceed its free
capacity.

6. Numerical experiments

In this section, we first evaluate the performance of the optimization
algorithms and compare the GA with the RHA. Then, we investigate the
impact of different objective functions and optimization intervals. All
algorithms were implemented in MATLAB R2017a, and all experiments
were performed on a computer with 2.50 GHz Intel Core i5-7200U CPU
and 8 GB RAM. CPLEX 12.6.3 was used as an IP solver.
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6.1. Generation of test instances

In practice, different companies have different network sizes. For
example, Combi Terminal Twente (https://www.ctt-twente.nl/
en/, accessed: 2020-03-16) provides container transports from the port
of Rotterdam to 3 inland terminals in the Netherlands and Germany
with 7 barges, 3 trains and 40 trucks per week. European Gateway
Services (EGS, https://www.europeangatewayservices.com/
en, accessed: 2020-03-16) offers above 40 trains and 30 barges per
week between the Ports of Rotterdam and Antwerp and 11 inland
terminals in the Netherlands, Belgium, Germany, and Austria. Every
year, approximately 1,000,000 TEU is transported within the EGS
network. To show the application of the model, we consider a hinter-
land intermodal network in Europe to carry out the numerical experi-
ments, as shown in Fig. 6. The network consists of three deep-sea
terminals (nodes 1, 2, 3) and seven inland terminals (nodes 4, 5, 6, 7, 8,
9, 10) which are connected by 116 transport services, including 49
barges, 33 trains, and 34 trucks. The length of the planning horizon was
set to one week. The coefficients used in the experiments were derived
from Riessen et al. [20] and Li et al. [11], as shown in Table 2. Here, the
transit cost of services is a linear function of the transit time t and
distance d.

We generated several instances to represent different characteristics
of shipments within the given network. We use EU − n1 − n2 to re-
present an instance with n1 contractual requests and n2 spot requests.
The average container volume of contractual requests is 20 TEU, and
the average container volume of spot requests is 5 TEU. We set the
arrival frequency to 20, 10, 6 and 4 min for instances with 400, 800,
1200 and 1600 spot requests, respectively. Regarding the time-depen-
dent travel times, we set b1=0, b2=5, b3=7, b4=9, b5=13, b6=17,
b7=19, b8=21, b9=24, α=2, β=1.5. The detailed information of ser-
vices and instances used in this paper is available at https://
surfdrive.surf.nl/files/index.php/s/cCrpmO1dy8ls7if.

6.2. Performance of the heuristic algorithm

To compare the performance of the heuristic algorithm presented in
Section 5.2 with the exact algorithm presented Section 5.1, we gener-
ated 8 instances of the DSM problem with different numbers of ship-
ment requests. In the exact algorithm, we set the large enough number
M to 168. In the heuristic setting, we let the largest number of services
in a path L be 1, 2, 3 and 4, respectively. We use heuristic-L to represent
the heuristic algorithm with setting L. The number of variables (i.e.,
N.var) and constraints (i.e., N.con) for the instances under different
algorithms is presented in Table 3.

We consider two performance indicators: total costs (obj: €) and

computation time (CPU: seconds). The computation time of heuristics
includes the time of generating feasible matches and the time of solving
the BIP model. We use ‘gap’ to represent the %gaps in total costs be-
tween different algorithms, which is given by (objective
value − benchmark value) ∗ 100/benchmark value. Table 4 sum-
marizes the performance for all instances. It shows that the small in-
stances with up to 30 contractual requests are still solvable by using the
exact algorithm. However, the computation time increases dramatically
from 27 to 5647 s. In comparison, extending L from 1 to 3, the gaps in
total cost between the heuristic algorithm and the exact algorithm de-
creases to 0.00%. The computation time of the heuristic algorithm with
a maximum of 3 services in a path (Heuristic-3) is no more than 1 s.

For instances with above 700 total requests, we cannot obtain fea-
sible solutions with the exact algorithm. The limitation in these in-
stances is not the computation time but rather the memory since the
size of the problems becomes too large to read. In contrast, all these
large instances can be solved by using the heuristic algorithm with a
maximum of 3 services in a path within 176.24 s, and the gaps in total
costs between heuristic-3 and heuristic-4 are 0.00%.

6.3. Performance of the dynamic approaches

In this section, we aim to compare the performance of two dynamic
approaches: the GA and the RHA. Both of them work with Heuristic-3.
We set the length of the optimization interval under the RHA to 1 h.

We generated 4 groups of instances with different demand densities
represented by the ratio between demand and supply: EU-100-400
(40%), EU-200-800 (80%), EU-300-1200 (120%), and EU-400-1600
(160%). Here, demand is the total container volumes of shipments,
supply is the total free capacity of barge and train services. Each group
includes 10 instances with the same ratio between demand and supply.
We use the GA as the benchmark. Fig. 7(a) shows that the RHA has
lower total costs in all the groups of instances, and the reduction in total
costs increases with the demand density. The reason is that the higher
the ratio between demand and supply, the competition between ship-
ment requests is higher. The proposed RHA better allocates limited
barge and train capacity to more suitable shipment requests which
might arrive later in the system.

We generated another 4 groups of instances with different degrees
of dynamism (DOD). In this paper, we define the DOD as the ratio
between the number of spot containers and the number of total con-
tainers. Thus, the DOD for instance EU-300-400 is (400 ∗ 5)/
(300 ∗ 20 + 400 ∗ 5) = 25%. The DOD for instance EU-300-400, EU-
200-800, EU-100-1200, EU-0-1600 are therefore 25%, 50%, 75% and
100% respectively. Each group includes 10 instances with the same
DOD. Fig. 7(b) shows that the RHA also has better performance in all

Fig. 6. The topology of an intermodal network in Europe.
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the groups of instances compared to the GA, and the improvement is
increasing further with a higher DOD. Interestingly, when the matching
system is 100% dynamic, the variance of the performance of the RHA
becomes the largest. The reason is when the system is fully dynamic,
the performance of the reoptimization-based RHA becomes uncertain.

To investigate the performance of the GA and the RHA under dif-
ferent lead time scenarios, we generated 3 groups of instances with
different lead times of spot requests: EU-100-1200 (24), EU-100-1200
(48), and EU-100-1200 (72). Each group consists of 10 instances with
the same lead time setting. Fig. 7(c) shows that the RHA has better
performance than the GA in terms of total costs for all groups of in-
stances and the improvement is larger for longer lead times. Longer lead
times provide more flexibility for the RHA to re-optimize the decisions
as new requests are received and the capacity can be allocated more
effectively.

Similarly, we varied the response time of shipment requests from
1 h to 24 h for 3 groups of instances: EU-100-1200 (1), EU-100-1200
(12), and EU-100-1200 (24). Fig. 7(d) shows that the larger the re-
sponse time, the better the performance of the RHA is in reducing total
costs since it has more time to update decisions for all requests until
their release times.

6.4. Impact of different objective functions and optimization intervals

In this section, we use the RHA and Heuristic-3 to investigate the
impact of different objective functions and the length of the optimiza-
tion interval.

6.4.1. Impact of different objective functions
We investigate the impact of different objective functions under

instance EU-1000-0. The utilization of barges and trains is defined as
the ratio between the utilized capacity of barge and train services
multiplied by corresponding transit distances and the utilized total
capacity of all services multiplied by corresponding distances. Table 5
shows that different objective functions generate different matching
solutions. Comparing case 11 with cases 1 to 10, we observe that the
total cost is the lowest when the objective function includes all ele-
ments. When we minimize the transit cost (case 1) or the carbon tax
(case 5), the utilization of barges and trains is favored as they are
cheaper and environmental friendlier than trucks. On the other hand,
minimizing the transfer (case 2), storage (case 3) or delay (case 4) cost
favors the utilization of trucks as they are faster in general and have
flexible departure times. Comparing case 11 with cases 6 to 10, we see
that the transit cost has the largest influence on the matching decisions
while carbon tax has the smallest impact. However, it is predictable that
the carbon tax coefficient will increase in the near future because of the
increasing environmental issues and the enforced regulations. Under a
restrict emission policy, such as case 14, including the carbon tax in the
objective function can greatly affect the utilization of barges and trains.
It is also interesting to observe that there is a clear trade-off between
delay and carbon emissions as it is what is happening in real life.

6.4.2. Impact of the length of the optimization interval
To test the impact of the length of the optimization interval in the

RHA, we used 4 instances with different DOD: EU-300-400 (25%), EU-

Table 2
Experimental setting.

Coefficient Truck Barge Train

Transit cost (€/TEU-km-h) 30.98 t + 0.2758d 0.6122 t + 0.0213d 7.54 t + 0.0635d
Carbon emission (kg/TEU-km) 0.8866 0.2288 0.3146
Loading/unloading cost (€/TEU) 3 18 18
Loading/unloading time (h) 0 1 1
Carbon tax (€/ton) 8 8 8
Storage cost (€/TEU-h) 1 1 1

Table 3
Number of variables and constraints for the instances under different algorithms.

Instances Exact algorithm Heuristic-1 Heuristic-2 Heuristic-3 Heuristic-4

N.var N.con N.var N.con N.var N.con N.var N.con N.var N.con

EU-5-0 4185 4221 26 18 54 25 66 25 68 25
EU-10-0 8370 8408 28 24 209 63 684 82 944 82
EU-20-0 16,740 16,676 84 61 428 85 1125 91 1488 91
EU-30-0 25,110 24,963 112 66 564 104 1646 105 2235 105
EU-700-0 585,900 580,996 2504 767 13,725 780 36,449 781 56,777 781
EU-1000-0 837,000 829,916 3279 1067 18,108 1082 49,908 1082 79,805 1082
EU-1300-0 1,088,100 1,079,016 4473 1367 25,377 1380 69,202 1381 109,758 1381
EU-1600-0 1,339,200 1,327,942 6032 1667 33,742 1680 91,020 1681 143,859 1681

Table 4
Performance of the heuristic algorithm with different L.

Instances Exact algorithm Heuristic-1 Heuristic-2 Heuristic-3 Heuristic-4

Obj CPU %gap CPU %gap CPU %gap CPU Obj %gap CPU

EU-5-0 4386 27.01 0.00 0.05 0.00 0.15 0.00 0.60 4386 0.00 0.28
EU-10-0 25,988 213.06 32.89 0.03 0.00 0.11 0.00 0.45 25,988 0.00 0.80
EU-20-0 44,198 1704.98 29.56 0.02 0.05 0.13 0.00 0.43 44,198 0.00 0.65
EU-30-0 65,126 5647.03 28.52 0.02 0.00 0.13 0.00 0.60 65,126 0.00 0.94
EU-700-0 Out of memory 17.49 1.37 0.17 8.21 0.00 25.47 1,060,077 38.43
EU-1000-0 18.37 2.60 0.25 16.46 0.00 45.22 1,017,669 78.94
EU-1300-0 19.03 6.12 0.42 34.15 0.00 94.62 1,042,481 158.57
EU-1600-0 18.36 10.55 0.17 63.22 0.00 176.24 1,020,075 302.41
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200-800 (50%), EU-100-1200 (75%) and EU-0-1600 (100%). For each
instance, we vary the length of the optimization interval h from 0.1 to
10 h.

We use optimization intervals of 1 h as the benchmark. Fig. 8 shows
that reducing h allows the system to react more quickly to new in-
formation, which in turn leads to improved solutions. This is especially
the case for instances with a high DOD. However, excessively reducing
h does not improve the performance of the RHA. It is seen that below
1 h of optimization intervals does not bring values as expected since the
response times are set as a minimum of 1 h. Therefore, decision makers
can improve the matching quality by choosing a proper h-value.

7. Conclusion and future research

In this paper, we introduced an online synchromodal matching
problem in which a platform aims to provide optimal matches between
shipment requests and transport services. We proposed a rolling hor-
izon approach and a heuristic algorithm to support the online decision-
making process. We validated the heuristic algorithm and the rolling
horizon approach on an intermodal network in Europe. The results
indicate that the heuristic algorithm is efficient in large instances of the
matching problem, and can be used under dynamic contexts. The
rolling horizon approach has been proved to outperform a greedy ap-
proach in reducing total costs under various scenarios.

Fig. 7. Comparison between the rolling horizon approach and the greedy approach.

Table 5
Impact of different objective functions.

Case Carbon tax
coefficient
(€/ton)

Objective
functiona

(min.)

Total cost (€) OF1 (€) OF2 (€) OF3 (€) OF4 (€) OF5 (€) Delay
(TEU-h)

Carbon
emission (kg)

Utilization of
barges and trains
(%)

Utilization of
trucks (%)

1 8 OF1 4,478,714 598,864 328,458 137,798 3,406,214 7379 39,170 922,429 71.47 28.53
2 OF2 1,473,382 1,411,229 47,622 0 0 14,530 0 1,816,311 0.00 100.00
3 OF3 1,618,747 1,499,961 103,374 0 0 15,412 0 1,926,482 0.04 99.96
4 OF4 1,617,409 1,495,824 105,960 245 0 15,379 0 1,922,413 0.42 99.58
5 OF5 4,432,293 601,621 324,498 144,863 3,353,948 7364 40,167 920,491 72.06 27.94
6 OF2,3,4,5 1,473,382 1,411,229 47,622 0 0 14,530 0 1,816,311 0.00 100.00
7 OF1,3,4,5 1,042,644 648,402 313,266 72,066 1112 7799 11 974,863 67.96 32.04
8 OF1,2,4,5 1,028,388 668,393 270,732 80,338 972 7953 10 994,084 65.78 34.22
9 OF1,2,3,5 1,803,565 656,501 260,772 69,829 808,619 7844 8624 980,454 66.71 33.29
10 OF1,2,3,4 1,017,693 695,156 252,702 60,783 880 8172 9 1,021,544 63.76 36.24
11 Total cost 1,017,675 692,118 254,448 62,114 850 8145 9 1,018,154 64.05 35.95
12 100 Total cost 1,110,869 684,140 260,790 64,039 972 100,929 10 1,009,287 64.78 35.22
13 500 Total cost 1,507,925 658,359 284,862 72,431 1162 491,111 12 982,222 66.94 33.06
14 1000 Total cost 1,995,063 643,700 298,386 78,945 8159 965,872 88 965,872 68.48 31.52

Bold to emphasis the significance of bold values.
a OF1: Transit cost; OF2: Transfer cost; OF3: Storage cost; OF4: Delay cost; OF5: Carbon tax; OF2,3,4,5: Transfer cost + Storage cost + Delay cost + Carbon tax;

OF1,3,4,5: Transit cost + Storage cost + Delay cost + Carbon tax; OF1,2,4,5: Transit cost + Transfer cost + Delay cost + Carbon tax; OF1,2,3,5: Transit
cost + Transfer cost + Storage cost + Carbon tax; OF1,2,3,4: Transit cost + Transfer cost + Storage cost + Delay cost.
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In conclusion, the proposed online matching platform will support
decision makers to optimize the matching of shipments and services
considering the trade-off between transport cost, delay, and carbon
emissions thanks to the developed rolling horizon approach. In other
words, with the proposed approach, the use of barges, trains, and trucks
can be managed more effectively taking into account their impact on
transport time, cost and emissions together with different time sensi-
tivities of shipments.

This work can be extended in several directions. During the day, the
number of trucks available to the matching platform is quite dynamic.
Therefore, combining the dynamics of truck services in the synchro-
modal matching model is a further research direction. Considering the
multiple uncertainties that exist in synchromodal transportation, future
research can be carried out on stochastic and dynamic shipment
matching. Furthermore, the origins and destinations of containers are
usually located in different countries. Thus, looking into models with an
integrated network combining international and inland transport is a
promising research direction. Besides, in this paper, the online
matching platform is controlled in a centralized way. However, in
practice, multiple operators are present and they may not all be willing
to give authority to a central platform. The coordination mechanism
among them and incentives to stimulate cooperation are part of future
research.
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